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prostate cancer cells
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3Department of Biochemistry, National Research Centre, Dokki, Cairo, Egypt
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ABSTRACT
Lithocholic acid (LCA) is a secondary bile acid that is selectively toxic to human
neuroblastoma, breast and prostate cancer cells, whilst sparing normal cells. We
previously reported that LCA inhibited cell viability and proliferation and induced
apoptosis and necrosis of androgen-dependent LNCaP and androgen-independent
PC-3 human prostate cancer cells. In the present study, we investigated the roles of
endoplasmic reticulum (ER) stress, autophagy and mitochondrial dysfunction in the
toxicity of LCA in PC-3 and autophagy deficient, androgen-independent DU-145 cells.
LCA induced ER stress-related proteins, such as CCAAT-enhancer-binding protein
homologous protein (CHOP), and the phosphorylation of eukaryotic initiation factor
2-alpha (p-eIF2α) and c-Jun N-terminal kinases (p-JNK) in both cancer cell-types. The
p53 upregulated modulator of apoptosis (PUMA) and B cell lymphoma-like protein
11 (BIM) levels were decreased at overtly toxic LCA concentrations, although PUMA
levels increased at lower LCA concentrations in both cell lines. LCA induced autophagy-
related conversion of microtubule-associated proteins 1A/1B light chain 3B (LC3BI–
LC3BII), and autophagy-related protein ATG5 in PC-3 cells, but not in autophagy-
deficient DU-145 cells. LCA (>10µM) increased levels of reactive oxygen species (ROS)
concentration-dependently in PC-3 cells, whereas ROS levels were not affected in DU-
145 cells. Salubrinal, an inhibitor of eIF2α dephosphorylation and ER stress, reduced
LCA-induced CHOP levels slightly in PC-3, but not DU-145 cells. Salubrinal pre-
treatment increased the cytotoxicity of LCA in PC-3 and DU-145 cells and resulted in a
statistically significant loss of cell viability at normally non-toxic concentrations of LCA.
The late-stage autophagy inhibitor bafilomycin A1 exacerbated LCA toxicity at subtoxic
LCA concentrations in PC-3 cells. The antioxidant α-tocotrienol strongly inhibited the
toxicity of LCA in PC-3 cells, but not in DU-145 cells. Collectively, although LCA
induces autophagy and ER stress in PC-3 cells, these processes appear to be initially
of protective nature and subsequently consequential to, but not critical for the ROS-
mediated mitochondrial dysfunction and cytotoxicity of LCA. The full mechanism
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of LCA-induced mitochondrial dysfunction and cytotoxicity in the similarly sensitive
DU-145 cells remains to be elucidated.

Subjects Toxicology, Oncology
Keywords Lithocholic acid, Prostate cancer cells, Pc-3, Du-145, Autophagy, Endoplasmic
reticulum stress, RWPE-1, Cell death, Reactive oxygen species, Tocotrienol

INTRODUCTION
Prostate cancer is the second most common cancer worldwide in males and the
fourth most common cancer overall, with more than 1,112,000 new cases diagnosed
in 2012, representing 15% of male cancer cases and 8% of all cancers (Ferlay et al.,
2015). In Western men, prostate cancer diagnosis ranks first among male cancers and
second as cause of cancer-related death (Malvezzi et al., 2015; American Cancer Society,
2015; Canadian Cancer Society’s Advisory Committee on Cancer Statistics, 2016). Standard
treatment of prostate cancer consists of surgery (prostatectomy), antihormonal therapy
and radiotherapy. Although these treatments are successful for early-stage prostate
cancer, they each have potentially serious side-effects (Martin & D’Amico, 2014; Nguyen
et al., 2015), among which some that last a life-time (Sanda et al., 2008). Androgen-
deprivation therapy uses drugs that blocking the action of male sex hormones either
through androgen receptor antagonism (bicalutamide, hydroxyflutamide) or inhibition
of androgen biosynthesis (finasteride, abiraterone). These treatments are initially effective
in controlling androgen-dependent prostate tumor growth, although side-effects include
increased insulin-resistance, bone density loss, hypogonadism, gynecomastia, muscle
mass loss and fatigue (Conde & Aronson, 2003; Nguyen et al., 2015). In addition, a certain
percentage of tumors that have undergone androgen-deprivation therapy progresses to an
androgen-independent state, which is difficult to treat resulting in increased mortality. The
limitations of current standard treatments of prostate cancer has encouraged the search
for safer and more effective molecules based on naturally occurring compounds.

Lithocholic acid (LCA) is a secondary bile acid produced by microflora in the gut, which
we found to exhibit selective toxicity to human neuroblastoma cells and prostate cancer
cells at relatively low concentrations that did not affect normal cells (Goldberg et al., 2011;
Goldberg et al., 2013). LCA triggered both intrinsic and extrinsic pathways of apoptotic
cell death that were, at least in part, caspase-dependent. In addition, LCA selectively
decreased the viability of human breast cancer and rat glioma cells (Goldberg et al., 2011).
Various bile acids have been reported to have anti-neoplastic and anti-carcinogenic
properties in a number of cancer cell models: chenodeoxycholic acid (CDCA) reduced
growth of tamoxifen-resistant breast cancer cells by downregulation of human epidermal
growth factor receptor 2 (HER2) promoter activity (Giordano et al., 2011), LCA and
several of its synthetic enantiomers reduced colon cancer cell proliferation and viability
(Katona et al., 2009). Deoxycholic acid (DCA), ursodeoxycholic acid (UDCA) and their
taurine-derivatives delayed cell cycle progression in Jurkat human T leukemia cells and
DCA induced apoptosis (Fimognari et al., 2009). These findings indicate that the bile acid
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structure may form the basis for the development of potent and selective drugs for the
treatment of various cancers including those of the prostate.

Themechanisms underlying the cytotoxicity of LCA are not well understood and remain
a continuing topic of investigation. Studies have found that certain bile acids can induce
apoptosis via a variety of mechanisms including chronic endoplasmic reticulum (ER)
stress (Perez & Briz, 2009), autophagy (Gao et al., 2014) or disruption of mitochondrial
function (Goldberg et al., 2013). The endoplasmic reticulum is cell organelle responsible
for the synthesis, folding andmaturation of proteins, the storage and release of intracellular
calcium (Ca2+) and a large number of biotransformation reactions. A variety of factors
(radiation, pathogens, hypoxia, disease states and chemical agents) can disrupt healthy ER
function, resulting in a so-called unfolded protein response (UPR), due to the accumulation
of unfolded or misfolded proteins in the lumen of the ER. As an adaptive response to
these stress factors, the UPR aims to restore normal cell function by halting protein
translation, degrading misfolded proteins and increasing the production of molecular
chaperones involved in protein folding. However, chronic activation of the UPR fails to
promote cell survival and the cell is broken down by a proapoptotic ER stress-mediated
response pathway. CCAAT-enhancer-binding protein homologous protein (CHOP) is a
transcriptional regulator induced by ER stress, which is a modulator of ER stress-mediated
apoptosis (Marciniak et al., 2004) and autophagy (Shimodaira et al., 2014). CHOP levels
may be increased through activation of various ER stress sensor-pathways, including
those initiated by activating transcription factor 6 (ATF6), inositol-requiring enzyme 1
alpha (IRE1α) and protein kinase R-like endoplasmic reticulum kinase (PERK), the latter
which phosphorylates eukaryotic initiation factor 2-alpha (eIF2α), and the downstream
transcription factor ATF4 which in turn induces the transcription of CHOP.

Autophagy is a catabolic process for the autophagosomic/lysosomal degradation
of bulk cytoplasmic contents (Reggiori & Klionsky, 2002; Codogno & Meijer, 2005).
Autophagy is generally activated by nutrient deprivation but is also important in
physiological processes such as fetal development and cell differentiation, as well as
diseases such as neurodegeneration, infection and cancer (Levine & Yuan, 2005). The
molecular machinery of autophagy was largely uncovered in yeast by the discovery of
autophagy-related genes (Atg). Formation of the autophagosome involves a ubiquitin-
like conjugation system in which Atg12 is covalently bound to Atg5 and targeted
to autophagosomal vesicles (Mizushima et al., 1998a; Mizushima et al., 1998b). Upon
induction of autophagy, a fraction of microtubule-associated proteins 1A/1B light chain
3 (LC3-I) is conjugated to phosphotidylethanolamine (PE) to produce LC3-II proteins,
which are required for autophagosome membrane expansion and fusion (Tanida, Ueno &
Kominami, 2004). LC3-I-to-II conversion is reliable marker of autophagosome formation
(Mizushima et al., 2001).

Bile acids have also been reported to induce apoptosis via disruption of mitochondrial
function, ligand-independent activation of death receptor pathways and modulation
of certain members of the Bcl2 protein family. We have previously shown that LCA
induces intrinsic and extrinsic apoptosis in LNCaP and PC-3 prostate cancer cells that
involved a decrease in the mitochondrial protein Bcl-2 and cleavage of Bax, concomitant
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with an increase of mitochondrial outer membrane permeability. It has been suggested
that the well-known solubilising properties of bile acids could explain disruption of
(mitochondrial) membranes and induction of mitochondrial dysfunction leading to cell
death. However, the lack of or far poorer toxicity of several enantiomers of toxic bile
acids suggests physico-chemical properties alone cannot explain cell toxicity (Katona et al.,
2009) and that a specific three-dimensional structure is required to explain the selectivity
of LCA-mediated toxicity in cancer cells.

Our present study aims to investigate to which extent the involvement of ER stress,
autophagy or disruption of mitochondrial function is critical to LCA-induced prostate
cancer cell death.

MATERIALS AND METHODS
Cell lines and reagents
PC3 and DU-145 cells were obtained from the American Type Culture Collection
(Manassas, VA). PC-3 cells were grown in 1:1 (v/v) Dulbecco’s modified Eagle
medium/Ham’s F-12 nutrient mix (DMEM/F12; Life Technologies, Grand Island,
NY, USA) supplemented with 10% fetal bovine serum (FBS; Mediatech, Corning,
Manassas, VA, USA) and 1% penicillin/streptomycin (Life Technologies). DU-
145 and RWPE-1 cells were cultured in RPMI-1640 medium (Life Technologies)
supplemented with 10% FBS, 1% HEPES , 1% sodium pyruvate (Sigma-Aldrich,
St. Louis, MO, USA) and penicillin/streptomycin. All cells were incubated in a
humidified atmosphere of 95% air and 5% CO2 at 37 ◦C. LCA was purchased from
Sigma-Aldrich and dissolved in DMSO as 100 mM a stock solution and 1,000-fold
concentrated serial dilutions were prepared in DMSO for treatment of the cells.
Bafilomycin A1, salubrinal and D-α-tocotrienol (Sigma-Aldrich) were dissolved in
DMSO at 1,000-fold stock solutions of 2 µM, 20 mM and 20 mM, respectively.

Cell viability
Each cell type was added to 96-well plates at a density of 1 × 104 cells/well in 200 µl
of complete medium. After 24 h, medium was replaced with fresh medium containing
2% dextran-coated charcoal-treated (stripped) FBS and various concentrations of LCA
(0, 5, 10, 25, 50 and 75 µM) in a final DMSO concentration in culture medium of
0.1%. Cell viability was assessed using a WST-1 Cell Proliferation Reagent kit (Roche,
Laval, QC) according to the manufacturer’s instructions. Absorbance was measured at
440 nm using a SpectraMax M5 multifunctional spectrophotometer (Molecular Devices,
Sunnydale, CA).

Fluorescence microscopy
PC-3 and DU-145 cells were added to 24-well plates at a density of 1 × 105 cells/well in 1
ml of complete medium. After 24 h, cells were treated with several concentrations of LCA
(0, 1, 3, 10 and 30 µM) in fresh medium containing 2% stripped FBS and another 24 h
later, Hoechst 33342 (Sigma-Aldrich) and propidium iodide (Invitrogen, Carlsbad, CA,
USA) were each added at a concentration of 1 µg/ml per well. After a 15 min incubation
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at 37 ◦C, cells were observed and counted under a Nikon Eclipse (TE-2000U) inverted
fluorescence microscope at 20× magnification. Hoechst- and propidium iodide-positive
cells were made visible using filter cubes with excitation wavelengths of 330–380 nm
and 532–587 nm, respectively. To measure autophagy, PC-3 cells were exposed to LCA
(0, 3, 10, 30 and 50 µM) for 24 h and then stained with Hoechst 33342 and 2 µL of
Cyto-ID R© Green Detection Reagent (ENZ-51031-K200; Enzo Life Science, Farmingdale,
NY, USA). After a 15 min incubation at 37 ◦C, cells were observed and counted under a
Nikon Eclipse (TE-2000U) inverted fluorescence microscope at 20× magnification.

SDS–PAGE and immunoblot analysis
Cells were added to 6-well Cell-Bind plates (Fisher Scientific, Ottawa, ON) at a density
of 7.5 × 105 cells/well in 2 ml of complete culture medium and allowed to adhere for
24 h. Cells were then exposed to LCA (0, 3, 10, 30 and 50 µM) in fresh medium with
2% stripped FBS for 1, 8 or 24 h, dependent on the experiment. Adherent cells were
collected using a cell scraper, then rinsed three times in cold phosphate-buffered saline
(PBS) followed by centrifugation at 700× g for 5 min. After removing the PBS, the cell
pellets were lysed in RIPA buffer containing 1× protease and phosphatase inhibitor
cocktail. Then, cell lysates were centrifuged at 15,000 rpm for 15 min at 4 ◦C and protein
concentrations in the supernatant were determined using a BCA protein assay kit (Pierce
Biotechnologies, Rockford, IL, USA). Proteins (40 µg) were diluted with loading buffer and
boiled for 5 min, then loaded onto 10% sodium dodecyl sulfate-polyacrylamide gels. After
electrophoresis, gels were transferred to polyvinylidene diflouride (PVDF) membranes
using a Trans-Blot Turbo System (Bio-Rad, Mississauga, ON). Membranes were then
blocked using Tris-buffered saline (TBS) containing 5% milk powder (blocking buffer) for
1 h at room temperature, after which the membranes were incubated overnight in blocking
buffer with the appropriate primary antibodies (anti CHOP, eIF2α, p- eIF2α, JNK, p-JNK,
PUMA, BIM, cleaved caspase 3, LC3BI/II, ATG5 and β-actin at 1:1,000 dilution; Cell
Signaling, Beverly, MA) at 4 ◦C. The next day, membranes were washed three times with
Tris-buffered saline containing 0.1% Tween (TBS-T) followed by a 1-h incubation with the
appropriate secondary antibody at room temperature. Membranes were washed another
three times with TBS-T and then incubated with Immobilon Western Chemiluminescent
Horseradish Peroxidase Substrate (EMD Millipore, Billerica, MD, USA) for 5 min to
make the bands visible; membranes were sealed in plastic wrap and photographed using
a ChemiDoc gel documentation system (Bio-Rad). B-actin was used as reference protein
and loading control.

Gene-silencing using small interfering RNA (siRNA)
CHOP expression was silenced by transfecting PC-3 and DU-145 cells with SMARTpool
ON-TARGETplus siRNA oligonucleotides selective for CHOP (Dharmacon, Lafayette,
CO) using lipofectamine RNAiMAX (Life Technologies, Burlington, ON, USA) in serum
free Opti-MEM according to manufacturer’s protocols. ON-TARGETplus Non-targeting
Control siRNA was used as negative control. After a 24-h transfection period, cells were
exposed to various concentrations of LCA (0, 10 and 30 µM) for 24 h. CHOP protein levels
were evaluated by immunoblotting as described above.
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Measurement of reactive oxygen species (ROS)
PC3 andDU-145 cells were added to 96-well plates at a concentration of 1× 104 cells/well in
200 µl of their respective culture medium containing 2% stripped FBS. After 24 h, medium
was removed and the cells were incubated in prewarmed PBS at 37 ◦C containing 10 mM
fluorescent ROS probe (CM-H2DCFDA; Life Technologies). After 30min, the PBSmixture
was removed and cells were exposed to various concentrations of LCA or 1 µM H2O2 for
60 min at 37 ◦C temperature. In experiments with α-tocotrienol and N-acetylcysteine,
cells were preincubated with the antioxidants for 4 h prior to exposure to LCA. ROS
production was quantified using a SpectraMax M5 multifunctional spectrophotometer
(Molecular Devices, Sunnydale, CA, USA) with an excitation wavelength of 490 and
emission wavelength of 545 nm.

Statistical analysis
Statistical analyses were performed using GraphPad Prism version 5.0 (GraphPad Software,
San Diego, CA, USA). Results are presented as means ± standard deviations of at least
three experiments. IC50 values were determined from concentration–response curves by
non-linear curve-fitting. Statistically significant differences of LCA treatments compared
to vehicle control were determined by one-way analysis of variance (ANOVA) and a
Dunnett post-hoc test or by two-way ANOVA and a Bonferroni post-hoc test when
assessing differences between concentration–response curves. A p-value less than 0.05 was
considered statistically significant.

RESULTS
LCA decreases the viability and induces apoptosis and necrosis of
PC-3 and DU-145 human prostate cancer cells
A 24-h exposure to LCA reduced the viability of PC-3 and DU-145 cells concentration-
dependently, with IC50 values of 32.0µMand 30.4µM, respectively (Fig. 1). The viability of
RWPE-1 immortalized normal prostate epithelial cells was not affected by concentrations of
LCA between 5 and 75 µM (Fig. 1). Hoechst 33342 and propidium iodide-staining of PC-3
and DU-145 cells exposed for 24 h to LCA showed a significant concentration-dependent
increase in staining, with both necrotic (and late-apoptotic) and early-apoptotic cells
starting to appear at a concentration at or above 3 µM (Fig. 2).

LCA induces ER stress in PC-3 and DU-145 cells
To determine whether the ER stress pathway was involved in LCA-induced prostate cancer
cell death, we determined the concentration- and time-dependent effects of LCA on p-JNK,
JNK, p-eIF2α, eIF2α and CHOP protein levels, as well as on levels of BIM and PUMA
in PC-3 and DU-145 cells exposed for 24 h to sub-cytotoxic (3 and 10 µM) and overtly
cytotoxic (30 and 50 µM) concentrations of LCA. Levels of BIM and PUMAwere decreased
concentration-dependently by LCA in PC-3 and DU-145 cells, although in DU-145 cells
PUMA levels increased at 3 and 10 µM before decreasing strongly at overtly cytotoxic
concentrations (Fig. 3). LCA concentration-dependently increased levels of p-JNK (46
and 54 KDa) and CHOP (27 kDa) in PC-3 and DU-145 cells (Fig. 3). Phosphorylation of

Gafar et al. (2016), PeerJ, DOI 10.7717/peerj.2445 6/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.2445


Figure 1 Lithocholic acid (LCA) decreases the viability of PC-3 and DU-145 human prostate cancer
cells, but not RWPE-1 immortalized normal prostate epithelial cells. Cells were exposed to increasing
concentrations of LCA (5–75 µM) for 24 h. IC50 values for LCA-induced cytotoxicity in PC-3 and DU-
145 cells were 32.0 µM and 30.4 µM, respectively. Experiments were performed three times; per experi-
ment, each concentration was tested in triplicate.

eIF2α was increased in a concentration-dependent manner in DU-145 cells, but was poorly
detectable in PC-3 cells after a 24 h exposure to any of the LCA concentrations (Fig. 3).

To determine the effects of LCA on the ER stress response at earlier time-points, PC-3
and DU-145 cells were exposed to cytotoxic concentrations (30 and 50 µM) of LCA for
1 and 8 h (Fig. 4). BIM and PUMA levels were decreased concentration-dependently by
LCA in both cell lines. In PC-3 cells BIM levels were somewhat higher at 8 h than 1 h
(Fig. 4), which appeared to be an effect of the vehicle control, although they were,
nevertheless, decreased by LCA, as was observed after 24 h exposure (Fig. 3). In DU-
145 cells BIM levels were detectable at 1 h but not at 8 h. PUMA levels were decreased
concentration-dependently by LCA in both cell lines, although basal levels in each cell line
increased between 1 h and 8 h of culture (Fig. 4). Levels of p-JNK underwent a biphasic
response in both cell lines with expression levels appearing lower after 8 h than 1 h of
exposure to LCA, whereas levels were increased again after 24 h of exposure, in particular
to 50 µM LCA. Levels of p-eIF2α increased concentration-dependently after a 1 h and
8 h exposure of PC-3 and DU-145 cells to LCA (Fig. 4), but decreased time-dependently
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Figure 2 Lithocholic acid (LCA) induces apoptotic and necrotic death of PC-3 and DU-145 prostate
cancer cells. Apoptotic nuclear morphology (chromatin condensation) was observed with Hoechst 33342
staining using fluorescence microscopy. Propidium iodide staining was used to distinguish apoptotic from
necrotic (and late-apoptotic) cell death. The concentration–response experiment was performed three
times using different cell passages. Per experiment, concentrations were tested in triplicate.

Figure 3 Lithocholic acid (LCA) induces ER stress in PC-3 and DU-145 prostate cancer cells. Cells were
exposed to 3, 10, 30 or 50 µM of LCA for 24 h. BIM, PUMA, p-JNK, JNK, eIF2α, p-eIF2α, CHOP and β-
actin were detected by immunoblotting; one representative gel of three is shown.
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Figure 4 Time-dependent induction of ER stress by overtly cytotoxic concentrations of lithocholic
acid (LCA) in PC-3 and DU-145 prostate cancer cells. Cells were exposed to 30 or 50 µM LCA for 1 and
8 h. BIM, PUMA, p-JNK, JNK, p-eIF2α, eIF2α, CHOP and β-actin were detected by immunoblotting; one
representative gel of three is shown.

in both cell lines and, after 24 h of exposure, to non-detectable levels in PC-3 cells (Fig. 3).
LCA (30 and 50 µM) visibly increased CHOP levels after 8 h in both cell lines.

ER stress-inhibitor salubrinal and CHOP gene-silencing do not
abrogate LCA-induced cytotoxicity or apoptosis
To determine the role of ER stress in causing the cytotoxicity of LCA to PC-3 and DU-145
cells, each cell type was pretreated for 4 h with salubrinal, a selective inhibitor of eIF2α
dephosphorylation, before exposure to toxic concentration of 30 or 50 µM LCA. After
an 8-h exposure, LCA increased levels of cleaved caspase 3, p-eIF2α and CHOP in both
cell lines (Fig. 5). Salubrinal pretreatment reduced each of these LCA-mediated increases
in PC-3 cells, although in DU-145 cells salubrinal pretreatment increased CHOP levels
induced by 50 µM LCA (Fig. 5). In addition, salubrinal pretreatment did not alleviate
LCA-induced death of PC-3 and DU-145 cells, but exacerbated the toxicity of LCA
statistically significantly at most test concentrations (Fig. 6).

Given that salubrinal-pretreatment further increased levels of LCA-induced CHOP in
DU-145 cells, we assessed the effect of blocking CHOP gene expression using CHOP-
selective siRNA. Gene silencing reduced LCA-induced levels of CHOP protein to
undetectable levels in DU-145 cells (Fig. 7A). However, no effect of CHOP silencing
on LCA-induced cytotoxicity in DU-145 cells was observed (Fig. 7B). This was confirmed
using Hoechst staining to evaluate the effect of CHOP silencing on LCA-induced apoptosis
in both DU-145 and PC-3 cells (Fig. 8).
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Figure 5 The effects of salubrinal-pretreatment on lithocholic acid-(LCA)-induced cleaved caspase 3,
p-eIF2α and CHOP levels in PC-3 and DU-145 prostate cancer cells. PC-3 and DU-145 were exposed to
LCA (30 and 50 µM) for 8 h in the presence or absence of 20 µM salubrinal. The expression of caspase-3,
p-eIF2α and CHOP was determined by immunoblotting; one representative gel of three is shown.

Figure 6 Salubrinal-pretreatment exacerbates the cytotoxicity of lithocholic acid (LCA) in PC-3 and
DU-145 prostate cancer cells (24 h exposure). Statistically significant differences in cell viability between
salubrinal-treated and vehicle control-treated cells were observed by two-way ANOVA and Bonferroni
post-hoc test (* p< 0.05; *** p< 0.001). Experiments were performed in triplicate using different cell pas-
sages; per experiment each concentration was tested in triplicate.

LCA induces autophagy in PC-3 cells
PC-3 cells exposed to increasing concentrations of LCA for 24 h were stained with Cyto
ID Green to detect the formation of autophagic vacuoles. A significant concentration-
dependent increase of green fluorescence signal was observed starting at an LCA
concentration as low as 1 µM) (Fig. 9). Further confirming the autophagic response,
a concentration-dependent increase of the conversion of LC3B I to LC3B II was observed
in PC-3 cells (Fig. 10). A time-course experiment indicated that noticeable conversion
of LC3B was seen as early as 1 h after exposure to 30 or 50 µM LCA (Fig. 10). When
PC-3 cells were pretreated with the autophagy inhibitor bafilomycin A1, the toxicity of
relatively non-toxic concentrations of LCA (3 and 10 µM) was increased to a statistically
significant degree, whereas no effects on the toxicity of LCA were observed at overtly toxic
concentrations of 30 and 50 µM (Fig. 11A). Similarly, silencing LC3B gene expression also
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Figure 7 CHOP gene silencing does not affect lithocholic acid-(LCA)-induced cytotoxicity in DU-145
prostate cancer cells.No statistically significant effects were observed of siRNA treatment on control or
LCA-decreased DU-145 cell viability by two-way ANOVA (p= 0.9;n= 3).

Figure 8 CHOP gene silencing does not affect lithocholic acid-(LCA)-induced apoptosis in PC-3 and
DU-145 prostate cancer cells. Apoptotic nuclear morphology (chromatin condensed nuclei) was observed
by Hoechst 33342 staining using fluorescence microscopy. The concentration–response experiment was
performed three times using different cell passages; per experiment, concentrations were tested in tripli-
cate.

increased the toxicity of LCA at lower concentrations (Fig. 11B). To establish if there was
a link between induction of CHOP by LCA and that of autophagy, PC-3 cells were treated
with siRNA to silence CHOP and then exposed to 30 or 50 µM LCA (Fig. 12). CHOP
silencing did not alter the increased conversion of LC3BI to II or alter the levels of ATG5
protein that were increased by LCA.
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Figure 9 Lithocholic acid (LCA) induces autophagy in PC-3 prostate cancer cells. Cells were exposed to
increasing concentrations of LCA for 24 h and then stained with Cyto-ID R© Green dye for 10 min to detect
autophagic vacuoles. LCA concentration-dependently increased the accumulation of autophagic vacuoles
(bright green fluorescence) as detected by Cyto-ID R© Green dye staining using fluorescence microscopy.
The concentration–response experiment was performed three times using different cell passages; per ex-
periment, concentrations were tested in triplicate.

Figure 10 Lithocholic acid (LCA) induces LC3B conversion in PC-3 prostate cancer cells. Cells were
exposed to increasing concentrations of LCA for 1, 8 or 24 h. Proteins were detected by immunoblotting;
one representative gel of three is shown.

LCA induces mitochondrial dysfunction in PC-3 and DU-145 cells
Lithocholic acid induced mitochondrial dysfunction in PC-3 and DU-145 as measured
using TMRE dye (Fig. 13), which is sequestered by active mitochondria, but fails to
accumulate in mitochondria that have reduced or lost their outer membrane potential.
PC-3 and DU-145 were exposed to different concentration of LCA (0, 1, 3, 10 and 30 µM)
for 8 h and observed a concentration-dependent decrease in TMRE sequestration, which
was most apparent at 30 µM LCA (Fig. 13). The loss of mitochondrial membrane potential
coincided with an increase in nuclear staining with Hoechst 33342 (Fig. 13).

LCA induces reactive oxygen species (ROS)
LCA increased the production of ROS concentration dependently in PC-3 but not DU-145
cells at concentrations between 1 and 50 µM. (Fig. 14). To determine if the antioxidant
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Figure 11 Bafilomycin A1-pretreatment (A) or LC3B gene silencing (B) enhanced the cytotoxicity of
lithocholic acid (LCA) in PC-3 prostate cancer cells. Statistically significant differences in cell viability
between bafilomycin A1- or LC3B siRNA-treated PC-3 cells and vehicle control-treated cells were deter-
mined by two-way ANOVA and Bonferroni post-hoc test (* p< 0.05; ** p< 0.01; *** p< 0.001). Exper-
iments were performed in triplicate using different cell passages; per experiment, each concentration was
tested in triplicate.

Figure 12 CHOP silencing had no affect on LCA-mediated induction of the autophagic markers LC3B
conversion or ATG5 expression. Proteins were detected by immunoblotting; one representative gel of
three is shown.

α-tocotrienol (T-3; 20 µM) could reduce the cytotoxicity of LCA, PC-3 and DU-145
cells were incubated with T-3 four hours prior to a 24-h exposure to LCA. T-3 protected
significantly against LCA-induced cytotoxicity in PC-3 cells whereas in DU-145 cells, T-3
had no effect (Fig. 15).
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Figure 13 Lithocholic acid induces mitochondrial dysfunction in PC-3 and DU-145 cells. Cells were
exposed to different concentrations of LCA for 8 h. Apoptotic nuclear morphology (chromatin condensed
nuclei) was observed by Hoechst 33342 staining and mitochondrial membrane permeability was measured
using TMRE fluorescent dye by fluorescence microscopy. The concentration–response experiment was
performed three times using different cell passages; per experiment, each concentrations was tested in trip-
licate.

DISCUSSION
LCA induces selective cancer cell death
In our study, we found that LCA reduces the viability of androgen-independent DU-145
and PC-3 human prostate cancer cells, but not RWPE-1 immortalized human prostate
epithelial cells (Fig. 1), confirming and expanding upon our previous observations in
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Figure 14 LCA induces reactive oxygen species (ROS) concentration dependently in PC-3 but not DU-
145 cells. Cells were exposed to LCA for 60 min in culture medium containing 10 mM fluorescent probe
dye (CM-H2DCFDA). H202 (20 µM) was used as a positive control for ROS production, which was mea-
sured using a fluorescence spectrophotometer. (#) A statistically significant difference between DMSO-
and H202-treated cells. (*) A statistically significant diffference between DMSO- and LCA-treated cells de-
termined by one-way ANOVA followed by a Dunnett test. One of three experiments is shown; each con-
centration was tested in triplicate.

prostate cancer cells that included androgen-dependent LNCaP cells (Goldberg et al., 2013).
LCA triggered concentration-dependent death of PC3 and DU-145 cells via apoptotic and
necrotic pathways (Fig. 2). The selectiveness of LCA in killing cancer cells has recently
been demonstrated in hepatocytes, where galactosylated poly(ethylene glycol)-conjugated
LCA was toxic to HepG2 human hepatocarcinoma cells, but not to immortalized human
LO2 liver cells (Gankhuyag et al., 2015). Furthermore, we have previously shown that LCA
killed neuroblastoma cells, whilst sparing normal neuronal cells (Goldberg et al., 2011).

LCA induces ER stress in prostate cancer cells
We show for the first time that LCA induces ER stress in human androgen-independent
prostate cancer cells in a time- and concentration-dependent manner (Figs. 3 and 4). Toxic
concentrations of LCA reduced BIM and PUMA, and increased CHOP levels and the
phosphorylation of eIF2α and JNK in both cancer cell types. Increased phosphorylation
of eIF2α and JNK were early (1 h) responses to toxic concentrations of LCA, whereas
concentration-dependent decreases of BIM and PUMA were sustained between 1
and 24 h of exposure (Figs. 3 and 4). The increased cleavage of caspase 3 by LCA
(Fig. 5) likely explains why BIM and PUMA levels decreased at toxic concentrations
of LCA, as it is known that active caspase 3 downregulates PUMA (Hadji et al., 2010) and
BIM (Wakeyama et al., 2007) expression in other cell types. At lower LCA concentrations
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Figure 15 Effects of a 4-hour pretreatment with the antioxidant α-tocotrienol (T-3; 20µM) on the
cytotoxicity of LCA (24 h exposure) in (PC-3 cells or DU-145 cells. Statistically significant differences
in cell viability between antioxidant-treated and vehicle control-treated cells were observed by two-way
ANOVA and Bonferroni post-hoc test (* p < 0.05). One of three experiments is shown; each concentra-
tion was tested in triplicate.
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and at earlier exposure durations, on the other hand, PUMA is initially increased, suggesting
that PUMA is involved in triggering mitochondrial apoptosis (as discuss later) and caspase
3 activation that ultimately results in its breakdown. The up-regulation of PUMA is clearly
p53-independent in PC-3 cells as these cells are p53-deficient (Rubin et al., 1991).

LCA caused sustained induction of CHOP at 30 µM in PC-3 cells, although levels were
sharply lower at 50 µM, possible due to excessive cell death (Figs. 3–5). In DU-145 cells
CHOP levels were increased by 30 and 50 µM LCA, but levels declined between 8 and
24 h of exposure (Figs. 3 and 4). Our observations suggest that LCA-induced ER stress
involves activation of the eIF2α phosphorylation pathway and subsequent induction of
p-JNK (early response) and CHOP (later response), resulting in caspase 3-dependent
apoptosis. However, an attempt to block this particular pathway with salubrinal reduced
CHOP induction in PC-3 cells only, although it decreased LCA-induced caspase 3 in both
cell lines (Fig. 5). Yet, salubrinal pretreatment resulted in increased toxicity of LCA in both
cell lines (Fig. 6). We have previously shown that direct inhibition of the catalytic activity
of caspase 3 did result in partial protection against LCA-induced cytotoxicity in LNCaP
and PC-3 prostate cancer cells (Goldberg et al., 2013), and in neuroblastoma cells (Goldberg
et al., 2011). It is possible that the observed decreases in cleaved caspase 3 protein levels do
not reflect a significant change in its catalytic activity.

Furthermore, blocking CHOP expression using CHOP-selective siRNA had no effect
on the reduced viability (Fig. 7) or apoptosis (as determined by measuring chromatin
condensation and fragmentation using the fluorescent dye Hoechst 33342) (Fig. 8) of
DU-145 and PC-3 cells after exposure to increasing concentrations of LCA). Therefore,
inhibition of ER stress signaling alone does not appear to be essential for LCA-induced
prostate cancer cell death.

Other studies have observed the induction of ER stress by bile acids. In HepG2 cells,
the secondary bile acids LCA and DCA were the most toxic, followed by CDCA, although
they induced cell death at concentrations of 100 µM and above (Adachi et al., 2014), which
are significantly greater than the concentrations of LCA that we have found to be toxic
to prostate cancer cells. The same investigators detected increased expression of genes
involved in ER stress, such as GRP78 and CHOP after 24 h exposures to 100 µM of LCA,
DCA or CDCA. Using CDCA as a prototype bile acid, it was found to increase caspase
3 activity at 200 µM, but not 100 µM. Although cytotoxicity and CHOP induction, but
not caspase 3 activation, appeared to occur concurrently after exposure to certain bile
acids (Adachi et al., 2014), a direct link between ER stress and HepG2 cell death was not
established. Glycochenodeoxycholic acid (GCDCA) has been shown to induce ER stress in
freshly isolated rat hepatocytes and this study interestingly showed that ER stress-mediated
activation of caspase 12 occurred at a later stage than mitochondrial apoptosis mediated by
cytochrome c release and caspase 3 activation (Tsuchiya et al., 2006), suggesting induction
of ER stress may not be critical to cell death. In a follow-up study, the investigators
determined that caspase 8 activation via the extrinsic Fas pathway triggered ER stress
in response to 300 µM GCDCA in HepG2 human hepatocarcinoma cells (Iizaka et al.,
2007). It is unclear how critical caspase activation is for bile acid-induced cell death.
Glycodeoxycholate induced caspase 3-dependent apoptosis in rat hepatocytes after a 2 h
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exposure and inhibition of caspase 3 activity resulted in less apoptosis, but whether this
translated into less cell death was not reported (Webster, Usechak & Anwer, 2002). We
point out that these previous studies were performed with remarkably high concentrations
of bile acids and whether cells were dying due to excess necrosis was never reported. We
have previously shown in LNCaP and PC-3 prostate cancer cells that LCA (50 and 75 µM,
respectively) activates caspases 8, 9 and 3, and that caspase 9 activation was likely secondary
to caspase 8-induced truncation of Bid (Goldberg et al., 2013), a finding consistent with
those of Iizaka et al. (2007). Inhibition of caspases 8 or 3 resulted in partial protection
against LCA induced cytotoxicity, suggesting that the cytotoxicity of LCA is, at least in part,
caspase-dependent (Goldberg et al., 2013). However, we are currently performing studies
to show that necrotic signaling pathways may play a significant role in LCA-induced death
of prostate cancer cells.

LCA induces autophagy in PC-3 cells
We found that LCA induces a general autophagic response in PC-3 cells based on a
time- and concentration-dependent increase of LC3B conversion observed in these cells
(Figs. 9 and 10). To delineate the protective or cytotoxic nature of the autophagic
response to LCA, cells were exposed to LCA after pre-incubation with the autophagy
inhibitor bafilomycin A1. Cells were also treated with siRNA specific for LC3B to
silence the expresssion of this protein. Inhibiting autophagy in PC-3 cells in either of
these manners enhanced the toxicity of normally sub-cytotoxic concentrations of LCA
(Fig. 11A and 11B). This observation indicates that the autophagic response of PC-3 cells to
LCA exposure is, at least initially, of a protective nature. Similarly, autophagy was shown to
provide protection against cell death of rat hepatocytes induced by glycochenodeoxycholate,
as its inhibition using the autophagy inhibitor chloroquine exacerbated toxicity whereas
induction of autophagy using rapamycin provided protection against cell death (Gao et
al., 2014). Our laboratory has also recently shown that blocking autophagy in LNCaP
and LNCaP C4-2B prostate cancer cells, resulted in a strong sensitization of these cells to
the cytotoxicity of diindolylmethane and a series of ring-substituted dihalogenated DIM
derivatives again demonstrating the protective nature of the autophagic process in these
cells (Goldberg et al., 2015).

To our knowledge, this is the first reported observation that LCA induces autophagy
in human (prostate) cancer cells, although a link between bile acids and autophagy has
been recently proposed via activation of the farnesoid X receptor (FXR) (Nie, Hu & Yan,
2015). The FXR is a cytoplasmic receptor and an important target for hydrophilic primary
bile acids, but is unlikely to play a large role in the biological effects of LCA, which is very
hydrophobic and remains almost entirely outside the cell (Goldberg et al., 2013). More
likely targets for LCA are cell membrane surface receptors such as the death receptors
or the G-protein-coupled bile acid receptor (GPBAR1), the latter for which LCA has a
particularly strong affinity. Although the role of the GPBAR1 in LCA mediated signaling
in healthy cells is currently under intense investigation (Tiwari & Maiti, 2009; Stepanov,
Stankov & Mikov, 2013; Fiorucci & Distrutti, 2015; Li & Chiang, 2015; Perino & Schoonjans,
2015), nothing is known about its functions in prostate cancer cells. Our preliminary results
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show strong expression of GPBAR1 protein in LNCaP, PC-3 and DU-145 cells and we are
currently investigating the role of this receptor in triggering various cell death or survival
pathways in these prostate cancer cells.

We did not establish a link between the induction of ER stress by LCA and its induction
of autophagy. CHOP silencing did not alter the autophagic response of PC-3 cells to LCA
at the tested concentration of 30 and 50 µM as we observed no changes in the induction
of LCB3 conversion or ATG5 protein levels (Fig. 12). A recent study showed that whether
triggering ER stress resulted in induction of either autophagy or apoptosis depended on
the type of trigger. They found that triggering ER stress with thapsigargin only resulted in
induction of apoptosis, whereas the ER stress inducer tunicamycin only caused autophagy
(Matsumoto et al., 2013). However, it was not made clear whether the induction of either
autophagy or apoptosis was directly mediated by ER stress or could have been due to
off-target effects of the typical ER stress inducers. Our results indicate that the induction
of ER stress by LCA was not directly responsible for the induction of either cell death or
autophagy, and that likely these effects are secondary to the disruption of mitochondrial
function by LCA.

LCA induces mitochondrial dysfunction in PC-3 and DU-145 cells
We have shown that LCA impairs mitochondrial function by increasing mitochondrial
outer-membrane permeability (Fig. 13). These results confirm our earlier finding that
LCA impairs mitochondrial membrane potential in PC-3 and LNCaP cells as early as
1 h after exposure and was sustained for at least 8 h (Goldberg et al., 2013). In the present
study, we found that induction of ROS by LCA (Fig. 14) appeared to be a key trigger
of cell death in PC-3 cells as the antioxidant T-3 was able to protect these cells against
the cytotoxicity of LCA (Fig. 15). Interestingly LCA did not induce ROS in DU-145
cells (Fig. 14) and consistent with this, antioxidant pretreatment had no protective effect
against LCA-mediated cytotoxicity in these cells (Fig. 15). These remarkable differences in
(anti)oxidative responses between the two cell lines warrant further investigation.

CONCLUSIONS
In summary, we have found that LCA induces an ER stress response in PC-3 and DU-
145 human prostate cancer cells via a p-eIF2α-dependent pathway and an autophagic
response in autophagy-capable PC-3 cells. These pathways appear to play a cytoprotective
role against LCA-induced cell death, and are rather a response to the underlying, yet
to be precisely elucidated mechanisms of LCA-induced prostate cancer cell death. These
underlyingmechanisms appear to involve induction of ROS and subsequent mitochondrial
dysfunction in PC-3 cells, whereas inDU-145 cells LCA-inducedmitochondrial dysfunction
and cell death occurred at similar LCA concentrations, yet in the absence of ROS
formation.
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