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RESEARCH ARTICLE
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Abstract

Laboratory animals are commonly anesthetized to prevent pain and distress and to provide

safe handling. Anesthesia procedures are well-developed for common laboratory mammals,

but not as well established in reptiles. We assessed the performance of intramuscularly

injected tiletamine (dissociative anesthetic) and zolazepam (benzodiazepine sedative) in

fixed combination (2 mg/kg and 3 mg/kg) in comparison to 2 mg/kg of midazolam (benzodi-

azepine sedative) in ball pythons (Python regius). We measured heart and respiratory rates

and quantified induction parameters (i.e., time to loss of righting reflex, time to loss of with-

drawal reflex) and recovery parameters (i.e., time to regain righting reflex, withdrawal reflex,

normal behavior). Mild decreases in heart and respiratory rates (median decrease of <10

beats per minute and <5 breaths per minute) were observed for most time points among all

three anesthetic dose groups. No statistically significant difference between the median

time to loss of righting reflex was observed among animals of any group (p = 0.783). How-

ever, the withdrawal reflex was lost in all snakes receiving 3mg/kg of tiletamine+zolazepam

but not in all animals of the other two groups (p = 0.0004). In addition, the time for animals to

regain the righting reflex and resume normal behavior was longer in the drug combination

dose groups compared to the midazolam group (p = 0.0055). Our results indicate that mida-

zolam is an adequate sedative for ball pythons but does not suffice to achieve reliable immo-

bilization or anesthesia, whereas tiletamine+zolazepam achieves short-term anesthesia in a

dose-dependent manner.
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Introduction

A good understanding of the natural history, evolutionary development, and reproduction of

snakes (Reptilia: Squamata: Serpentes) is paramount for many reasons including conservation

efforts [1–4], evaluation of snake-specific sensory anatomy for chemoreception and behavior

[5–8], and to help develop medical countermeasures against venomous snake bites, and finally

the development of candidate therapeutics for human health issues including clotting disorders

and cancer [9–12]. Snakes are also increasingly investigated as natural or accidental hosts for a

variety of viruses [13–23], and there is increased interest in snake fungal diseases such as those

caused by Ophidiomyces ophiodiicola [24] and the Chrysosporium anamorph of Nannizziopsis
vriesii complex (CANV) [25]. Snake researchers face unique challenges for husbandry, animal

restraint, biosample collection, and surgery. Varying levels of immobilization can be required

depending on the procedure to be performed, the size and temperament of the snakes, or their

ability to produce venom [26–28]. These challenges can be exacerbated when snakes are sus-

pected to be, or are infected with potentially zoonotic microorganisms or viruses, and when the

safety of the animal handler, and prevention of bites, becomes a primary concern.

Ball pythons (Boidae: Python regius Shaw, 1802) are common pets in the US but are still

rarely used in experimental research [29, 30]. These snakes have gained attention among virol-

ogists as they harbor unique viruses [31–34]. Ball python nidovirus (Nidovirales: Toroviriniae)
was recently identified as a likely cause for respiratory disease in this species [14, 35, 36]. Addi-

tionally, Golden Gate virus, a reptarenavirus (Arenaviridae: Reptarenavirus) was recently dis-

covered in boa constrictors (Boidae: Boa constrictor Linnaeus, 1758) and annulated trees boas

(Boidae: Corallus annulatus Cope, 1875). Golden Gate virus is the likely cause of inclusion

body disease (IBD) of captive boid snakes [37–39] and is highly virulent for ball pythons [16].

Due to the increased interest in virus research involving ball pythons, we designed this

study to identify a reliable method of immobilization in these snakes that permits experimental

infections and sample acquisition in the absence of animal suffering. We therefore aimed to

identify an anesthetic that can be injected intramuscularly without intubation (straightforward

and relatively uncomplicated procedure). Administration of this anesthetic ought to lead to

reliable immobilization of all study animals for at least 10–15 min with minimal depression of

the cardiovascular and respiratory systems and a recovery period of less than 3 hours. Based

on previously published literature for other reptiles [40–44], we hypothesized that a low, 2 mg/

kg, dose of tiletamine (dissociative anesthetic) plus zolazepam (benzodiazepine sedative)

would best meet these anesthesia criteria in infectious disease laboratory settings (biosafety lev-

els 2 and higher). Here, we describe an in vivo comparison of low, 2-mg/kg, tiletamine+-

zolazepam intramuscular dosing to mid-range, 3-mg/kg, dosing of the same compound

combination and high, 2-mg/kg, dosing of midazolam, a commonly used but also understud-

ied sedative for reptiles [45–52]. Our results indicate that intramuscular administration of 3

mg/kg of tiletamine+zolazepam to ball pythons results in anesthesia that lasts sufficiently long

for animal exposure to infectious agents and acquisition of biosamples.

Materials and methods

Ethics statement

Research was conducted under an Institutional Animal Care and Use Committee (IACUC)-

approved protocol at the United States Army Medical Research Institute of Infectious Diseases

(USAMRIID) in Frederick, Maryland, USA. USAMRIID is accredited by the AAALAC Inter-

national and adheres to principles stated in the Guide for the Care and Use of Laboratory Ani-

mals, National Research Council (2011).
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Animals

Six adult (4 female and 2 male) ball pythons (Python regius Shaw, 1802) were obtained from a

commercial breeder, Outback Reptiles (Manassas, VA, USA), and four (3 female and 1 male)

adult ball pythons were obtained from two private collectors coordinated by Stahl Exotic Animal

Veterinary Services (Fairfax, VA, USA). The mean body weight of these animals was 1.57

kg ± 0.43 (range 0.80–2.29 kg). Animals were maintained in a commercially available rack system

(Freedom Breeder, Turlock, CA; Model: Reptile 1010) designed to house snakes of this weight.

Snakes were maintained within an appropriate optimum temperature zone. In the cage, ambient

daytime temperatures were maintained at 25.5–27.5˚C, ambient nighttime temperatures were

maintained at 24.0–26.7˚C, and basking spots were maintained at 31.0–35.0˚C. Heat was provided

by a custom-made under-tank heating element controlled via a thermostat (Freedom Breeder).

The animal room itself was maintained at 23.9 ± 1˚C. Humidity was maintained at 45–70%, and a

12-hour light/dark cycle was maintained in the room housing the racks system. All snakes were

acclimatized for 7 days after arrival at the facility and were physically examined and evaluated via

baseline complete blood count (CBC) and chemistry panel to ascertain health. Ball python nido-

virus and reptarenavirus infection of the animals was excluded via next-generation sequencing

analysis of total RNA extracted from blood samples taken from each snake as previously described

[14]. All snakes were acclimatized for an additional 14 days in an animal room located inside

USAMRIID’s animal biosafety level 4 (ABSL-4) training suite prior to use in this study. During

this acclimation period, each snake was offered a freshly euthanized laboratory mouse (strain CD-

1, Envigo, Frederick, MD, USA) of appropriate size every 7–10 days Three of the largest animals

(G1, S1, H2) did not exhibit any feeding behaviors. To avoid complications with regurgitation

and improper digestion, snakes were held off feed for at least 5 days before and after anesthetic

procedures were conducted. Since the three anesthetic events were spaced every 7 days, snakes

were on continuous fast for 31 days. Such a fast is normal for sexually mature, adult ball pythons

particularly during the time of year during which this study took place (December).

Baseline ethogram

To create a baseline ethogram for each animal, normal behavior, reactiveness, and tempera-

ment were recorded for 10 minutes twice daily (between 6 and 8 am EST, and between 4 and 6

pm EST) for 7 days. A designated set of stimuli was always provided at each observation: cages

were slowly opened exposing 50–70% of inner cage surface, cage furniture was calmly manipu-

lated to conduct daily husbandry activities (e.g., changing water, checking bedding substrate

for urates or feces and removal thereof), and snakes were physically stimulated by steady digi-

tal pressure against the lateral surface of the body. A summary of the behaviors noted for 1

week is documented in Table 1. This baseline ethogram was used for comparison of snake

behavior pre- and post-drug administration since variation in typical reactivity levels was

observed between individual snakes depending on the stimulus provided.

Anesthesia

Snakes were assigned to three anesthesia groups in a crossover study design. The treatment

sequence and order of drug administration each snake received were randomized using PROC

PLAN (SAS Institute, Cary, North Carolina, USA; Version 9.4). Seven days elapsed between

anesthesia trials to allow clearance of drugs. Midazolam, 5 mg/mL, was obtained from Hospira

Pharmaceuticals (Lake Forest, IL, USA). Tiletamine+zolazepam, 10 mg/mL, was obtained

from Zoetis LLC (Parsippany, NJ, USA). The three drug regimens tested were midazolam (2

mg/kg), tiletamine+zolazepam (2 mg/kg), and tiletamine+zolazepam (3 mg/kg). Drugs were

administered to one snake at a time under restraint by two animal handlers. Administration
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Table 1. Ball python baseline ethogram.

Stimulus Reaction Type M01 G01 G02 H01 H02 S01 S02 S03 N02 C01

Open Cage Movement Freeze ✓1 ✓

Slow ✓ ✓ ✓

Steady ✓ ✓2 ✓ ✓

Fast ✓ ✓

Hide Absent ✓ ✓

Delayed ✓ ✓ ✓ ✓ ✓

Immediate ✓ ✓ ✓

Escape Absent ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Delayed ✓

Immediate ✓

Tongue flicking Absent ✓ ✓ ✓ ✓ ✓

Slow ✓

Active ✓ ✓ ✓ ✓

Husbandry Tasks

• manipulate water

• manipulate hide

• take cage temperature

Movement Freeze ✓ ✓

Slow ✓

Steady ✓ ✓

Fast ✓ ✓ ✓ ✓ ✓

Hide Absent ✓

Delayed ✓

Immediate ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Escape Absent ✓ ✓ ✓ ✓ ✓

Delayed ✓ ✓

Immediate ✓ ✓ ✓

Tongue flicking Absent ✓ ✓ ✓ ✓ ✓ ✓

Slow ✓

Active ✓ ✓ ✓

Form Ball Absent ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Loose

Tight ✓ ✓

Digital pressure against mid-body Movement Freeze ✓ ✓

Slow ✓ ✓

Steady ✓ ✓ ✓ ✓ ✓

Fast ✓

Hide Absent ✓ ✓ ✓ ✓ ✓ ✓

Delayed ✓ ✓

Immediate ✓ ✓

Escape Absent ✓ ✓ ✓

Delayed ✓ ✓ ✓

Immediate ✓ ✓ ✓ ✓

Tongue flicking Absent ✓ ✓ ✓ ✓ ✓

Slow ✓ ✓ ✓ ✓

Active ✓

Form Ball Absent ✓ ✓ ✓ ✓

Loose ✓ ✓ ✓ ✓

Tight ✓ ✓

https://doi.org/10.1371/journal.pone.0199339.t001
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occurred intramuscularly into paravertebral muscles located in the cranial third of each snake’s

body using tuberculin needles (BD Medical, Franklin Lakes, NJ, USA), 25-gauge, 1.59 cm, 1

ml). Snakes were returned to the rack system immediately after injection for observation.

Monitoring

Anesthetists were blinded to the drug each snake received to reduce observer bias, and multi-

ple anesthetists covered the monitoring required for simultaneous dosing of all ten animals.

Anesthetic depth was measured by evaluating the presence or absence of the righting reflex

(turning the snakes on their backs and observing whether they assume normal body position

thereafter) and withdrawal reflexes (observing whether the snakes attempt to move their tails

after the anesthetist firmly pressured the tails for at least 3 seconds using his/her finger tips).

Heart rates were measured using non-directional Doppler ultrasound system and a 9-mHz flat

probe (Parks Medical Electronics, INC, Aloha, Oregon, USA). Respiratory rates were mea-

sured by visual examination of spontaneous respiration. Both physiological parameters were

measured every 5–7 min after drug administration until the snakes regained righting reflexes.

During induction and recovery, animals were maintained on the basking side of their

enclosures for thermal support. Entry into Stage 1 of anesthesia was defined as “exposed to the

drug.” Induction time was defined as the time from administration of the drug to the time an

evaluated snake lost its righting reflex. The time from the loss of righting reflex to regaining

the reflex was designated as Stage 2 of anesthesia. During Stage 2 of anesthesia, the snake was

immobile and minimally resistant to handling. The time passing from drug administration to

loss of the withdrawal reflex was recorded as well. The anesthetic period, Stage 3 of anesthesia,

was defined as the time from the loss of the withdrawal reflex to regaining the reflex. This stage

was used to acquire blood and other biosamples.

Resumption of typical behavior was defined as the time from initial drug dosing to exhibit-

ing fully alert behaviors in line with the baseline ethogram (e.g., actively investigating cage

environment, investigating animal handlers, and reacting to manipulation of cage furniture).

After animals regained righting reflexes, behaviors were assessed every 15–20 min.

Statistical analysis

The association between drug regimen and time to loss of righting and/or withdrawal reflexes

was analyzed by a log-rank test stratified by animal and was summarized by median time

among all snakes. Animals not experiencing an event were considered as right censored at the

end of the observation period. These cases prevented the calculation of the upper confidence

limit for the 2-mg/kg midazolam and 2-mg/kg tiletamine-zolazepam groups, and the calcula-

tion of the median for the 2-mg/kg tiletamine-zolazepam group. These values are denoted

with “NC” (not calculated) in Table 2. The time to regain the righting and/or withdrawal reflex

and/or normal behavior was considered only among those snakes experiencing the corre-

sponding losses and were compared by a stratified log-rank test. The proportion of snakes ever

reaching the loss of withdrawal or righting reflexes and the frequency distribution of snake

anesthesia stages by time post-injection was determined using Friedman’s chi-square test.

Minimum, maximum, and median heart and respiratory rates, obtained for each snake over

the first 1–2 hours of study, were compared across treatment groups by one-way repeated mea-

sures ANOVA. Adjustments for multiple comparisons were not applied.

Results

All 10 ball pythons received one dose of each drug regimen at 7-day intervals. Administration

of midazolam at 2 mg/kg or tiletamine+zolazepam at 2 mg/kg resulted in in loss of the righting
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reflex (Stage 2 of anesthesia, defined in Materials & Methods) in 6/10 and 7/10 snakes respec-

tively, whereas all 10 snakes lost the righting reflex after exposure to tiletamine+zolazepam at 3

mg/kg (Table 2).

The loss of righting reflex and entry into Stage 2 of anesthesia resulted in mostly immobile

and minimally resistant snakes that could be handed easily. Statistically significant differences

between each anesthetic group were observed for the time each snake spent in Stage 2 of anes-

thesia (p = 0.0055): 3 mg/kg tiletamine+zolazepam resulted in a median of 74.5 min of Stage 2

anesthesia, whereas 2 mg/kg tiletamine+zolazepam and midazolam resulted in shorter times

(41.0 and 21.0 min, respectively; Table 2). Statistically significant differences (p = 0.0004) were

also observed at Stage 3 of anesthesia (defined in Materials & Methods) between the three drug

regimens: only 3 mg/kg tiletamine+zolazepam resulted in the loss of the withdrawal reflex in

all 10 animals (Table 2). The time to regain the withdrawal reflex was similar in all snakes that

experienced loss of the withdrawal reflex independent of drug regimen. A chronological repre-

sentation of the snakes’ anesthetic events and recoveries is shown in Fig 1.

Notably, during the first 45 min after drug administration, no statistically significant differ-

ences were noted between the three drug regimens regarding the number of snakes in Stage 1

and 2 of anesthesia (Fig 1, Table 2). Subsequently, animals exposed to 3 mg/kg of tiletamine+-

zolazepam took longer to regain their righting reflexes and exit Stage 2 of anesthesia compared

to the 2 mg/kg group (Fig 1, Table 2). Snakes exposed to 3 mg/kg of tiletamine+zolazepam

Table 2. Time course of anesthesia stages after administration of three different drug regimens in ball pythons.

Stages of anesthesia and incidence of each stage Statistic Midazolam 2 mg/

kg

Tiletamine+zolazepam 2

mg/kg

Tiletamine+zolazepam 3

mg/kg

p-value

Loss of righting reflex n (%) w/ event 6 (60) 7 (70) 10 (100) 0.1146a

Time to enter Stage 2 of anesthesia (loss of righting

reflex) (min)

Median (95%

CL)b
47.0 (28.00, NC) 34.0 (9.00, NC) 44.5 (27.00, 52.00) 0.7829c

Mean (SD)d 39.5 (8.53) 29.1 (7.73) 43.0 (10.43)

Loss of withdrawal reflex n (%) w/ event 0 3 (30) 10 (100) 0.0004

Time to enter Stage 3 of anesthesia (loss of withdrawal

reflex) (min)e
Median (95%

CL) a
n/a NC 53.0 (30.00, 60.00) 0.0055

Mean (SD)d 0 29.0 (9.64) 51.0 (13.77)

Regain withdrawal reflexe n (%) w/ event 0 3 (100) 10 (100%)

Time to exit Stage 3 of anesthesia (regain withdrawal

reflexe) (min)

Median (95%

CL)

0 30.0 (21.00, 30.00) 21.5 (10.00, 30.00) 0.5637

Mean (SD) 0 27.0 (5.20) 22.0 (11.08)

Regain righting reflexe n (%) w/ event 6 (100) 7 (100) 10 (100)

Time to exit Stage 2 of anesthesia (regain righting

reflexe) (min)

Median (95%

CL)

21.0 (20.00, 25.00) 41.0 (30.00, 95.00) 74.5 (22.00, 124.00) 0.0055

Mean (SD) 21.8 (2.23) 57.7 (30.51) 94.4 (69.12)

Resume normal behavior n (%) w/ event 9 (100)f 10 (100) 10 (100)

Time to exit Stage 1 anesthesia (normal behavior) (min) Median (95%

CL)

94.0 (80.00,

120.00)

135.5 (30.00, 180.00) 225.0 (153.00, 290.00) 0.0008

Mean (SD) 100.0 (27.17) 125.6 (63.43) 351.2 (386.72)

aFriedman Chi-Square test.
bMedian estimated among all 10 animals.
cLog-rank test stratified by animal ID.
dMean among animals experiencing the event.
eThe time to regain the withdrawal reflex and the time to regain the righting reflex are noted in only those subjects experiencing the loss of those reflexes.
fOne animal never changed normal behavior and, hence, was not included in the analysis of time to reumption of normal behavior.

CL, confidence limit; n/a, not applicable; NC, not calculated; SD, standard deviation; w/, with.

https://doi.org/10.1371/journal.pone.0199339.t002
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took longer to enter Stage 3 of anesthesia (mean 51 min) than snakes exposed to 2 mg/kg of

tiletamine+zolazepam (mean 29 min) and not all animals exposed to the 2 mg/kg dose lost the

withdrawal reflex. However, the mean and median time needed to regain the withdrawal reflex

and exit Stage 3 of anesthesia was similar between the two tiletamine+zolazepam groups

(Table 2). The baseline ethogram constructed prior to study start (Table 1) was used as a defi-

nition of expected normal behaviors for each snake. A statistically significant difference was

observed between the three drug regimen groups in the time to resume normal behavior.

Snakes in the midazolam-treated group resumed normal behavior the fastest, followed by the

2-mg/kg and then the 3-mg/kg tiletamine+zolazepam groups (p = 0.0008, Table 2). No abnor-

mal clinical signs were noted post-recovery.

Heart rate and respiratory rates were measured for 5 min for each snake to establish base-

lines prior to drug administration. During the first hour after drug administration, 9/10 ani-

mals experienced a significant decrease in the mean heart rate from -3.7 to -14.0 beats per

minute (bpm) in the midazolam-treated group, 8/10 animals experienced a mean change of

+0.2 to -15.2 bpm in the 2-mg/kg tiletamine+zolazepam-treated group, and 10/10 animals

experienced a mean change of -5.55 to -13.05 bpm in the 3-mg/kg tiletamine+zolazepam-

treated group (Table 3).

No significant differences were noted between groups regarding decreases in heart rates. A

slight increase in heart rate was seen in 2/10 animals of the 2-mg/kg tiletamine+zolazepam

Fig 1. Evaluation of the depth of anesthesia in ball pythons following injection of midazolam or a fixed combination

of tiletamine+zolazepam. Each snake was graphed chronologically through the stages of anesthesia experienced by the

animal after intramuscular injection of midazolam (2 mg/kg), tiletamine+zolazepam (2 mg/kg), or tiletamine+zolazepam

(3 mg/kg). Time spent in each anesthetic stage is displayed by colored bars. The duration of anesthesia of snake H01

following administration of 3 mg/kg of tiletamine+zolazepam is denoted by an interrupted X axis. Snake H01 did not

return to normal behavior until 1,440 min post-injection.

https://doi.org/10.1371/journal.pone.0199339.g001

Performance of injectable anesthetic agents in ball pythons

PLOS ONE | https://doi.org/10.1371/journal.pone.0199339 October 19, 2018 7 / 15

https://doi.org/10.1371/journal.pone.0199339.g001
https://doi.org/10.1371/journal.pone.0199339


group (upper end of the 95% confidence interval at 6.28 bpm above baseline). During the sec-

ond hour after drug administration, this decrease in heart rate diminished overall, and the

change compared to baseline values was even mildly positive (change from 0.23 to 5.85 bpm)

in animals of all three test groups (6/10 midazolam, 4/10 in 2-mg/kg tiletamine-zolazepam,

and 2/10 in 3-mg/kg tiletamine-zolazepam group). Once righting reflexes were regained

(21.0–99.4 min depending on anesthetic group, Table 2), heart and respiratory rates had

returned to baseline values in all snakes.

Measured respiratory rate patterns were similar to heart rate patterns. During the first hour

after drug administration, animals of all three drug regimen groups experienced slight

decreases in breaths taken per minute (breaths/min), whereas some animals experienced small

increases (4/10 animals of the midazolam group, 4/10 of the 2-mg/kg tiletamine-zolazepam

group, and 6/10 of the 3-mg/kg tiletamine-zolazepam group). In midazolam-treated snakes,

the mean change from baseline values ranged from -0.85 to -6.65 breaths/min and diminished

during the second hour after drug administration to +0.85 to -2.65 breaths/min (Table 3).

Snakes exposed to 2 mg/kg of tiletamine+zolazepam experienced a mean change of +1.5 to

-5.7 breaths/min during the first hour of drug administration and +1.2 to -3.8 breaths/min

during the second hour. These changes in respiratory rates were not significantly different

from those of animals in the midazolam-treated group. However, snakes injected with 3 mg/

kg of tiletamine+zolazepam experienced a mean change of +2.4 to -2.3 breaths/min during the

first hour of drug administration. This change was statistically significantly different from the

minimum mean respiratory rate change at baseline when compared to the 2-mg/kg of tileta-

mine+zolazepam and midazolam groups (Table 3). During the second hour of drug adminis-

tration, respiratory rates of these same animals dropped to a mean change of -0.5 to -6.0 bpm

compared to baseline values.

Table 3. Impact of midazolam or tiletamine+zolazepam on mean heart and respiratory rates in ball pythons.

Physiologic parameter Hour(s) post-

injection

Statistic Midazolam Tiletamine+zolazepam

2 mg/kg

Tiletamine+zolazepam

3 mg/kg

p-valuea

Mean 95% CL Mean 95% CL Mean 95% CL

Heart rate (bpm) Baseline 68.70 60.57 76.83 67.30 60.22 74.38 67.75 62.95 72.55 0.9390

1 Maximum -3.7000 -8.2625 0.8625 0.2000 -5.8775 6.2775 -5.5500 -10.5074 -0.5926 0.1260

Median -9.1000 -14.4766 -3.7234 -8.1500 -17.9223 1.6223 -9.6500 -15.7737 -3.5263 0.9220

Minimum -14.0000 -21.0897 -6.9103 -15.2000 -25.2874 -5.1126 -13.0500 -19.1164 -6.9836 0.8062

2 Maximum 1.4000 -3.0508 5.8508 -3.1000 -9.8986 3.6986 -2.7500 -7.9175 2.4175 0.2876

Median -2.4500 -8.1366 3.2366 -8.2000 -17.5715 1.1715 -6.8500 -11.7195 -1.9805 0.3349

Minimum -6.3000 -12.8307 0.2307 -10.8000 -20.7455 -0.8545 -10.7500 -15.7440 -5.7560 0.4377

Respiratory rate (breaths/

min)

Baseline 26.15 20.77 31.53 21.10 15.48 26.72 23.70 20.55 26.85 0.3835

1 Maximum -0.8500 -4.7828 3.0828 1.5000 -0.4839 3.4839 2.4000 -0.03642 4.8364 0.2943

Median -4.1500 -7.6547 -0.6453 -1.9000 -4.1949 0.3949 -0.1500 -2.6963 2.3963 0.1316

Minimum -6.6500 -9.9715 -3.3285 -5.7000 -8.7520 -2.6480 -2.3000b,c -5.0406 0.4406 0.0212

2 Maximum 0.8500 -3.2039 4.9039 1.2000 -3.6887 6.0887 -0.5000 -5.3547 4.3547 0.6171

Median -0.8500 -4.0449 2.3449 -1.0000 -5.9993 3.9993 -3.7000 -8.7617 1.3617 0.3107

Minimum -2.6500 -5.3162 0.01624 -3.8000 -9.8762 2.2762 -6.0000 -11.2784 -0.7216 0.3787

aOne-way repeated measures analysis testing the hypothesis that all three treatments are equal.
bSignificantly different from the midazolam group.
cSignificantly different from the 2-mg/kg tiletamine+zolazepam group. bpm, beats per minute.

https://doi.org/10.1371/journal.pone.0199339.t003

Performance of injectable anesthetic agents in ball pythons

PLOS ONE | https://doi.org/10.1371/journal.pone.0199339 October 19, 2018 8 / 15

https://doi.org/10.1371/journal.pone.0199339.t003
https://doi.org/10.1371/journal.pone.0199339


Discussion

Anesthetic regimens for reptiles can be grouped into inhaled compounds, injectable com-

pounds, or a combination of both. Administration of inhaled compounds is challenging since

reptiles can hold their breaths for various durations, and intubation is therefore required to

ensure control of drug administration and prevent hypoxia [53–56]. Intubation adds an addi-

tional step that requires veterinary expertise and additional equipment that needs to be added

to the laboratory setting. This step complicates study approval involving infectious agent, i.e.

when the safety of the laboratory worker is a primary concern. Therefore, injectable com-

pounds would be advantageous for reptile research in containment settings. However, these

compounds can vary widely in their effectiveness and may be associated with prolonged recov-

eries. For instance, the widely used N-methyl-D-aspartic acid (NMDA) antagonist ketamine is

associated with prolonged recoveries, poor analgesia, and apnea in snakes when used alone

[45, 57]. The addition of alpha2 adrenergic agonists (e.g., dexmedetomidine) to ketamine-

based anesthesia improves the quality of the anesthesia and reduces recovery time [45], but in

the authors’ experience still results in cardiovascular depression that may warrant assisted ven-

tilation and supplemental oxygen. Propofol is associated with fast, smooth induction of anes-

thesia but must be administered via intravenous or intracardiac routes and is therefore a

challenge to use in snakes [55, 56]. Alfaxalone or alfaxalone/alphadalone combinations are a

challenge to use effectively in some reptiles. Recent work using ball pythons demonstrated

smooth and rapid induction of anesthesia after intramuscular administration—however,

apnea was still observed at higher doses [58–62].

Midazolam, a benzodiazepine sedative, has proven effective for restraint of some reptiles,

but generally is not well studied [45–52]. In snakes, midazolam is commonly used in conjunc-

tion with ketamine for induction of anesthesia by clinical veterinary practitioners [45]. Com-

mon dosage combinations include midazolam at 1–2 mg/kg and ketamine at 2–3 mg/kg with a

range of dosages of midazolam at 2 mg/kg and ketamine at 20–40 mg/kg [63, 64]. Despite

using midazolam to provide multimodal anesthesia and decreasing the dose of ketamine

below 5 mg/kg, the authors still frequently observe apnea with this mixture in reptiles of many

species. Tiletamine (dissociative anesthetic) and plus zolazepam (benzodiazepine sedative), a

cocktail containing the same classes of drugs as ketamine plus midazolam mixtures, is widely

used for mammal anesthesia, immobilization, and biosample collection without significant

respiratory depression, However, peer reviewed and published literature providing detailed

descriptions of the effects of tiletamine+zolazepam on reptiles and amphibians is scant [40–

43].High doses of tiletamine+zolazepam over 20 mg/kg achieved anesthesia in boa constric-

tors, but they required artificial respiratory support [42, 44]. Other references note that admin-

istration of a fixed combination of tiletamine plus zolazepam at doses above 6 mg/kg is

associated with prolonged recoveries in reptiles. However, at lower doses (2–4 mg/kg), the

combination has previously been judged useful for restraint and induction of short-term anes-

thesia [45]. Therefore, this study was designed to assess performance of tiletamine+zolazepam

at the lower end of its dosage range (2–3 mg/kg). The main goal of this study was to identify an

injectable compound or compound combination that could be used to achieve anesthesia in

ball pythons without compromising the respiratory function for future research in an infec-

tious disease setting.

We compared the quality and duration of sedation and anesthesia produced by intramuscu-

lar midazolam (2 mg/kg) and tiletamine+zolazepam (2 mg/kg and 3 mg/kg) in healthy ball

pythons. No clinical abnormalities (e.g., pale mucous membranes, irregular heartbeat, apnea)

were noted in any animal after drug administration. Snakes of all three drug groups had tem-

porary mild-to-moderate depression of heart rate and respiratory rate not severe enough to
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require intubation. This depression has also been reported for various mammals exposed to

tiletamine+zolazepam [65–67]. On the other hand, an increase in heart rate, approximately 10

bpm above baseline, was measured in boa constrictors and in dogs [42, 44, 68]. In our study,

an increase in heart rate of this magnitude was observed in only two ball pythons, both of

which received 2 mg/kg tiletamine+zolazepam. In boa constrictors, tiletamine+zolazepam also

results in respiratory rate decreases similar to those observed in our study [42, 44]. However,

the dose of tiletamine+zolazepam combination used in the boa constrictor study (25 mg/kg of

metabolic body weight administered intramuscularly; adjusted 21 mg/kg based on allometric

scaling and metabolic body weight) was considerably higher than those used in our study (2

and 3 mg/kg) [45]. These findings indicate tiletamine+zolazepam has species-specific effects.

The effectiveness of midazolam as a sedative for reptiles varies widely depending on which

reptile is exposed. The accepted dose for snakes is 1–2 mg/kg intravenously or intramuscularly

[45]. Since midazolam is a sedative rather than a true anesthetic, we predicted that this drug

would not result in anesthesia in ball pythons. In our experiments, midazolam administration

was associated with the same induction time as the tiletamine+zolazepam combinations. How-

ever, as expected, the efficacy of midazolam in immobilizing ball pythons was poor (n = 6/10).

Midazolam was also associated with the fastest recovery time of all tested drug regimens. We

expected that not all midazolam-treated snakes would lose their righting reflexes and enter

Stage 2 of anesthesia, and indeed the number of snakes failing to achieve this stage of anesthe-

sia was notable (n = 4/10). An unexpected finding was that one midazolam-treated animal

failed to achieve any level of sedation (Table 1, Fig 1). Importantly, the injection volume

required for administration of 2 mg/kg of midazolam was, on average, 10 times the volumes

used for administering the tiletamine+zolazepam combinations (for a 1.5-kg animal, dose vol-

umes were 0.6 ml vs. 0.03 ml or 0.04 ml of tiletamine+zolazepam). For ball pythons in our

study weighing over 1.2 kg, the midazolam dose volume surpassed 0.5 ml, which is considered

too large of a volume to accurately administer intramuscularly [69].

The commonly accepted dosage range for tiletamine+zolazepam in snakes is 2–6 mg/kg,

although protracted recovery times of 48 to 72 hours have been observed by clinical veterinari-

ans using the upper end of this dose range [45]. We observed clear differences in the quality of

anesthesia between the 2-mg/kg and 3-mg/kg tiletamine+zolazepam groups. In our study,

using the 2-mg/kg dose resulted in reliable and smooth sedation and good snake immobiliza-

tion of sufficient duration for further manipulation (57.7 ± 30.5 min) in 7 of 10 animals.

Recovery periods were less than 1.5 hours. However, the 2-mg/kg dose did not result in Stage 3

of anesthesia in 7 of 10 animals. On the other hand, the 3-mg/kg dose yielded more promising

results, with all animals entering Stage 2 and 3 of anesthesia. Loss of the withdrawal reflex

(Stage 3 of anesthesia) lasted only 10–30 min. This time frame suffices only for minor manipu-

lations such as pathogen exposure or blood sample collection.

A drawback to the 3-mg/kg dose of tiletamine+zolazepam is the significant increase in

length of snake recovery times compared to those observed for snakes treated with 2 mg/kg of

tiletamine+zolazepam or 2 mg/kg of midazolam. Recovery times were widely variable among

different snakes administered the drug combination at 3mg/kg as demonstrated by the large

95% confidence limit and standard deviation for both the time to regain righting reflex (mean

94.4 min) and time to resume normal behavior (median of 3.75 hours and mean of 5.85 hours.

(Table 2). This highly variable recovery time and lingering sedation (as well as the variable

induction length) between individual snakes receiving 3 mg/kg of tiletamine+zolazepam may

be due to differing pharmacokinetic clearance mechanisms of tiletamine and zolazepam. In

pigs, tiletamine is metabolized much faster than zolazepam, and zolazepam metabolites retain

more pharmacologic activity than tiletamine metabolites, thus prolonging the sedative effect of

the drug combination beyond its dissociative effects [70].
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Pharmacokinetic data are not available for tiletamine or zolazepam in reptiles, presenting a

potential topic for future research. It also remains to be determined whether reptiles metabo-

lize tiletamine and zolazepam primarily through the kidneys as has been demonstrated for

mammals [70]. This lack of pharmacokinetic data and pKa studies in reptiles presents a con-

siderable limitation to our study and other investigations of the performance of anesthetic

compounds in reptiles. Without definite knowledge of the half-life of midazolam, tiletamine,

and zolazepam in ball pythons, we can only surmise that when the snakes resumed normal

behavior, they had most likely cleared sufficient amounts of the drugs to reduce blood concen-

tration below therapeutic concentrations.

In conclusion, 3 mg/kg of intramuscular tiletamine+zolazepam is an adequate drug regi-

men to achieve short-term immobilization in ball pythons. Future studies should confirm

these findings with a higher number of animals, a wider range of doses, and more invasive

anesthetic monitoring, such as blood pressure, to facilitate more direct comparisons to experi-

mental settings with similar work already performed with boa constrictors [42, 44].
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