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If it looks like online control, it is probably model-based control
Dominik Straub (dominikstrb@mailbox.org)

Centre for Cognitive Science, Technical University of Darmstadt
Institute of Psychology, Technical University of Darmstadt

Constantin A. Rothkopf (constantin.rothkopf@tu-darmstadt.de)
Centre for Cognitive Science, Technical University of Darmstadt

Institute of Psychology, Technical University of Darmstadt

Abstract

The interception of moving targets is a fundamental sensori-
motor task involving perception and action. For this task, the
dominant approach has been to model the behavioral dynam-
ics using online control laws such as the constant bearing an-
gle strategy, which explain behavior without assuming internal
models. Here, we derive a Bayesian model-based optimal con-
trol model of an interception task and compare it against the
constant bearing angle strategy. First, we show that both mod-
els equivalently capture average trajectories, suggesting that
observing the interception trajectories in an experiment cannot
adjudicate between the two models. However, including re-
alistic levels of perceptual uncertainty, motor variability, and
sensorimotor delays leads online control without an internal
model to quickly deteriorate in interception performance. We
conclude that the empirically observed robustness of the con-
stant bearing angle strategy speaks against a direct coupling
of environmental variables and behavior, but instead implies
some form of internal model.

Keywords: perception and action; online control; model-
based control; Bayesian models; dynamical systems

Introduction
Do people employ an internal model of their environment to
guide their actions? This is a central question in several ar-
eas of cognitive science, particularly in perception and ac-
tion. The question bears on important theoretical debates in
the field, such as the one between perception as inference
(Von Helmholtz, 1867; Knill & Richards, 1996) and ecolog-
ical or direct perception (Gibson, 1979; Warren, 2005), and
by extension has been related to the different paradigms of
modeling in cognitive science. The Cambridge Handbook
of Computational Psychology features Bayesian models of
cognition (Griffiths et al., 2008) and dynamical systems ap-
proaches to cognition (Schöner, 2008), among others, as two
of the most influential paradigms. Discussions regarding
these two modeling paradigms have been loaded with broad
implications for debates in cognitive science and philosophy
of mind about the nature of cognition. Is cognition compu-
tational and representational? Or is it embodied, embedded,
enacted, and extended?

Besides these perceived implications, both modeling
paradigms have been regarded as serving different epistemic
goals. Bayesian models have been chosen typically in the
rational analysis of a task (Anderson, 1991), describing the
goals of a cognitive system. By contrast, dynamical sys-
tems approaches have been regarded as the framework of

choice for describing the laws underlying behavior and there-
fore sometimes as an alternative to the dominant paradigm of
computational cognitive science (Van Gelder, 1995, 1998).
In this view, one could also say that they answer different
parts of the questions posed by Marr’s (1982) computational
level of analysis: dynamical system models are after the de-
scriptive ‘what’ question, while Bayesian models tend to ad-
dress the normative ‘why’ question. Thus, the perceived di-
chotomy between these modeling frameworks becomes par-
ticularly pronounced when interpreting these models as pro-
cess models or when looking for putative model components
at the implementational level. However, although the philo-
sophical positions associated with these two modeling frame-
works have often been conceptualized as opposed, the under-
lying mathematical frameworks themselves are not in conflict
(Beer, 1995) and there is diversity in the kinds of explanations
obtained from dynamical systems models (Zednik, 2011).

A prime example of a behavior for which there is an on-
going debate between Bayesian and dynamical systems ap-
proaches is locomotor interception, i.e. the task of intercept-
ing moving targets. In this field, the contrasting approaches
have been called ”model-based control” versus ”online con-
trol” (Zhao & Warren, 2015). In model-based control, “per-
ceptual information and prior knowledge are used to construct
and update internal representations or models of the environ-
ment, which in turn serve as the basis for control” (Fajen,
2021). The online control approach, on the other hand, posits
that “the actor’s behavior is primarily determined by currently
available perceptual information” (Fajen, 2021). We formal-
ize these notions in a common mathematical framework in
the section Computational modeling.

Online control strategies for interception tasks have been
conceptualized within the framework of dynamical systems
under the term behavioral dynamics (Fajen & Warren, 2007;
Warren & Fajen, 2008). Most famously, using the constant
bearing angle (CBA) strategy, an actor maintains a constant
angle between the vector from their own position to the tar-
get and an external reference direction. Instead of combin-
ing the sensory information with internal model predictions,
the agent’s actions are “coupled” with current sensory input.
Specifically, for the interception of moving targets, the rel-
evant information are angular quantities that are thought to
be contained in the information from the optic array (Fajen,
2021). In a broader context, Gigerenzer & Brighton (2009)
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have argued that such simple control strategies, or heuristics,
can be more robust and efficient than more complex strate-
gies.

Dynamical systems models are used to model interception
tasks because they are well suited to capture the temporal evo-
lution of behavior. Bayesian models, on the other hand, are
often thought of as static and suitable for modeling single de-
cisions. However, this gap has been bridged by normative
theoretical frameworks for sequential decision-making, such
as partially observable Markov decision processes (POMDPs;
Åström, 1965; Kaelbling et al., 1998), which can be seen as
an extension of Bayesian decision theory to the sequential
setting, and the field of optimal control under uncertainty has
undergone continuous progress over the last decades. While
POMDPs are notoriously hard to solve in general (Papadim-
itriou & Tsitsiklis, 1987), certain special cases admit tractable
approximate solutions. In sensorimotor control, these theo-
retical ideas have led to the development of stochastic opti-
mal feedback control models (Wolpert & Ghahramani, 2000;
Todorov & Jordan, 2002; Shadmehr & Mussa-Ivaldi, 2012).

Although the discussion of computational models so far
has excluded specific biological constraints, much is known
about the human sensorimotor system. It is well known
that human perception is noisy or uncertain, actions under-
lie structured variability, and that there are temporal delays
in the sensorimotor system, which have all been quantified
experimentally (Harris & Wolpert, 1998; Yuille & Kersten,
2006; Faisal et al., 2008; Franklin & Wolpert, 2011). Further-
more, achieving task goals involves biomechanical and cogni-
tive effort, which have been formalized as cost functions and
also been measured empirically (Körding & Wolpert, 2004;
Acerbi et al., 2014). Stochastic optimal control provides a
natural way to incorporate these algorithmic level properties
into computational models. This makes optimal control under
uncertainty a natural framework for building normative mod-
els of sequential perception-action tasks, which has found
widespread application not only for short reaching and point-
ing movements (Todorov, 2004) but also for more complex
goal-directed behaviors such as ball catching (Belousov et al.,
2016) or navigation (Kessler et al., 2022).

Here, we computationally investigate a locomotor inter-
ception task as an exemplary behavior for which online con-
trol based on dynamical systems has been the dominant mod-
eling framework. To enable a comparison between existing
online control strategies like CBA and model-based strate-
gies, we formalize interception tasks in a way that allows for
the application of both approaches. Specifically, we derive a
non-linear stochastic dynamical system as a description of the
agent-environment loop, and highlight how both approaches
can be seen in a common mathematical framework. For the
model-based agent, we use optimal control methods for non-
linear partially observed stochastic systems. Specifically, we
approximately solve the estimation and control problem us-
ing the extended Kalman filter (EKF) and iterative linear-
quadratic Gaussian control (iLQG; Todorov & Li, 2005).

a Agent-environment loop

Agent

Environment

yyyt = h(xxxt ,wwwt) uuut = π(zzzt)

zzzt = g(zzzt−1,yyyt)

xxxt+1 = f (xxxt ,uuut ,vvvt)

b Online control

Policy
uuut = π(yyyt)

Environment

yyyt

uuut

c Model-based control

Belief
bt = g(bt−1,yyyt)

Policy
uuut = π(bt)

Environment

yyyt

uuut

Figure 1: Agent-environment loop. a) The agent receives an
observation yt , which may be a noisy or partial version of
the environment state xt . Based on this observation and po-
tentially an internal state, they perform an action uuut , which
affects the state at the next time step. b) In online control, the
action is directly a function of the observation. c) In model-
based control, the agent acts based on an internal state in the
form of a belief bt .

We first show that behavior generated by either model can
be closely replicated by fitting it with the respective other
model. This works because, for low sensorimotor noise and
delay, the behavior of both models can be very similar. Thus,
the observation of behavioral dynamics is not sufficient to ad-
judicate between the two models. However, if biologically re-
alistic perceptual uncertainty, motor variability, and sensory
delays are included in the two models, online control quickly
breaks down while model-based control stays robust. This
suggests that people employ some form of an internal model
in order to stably and reliably generate behavioral dynamics.

Computational modeling
In this section, we introduce the necessary mathematical
foundation for modeling an agent-environment loop (Fig. 1a),
which allows us to implement and compare online and model-
based agents. We consider an agent acting in an environment
characterized by a discrete-time stochastic non-linear dynam-
ical system:1

xxxt+1 = f (xxxt ,uuut ,vvvt). (1)

The state xxxt contains features of the environment such as tar-
get positions, but also externally accessible features of the
agent such as their position or heading direction. It evolves
as a function of the previous state, the action uuut performed by

1Continuous-time formulations for online and model-based con-
trol can be obtained by replacing the discrete-time difference equa-
tions with differential equations.
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the agent, and a noise term vvvt ∼ N (0, I).2 This noise term
incorporates stochasticity in the dynamics, e.g. in the motor
system, but it can also include uncertainty about the internal
model. Note that this formulation allows non-normally dis-
tributed uncertainty through the function f .

We also want to account for the possibility that not all fea-
tures of the environment’s state are accessible to the agent,
but that they instead observe only certain visual variables. We
therefore assume that the agent receives an observation of the
state at each time step

yyyt = h(xxxt ,wwwt), (2)

which contains any visual variables available to the agent
(e.g. distance to the target, bearing angle). It can also in-
corporate a noise term wwwt ∼ N (0, I), modeling uncertainty
in the sensory system. Again, as the noise can be trans-
formed through the function h, this formulation allows for
non-normally distributed uncertainty, which e.g. can accom-
modate Weber-Fechner phenomena.

We assume that the agent performs an action according to
a policy

uuut = π(zzzt), (3)

which is a function of the (internal) state zzzt . The agent’s state
evolves as a function of itself and the incoming sensory infor-
mation,

zzzt = g(zzzt−1,yyyt). (4)

This basic formulation of the agent-environment loop is con-
sistent both with dynamical systems approaches (Beer, 1995;
Warren, 2006) and with model-based optimal control ap-
proaches (Todorov & Jordan, 2002; Diedrichsen et al., 2010).
In the following sections, we flesh out more concretely which
assumptions about the specific parts of the agent are made in
online and model-based control.

Online control
Online control (Fig. 1b) assumes that the agent acts based
solely on the currently available visual information (Zhao &
Warren, 2015; Fajen, 2021):

uuut = πonline(yyyt). (5)

Importantly, the agent does not need to have a model of the
world or form representations of the state of the world. In
that sense, the agent’s state is given directly by the sensory
input, and we arrive at a special case of the general agent-
environment loop with zzzt = yyyt . This is sometimes referred
to as perceptual variables and actions being “coupled”. Note
that dynamical systems approaches would in general allow
for more complex internal state of the agent, which evolve
temporally according to some function, as in Eq. (4). But
here, we focus on the online control case, as it has been
brought forward in the literature on interception tasks.

2The assumption of noise, variability, or uncertainty is much
more common in the Bayesian framework than in dynamical sys-
tems approaches, but we include it for the sake of generality, because
it is well known that the sensorimotor system is subject to variability.

Model-based control
In model-based control (Fig. 1c), the agent combines sensory
information with some form of an internal model to mitigate
uncertainties and variability. Because the agent does not have
access to the true physical state xxxt , they form a belief about
the state of the world based on the internal model using the
current observation and previous belief

bt = g(bt−1,yyyt). (6)

The belief is a sufficient statistic of the distribution
p(xxxt+1 |yyy1, . . . ,yyyt) and is continuously and dynamically com-
puted using sequential Bayesian updating (see Extended
Kalman filter). Note that this involves using visual informa-
tion when available and does not imply a complete general
purpose internal model or perfect knowledge about the true
state of the environment.

The agent chooses an action based on their belief according
to a policy π:

uuut = πoptimal(bt), (7)

which is obtained by minimizing a cost function. In order to
behave in a Bayes-optimal fashion, the agent takes the actions
that minimize the expected cost given their belief about the
state of the world

uuu∗1:T = argmin
uuu1:T

Exxxt |bt [J (xxx1:T ,uuu1:T−1)] . (8)

Note that this allows for modeling internal costs such as
biomechanical or cognitive costs thereby accommodating
resource-rationality. To summarize, model-based control is
a specific special case of the general agent-environment loop,
in which the agent’s state is a belief state, zzzt = bt , and in
which the action uuut is the one that minimizes the expected
cost. Thus, model-based control can be seen as the Bayes-
optimal strategy in a sequential task. Here, we approximate
the solution to the non-linear control problem using the itera-
tive linearization (see Iterative linear-quadratic Gaussian).

Extended Kalman filter For linear-Gaussian systems, the
Bayes-optimal filter is the Kalman filter (Kalman, 1960). For
non-linear dynamics and non-linear observation functions, an
approximately optimal Gaussian belief can be computed us-
ing the EKF by linearizing the dynamics and observation
function around the current belief. It results in the follow-
ing equation: bt+1 = f (bt ,uuut ,0)+Kt(yyyt −g(bt ,0)), where Kt
is called the Kalman gain and is computed by applying the
usual Kalman filter equations to the linearized system.

We additionally allow for the possibility that the agent re-
ceives a delayed observation. To model a temporal delay of
∆ time steps, we assume that the agent receives an obser-
vation yyyt = h(xxxt−∆,wwwt), which only depends on the state at
time t −∆. This is implemented by augmenting the state vec-
tor so that it contains the current state xxxt and previous states
xxxt−1, . . . ,xxxt−∆ (Izawa & Shadmehr, 2008). Using this formu-
lation, the delay can be taken into account by the EKF. This
means that the model-based agent has a model of the system’s
sensorimotor delay and uses this model to compute beliefs.
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Agent

Target

z

x

ψ

φ

Figure 2: Birds-eye sketch of an interception task. An agent
tries to intercept a moving target, while moving in heading
direction φ. The bearing angle ψ is the angle between the
vector from the agent to the target and a reference direction.

Iterative linear-quadratic Gaussian The control problem
defined above can be solved approximately using iLQG
(Todorov & Li, 2005), which works by linearizing the dynam-
ics around a nominal trajectory and applying linear-quadratic
control (Kalman, 1964) to obtain an optimal policy for the
linearized system. This policy is then applied to the full sys-
tem to yield a new nominal trajectory. Starting with an ini-
tial policy, this procedure is iteratively applied until conver-
gence. The result is an approximately optimal linear control
law πt(bt) = Lt(bt − x̄xxt)+ lt + ūuu1:T , where (x̄xx1:T , ūuu1:T ) is the
nominal trajectory and (Lt , lt) comprise the control law.

Modeling interception tasks

We model an interception task like the one sketched in Fig. 2.
An agent is situated at p =

[
px pz

]T and is trying to inter-
cept a target, which is currently at r =

[
rx rz

]T and moving
with velocity ṙ. The agent moves with constant speed in a
direction given by the heading angle φ, which changes with
angular velocity φ̇.

The agent controls the heading direction by applying an
acceleration φ̇t+1 = φ̇t + dtut + σmutvt , which is subject to
signal-dependent variability. This control can be given by an
online control or model-based control policy.

At each time step, the agent receives a partial observation
of the state

yyyt = ȳt +σoȳtwwwt , (9)

with ȳt =
[
Ψ̇ D Φ̇

]T . The observation contains the bear-
ing angle’s velocity Ψ̇, the Euclidean distance between agent
and target D = ∥p− r∥, and the heading velocity Φ̇. This
choice is motivated by the variables that are necessary for
the CBA strategy and which have been shown empirically
to be accessible to humans (Lenoir et al., 1999). We denote
the noisy versions of these variables using lower-case letters
yt =

[
ψ̇ d φ̇

]T . Because the noise term wwwt is multiplied
by ȳyyt , the observation is subject to signal-dependent noise,
implementing Weber’s law in the observation function.

Model-based control cost function For the model-based
agent, we model the agent’s goal in the interception task using

Figure 3: Average trajectory from both agents (online control
CBA and model-based iLQG) intercepting a target starting at
an initial distance of 3m. In each case, the trajectory from one
agent was fit with the other one.

the following cost function:

J(xxx1:T ,uuu1:T−1) = ∥pT − rT∥2 +α

T−1

∑
t=1

∥uuut∥2 . (10)

It consists of two terms. First, the agent wants to reach the
target at the final time step, i.e. minimize the (quadratic) dis-
tance to the target. Second, the agent minimizes the control
effort expended over the whole trajectory. This second term
is weighted by a free parameter α, which trades off the main
goal of reaching the target with the penalty on action effort.

Constant bearing angle strategy The most popular online
control strategy that has been proposed in the context of lo-
comotor interception in humans and animals is the constant
bearing angle (CBA) strategy (Fajen & Warren, 2007). It can
be expressed as a dynamical system describing the relation-
ship between sensory input and the action performed by the
agent. The CBA strategy is defined as

ut =−bφ̇t + kψ̇t(dt + c). (11)

It consists of a damping term proportional to the current rate
of change of the heading direction φ̇t and a term responsible
for bringing the rate of change of the bearing angle ψ̇t to zero,
which is scaled by the distance to the target dt . Following
Fajen & Warren (2007), we fixed c = 1.0, which results in two
free parameters: the damping parameter b and the stiffness
parameter k.

Results
To compare the online and model-based agents introduced
above, we use a locomotor interception task closely based
on the one used in the experiment by Fajen & Warren (2004).
This task has previously been modeled using online control
by fitting the CBA policy’s free parameters to human empir-
ical data (Fajen & Warren, 2007). In the experiment, par-
ticipants walked freely in a 12 by 12 m area. They were
presented with a virtual environment using a head-mounted
display. In each trial, a target appeared at a distance of 3 m
and participants were instructed to walk to the target, which
moved at a constant speed of 0.6 m / s. The agent’s movement
speed was set to 1.29m/s, following Fajen & Warren (2007).
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a

b

Figure 4: a) Model-based control trajectories for different
control cost parameters α. b) For data simulated from iLQG
with different values of α, we obtained parameter estimates
(b̂, k̂) by fitting the CBA strategy. We then simulated trajec-
tories using these estimated parameters and fit iLQG to these
to obtain estimates of the control cost α̂.

We simulated a model-based control agent using the EKF
and iLQG and an online control agent using the CBA strat-
egy. For these initial simulated experiments, we set the sen-
sorimotor delay to 0 ms and sensorimotor noises to relatively
low levels (σm = 0.05,σo = 0.25). In addition to these sen-
sorimotor characteristics, both models have free parameters
that determine their action policies. Model-based iLQG con-
trol is based on optimizing a cost function. In our interception
model, the cost function has one free parameter α, which af-
fects how strongly controls are penalized. CBA has two free
parameters: the damping parameter b and the stiffness pa-
rameter k. We set the parameters k and b of CBA to those
values that were reported to match human behavior (from Fa-
jen & Warren, 2007) and the action cost parameter for iLQG
to α = 1e−3. Fig. 3 shows the average trajectory from both
agents with these settings. Both the model-based iLQG (left
column) and the online CBA turn right early in the trajectory
and then walk on a relatively straight path until they intercept
the target. We then fit the online control agent to the behavior
from the model-based agent and vice versa using non-linear
least squares. In both cases, we obtain a good fit that closely
reproduces the other agent’s behavior when simulated with
the best-fitting parameters.

This works not only for one parameter setting, but across
a wide range of plausible parameter values. Varying the ac-
tion cost parameter of the iLQG agent leads to trajectories
with different curvature without affecting interception suc-
cess (Fig. 4a). We fit the online control agent to the simulated
model-based behavior for a range of action costs between
α = 10−4 and α = 10−1 sampled uniformly in logarithmic
space. For each value of α, we thereby obtained estimates
of the online control agent’s free parameters. The estimated
parameters b̂ and k̂ of CBA change as a function of the action
cost parameter (Fig. 4b): with increasing action cost, we see

iL
Q
G

C
B
A

Figure 5: Trajectories from both agents (iLQG and CBA)
with a sensorimotor delay of 100 ms intercepting a target
starting at an initial distance of 3m.

an increase in both the damping b̂ and the stiffness k̂.
Using each pair of estimated CBA parameters, we again

simulated trajectories of online control agents. To each of
these sets of trajectories, we fit the model-based strategy. The
resulting estimates α̂ closely match the original values of α,
from which the CBA parameters were previously obtained
(Fig. 4, right subplot). Thus, based on these simulations, we
conclude that both the online control and the model-based
control formulations are equivalent in capturing average ob-
served interception trajectories. Accordingly, we cannot ad-
judicate between the two models on the basis of observed av-
erage trajectories.

While the above simulations were agnostic to the known
physiological uncertainties and delays in the human senso-
rimotor system, we now turn to incorporating these con-
straints into the models. Fig. 5 shows simulations from both
models with a sensorimotor delay of 100 ms, motor noise
of σm = 0.1 and three different levels of observation noise
(σo ∈ {0.2,0.6,1.0}).3 At low levels of sensory noise, the
trajectories from iLQG (top row) and CBA (bottom row) are
very similar and indistinguishable with the bare eye. How-
ever, while iLQG remains robust to increasing levels of sen-
sory noise, CBA becomes more variable, with several trials
veering off the path towards the target and failing to intercept
it successfully.

We investigated this in more detail by simulating different
temporal delays (100, 200ms) and a range of different ob-
servation noises (σo from 0.04 to 1.0) and motor noises (σm
from 0.02 to 0.5), all within physiologically plausible ranges
(Kessler et al., 2022). We defined a successful interception as
a trial in which the final distance from the agent to the target
was less than 75 cm. This can be interpreted as the agent be-
ing able to reach the target with an extended arm. The results
are summarized in Fig. 6. The model-based agent (iLQG) is
robust against sensorimotor noise and delays (left column),
with success rates not falling below 0.75. The online control

3We chose the maximum level of σo = 1.0 based on the Weber
fractions for visual speed discrimination measured by Hogendoorn
et al. (2017), which we adjusted to account for the length of the time
steps in our simulations.
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Figure 6: Interception success rate for both strategies and
multiple levels of delays, observation noise and motor noise.

agent (CBA) starts breaking down when the scaling of sen-
sory noise or motor noise minimally increases. This effect is
even stronger at larger temporal delays.

Discussion
The debate between model-based and model-free accounts of
perception and action is important under different names in
several fields of cognitive science. One exemplary behav-
ior is locomotion. Extensive experiments have been con-
ducted, in which human and animal behavior has been col-
lected and modeled with the CBA strategy (e.g. Lenoir et al.,
2002; Ghose et al., 2006; Fajen & Warren, 2007). However,
essentially identical trajectories as those from CBA can also
arise from a model-based control agent. As we have demon-
strated in simulations, it is possible to fit a dynamical system
to the data from a model-based agent with different behav-
ioral costs. Thus, finding a dynamical system that reproduces
the observed trajectories is not sufficient to claim that the be-
havior did in fact arise without an internal model. Of course,
this does not prove that people in fact use model-based strate-
gies in interception tasks, but it should caution against infer-
ences about the nature of cognition based on being able to
account for observed behavior with a dynamical system.

What the simulations presented here also illustrate is that
the two modeling approaches serve different epistemic goals:
rational models, like Bayesian optimal control models, pro-
vide normative explanations, while dynamical systems aim at
a descriptive account. In the interception task, all parameters
are cognitively interpretable and can be related to empirical
research in psychology or neuroscience, e.g. the motor vari-
ability or perceptual uncertainty. The cost parameter of the
model-based agent offers an intentional explanation for the
agent’s behavior. They acted in a certain way because of a
subjective trade-off between task goals and intrinsic costs of
behavior, which could be physiological (Di Prampero, 1986)
or cognitive costs (Shenhav et al., 2017) and which aligns
with the notion of resource rational behavior (Simon, 1955;
Anderson, 1991; Gershman et al., 2015). This is different
from the kind of explanation we obtain from the dynamical

system. The damping and stiffness parameters are difficult to
relate to an agent’s goals or desires, but rather serve to pro-
vide a law-like description of behavior.

It is also worth noting that model-based control can be
extended in a straightforward way to incorporate additional
cognitive constraints. Optimal control under uncertainty can
depart from ideal observer models (Geisler, 1989), which as-
sume perfect knowledge of the generative model of the world,
by incorporating possibly biased or false beliefs about dy-
namics. Estimating these beliefs from behavior using inverse
optimal control reconciles descriptive and normative mod-
els (Rothkopf & Ballard, 2013; Wu et al., 2020; Straub &
Rothkopf, 2022). Rather than positing costs and beliefs and
comparing the predictions of a normative model against be-
havior, costs and beliefs are treated as latent variables that are
inferred from behavior with a generative model. Thus, these
methods answer what costs and beliefs the behavior is implic-
itly optimal for. Moreover, this framework allows quantifying
the uncertainty of the researcher about the inferred cognitive
quantities on the basis of empirical data.

While behavioral studies on interception typically ignore
behavioral variability and focus on average trajectories per
condition (e.g. Fajen & Warren, 2004; Zhao et al., 2023),
our simulations show that looking at variability is critical to
distinguish different strategies. We investigated sources of
behavioral variability that are known to affect human senso-
rimotor behavior: sensorimotor delay (Crevecoeur & Gev-
ers, 2019) and signal-dependent noise in controls (Harris &
Wolpert, 1998; Jones et al., 2002). Different models showed
different increases of behavioral variability with increasing
noise and delay. Specifically, model-based control was more
robust against delay and noise than online control. Thus, con-
sidering behavioral variability seems a promising way to ad-
judicate between competing theories. One way to achieve
this is to use computational models and statistical methods
that model the characteristics of the sensorimotor system and
estimate them from behavioral variability (Schultheis et al.,
2021). Future work should test the implications of the mod-
eling results empirically.

From a broader perspective, our simulation results are
closely related to the idea that in order to be a good controller
of a system, one needs to have a model of the system (Francis
& Wonham, 1976). However, those results relate to determin-
istic systems, while the present simulations and result include
sensorimotor noises and delays.

Finally, we do not argue that there is no value in deriving
law-like descriptions of human behavior in the form of dy-
namical systems. The dynamical approach to cognition has
the benefit of emphasizing the temporal structure of behavior
and the interaction between the body and the environment, an
aspect that has often been missing in previous Bayesian mod-
els. However, advances in optimal control under uncertainty
have enabled the application of normative (Bayesian) ideas to
sequential decision-making, allowing for a top-down research
strategy that descends Marr’s levels (Zednik & Jäkel, 2016).
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Schöner, G. (2008). Dynamical systems approaches to cogni-
tion. In R. Sun (Ed.), The cambridge handbook of compu-
tational psychology (p. 101–126). Cambridge University
Press. doi: 10.1017/CBO9780511816772.007

Shadmehr, R., & Mussa-Ivaldi, S. (2012). Biological learn-
ing and control: How the brain builds representations, pre-
dicts events, and makes decisions. MIT Press.

Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths,
T. L., Cohen, J. D., & Botvinick, M. M. (2017). Toward a
rational and mechanistic account of mental effort. Annual
review of neuroscience, 40, 99–124.

Simon, H. A. (1955). A behavioral model of rational choice.
The quarterly journal of economics, 99–118.

Straub, D., & Rothkopf, C. A. (2022). Putting perception
into action with inverse optimal control for continuous psy-
chophysics. Elife, 11, e76635.

Todorov, E. (2004). Optimality principles in sensorimotor
control. Nature neuroscience, 7(9), 907–915.

Todorov, E., & Jordan, M. I. (2002). Optimal feedback
control as a theory of motor coordination. Nature neuro-
science, 5(11), 1226–1235.

Todorov, E., & Li, W. (2005). A generalized iterative lqg
method for locally-optimal feedback control of constrained
nonlinear stochastic systems. In Proceedings of the 2005,
american control conference, 2005. (pp. 300–306).

Van Gelder, T. (1995). What might cognition be, if not com-
putation? The Journal of Philosophy, 92(7), 345–381.

Van Gelder, T. (1998). The dynamical hypothesis in cognitive
science. Behavioral and brain sciences, 21(5), 615–628.

Von Helmholtz, H. (1867). Handbuch der physiologischen
optik. Voss.

Warren, W. H. (2005). Direct perception: The view from
here. Philosophical Topics, 33(1), 335–361.

Warren, W. H. (2006). The dynamics of perception and ac-
tion. Psychological review, 113(2), 358.

Warren, W. H., & Fajen, B. R. (2008). Behavioral dynam-
ics of visually guided locomotion. Coordination: neural,
behavioral and social dynamics, 45–75.

Wolpert, D. M., & Ghahramani, Z. (2000). Computa-
tional principles of movement neuroscience. Nature neu-
roscience, 3(11), 1212–1217.

Wu, Z., Kwon, M., Daptardar, S., Schrater, P., & Pitkow,
X. (2020). Rational thoughts in neural codes. Proceed-
ings of the National Academy of Sciences, 117(47), 29311–
29320.

Yuille, A., & Kersten, D. (2006). Vision as bayesian infer-
ence: analysis by synthesis? Trends in cognitive sciences,
10(7), 301–308.

Zednik, C. (2011). The nature of dynamical explanation.
Philosophy of Science, 78(2), 238–263.
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