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ABSTRACT OF THE DISSERTATION  
 
 

Enhancing Cost Effectiveness, Reliability, and Resiliency of Distributed Energy 
Resources-Integrated Building Microgrids 

 

by 
 
 

A S M Jahid Hasan 
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The ever-increasing need for energy coupled with environment concerns due to 

emissions from fossil fuel-based sources have created a major dilemma for experts 

searching for a solution. The adoption of Distributed Energy Resources (DERs) combining 

renewable sources such as solar, wind, and distributed storages into the grid along with 

energy efficiency of large consumers like commercial buildings have the potential to 

resolve this. Large deployment of commercial building microgrids integrated with DERs 

can achieve both. But high installation, operation and maintenance (O&M) costs as well as 

unexpected grid operational challenges emerging from them are preventing the large-scale 

real-world adoption and implementation. In this dissertation solutions to three aspects of 

these problems are offered. 

First, cost optimization of commercial building microgrids with DERs is 

implemented from a utility tariff perspective. This effort includes developing a universal 

optimization framework that addresses the diversity and complexity of tariffs implemented 
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by utilities. Changes in tariffs are also analyzed so that users can determine the best possible 

scenario for them. A novel dynamic tariff is proposed that can help the utilities deal with 

the “Duck Curve” problem that causes grid operation challenge due to high solar 

penetration. 

Next, a novel data-driven approach is proposed for predictive maintenance of 

Battery Energy Storage System (BESS), an important DER component in a commercial 

building microgrid. This approach uses readily available electrical and thermal property 

data of the BESS and applies the proposed statistical analysis to identify the bad cells in 

the BESS. Performance comparison of different machine learning algorithms are also 

compared along with the application of non-conventional features for better state of charge 

(SOC) estimation results. 

Finally, a methodology is developed for sustaining a commercial building 

microgrid in an islanded condition through the incorporation of several DERs including 

Vehicle to Grid (V2G) operation of Electric Vehicles. Results from microgrid islanding 

operation were analyzed and validated against several outage scenarios relevant to 

California grid to demonstrate the effectiveness of the developed method. 
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1 Introduction 

1.1 Background and Motivation 

 The growing population and associated economic development throughout the 

world have created a colossal need for energy. The U.S. Energy Information Agency’s 

(EIA) projection shows that by 2050, the energy consumption in the world would increase 

by nearly 50 percent [1]. Further, Greenhouse Gas (GHG) emissions have increased around 

90 percent over the past century [2].  Therefore, we need a sustainable and environment 

friendly solution for this energy problem. Integration of renewable energy and energy 

efficiency is the most feasible way to achieve this sustainable goal. Governments are 

adopting policies that enables such a sustainable roadmap. The International Energy 

Agency (IEA) predicts that between 2023 and 2025, the additional generation capacity of 

combined solar and wind in the world will range from 130 GW to 165 GW, surpassing the 

capacity of generation from coal [3]. According to EIA, renewable energy sources 

accounted for about 12.6% of total US energy consumption and about 19.8% of electricity 

generation in 2020 [4]. Electricity generation from solar in the US has increase from 5 

million kWh to 133 billion kWh within the last 35 years [5]. The U.S. Department of 

Energy’s (DOE) energy efficiency programs on buildings has achieved $730 millions 

estimated lifetime energy savings [6].  

  

 On the other hand, this continuously increasing renewable integration has 

introduced new challenges to the grid operations. One such challenge is the modified shape 
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of the daily electricity demand exemplified in California in the shape of a “Duck Curve”. 

Grids in places with high solar PV penetration such as California or Hawaii face a problem 

with high generation ramp rate at evening hours, especially in summer. At that time the 

solar starts to decrease while building loads stay high due to continuing cooling demands. 

The net demand, which is the difference between electricity demanded by the load minus 

renewable generation, increases rapidly within a few hours resulting in the need for rapid 

ramp up of generation from other power sources. But increasing generation at this fast rate 

is challenging for these sources with generally inherent slower response time of thermal 

system. The net demand curve resembles the shape of a duck and is termed as “Duck 

Curve” [7]. Every year with the increasing solar penetration the CAISO’s net demand ramp 

rate requirement is getting worse. Table 1-1 shows the three-hour ramp rate of the duck 

curve (4 PM to 7 PM) on August 15 for the last four years. 

Table 1-1 CAISO Net Demand Three Hour Ramp Rate  

Year Three Hour Average Ramp (MW) 
2018 6,809 
2019 7,680 
2020 8,547 
2021 9,588 

  

 The buildings sector is the highest electricity user and one of the highest total 

energy users in the U.S. They are responsible for 76 percent of the total electricity use and 

40 percent of the total primary use [8]. Among them, commercial buildings constitute a 

significant portion, accounting for 35 percent of the total electricity consumption in the 

U.S. They also have a big impact on the environment as they are liable for 16 percent of 
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all the CO2 emissions in the U.S. [9]. The U.S. Environmental Protection Agency (EPA) 

estimates that, on average, 30 percent of the energy used in commercial buildings are 

wasted. Therefore, they offer great opportunity for energy efficiency and emission 

reduction. Even a small reduction in energy usage of commercial buildings would have an 

immensely positive impact on the energy security and the environment.  

 One possible way to reduce this energy usage and carbon emissions is through the 

integration of renewable distributed energy resources (DER) into commercial buildings. 

US DOE defines DERs as [10], 

 “Distributed energy resources are small, modular, energy generation 

and storage technologies that provide electric capacity or energy 

where you need it. Typically producing less than 10 megawatts (MW) 

of power, DER systems can usually be sized to meet your particular 

needs and installed on site.” 

 Of the 133 billion kWh solar electricity generation, 31 percent came from 

distributed small-scale Photovoltaic (PV) generation system, most of which are installed 

in buildings [5]. But renewable DERs are mostly weather dependent and intermittent in 

nature. To make this intermittent energy available at the time of need, storage devices are 

used. The most common storage device is the battery energy storage systems (BESS). 

Commercial buildings equipped with such DERs are said to be in a “microgrid” setup. US 

DOE defines microgrids as [11],  
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“a group of interconnected loads and distributed energy resources 

within clearly defined electrical boundaries that acts as a single 

controllable entity with respect to the grid. A microgrid can connect 

and disconnect from the grid to enable it to operate in both grid-

connected or island mode.” 

 Microgrids can help to increase energy efficiency by optimization and coordination 

of DERs and by reducing transmission and distribution losses through localization of 

generation with demand. They also provide system resiliency by ensuring supply of power 

to the critical loads and controlling power quality and reliability at a local level, while 

facilitating grid operations through involving customers with demand side management 

(DSM) and providing ancillary services like voltage regulation, frequency regulation, 

spinning reserve, etc. [11].  

  While the renewable DERs have significantly low impact on the environment, they 

may not offer the lowest cost electricity generation option. These DERs can comprise 30-

40% of the total microgrid setup cost [11]. The installation cost of renewable DERs can 

range from $1,000 to $13,000 per kW. The operation and maintenance (O&M) cost is 

dependent on the DER size with variable O&M cost ranging between $0.002-$0.03/kWh 

and fixed O&M cost around $10/kW-year [10,12].   

 Optimal operation of DERs in microgrids can make them profitable for the 

customers within their lifetime. Proper and low-cost operation and maintenance of the 

DERs is also desired for their profitable outcome besides their safe and reliable operation. 
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Thus, optimal DER operation along with low-cost O&M solutions are essential for 

achieving the sustainable energy goals.  

1.2 Contributions 

 Commercial building microgrids equipped with DERs can perform the demand 

management and energy efficiency on their own along with providing grid ancillary 

services. However, for widespread adoption of microgrids in commercial buildings, cost 

effectiveness and improved maintenance of DER assets are necessary. The key 

contributions of this dissertation are: 

 A tariff-unified framework has been developed for load optimization of 

commercial building microgrids with DERs. This effort includes designing a 

universal optimization cost function that is applicable to any type of commercial 

utility tariff exercised on commercial buildings. Different possible changes in 

utility tariffs have been identified and their impacts on the optimization of 

commercial building loads have also been analyzed.  

 A data-driven approach has been employed for the maintenance and monitoring 

of a BESS, an essential DER component. A novel predictive maintenance 

method based on the statistical analysis of the electrical and thermal properties 

of the BESS cells has been proposed. Performance of different machine 

learning methods are compared to determine the best method to estimate BESS 

state-of-charge (SOC). The use of selected non-conventional features along 

with conventional features has been examined to see how much they can boost 

the performance of SOC estimation. 
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 A methodology is developed for a real-world demonstration of microgrid 

islanding experiment and then performed on a commercial building microgrid 

with DERs. The microgrid testbed has a state-of-the-art setup containing 

bidirectional grid-interactive and grid-forming BESS, PV generation with 

curtailment ability, and a Vehicle to Grid (V2G) inverter. This unique setup 

with the exceptional capabilities of the system components have been leveraged 

for designing experiment swhere real system limitations and constraints are 

taken into account. The experiment results are compared with different outage 

scenarios in the major IOU territories of California for validation of microgrid 

resiliency.  

1.3 Organization 

 This dissertation is organized as follows: Chapter 2 provides the research 

background on the related topics of this dissertation and performs literature review on 

them. Chapter 3 demonstrates the proposed modeling and optimization of the commercial 

buildings with DERs and analyzes the different impacts on the optimization results due to 

changes in utility tariffs. Chapter 4 describes the proposed predictive maintenance method 

to identify the faulty cells in BESS using the statistical analysis of electrical and thermal 

properties and the comparative analysis of machine learning methods for SOC estimation 

for monitoring. Chapter 5 depicts the islanding experiment of a commercial building with 

DERs and validates the results using resiliency indices. Chapter 6 draws the conclusions 

of this dissertation, lists the publications that came out of this research, and discusses 

possible future work that can be done to extend this research.  
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2 Research Background and Literature Review 

 As discussed in the previous chapter, renewable energy and energy efficiency are 

helping to reach the sustainability goals and combat climate change. Microgrids and DERs 

are playing a key role in that aspect of renewable integration and energy efficiency. But 

high installation and O&M costs are creating an obstacle to those. Furthermore, inadequate 

number of real microgrid deployments and insufficient available experimental data are 

making achieving sustainability goals even more challenging. Researchers are working on 

enhancing the savings by optimizing building microgrid loads through controlled DER 

operation, with grid or as an island isolated from grid, using both simulation and practical 

demonstrations. The upcoming sections of this chapter discusses the contemporary 

research works on these aspects with a view to identifying the unaddressed issues and scope 

of improvements.  

2.1 Optimization of Commercial Building Loads 

 The nature and pattern of electrical loads have changed significantly over the years. 

The utilities have developed numerous types of tariffs accordingly that would facilitate 

their operation with the existing generation, transmission, and distribution resources. 

Concepts such as Time of Use (TOU) and different types of energy and demand charges 

have been introduced to mitigate the limitations of these resources. Additionally, highly 

distinctive load patterns and consumption amount have motivated the utilities to introduce 

separate tariffs for residential and commercial sectors.  

 The recent adoption of high renewable penetration into the grid has made the 

change in electrical load even more severe and rapid. To accommodate these fundamental 



 

8 

and long-lasting changes both TOU time periods and rate structure are being changed by 

various utilities. For example, the highest cost On-Peak period used to be 12 noon to 6 PM 

which is now shifted to 4 PM to 9 PM in response to high solar production in California. 

Innovative tariffs such as Critical Peak Pricing (CPP) are introduced to encourage the 

customers reduce their regular consumption on specific hours of specific days experiencing 

higher grid stress. Customers are being offered choices between options with high energy 

charge, low demand charge or high demand charge, low energy charge. Additionally, these 

tariffs go through changes in prices frequently. 

 As mentioned in chapter 1, commercial buildings are one of the largest electricity 

users in the U.S. as they consume about 35% of the total electricity consumption [9]. As 

one of the largest electricity users in the U.S., commercial building loads offer great 

potential for optimization with the help of distributed energy resources (DERs) such as 

solar generation and battery energy storage systems (BESS) that would largely benefit both 

the customers behind the meter and utility operators. But these extremely diverse and 

highly complex tariffs create a major challenge for formulating appropriate optimization 

strategy for such DER integrated buildings. Moreover, changes that the tariffs go through 

can have significant impact over the DER optimization of building loads that eventually 

lead to DER investment and grid operation decisions of customers and utilities, 

respectively. Therefore, in order to design an optimal strategy for reducing building loads 

with DERs, utility tariff is an important aspect that needs to be considered. A universal 

objective function that captures all the different components of these tariffs can be highly 

beneficial to reduce the complexity of optimization that arises with the diversity of the 
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tariffs. A universal objective function that captures all the different components of these 

tariffs can be highly beneficial to reduce the complexity of optimization that arises with 

the diversity of the tariffs. 

 Many research works have been done on the optimization of the building or other 

loads using DERs such as solar generation, BESS, and electric vehicles (EV). Minimizing 

the energy cost of the building-integrated microgrid is the main objective in most of the 

literature. Two-layer optimization is performed on a commercial building microgrid that 

minimizes utility billing cost through optimal BESS scheduling and investment cost 

through optimal BESS sizing [13]. Thermal modeling and interactive load management of 

buildings through bidirectional information exchange with grid is shown in [14]. The 

compromise between user comfort and energy optimization is executed for commercial 

buildings in terms of electricity prices to provide least cost solutions regardless of 

environment conditions [15-18].  Deployment of vehicle-to-grid (V2G) strategies with 

coordinated EV charging on commercial building load optimization are assessed for 

different charging levels and tariffs from different utilities [19-21]. However, all these 

works deal with TOU energy costs only. While most commercial tariffs include demand 

cost which charges for the peak demand that occurs within the whole billing month or a 

specific period of the day within the billing month.  

 Demand charges are also analyzed in a limited number of works. Effects of the 

tariffs on the optimal PV generation sizing and economic feasibility of different BESS 

technologies are also shown for commercial building loads [22-24]. Optimal BESS 

dispatch strategy is explored for commercial buildings with various types of tariffs [25-
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27]. Bi-level optimization is executed to achieve electricity cost reduction by coordinated 

BESS dispatch and temperature setpoint control of a commercial building [25]. Break-even 

analysis of a BESS integrated to a commercial building is presented with comparison to 

tariffs from two different utilities [26]. Results of electricity cost savings optimization are 

analyzed to attain the ideal BESS ratings for a commercial tariff user [27]. Nonlinear 

energy conversion processes of multi-energy systems (MES) have been modeled as piece-

wise linear process and then used to optimize the utility costs of building loads along with 

possible carbon tax costs [28]. The tariff types used in these works are diverse. TOU energy 

rate with a single time independent demand charge is used in [13], TOU energy charge 

with TOU demand charge is applied in [12, 14, 15, 17], TOU energy charge with both TOU 

demand and time independent demand charge is adopted in [16] and flat energy charge 

with a time independent demand charge is exercised in [11]. These works handle the 

optimizations using various unrelated approach, thereby, necessitating an optimization 

fuunction that is able to deal with these varying demand charges in a consistent way.  

 CPP has been introduced by the utilities to provide monetary rewards to the 

consumers for reducing their usage during grid congestion. The impacts of V2G on 

commercial buildings are investigated during CPP events [29]. However, only the effect of 

a high CPP energy rate is presented in the paper during the CPP event hours while the 

benefits derived from lower demand charge at non-CPP event hours are not shown. 

 Efforts have been placed on designing new tariffs based on the modification of the 

current ones to achieve deeper interactions between customers and utilities and better grid 

management. In [30-31], sensitivity analysis of net grid power with maximum demand 
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charge is performed to find a suitable tariff pricing that maximizes customer profit and grid 

capacity release. Incentive pricing to maximize the benefits from participating in energy 

communities are also studied [32-33]. A fair pricing mechanism based on forecasted power 

demand is used to reduce bills for low energy consumers [34].  Adjustment of tariff levels 

is also explored to increase the penetration of DER [35].  A segmented energy tariff is 

designed to flatten the load demand profile [36].  But these proposed electricity tariffs are 

modified over and compared to TOU energy charges alone or TOU energy charges with a 

single time independent peak demand charge. Without comparing them to the other major 

rate categories that are offered by most utilities, the potential benefit of these tariffs will 

not be fully explored. This comparison can be performed easily through a universal cost 

function.   

  

Figure 2-1 CAISO Battery Plots on a Blackout Day (08-14-2020)  
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 In the summer of 2020, California saw an upsurge in the electricity demand due to 

the extreme and long duration heat waves. The Duck Curve problem on these hottest days 

in California becomes more severe. As the installed generation capacity was unprepared 

and unable to satisfy this peak demand and ramp rate requirements, CAISO declared a 

Stage 3 power emergency and directed the utilities to shed their loads in a rotating manner 

[37-38]. Though California being a leading state in the U.S. for the deployment of DERs, 

lack of proper operational strategy is noticeable when these type of situation arises. Figure 

2-1 shows the aggregated battery charge and discharge plot from the CAISO during one of 

the rotating blackout days (08-14-2020) [39].  Table 2-1 shows the information about the 

customers of different IOUs under CPUC jurisdiction that were affected by the blackout 

on that day [40].  

  

Table 2-1 CPUC Jurisdictional Customers Affected by 08-14-2020 Blackout 

Utility 
No. of 

Customers 

CAISO Initiated 

Rotating outage 

(MW) 

IOU Actual 

Response 

(MW) 

Time 

(min) 
Start Finish 

Southern California 

Edison (SCE) 
132,000 400 400 63 6:56 PM 7:59 PM 

Pacific Gas and 

Electric (PG&E) 
300,600 460 588 150 6:38 PM 9:08 PM 

San Diego Gas and 

Electric (SDG&E) 
59,000 71.6 84 15-60   
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 While the lack of proper operational strategy can be seen from the arbitrary charge 

and discharge patterns of figure 2-1 throughout the day, the higher discharging mode at 

about 6 PM (18:00 hrs) is in response to CAISO’s dispatch of demand response. However, 

batteries immediately went into charging mode at 7:50 PM even though PG&E’s blackout 

continued till 9:08 PM as listed in table 2-1. Therefore, to satisfy grid requirements better, 

a coordinated operation of the battery and other DER assets is required. It is possible to 

design a new tariff for the large commercial users with BESS and other DERs, so that the 

cost optimization of the net load can assist the utilities in adjusting their operations on high 

demand days besides creating producing savings for the users, thereby avoiding similar 

blackouts in the future. 

  

Figure 2-2 Commercial Building Electricity Usage Breakdown 

 Figure 2-1 shows the electricity usage breakdown in commercial buildings [41]. As 

we can see heating, cooling and ventilation require a significant part of total electricity 

usage in commercial buildings, about 33 percent. HVAC stands for Heating, ventilation 
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and air conditioning. HVAC is used for controlling the environmental comfort 

(temperature, humidity and air quality) of indoor spaces by using the flow of air. According 

to the Pacific Gas and Electric, 45% of residential and 54% of commercial Investor-Owned 

Utility (IOU) summer peak demand is caused by HVAC air conditioning loads in 

California. As space heating and cooling comprises a large portion commercial electricity 

use, HVAC has great potential for energy saving through optimization. A slight reduction 

in HVAC load will offer a significant savings in electricity use compared to other loads.  

 A fair amount of research on building energy optimization have focused intensively 

on HVAC optimization. Several household loads, which are time shiftable, have been 

modeled along with the activity detection using machine learning. Then the aggregated 

load has been optimized according to the real-time pricing (RTP) for demand response in 

[42]. But their consideration of HVAC loads was not based on any model rather some 

measurements on an actual HVAC unit. Manganelli et al. [43] studied the potential of 

controlling HVAC and other smart appliances to get a flexible load profile in a common 

electrical node of a microgrid connecting one or multiple nearly zero energy buildings 

(NZEB). Model predictive control (MPC) is another widely used approach for optimal 

control of HVACs [44-46]. Most of them have considered a linear relationship of power 

with temperature to model HVAC consumption. But in reality, Variable Air Volume 

(VAV) type HVAC units are most commonly found everywhere especially in commercial 

buildings, which actually has a bilinear relationship with temperature. The bilinear 

relationship makes the optimization problem nonconvex and previously this type of 
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problem was not computationally solvable. That's why modeling for VAV units has not 

been accomplished before to the best of the authors’ knowledge.   

 To get around this complexity, data-driven approaches have been pursued in many 

recent works. One study has shown the effect of increasing the HVAC set points by 1℉-

5℉ over demand response event periods by showing how much energy is saved and how 

much the peak is reduced [47]. In [20], both internal (HVAC, lights, and plug loads) and 

external loads (EV, battery energy storage) are taken into account with building-integrated 

solar, and optimization is executed with a view to minimizing the total energy cost of the 

building. Here, the HVAC load was modeled with a curve fitting of temperature and power 

consumption data. In reference [48], based on occupancy information, temperature 

setpoints are obtained to achieve a Predicted Mean Vote (PMV) of zero to achieve thermal 

comfort and the energy saving is calculated by comparing with a base case. Neural 

networks are used to model HVAC consumption for optimization in references [49-50]. 

Reinforcement learning has recently gained attention for HVAC energy optimization [51-

53]. 

2.2 Battery Energy Storage Systems (BESS): An Overview 

 Electrical Energy Storage (EES) refers to the process of converting electrical 

energy into a stored form that can later be converted back into electrical energy when 

needed. Battery Energy Storage Systems (BESS) are the most common form of EES. They 

store the electrical energy by converting to chemical form and then convert back to 

electrical form at the time of need. In 2021, a total of 1,363 energy storage projects were 

operational globally with 11 projects under construction. 40% of operational projects are 



 

16 

located in the US of which 64 percent of them belong to electrochemical technology or 

BESS type [54]. According to EIA, the total large-scale BESS capacity in the California is 

1,022 MW and small-scale BESS capacity is 402 MW [55]. Especially over the last decade, 

Lithium-ion batteries have experienced a sharp decline in cost, more than 70%, due to 

technological advances in battery chemistry and manufacturing [56]. 

 Higher capacity battery energy storage that interacts with the utility grid, ranging 

from a few hundred kilowatt-hours to hundreds of megawatt-hours, are usually referred to 

as utility-scale or grid-scale battery energy storage. The battery energy storage needs 

supplementary equipment that enables delivering or storing power to or from the grid as 

needed such as bidirectional inverters, control software, etc. This total package is generally 

referred to as Battery Energy Storage System or BESS. Over the years the potentiality of 

diverse functions of Utility-Scale BESS has been studied for grid integration [57-61]. 

These are now being deployed all over the world, with an installed capacity of more than 

10 GW. Besides energy shifting and peak reduction capabilities [62-64], they are being 

utilized for frequency regulation [65-67], black start services [68], and providing flexible 

ramping [69-71] in situations such as California’s duck curve. International Renewable 

Energy Agency (IRENA), says that by 2030, there will be a capacity growth of 44% for 

Utility-Scale BESS [72].  

 As a component of the utility grid that has increasing significance and growth, the 

reliability of BESS is a very crucial matter. Since BESS is composed of a large number of 

battery cells and even one damaged cell can compromise the reliability of the system 

drastically as mentioned above, each individual cell's reliability is of high importance too. 



 

17 

Predictive maintenance of the BESS cells using statistical analysis can offer great potential 

in this case. Even though bad cell identification of a BESS is critical, there are hardly any 

published works that focus on identifying the individual cell that may fail in the future 

based on analysis of real data. Most of the works have been done on the online fault 

detection of the whole pack [73-75]. Though one study shows the fault detection of 

individual cells, it is also an online detection of the fault [76]. The limitation with online 

fault detection is that warning is provided when the system is already operational, which is 

not desired for maintaining the operational integrity. Whereas predictive maintenance 

through statistical analysis presents the likelihood of failure of system components and can 

be used to easily identify the bad cells and replace them, ensuring operational integrity. 

Another research analyzes the fault detection of an individual cell but takes only into 

account electrical property while thermal perspective is completely ignored [77]. While 

analysis of electrical property can be useful for ensuring the proper function and 

performance, the thermal property can aid in ensuring a safe operation. Though they have 

taken a statistical approach in their work, it could have been improved through the addition 

of thermal property analysis. One other work tries to identify the low-capacity cells that 

limit the total capacity of the whole pack [78]. But their method requires a full charging 

and discharging cycle of the BESS, which may need interruption of regular operation for 

the identification. This work focuses on the electrical properties alone without considering 

the thermal properties, as well. 

 The quantity that is most used to indicate how much energy is stored at any 

particular moment is the battery’s state of charge (SOC). But a major problem is that there 
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is no way to measure SOC directly. There are methods for determining SOC such as 

voltage-based measurement, current-based measurement, internal impedance-based 

measurement, etc. but these are all used with assumption that SOC changes linearly with 

the quantity concerned. In practice SOC does not change linearly with these quantities. 

Factors such as usable capacity, charge/discharge rate, temperature, cell age, self-discharge 

etc. also affect the SOC of battery [79]. Because of these factors there is no straightforward 

way that can calculate SOC directly.   

 Because of the nonlinear property of SOC of the batteries, machine learning 

methods have been used previously for calculating SOC. A significant number of works 

have focused on artificial neural network (ANN) for SOC calculation [80-82]. Many works 

have shown the effect of support vector machines (SVM) for estimating SOC [83-85]. 

Extreme learning machines (ELM), which uses only the feedforward neural network have 

also been applied in some of the works [86-88]. Another work has used K-nearest neighbor 

(KNN) for this purpose with particle swarm optimization [89]. One of the works here has 

shown that by selecting certain features or input it is possible to achieve higher accuracy 

[82]. They have used: current, terminal voltage, ampere hour, time average voltage, time 

derivative of voltage and second time derivative of voltage. This study investigates the 

effect of both conventional and nonconventional features. Some of the features mentioned 

here (present in both conventional and nonconventional) are highly correlated. Sometimes 

this leads to a phenomenon called multicollinearity. Ridge regression and lasso regression 

methods have shown to give good performance in case of multicollinearity [90-91].  But 

these methods have not been explored for SOC estimation. 
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2.3 Microgrid Testbeds and Experiments: An Overview 

 Microgrids are becoming popular and many microgrids have been deployed in the 

recent years. Of the current total 575 microgrid installation sites in the US, 80% of them 

have been deployed within the last decade [92]. Table in the next page shows the summary 

of these microgrid installations based on the technology types. 
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Table 2-2 Microgrid Installations in the US by Technology Type [69] 

 CHP Solar Wind Hydro 
Non- CHP 
Fuel Cell 

Non-CHP 
Combustion 

Storage Unknown 

Primary Application Sites MW Sites MW Sites MW Sites MW Sites MW Sites MW Sites MW Sites MW 

Agriculture 2 4.0 9 2.2 2 1.1 - - 1 0.03 6 2.4 9 1.2 - - 

City/Community 13 386.2 36 44.3 11 15.9 4 69.6 3 1.4 34 163.8 38 27.6 2 0.2 

College/University 61 1,156.3 19 39.2 5 3.4 1 1.2 1 0.2 27 153.1 13 17.8 3 54.6 

Commercial 17 92.8 35 13.3 8 0.4 1 0.1 7 12.5 160 222.7 36 17.5 1 0.3 

Hospital/Healthcare 59 446.0 10 1.5 - - - - 1 0.4 7 21.9 8 1.1 1 0.3 

Military 15 125.5 24 124.8 6 3.2 - - - - 51 650.6 21 28.1 7 24.0 

Multi-Family 22 61.8 6 1.0 1 0.1 - - 1 0.4 4 2.0 6 0.8 - - 

Public Institution 6 68.6 12 5.9 2 1.0 1 0.3 - - 4 10.1 11 3.2 - - 

Research Facility 3 17.4 10 3.2 2 1.5 - - 1 0.02 7 9.9 12 12.0 1 0.2 

Schools (K-12) 1 0.1 26 5.0 1 0.002 - - - - - - 25 3.8 - - 

Water Treatment/Utility 3 9.0 3 4.5 1 1.0 - - - - 10 56.1 2 5.7 - - 

Other - - 5 3.6 - - - - - - 3 20.0 4 0.1 - - 

Total* 202 2,368 195 249 39 27 7 71 15 15 313 1,313 185 119 15 80 
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 These microgrids are deployed in various applications and diverse types of 

experiments are performed on these. Many of these state-of-the-art microgrids are installed 

and operating in California. Sacramento Municipal Utility District (SMUD) microgrid has 

been used to see the effect of high penetration renewable energy on driving point 

impedance and voltage regulator performance [93]. Santa Rita Jail microgrid project has 

demonstrated the seamless islanding capability within 8 milliseconds with application of 

reverse power relay and over current protection devices [94]. It has also made many energy 

efficiency improvements to reduce peak load. The University of California-Irvines’ 

campus microgrid with Southern California Edison’s (SCE) partnership has many DER 

assets of diverse nature. They are aiming to reduce the campus energy consumption by 20 

percent as a part of DOE’s Better Buildings Initiative. They have demonstrated the DR 

capability of 700 kW through their microgrid system [94]. The Borrego Springs microgrid 

project, supported by DOE, California Energy Commission (CEC) and San Diego Gas and 

Electric (SDG&E), has performed three microgrid islanding tests. These tests vary in 

number of circuits, from one to three and duration of the experiment, from one to four 

hours [95]. Alcatraz island is one of the largest microgrid in the US. This microgrid, 

separated from the mainland grid connections has 305 kW of solar, 1,920 kWh of BESS, 

2 diesel generators and 8 inverters of 100 kW each, all connected with a central controller. 

This microgrid has achieved a fuel consumption reduction of 45 percent which has been 

replaced with power generated from solar PV system [96].  

 Some other microgrids worthy of mention outside of California are Fort Collins, 

Fort Carson microgrids of Colorado and Illinois Institute of Technology’s microgrid. The 
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first two primarily take part in peak reduction and islanding tasks, the last one has multiple 

capabilities ranging from building DR participation, automatic system reconfiguration with 

Volt-Var management, service restoration, emergency response and integration of different 

types of DERs [94].  

 Theoretical and simulation-based research works on microgrids can be found in 

bulk numbers. But real-world demonstrations present the practical challenges that are not 

apparent on theoretical or simulation-based works. Though there are many real-world 

demonstrations of these microgrids being performed now, it is still an emerging 

technology. More experiments must be designed using these real-world microgrids to 

understand and overcome the practical challenges associated with them.   

 The rotating blackouts of August 2020, first since 2001, showed that California’s 

grid infrastructure is not strong enough to deal with these peak demands. Another problem 

faced by California is the old transmission and distribution lines causing fires during 

strong, dry windy conditions by conductors touching each other. Utilities are forced to shut 

power to these lines by using Public Safety Power Shutdowns (PSPS) approved by the 

regulators. 

 As grid infrastructure may need significant amounts of both time  and resources to 

upgrade, microgrids can meanwhile help to ameliorate this condition. A microgrid 

equipped with proper renewable generation and energy storage with ability to island from 

the utility grid can sustain through these types of rotating blackouts and PSPS. This 

resiliency of microgrids can be further augmented by use of Vehicle to Grid (V2G) power 
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transfers. Recently V2G has garnered increased attention due to the higher sales and use of 

environmental friendly electric vehicles (EV). 

 Recent literatures show a fair amount of works done with V2G and microgrids. 

While [97] discusses the potentiality of V2G to regulate the frequency of microgrids, they 

do not present any cases where V2G was actually used to regulate the frequency of a 

microgrid. A work showed the impacts of EV penetration of V2G on voltage and frequency 

of a microgrid [98]. But it was a simulation work where the assumptions of solar and wind 

power generation does not reflect real world characteristics. Another study presented the 

effects of different charging/discharging strategies of EV’s on microgrid loads [99]. 

Though the data is from a real microgrid, the work simulated the results by scaling the load 

to 1/15 of it’s original value to show the effects. An experimental work investigated the 

power quality issues of integrating V2G to a microgrid, but the demonstration was lab-

scale rather than an actual microgrid [100]. An actual design and implementation of a 

microgrid with V2G was shown in details in [101], but the vehicles used here were not 

EV’s. They used engines of military vehicles to run transmission-integrated generators 

(TIG), which were used as the source of V2G. Another work discusses their system 

architecture and control strategy of their real microgrid system with V2G but does not show 

any results [102]. Two real microgrid systems of significant size located on two islands, 

with provision for V2G is described in two separate publications. While one discussed the 

optimal sizing of microgrid [103], other discussed the possibilities of a Virtual Power Plant 

(VPP) [104]. Neither of them show any results related to V2G operation in their microgrids. 

Real EV charging data for a microgrid testbed has been analyzed and the impacts are 
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presented in [105]. But the grid to vehicle or G2V impacts were the main focus of the study. 

Much more attention is needed to be paid to the impacts of V2G on a microgrid due to the 

potentiality of V2G as an essential component of microgrids. 
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3 Modeling and Optimization of Distributed 

Energy Resources (DER) Integrated 

Commercial Building Microgrids 

3.1 Background and Problem Statement 

 From the discussions in section 2.1 of the previous chapter, we can see that there 

are ample research works on the electricity cost optimization of building loads using DERs. 

However, they have overlooked to address the fact that there are numerous tariffs of diverse 

types that require distinct optimization objective function based on their type. These works 

only focus on one or at most two types of tariffs for their optimization. Much attention is 

needed on this topic since an optimization strategy for one type of tariff will not be suitable 

for the other types and may end up incurring a higher non-optimal cost. One may ask 

several questions in terms of the tariffs and optimization: 1) How can we address the 

diversity of tariffs when formulating an optimization strategy for buildings equipped with 

DERs such as solar and BESS? 2) How various tariff components impact the costs and 

savings from the optimization of different buildings? 3) How different changes in tariffs 

impact the results of the optimization? This chapter of the dissertation tries to answer all 

these questions and bridge the gap that persist in the existing literature. Though there are a 

number of works that can be found on individual tariff-based optimizations, to the best of 

the authors' knowledge no work has been done yet on a comprehensive optimization 

framework that addresses the issue of this complexity and diversity of utility tariffs and 

aims to solve it. The author would like to emphasize that the goal of the work is not to 
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propose a new optimization algorithm that delivers higher precision or faster convergence, 

rather to address the issue of diversity of tariff types that have not been considered in prior 

works. For any demand management scheme to work effectively, kW demand and kWh 

energy costs have to reflect time sensitive value. Using average values for both demand 

and energy costs fails to represent the fact that each of these costs may be going through at 

most four different values in a day. Sections 3.2 and 3.3 deal with effects of these various 

aspects of commercial building load optimization with DERs. The main tasks done in these 

two sections are listed below:  

 1) Classifying commercial tariffs to universal types by reviewing tariffs from 

multiple utilities and deriving convex optimization objective function for each type,  

 2) Proposing a comprehensive framework for building load optimization using 

DERs through derivation of a universal cost function, ubiquitous to available commercial 

tariffs, and 

 3) Performing impacts analysis of different changes in tariffs to examine their level 

of influence on optimization results, study the observations and proposing a modified tariff 

that improves upon existing ones over desired benefits.  

 This work can help on making investment decisions or resource planning for the 

commercial building owners and help utilities to develop improved tariffs for better grid 

operations. Researchers active in this field can benefit by utilizing the optimization 

formulation presented here that considers the diversity of commercial tariff types.  

 The data-driven approach for HVAC load optimization in other research works is 

has been discussed in chapter 2. The problems associated with data-driven approaches for 
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HVAC load optimization in commercial buildings have also been discussed. The main 

problem with the data driven HVAC optimization is that they are not universal and are data 

hungry. In addition to that, data-driven models for HVAC power consumption are mostly 

site-specific. We would have to collect, store, and process a huge amount of data to 

establish an acceptable model through a data-driven approach. 

 The newer versions of optimization solvers now allow nonconvex optimization 

with bilinear constraints. Using this ability to our advantage, we can now minimize the 

power consumption of widely used VAV type HVAC units. This method is developed and 

implemented in section 3.3 of this chapter. The main tasks performed in section 3.3 are 

listed below:  

 (i) Developing a detailed thermal model of a commercial building with VAV type 

HVAC units and  

 (ii) Formulation and solution of a nonconvex optimization problem that minimizes 

the overall power consumption by the building HVAC system.   

3.2 Modeling and Optimization of External Electrical Load of 

a DER Integrated Commercial Building Microgrid 

3.2.1 Methodology 

 In this section we summarize the methodology used in this study. The methods are 

described in detail in subsequent sections. Commercial tariffs currently exercised by 13 

large investor-owned utilities (IOU) were reviewed to understand various types of rate 

schedules in the USA. Ten of them rank among the largest ones in the USA and three of 

them are among the largest ones in California by revenue. One is the local municipal utility 
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of the City of Riverside. After thorough examination they were categorized into six 

universal types. Despite their differences in terminologies, values, periods, etc., their core 

concepts remain the same, and we can cover all commercial utility tariffs with these six 

types. These are:  

A. Multiple Time of Use (TOU) energy charges with a single time independent 

peak demand charge,  

B. Multiple TOU energy charges with Multiple TOU demand charges,  

C. Multiple TOU energy charges with both multiple TOU demand charges and 

a time independent peak demand charge,  

D. Critical Peak Pricing (CPP) rate,  

E. A simple flat energy with time independent demand charge, and 

F. TOU energy charges only. 

 Then we derive objective functions for each of these rates and consequently the 

universal objective function. We integrate the universal objective function along with our 

system model to formulate the optimization problem. The building load and solar 

generation data are then used to solve the optimization problem to obtain the optimal results 

by following the steps of ours proposed algorithm. Figure 3-1 presents an illustrated 

depiction of this methodology. 
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Figure 3-1 Illustration showing methodology of this study. 

 Data for five commercial buildings are collected for applying this optimization 

method. All these buildings fall under different types of commercial tariffs. These 

buildings differ in electrical usage and functionality. Among these three buildings, all have 

actual onsite solar generation and two of them have actual BESS integrated system. All the 

building loads that are used are actual building load data. For the buildings which did not 

have solar or BESS, National Renewable Energy Laboratory’s (NREL) REopt was used to 

find the ideal solar or BESS size for the corresponding building [106]. The actual building 

load data and if available, actual solar data were given as inputs to obtain ideal size of solar 

or BESS. As the recommended sizes of solar or BESS from the simulated output value may 

not be commercially available in the real world, reasonably close available sizes were 

selected. Building 5 is a relatively small commercial building and for this one ideal BESS 

size was unavailable. Thus, Tesla’s Powerwall’s BESS size was used for this one. Then 

NREL’s System Advisor Model (SAM) was used to generate the solar profile for the site 
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where a solar generation was absent [107]. These buildings are located within different 

utility territories in California and are eligible to participate in California Public Utility 

Commission’s (CPUC) Net Energy Metering (NEM) program. NEM program allows 

customers to export excess renewable energy to the grid and reduce utility cost by receiving 

credits for the exported energy at the retail rate of their respective tariff. Table 3.1 

summarizes the characteristics of the buildings that were used for the optimization which 

are: average daily energy usage, load factor (average load divided by maximum load over 

a billing month period), tariff type, solar and BESS size. 

Table 3-1 Characteristics of the Buildings Used in Optimization 

Characteristics Building 1 Building 2 Building 
3 

Building 
4 

Building 
5 

Average Daily Usage 
(kWh) 

11,223 1,660 13,451 805 108 

Load Factor 0.283 0.341 0.811 0.411 0.326 
If Real Solar Yes Yes No Yes No 
If Real BESS No Yes No Yes No 
Solar Size (Real) 800 kW 220 kW - 180 kW - 
BESS Size (Real) - 100 kW/ 

500 kWh 
- 100 kW/ 

500 kWh 
- 

Solar Size (Simulated) - - 650 kW - 7 kW 
BESS Size (Simulated) 150 kW/ 

500 kWh 
- 120 kW/ 

320 kWh 
- 10 

kW/13.5 
kWh 

Tariff Type Type A Type B Type C  Type E Type F 
  

3.2.2 System Configuration and Modeling 

3.2.2.1 Overview of the System 

 The system we are considering here is a commercial building equipped with a 

renewable generation such as solar and BESS. Figure 3-2 shows the block diagram of the 

system configuration. A portion of the building load is satisfied by the power drawn from 

the utility grid. The remaining portion is satisfied by a fraction of the renewable generation 
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(solar in this case) and power discharged from the BESS. The power generated from the 

solar inverter is branched out to two portions. One branch delivers power directly to the 

building load as mentioned. The other branch charges the BESS. The BESS then discharges 

power to the building load as required. This configuration allows higher system efficiency 

by reducing power conversion-associated losses since part of the solar serves the building 

load directly. To ensure a higher percentage of renewable generation within the power mix, 

the BESS does not store any energy from the grid to avoid energy produced from fossil 

fuel. 

  

Figure 3-2 System Configuration Block Diagram 

3.2.2.2 Battery Energy Storage System (BESS) Modeling 

 The BESS is modeled by taking many real-world operational constraints into 

considerations. The stored energy at each time step can be calculated with the following 

equation: 

 𝐸௧ାଵ
஻ = (1 − 𝛾)𝐸௧

஻ +  𝑃௧
஻ . ∆𝑡 (3.1) 
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 The relationship between state of charge (SOC) and stored energy is mostly linear 

except for very low and very high SOC levels. Therefore, when we consider a small 

timestep duration, we can assume a linear relationship. The typical value for the self-

discharge rate, γ for Li-ion battery is 1-2% over a month [108]. So, if ∆t becomes small 

like 15 minute or 1-minute then γ≈0 and we can rewrite the equation as: 

 𝐸௧ାଵ
஻ = 𝐸௧

஻ +  𝑃௧
஻. ∆𝑡 (3.2) 

 To expand the lifetime and maintain heath of the BESS battery cells, certain limits 

are imposed on the range of SOC or depth of charge and discharge. The battery must 

maintain its stored charge within a certain limit during every time step. Then, 

 𝐸஻௠௜௡ ≤ 𝐸௧
஻ ≤  𝐸஻௠௔௫ (3.3) 

 The BESS power can be written in terms of charging and discharging power 

separately as: 

 𝑃௧
஻ =  𝑃௧

஻ା −  𝑃௧
஻ି (3.4) 

 These two power quantities should also be within some limitations depending on 

the size, application, and manufacturer specification of the BESS inverter. It can be 

modeled with the following inequality conditions: 

 0 ≤  𝑃௧
஻ା  ≤  𝑃஻ା௠௔௫ (3.5) 

 0 ≤  𝑃௧
஻ି  ≤  𝑃஻ି௠௔௫ (3.6) 

 But charging and discharging cannot happen simultaneously. This condition can be 

modeled by the following equation: 

 𝑃௧
஻ା𝑃௧

஻ି = 0 (3.7) 
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3.2.2.3 System Power Balance  

 As mentioned in subsection 3.1, the building load is served by drawing power from 

the grid, a part of solar power and the power discharged from the BESS. The rest of the 

solar power is used to charge the battery. So, for each time step t, the system should obey 

the following power balance equations: 

𝑃௧
஻ା =  𝜂ା𝑃௧

ௌ஻ (3.8) 

𝑃௧
ௌ =  𝑃௧

ௌ஻ +  𝑃௧
ௌ௅ (3.9) 

𝑃௧
௅ =  𝑃௧

ௌ௅ +  𝑃௧
஻௅ + 𝑃௧

ீ  (3.10) 

𝑃௧
஻௅ =  𝜂ି𝑃௧

஻ି (3.11) 

 𝑃௧
ௌ௅ ≥  0 (3.12) 

 

  

3.2.3 Objective Function Formulation 

 In this section, the cost functions or the objective functions of the optimization 

problems are formulated for different utility tariffs. The following subsections show 

detailed formulations for each of the six types of tariffs mentioned in section 3.2.1. Each 

subsection describes in detail how each type of tariff works and then a cost function is 

derived mathematically based on that along with the universal cost function by combining 

each of their unique tariff component. Some jargons' used in the tariffs may vary by utility 

company and location, but the main idea remains the same. This paper uses the traditional 

technical terms such as On-Peak, Mid-Peak, and Off-Peak times, etc. While formulating 

the cost functions, careful attention is paid to derive them in a way so that they become 



 

34 

convex and can be solved conveniently and efficiently with the available optimization 

tools. Only the costs related to usage are taken into account, fixed costs such as line or 

meter charge, taxes, etc., are not considered. 

3.2.3.1 Type A: Multiple Time of Use (TOU) Energy Charges with a Single Time 

Independent Demand Charge 

 In this utility rate the energy charge is decided based on the period of the day and 

how much stressed the grid is during that period. Typically, they are separated into three 

nonoverlapping time periods: On-Peak, Mid-Peak, and Off-Peak where the value of the 

energy charge is from highest to lowest, respectively. In some cases, even lower energy 

charge time period can be found termed as Super Off-Peak period. Customer is billed based 

on total energy consumed at each period over the billing cycle. For demand, utilities 

measure the moving average of the load in kW for a certain duration, usually 15 minutes.  

The maximum demand that occurs within the billing month, irrespective of the time period, 

is multiplied by the demand charge in $/kW to obtain the demand cost of that month. Then 

both energy and demand cost are added to get the total bill for monthly usage. 

 The set of all timestamps  𝑻𝒕𝒐𝒕 can be written as, 

 𝑻𝒕𝒐𝒕 = 𝑻𝑶𝒏 ∪ 𝑻𝑴𝒊𝒅 ∪ 𝑻𝑶𝒇𝒇 = {0,1, … , 𝑇ᇱ − 1}  (3.13) 

 Where, 

 𝑻𝑶𝒏 ∩ 𝑻𝑴𝒊𝒅 = 𝑻𝑴𝒊𝒅 ∩ 𝑻𝑶𝒇𝒇 = 𝑻𝑶𝒇𝒇 ∩ 𝑻𝑶𝒏 = ∅ (3.14) 

 Energy charge 𝛼௧ can be written as, 

 
𝛼௧ = ቐ

𝛼ை௡, 𝑡 ∈ 𝑻𝑶𝒏

𝛼ெ௜ௗ ,    𝑡 ∈ 𝑻𝑴𝒊𝒅

𝛼ை௙௙ ,    𝑡 ∈ 𝑻𝑶𝒇𝒇

 
(3.15) 
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 Then we can write the cost function or the objective function as: 

 
𝑓(𝑃௧

ீ) = ∆𝑡 ෍ 𝛼௧𝑃௧
ீ

்ᇱିଵ

௧ୀ଴

+ 𝛽𝑚𝑎𝑥 (ℙ𝑮)  
(3.16) 

 Where set of grid power values, 

 ℙ𝑮 = {𝑃௧
ீ|𝑡 ∈ 𝑻𝒕𝒐𝒕}  (3.17) 

 𝛼௧ and 𝑃௧
ீ   can be written in vectorized form as, 

 

⎣
⎢
⎢
⎢
⎡

𝛼଴

𝛼ଵ

.

.
𝛼்ିଵ⎦

⎥
⎥
⎥
⎤

 and 𝑷𝑮 =

⎣
⎢
⎢
⎢
⎡

𝑃଴
ீ

𝑃ଵ
ீ

.

.
𝑃்ିଵ

ீ ⎦
⎥
⎥
⎥
⎤

  

(3.18) 

 Then we can write the cost function as: 

 𝑓(𝑷𝑮) = ∆𝑡 𝜶𝑻𝑷𝑮 + 𝛽max (𝑷𝑮) (3.19) 

3.2.3.2 Type B: Multiple TOU Energy Charges and Multiple TOU Demand Charges 

 Just like the energy charge mentioned in subsection 3.2.3.1, the demand charge is 

also time-dependent in this case. Instead of the maximum demand within the whole billing 

period, the customer is billed for the maximum demand of each of the three peak periods 

within the billing month. The main complexity here is that instead of the largest power 

value from the vector 𝑷𝑮 we have to pick the maximum value from each of the TOU time 

periods and then minimize each of them in a way so that the total cost becomes minimum. 

To resolve it, this paper proposes to introduce three diagonal matrices 𝜷𝑶𝒏, 𝜷𝑴𝒊𝒅 and 𝜷𝑶𝒇𝒇  

to represent On-peak, Mid-Peak and Off-Peak period demand charges, respectively.  
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𝜷𝑶𝒏 = ቎

𝛽଴
ை௡ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝛽்ᇲିଵ

ை௡
቏,  𝜷𝑴𝒊𝒅 = ቎

𝛽଴
ெ௜ௗ ⋯ 0
⋮ ⋱ ⋮

0 ⋯ 𝛽்ᇲିଵ
ெ௜ௗ

቏ 𝑎𝑛𝑑  

𝜷𝑶𝒇𝒇 = ቎

𝛽଴
ை௙௙

⋯ 0

⋮ ⋱ ⋮

0 ⋯ 𝛽
்ᇲିଵ

ை௙௙
቏ 

 

 

 

(3.20) 

 Where, the diagonal entries of these matrices can be written as: 

 𝛽௧
ை௡ = ൜

𝛽ை௡ , 𝑡 ∈ 𝑻𝑶𝒏 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝛽௧
ெ௜ௗ = ൜

𝛽ெ௜ௗ , 𝑡 ∈ 𝑻𝑴𝒊𝒅 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝛽௧
ை௙௙

= ൜
𝛽ை௙௙, 𝑡 ∈ 𝑻𝑶𝒇𝒇 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(3.21) 

 The off-diagonal elements in these matrices are all zero. Now, the cost function can 

be written as: 

 𝑓(𝑷𝑮) = ∆𝑡 𝜶𝑻𝑷𝑮 + max(𝜷𝑶𝒏𝑷𝑮) + max൫𝜷𝑴𝒊𝒅𝑷𝑮൯

+ max (𝜷𝑶𝒇𝒇𝑷𝑮) 

(3.22) 

 Sometimes depending on the season, the tariff may have demand charge component 

of only one or two time periods. In those cases, we can similarly formulate the cost 

function, by removing the unnecessary term in equation 3.22 if required. 

3.2.3.3 Type C: Multiple TOU Energy Charges with Multiple TOU Demand Charges 

and an Additional Time Independent Demand Charge 

 This rate is a combination of the rates described in the previous two subsections. It 

has both TOU demand charges for the maximum demand of each of the peak periods in 

the billing month and a time independent demand charge for the maximum peak happening 

anytime within the billing month. We can write the cost function for this rate as: 
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 𝑓(𝑷𝑮) = ∆𝑡 𝜶𝑻𝑷𝑮 + max(𝜷𝑶𝒏𝑷𝑮) + max൫𝜷𝑴𝒊𝒅𝑷𝑮൯

+ max൫𝜷𝑶𝒇𝒇𝑷𝑮൯ + 𝛽max (𝑷𝑮) 

 

(3.23) 

 where, the notations have the same meaning as shown in the previous two 

subsections. 

 Similar to type B, some TOU demand charge components may not be present 

depending on the season. By simply removing that demand charge part from equation 3.23 

it can be applied. 

3.2.3.4 Type D: Critical Peak Pricing Rate 

 Critical Peak Pricing or CPP rates offer lower demand rates in non-CPP event days 

in exchange for very high energy rates in CPP event days. CPP events are usually called 

when electricity demand peaks due to extreme or unusual grid operating conditions. They 

are usually the hottest summer days, occurring 12-15 days within the summer season 

determined by the utility company. The CPP event hours comprise the evening hours and 

early part of the night namely 4 PM to 9 PM. The customers are generally notified a day 

before the CPP event day. 

 A non-CPP day will have the energy charge vector 𝜶𝒏𝒐𝒏ି𝑪𝑷𝑷 = 𝜶 just like the other 

rates. For a CPP day, we modify 𝜶 as 𝜶𝑪𝑷𝑷 where the energy charge 𝛼௧ for timestep t needs 

to be modified when t is within the CPP event hours. The CPP event hours may overlap 

with part of the other TOU periods. Thus, the energy charge 𝛼௧ for a CPP event day can be 

written as: 
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𝛼௧ =

⎩
⎪
⎨

⎪
⎧𝛼ை௡, 𝑡 ∈ 𝑻𝑶𝒏\𝑻𝑪𝑷𝑷

𝛼ெ௜ௗ,    𝑡 ∈ 𝑻𝑴𝒊𝒅\𝑻𝑪𝑷𝑷

𝛼ை௙௙ ,    𝑡 ∈ 𝑻𝑶𝒇𝒇\𝑻𝑪𝑷𝑷

𝛼஼௉௉ ,    𝑡 ∈ 𝑻𝑪𝑷𝑷

 

 

(3.24) 

 The demand charge matrices for the non-CPP days 𝜷𝒏𝒐𝒏ି𝑪𝑷𝑷
𝑶𝒏 , 𝜷𝒏𝒐𝒏ି𝑪𝑷𝑷

𝑴𝒊𝒅  and 

𝜷𝒏𝒐𝒏ି𝑪𝑷𝑷
𝑶𝒇𝒇  need to be modified. We can do that by replacing the 𝑡-th diagonal element in 

the demand charge matrices from the previous subsections with the actual charge minus 

the discount charge offered by the utility company when t falls under the CPP event hours. 

The On-Peak demand charge 𝛽௧
ை௡ for a non-CPP event day can be written as: 

 
𝛽௧

ை௡ = ቐ
𝛽ை௡, 𝑡 ∈ 𝑻𝑶𝒏\𝑻𝑪𝑷𝑷

 𝛽ை௡ − 𝛽஼௉௉ , 𝑡 ∈ 𝑻𝑶𝒏 ∩ 𝑻𝑪𝑷𝑷

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
 

(3.25) 

 The Mid-Peak and Off-Peak demand charges 𝛽௧
ெ௜ௗ and 𝛽௧

ை௙௙ for timestep t can be 

derived in a similar manner. 

 The same matrices for CPP days 𝜷𝑪𝑷𝑷
𝑶𝒏 , 𝜷𝑪𝑷𝑷

𝑴𝒊𝒅  and 𝜷𝑪𝑷𝑷
𝑶𝒇𝒇  are the same as the other 

TOU demand matrices shown in the previous subsections. So, we get two cost functions: 

 𝑓(𝑷𝑮) = ∆𝑡 𝜶𝒏𝒐𝒏ି𝑪𝑷𝑷
𝑻𝑷𝑮 + max൫𝜷𝒏𝒐𝒏ି𝑪𝑷𝑷

𝑶𝒏 𝑷𝑮൯

+ max൫𝜷𝒏𝒐𝒏ି𝑪𝑷𝑷
𝑴𝒊𝒅 𝑷𝑮൯ + maxቀ𝜷𝒏𝒐𝒏ି𝑪𝑷𝑷

𝑶𝒇𝒇
𝑷𝑮ቁ

+ 𝛽max (𝑷𝑮) 

 

(3.26) 

 and 𝑓(𝑷𝑮) = ∆𝑡 𝜶𝑪𝑷𝑷
𝑻𝑷𝑮 + max൫𝜷𝑪𝑷𝑷

𝑶𝒏 𝑷𝑮൯ + max൫𝜷𝑪𝑷𝑷
𝑴𝒊𝒅 𝑷𝑮൯

+ maxቀ𝜷𝑪𝑷𝑷
𝑶𝒇𝒇

𝑷𝑮ቁ + 𝛽max (𝑷𝑮) 

 

(3.27) 

 Where equations 3.26 and 3.27 represent the cost functions for non-CPP days and 

CPP days, respectively. We should note that, the discounted rates at non-CPP days are also 
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provided during the same hours as the CPP event hours at CPP days. Similar to equation 

3.22, we can also modify 3.26 and 3.27 if some other TOU demand charge is absent in the 

tariff. 

3.2.3.5 Type E: A Simple Flat Energy Charge with a Time Independent Demand 

Charge 

 For a flat energy rate with a monthly peak demand charge the variable 𝛼௧ becomes 

a constant independent of time and we can replace the energy charge vector 𝜶 with a single 

scalar value 𝛼. The cost function then becomes: 

𝑓(𝑷𝑮) = ∆𝑡. 𝛼 . 𝟏𝑻𝑷𝑮 + 𝛽max (𝑷𝑮) (3.28) 

 Where 1 denotes a vector of size T' with all elements as 1. 

3.2.3.6 Type F: TOU energy charges only 

 This tariff type has no demand charges. The energy charge part is similar to type 

A. We can just remove the demand charge component from equation 3.19 and the cost 

function then becomes: 

 𝑓(𝑷𝑮) = ∆𝑡 𝜶𝑻𝑷𝑮 (3.29) 

3.2.3.7 Universal cost function 

 The universal cost function can now be represented with a similar format like that 

of equations 23, 26 and 27 which captures all the energy and demand charge components. 

We just need to apply the appropriate equation based on whether the tariff type is CPP or 

not, whether the day of optimization is a CPP event day or not and which of the energy or 

demand charge components are present with the modifications described above. Based on 

the tariff type and component we can just insert the applicable energy and demand charge 
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values if present or make them zero if absent. Table 3.2 summarizes the tariff components 

for each of the tariff type which we can use to apply to our universal cost function. 

Table 3-2 Summary of tariff components of different tariff types 

Tariff Component Type A Type B Type C Type D Type E Type F 

Energy Charge 

On-Peak       

Mid-Peak       

Off-Peak       

CPP       

Flat       

Demand Charge 

Time 
Independent 

     
 

On-Peak  / / /   

Mid-Peak  / / /   

Off-Peak  / / /   

CPP 
Discount 

 
   

  

* : Present, : Absent, /: May or may not be present 
  

3.2.4 Optimization problem formulation 

 Using the universal cost function formulated in section 3.2.3 as the objective 

function and the BESS modelling and power balance equations from subsection 3.2.2.2 

and 3.2.2.3 as constraints, we can now derive the optimization problem for each of the 

tariffs described before. 

 But equation 3.7 in the model is a nonlinear equality condition which makes the 

problem nonconvex and difficult to solve. We can resolve it by introducing a binary 

variable 𝛿௧∈{0,1} to the power limit constraints of equation 3.5 and 3.6 and perform a 

convex relaxation on the binary variable. So, we reformulate them as: 
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 0 ≤  𝑃௧
஻ା ≤  𝛿௧  𝑃஻ା௠௔௫ (3.30) 

 0 ≤  𝑃௧
஻ି ≤  (1 − 𝛿௧) 𝑃஻ି௠௔௫ (3.31) 

 0 ≤  𝛿௧ ≤  1 (3.32) 

 We can now write the optimization problem as shown below: 

  

 By applying the appropriate parameter values, we can use this optimization model 

to obtain the optimal operation, for any commercial tariff, given a building load and a solar 

generation profile.  

  

3.2.5 Algorithm 

 For our proposed method we do the optimization on a day-by-day basis instead of 

doing a monthly optimization. We do this for a couple of reasons. Firstly, the day ahead 

prediction of load and solar can be produced more accurately and easily for a shorter time 

resolution such as 15 minutes. For this sort of time resolution, month ahead prediction will 

contain more inaccuracy. By doing a day ahead prediction we can also easily determine the 

operation of the BESS for the next day. Secondly, doing a monthly optimization with this 
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15-minute data resolution would be computationally exhaustive. Without a very high 

processing power and large memory device, the optimization will require much more 

computational time to solve. 

 Since we are doing a daily optimization, the total number of timesteps considered 

𝑇′ will be 96 in the case of 15-minute resolution. The vectors and matrices introduced in 

section 3.2.3 will have corresponding sizes. We can write the daily building load profile 

and solar generation profile in vectorized form as: 

 

𝑷𝑳 =

⎣
⎢
⎢
⎢
⎡

𝑃଴
௅

𝑃ଵ
௅

.

.
𝑃்ᇱିଵ

௅ ⎦
⎥
⎥
⎥
⎤

 and 𝑷𝑺 =

⎣
⎢
⎢
⎢
⎡

𝑃଴
ௌ

𝑃ଵ
ௌ

.

.
𝑃்ᇱିଵ

ௌ ⎦
⎥
⎥
⎥
⎤

 

 

(3.33) 

 In this section, we will refer to the daily energy charge and demand charges as 𝜶 

and 𝜷 in general. To calculate the actual monthly usage bill, we will need to get new vectors 

and matrices that will accommodate the monthly calculation. If the number of total days in 

the monthly billing cycle is D, then we can create the new matrices of size (𝐷 × 𝑇′, 𝐷 × 𝑇′) 

and vectors of length 𝐷 × 𝑇′ for the monthly bill calculation. 

 When we are doing the optimization, we must consider the day of the week and the 

season. On-Peak, Mid-Peak and Off-Peak hours and prices typically vary depending on 

day of the week and season. Consequently, the elements of the sets 𝑻𝑶𝒏,  𝑻𝑴𝒊𝒅, and 𝑻𝑶𝒇𝒇 

will be different though the elements of 𝑻𝒕𝒐𝒕 will be the same. Similarly, energy charges 

𝛼ை௡, 𝛼ெ௜ௗ, and 𝛼ை௙௙ and demand charges 𝛽ை௡, 𝛽ெ௜ௗ, and 𝛽ை௙௙ will also vary. Typically, 

government holidays also have identical periods and prices similar to weekends. 

 The energy charge vector for the month 𝜶𝒎𝒐𝒏𝒕𝒉will then become: 
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 𝜶𝒎𝒐𝒏𝒕𝒉 = [𝜶𝟎
𝑻 𝜶𝟏

𝑻 … … 𝜶𝑫ି𝟏
𝑻 ]𝑻 (3.34) 

 where, 

 
𝜶𝒅 = ൜

𝜶𝒘𝒆𝒆𝒌𝒅𝒂𝒚,   𝑑 𝑖𝑠 𝑎 𝑤𝑒𝑒𝑘𝑑𝑎𝑦

𝜶𝒘𝒆𝒆𝒌𝒆𝒏𝒅, 𝑑 𝑖𝑠 𝑎 𝑤𝑒𝑒𝑘𝑒𝑛𝑑/ℎ𝑜𝑙𝑖𝑑𝑎𝑦
 

(3.35) 

 We can get the On-Peak TOU demand charge matrix for the month 𝜷𝒎𝒐𝒏𝒕𝒉
𝑶𝒏  by: 

 
𝜷𝒎𝒐𝒏𝒕𝒉

𝑶𝒏 = ቎
𝜷𝟎

𝑶𝒏 ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ 𝜷𝑫ି𝟏

𝑶𝒏
቏ 

(3.36) 

 where, 

 
𝜷𝒅

𝑶𝒏 =  ቊ
𝜷𝒘𝒆𝒆𝒌𝒅𝒂𝒚

𝑶𝒏 ,   𝑑 𝑖𝑠 𝑎 𝑤𝑒𝑒𝑘𝑑𝑎𝑦

𝜷𝒘𝒆𝒆𝒌𝒆𝒏𝒅
𝑶𝒏 , 𝑑 𝑖𝑠 𝑎 𝑤𝑒𝑒𝑘𝑒𝑛𝑑/ℎ𝑜𝑙𝑖𝑑𝑎𝑦

 
(3.37) 

 Similarly, we can find the other TOU demand matrices 𝜷𝒎𝒐𝒏𝒕𝒉
𝑴𝒊𝒅  and 𝜷𝒎𝒐𝒏𝒕𝒉

𝑶𝒇𝒇 , which 

represent the Mid-Peak and Off-Peak TOU demand charge matrix for the billing month, 

respectively. 

 If we are dealing with a CPP rate structure in the summer season, then equations 

3.34 and 3.36 will be a little different. The 𝜶𝒅 will be 𝜶𝑪𝑷𝑷 if d-th day is a CPP event day. 

On the other hand, 𝜷𝒅
𝑶𝒏, 𝜷𝒅

𝑴𝒊𝒅and𝜷𝒅
𝑶𝒇𝒇will be replaced by 𝜷𝒏𝒐𝒏ି𝑪𝑷𝑷

𝑶𝒏 , 𝜷𝒏𝒐𝒏ି𝑪𝑷𝑷
𝑴𝒊𝒅  and 

𝜷𝒏𝒐𝒏ି𝑪𝑷𝑷
𝑶𝒇𝒇 , respectively if d-th day is a non-CPP event day.  

 We can then calculate the monthly usage bills by using the applicable cost function 

just by using the appropriate power vector of the right size and parameters 𝜶𝒎𝒐𝒏𝒕𝒉 and 

𝜷𝒎𝒐𝒏𝒕𝒉. 

 𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑈𝑠𝑎𝑔𝑒 𝐵𝑖𝑙𝑙 = 𝑓(𝑿; 𝜶𝒎𝒐𝒏𝒕𝒉, 𝜷𝒎𝒐𝒏𝒕𝒉) (3.38) 
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 Where X is the appropriate power vector of length 𝐷 × 𝑇′. We can now calculate 

the monthly usage bill for a building load alone, a building net load with solar or net load 

with solar and BESS optimization. To better understand the effects of the optimization, we 

define two types of savings, 𝑆𝑎𝑣𝑖𝑛𝑔𝑠ௌ௢௟௔௥and 𝑆𝑎𝑣𝑖𝑛𝑔𝑠஻ாௌௌ. 𝑆𝑎𝑣𝑖𝑛𝑔𝑠ௌ௢௟௔௥shows the 

savings if only the solar is added without any BESS optimization. 𝑆𝑎𝑣𝑖𝑛𝑔𝑠஻ாௌௌshows the 

effect of BESS optimization that is the additional savings we made through BESS 

optimization when solar is already present in the system. We can write them as: 

 𝑆𝑎𝑣𝑖𝑛𝑔𝑠ௌ௢௟௔௥ = 𝑓൫𝑷𝒎𝒐𝒏𝒕𝒉
𝑳 ; 𝜶𝒎𝒐𝒏𝒕𝒉, 𝜷𝒎𝒐𝒏𝒕𝒉൯ −  

𝑓(𝑷𝒎𝒐𝒏𝒕𝒉
𝑳 − 𝑷𝒎𝒐𝒏𝒕𝒉

𝑺 ; 𝜶𝒎𝒐𝒏𝒕𝒉, 𝜷𝒎𝒐𝒏𝒕𝒉) 

 

(3.39) 

 𝑆𝑎𝑣𝑖𝑛𝑔𝑠஻ாௌௌ = 𝑓൫𝑷𝒎𝒐𝒏𝒕𝒉
𝑳 − 𝑷𝒎𝒐𝒏𝒕𝒉

𝑺 ; 𝜶𝒎𝒐𝒏𝒕𝒉, 𝜷𝒎𝒐𝒏𝒕𝒉൯

− 𝑓(𝑷𝒎𝒐𝒏𝒕𝒉
𝑮 ; 𝜶𝒎𝒐𝒏𝒕𝒉, 𝜷𝒎𝒐𝒏𝒕𝒉) 

 

(3.40) 

 To run the optimization, we have to get values of the other parameters 𝐸஻௠௔௫, 

𝐸஻௠௜௡, 𝐸௜௡௜௧
஻ , 𝑃஻ା௠௔௫, 𝑃஻ି௠௔௫, 𝜂ା and  𝜂ି. Variables 𝑷𝑺𝑳, 𝑷𝑺𝑩, 𝑷𝑩ା and  𝑷𝑩ି need to be 

declared similar to vectors shown in equation 3.33 which represent the solar power fed to 

the load, BESS power fed to the load, BESS charging and discharging power vectors for 

the day, respectively. 

 Now that we have described all the necessary variables and parameters, the 

algorithm for the optimization process can be written as:  
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Algorithm 

1: Select the type of tariff 
2: Select Season 
3: Get parameters 𝐸஻௠௔௫, 𝐸஻௠௜௡, 𝐸௜௡௜௧

஻ , 𝑃஻ା௠௔௫, 𝑃஻ି௠௔௫, 𝜂ା and  𝜂ି. 
4: if (Tariff type=CPP rate) and (Season=Summer) then: 
5:  Get 𝜶𝑪𝑷𝑷, 𝜷𝑪𝑷𝑷, 𝜶𝒏𝒐𝒏ି𝑪𝑷𝑷, and 𝜷𝒏𝒐𝒏ି𝑪𝑷𝑷  
6: else 
7:  Get 𝜶, 𝜷  
8: endif 
9: Declare empty vectors 𝑷𝒎𝒐𝒏𝒕𝒉

𝑮 = [ ], 𝑷𝒎𝒐𝒏𝒕𝒉
𝑳 = [ ], 𝑷𝒎𝒐𝒏𝒕𝒉

𝑺 = [ ] 
10: for each day d=0,1, ……., D-1 do: 
11: if (Tariff Type=CPP) then: 
12:  if (Day d=CPP Event Day) then: 
13:   Get 𝜶𝑪𝑷𝑷, 𝜷𝑪𝑷𝑷  
14:  else 
15:   Get 𝜶𝒏𝒐𝒏ି𝑪𝑷𝑷, 𝜷𝒏𝒐𝒏ି𝑪𝑷𝑷  
16:  endif 
17: elseif (Day d==weekday) then: 
18:  Get 𝜶, 𝜷 for weekday 
19: else 
20:  Get 𝜶, 𝜷 for weekend and holiday 
21: endif 
22:  Get 𝑷𝑳, 𝑷𝑺 for day d 
23:  Declare the other variables 𝑷𝑺𝑳, 𝑷𝑺𝑩, 𝑷𝑩ା and  𝑷𝑩ି 
24:  Initialize 𝐸଴

஻=𝐸௜௡௜௧
஻  

25: Run Optimization 
26:  Run the optimum BESS operation according to 𝑷𝑩ା and  𝑷𝑩ି 

27:  Update 𝑷𝒎𝒐𝒏𝒕𝒉
𝑮 = ൤

𝑷𝒎𝒐𝒏𝒕𝒉
𝑮

𝑷𝑮
൨ 

28:  Update 𝑷𝒎𝒐𝒏𝒕𝒉
𝑳 = ൤

𝑷𝒎𝒐𝒏𝒕𝒉
𝑳

𝑷𝑳
൨ and 𝑷𝒎𝒐𝒏𝒕𝒉

𝑺 = ൤
𝑷𝒎𝒐𝒏𝒕𝒉

𝑺

𝑷𝑺
൨ 

29:  Update 𝐸௜௡௜௧
஻ =𝐸்ିଵ

஻  
30: endfor 
31: Calculate the unoptimized monthly cost 𝑓(𝑷𝒎𝒐𝒏𝒕𝒉

𝑳 ; 𝜶𝒎𝒐𝒏𝒕𝒉, 𝜷𝒎𝒐𝒏𝒕𝒉) 
32: Calculate the unoptimized monthly cost is solar is added 𝑓(𝑷𝒎𝒐𝒏𝒕𝒉

𝑳 − 𝑷𝒎𝒐𝒏𝒕𝒉
𝑺 ; 𝜶𝒎𝒐𝒏𝒕𝒉, 𝜷𝒎𝒐𝒏𝒕𝒉) 

33: Calculate the optimized monthly cost with solar and BESS 𝑓(𝑷𝒎𝒐𝒏𝒕𝒉
𝑮 ; 𝜶𝒎𝒐𝒏𝒕𝒉, 𝜷𝒎𝒐𝒏𝒕𝒉) 

34: Calculate 𝑆𝑎𝑣𝑖𝑛𝑔𝑠ௌ௢௟௔௥ = 𝑓൫𝑷𝒎𝒐𝒏𝒕𝒉
𝑳 ; 𝜶𝒎𝒐𝒏𝒕𝒉, 𝜷𝒎𝒐𝒏𝒕𝒉൯ − 𝑓(𝑷𝒎𝒐𝒏𝒕𝒉

𝑳 − 𝑷𝒎𝒐𝒏𝒕𝒉
𝑺 ; 𝜶𝒎𝒐𝒏𝒕𝒉, 𝜷𝒎𝒐𝒏𝒕𝒉) and 

𝑆𝑎𝑣𝑖𝑛𝑔𝑠஻ாௌௌ = 𝑓൫𝑷𝒎𝒐𝒏𝒕𝒉
𝑳 − 𝑷𝒎𝒐𝒏𝒕𝒉

𝑺 ; 𝜶𝒎𝒐𝒏𝒕𝒉, 𝜷𝒎𝒐𝒏𝒕𝒉൯ − 𝑓(𝑷𝒎𝒐𝒏𝒕𝒉
𝑮 ; 𝜶𝒎𝒐𝒏𝒕𝒉, 𝜷𝒎𝒐𝒏𝒕𝒉) 

 

  

3.2.6 Results 

 Using the data and parameters collected and simulated for the four buildings 

mentioned in section 3.2.1, the building load optimizations were performed for their 

corresponding tariffs for a month. All data used are from the summer months and the rates 

used were summer season rates. For all these rates the daily On-Peak hours were from 12 

PM to 6 PM on weekdays, Mid-Peak hours were from 8 AM to 12 PM and from 6 PM to 

11 PM on weekdays and the remaining hours are all Off-Peak Hours. At the start of each 
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simulation, it is assumed that all the BESS have their initially stored energy 𝐸௜௡௜௧
஻  at 50% 

of the total capacity. The limits for maximum and minimum stored energy for each BESS 

𝐸஻௠௔௫ and 𝐸஻௠௜௡ is assumed to be 90% and 20% of their total capacity, respectively. For 

the simulations in this work MATLAB based convex optimization toolbox CVX have been 

used [109]. The running time of the optimization for different tariffs ranges from 1 minute 

28 seconds to 2 minute 4 seconds. The configuration of the PC used for optimization was 

Intel Core i-7 processor (6th generation 2.6 GHz), 16 GB RAM and 8 GB GPU).  

 Since type D or CPP is a more recent concept, the utilities normally give customers 

with an option that they can either move to CPP or can stay under the existing tariff. It may 

be opt-in or opt-out. In this paper, building 1 is chosen for CPP rate simulation and the 

rates for the CPP option of that tariff are applied here. It has four months in the summer 

season (June to September) and total 12 CPP event days in the summer season. So, on 

average each month will have three CPP days. The three highest demand days (day 

numbers 9, 12, and 20) for building 1 are selected as CPP event days in this simulation. 

The CPP event hours take place from 4 PM to 9 PM. 
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Figure 3-3 Results from optimization showing the power drawn from grid before 
optimization (actual load), after adding solar (unoptimized net load) and after 

optimization with solar and BESS (optimized net load) with zoomed in versions for 
a day 
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Figure 3-3 shows the results of the optimization for each type of tariffs for a month. 

Effects of the optimization can be observed by comparing the power drawn from the grid 

if no action is taken, if solar is added and if solar and BESS optimization is performed, 

which are termed as the actual building load, the unoptimized net load and the optimized 

net load, respectively. For better understanding, zoomed in versions of the plots for a day 

are also presented. The energy shifts can be observed in subplots (g)-(l). We can notice the 

optimized net load is higher than unoptimized net load during early morning Mid-Peak 

hours and lower starting from midday On-Peak hours. These correspond to the charging 

and discharging of BESS, respectively. We can also see the peak reduction activities of 

BESS in the subplots. The actual loads and unoptimized net loads of subplots (g) and (j) 

are identical as these are from the same building. But the optimized net loads subplot (j) is 

different from subplot (g) since the cost functions are different. Unlike subplot (g), no 

BESS discharge is noticed between 12-4 PM in subplot (j), while higher discharge can be 

seen between 4-9 PM. This is because of the much higher On-Peak energy rate during 4-9 

PM of CPP rate. In subplot (k) peak reduction can be overserved more than energy shifting. 

This is due to flat energy rate of tariff type E. While in subplot (l) energy shifting is 

observed to be more prominent than the peak reduction.
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Table 3-3 Summary of Optimization Results 

Optimization Parameters 
and Results 

Type A Type B Type C Type D Type E Type F 

Building Building 1 Building 2 Building 3 Building 1 Building 4 Building 5 
Energy Charge ($/kWh) On-Peak: 0.3397 

Mid-Peak: 
0.13837 

Off-Peak: 
0.07637 

On-Peak: 
0.35987 

Mid-Peak: 
0.1007 

Off-Peak: 
0.03545 

On-Peak: 0.10258 

Mid-Peak: 
0.07566 

Off-Peak: 
0.05727 

On-Peak: 0.07817 

Mid-Peak: 0.07422 

Off-Peak: 0.0724 

CPP: 0.4 

Flat rate: 0.0139 On-Peak: 

0.22617 

Mid-Peak: 

0.18317 

Off-Peak: 
0.15457 

Demand Charge ($/kW) Monthly Peak: 
11.87 

On-Peak: 7.06 

Mid-Peak: 3.13 

Off-Peak: 1.53 

On-Peak: 21.73 

Mid-Peak: 4.17 

Monthly Peak: 
19.02 

On-Peak: 16 

Mid-Peak: 5.16 

Monthly Peak: 
17.52 

CPP discount: 4.11 

Monthly Peak: 
10.58 

- 

Unoptimized Cost ($) 47,884 9,278 61,704 79,714 4,218 654 
Unoptimized Cost with 

Solar ($) 
13,908 1,911 50,766 68,778 1,122 384 

Optimized Cost with 
Solar and BESS ($) 

9,646 1,497 47,956 62,825 991 361 

𝑆𝑎𝑣𝑖𝑛𝑔𝑠ௌ௢௟௔௥  ($) 33,977 (70.96%) 7,367 (79.73%) 10,938 (17.73%) 10,936 (13.72%) 3,096 (73.39%) 270 (41.28%) 
𝑆𝑎𝑣𝑖𝑛𝑔𝑠஻ாௌௌ ($) 4,261 (8.9%) 414 (4.46%) 2,810 (4.55%) 5,953 (7.47%) 131 (3.11%) 23 (3.52%) 
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 Table 3.3 summarizes the optimization results from all the simulations. We can see 

that building 3 has a much higher actual cost than building 1 despite having much lower 

energy charges and a comparable daily average usage. This can be attributed to the TOU 

demand charges and higher time independent demand charge. We can observe that 

𝑆𝑎𝑣𝑖𝑛𝑔𝑠ௌ௢௟௔௥ percentage values for type A, B and, E are very high. The 𝑆𝑎𝑣𝑖𝑛𝑔𝑠ௌ௢௟௔௥ 

percentage of type C and D are quite low while type F has a moderate value. The reason 

behind this for A and B can be considerably higher On-Peak energy charges of these tariffs. 

As the On-Peak period is from 12 to 6 PM, when most of the solar is produced, savings 

from solar can be sizable for this period. As for type E, the size of the solar capacity 

connected to the building is significantly larger compared to the building load. By 

comparing percentages of 𝑆𝑎𝑣𝑖𝑛𝑔𝑠஻ாௌௌ or additional savings with the presence of BESS, 

we see that adding a BESS would be most beneficial to type A rates. The reason type B’s 

𝑆𝑎𝑣𝑖𝑛𝑔𝑠஻ாௌௌ percentage being lower can be due to the fact that, type A has a time 

independent demand charge while type B has TOU demand charges. Reducing the highest 

peak in the month would result in large savings for type A while reducing the On-Peak 

highest demand would result in increasing the demand in other periods, which in turn 

decreases the savings compared to type A. Also, the difference in demand charge prices 

among the peak periods is not as significant in type B compared to other types. Though 

type C has significant difference between the TOU demand charges of different periods, 

the lower savings percentage could be attributed to a large time independent peak demand 

charge and a high load factor. As the average to maximum load ratio is high, there is not 

much scope for savings from peak reduction in this case. Even if some peak is shifted to a 
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lower price Mid-Peak period, the time independent demand charge will result in a very 

high cost. Type D also results in a good amount of savings from BESS. Since the CPP 

event hours have a considerably higher energy price and occur when solar generation keeps 

going down, energy shifting from BESS can reduce much cost while savings from solar 

becomes much lower than other types. The reason for type E having a low 𝑆𝑎𝑣𝑖𝑛𝑔𝑠஻ாௌௌ is 

because the highest peak in the month happens at 2 PM when there is abundant solar. Also, 

flat energy rate does not achieve any savings from energy shift. Type F also has a low 

𝑆𝑎𝑣𝑖𝑛𝑔𝑠஻ாௌௌ percentage as there is cost reduction opportunity comes only from energy 

shift and the small differences of the peak period prices lessens the magnitude of it. By 

comparing the results for types A and D, we see that choosing the CPP option would result 

in loss for the customer, even with solar or BESS. Although if it were made mandatory, 

then adding BESS would serve to be beneficial if solar was present. 

3.3 Impacts Analysis of Tariff Changes on Commercial 

Building Load Optimization using DERs 

 In this section, we will analyse how different changes in utility tariffs impact the 

optimization results discussed in the previous section. For this purpose, we will investigate 

the effects of three different changes. First, how the periodical price change of the energy 

and demand charges impact the savings. Second, how the choice of demand charge heavy 

or energy charge heavy rate options plays out for different building types. Lastly, how the 

time shifts in the rates affects the building net load. The first two scenarios are analysed 

from the perspective of building user benefit. The last scenario is analysed from the 

perspective of utility’s interest. The analyses are presented in the following subsections. 
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3.3.1 Impacts due to the Periodical Price Changes 

 An important issue with the utility rates is that the prices of these charges often 

change. To understand how these changes impact the savings and how much benefit we 

can receive in the future from this optimization, an analysis was done on the building 2 

load data using historical and forthcoming values of tariff Type B published by the utility. 

This tariff has three energy and three demand charge components, a total of six. The year 

of our actual analysis in previous sections is chosen as the base year values. Five years of 

tariff data is available and price of each tariff component has increased every year. We 

choose one component and change its values for the past and future years, while keeping 

the other components fixed at the base year values. We run the optimization and compare 

the results for all the different cases. The base year is denoted as year 0 while negative and 

positive values denote past and future values, respectively. Figure 3-4 shows the energy 

and demand charge values for each year. 

 

Figure 3-4 Energy and Demand Charge Values for Past and Future Years 
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  Figure 3-5 shows the effect of price on 𝑆𝑎𝑣𝑖𝑛𝑔𝑠ௌ௢௟௔௥, that is, savings from solar. 

It can be seen that the 𝑆𝑎𝑣𝑖𝑛𝑔𝑠ௌ௢௟௔௥ values are highly impacted by On-Peak energy and 

demand charge changes. It is somewhat less impacted by Mid-Peak energy and demand 

charge changes. There is almost no change in 𝑆𝑎𝑣𝑖𝑛𝑔𝑠ௌ௢௟௔௥ values due to Off-Peak energy 

and demand charge changes. This is expected since most of the solar is produced during 

the On-Peak period, while the solar production is much less in the Mid-Peak period and 

there is almost no solar production during Off-Peak period.  

 

Figure 3-5 𝑺𝒂𝒗𝒊𝒏𝒈𝒔𝑺𝒐𝒍𝒂𝒓 Due to Changes in Energy Charges and Demand Charges 

 Figure 3-6 shows the effect of price on 𝑆𝑎𝑣𝑖𝑛𝑔𝑠஻ாௌௌ. Here we see that increase in 

On-Peak energy charge causes 𝑆𝑎𝑣𝑖𝑛𝑔𝑠஻ாௌௌ to decrease while Mid-Peak energy charge 

causes it to increase. This scenario is reversed in the case of demand charges. Savings stays 

same for Off-Peak energy and demand charge change as shifting energy or peak from this 

period does not result in any additional savings from optimization. The reason behind the 

unexpected behavior of On and Mid-Peak change is because energy and peak reduction 

from one period through battery optimization causes to increase the energy and peak in 

other periods, which makes it less obvious if our optimal solution will end up with a higher 
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or lower savings. Here, this type of analysis can be very useful as we can predict the future 

possible savings by assessing the trend.   

 

Figure 3-6  𝑺𝒂𝒗𝒊𝒏𝒈𝒔𝑩𝑬𝑺𝑺 Due to Changes in Energy Charges and Demand Charges 

3.3.2 Impacts due to Changes between the Energy Charge Heavy and 

Demand Charge Heavy Options 

 Utilities sometimes provide options under the same tariff. One option contains 

higher demand charges and lower energy charges while the other contains higher energy 

charges and lower demand charges. To compare the user benefits between these two 

options we use both for our optimization on buildings 1 and 3 and compare the savings. 

These two buildings were chosen since they have similar daily consumption but differing 

load factors. Load factor is an indicator of how efficiently the energy is used. A low load 

factor means that the average load is lower compared to the peak load within a period. This 

translates to the fact that while the average consumption of the building can be satisfied 

with a lower capacity system, the utility needs to increase the capacity to accommodate the 

peak load. A high load factor implies that the capacity to satisfy the peak load does not 

need to be increased compared to the low load factor scenario. We apply the optimization 
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using the options that is found in a type C rate. Table 3-4 shows the prices for these options. 

The option with higher demand charges is named as demand option while the option with 

higher energy charges is named as energy option. The TOU demand charge in this rate is 

On-Peak Demand charge only. 

Table 3-4 Demand heavy and Energy heavy Options applied to Type C rate 

Charge Demand Option Energy Option 
On Peak Energy ($/kWh) 0.12158 0.49669 
Mid Peak Energy ($/kWh) 0.11337 0.19008 
Off Peak Energy ($/kWh) 0.0867 0.12325 
Time Independent Peak 

Demand ($/kW) 14.98 10.3 
On-Peak Demand ($/kW) 34.68 4.98 

  

 Table 3-5 summarizes the results of the optimization on buildings 1 and 3 using the 

rates shown in table 3-4. 

Table 3-5 Optimization results for demand heavy and energy heavy options 

Building Building 1 Building 3 
Option Demand 

Option 
Energy 
Option 

Demand 
Option 

Energy 
Option 

Unoptimized Cost ($) 115,990 117,200 77,701 104,460 
Unoptimized Cost with 

Solar ($) 
81,921 65,476 62,871 67,551 

Optimized Cost with 
Solar and BESS ($) 

76,052 61,645 58,604 64,492 

𝑆𝑎𝑣𝑖𝑛𝑔𝑠ௌ௢௟௔௥ ($) 34,070 
(29.37%)  

51,725 
(49.25%) 

14,830 
(19.01%) 

36,911 
(35.33%) 

𝑆𝑎𝑣𝑖𝑛𝑔𝑠஻ாௌௌ ($) 5,869 (5.06%) 3,831 
(3.27%) 

4,267 
(5.49%) 

3,059 
(2.92%) 

 We analyse the results from two perspectives: first, we assume that the customers 

can choose between the options. Comparing the unoptimized costs in table 3.5 we see that, 

without any DERs, buildings with low load factor do not benefit much from the choice 
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between the options. Though buildings with high load factors can benefit from choosing 

the demand option. Buildings who have existing solar generation should choose the energy 

option if their load factor is low but should choose the demand option if their load factor is 

high, which would result in lowering their cost. Buildings with both solar and BESS should 

also make the same decision based on load factors. Now we assume that the utility decides 

for the customers which option they fall under, and customers do not have any authority 

over it. Buildings with low load factors receive higher benefits from adding solar than 

buildings with high load factors, regardless of the rate option. The savings is considerable 

for buildings with low load factors falling under the energy option but less attractive for 

buildings with high load factor falling under demand option. The additional benefit from 

BESS does not vary for higher or lower load factor which is counterintuitive. Their added 

benefit is not as significant as the benefit of adding solar for buildings with low load factors. 

Though buildings with high load factors that fall under demand option might consider 

adding BESS because the total savings from solar and BESS is a considerable improvement 

over only having solar. 

3.3.3 Impacts due to the Shifts in Time of Use Periods 

 As discussed in chapter 1, the CAISO Duck Curve poses a challenge to the utility 

operators due to high ramp rate requirements to counter rapid decline in solar PV 

production in the evening period. To alleviate this condition the utilities are introducing 

completely new or adjusting existing TOU time periods. This shift in time is supposed to 

help reduce the high ramp rate through demand response of customers with load shifting 

abilities, such as commercial buildings with DERs. This is done by mainly bringing a shift 
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in the legacy 12 to 6 PM On-Peak period in the weekdays. The newly introduced TOU 

period is administered by defining the On-Peak period from 4 PM to 9 PM and rest of the 

hours as Mid-Peak on weekdays and making the 4 to 9 as the Mid-Peak period and keeping 

rest of the hours as Off-Peak on weekends. To examine the effect of this time shift on 

commercial buildings we apply both the rates with conventional and new time periods into 

our optimization using building 1 data for tariff type A. We also propose a dynamic rate 

with varying prices to reduce ramp rates in the evenings. Figure 3-7 shows the traditional 

or legacy rate, newly introduced current rate and the dynamic rate proposed by the author. 

 

Figure 3-7 Legacy, Recent Introduced and Proposed Rate 
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 From this figure we see that, in both of the legacy and recently introduced rate, the 

change in energy price takes place as a large step. Instead, the proposed dynamic rate 

increases the value linearly for a duration of time, followed by a steady value and finally 

decrease linearly again for the remaining time, all within the highest cost On-Peak period. 

The particular durations maybe chosen by the utilities according to the needs of the system 

resource constrains and Duck Curve requirements. As an example, we have chosen the 

following dynamics and durations for this study: linear rate increase in the first two hours, 

then steady rate value for the next hour and decrease linearly again for the last two hours 

within the ON-Peak period in our proposed rate. This way a sharp change in energy price 

is avoided and smoothing effect is brought into the price change. To make the proposed 

rate equivalent to the recent introduced one, we define the On-Peak price in weekdays in a 

way so that for same energy use within the period, the total energy cost would be same. 

We do that by keeping the area under the curve during this 5 hour, 4 PM to 9 PM period, 

same for both cases. As mentioned earlier in this section, during the weekend the same 5 

hour time period is considered as Mid-Peak prices. For optimization purposes this weekend 

Mid-Peak prices follows the same methodology as weekday’s On-Peak prices.  

  The steady On-Peak price for the 6 PM to 7 PM period, 𝛼ை௡,௣௥௢௣௢௦௘ௗ can be found 

by: 

 1

2
 ൫𝛼ை௡,௣௥௢௣௢௦௘ௗ − 𝛼ெ௜ௗ൯(24∆𝑡) = ൫𝛼ை௡ − 𝛼ெ௜ௗ൯(20∆𝑡) 

(3.41) 

 By solving equation 3.41 we get: 

 
𝛼ை௡,௣௥௢௣௢௦௘ௗ =

5𝛼ை௡ − 2𝛼ெ௜ௗ

3
 

(3.42) 
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 For our proposed rate, the energy cost at time step t during the 4 PM to 9 PM period 

on weekdays can be modified as: 

 

𝛼௧ =

⎩
⎪
⎨

⎪
⎧ 𝛼ெ௜ௗ +

൫𝛼ை௡,௣௥௢௣௢௦௘ௗ − 𝛼ெ௜ௗ൯

8
 (𝑡 − 64), 64 ≤ 𝑡 < 72

𝛼ை௡,௣௥௢௣௢௦௘ௗ, 72 ≤ 𝑡 ≤ 76 

𝛼ை௡,௣௥௢௣௢௦௘ௗ +
൫𝛼ை௡,௣௥௢௣௢௦௘ௗ − 𝛼ெ௜ௗ൯

8
(𝑡 − 84), 76 < 𝑡 ≤ 84

 

(3.43) 

 Similarly, we can define the Mid-Peak Prices in weekends during similar 4 to 9 PM 

period. 

 The daily average net load after optimization for these three rates are shown in 

figure 3-8. 

 

Figure 3-8 Optimized Net Loads for the Three TOU Periods 

 CAISO uses the three-hour ramp rate between 4 PM and 7 PM to assess the severity 

of the ramp rate requirements of the Duck Curve. The same three-hour ramp rates of the 

optimized daily average net load for the three rates are presented in table 3-7. 
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Table 3-6 Three Hour (4PM to 7PM) Ramp Rate for the Three Rates 

Rate Three Hour Average Ramp (kW) 

Legacy 572.92 
Recent Introduced 561.8 

Proposed 393.1 

 As we can see from figure 3-8 and table 3-6, the recent introduced rate does not 

help much in reducing the ramp rates (2% decrease) while the proposed rate shows a 

significant improvement (31% decrease) over the other. This is due to the fact that step 

change and steady value of the legacy and recent introduced rate drives the BESS to 

discharge power with a sharp change at the transition time between the periods and then 

continues discharging power at a steady rate. In contrast, a linearly changing rate enables 

BESS to increase or decrease the discharging power gradually which helps to reduce the 

fast ramp rate of the net load or the Duck Curve. Utilities can introduce the proposed rate 

for the commercial buildings with solar and BESS to offset the high Duck Curve ramp 

rates. 

 One possible real-world application of this proposed novel rate could be the 

prevention of the rotating blackouts discussed in chapter 2. To satisfy grid requirements 

better, a coordinated operation of the battery and other DER assets is required. By 

implementing the proposed tariff to the large commercial users with BESS and other DERs, 

the cost optimization of the net load can assist the utilities in adjusting their operations on 

high demand days, thereby avoiding similar blackouts in future.   
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3.4 Modeling and Optimization of Commercial Building 

Heating, Ventilation and Air Conditioning (HVAC) Loads  

3.4.1 System Description 

 The building considered here is a commercial building situated in the University of 

California, Riverside’s (UCR) research facility called College of Engineering - Center for 

Environmental Research and Technology (CE-CERT). It is used as office spaces for 

research staff, administrators, and students along with multiple conference rooms. The area 

of the building is about 20,000 square feet and is one-storied. The whole building is divided 

into 16 thermal zones where each zone is served by one HVAC unit. The zones vary in 

size, occupancy, and types of activities depending on the purpose of use. Zone 1 to 7 and 

zone 11 are used as office spaces for the research staff. Zone 8 is the lunchroom. Zone 9 

and 12 are used for conference meeting purposes with medium and small gatherings 

respectively. Zone 10 is used as office space by the administrative staff. Zone 13 is the 

copier room. Zone 14 contains the reception area and a small library. Zone 15 is used as 

the server room for keeping the IT equipment.  Figure 2 shows the layout of the building 

and the various thermal zone areas. The colors are provided for presenting the separation 

among different zones. Symbols mean that they are used for office purposes and level of 

occupancy.  
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Figure 3-9 Building layout and thermal zones 

3.4.2 Modeling of the System 

3.4.2.1 Heat Balance Equation for the Zones 

 The thermal load that must be served by the HVAC system at any instance in a 

particular zone at a certain temperature is equal to the sum of heat gains from different 

sources in that zone at that instance for that zone temperature. The main sources of heat 

gain in a typical commercial building include the people, outside environment, equipment, 

and lighting. So, the heat balance equation for a zone at any instance can be written as: 

 𝑄௟௢௔ௗ,௞
௧ ̇ = 𝑄௟ప௚௛௧,௞

௧ ̇ + 𝑄௣௣௟,௞
௧ ̇ + 𝑄௘௤௣,௞

௧ ̇ +  𝑄௘௡௩,௞
௧ ̇  (3.44) 

 Where, 

 𝑄௟௢௔ௗ,௞
௧ ̇  = Required thermal load at time t for zone k, W 

 𝑄௟ప௚௛௧,௞
௧ ̇ = Heat gain from lights in zone k at time t, W 

 𝑄௣௣௟,௞
௧ =̇  Heat gain from people in zone k at time t, W 

 𝑄௘௤௣,௞
௧ ̇ = Heat gain from equipment in zone k at time t, W 
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 𝑄௘௡௩,௞
௧ ̇ = Heat gain from the outside environment in zone k at time t, W 

3.4.2.2 Heat Gain from Lights 

 According to a study by U.S. Energy Information Administration (EIA), ten percent 

of the total building load is consumed by the lighting system for a commercial building and 

fluorescent lights are the most dominating of the light sources [110]. Twenty percent of the 

total electrical input of typical fluorescent lights is converted into visible radiation and the 

rest are converted into radiative and convective heat gain [111]. Using this information, the 

lighting gain for the zones are calculated by distributing the lighting power according to 

the square footage and illuminance requirement, based on the window luminance provision 

of each zone. Authors acknowledge the fact that reference 16, EIA’s Commercial Buildings 

Energy Consumption Survey 2012 (CBECS 2012), used data from surveys conducted in 

2013 and is representative of commercial buildings in 2012. There have been some changes 

in the lighting system of a building in the meantime such as retrofit buildings with LED 

bulbs. But CBECS 2012 still remains the most updated and reliable source of building 

energy consumption as CBECS 2018 has not been released yet. 

3.4.2.3 Heat Gain from People 

 Due to human metabolism, heat is generated from the occupants of a building which 

acts as one of the heat gain sources in a zone. The sensible (radiation plus convection) heat 

gain from occupants is a complex function of metabolic rate and environmental conditions 

which is modeled by fitting a polynomial curve using the heat gain data of different 

temperatures and average adjusted metabolic rates [112]. The sensible heat gain of a typical 

adult male can thus be expressed as: 
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 𝑆 = 6.461927 + 0.946892𝑀 + 0.0000255737𝑀ଶ + 7.139322𝑇

− 0.0627909𝑇𝑀 + 0.0000589172𝑇𝑀ଶ

− 0.19855𝑇ଶ + 0.000940018𝑇ଶ𝑀

− 0.00000149532𝑇ଶ𝑀ଶ 

 

(3.45) 

 Where, 

 M= Metabolic rate, W 

 T=Surrounding air temperature, ℃  

 S=Sensible heat gain 

 Though metabolic rate can vary from person to person, the average metabolic rates 

for different activities for a person do not vary widely and is used for this modeling [113]. 

The average metabolic rate for an adult male doing office activities is 126 W. While the 

average for an adult female is typically 0.85 times the average metabolic rate of an adult 

male. Using this information the sensible heat gain equation for males and females in an 

office building is as follows: 

 𝑆௠௔௟௘ = 126.18 + 0.16𝑇 − 0.104𝑇ଶ (3.46) 

 𝑆௙௘௠௔௟௘ = 108.167 + 1.09𝑇 − 0.115𝑇ଶ (3.47) 

 If T was in Fahrenheit instead of Celsius then the equations would be: 

 𝑆௠௔௟௘ = 90.564 + 2.137𝑇 − 0.032𝑇ଶ (3.48) 

 𝑆௙௘௠௔௟௘ = 52.433 + 2.878𝑇 − 0.0356𝑇ଶ (3.49) 

 So, the heat gain of a zone from people can be expressed as: 
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 𝑄௣௣௟,௞
௧ =̇  ቀ90.564 + 2.137𝑇௭,௞

௧ − 0.032𝑇௭,௞
௧ ଶ

ቁ 𝑁௠௔௟௘,௞
௧

+ ቀ52.433 + 2.878𝑇௭,௞
௧ − 0.0356𝑇௭,௞

௧ ଶ
ቁ 𝑁௙௘௠௔௟௘,௞

௧  

 

(3.50) 

 Where, 𝑁௠௔௟௘,௞
௧  and 𝑁௙௘௠௔௟௘,௞

௧  is the number of males and females in zone k at time 

t, respectively and 𝑇௭,௞ is the temperature of zone k at time t in Fahrenheit. 

 Figure 3 shows the occupancy profiles of the different zones on weekdays. Zones 

1-7 and 11 are office spaces used by research staff and are typically occupied at regular 

hours and partially occupied after office hours.  Zone 8 is the lunchroom. Zone 10, 14, and 

15 are used by the administrative staff and follow the regular office hour pattern. Zones 9, 

12, and 13 are normally unoccupied and used only if needed for a brief period, thus they 

have no regular occupancy pattern. The occupancy of these zones is assumed zero here. 

On weekends and holidays, the building is usually unoccupied and the occupancy of all the 

zones on those days is assumed zero. 

 

Figure 3-10 Occupancy Profile of Different Zones 
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3.4.2.4 Heat Gain from Environment 

 Heat conduction from outside can be modeled in several ways such as the state-

space model and the Laplace method [114-115]. These methods can generate the transient 

behavior of heat conduction through the walls. But these models require detailed 

information such as wall design and construction materials. Since we use one minute 

timestep in our analysis, it is rational to assume that the heat conduction behavior does not 

change much within this period and we can use a simplified linear model instead [116]. 

This method uses an overall heat transfer coefficient that captures the aggregated effect of 

a multilayered wall composed of various materials of different heat transfer coefficients. 

The heat gain from the outside environment through conduction of walls can be found by: 

 𝑄௘௡௩,௞
௧ ̇ =

5

9
𝑈௞𝐴௞൫𝑇௢௨௧

௧ − 𝑇௭,௞
௧ ൯ (3.51) 

 where, 

 𝑈௞= Overall heat transfer coefficient of the wall in zone k exposed to the outside 

environment, W/(m2K) 

 𝐴௞= Area of the wall in zone k exposed to the outside environment, m2 

 𝑇௢௨௧
௧  = Outside temperature at time t, ℉ 

 Factor 
ହ

ଽ
 comes due to the conversion of Fahrenheit to Kelvin. The convenience of 

this model is that the overall heat transfer coefficient of common building elements can be 

easily found in reference [116] which relieves us of the need to know the types of wall 

construction and design. The overall heat transfer coefficient is calculated by using the 

following equation [117]: 
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 1

𝑈
=

1

ℎ௜
+

𝑑

𝑘
+

1

ℎ௢
  

(3.52) 

 where,  

 ℎ௜= Convection heat transfer coefficient of fluid surrounding inside wall, W/(m2K) 

 ℎ௢= Convection heat transfer coefficient of fluid surrounding outside wall, 

W/(m2K) 

 k = Thermal conductivity of the wall, W/(mK) 

 d = Wall thickness, m 

3.4.2.5 Heat Gain from Equipment 

 Several research projects conducted by the American Society of Heating, 

Refrigeration, and Air-Conditioning (ASHRAE) and other researchers listed the heat gain 

values from different equipment that are found in a typical office building [118]. A survey 

was conducted to find out what types of equipment and appliances existed in each zone 

and their quantity. Then heat gain from the equipment was calculated for each zone using 

this information and validated with [118]. 

3.4.2.6 HVAC Fan Power and Cooling Load 

 To meet the zone conditioning requirements the HVAC system must provide the 

cooling or heating load needed by the zone. This can be modeled with the equation: 

 
𝑄௟௢௔ௗ,௞

௧ ̇ = 𝑄௦௬௦,௞
௧ =

5

9
𝐶௣𝜌(𝜂௖𝑉௠௔௫

̇ )(𝑇௭,௞ − 𝑇௦௨௣) 
(3.53) 

 where, 

 𝑄௦௬௦,௞
௧ = Cooling power provided to zone k at time t by the HVAC system, W 

 𝐶௣= Air specific heat, J/(kg.K) 
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 𝜌= Air density, kg/m3 

 𝜂௖=Cooled air supply fraction 

 𝑉௠௔௫
̇ = Maximum airflow from the air control system, m3/s 

 𝑇௦௨௣= Cooling coil supply temperature, ℉ 

 The HVAC fan power is given by: 

 
𝑃௙௔௡ =

(𝜂௖𝑉௠௔௫
̇ )∆𝑃𝑟𝑓௣௟

𝜀
 

(3.54) 

 where,  

 𝑃௙௔௡= HVAC electrical input fan power, W 

 ∆𝑃𝑟= Fan design pressure rise, Pa 

 𝑓௣௟= Fan part load factor 

 𝜀= Fan efficiency 

 We can now write the thermal load requirement as: 

 
𝑄௟௢௔ௗ,௞ =̇

5

9
𝐶௣𝜌

𝑃௙௔௡𝜀

∆𝑃𝑟𝑓௣௟
൫𝑇௭,௞ − 𝑇௦௨௣൯ 

(3.55) 

 If there are multiple HVAC units in the zone, then the previous equation can be 

written as: 

 𝑄௟௢௔ௗ,௞
௧ ̇ =

ହ

ଽ
𝐶௣𝜌(∑

௉ಷೌ೙,ೖ,ೕ
೟ ఌೖ,ೕ

∆௉௥ೖ,ೕ௙೛೗,ೖ,ೕ

ேಷೌ೙,ೖ

௝ୀଵ
)( 𝑇௭,௞

௧ − 𝑇௦௨௣) (3.56) 

 where, 𝑁ி௔௡,௞ denotes the number of fan units in zone k. 

3.4.3 Optimization Problem Formulation 

 Based on the modeling of the system an optimization problem has been formulated 

that aims to minimize the total fan power of all the zones. We need to find the optimal zone 
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temperature setpoint 𝑇௭,௞
௧  and for each of the zones and fan power 𝑃ி௔௡,௞,௝

௧  for all the HVAC 

fan units for all instances. For each time step t= 1, 2,……T and zones k=1,2,….. 𝑁௭௢௡௘ the 

optimization problem can be written as: 

  

 where, 

 𝑇௟௢௪= Lower temperature limit of thermal comfort, ℉ 

 𝑇௛௜௚ = Lower temperature limit of thermal comfort, ℉ 

 𝑃௠௜௡ி௔௡,௞,௝= Minimum fan power of fan unit j in zone k, W 

 𝑃௠௔௫ி௔௡,௞,௝= Maximum fan power of fan unit j in zone k, W 

 The constraints 1, 7, 8 and 13 in the optimization problem stems from the system 

thermal model discussed in the previous section. Constraint 14 makes sure that the 

temperature set points in each zone stay within the range of human thermal comfort all the 

time. A minimum amount of airflow must always be maintained, so the fan units must draw 
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a minimum amount of power. Also, they cannot go beyond their rated input power. 

Constraint 15 states these conditions. Constraint 7 is a quadratic equality constraint and 

constraint 13 has a bilinear term in it. On top of that, the temperature setpoint variables are 

integers, since we can not set them to a fractional value in real systems. Constraint 7, 13 

and the integer variables make the optimization problem nonconvex. Previously it was not 

possible to solve this type of nonconvex problem and find a globally optimum solution. 

The optimization solver Gurobi 9.0 version has the ability to solve optimization problems 

to the global optimum solution with these types of nonconvexities [119]. The problem was 

modeled with Gurobi 9.0 in the Python environment and solved. The configuration of the 

computer used was: 64 bit Intel Core i-7 3.2GHz processor with 16 GB RAM and 12 GB 

NVIDIA GeForce GPU. 

3.4.4 Results  

 The optimization problem was simulated on 90 minutes of data using the outside 

temperature profile of August 30, 2019, from a nearby weather station. The weather station 

provides temperature data of 1-hour intervals for some part of the day and 20-minute 

interval data for other parts. Here, we have used 20-minute interval data of 90-minute 

duration and applied linear interpolation to get 5 minutes interval data. It was assumed that 

the temperature stays stable within any 5 minute period. Unoptimized data were collected 

through commercially available open-source components, which perform the control and 

data acquisition of the HVAC units and building thermal zones.  Figure 4 shows the 

resulting HVAC load profile for optimized and unoptimized data. 
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Figure 3-11 Unoptimized and Optimized HVAC Load in kW 

 The unoptimized load consumes 47.53 kWh, whereas, the optimized load consumes 

45.66 kWh in this 90 minute period that results in an energy savings of 3.91%. The peak 

for the unoptimized and optimized load is 32.51 kW and 30.72 kW respectively, which 

provides a 5.55% peak reduction. Figures 5 and 6 respectively show the unoptimized and 

optimized zone temperature setpoints. As we can see from these figures the optimized zone 

temperature setpoints are mostly higher than that of the unoptimized one, though they still 

are within the range of human thermal comfort. It can also be seen that the unoptimized set 

points frequently change while the optimized ones result in a more stable and consistent 

profile. 
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Figure 3-12 Unoptimized zone temperature setpoints 

 

Figure 3-13 Optimized zone temperature setpoints 
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 Zone 15 is an IT server room where the maintenance of the required lower 

temperature is a more important factor than human thermal comfort and thermal setpoint 

requirements are different from other zones. The optimization problem is run again 

excluding zone 15 and the resulting load profile is presented in figure 7. The energy savings 

in this scenario is 3.71% and the peak reduction here is 5.45%. 

 

Figure 3-14 Unoptimized and Optimized HVAC Load excluding Zone 15 

 The savings from the optimization results in both economic and environmental 

benefits. For example, if the percentage of energy savings documented in the first case 

above can be implemented throughout the US, then a total of 13.62 billion kWh energy 

consumption will be reduced per year. The average price per kWh of electricity in the 

commercial sector of the US is 10.66 cents [120]. The total annual dollar saving would be 

$1.45 billion for this price rate. Commercial Air Conditioning is responsible for 
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approximately 125,000 MW of the total peak load in the US. The 5.55% peak reduction 

attained in the case above would facilitate a peak demand reduction of 6,891 MW. Though 

demand charge varies highly among regions, utilities, and customer types, the average 

maximum demand charge in the US is $15.07/kW, which is equivalent to $1.246 billion 

worth of savings each year [121]. In addition, reducing peak demand relieves transmission 

line congestion and avoids the construction of additional transmission lines and new 

generation facilities. The kWh savings also helps the environment by reducing  611 million 

kg of CO2 emission [122].  

3.5 Conclusions 

 In this chapter, a comprehensive optimization framework has been developed for 

commercial buildings equipped with DERs such as solar generation and BESS, to capture 

the diversity in utility tariff types. The utility tariffs were categorized into six universal 

commercial tariff types. Then, for each of the types, a cost function was formulated which 

were used to construct a universal cost function. Using this cost function and the system 

model an optimization problem was formulated along with an algorithm to apply it on 

commercial buildings with solar generation and BESS to generate the optimal BESS 

operation profile. The optimization was done on four buildings using all of the categorized 

types. Results showed that TOU demand charges and CPP charges cause higher 

unoptimized costs. High On-Peak energy values with noon to evening On-Peak periods 

provide higher savings from solar generation. TOU energy charge with single monthly 

peak demand provides the best savings from BESS optimization while TOU demand 

charges reduce such savings. Adding BESS with solar would also be beneficial for 
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commercial buildings under CPP tariffs. Flat energy rates with monthly peak demand 

provide the lowest BESS optimization savings as the only possible savings is from peak 

reduction whereas other tariffs also provide savings opportunity from energy shifting. 

 Different changes in utility tariffs were also analyzed to examine their impact the 

optimization. The price change analysis revealed that adding solar alone is more beneficial 

than adding BESS with it if the energy charge increase is dominant. Comparison is drawn 

between impacts of demand charge heavy and energy charge heavy tariffs on high and low 

load factor buildings. It showed that buildings with low load factor can lower their costs 

under energy heavy option and buildings with high load factor can do that by choosing 

demand heavy option. Buildings with low load factor can achieve considerably higher 

savings percentage by adding solar in either option than a buildings with high load factor. 

Contrary to common perception any noticeable difference in percentage savings from 

BESS was not identified for building with high or low load factor. Though it was confirmed 

that under energy heavy charges savings from solar was higher while savings from BESS 

was higher under demand heavy charges. The shifts in time periods were also analyzed. 

The results revealed that the new rate introduced by the utilities does not help much to 

achieve the intended flexible ramping in the net load “duck curve” feature. While the rate 

proposed in this paper offers a significant improvement over that. 

 This chapter also presented detailed thermal modeling for a multi-zone commercial 

building with VAV type HVAC units. A nonconvex optimization problem was formulated 

to model the VAV type HVAC extensively.  The aggregated power consumption of the 

HVAC units is minimized by using that model. The results exhibited that fair amount of 
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energy and peak reduction can be achieved through the optimization. On top of that, the 

zone temperature setpoints became more stable as a consequence of the optimized 

operation while not violating the temperature limit of human thermal comfort. The energy 

and peak reduction obtained from the optimization can further reduce the energy 

consumption and peak demand which can lead to economic and environmental benefits 

through dollar savings, CO2 emission reduction. In addition, peak reduction also help 

prevent blackouts.    
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4 Data Driven Maintenance and Monitoring of 

DER Component of a Commercial Building 

Microgrid: Battery Energy Storage System  

4.1 Background and Problem Statement 

 Previous chapter presented optimization of commercial building loads using DERs. 

The DER component that implemented the optimization strategy was the BESS. Regular 

maintenance is required for assuring proper functioning of BESS. While savings from the 

electricity cost optimizations helps in offsetting the investment cost of DERs, proper 

maintenance and monitoring can help increase the life of DERs and make sure they keep 

generating savings for a long time.  

 As discussed in chapter 2, the maintenance of BESS is an important issue for 

reliable and safe operation. But most works are on the online fault detection while 

predictive maintenance can help prevent any major failures during critical operating times. 

The few works that are on the predictive maintenances consider only the electrical property 

or need interruption of regular operation. Predictive maintenance through identification of 

bad cells in the BESS that uses easily available data and doesn’t require interruption of 

operation is hence useful for proper BESS operation. 

 For SOC estimation of BESS, machine learning methods have been discussed. In 

those works the use of conventional and nonconventional features have also been 

discussed. Some of the features mentioned, which are present in both conventional and 

nonconventional approaches, are highly correlated. Sometimes this leads to a phenomenon 
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called multicollinearity. Ridge regression and lasso regression methods have shown to give 

good performance in case of multicollinearity [90-91].  But these methods have not been 

explored for SOC estimation. 

 Section 2 of this chapter proposes a method for bad cell identification by using 

actual thermal and electrical property data from a Utility-Scale BESS through a 

probabilistic approach for predictive maintenance. A detailed formulation is presented for 

the development of the proposed method. Then an analysis is done by utilizing the data 

from a utility-scale BESS and the results obtained from the analysis are exhibited. All of 

the topics mentioned above are discussed in detail in different subsections of section 4.2. 

 In section 4.3, the effects of lasso and ridge regression methods are studied along 

with the other methods mentioned and their performance comparison is presented to see 

which method gives the best results for SOC estimation. Both conventional and non-

conventional features have been used for this study. The easily available conventional 

features like voltage, current, etc. and the selected non-conventional features suggested in 

[82] are derived and applied to see how their performance varies.   

4.2 Predictive Maintenance through Identification of Bad 

Cells by Statistical Analysis of Electrical and Thermal 

Properties 

4.2.1 Methodology 

 The key properties of cells in BESS can be classified among three major groups. 

These are: 

 a) electrical properties, 
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 b) thermal properties, and 

 c) chemical properties. 

 The electrical properties of a cell signify its operational performance. The thermal 

properties of a cell can indicate the risk of fire hazards. While the chemical properties of a 

cell can denote both of those along with cell aging and degradation. Any of the 

abovementioned types of properties can be used for the detection of a bad cell in a BESS. 

Though there are instruments available that can be used to test the chemical properties of 

a cell, these are highly expensive and usually capable of testing a single cell at a time, 

which makes routine testing costly and difficult. It also requires the cell under test to be 

electrically isolated from the rest of the BESS, which makes the process even more 

inconvenient. 

 Typically, most of the BESS used in utility-scale applications integrate BMS for 

monitoring and recording the performance and safety of the battery operation. Almost all 

of them measure and log individual cell voltage and cell temperature data. Cell voltage and 

cell temperature rise rate can be labeled as the most important electrical and thermal 

property of a BESS cell, respectively, and can be used for the analysis to identify the bad 

cells. As BMS collects and stores the data required for the analysis, the tedious process of 

going through testing all the cells individually to carry out predictive maintenance of the 

BESS is not required. Accessing the logged data from the BMS and analyzing them using 

the method described in subsection 4.2.2 is sufficient for this purpose. Thus, the bad cell 

identification process is made much easier. Moreover, it also eliminates the possibility of 

human error, making the process more refined. While cell voltage data can be readily 
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available and accessible, the cell temperature rise rate can also be calculated very easily 

using the recorded data at a number of timestamps. 

 The proposed method uses the cell voltage and cell temperature data to perform a 

statistical analysis of how an individual cell is staying within the manufacturer specified 

limits of these properties or how they are varying compared to other cells. The University 

of California, Riverside’s research facility College of Engineering- Center for 

Environmental Research and Technology (CE-CERT) has its own utility-scale 100 kW/500 

kWh BESS. The BESS has a total of 143 Li-ion cells connected in series, each having a 

capacity of 1000Ahr. The BESS is monitored through an integrated BMS. The BMS 

collects cell voltage and cell temperature data using voltmeters and thermistor modules and 

logs them every one minute. Logged data are stored on CE-CERTs own database server. 

Using these data, the statistical analysis is executed. The formulation for the analysis is 

shown in the next subsection along with the algorithm to calculate the cell temperature rise 

rates. 

4.2.2 Formulation for Analysis 

 Let us assume we have N number of cells in the BESS considered and we are 

analyzing the data recorded in total T number of timestamps. Each of the cells is assigned 

a unique cell ID 𝑖 =1,2,…..N, and the timestamps are labeled as 𝑡 =0,1,……T-1. We can 

define two sets containing the cell IDs 𝑪 and timestamps 𝑻 as: 

 𝑪 =  {1,2, … … , 𝑁} (4.1) 

 𝑻 =  {0,1, … … , 𝑇 − 1} (4.2) 
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4.2.2.1 Cell Temperature Rise-Rate Analysis 

 Let the cell temperature data for an individual cell having cell ID 𝑖 at some 

timestamp 𝑡 be 𝜃௜(𝑡) for total N cells and T timestamps where 𝑖 ∈ 𝑪 and 𝑡 ∈ 𝑻. The 

problem with the BMS data is that all the 𝜃௜(𝑡) can take integer values only. So, if we 

evaluate the temperature rise rates at each timestep, then we would only get zero values 

until the very timestep 𝜃௜ changes to a different integer value when a sharp change will be 

observed. Whereas the temperature may have been rising steadily over this duration of 

time. To obtain the actual rise rate at each timestep we propose an algorithm. By following 

the algorithm shown in figure 1, we can get the cell temperature rise rates ∆𝜃௜(𝑡) for N 

cells and T timestamps. 

 

Figure 4-1 Algorithm to determine the cell temperature rise rates 

 In the algorithm the calculation of cell temperature rise-rates begins with cell ID 1. 

From timestep 0 it is checked if any change happens in the 𝜃௜(𝑡). A variable 𝑇௜௡௜௧ is 
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initialized as zero as well as the value of ∆𝜃௜(𝑡). If any change is found in the value of 

𝜃௜(𝑡) the cell temperature rise rate is calculated between the time 𝑇௜௡௜௧ and current timestep 

t. Then the cell temperature rise-rates between 𝑇௜௡௜௧ and t are updated with the calculated 

value. Then 𝑇௜௡௜௧ is updated as the next timestep value and the current timestamp is 

advanced as the next value of updated 𝑇௜௡௜௧. Then this whole process is repeated for the 

cell until it reaches the final timestep. Then for each of the following cells the same process 

is carried out until the rise rates are calculated for all the cells. 

 After we have calculated the cell temperature rise rates ∆𝜃௜(𝑡) for all the cells and 

all timestamps we can define the set of cell temperature rise rates at some timestamp t as: 

 ∆𝜣(𝑡) = {∆𝜃௜(𝑡) | 𝑖 ∈ 𝑪 } (4.3) 

 We can find out the maximum cell temperature rise rate at some timestamp t using 

the following equation: 

 ∆𝜃௠௔௫(𝑡) = max
௜

(∆𝜣(𝑡)) (4.4) 

 Now the cell ID of the maximum cell temperature rise rate at that particular 

timestamp can be written as: 

 𝑖௠௔௫,∆ఏ(𝑡) = 𝑎𝑟𝑔max
௜

∆𝜃௠௔௫(𝑡) (4.5) 

 Let 𝑓௜(𝑡) be a function which determines if a cell ID 𝑖 has the highest temperature 

rise rate at timestamp t: 

 
𝑓௜(𝑡)  = ቊ

1, 𝑖 = 𝑖௠௔௫,∆ఏ(𝑡)

0, 𝑖 ≠ 𝑖௠௔௫,∆ఏ(𝑡)
 

(4.6) 

 Now let I be the random variable that represents the probability of the bad cell in 

the BESS. So, we can write the probability of 𝑖-th cell being bad as: 
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𝐏𝐫(𝐼 = 𝑖) =

∑ 𝑓௜(𝑡)்ିଵ
௧ୀ଴

𝑇
 

(4.7) 

4.2.2.2 Cell Voltage Analysis 

 Let 𝑉௜(𝑡) represent the cell voltage for the cells in the BESS at some timestamp 

where 𝑖 ∈ 𝑪 and 𝑡 ∈ 𝑻. 

 In the BESS considered here, all the cells are in series connection. Then in this case 

the total voltage 𝑉௦௬௦(𝑡) of the system at timestep t can be written as: 

 
෍ 𝑉௜(𝑡) 

ே

௜ୀଵ

= 𝑉௦௬௦(𝑡) 
(4.8) 

 Ideally, all the cells should have the same voltage value at any time and should be 

equal to the average voltage of the system at that time. If the average voltage of the system 

at timestamp t is 𝑉௔௩௚(𝑡), then in ideal case: 

 
𝑉௜(𝑡) = 𝑉௔௩௚(𝑡) =  

𝑉௦௬௦(𝑡)

𝑁
        ∀𝑖 ∈ 𝑪  

(4.9) 

 But in reality, all the cells do not have the same voltage value at the same time. The 

deviation from average voltage for cell i at timestamp t can be defined as follows: 

 ∆𝑉௔௩௚,௜(𝑡) = 𝑉௜(𝑡) − 𝑉௔௩௚(𝑡) (4.10) 

 These deviations of the cells must be within a reasonable range. The more they are 

out of this range, the more likely the corresponding cell is to degrade and be bad. We can 

determine this range from the distribution of these cell voltage deviation values. 

 Using all the voltage deviation values we can plot the probability density function 

(PDF) of it. Figure 4-2 shows the PDF of the cell voltage deviation of the BESS. We should 

note that, the PDF values here have values higher than one which is possible, contrary to 
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common perception [123]. The properties of PDF say that the values must be nonnegative 

and the area under the curve should be equal to one, which this distribution maintains. PDF 

is not a function that maps probability rather maps the rate of change of probability with 

respect to the random variable. 

 

Figure 4-2 Actual and fitted distribution curve of cell voltage deviation 

 Since the shape of the PDF shown here resembles that of normal distribution, we 

can fit it with a normal distribution. We can assume that the cell voltage deviation follows 

the fitted normal distribution and write it as: 

 ∆𝑉௔௩௚~𝑁(𝜇∆௏, 𝜎∆௏
ଶ) (4.11) 
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 Where, 𝜇∆௏  is the mean and 𝜎∆௏ is the standard deviation of the cell voltage 

deviations. We can find the mean 𝜇∆௏ and the standard deviation 𝜎∆௏ with the following 

formulae: 

 
𝜇∆௏ =

∑ ∑ ∆𝑉௔௩௚,௜(𝑡)ே
௜ୀଵ

்ିଵ
௧ୀ଴

𝑇𝑁
 

(4.12) 

 

𝜎∆௏ = ඨ
∑ ∑ (∆𝑉௔௩௚,௜(𝑡) − 𝜇∆௏)ଶே

௜ୀଵ
்ିଵ
௧ୀ଴

𝑇𝑁
  

(4.13) 

 We can validate our assumption through D’Agostino’s skewness and kurtosis test 

for normality [124]. The coefficients of skewness and kurtosis ඥ𝛽ଵ and 𝛽ଶ are defined as 

follows: 

 ඥ𝛽ଵ =
𝑚ଷ

𝑚ଶ
ଷ/ଶ

 (4.14) 

 𝛽ଶ =
𝑚ସ

𝑚ଶ
ଶ (4.15) 

 Where, 𝑚௞ is the k-th central moment which we can find using the following 

formula: 

 
𝑚௞ =

∑ ∑ (∆𝑉௔௩௚,௜(𝑡) − 𝜇∆௏)௞ே
௜ୀଵ

்ିଵ
௧ୀ଴

𝑇𝑁
 

(4.16) 

 We can check the normality of the cell voltage deviation distribution by measuring 

how close the values ඥ𝛽ଵ and (𝛽ଶ − 3) are to zero. In this case ඥ𝛽ଵ = −0.136 and (𝛽ଶ −

3) = −0.066. So, the validity of our assumption is proved. 

 Now, as we have proven the normality of the distribution for the cell voltage 

deviations, we set the significance level 𝛼 as 5%. For a two-tailed test, we find the critical 
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z-scores and consequently the limits of the range. Let the z score for 97.5% and 2.5% 

probability be 𝑍଴.ଽ଻ହ and 𝑍଴.଴ଶହ, respectively. The lower limit ∆𝑉௔௩௚,௟௢௪ and the upper limit 

∆𝑉௔௩௚,௨௣ can be found using the following equations: 

 ∆𝑉௔௩௚,௟௢௪ = 𝑍଴.଴ଶହ × 𝜎∆௏ + 𝜇∆௏ (4.17) 

 ∆𝑉௔௩௚,௨௣ = 𝑍଴.ଽ଻ହ × 𝜎∆௏ + 𝜇∆௏ (4.18) 

 We define a function 𝑔௜(𝑡) such that it shows if cell i at timestamp t violates this 

limit: 

 
𝑔௜(𝑡) = ൜

1, ∆𝑉௔௩௚,௜(𝑡) > ∆𝑉௔௩௚,௨௣ 𝑜𝑟 𝑉௔௩௚,௜(𝑡) < ∆𝑉௔௩௚,௟௢௪ 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(4.19) 

 The probability of i-th cell being bad can be represented as: 

 
𝐏𝐫(𝐼 = 𝑖) =

∑ 𝑔௜(𝑡)்ିଵ
௧ୀ଴

∑ ∑ 𝑔௝(𝑡)்ିଵ
௧ୀ଴

ே
௝ୀଵ

 
(4.20) 

4.2.3 Results 

 The analysis method described in subsection 4.2.2 was applied to the data from the 

BMS of the BESS mentioned in subsection 4.2.1. As it was mentioned earlier, the BESS 

in consideration is a property of a research center and is primarily used for research 

purposes. So, the operating hours and operation pattern change from time to time as 

required. A full month’s data were collected when a research experiment was being 

conducted and the BESS operations with the grid were done more frequently. Figure 4-3 

shows the state of charge (SOC) of the BESS for the month in consideration to give an idea 

about the operation. The sharp changes in SOC indicate charging or discharging operation 

at a very high rate while slow changes indicate operation at a lower rate. 
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Figure 4-3 BESS Operation for the period considered for analysis 

 After collecting the cell temperature data for the period considered, the cell 

temperature rise rates were calculated using the algorithm shown in figure 4-1. Then, the 

cell temperature rise rates were used to analyze and find the probabilities of cells in the 

BESS being a bad cell. Figure 4-4 shows these probabilities from the cell temperature rise 

rate, i.e., thermal property analysis. We can see that cell 50 has the highest probability, 

0.177 from the analysis which is a notably larger value than the probability of all the other 

cells. The other cells with a much lower probability than cell 50 but relatively higher than 

the rest of the cells are cell 71, 101, 102, and 125. Their respective probability values are 

0.042, 0.049, 0.053 and 0.063. 



 

88 

 

Figure 4-4 Probability of Being Bad Cell Using Thermal Properties 

 To validate our analysis cell temperature data for a heatwave day were collected 

when the BESS was non-operational, and the cell temperature rise rates were calculated 

using the algorithm in figure 4-1. The result showed that even without any BESS operation, 

only by gaining heat from the environment, cell 50 again had the highest number of 

occurrences for the cell which had the maximum cell temperature rise rate at any 

timestamp. This result is presented in figure 4-5. 
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Figure 4-5 Cell IDs having the Highest Temperature Rise Rates of the Heatwave 

Day 

 Figure 4-6 shows the probabilities of the cells in the BESS being a bad cell by 

analyzing the electrical properties, i.e., cell voltage data. We can see that cell 122 is the 

most likely to be a bad cell with a probability of 0.278. The probability value is significantly 

higher than others, indicating it is a bad cell. The other cells that do not have as high a 

probability as cell 122 but still have a relatively higher likelihood of failure than the rest of 

the cells in the BESS are cell 28, cell 93, and cell 113 with probabilities 0.112, 0.116, and 

0.13, respectively. 
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Figure 4-6 Probability of Being Bad Cell Using Electrical Properties 

 Cell 122 was tested for validation of the analysis, and it was found that it was a bad 

cell with reduced capacity. A replacement of the cell is being planned. Some of the possible 

reasons behind the thermal defect of cell 50 can be side reactions due to over-

charging/over-discharging or internal/external short circuit, loose contact of the connector, 

over-deintercalation of anode, etc. [125].  Even though cell 50 is not under consideration 

for replacement at this moment, it is kept under close observation and will be replaced in 

the future. 

 According to a report published by the United States Department of Energy (DOE), 

the annualized operational and maintenance (O&M) costs for energy storage with Li-ion 

technology are $2.91/kWh and $11.47/kW [126]. So, for  UCR’s 100 kW/500kWh BESS, 

the O&M cost for each year would be $2,602. Assuming a 25-year expected life the total 
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cost incurred would end up being $65,050. For a larger Utility-Scale BESS with higher 

power and energy capacity, this cost can be significantly greater. This analysis has the 

potential to lower the O&M costs of a BESS by accomplishing effective predictive 

maintenance. Thus, it can offer huge economic benefits to customers who use BESS for 

cost reduction or take part in providing ancillary services to the grid. In addition, both 

utility companies and other parties with stakes in grid infrastructures can also benefit 

financially. 

4.3 Performance Comparison of Machine Learning Methods 

to Estimate State of Charge (SOC) 

4.3.1 Multicollinearity and Its Effect on SOC Estimation  

 Multicollinearity, or collinearity, is the existence of near-linear relationships among 

the independent variables in a multiple regression model. When there is perfect linear 

relationship, it creates a division by zero problem which causes the regression model to 

terminate. When there is a near-linear relationship though the regression is not terminated, 

it will cause distortion in the regression. Some of the effects that are caused by 

multicollinearity are: (i) inaccurate estimates of the regression coefficients, (ii) inflating 

the standard errors of the regression coefficients, (iii) deflating the partial t-tests for the 

regression coefficients, (iv) giving false, non-significant p-values and (v) degrading the 

predictability of the model. 

 To solve this problem some suggested solutions are: (i) collecting additional data, 

(ii) simplifying the model, (iii) removing observations that induce multicollinearity, (iv) 

selecting the variables carefully and (v) applying ridge regression or lasso regression. 
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 Usually, the features that are used for SOC estimation purpose have near linear 

relationship and suffer from multicollinearity. To offset the effect of multicollinearity in 

SOC estimation, ridge and lasso regression has been applied here to examine the outcome. 

4.3.2 Applied Methods 

 The methods that are applied in this project for battery state of charge estimation 

are:  linear regression, ridge regression, lasso regression, support vector machine and 

artificial neural network. How these methods work are described in the following 

subsections [127-128]. 

4.3.2.1 Linear Regression 

 Let us assume that, we want to find a linear relationship between inputs 

𝑋ଵ, 𝑋ଶ, 𝑋, … … 𝑋௣ and output y in the form of  

 
𝑌 = 𝑓(𝑋) = 𝛽଴ +  ෍ 𝑋௝

௣

௝ୀଵ

𝛽௝ 
(4.21) 

  

 Given a set of training data (𝑥ଵ, 𝑦ଵ), (𝑥ଶ, 𝑦ଶ) , (𝑥ଷ, 𝑦ଷ)  . . . (𝑥ே, 𝑦ே) from which to 

estimate the parameters 𝛽. Each 𝑥௜ = (𝑥௜ଵ, 𝑥௜ଶ, . . . , 𝑥௜௣)் is a vector of feature measurements 

for the i-th case. The most popular estimation method is least squares, in which we pick 

the coefficients 𝛽 = (𝛽଴, 𝛽ଵ, . . . , 𝛽௣)் to minimize the residual sum of squares: 

 
෍(𝑦௜ − 𝑓(𝑥௜))ଶ = ෍(𝑦௜ − 𝛽଴ − ෍ 𝑥௜௝

௣

௝ୀଵ

𝛽௝)ଶ

ே

௜ୀଵ

ே

௜ୀଵ

 
(4.22) 

 Here the solution for 𝛽 has a unique closed form solution. Assuming X is a full 

rank matrix we get: 
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 𝛽 = (𝑋்𝑋)ିଵ𝑋்𝑦 (4.23) 

4.3.2.2 Ridge Regression 

 Ridge regression is a type of regression that shrinks the regression coefficients by 

imposing a penalty on their size. The ridge coefficients minimize a penalized residual sum 

of squares: 

 
𝛽መ = argmin

ఉ
{෍(𝑦௜ − 𝛽଴ − ෍ 𝑥௜௝

௣

௝ୀଵ

𝛽௝)ଶ

ே

௜ୀଵ

+  𝜆 ෍ 𝛽௝
ଶ

௣

௝ୀଵ

} 
(4.24) 

 Ridge regression is also called regularized linear regression. The parameter λ is 

called the regularization parameter. 

4.3.2.3 Lasso Regression 

 The lasso is a shrinkage method like ridge, with subtle but important differences. 

Not only it can shrink the coefficients, but also can remove unnecessary variables by 

making the corresponding coefficients zero. The lasso estimate is defined by: 

 

𝛽መ = argmin
ఉ

{෍ ቌ𝑦௜ − 𝛽଴ − ෍ 𝑥௜௝

௣

௝ୀଵ

𝛽௝ቍ

ଶ
ே

௜ୀଵ

+  ෍ 𝜆 |𝛽௝

௣

௝ୀଵ

| } 

(4.25) 

4.3.2.4 Support Vector Machine (SVM) 

 Let the training data consists of N pairs (𝑥ଵ, 𝑦ଵ), (𝑥ଶ, 𝑦ଶ) , (𝑥ଷ, 𝑦ଷ)  . . . (𝑥ே, 𝑦ே), 

with 𝑥௜ ∈ ℝ௣ and 𝑦௜ ∈ {−1, 1}. Suppose that there is no overlapping between classes. Let 

us define a hyperplane by: 

 {𝑥 ∶ 𝑓(𝑥) =  𝑥்𝛽 + 𝛽଴ = 0 } (4.26) 

 A classification rule induced by function f(x) can be stated as: 

 𝐺(𝑥) =  𝑠𝑖𝑔𝑛(𝑥்𝛽 + 𝛽଴) (4.27) 
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 We can find such a hyperplane that creates the biggest margin between the training 

points for classes 1 and −1 found by using G(x). An optimization problem can be 

formulated that gives the solution for 𝛽 for this hyperplane. It can be written as: 

 max
ఉ,ఉబ

1

||𝛽||
 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦௜(𝑥௜  ்𝛽 + 𝛽଴) ≥  
1

||𝛽||
, 𝑖 = 1,2, … … . . 𝑁 

(4.28) 

 Which can be rewritten as: 

 𝑚𝑖𝑛 ||𝛽|| 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦௜(𝑥௜  ்𝛽 + 𝛽଴) ≥ 1, 𝑖 = 1,2, … … . . 𝑁 

(4.29) 

 The solution for this optimization problem provides the 𝛽 for which the margin 

between the classes is the largest. 

 Now let us consider that the classes overlap. Then we define slack variables 𝜉 =

𝜉ଵ, 𝜉ଵ, . . . , 𝜉ே such that  ∑ 𝜉ଵ ≤ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡ே
௜ୀଵ  𝑎𝑛𝑑 𝜉௜ ≥ 0, ∀𝑖. Then we can modify the 

constraint as: 

 𝑦௜(𝑥௜  ்𝛽 + 𝛽଴) ≥ 1 − 𝜉௜ (4.30) 

 Now we can write the optimization problem as: 

 
min
ఉ,ఉబ

1

2
||𝛽||ଶ + 𝐶 ෍ 𝜉௜

ே

௜ୀଵ

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝜉௜ ≥ 0, 𝑦௜(𝑥௜  ்𝛽 + 𝛽଴) ≥ 1 − 𝜉௜ ∀𝑖 

(4.31) 

 The Lagrangian primal 𝐿௣ and dual 𝐿ௗ can be written as: 

 𝐿௣ =  
ଵ

ଶ
||𝛽||ଶ + 𝐶 ∑ 𝜉௜

ே
௜ୀଵ − ∑ 𝛼௜[𝑦௜(𝑥௜  ்𝛽 + 𝛽଴)ே

௜ୀଵ − (1 − 𝜉௜)]-∑ 𝜇௜𝜉௜
ே
௜ୀଵ  (4.32) 

 
𝐿ௗ =  ෍ 𝛼௜

ே

௜ୀଵ

−
1

2
෍ ෍ 𝛼௜𝛼௜ᇱ

ே

௜ᇱୀଵ

𝑦௜𝑦௜ᇱ𝑥௜
்𝑥௜ᇱ

ே

௜ୀଵ
 

(4.33) 

 Using the Karush-Kuhn-Tucker (KKT) conditions the solution is found to be: 
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𝛽መ =  ෍ 𝛼ො௜𝑦௜𝑥௜

ே

௜ୀଵ

 
(4.34) 

 where, 𝛼ො௜ are the nonzero coefficients for which the conditions are met. 

4.3.2.5 Artificial Neural Network (ANN) 

 In machine learning, neurons are computational units that take 𝑥ଵ, 𝑥ଶ,… . . 𝑥௡ (and 

a +1 intercept term) as input, and outputs ℎௐ,௕(𝑥) = 𝑓(𝑊்𝑥) = 𝑓(∑ 𝑊௜𝑥௜ + 𝑏௡
௜ୀଵ ) as 

shown in figure 4-7, where 𝑓 is the activation function. 

  

Figure 4-7 A computational neuron in a neural network 

 An artificial neural network is a collection of many neurons. Figure 4-8 shows the 

organization of a neural network. The circles labeled “+1” are called bias units and 

correspond to the intercept term. The leftmost layer of the network is called the input layer, 

the rightmost layer with only one node is the output layer and the middle layer is called the 

hidden layer. This neural network has 3 input units (not counting the bias unit), 3 hidden 

units, and 1 output unit. 
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Figure 4-8 An artificial neural network structure 

 Let 𝑛௟  denotes the number of layers in this network and 𝑠௟ denote the number of 

nodes in layer 𝑙 excluding the bias unit; thus 𝑛௟=3 in the example above. Layer l is labeled 

as 𝐿ଵ, so layer 𝐿ଵ is the input layer, and layer 𝐿௡௟ is the output layer. The neural network 

has parameters (W,b) = (𝑊(ଵ), 𝑏(ଵ), 𝑊(ଶ), 𝑏(ଶ) … 𝑊(௡೗), 𝑏(௡೗)) , where  𝑊௜௝
(௟) denotes the 

parameter (or weight) associated with the connection from unit j in layer 𝑙 to unit i in layer 

𝑙 +1, where 𝑊(௟)∈ℝ௦೗శభ×௦೗. Also, 𝑏௜
(௟)is the bias associated with unit i in layer l+1. 

 Let 𝑎௜
(௟) be the output of unit i in layer 𝑙. For input layer it can be written 𝑎௜

(ଵ)
= 𝑥௜. 

For the hidden layers and output layer the outputs are: 

 
𝑎௜

(௟ାଵ)
= ℎௐ,௕(𝑥) = 𝑓(෍ 𝑊௜௝

(௟)
𝑎௝

(௟)

௦೗

௝ୀଵ

+ 𝑏௜
(௟)

) 
(4.35) 

 To find the weights and the bias terms, first they are randomly assumed and then 

they are fed into the network to find the output. This is called the feedforward operation. 

The cost function can be defined as: 
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 𝐽(𝑊, 𝑏; 𝑥, 𝑦) =
1

2
||ℎௐ,௕(𝑥) − 𝑦||ଶ (4.36) 

 where,  𝜆 is the regularization parameter. Then we update the weights and bias 

terms using gradient descent method as: 
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 where,  𝛼 is the learning rate of the gradient descent process. This part is called the 

backpropagation operation. Then using the updated weights and bias terms we do the 

feedforward operation and then backpropagation again and again until we converge to a 

reasonable solution. 

4.3.3 Data and Features 

 The battery data are collected from CE-CERT’s battery management system (BMS) 

database. The data is collected for 32 days and has a resolution of one minute. The readily 

available variables that are obtained from the BMS database are used as features to estimate 

the SOC and considered as conventional features here. They are: (i) charge rate, (ii) 

terminal voltage, (iii) open circuit voltage, (iv) current, (v) resistance, and (vi) mode of 

operation (Charging/Discharging/Idle/Disconnected). As suggested in [4] the 

nonconventional features are derived from using the data of the BMS database. These are: 

(i) current, (ii) terminal voltage, (iii) ampere hour, (iv) time average voltage (tav=

ଵ

்
∫ 𝑣𝑑𝑡

்

௧ୀ଴
), (v) twice time average voltage (ttav=

ଵ

మ்
∫ (

ଵ

భ்
∫ 𝑣𝑑𝑡భ்

௧ୀ଴
)𝑑𝑇ଵ
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భ்ୀ଴
), (vi) time 

derivative of voltage (dvt=
ௗ௩

ௗ௧
), and (vii) second time derivative of voltage (ddvt=

ௗమ௩

ௗ௧మ
). Then, 

both type of features are used separately for each of the machine learning algorithms to see 
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how they perform. The data is split into 60%, 20% and 20% portions to make training, 

validation, and test sets. Table 4-1 lists the battery specifications that are used in this work. 

Table 4-1 BATTERY SPECIFICATIONS 

Item Specification 

Type Lithium Iron Phosphate with Yttrium 
(LiYFePO4) 

Capacity 1000 Ah 

Energy (kWh) 3.25 (11375 kWh lifetime) 

Life cycle at 0.5 C discharge rate 17500 at 20% DOD | 7000 at 50%  
DOD | 3500 at 80% DOD 

Discharge rate (continuous) 500 A 

Nominal cell voltage 3.25 V per cell 

Maximum cell voltage 4.0 V per cell 

Minimum cell voltage 2.5 V per cell 

Maximum discharge rate 1000 A (60 s) 

Operating temperature -20 ℉ to 150 ℉ 

Charge/Discharge efficiency 96% 

Self-discharge rate 1-2% per month 

Max storage voltage 3.4 V at 82 ℉ 

Shelf storage life 5 years at 60 % SOC 

4.3.4 Results 

 The machine learning algorithms mentioned above are trained and validated with 

the training and validation data sets. After training and validation, the selected hypothesis 

functions are then applied to predict the test data. Figure 4-9 shows the prediction on test 

data when conventional features are used and figure 4-10 shows the same for the 

nonconventional features. 
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Figure 4-9 Estimated SOC for different methods using conventional features

 

Figure 4-10 Estimated SOC for different methods using nonconventional features 
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 While estimating SOC of battery accuracy is important but as it is desired to 

estimate the battery SOC in real time for practical application, time is also crucial.  So, the 

best choice of machine learning method for SOC estimation must not only has to be 

accurate but also must be fast. For this reason, both accuracy and time is taken into account 

for performance comparison of these methods. To compare the accuracy, three error 

metrics have been chosen. They are mean absolute error (MAE), root mean square error 

(RMSE) and mean absolute percentage error (MAPE). Table 4-2 shows the performance 

comparison of the methods for both conventional and nonconventional features based on 

accuracy. 

Table 4-2 PERFORMANCE COMPARISON TABLE-Accuracy 

Feature Conventional Nonconventional 

Method MAE RMSE 
MAPE 

(%) MAE RMSE 
MAPE 

(%) 

ANN 1.4506 2.2550 2.2011 0.4974 0.5648 0.6956 

SVM 1.3917 2.2149 2.1601 5.7000 8.1399 7.8831 

Linear 4.9729 7.2088 7.2880 0.3871 0.4738 0.5633 

Ridge 4.9733 7.2098 7.2885 0.3871 0.4738 0.5634 

Lasso 5.1468 7.4956 7.7093 0.4219 0.4932 0.6054 

 Table 4-3 shows the performance comparison of the methods for both conventional 

and nonconventional features based on time. 
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Table 4-3 PERFORMANCE COMPARISON TABLE- Time 

Feature Conventional Nonconventional 

Method Time (s) Time (s) 

ANN 8.584929 1.026187 

SVM 25.124698 206.024141 

Linear 0.004201 0.004705 

Ridge 0.003027 0.003441 

Lasso 0.013549 0.010694 

  

 From the results we see that, in terms of accuracy using conventional features SVM 

produces the best result and using nonconventional features linear regression and ridge 

regression produce the best result. Ridge regression performs faster than the other methods 

in both cases and SVM is the slowest method in both cases. Except for SVM, 

nonconventional feature improves accuracy for all methods significantly. Non-

conventional features make ANN and lasso regression perform faster, while making ridge 

regression and SVM perform slower. Though for ridge regression the difference is not 

much, and it still is the fastest method. But for SVM the difference is significant making it 

almost eight times slower. The reason behind the poor performance of the SVM taking a 

significantly higher time than other methods is due to the computational complexity of this 

method. For 𝑛 training data samples the computational complexity is in the order of 𝑂(𝑛ଶ), 

leading to significant time increase. For methods other than ANN this complexity is in the 

order of  𝑂(𝑛). The complexity of ANN is mainly dependent on the number of layers and 

features, so it has a different order than other methods [129]. The possible reason behind 

the increased error of SVM using non-conventional method could be increased value of 
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hyperparameter C  in equation (4.31) causing the model to overfit the training set leading 

to a good prediction on training set while poor results on the test set [130]. 

4.4 Conclusions 

 This chapter proposes and formulates a method for identifying bad cells by 

analyzing cell temperature rise rate and cell voltage data. Results are generated and 

validated applying the proposed method. The potentiality of economic benefits through 

this analysis is also discussed.  

 This chapter also analyzes the performances of different machine learning 

techniques using both conventional features that can be obtained readily and 

nonconventional features that can be derived using the conventional features. Since the 

speed of the calculation for SOC estimation is a crucial factor it has also been taken into 

account for performance evaluation. The results show that for all the cases except one, the 

applied machine learning algorithms achieve higher accuracy when nonconventional 

features are used. Nonconventional features also enhance the speed of these methods in 

most cases.  Taking both accuracy and time into consideration, it can be concluded that 

ridge regression with nonconventional feature should be chosen for SOC estimation as it 

produces the best result among all scenarios. 
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5 Demonstration of Resiliency through 

Distributed Energy Resources in a Commercial 

Building Microgrid 

5.1 Background and Motivation 

 While previous two chapters deal with the optimization and maintenance of 

commercial building microgrids with DERs, this chapter describes a real world 

demonstration of such microgrid operation in both islanded and grid connected settings.  

 As discussed in chapter 2, to make the grid more resilient in situations like rotating 

blackouts or PSPS events, significant grid infrastructure upgrade is needed which may 

require significant amount of time and resources. Also, there may be a lot redundant 

resources. While microgrids and DERs can increase the grid resiliency without such large 

scale upgradation. When the grid power is disrupted or unavailable, an islanded microgrid 

with DERs can sustaining itself through the period and is able to continue the essential 

operations without any interruption. As EVs are becoming more prevalent and is expected 

to dominate the transportation sector, enabling them as a DER asset through V2G and 

deploying them to sustain islanded microgrids presents great potential for increased grid 

resiliency.  

 This chapter shows the demonstration of V2G operation within an islanded 

microgrid with its own renewable solar generation, battery energy storage and different 

types of loads. This demonstration proves the ability of V2G operation to sustain a 
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microgrid which is islanded from the utility grid and shows the interaction of different 

components of the microgrid. 

5.2 Experimental Setup 

 The Microgrid considered here is a commercial building with its own renewable 

generation and energy storage. It is situated at the University of California, Riverside’s 

(UCR) research facility called College of Engineering - Center for Environmental Research 

and Technology (CE-CERT). The building area is about 20,000 square feet and is one 

storied. This building is used for housing the offices of the administrative staffs and 

researchers of CE-CERT and is referred as Admin building. The details of the microgrid 

system configuration along with two other building integrated microgrids are discussed in 

[131]. The different components of the microgrid associated with this demonstration are 

shown in figure 5-1 and discussed below in the following subsections. 

 

Figure 5-1 Different components of the microgrid 
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5.2.1 Solar Photovoltaic (PV) Generation 

 CE-CERT has 500kW parking lot structure solar photovoltaic (PV) system array 

for the entire facility and a dedicated 180 kW inverter serves the mentioned building 

microgrid. The inverter can be controlled remotely to perform solar generation curtailment. 

5.2.2 Battery Energy Storage System (BESS) 

 The battery energy storage system (BESS) is composed of 143 cells with a total 

500 kWh storage capacity connected to a 100 kW bidirectional inverter. This battery 

energy storage (BES) inverter is capable of both working with a grid (Grid Mode) or an 

islanded microgrid (Critical Load Mode). In grid mode, it can be controlled to send power 

to or receive power from the grid when a power value and power factor value command is 

set in the inverter. In critical load mode, it can be used to form a microgrid by working as 

a load following inverter where it senses the load requirement and delivers power 

accordingly. The whole setup is inside a mobile trailer so it can be moved anywhere and 

can be connected where there is an appropriate plug point inlet. 

5.2.3 Vehicle to Grid (V2G) Inverter and Electric Vehicles (EV) 

 The vehicle to grid (V2G) inverter is a bidirectional 30 kW inverter that can charge 

or discharge an EV. It does not have the load following capability like the BES inverter. 

There are two 2013 Nissan Leafs that are available for use in the microgrid experiment. 

Each of the EVs have nominal battery energy storage capacity of 24 kWh. 

5.2.4 Load Bank 

 The load bank is a three-phase adjustable resistive load that can be set to value up 

to 100 kW in 1 kW steps. 
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5.2.5 Microgrid Connections 

 All components mentioned in the above subsections and the building loads are 

connected to a 480V, 3-phase electrical busbar inside the building’s electrical room through 

breakers and switches. The busbar itself is connected to the grid through a utility meter and 

two main breakers. One of the breakers is outside of the building and the other one is inside 

the electrical room. Three transformers are connected to the busbar that serve the loads in 

the building. Transformer T1 serves 16 Heating, Ventilation and Air-Conditioning 

(HVAC) units. Transformer T2 serves the plug loads, four level two EV chargers outside 

the building and some of the lighting loads. A small transformer serves most of the lighting 

loads in the building. The PV inverter is also connected to the busbar. A junction box 

outside the building is connected to the busbar through a breaker. The other components 

can be connected to the busbar using the junction box. The junction box connection also 

serves a level 3 DC Fast Charger (DCFC), which is not used in this experiment.  Figure 5-

2 below shows the one line connection diagram of the microgrid experiment. Meter M1 is 

the utility meters and meters M2 to M5 were connected for data collection of the 

experiment. 
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Figure 5-2 One Line Connection Diagram of the Microgrid System with Power Flow 

Direction 

5.3 Experiment Design and Methodology 

 To obtain the desired results from the experiment different operations need to be 

executed in a specific manner considering the capabilities and limitations of the DERs. For 

example, the solar kW capacity is much larger than the building load since this building is 

a net-zero energy building exporting surplus solar power to the grid to be imported back at 

night. But the critical load port of the BES inverter which delivers the power to the 

microgrid in grid-forming mode allows up to 5 kW power to charge the batteries. The 

remaining solar power after serving the building load and charging the BESS in islanded 

operation has no grid to absorb this surplus power. Therefore, the system frequency 

increases and the PV inverter trips when it goes above the upper limit of the allowable 
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frequency value. Similarly, SOC of the energy storages are another constraint that limits 

the duration of operation. The experiment was designed in way that complies to the 

limitations and requirements of the system. The tasks were divided among four phases. At 

first phase, we execute the preparations needed to carry out the experiment. Then in second 

phase, we disconnect the main breaker making the microgrid islanded and keep running 

the island with the help of two of the DERs, PV and BESS. Then in third phase, we bring 

in the EV and test both charging and discharging of EV, acting as load and DER, in the 

microgrid, respectively. Then in the final phase, we collect the data and analyze them to 

obtain and present the results. Figure 5-3 shows the steps of the experiment design for each 

of the phases. 

 

Figure 5-3 Tasks at Different Phases of the Experiment 

 We perform many of the steps in the experiment based on several conditions that 

emerge from the system constraints. We develop a flowchart of the experiment that 
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represents them and generates a set of instructions to carry out the experiment. Figure 5-4 

illustrates the flowchart of the experiment steps. 

 

Figure 5-4 Flowchart of the Experiment Steps 

Start

Follow Preparation Phase 
Steps

Start Islanding with BESS 
Inverter

Start Islanding with BESS 
Inverter

Activate PV Inverter

Frequency > Limit? Increase Curtailment/
Increase Load Bank Value

Continue Island Operation

Activate V2G Inverter

Charge EV using G2V

PV Generation < 0? BESS SOC < Limit?

Start V2G

Increase V2G Power Level

Frequency > Limit?

EV SOC < Limit?

Stop V2G

Stop Islanding and Connect 
to Main Grid

Stop

Continue V2G Operation

Yes

No

No No

Yes Yes

Yes

No

Yes

No
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 This flowchart acts a guideline for conducting the tasks in a systematic manner and 

helps the experiment to be successful without any complications. 

5.4 Results  

 Power plots of the experiment are shown in figures 5-5 and 5-6 with the sequences 

of important actions and events labeled accordingly. The results are discussed in detail with 

the steps of the experiment. 

5.4.1 Preliminary Testing with the Grid 

 To confirm proper functioning of BES and V2G inverters, preliminary testing were 

performed initially with grid. Transformers T1, T2 and lighting were turned off to eliminate 

load variations during this part of the experiment. A controllable three-phase load bank 

was connected to achieve loading as needed. With this reduced loading condition, PV 

curtailment was set at a lower value, producing about 17 kW. At first the BES inverter was 

charged from the grid, kept idle and discharged to the grid, respectively, with 5-minute 

duration each. Same testing was repeated for the V2G inverter operation. Then at 12:42, 

the testing was done for both the inverters with one charging and the other discharging, 

keeping both idle and then alternating the charging and discharging of the inverters, for 5-

minute duration each. This last experiment demonstrated that BES and vehicle batteries 

can exchange energy with each other without increasing the loading on the grid distribution 

feeder. This type of system configuration can help solve the distribution line limitations 

faced by many potential charging sites for rapid charging of medium duty and heavy duty 

(MDHD) EVs. These actions are shown in the pink labeled portion of figure 5-5. 
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Figure 5-5 Power plots for the System including V2G, BES, PV, Building Load and 

Islanding 

5.4.2 Solar Inverter and Load Bank Testing with the Grid 

 The second shaded portion in figure 5-3 shows curtailed solar production along 

with various settings of the load bank. This was needed to accommodate typical fixed 

power production of PV inverters potentially creating surplus power causing severe 

frequency variation in islanded operation. For a system with large inertia, the effect on the 

variation of frequency is small due to a single generation source or some load variations. 

But in islanded microgrids this could pose a serious problem as it could violate the 

operational limits and cause failure of islanded operation. The load balancing and over-

generation curtailment example shown here can help solve the frequency variation 

problems of islanded microgrids.  
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5.4.3 Microgrid Islanding 

 As shown in the yellow shaded potion in figure 5-5, at 14:11, the PV inverter was 

shut off and the main grid breaker was disconnected. Then at 14:15 the plug load 

transformer T2 was turned on, establishing the islanded microgrid, as T2 load was supplied 

by the BES inverter. At 14:17, the load bank was set at 20 kW, in addition to the T2 load. 

At 14:20, the PV inverter was turned on again. After 5 minutes it synchronized with the 

phasor from BES inverter and started supplying power to the islanded microgrid. Such 

islanded microgrids can power the critical loads without interrupting operation during 

rotating blackouts or PSPS events with the help of DERs with one of the inverters working 

as primary source providing necessary reference phasors. 

5.4.4 V2G Operation 

 As shown in figure 5-5, at 14:42, the V2G inverter was activated with charging 

value set at 2.5 kW, charging the EV from the islanded microgrid. After a few minutes, the 

V2G inverter was set at idle mode before switching to discharge mode with a set value of 

2.5 kW. The delivered EV power is now partly helping to carry the islanded microgrid load 

along with power delivered by BES and PV inverters. The solar generation started to reduce 

later in the day requiring load bank set values to be adjusted accordingly thereby avoiding 

mismatch of power between generation and demand. Both PV and load bank were inactive 

after 15:57. The V2G activities beyond 16:11 are presented in detail in figure 5-6. 
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Figure 5-6 V2G operation with Vehicle Sustaining Islanded Microgrid with Load 

and Battery Charging 

 To evaluate the V2G inverter’s ability to support the islanded microgrid load alone, 

the discharge rate was increased to a value of 10 kW. As typical T2 load was about 5 kW, 

the power supplied by the vehicle through V2G was more than the required load at that 

time. The remaining power was flowing through the BES inverter to the storage batteries. 

The charging of batteries continued till low SOC limit for the V2G inverter was reached. 

Next a second EV was plugged with the same 10 kW discharge command, allowing it to 

carry the load and charge the BES batteries again. Meanwhile, the building load was 

automatically carried by the BES inverter. The second EV’s V2G operation continued till 

it reached its low SOC limit. 
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 This V2G operation demonstrates the potential of EVs as DER assets in islanded 

microgrid systems. Not only it supported the islanded microgrid at lower discharging rate, 

but also it exhibited the ability to exchange power with the BESS at higher discharging rate 

by charging the BESS. This ability offers more flexibility in DER operation of microgrids 

and can contribute to improved resiliency.  

5.5 Validation 

 To validate resiliency of the islanded microgrid, we use some of the electric power 

distribution reliability indices suggested by IEEE [132]. The indices considered are: 

 (i) System Average Interruption Duration Index (SAIDI), and (ii) Customer 

Average Interruption Duration Index (CAIDI). 

 These indices can be represented as: 

 
𝑆𝐴𝐼𝐷𝐼 =

∑ 𝑟௜𝑁௜௜

𝑁்
  

(5.1) 

 
𝐶𝐴𝐼𝐷𝐼 =

∑ 𝑟௜𝑁௜௜

∑ 𝑁௜௜
 

(5.2) 

  

 Where,  

 𝑁௜= Number of interrupted customers for each sustained interruption event during 

the reporting period. 

 𝑁்= Total number of customers served for the area. 

 𝑟௜= Restoration time for each interruption event 

 SAIDI indicates the total duration of interruption for an average customer within 

some specific period. CAIDI expresses the average time required for restoration of power.  
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 Another important related concept is the Major Event Day (MED). Major Events 

occurs when the electric power system exceeds its reasonable design and operation limits. 

MEDs are those days when the system SAIDI exceeds some threshold value 𝑇ொ஽. This 

threshold value is determined from the statistical analysis of the historical SAIDI values of 

a certain period, usually last five years. 

 For our analysis SAIDI and CAIDI values for latest reported ten years (2010-2019) 

were collected from three major utility companies in California, namely Southern 

California Edison (SCE), San Diego Gas and Electric (SDG&E) and Pacific Gas and 

Electric (PG&E) [133-135]. Tables 5-1 and 5-2 show the SAIDI and CAIDI values of these 

utilities including and excluding the MEDs for the most recent reported ten years, 

respectively. 
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Table 5-1 SAIDI for Last Reported 10 Years 

Year Including MED Excluding MED 

SCE PG&E SDG&E SCE PG&E SDG&E 

2010 140.91 250.4 85.37 98.69 130.3 63.36 

2011 232.39 279.5 567.59 108.15 109.6 53.43 

2012 108.13 141.1 64.36 100.7 110.7 64.36 

2013 102.61 117 75.03 94.48 95.8 59.96 

2014 112.1 131.9 75.81 92.3 91 64.6 

2015 114.83 131.8 58.11 100.15 80.7 57.92 

2016 134.48 106.8 86.01 109.98 93.9 72.75 

2017 139.73 357.9 117.49 91.72 97.4 64.51 

2018 136.82 282.9 121.02 71.25 99.9 77.76 

2019 177.97 1365.1 122.96 90.75 117.7 68.64 
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Table 5-2 CAIDI for Last Reported 10 Years 

Year Including MED Excluding MED 

SCE PG&E SDG&E SCE PG&E SDG&E 

2010 134.56 179.6 130.99 120.99 117.8 121.8 

2011 223.75 219.1 385.63 118.3 112.5 113.44 

2012 121.1 124.9 120.78 117.76 106.8 120.78 

2013 112.76 109.3 133.84 107.85 98.9 127.03 

2014 116.04 126.2 119.88 106.82 103.5 107.06 

2015 125.4 136.3 109.68 116.56 102.5 110.09 

2016 122.26 104.5 126.99 110.69 99.8 117.43 

2017 117.19 244 200.87 105.4 110.9 125.92 

2018 156.61 267.9 183.88 99.58 103.8 123.84 

2019 171.17 728.5 192.38 104.75 116.5 115.23 

  

 An analysis was done to show the effect of the BESS and V2G operation based on 

the resiliency indices of the collected data. The analysis includes a total of 8 scenarios 

where it is assessed what would be the resource required to sustain the microgrid in each 

scenario. In each scenario either the maximum or the average SAIDI or CAIDI is used to 

evaluate the amount of resource needed to withstand the interruption. Results show three 

cases: if only BESS is present, if only EV is present and if both are present. The hourly 

load of the building microgrid for the year 2019 was collected and used. For the first four 

scenarios the average SAIDI and CAIDI values were used with the average building load 
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for the whole year. For the next four scenarios the maximum SAIDI and CAIDI values 

were used along with the maximum monthly average load value. The first four scenarios 

show assessment for a typical interruption condition while the rest show them for the worst 

cases. Table 5-3 presents the results of the analysis. For the BESS we assumed that the 

usable range is from 20% to 90% of the total storage capacity and for the EVs we assumed 

that the usable range of the battery capacity is from 20% to 100% of the total storage 

capacity. Another assumption is made that when both the BESS and the EVs are used, the 

EVs deliver energy only after the total usable capacity of the BESS has been utilized. 
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Table 5-3 Results from the Analyzed Scenarios 

 Scenario 

 

Index 

 

Index 

Value 

(min) 

 

Load 

(kW) 

 

BESS Usable 

Capacity 

(kWh) 

 

EV 

Capacity 

(kWh) 

 

Resource Needed to Sustain Microgrid 

Only BESS 

Capacity (%) 

Only EV 

(Count) 

Both EV and BESS 

1 Avg SAIDI 

including MED 

197.94 28.57 350 19.2 26.9 5 BESS 26.9%, 0 EVs 

2 Avg SAIDI 

excluding MED 

87.75 28.57 350 19.2 11.9 3 BESS 11.9%, 0 EVs 

3 Avg CAIDI 

including MED 

178.20 28.57 350 19.2 24.2 5 BESS 24.2%, 0 EVs 

4 Avg CAIDI 

excluding MED 

112.14 28.57 350 19.2 15.3 3 BESS 15.3%, 0 EVs 

5 Max SAIDI 

including MED 

1365.1 39.21 350 19.2 254.9 47 BESS 100%, 29 EVs 

6 Max SAIDI 

excluding MED 

130.3 39.21 350 19.2 24.3 5 BESS 24.3%, 0 EVs 

7 Max CAIDI 

including MED 

728.5 39.21 350 19.2 136.0 25 BESS 100%, 7 EVs 

8 Max CAIDI 

excluding MED 

127.03 39.21 350 19.2 23.7 5 BESS 23.7%, 0 EVs 
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 Results show that the microgrid considered here would be able to survive most of 

the outage scenarios presented here. The results of the analysis as summarized in table 5-3 

showed that out of the 8 scenarios it would be able to sustain operation in 6 of them, 

supported by the BESS or EV only. The other two cases are the worst-case scenarios, where 

the SAIDI and CAIDI values are almost 7 times and 8 times of their average counterparts 

,respectively, and are extremely rare cases. From these results it is evident that this 

microgrid setup is able to deal with the regular outages seen in California. The extreme 

outages that happen rarely can also be managed with upgradation of the system. The 

number of EVs required to sustain the microgrid solely using V2G in the regular outage 

scenarios are also limited up to 5 EVs which is very much feasible considering current EV 

penetration rate and widespread deployment of chargers with V2G provision.  

 To find the impact of both renewable energy and energy storage, a resiliency 

simulation of the microgrid under consideration was executed using National Renewable 

Energy Laboratory’s Reopt [106]. Fifty precent of the total load was assumed as the critical 

load of the system and the maximum SAIDI from table III value was considered as the 

outage duration. The optimal BESS size for the base case, financially most feasible case 

and case considering resiliency was determined considering the existing load and solar PV 

system. The optimal storage size for the resiliency was 35 kW/217 kWh system. The 

existing BESS is sufficient for such a system. Though 10 more EVs are required with V2G 

inverter upgraded to 35 kW if the microgrid is solely dependent on the V2G operation. A 

total of 8,760 outage simulations are run, one for each hour of the year. The average and 

maximum resiliency are calculated as the average and maximum time survived during the 
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simulated outages. The hourly microgrid load for year 2019 was used here. The outage 

start date is assumed as the day when the highest peak load happens (May 5). Table 5-4 

shows the results of comparison among the three cases. Figure 5-5 displays the zoomed in 

version of the microgrid operation focusing on the outage hours. Optimal resource 

allocation of solar PV and BESS during the outage duration that would result in the most 

cost-effective outcome is shown in this figure. On May 5, before the outage started most 

of the load was served by PV while the remaining portion was from the grid. A small 

amount was delivered to the BESS. The microgrid starts operating as an island when the 

outage starts. To compensate for the lost grid power, the battery starts providing power to 

the load as shown in blue shaded area in figure 5-7. BESS SOC starts dropping until next 

day’s solar production is large enough to supply both load and BESS. This optimized 

operation shows that even with lower rated DERs the microgrid island can be sustained for 

the most extreme scenario of the analyzed eight scenarios when we run only the critical 

loads instead of all the loads run at usual times.  
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Table 5-4 Results from the Simulation 

Scenario Business as Usual Financial Resilience 

PV Size (kW) 100 100 100 

BESS Size  - - 35 kW/ 217 

kWh 

Life Cycle Cost ($) 108,562 108,619 176,963 

Average Resiliency (hrs)  2 2 220 

Maximum Resiliency 

(hrs) 

12 12 1,125 

 

Figure 5-7 System Performance During Outage 

5.6 Conclusions 

 This chapter describes a successful implementation and demonstration of an 

islanded microgrid for an office building with EV delivering power to support microgrid 
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operation. An islanded microgrid was formed using, a stationary battery energy storage 

inverter, solar PV inverter and building loads. Both charging and discharging of EV energy 

into the islanded microgrid was demonstrated. It showed that not only an EV can be 

charged from a microgrid that is not connected to the main grid, but also it can be used to 

help a microgrid receive energy complementing other available generation sources. With 

the help of a load following inverter providing necessary reference phasors for establishing 

this islanded microgrid, more inverters can be brought in parallel with it to sustain an 

islanded microgrid for a longer duration. The island sustained for 2 hours 45 minutes, 

which is longer than the recent rotating blackout durations of August 2020 and could have 

stayed active for longer time using the full storage capacity of BESS. This can also improve 

resiliency and reliability by providing power during PSPS incidents. An analysis validating 

the effectiveness of the microgrid in such outage conditions are also presented. The EVs 

used here were 2013 Nissan Leafs subject to storage capacity degradation and reduced 

limits on rate and duration of delivered battery energy. With newer vehicle models, higher 

discharge power value and duration can be obtained. Medium duty and heavy duty 

(MDHD) EV’s can help us to achieve that to higher extent. Results of this demonstration 

showed that one EV with enough storage capacity and a properly sized inverter can sustain 

a residential microgrid by itself, while multiple EV’s can do that for a commercial building 

sized microgrid. Standard PV and V2G inverters deliver set values of power and are not 

able to respond to continuous changing building load.  
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6 Conclusions and Future Works 

6.1 Conclusions 

 In this dissertation, several methods have been developed, and experiments were 

conducted that can improve the cost-effectiveness, reliability, and resiliency of commercial 

building microgrids. The specific and novel outcomes of this study are summarized below: 

 A novel comprehensive optimization framework was developed that is 

applicable to a commercial building microgrid equipped with renewable 

generation and BESS under any type of commercial utility tariff. These tariffs 

contain diverse energy and demand charge components such as, time 

independent peak demand, TOU, CPP, etc, that are analyzed to develop a 

universal cost function for the optimization. Through the optimization of 

building loads savings potential from different tariff types are compared to 

obtain best investment decision for the consumers. These comparisons revealed 

that differences in tariff types and charge components can have a huge impact 

on the monthly billing and optimization results.  Different changes in tariffs, 

such as, changes in prices, time periods and options are taken into account and 

their impacts on the optimization results are examined. The findings reveal 

which price components have higher or lower impact on the savings from 

different DERs and how choice between energy and demand heavy charges 

impact the percentage savings from different DERs for buildings with different 

load factors. Benefits of this optimization from utility’s perspective are also 
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presented through demand reduction possibilities and a dynamic tariff was 

proposed that showed it can alleviate “Duck Curve” ramp rate requirements. 

 A data-driven predictive maintenance method for BESS was developed using 

easily accessible data. The method was found to be effective in detecting faulty 

BESS cells. Potential financial gains from this method were discussed. The best 

machine learning based BESS SOC estimation method in terms of accuracy and 

time was sought through comparison of different machine learning methods 

with the best selection of features. The Ridge Regression method was identified 

as the best method for SOC estimation in terms of both aspects.  

 A microgrid islanding methodology was developed and implemented in a 

commercial building microgrid. This implementation included combination and 

coordination of several DERs such as BESS, PV and EVs with V2G. Resiliency 

of the microgrid was examined under several constrains, such as, operational 

limits of system frequency and SOC of both BESS and EV battery storages. A 

number of resiliency indices of different outage scenarios were utilized to 

validate the results. The results and validation revealed that the mentioned 

microgrid would have been able to withstand even the worst outage in 

California that occurred during these last ten years and all the other outages 

could have been easily handled just by using the partial capacity of the of the 

microgrid through following developed strategy properly. 
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6.2 Selected Publications from This Research 

 A. Hasan, J. Yusuf, L. Contreas, and S. Ula, “Bad Cell Identification of Utility-

Scale Battery Energy Storage System through Statistical Analysis of Electrical 

and Thermal Properties”, IEEE PES Innovative Smart Grid Technologies 

Europe, (ISGT Europe), 2021 (received best paper award). 

 A. Hasan, L. Contreas, J. Yusuf, and S. Ula, “A Comprehensive Building Load 

Optimization Method from Utility Rate Structure Perspective with Renewables 

and Energy Storage”, International Conference on Smart Energy Systems and 

Technologies (SEST), 2021.  

 A. Hasan, J. Yusuf, L. Contreas, M. Barth and S. Ula, "Demonstration of 

Microgrid Resiliency with Vehicle to Grid (V2G)," IEEE Transportation 

Electrification Conference and Expo (ITEC), 2021. 

 A. Hasan, J. Yusuf and S. Ula, "Nonconvex Thermal Modelling and Energy 

Optimization for Multizone Commercial Buildings with VAV Type HVAC 

Units," International Conference on Smart Grids and Energy Systems (SGES), 

2020. 

 A. Hasan, J. Yusuf and R. B. Faruque, "Performance Comparison of Machine 

Learning Methods with Distinct Features to Estimate Battery SOC," IEEE 

Green Energy and Smart Systems Conference (IGESSC), 2019. 

6.3 Future Works 

 There are several outcomes derived from this dissertation that contributes toward 

the improvement of commercial building microgrids with DERs, however, further 
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improvements may be possible by extending this research into the future. Some of the 

possible future works that can done to bring these improvements are listed below: 

 The optimization in chapter 3 uses building load and solar generation data 

assumed perfect prediction. However, forecasted values may have some 

inaccuracies which can introduce some discrepancy in the optimization results. 

Future work can be carried out to see how the level of inaccuracy associate 

with the level of discrepancy in the optimization results. Increasing EV 

adoption and on-site EV charging infrastructures in workplaces along with 

V2G capabilities have significant impact on commercial building loads. 

Sometimes these EV charging is metered individually or aggregated under the 

main meter. Separately metered EV charging fall under separate EV tariffs. 

Further works can be done considering these aspects. Effects of load deferral 

under different demand response schemes and prospects of other grid ancillary 

services besides flexible ramping can also be investigated. 

 The work in section 4.2 can be further expanded by adding other factors to the 

analysis such as cell aging and chemical properties from spectroscopy data, if 

available. The application of different machine learning techniques with 

performance comparison can further improve this work.  

 The microgrid with V2Gs are typically relatively small size. Future 

development work is needed to involve integrating and combining DERs of 

various capacities for larger V2G impact in microgrids, thereby potentially 

maximizing the benefits from grid ancillary services.  
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