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Highlight: Acetic acid/methanol leaf emissions ratios are a sensitive indicator of the balance

between plant growth and defense during drought.

Abstract 

Growth  suppression  and  defense  signaling  are  simultaneous  strategies  that  plants  invoke  to

respond to abiotic stress. Here, we show that the drought stress response of poplar trees (Populus

trichocarpa) is initiated by a suppression in cell wall derived methanol (MeOH) emissions and

activation of acetic acid (AA) fermentation defenses. Temperature sensitive emissions dominated

by MeOH (AA/MeOH < 30%) were  observed from physiologically  active  leaves,  branches,

detached stems, leaf cell wall isolations, and whole ecosystems. In contrast, drought treatment

resulted in a suppression of MeOH emissions and strong enhancement in AA emissions together

with volatiles acetaldehyde, ethanol, and acetone. These drought-induced changes coincided with

a reduction in stomatal conductance, photosynthesis, transpiration, and leaf water potential. The

strong enhancement in AA/MeOH emission ratios during drought (400-3,500%) was associated

with an increase in acetate content of whole leaf cell  walls, which became significantly  13C2-

labeled  following  the  delivery  of  13C2-acetate  via  the  transpiration  stream.  The  results  are

consistent  with  both  enzymatic  and  non-enzymatic  MeOH  and  AA  production  at  high

temperature in hydrated tissues associated with accelerated primary cell wall growth processes,

which  are  downregulated  during  drought.  While  the  metabolic  source(s)  require  further

investigation,  the  observations  are  consistent  with  drought-induced  activation  of  aerobic

fermentation driving high rates of foliar AA emissions and enhancements in leaf cell wall  O-

acetylation. We suggest that atmospheric AA/MeOH emission ratios could be useful as a highly

sensitive signal in studies investigating environmental and biological factors influencing growth-

defense trade-offs in plants and ecosystems.

Keywords and Abbreviations: 

Acetic acid (AA), aerobic fermentation, methanol (MeOH), AA/MeOH ratio, cell wall esters,

pectin, xylan, plant drought stress, growth suppression, volatile organic compounds (VOCs)
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Introduction

Fast growing trees are increasingly utilized as a sustainable source of bioproducts and biofuels as

well as carbon farming, urban greening, hillslope stabilization, and marginal land restoration and

re-forestation (Ragauskas et al., 2006; Furtado et al., 2014). Field observations have consistently

shown that non-water limited poplar plantations have high growth and productivity rates, but are

highly sensitive to drought  (Ji et al., 2020). For example, poplar trees  in northern China have

experienced large-scale dieback and mortality  in  recent  years  (Ji  et  al.,  2020).  An estimated

79.5% of the area of the poplar forests have experienced severe degradation with an observed

trend of narrower tree-ring widths of intact  trees together  with reduced soil  moisture.  These

observations  highlight  the  need  to  understand  the  mechanisms  of  poplar  forest  growth

suppression and die-back in response to drought stress  (Ji  et  al.,  2020). Prolonged excessive

water loss via transpiration not replaced by water uptake from the soil can result in drought-

induced tissue senescence and mortality, thereby converting individual plants and ecosystems

from net sinks of CO2 to net sources  (McDowell et al., 2008; Jardine et al., 2015; Liu et al.,

2021). Understanding the biological mechanisms and environmental thresholds that determine

plant  responses  to  drought stress is  critical  for predicting  how the structure  and function  of

managed ecosystems will respond to environmental change (McDowell et al., 2008; Dewhirst et

al., 2021a). 

Previous studies have characterized the sequence of plant hydraulic, physiological, biochemical,

and structural changes associated with reversible and irreversible responses to drought stress. For

example, leaf dehydration responses of ten angiosperm species showed stomatal closure and a

decrease in xylem conductance occurring first as a reversible response (Trueba et al., 2019). This
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was  followed  by  reaching  the  turgor  loss  point,  xylem  embolism,  and  the  cessation  of

transpiration  as  a  critical  irreversible  threshold  following  which  further  irreversible  damage

occurred including to the membranes,  pigments,  and other  components of the photochemical

system in the chloroplast (Trueba et al., 2019). While ecosystem response to water deficit can be

detected by current remote sensing methods such as solar induced fluorescence (SIF) (Sun et al.,

2015), and various normalized vegetation indices such as the Normalized Difference Vegetation

Index (NDVI) (Peters  et al., 2002) and Enhanced Vegetation Index (EVI)  (Aulia  et al., 2016),

these generally only identify extreme drought and the associated irreversible loss of major leaf

function such as transpiration and net carbon assimilation.  For example,  in  2-yr old  Populus

deltoides individuals, while strong responses of net photosynthesis and stomatal conductance to

initial water stress were observed at the leaf level, SIF showed relatively minimal changes (Helm

et  al.,  2020).  It  was  concluded  that  the  value  of  SIF  as  an  accurate  estimator  of  net

photosynthesis may decrease during mild stress events of short duration, especially when the

response  is  primarily  stomatal  and not  fully  coupled  with  the  degradation  of  photosynthetic

capacity.  This  highlights  the  need  for  new  methods  to  better  understand  the  biochemical,

physiological,  and ecological  mechanisms  in situ associated with the onset  of drought stress

including processes that alter plant growth and defense balances and their associated changes in

leaf CO2 and H2O gas exchange fluxes. 

A common thread among many of the biochemical and physiological processes that determine

ecosystem  dynamic  responses  to  climate  change  variables  are  alterations  in  plant  cell  wall

chemical composition, structure, and function (Dewhirst et al., 2020a,b). A large proportion of

the plant  cell  wall  polymers can be heavily modified with methyl  and  O-acetyl  ester groups
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which may play important roles in cell growth and tissue development (Peaucelle et al., 2012),

proper xylem (Yuan et al., 2016) and stomatal functioning (Amsbury et al., 2016), central carbon

and  energy  metabolism  (Jardine  et  al.,  2017),  and  stress  communication  and  signaling

(Novaković et al., 2018). For example, wood of hybrid poplar trees, one of the fastest growing

temperate trees in the world, is composed of lignin (22%), cellulose (40%), hemicellulose (20%)

dominated by the  O-acetylated polysaccharide glucuronoxylan, and other polysaccharides such

as pectins (18%), which can be both heavily  O-acetylated and methyl-esterified  (Sannigrahi et

al., 2010). The two main components of the plant primary cell wall, the  pectin matrix and the

cellulose/xyloglucan network, are constantly remodeled to support dynamic morphological and

physiological  processes  from  daily  growth  and  stress  response  patterns,  to  developmental

changes over longer time scales (Chebli and Geitmann, 2017). This remodeling is regulated, in

part,  by a number of loosening and stiffening agents  including pectin  and xylan methyl  and

acetyl esterases which catalyze the hydrolysis of cell wall esters on the wall. The hydrolysis of

methyl  and  O-acetyl  esters  leads  to  rapid  physicochemical  changes  in  the cell  wall  and the

release of methanol (Fall, 2003) and acetic acid (Scheller, 2017). Given that cell wall methyl and

O-acetyl  esters are known to modify cell  wall  elasticity/rigidity  (Peaucelle  et  al.,  2011),  and

previous observations have shown links between bulk cell  wall  elasticity  and water relations

(Roig-Oliver et al., 2020), they may play important roles in the response to drought (Ganie and

Ahammed, 2021). However, how the degree of cell wall esterification varies with abiotic stress is

largely unknown (Pauly and Keegstra, 2010; Gille and Pauly, 2012). 

The source of cell wall  O-acetyl esters is thought to be primarily acetyl-CoA. Acetyl-CoA is a

central  component of plant carbon and energy metabolism, generated independently in many
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organelles  such as  through the  reaction  catalyzed  by pyruvate  dehydrogenase  (PDH) during

aerobic respiration (mitochondria) and fatty acid biosynthesis (chloroplasts). First described as

the ‘PDH bypass pathway’ in yeast, acetyl-CoA production in plants under aerobic conditions

has  also  been  linked  to  enzymes  involved  in  fermentation  like  pyruvate  decarboxylase  and

acetaldehyde dehydrogenase  (Wei  et  al.,  2009).  Recently,  acetate  accumulation  produced by

aerobic fermentation during drought stress was shown to coordinate plant response to drought

stress through a global reprogramming of transcription, cellular metabolism, hormone defense

signaling, and chromatin modification mediated by protein acetylation (Kim et al., 2017). 

In  this  study,  we  first  hypothesize  that  during  rapid  growth  under  well-watered  conditions,

methanol (MeOH) and acetic acid (AA) from leaf cell wall ester hydrolysis is the main source of

foliar  MeOH and AA emission to the atmosphere during well-watered conditions.  Moreover,

ester hydrolysis reactions increase as a function of temperature through both enzymatic and non-

enzymatic ester hydrolysis reactions. Second, we hypothesize that due to hydraulic limitations to

growth during drought stress, cell wall-derived MeOH production is inhibited.  Together with

reductions in stomatal conductance, we predict that drought-induced suppression of growth rates

will also suppress leaf MeOH emissions. In contrast to well-watered conditions where cell wall

esters  are  the  dominant  source  of  MeOH  and  AA  emissions,  we  hypothesize  that  aerobic

fermentation becomes the dominant source of leaf AA emissions during drought stress. Finally,

in addition to acetate-mediated signaling mechanisms associated with protein acetylation (Kim et

al., 2017), we hypothesize that additional biopolymers such as cell wall polysaccharides, may

also respond with increased acetylation during drought responses. 
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We aimed to test these hypotheses by quantifying drought induced changes in bulk leaf cell wall

composition as well  as  O-acetylation content in 2-year old potted California poplar (Populus

trichocarpa)  trees.  Delivery  of  10  mM  13C2-acetate  solutions  to  canopy  leaves  via  the

transpiration stream were used to evaluate the metabolic connection between leaf free acetate

and O-acetylation of bulk leaf cell wall polysaccharides. During experimental drought stress, we

collected real-time patterns in MeOH and AA emissions together with the fermentation volatiles

acetaldehyde,  ethanol,  and  acetone  in  parallel  with  leaf  gas  exchange  (net  photosynthesis,

transpiration,  stomatal  conductance)  and  leaf  water  potential  measurements.  Complementary

environmental sensitivities of MeOH and AA gas exchange studies are presented on hydrated

leaf  bulk  cell  wall  preparations  and  physiologically  active  leaves,  branches,  and  whole

ecosystems.  We define  the  AA/MeOH emission  ratio  as  a  potentially  sensitive  atmospheric

indicator  of  environmental  and  biological  conditions  that  favor  rapid  plant  growth  versus

suppressed growth and defense activation. 

Materials and Methods

Leaf physiological impacts during an experimental drought

Thirty  California  poplar  (Populus  trichocarpa)  saplings  were  obtained  from  a  commercial

supplier  (Plants  of  the  Wild,  USA).  The  trees  were  transferred  into  #2  pots  (6.59  L)  with

Supersoil planting media (Scotts Co., USA) and maintained for two years in the UC Berkeley

Oxford Tract greenhouse under natural lighting supplemented with LED lighting (6:00–20:00

light period; Lumigrow 325 Pro, USA). The thirty potted trees reached a stem diameter (5 cm)

and height (1.5 m) just prior to the commencement of experimental measurements. A subsection

(15 individuals) of the 2-year old trees had water withheld for one week (drought plants), while a
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control group (15 individuals) continued to receive morning, afternoon and night water supply.

For each individual throughout the controlled drought experiment, one mature leaf was selected

for leaf gas exchange measurements in the greenhouse using a portable Li6800 photosynthesis

system including stomatal conductance (gs, mol m ² s ¹), net photosynthesis (⁻ ⁻ A, µmol m ² s ¹),⁻ ⁻

and  transpiration  (E,  mmol  m ²  s ¹)  under  standard  environmental  conditions  (400  ppm⁻ ⁻

reference CO2, 25 mmol mol-1 reference absolute humidity, 1000 µmol m-2 s-1 photosynthetically

active  radiation,  600  µmol  s-1 leaf  chamber  air  flow  rate,  31  °C  heat  exchange  block).

Immediately following leaf gas exchange measurements in the morning, leaf water potential was

determined using a nitrogen pressure chamber instrument (Model 600, PMS Inst., USA). The

leaf was detached from the tree using a razor blade, and the petiole sealed in the leaf pressure

chamber where nitrogen pressure slowly increased until liquid water was visible from the petiole.

Following the gas exchange and leaf water potential measurements, a second mature leaf was

taken from each of the 30 trees and frozen on dry ice and stored at -80°C prior to cell wall

analysis.  Leaf gas exchange and water potential  measurements and frozen leaf samples were

collected from one mature leaf for each of the 15 control and 15 drought-treated individuals at

time = 0, 1, 4, and 7 days.

Leaf Alcohol Insoluble Residue (AIR) preparations

Cell wall preparations (alcohol insoluble residue; AIR), were extracted from poplar leaf samples

collected during the drought and 13C2-acetate labeling experiments. Leaves were flash frozen in

liquid nitrogen and then ground to a powder with a pestle and mortar on dry ice. The ground

samples  were incubated  in  96% (v/v)  ethanol  at  70°C for  30 minutes.  The supernatant  was

discarded  and the  samples  washed successively  in  100% ethanol,  2:3  chloroform:  methanol
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(twice, with shaking for at least 1 hour), 60% ethanol, 80% ethanol and 100% ethanol. Samples

were centrifuged and the supernatant discarded between each washing step. The resulting AIR

was  dried  in  a  speedvac  and  destarched  for  the  monosaccharide  analyses  using  amylase,

amyloglucosidase and pullulanase (Megazyme Ltd., Ireland) as previously described (Sechet  et

al., 2018).

Bulk  O-acetyl ester content of AIR samples was carried out using a commercial kit (Acetate

Assay Kit, BioVision, CA, USA). AIR samples (2.5 mg) were saponified with NaOH (1 M, 125

µL) for 16 hours then neutralized with 1 M HCl. The samples were centrifuged (10 minutes at

15000 rpm) and 5 µL of the supernatant was transferred to a 96-well plate. The samples were

treated  with  the  assay  kit  enzymes  and  plates  incubated  at  room temperature  for  40  mins.

Absorbances were measured at 450 nm on a 96-well plate reader (SpectraMax M2; Molecular

Devices, CA, USA). Total  O-acetyl content of the AIR samples (µg/mg AIR) were determined

by including a six-point calibration on each plate using the included standard.

In order to determine bulk leaf cell wall monosaccharide composition, destarched AIR (200 µg)

was incubated in 2M trifluoroacetic acid (400 µl) at 120°C for 3 hours. The supernatant was

collected after centrifugation. The pellet was washed with 200 µl milliQ water, centrifuged and

the  supernatant  collected.  The  combined  supernatants  from  each  sample  were  dried  in  a

speedvac. The sample was resuspended in 200 µl milliQ water, filtered on a 0.22 µm centrifuge

filtration  plate  then  analyzed  for  monosaccharide  composition  using  high-pressure  anion-

exchange chromatography (Dionex-ICS 5000, Thermo Fisher Scientfic, CA, USA).
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Real-time AA and MeOH emission measurements

Experimental details of the leaf, branch, and ecosystem gas exchange methods to determine AA

and MeOH emissions, as well as the detached stem, detached leaf, and hydrated AIR temperature

response curves can be found in the supplementary methods. Briefly, emission rates of MeOH

and  AA were  quantified  in  real-time  (roughly  2.5  measurements  per  minute)  using  a  high

sensitivity quadrupole proton transfer reaction mass spectrometer (PTR-MS, Ionicon, Innsbruck

Austria,  with  a  QMZ  422  quadrupole,  Balzers,  Switzerland).  The  PTR-MS  was  regularly

calibrated  to  a  primary  standard  by  dynamic  dilution  (Supplementary  Figure  S1).  AA and

MeOH emissions were determined using PTR-MS at the leaf level using an environmentally

controlled leaf photosynthesis system (Model 6800, Licor Biosciences, USA), branch level using

a custom 5.0 L transparent Tedlar gas exchange enclosure with artificial lighting, and from a

temperature-controlled chamber used for detached leaf, stem, and hydrated AIR AA and MeOH

emission studies (Model 150 Dynacalibrator, +/- 0.01 C temperature accuracy, Vici Metronics,

USA).  Together  with  air  temperature,  continuous  above  canopy  ambient  AA  and  MeOH

concentrations during the growing season were made at a poplar plantation in Belgium (Portillo-

Estrada et al., 2018), a mixed hardwood forest in Alabama  (Su et al., 2016), and above a citrus

grove  in  California (Park  et  al.,  2013).  Vertical  ecosystem fluxes  of  MeOH and  AA were

estimated  at  the  Belgium field  site  using  the  technique  of  eddy  covariance  employing  high

frequency vertical wind and MeOH and AA concentration measurements (Portillo-Estrada et al.,

2018). While ecosystem concentration and flux measurements MeOH were collected at all three

sites using eddy covariance with PTR-TOF-MS, only the Belgium poplar plantation reported

ecosystem scale AA flux data. At the Alabama mixed forest site, AA fluxes were not reported
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(Su  et al., 2016) and at the citrus grove in California, AA fluxes were reported to suffer from

gaseous AA surface interactions within tubing (Park et al., 2013). Therefore, at the Alabama and

California  sites,  diurnal  ambient  concentrations  of MeOH and AA were analyzed instead of

fluxes as a function of air temperature.

Long-distance  13C2-acetate transport  in  the  transpiration  stream  and  leaf  cell  wall  O-

acetylation interactions

In order to evaluate the possibility of long-distance metabolic interactions between plant tissues

mediated by acetate in the transpiration stream, including influencing O-acetylation dynamics of

cell  walls,  13C2-acetate  labeling  studies  were  carried  out  on  individual  P.  trichocarpa trees

transferred  from  the  greenhouse  to  the  laboratory.  13C2-acetate  delivery  to  leaves  was

accomplished using detached branches (N = 3 branches, 1 branch/individual) placed in a 10 mM

solution  of  sodium  13C2-acetate  (Sigma-Aldrich,  USA) for  2  days  inside  an  environmentally

controlled  growth  chamber  (Percival  Intellus  Control  System,  USA)  maintained  at  27.5  °C

daytime temperature  (6:00–20:00;  30% light)  and 23 °C nighttime temperature  (20:00-6:00).

After 2 days, the branches took up roughly 30-40 ml of the 13C2-acetate solution. In addition, a

single individual of 2.1 m height was placed in the laboratory under automated daytime lighting

with continuous daytime (150 µl min-1) and nighttime (70 µl min-1) xylem injection at the base of

the stem with a 10 mM sodium 13C2-acetate solution (1,176 ml injected over 7 days using a flow

controlled  M6 Pump,  Valco  Instruments  Co.  Inc.,  USA). Following the  13C2-acetate  labeling

period (branch: 2-day, tree: 7-day), a mature leaf was removed and flash frozen under liquid

nitrogen and stored at -80 °C before isolating whole leaf cell walls through the generation of
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AIR. Leaf AIR samples were also prepared from detached branches fed with water and 10 mM

acetate  with  natural  13C/12C  abundance  as  controls.  Experimental  details  of  the  AIR

saponification  followed by  13C-labeling  analysis  of  the  released  acetate  can  be  found in  the

supplementary methods.

Results

Leaf gas exchange and water potential responses to experimental drought

Following the cessation of soil moisture additions on Day 0, large impacts on leaf water use and

CO2 metabolism could already be observed by Day 1 of the drought (Figure 1). For example,

mean stomatal conductance (gs) values of drought treated plants declined from 1.1 mol m-2 s-1 on

day 0 to 0.026 mol m-2 s-1, representing a 97% decrease. These low conductance values were

maintained throughout the drought treatment on day 4 and 7. As expected from a strong drought-

induced decrease in gs, leaf gas exchange of CO2 and H2O in the light showed a large suppression

in drought-treated plants. Under standard environmental conditions, average net photosynthesis

(A) decreased from 13.4 µmol m-2 s-1 on Day 0 to -0.5 µmol m-2 s-1 on Day 1, representing a

104% decrease and loss of net carbon assimilation. These near zero and often negative net CO2

assimilation  values  continued  in  the  drought  plants  through  days  4  and  7.  Likewise,  leaf

transpiration (E) decreased by 94% on Day 1 as a result of the experimental drought treatment

with average values declining from 5.7 mmol m-2 s-1 on Day 0 to 0.33 mmol m-2 s-1  on Day 1.

These low leaf transpiration values continued through Days 4 and 7. The strong reduction in g s,

A, and E observed during on Days 1, 4, and 7 in drought-treated individuals was associated with
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a decrease in leaf water potential (LWP). Average  LWP declined from -0.56 MPa in drought-

treated  leaves on Day 0 to  -1.0 on Days 1,  4,  and 7,  representing a 79% decline.  After  the

drought treatment, despite daily soil moisture additions resuming for the droughted trees, all the

trees lost their leaves.

Branch MeOH and AA emission responses to experimental drought

During the drought experiment, a subset of drought (N = 6) and control (N = 6) plants were

transported  to  the  analytical  laboratory  in  the  morning  and  analyzed  for  ‘snap-shot’  branch

MeOH and AA emissions for 1 hour in a constant light and temperature environment (Fig. 2a-c).

Control plants had high average rates of MeOH emissions (2.3-4.4 nmol m-2 s-1) and low, but

detectable levels of AA emissions (0.1 nmol m-2 s-1). In contrast, drought-stressed trees showed

low MeOH emissions (0.3 nmol m-2 s-1) while also showing higher average AA emissions (0.2

nmol m-2 s-1). This pattern resulted in lower branch ‘snap-shot’ AA/MeOH emission ratios for the

control plants (10 +/- 10%) relative to drought stressed plants (84 +/- 57%).

In contrast to greenhouse drought experiments which showed rapid negative leaf physiological

effects, a second set of drought experiments occurred in a cooler lab, where artificial lighting was

provided and gas exchange fluxes from a canopy branch were continuously monitored. While

variability in the timing and magnitudes of the MeOH and AA emissions was observed between

the  five  individuals,  the  same  general  emission  pattern  was  observed  during  the  real-time

emission  studies  as  those  from  the  ‘snap-shot’  studies  with  drought  inducing  a  pattern  of

13

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

13



decreasing branch MeOH emissions and increasing AA emissions together with high AA/MeOH

emissions ratios (Figure 2d-f, Figure 3 and supplementary Figures S2-5). 

When the temporal patterns of branch gas exchange during drought was analyzed in more detail,

four distinct  phases could be described. The first  ‘growth phase’ with physiologically  active

foliage is characterized by high rates of transpiration, net photosynthesis, and MeOH emissions,

with low AA emissions. High MeOH emissions relative to AA emissions from physiologically

active  branches  in  the  ‘growth  phase’  constrain  daytime  AA/MeOH emission  ratios  to  low

values, reaching maximum mid-day values of 6% (e.g. day 3 in Figure 3). The second phase of

drought  response consists  of a  strong suppression in  MeOH emissions,  apparently  occurring

prior to any reductions in stomatal conductance and CO2 and H2O gas exchange (e.g. day 4).

Although AA emissions remained low, branch AA/MeOH emission ratios during this ‘MeOH

suppression’ phase increased slightly from 18% on day 4 to 24% on day 5. The third phase of

drought response is characterized by a reduction in transpiration and net photosynthesis rates, a

continued strong suppression of MeOH emissions, together with high branch emissions of the

fermentation volatiles acetaldehyde, ethanol, acetic acid (AA), and acetone (e.g. initiated on day

5 in Figure 3). High rates of fermentation VOC emissions were found to be initiated both during

the day and the night, depending on the individual (Supplementary Figs. S2-S5). Emissions of

acetaldehyde  during  this  ‘fermentation  phase’  phase  was  far  higher  than  those  of  the  other

fermentation  VOCs  whose  emissions  generally  tracked  acetaldehyde.  Elevated  branch

fermentation VOC emissions continued for three days, with the peak in AA/MeOH emission

ratio (444%) occurring on day 6. Throughout this ‘fermentation phase’, daytime transpiration
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and net photosynthesis  continued to decline.  During the final ‘senescence phase’ (day 7-10),

likely  associated  with  irreversible  damage  to  cellular  components  including  photosynthetic

membranes,  isoprene emissions  were suppressed,  while  AA/MeOH emission ratios  declined,

remaining high and reaching a value of 50% by day 10.

To  test  for  the  potential  reversibility  of  the  suppression  of  branch  MeOH  emission  during

drought, when a drought-stressed potted tree showed strong suppression of MeOH emissions in

the  laboratory,  re-watering  of  the  soil  with  100  ml  additions  on  day  4  (red  arrows  in

supplementary Figure S6), resulted in a rapid (~15 min) return of high branch MeOH emissions

and a dramatic reduction of the AA/MeOH emission ratios to around 1%. As the soil continued

to dry through the experiment, the suppression of MeOH emissions was again rapidly relieved by

a 100 ml soil moisture addition, regardless of whether it was added during the day or night. This

effect  of  water  addition  on droughted plants,  completely  altered  the normal diurnal  cycle in

MeOH emissions which normally peak around mid-day in well-watered individuals. Maximum

AA/MeOH emission ratios were 12% which were lower than those from branches of the five

trees  for  which  water  was  completely  withheld  (Figure  3 and  S2-5)  which  showed  high

maximum AA/MeOH emission ratios ranging from 400-3500%.

Leaf MeOH and AA emission responses to CO2, light, and temperature

In order to evaluate the effect of environmental conditions on well hydrated poplar branches at

the  leaf  level,  MeOH  and  AA  emissions,  AA/MeOH  ratio,  stomatal  conductance  (gs),

transpiration, and net photosynthesis (Pnet) measurements occurred in parallel during CO2, light,
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and  temperature  leaf  response  studies.  To  minimize  leaf  water  stress,  poplar  branches  were

detached, recut under water, with the target leaf placed in the chamber and the rest of the branch

placed in  a hydrated atmosphere in the dark.  In this  way, leaf  hydration was maximized by

shutting down transpiration from all leaves on the branch except the leaf inside the dynamic leaf

chamber. Across the CO2 (Anet-Ci, Figure 4a-c), light (Anet-PAR, Figure 4d-f), and temperature

(Anet-leaf  temp., Figure  4g-i)  response  curves,  MeOH  and  AA  emissions  generally  tracked

patterns of gs and E, and did not appear to be strongly dependent on Anet. During the Ci response

curves, MeOH emissions tended to increase at low Ci and decrease at high Ci, together with gs.

During the light curves, gs values remained high and increased only slightly as a function of

PAR,  while  MeOH  and  AA  emissions  also  remained  relatively  stable.  In  contrast,  as  leaf

temperature increased, gs declined considerably at high leaf temperature (e.g. above 35°C), while

MeOH and AA emissions together with transpiration generally increased up to the highest leaf

temperatures (40 °C). While gs continued to decline in the dark at 40 °C, leaf dark respiration

caused Anet to quickly drop to negative values.  In contrast, MeOH and AA emissions did not

show a fast  decline  in the dark,  but  rather  declined  more gradually  together  with gs and E.

Importantly  across  Ci and  PAR  response  curves,  leaf  AA/MeOH  emission  ratios  remained

relatively stable with maximum values < 10%. In contrast, AA/MeOH emission ratios increased

slightly as a function of temperature reaching maximum values in the light at 40 °C of 10-20%. 

Temperature sensitivities of MeOH and AA emissions and AA/MeOH emission ratios from

physiologically active trees, detached stems and leaves, hydrated AIR, and whole ecosystems  
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To  better  understand  the  role  of  temperature  in  enhancing  AA/MeOH  emission  ratios,  the

sensitivity of MeOH and AA production to air temperature was characterized using branches of

well-watered  poplar  trees,  detached  stems  and  leaves,  and  whole  ecosystems.  Well-watered

poplar  trees  were  individually  placed  in  a  growth  chamber  with  diurnally  changing  air

temperature (Figure 5). At night in the dark (20:00-6:00), considerable branch transpiration was

observed together with relatively high MeOH emissions, and low to undetectable AA emissions.

Under constant daytime (6:00-20:00) light conditions, net positive CO2 assimilation occurred. As

observed at the leaf level,  branch transpiration together with MeOH and AA emissions were

strongly coupled to the diurnal pattern of air temperature, reaching maximum fluxes during the

early afternoon peak in air temperature of 27 ºC at 14:00. MeOH emissions were greater than AA

emissions at all air temperatures by roughly a factor of 10, except for 1 hour following light to

dark transitions where a short burst in AA emissions were observed. Outside of this light-dark

period, branch AA/MeOH emission ratios remained low and increased with air temperature up to

~12% (Figure 5).  High temperature  sensitivity  of  MeOH and AA emissions  from detached

poplar  stem  segments  in  the  dark  was  also  observed  (Supplementary  Figure  S7).  Similar

temperature sensitivities of MeOH and AA emissions were also obtained from hydrated whole

leaf  cell  wall  preparations  (alcohol  insoluble  residue,  AIR).  Gas-exchange  analysis  under

controlled temperature with hydrated AIR in porous Teflon tubes showed rapid equilibration of

MeOH and AA emissions within 10 min of reaching the new chamber temperature in the dark.

MeOH and AA steady state emissions from hydrated AIR samples increased as a function of

temperature from 30-50 ºC (Figure 6) and were completely dependent on the presence of liquid

water interacting with AIR (data not shown). Similar to physiologically active leaves (Figure 4),
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branches (Figure 5), and detached stems (Supplementary Figure S7), emissions from hydrated

AIR  were  dominated  by  MeOH  with  AA/MeOH  emission  ratios  increasing  slightly  with

temperature but remaining below 30%. 

In  contrast,  AA/MeOH emission  ratios  from drought  stressed  poplar  branches  reached  high

values  ranging  from  400-3,000%  (Figures  2-3,  Supplementary  Figures  S2-S5).  Similarly,

detached poplar leaves placed into the temperature-controlled chamber in the dark in a dry air

stream,  showed  a  similar  pattern  of  suppressed  MeOH emissions  together  with  temperature

stimulated emissions of the fermentation volatiles acetaldehyde, ethanol, acetic acid, and acetone

(Figure 7). Acetaldehyde emissions peaked at 42.5 ºC, AA emissions peaked at 47.5 ºC, and the

AA/MeOH emission ratio reached a maximum of 2,500% at 45 ºC. 

When this analysis was applied to previously published datasets at the ecosystem scale during

the growing season, average ecosystem emission rates of AA and MeOH (Belgium) and ambient

concentrations  (Belgium,  Alabama,  and  California)  showed  clear  diurnal  patterns  closely

tracking  air  temperature.  Moreover,  ecosystem AA/MeOH emission  and concentration  ratios

increased linearly as a function of air  temperature,  peaking in the afternoon (Supplementary

Figures  S8-9).  The  diurnal  increase  in  MeOH/AA  concentration  ratios  in  California  and

Alabama remained below 30%, suggesting that drought conditions were not experienced by the

ecosystems.   

Changes in cell wall composition and esterification patterns in response to drought stress 
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In order to investigate the potential source(s) of MeOH and AA emissions from poplar leaves

and evaluate potential impacts of drought stress on the cell wall polysaccharide composition, leaf

bulk  monosaccharide  composition  was  determined  from  AIR  samples.  Consistent  with  the

expected  high  pectin  content  of  rapidly  expanding  leaf  primary  cell  walls,  monosaccharide

content of AIR from poplar leaves was dominated by galacturonic acid (GalA, Figure 8a). While

the monosaccharide content, and by extension polysaccharide content of the cell walls remained

largely unchanged during drought,  we observed an increase in  O-acetyl  ester content  during

drought (Figure 8b). AIR from control leaves released an average of 0.69 µg g-1 of free acetate

following saponification which increased by 10% to 0.76 µg g-1 of free acetate g-1  from drought

stressed leaves. Leaf AIR  O-acetyl ester content increased throughout the drought, reaching a

maximum after 7 days (Figure 8b). 

Evaluating acetate in the transpiration stream as a substrate for cell wall O-acetylation

In order to evaluate potential mechanisms involving rapid changes in cell wall O-acetylation in

response to drought stress, experiments investigating the transport of doubly  13C-labeled  13C2-

acetate in the transpiration stream of detached branches and a whole intact tree were carried out.

To evaluate leaf cell wall O-acetylation responses to 13C2-acetate in the transpiration stream, cell

wall  preparations  (AIR)  were  isolated  from  canopy  leaves,  and  saponified  with  deuterated

sodium hydroxide (NaOD) to quantitatively  hydrolyze the esters.  The resulting solution  was

analyzed for acetate isotopologues including monoisotopic acetate (12C2-acetate) and acetate with

one  (13C-1-acetate,  13C-2-acetate),  and  two-13C-atoms  (13C2-acetate),  by  one-dimensional  1H-

NMR (Figure 9).
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Acetate  released  upon saponification  of  the  AIR (from 10  mg dried  AIR/mL 0.4M NaOD)

ranged in concentration between 212-333 nmol/mg AIR (dry wt.), corresponding to 2.12 mM

and 3.33 mM. The concentration of acetate in the method blank was 0.006 mM and, to quantify

any additional free acetate that may have been present, incubations of AIR in only D2O were also

carried out. Free acetate was only quantifiable in two detached branch leaf samples at (1.2 and

1.4  nmol/mg  AIR (dry  wt.),  or  0.012  mM and  0.014  mM.  In  the  two  cases  where  it  was

quantifiable, the highest amount of free acetate in the AIR amounted to less than 0.7 % of the

total concentration of acetate observed after saponification with 0.4 M NaOD. 

The isotopologue distributions were determined from the experimental  spectra (Figure 9) by

integrating the peak areas corresponding to each isotopologue and dividing by the sum of the

integrated areas of all acetate peaks. The results are summarized in  Table 1 as the fraction of

isotopologue divided by its expected fraction at natural abundance wherein a value of 1 indicates

no change. In leaf cell AIR, there was an increase in the 13C2-acetate isotopologue by a factor of

125 +/- 31 above its expected fraction at natural abundance along with concomitant decreases in

the fractions corresponding to the remaining isotopologues. For example, no significant changes

or slight decreases were detected in the relative abundances of mono-labeled  13C-1-acetate and

13C-2-acetate isotopologues. An increase in the fraction of 13C2-acetate isotopologue by a factor

of 48 +/- 7 was also observed in two of the three canopy leaf samples collected following one

week of 10 mM  13C2-acetate solution continuously injected into the xylem of an intact potted

tree. 
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During branch and whole tree labeling with 13C2-acetate, plant  emission data was collected for

three different isotopologues of acetic acid in real-time using PTR-MS including 12C2-AA, 13C-1-

AA  +  13C-2-AA,  and  13C2-AA.  During  the  whole  tree  labeling  with  13C2-acetate  via  the

transpiration stream, significant branch emissions of 13C2-AA were not observed. However, leaf

emissions  of  13C2-AA could  be  observed  in  some of  the  detached  branch  experiments  (e.g.

supplementary Figure S8), confirming the delivery of the labeled acetate to the leaves. 

Discussion

Pectin, Methanol, and the Growing Plant Cell Wall

The polysaccharide pectin can account for up to 35% of the primary cell wall in dicots and non-

grass monocots, and up to 5% of wood tissues (Mohnen, 2008). Newly synthesized pectin in the

primary cell wall is known to be highly methyl esterified, with changes in the degree of pectin

methylesterification  mediated  by  pectin  methylesterases  (PME)  known  to  regulate  cell  wall

mechanical  properties  like  elasticity.  The  degree  of  pectin  methylesterification  can  have

profound impact on physiological processes like tissue morphogenesis and growth as well as

numerous biological functions (Levesque-Tremblay et al., 2015). Cell wall synthesis is coupled

to  changes  in  cell  wall  elasticity  mediated  by  pectate  formation  following  pectin

demethylesterification  (Peaucelle  et al., 2012).  In  Arabidopsis, increases in tissue elasticity in

living meristems correlated with pectin demethylesterification  (Peaucelle  et al., 2011) which is

required for the initiation of organ formation (Peaucelle et al., 2008). When pectin demethylation

was  inhibited,  stiffening  of  the  cell  walls  throughout  the  meristem  was  observed  which

completely  blocked  the  formation  of  primordia  (Peaucelle  et  al.,  2008).  Thus,  pectin
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demethylation is a critical process that regulates the direction and speed of cell wall expansion

during growth and morphogenesis (Braybrook et al., 2012). Consistent with the view that MeOH

emissions from plants into the atmosphere primarily derive from pectin demethylation, numerous

studies have revealed that leaf methanol emissions tightly correlate with leaf expansion rates

(Hüve et al., 2007) with young rapidly expanding leaves emitting higher fluxes of MeOH than

mature leaves  (Jardine  et al., 2016). Our temperature-controlled gas exchange observations of

hydrated leaf bulk cell walls (AIR) provide new direct evidence for pectin demethylation as the

dominant  source  of  foliar  MeOH  emissions.  The  observations  suggest  that  in  addition  to

enzymatic hydrolysis reactions catalyzed by esterase enzymes within the cell wall, temperature

stimulated non-enzymatic hydrolysis of cell wall methyl and O-acetyl esters may be an important

source of MeOH and AA production in situ.  Purified whole leaf cell walls (AIR) hydrated and

placed in a porous Teflon tubes permitting gas exchange showed remarkably similar temperature

sensitivities of MeOH and AA emissions (Figure 6) as physiologically active leaves (Figure 4),

branches  (Figure  5),  detached  stems  (supplementary Figure  S7),  and  whole  ecosystems

(supplementary Figures S8-9), confirming plant cell walls as an important source of MeOH and

AA emissions.

In contrast to growth processes, abiotic stress responses may be associated with increased cell

wall fortification through a  reduction in pectin demethylation rates mediated by pectin methyl

esterase  inhibitors  (PMEI).  For  example,  abiotic  stress  may  lead  to  the  inhibition  of  pectin

demethylation via enhanced expression of PMEI genes known to be involved in abiotic stress

tolerance (An et al., 2008; Hong et al., 2010; Ren et al., 2019; Wang et al., 2020a).  Recent work
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on  drought  response  of  leaf-succulent Aloe  vera reported  the  drought-induced  folding  of

hydrenchyma cell  walls  involves  changes  in  pectin  esterification  (Ahl  et  al.,  2019).   It  was

hypothesized that the cell wall folding process during drought may be initiated by a reduction in

pectin  de-esterification  and  its  associated  MeOH production  and Ca+2-complexation,  thereby

releasing  internal  constraints  on  the  cell  wall.  Thus,  we suggest  that  the  strong decrease  in

observed foliar MeOH emissions during water stress (Figs. 2,3,7, supplementary S2-5) may be

related  to  both gs reductions  and reduced cell  wall  de-methylation  rates  related  to  increased

PMEI activity. We speculate that reductions in tissue water potential leads to the inhibition of

pectin methyl ester hydrolysis, MeOH production, and growth. 

Results  from the leaf-level environmental  response curves (Figure 4) are consistent with the

view  that  stomatal  regulated  leaf  MeOH emissions  are  controlled  by  light-independent,  but

highly temperature-dependent production associated with growth processes (Harley et al, 2007).

Thus,  light  and CO2 are  assumed to only indirectly  influence leaf  MeOH emission rates  via

changes to gs. However, we highlight that reduction of gs at high temperatures in well hydrated

leaves was often unable to prevent the temperature increase in MeOH and AA emissions (Figure

4).  Similarly,  reductions  in  gs  during  drought  were  unable  to  suppress  the  emissions  of

fermentation  volatiles  like  AA  (Figs.  2,3,  supplementary  S2-5).  Although  a  link  with  gs is

possible, our observations suggest that the large changes in AA/MeOH ratios during growth and

drought stress responses are largely due to changes in production rates, with MeOH production

declining and AA production increasing during different phases of the drought response (Figure

3).  Our study suggests  that  there  are  at  least  two distinct  plant  sources  of  atmospheric  AA
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emissions; hydrolysis of O-acetyl groups on the cell wall (Figure 6) and the aerobic fermentation

pathway (Figures 3, 7). The metabolic origin of AA is further discussed in the Supplementary

discussion.

Cell wall O-acetylation is modified by drought

In this study, we found statistically significant enrichments in O-acetyl ester content of bulk leaf

cell  walls  (AIR)  in  response  to  drought  stress  (Figure  8b).  In  contrast,  cell  wall  monomer

composition, which was dominated by galacturonic acid from pectin, changed little over seven

days following the cessation of watering (Figure 8a). That leaf AIR monosaccharide content was

largely  insensitive  to  drought  suggests  a  slower  turnover  in  monosaccharide  cell  wall

polysaccharides  than  the  fast  time  scales  of  days  observed  for  changes  in  volatile  emission

signatures  and cell  wall  O-acetyl  ester  content  changes  (1-7 days).  O-acetyl-substituents  are

present on nearly all cell wall polymers with the exception of cellulose, whereas methyl esters

are  thought  to  be  primarily  associated  with  pectin  (Derbyshire  et  al.,  2007).  O-acetyl

esterification of plant cell walls is known to play important physicochemical, mechanical, and

structural roles that serve to minimize degradation while enhancing intermolecular interactions

with other  wall  polymers  (Biely,  2012).  Studies  have  shown that  cell  wall  O-acetylation  of

hemicellulose  and  pectin  is  critical  for  proper  plant  growth  and  functioning.  For  example,

simultaneous  mutations  of  the  acetyl  transferase  genes  TBL32,  TBL33 and TBL29/ESK1 in

Arabidopsis resulted in a severe reduction in xylan O-acetyl level down to 15% that of the wild

type, and concomitantly, severely collapsed vessels and stunted plant growth (Yuan et al., 2016).

Likewise, strongly reduced growth and collapsed vessels were found in Arabidopsis mutated in
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the four Reduced Wall Acetylation (RWA) genes, which may encode Golgi-localized transporters

of substrates for acetyl transferases (Manabe et al. 2013). Additional studies demonstrated that

Arabidopsis plants with defective TBL29/ESK1 enzymes have a constitutive drought syndrome

and collapsed xylem vessels, low hydraulic conductivity along with low O-acetylation levels in

xylan and mannan, low transpiration rates, high water use efficiency, and dwarfism  (Lefebvre et

al., 2011; Ramírez  et al., 2018). Together with these studies, the observation of enhanced leaf

cell wall O-acetylation during drought (Figure 8b) suggests that polysaccharide O-acetylation is

important for the proper functioning of vascular tissues under water deficit. 

Acetate as a potential substrate for cell wall O-acetylation

While the mechanisms of methyl esterification of pectin and its de-methylation by PME have

been the focus of several studies (Willats et al., 2001; Mohnen, 2008), the mechanisms of how

O-acetyl groups are transferred to and from cell wall polymers and their role in the life cycle of a

plant  are  poorly  understood. Current  biochemical  models  of  cell  wall  esters  assume  that

carbohydrate  monomers  are  heavily  O-acetylated  using  acetyl-CoA or  another  acetyl  donor

initially in the Golgi apparatus, and subsequently exported and incorporated into the growing cell

wall. The wall polymers can then be de-esterified in the wall by esterase enzymes at a later point

in the life cycle of the cell in support of numerous physiological and biochemical processes.

Acetyl transfer activity from acetyl-CoA to xylooligomer acceptors has been attributed to Golgi

localized TBL acetyl transferases (Urbanowicz et al. 2014; Zhong et al., 2017). Notably, acetyl

donors  such as  p-nitrophenyl  acetate  and acetyl  salicylic  acid  are  even better  substrates  for

TBL29 in vitro than acetyl-CoA (Lunin et al., 2020), and transport of acetyl CoA into the Golgi
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lumen has not been demonstrated. Hence, it is possible that the immediate donor for cell wall

acetylation is not acetyl CoA but an unknown acetyl donor, although it may be generated from

acetyl  CoA.  We observed that  delivery  of  13C2-acetate  to  the  transpiration  stream of  poplar

branches and xylem of a whole tree leads to rapid and significant 13C2-labeling of O-acetyl esters

in isolated leaf cell walls (AIR). Therefore, activation of  13C2-acetate to  13C2-acetyl-CoA or an

unidentified acetyl donor utilized by Golgi-localized acetyl transferases could explain  the  13C2-

labeling  of  O-acetyl  esters  observed in  leaf  cell  walls  isolations  (AIR)  (Table  1).  1H-NMR

analysis  of  the acetate  released  following leaf  AIR saponification  show that  satellite  signals

corresponding to the 13C2-acetate isotopologue were detectable in all three detached branch leaf

AIR samples and two of the three whole tree leaf AIR samples which had been treated with 10

mM 13C2-acetate via the transpiration stream. In contrast, AIR of leaves labeled with 13C2-acetate

treated  with  water  instead  of  NaOD  did  not  show  any  detectable  13C2-acetate  in  solution,

suggesting the acetate was bound to the cell wall material via an ester bond, making it unlikely

that  the  delivered  13C2-acetate  in  the  transpiration  stream  became  trapped  in  the  cell  wall

material, but not esterified.

These  results  suggest  a  possible  link  between  the  drought-induced  increase  in  foliar  AA

emissions (e.g.  Figure 3) and increased  O-acetylation of leaf cell walls (Figure 8b). Thus, in

addition to providing acetate for protein acetylation and defense gene regulation  (Kim et al.,

2017), the activation of aerobic fermentation during drought may also supply acetyl-CoA used in

the Golgi prior to incorporation into the cell wall (Gou et al., 2012; Orfila et al., 2012; de Souza

et al., 2014). This hypothesis is consistent with previous studies with microsomal preparations of
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a  potato  cell  suspension culture  that  were  supplied  with  14C-acetyl-CoA found radio-labeled

acetate in an esterified form on several polysaccharides, including xyloglucan and pectin (Pauly

and  Scheller,  2000).  Although  the  mechanisms  require  further  investigation,  our  study  is

consistent with cell wall methylation and O-acetylation of polysaccharides rapidly responding to

environmental conditions, potentially allowing plants the flexibility to dynamically alter growth

and defense processes. Our observations are consistent with a coordinated reduction in cell wall

de-methyl  esterification  and  growth  processes  during  water  stress  (resulting  in  a  strong

suppression in MeOH production) together  with an activation of defense processes including

stomatal  closure,  aerobic  fermentation  (increasing  AA  production  and  emissions),  and

enhancements in cell wall O-acetylation.

Conclusions and prospects

Although plants are known to activate growth suppression and defense signaling during abiotic

stress, the biochemical,  physiological,  and ecological mechanisms involved are under intense

investigation. In this study, we identified the active growth phase associated with rapid biomass

accumulation and high rates of leaf gas exchange as highly enriched in MeOH emissions relative

to AA.  AA and MeOH emission patterns of hydrated leaf cell  wall  isolations (AIR) showed

similar  temperature  sensitivities  when  compared  with  physiologically  active  poplar  leaves,

branches,  and ecosystems. The striking similarities  in temperature sensitivities  of AA/MeOH

emissions from AIR, leaves, branches, and whole ecosystems provides direct evidence for the

cell  wall  as the main source of foliar MeOH and AA emissions during normal physiological

activities.  However,  drought  exposure  led  to  large  increases  in  AA/MeOH emissions  (400-

3,500%) linked to numerous coordinated leaf physiological  and biochemical changes starting
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with a suppression of MeOH emissions followed by a suppression of net photosynthesis and

transpiration, a large increase in foliar AA emissions, and increase in cell wall O-acetylation.

While the metabolic origin of AA under drought stress requires further evaluation, we suggest

that  AA/MeOH emission ratios may be exploited by future plant and ecosystem studies as a

highly sensitive atmospheric signal reflecting growth-defense trade-offs in plants and ecosystems

as they move between optimal growth conditions and abiotic stress associated with decreased

productivity.
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CO2, and H2O during a drought experiment of potted poplar trees
 Figure S6: Recovery of drought-suppressed branch MeOH emissions by 100 mL soil moisture

additions prior, during, and after the onset of acetate fermentation during drought
 Figure S7: Emissions of methanol (MeOH) and acetic acid (AA) as a function of temperature

from a detached poplar stem segment in a dark temperature-controlled chamber
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 Figure  S8:  Average  diurnal  MeOH  and  AA  ambient  concentrations  and  (b)  vertical  fluxes
together  with  air  temperature  above  a  poplar  plantation  during  the  2015  growing  season  in
Belgium (Portillo-Estrada et al., 2018)

 Figure S9: Average diurnal MeOH and AA concentrations and AA/MeOH ratios together with
air temperature during the growing season above (a) a mixed forest in Alabama, USA  (Su et al.,
2016) and (b) a citrus grove in California, USA (Park  et al., 2013) during the growing season.
Average  diurnal  MeOH (blue)  and  AA (green)  ambient  concentrations  with  air  temperature
together with AA/MeOH concentration ratios are plotted.

 Figure  S10:  Leaf  13C2-acetic  acid  emissions  during  branch  13C2-acetate  labeling  via  the
transpiration stream

Supplementary References
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Leaf sample Acetate isotopologue
Fexperiment/Fnatural

abundance

Detached branch 12C2-acetate 0.985 +/- 0.008 (*)

Detached branch 13C-1-acetate 0.6 +/- 0.3 (ns)
Detached branch 13C-2-acetate 1.00 +/- 0.09 (ns)
Detached branch 13C2-acetate 125 +/- 31 (*)
Whole tree 12C2-acetate 0.995 +/- 0.004 (ns)
Whole tree 13C-1-acetate 0.9 +/- 0.2 (ns)
Whole tree 13C-2-acetate 1.01 +/- 0.04 (ns)
Whole tree 13C2-acetate 48 +/- 7 (*)

Table 1.  1H-NMR isotopologue analysis results for acetate released following saponification of

isolated leaf cell wall samples from (a) 3 detached branches (one per tree, N = 3) treated with 10

mM 13C2-acetate solution for 2 days as well as (b) canopy leaf (N = 3) samples from a 2-year old

tree following continuous diurnal injections of the 10 mM  13C2-solution into the xylem at the

base of the tree for 7 days (night: 70 µL/min,  day: 150 µL/min). Following saponification of the

cell wall isolates, the values were obtained by integrating the area of the free acetate signals

(corresponding to each of the four isotopologues shown in Fig. 10), and calculating the fraction

ofeach acetate isotopologue to the total (Fexperiment = peak area acetate isotopologue/peak area of

total  acetate  isotopologues),  and  reporting  the  ratio  of  Fexp to  that  from  natural  abundance

fractions  (Fnatural  abundance).  Note,  statistically  significant  changes in Fexperiment/Fnatural  abundance (*),  no

statistically significant changes (ns).
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Figures

Graphical abstract: Summary of changes to MeOH and AA emission patterns,  cell  wall  O-

acetylation,  and leaf gas exchange in poplar trees during growth and defense against drought

stress from cell walls, leaves, to whole ecosystems.
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Figure 1: Leaf physiological parameters in control and drought treated plants. Poplar saplings
were subject to drought for 7 days. Leaf observations were made on day 0 (n =24), day 1 (n =6),
day 4 (n=18), and day 7 (n=18) of (a) Net photosynthesis (Anet, µmol m-2 s-1), (b) transpiration (E,
mmol m-2 s-1), (c) stomatal conductance (gs, mmol m-2 s-1) and (d) leaf water potential (LWP,
MPa).  Values  are  plotted  as  average  +/-  1  standard  deviation  (ns  indicates  no  statistical
significance  between  control  and  drought  treatments,  *  indicates  statistically  significant
difference, P <0.05).
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Figure 2: Branch daytime ‘snap-shot’ branch emissions of (a) acetic acid (AA), (b) methanol
(MeOH), and (c) the AA/MeOH emission ratio from control (N = 21) and drought stressed (N =
16) poplar trees measured on Day 1 of the drought.  In addition, the daily maximum (d) AA
emissions, (e) MeOH emissions, and (f) AA/MeOH emission ratios from real-time branch gas
exchange measurements on the first day of secession of soil water addition (Day = 0: control)
and  a  subsequent  day  during  the  drought  response  at  the  time  where  AA  emissions  were
maximized (N = 5) are also shown. All values are plotted as average +/- one standard deviation
(ns  indicates  no  statistical  significance  between  control  and  drought  treatments,  *  indicates
statistically significant differences, P < 0.05).
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Figure 3: Real-time branch emissions of VOCs together with transpiration (E, mmol m-2 s-1) and
net  photosynthesis  (Anet,  µmol  m-2  s-1)  fluxes  during  a 10-day drought  experiment.  A branch
enclosure was installed on a potted poplar tree and water withheld for the 10-day duration. Daily
branch flux patterns of (a) Methanol (MeOH), Acetic Acid (AA), AA/MeOH emission ratio, (b)
Aerobic fermentation intermediates (acetaldehyde, ethanol, acetone) (c) CO2 and H2O and the
photosynthetic product isoprene. Shaded areas represent the nigh-time where the grow light was
switched off.
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Figure  4:  Dynamic  leaf  gas  exchange  responses  of  methanol  (MeOH),  acetic  acid  (AA),
AA/MeOH,  net  photosynthesis  (Anet),  transpiration  (E),  and  stomatal  conductance  (gs)  from
detached hydrated poplar branches as a function of (a-c) leaf internal CO2 concentrations (Ci),
(d-f) incident Photosynthetically Active Radiation (PAR) flux, and (g-i) leaf temperature. Shaded
regions indicate dark conditions inside the leaf chamber. 
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Figure 5: (a) Example diurnal pattern of AA and MeOH emissions from a physiologically active
poplar branch from a tree inside a growth chamber programmed with a temperature increase
during the day under constant illumination. (b) Also shown are AA and MeOH emissions and the
ratio of AA/MeOH emissions plotted as a function of air temperature. Shaded areas represent the
nigh-time where the grow light was switched off.
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Figure 6:  Emissions  of methanol  (MeOH) and acetic  acid (AA) as a  function of time from
hydrated leaf cell  wall  isolates (AIR) in porous Teflon PTFE diffusion tubes as chamber air
temperature increased from 30 °C to 50 °C. 

Figure 7: Example Acetaldehyde and Acetic Acid (AA) emissions from a detached poplar leaf in
the dark with 1.0 L min dry air passing over in a temperature-controlled chamber (Ethanol and
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Acetone  emissions  are  not  shown  for  clarity).  Average  Acetaldehyde,  AA,  MeOH,  and
AA/MeOH emission values are plotted at each chamber temperature.

Figure 8: a. Leaf bulk cell wall monosaccharide composition from control and drought stressed
poplar trees one day following cessation of soil moisture additions. Monosaccharides quantified
are fucose (Fuc), rhamnose (Rha), arabinose (Ara), galactose (Gal), glucose (Glc), xylose (Xyl),
mannose (Man), galacturonic acid (GalA) and glucuronic acid (GlcA).  b. Also shown are leaf
bulk  cell  wall  O-acetyl  methyl  ester  content  released  following  saponification  of  alcohol
insoluble residue (AIR) preparations from control and drought stressed leaves on day 1, 4, and 7.
Values  are plotted  as  average +/-  one standard deviation  (* indicates  statistically  significant
difference between control and drought treatments,  P < 0.05). Note, no statistically significant
differences  were  observed  in  monosaccharide  composition  between  control  and  drought
treatments during days 1,4, or 7. 
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Figure 9: Exploring the mechanism of leaf bulk cell wall O-acetylation. Simplified schematic
showing acetate and its four-stable carbon isotopologues with 0 (A), 1 (B and C), and 2 (D) 13C
atoms. Following delivery of a 10 mM  13C2-acetate to detached poplar branches and a whole
poplar tree via the transpiration stream, leaf cell walls were isolated and analyzed by 1H-NMR.
Note: the much more intense 12C2-isotopologue signal (A) was clipped vertically in both control
and 13C2-acetate spectra to show the details of the satellite peaks corresponding to the remaining
isotopologues which are labeled B-D. The acetate 1JCH = 127.0 +/- 0.1 Hz and the 2JCH = 5.9 +/-
0.1 Hz.
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