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ABSTRACT 

Climate Change versus Human Population and Development: Hurricanes, Urbanization, and 

Tourism Impacts on Land Change in the Tropical Island Ecosystems of Roatán, Honduras 

By 

Cascade P Tuholske 

Relatively little scholarship has compared the ecological impact of acute climate-

related events versus chronic human pressures. Despite mounting pressures from climate 

change and rapid tourism development across the Caribbean, even less research has assessed 

the relative impacts of biophysical versus anthropogenic pressures on the region’s island 

landscapes. We compare the effects of an extreme climate event in the years immediately 

following Hurricane Mitch in 1998 relative to thirty years of rapid urbanization and tourism 

development on Roatán, Honduras. Results from a random forest classifier applied to thirteen 

Landsat Thematic Mapper (TM) and Operational Land Imager (OLI) scenes, indicate that 

between 1985 and 2015 urban area increased by 982.8 ha (227.7%), with 224.1 ha (-19.1%) 

of mangroves converted to urban areas. This compares to a 37% (384.9 ha) decrease in 

mangroves immediately following Hurricane Mitch. Mangroves in protected areas have fully 

recovered since Mitch, demonstrating their resiliency. Despite being illegal, mangrove 

deforestation across all unprotected areas accelerated to accommodate increasing urban area. 

Given that mangroves provide vital protection to an island’s coastline and represent a major 

carbon-sink, and that extreme hurricanes in the Caribbean are projected to double in the 

coming decades due to climate change, this research suggests that rapid urbanization and 

tourism development in the Caribbean may decrease island ecosystem resiliency to 

environmental stressors.  
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Introduction  

Valuable and vulnerable, Caribbean tropical islands remain among the most 

ecologically diverse places on the planet (Cassels et al. 2005; Hammond et al. 2015). While 

abundant ecological splendor offers a boon for Caribbean island economies, linked 

terrestrial-marine ecosystems face mounting anthropogenic and biophysical threats. Climate 

change stands to exacerbate a host of environmental threats, while rapid urbanization and 

tourism development further compound chronic pressures on Caribbean island environments 

(Klein et al. 1999; Belle & Bramwell 2005, Stonich 2008). While a growing literature 

discusses many aspects of climate change and human impacts on the environment (e.g. An 

and López-Carr 2012), little is yet known to what extent anthropogenic pressures compare to 

environmental impacts on Caribbean ecosystems (Bremner et al. 2010). 

The latest climate models suggest that Atlantic hurricanes will increase in intensity 

and frequency as sea surfaces warm, indicating that category 4 and 5 storm incidence may 

double by the end of the 21st century (Webster et al. 2005; Bender et al. 2010). Sea-level rise 

will further compound the damage hurricanes cause to Caribbean islands. Global mean sea-

level rose 1.5 to 1.9 mm yr-1 from 1901 – 2010 and is projected to rise 26 to 98 cm yr-1 by 

2100 (Church et al. 2013), aggravating storm damage to terrestrial and marine Caribbean 

island ecosystems (Doiron & Weissenberger 2014). Such sea-level rise enhances inundation 

of low-lying coastal land, accelerates coastal erosion, and leads to salt water intrusion of 

freshwater aquifers (Belle & Bramwell 2005). Marine ecosystems face similar threats from 

rising sea-level and increased storm severity, with coral reefs being exceptionally vulnerable 

to severe hurricanes (Gardner et al. 2005). Warming sea-surface water temperatures have 
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already increased coral reef bleaching in the Caribbean and will continue to worsen in the 

coming decades (McWilliams et al. 2005; Eakin et al. 2010). 

Tourism has long been hailed as an economic boon for the Caribbean (Stonich 1998). 

The region has become among the most tourism-dependent regions on the planet, with 28.7 

million stopover tourists and 24.4 million cruise passengers visiting the region in 2015 

(European Commission 2002; Caribbean Tourism Organization 2015). These 50 million 

visitors injected $51.9 billion into the Caribbean’s economy in 2014, providing 13% of total 

regional employment (Turner 2015). However, the sustainability of the Caribbean tourism 

industry is increasingly questioned (Stonich 1998; Stonich 2008; Stonich et al. 2008; Doiron 

& Weissenberger 2014). The coupled terrestrial and marine ecological splendor that draws 

tourists to Caribbean islands contends with heightened stress due to the rapid growth of the 

tourism industry itself. Tourism development represents a risk of $350 - $870 million per 

year in lost revenue due to damage to reefs, a decline in dive tourism, and lost shoreline 

protection (Burke & Maidens 2004). In-migration and urbanization competes for bounded 

island coastlines, rendering Caribbean islands among the most densely populated and 

urbanized places in the world (Hinrichsen 1998; United Nations 2015).  

Anthropogenic pressures on Caribbean island terrestrial ecosystems cascade into 

surrounding marine environments. While coral reefs provide immense economic, social, 

cultural and environmental benefits to island communities, urbanization and development of 

Caribbean island landscapes threatens over 60% of the Caribbean’s reefs (Spalding et al. 

2001). Urbanization and tourism development harms Caribbean marine ecosystems through 

overfishing, the introduction of invasive species, wastewater and irrigation runoff, and 

alteration of island coastlines through development, erosion, increased sediment and coastal 
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deforestation (Burke & Maidens; Hall 2010). Coastal development threatens reefs, which 

reduces coastal protection and increases damage to islands from storm surges and tsunamis. 

Mangrove forest degradation illustrates a foremost environmental and human threat to 

Caribbean island terrestrial and marine ecosystems. Ecologically, mangroves provide habitat 

for juvenile coral reef fish species and remain vital to overall coral ecosystem function, 

fisheries productivity and reef resilience (Mumby et al. 2004). A bulwark against climate 

change, mangroves are among the most carbon-rich tropical forests and mangrove 

deforestation may contribute to as much as 10% of global annual carbon emissions (Donato 

et al. 2011). Economically, the United Nations Environmental Program (UNEP) estimates 

that, worldwide, mangroves deliver hundreds of billions dollars of economic, social, and 

environmental benefits to coastal communities and for the planet (Ajonina et al. 2014). 

Citing evidence from Central Africa, UNEP estimates that mangrove protection of coastal 

communities and ecosystems from storm surges and hurricanes at $11,286/ha in seawall 

replacement, $7,142/ha in overall protection for rural communities and $151,948/ha for 

urban infrastructure. UNEP estimates a low-end social benefit of reduced carbon at 

$15,588/ha to $151,983/ha of mangroves. Notwithstanding that mangroves are protected 

under international treaty and national laws in the Caribbean, migration and urbanization to 

coastal areas rank among the most important drivers of tropical forest loss, including 

mangroves, over-multi-decade time scales (Lambin et al. 2003; Singh et al. 2014). Climate 

change further burdens Caribbean mangroves, with sea-level rise noted as the perhaps the 

greatest threat (Gilman et al. 2008).   

Researchers have long used remote sensing to measure land use-cover change 

(LUCC) in terrestrial ecosystems, ranging from studies of deforestation in Latin America 
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(Aide et al. 2010), the Amazon (Roberts et al. 2002; Nunes et al. 2015) and large tropical 

islands (Harper et al. 2007) to urbanization (Seto et al. 2011). However, remote sensing has 

rarely been applied to Caribbean islands. Notably, researchers have mapped mangrove cover 

of continental Caribbean coastlines (Murray et al. 2003) and urban land cover of Puerto Rico 

(Martinuzzi et al. 2007). Remote sensing of LUCC offers the opportunity to investigate local 

patterns and processes that are key to understanding human-environment dynamics in small 

bounded areas as characterized by tropical islands (Bremner et al. 2010). Such local-scale 

temporal analysis of LUCC not only allows for the investigation of coupled human-

environment systems, but also assists in the prediction of future LUCC (Lambin et al. 2003). 

While a limited body of literature has examined the potential effects of climate change and 

tourism development on Caribbean islands (Uyarra et al. 2005; Belle & Bramwell 2005; 

Moore 2010; Scott et al. 2012; Doiron & Weissenberger 2014), no research has leveraged 

remote sensing to compare the impacts of a major climatic event versus rapid urbanization 

and tourism development on a Caribbean island’s landscape, much less assessed how such 

pressures may affect mangroves. 

Roatán, Honduras, presents a compelling opportunity to quantitatively decouple the 

relative effects of humans versus an extreme climate event on a Caribbean’s island 

landscape. Like all Caribbean islands, Roatán copes with anthropogenic and biophysical 

threats to its coupled terrestrial-marine ecosystem. While Roatán’s tourist development did 

not launch in earnest until the 1990s, tourism and population have ballooned on the island 

since the late 1990s (see Stonich et al. 2008). Fewer than 13,000 people lived on Roatán in 

the 1970s and as many as 100,000 people inhabit the island today, with much of this growth 

coming from in-migration from mainland Honduras (Stonich 1998; Bay Island Voice 2014). 
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Today, the island is a melting pot of ethnic groups from Caracol, Garifuna, Afro-Caribbean, 

Hispanics, and expatriates.  

Tourism to Roatán boomed from 15,000 tourists in 1998 to 1.2 million tourists in 

2011 (Stonich 1998; Kendal 2012). In 2015, tourism comprised 16% of Honduras’s GDP 

(Turner 2015). The Bay Islands account for by far the most tourist visits to Honduras: of the 

nearly 2 million tourists that visited Honduras in 2013, ~700,000 disembarked as cruise ship 

passengers in Roatán alone (Ministry of Tourism 2014). The increase in tourism can largely 

be attributed to two cruise ship terminals, Port Mahogany Bay and Port Roatán and the 

establishment of Roatán as a free trade zone, Zona Libra Touristica (Zolitur) in 2006 

(Stonich et al. 2008). The opening of the Mahogany Bay terminal increased cruise ship 

passenger visits by 86% between 2009 and 2010, adding 373,800 visitors in 2010 compared 

to 2009 (Ministry of Tourism 2009, 2014).  

Climate change threatens Roatán’s fragile marine and terrestrial ecosystems (Doiron 

& Weissenberger 2014). While the effects of climate change remain unclear, Hurricane 

Mitch, the eighth strongest and second deadliest Atlantic hurricane on record (National 

Climatic Data Center 2004; Rochelau 2015), offers a striking example of the damage that can 

be inflicted by an extreme weather event. The category 4 storm passed 40 km east of Roatán 

hurricane, exposing Roatán to hurricane force winds from 27 – 29 October 1998 (Cahoon et 

al. 2003). Wind speeds peaked at an estimated 180 km hr-1 and a tidal surge inundated 

Roatán’s northern and eastern coasts (Doyle et al. 2003). Because much of the affected areas 

lay inside Saint Helena Wildlife Refuge and Barbareta Marine Reserve, both protected from 

development, we can measure how Roatán’s landscape recovered since Hurricane Mitch to 
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more accurately gauge the comparative acute impact of Hurricane Mitch versus rapid 

urbanization and tourism development on the island. 

Scientists continue to debate the independent and combined impact of biophysical 

and human impacts on global ecosystems under duress from human encroachment and 

climate change. Despite a significant body of literature highlighting both human and 

environmental threats to Caribbean islands, to our knowledge no published research has 

quantitatively compared environmental impacts with human impacts on a tropical island’s 

landscape. This case study offers to fill this gap by utilizing remote sensing to measure and 

map LUCC on Roatán from 1985 to 2015 to examine what happens when an extreme 

weather event and anthropogenic pressures collide in an island ecosystem. We quantify 

LUCC from 1985 – 2015, comparing the effects of hyper urbanization—defined here as 

urban land area expansion (Seto et al. 2011)—and tourism development on LUCC with the 

acute damage of a Hurricane Mitch. We specifically document land conversation rates of 

mangroves to urban areas, and compare this with the immediate loss and eventual regrowth 

of mangroves following Hurricane Mitch. By evaluating the relative impact of both human 

and environmental impacts on Roatán’s mangroves we take an important initial step to 

understanding the relative contribution of each threat independently and interactively. Given 

mangroves’ key roles in climate change mitigation as carbon sinks, as island protection from 

hurricanes, and as key species for marine ecosystem vitality, this case study suggests tourism 

and development exacerbate the potential for decline in Caribbean ecosystem resiliency.  

Methods 

Study Site  
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 Located atop the Mesoamerican Reef, a UNESCO World Heritage site, Roatán 

provides an exceptional location to investigate climatic and anthropogenic drivers of LUCC 

on a tropical island. The largest of the Bay Islands, Roatán sits ~50 km from Honduras’ 

northern coast. The island, including Santa Elena and Barbareta islets, is approximately 40 

km long and 5 km across at its widest point, encompassing ~130 km2. A serpentine ridge 

runs west-east along the center of the island, with a maximum elevation of 244 m, and 

contains a few exposed rock outcrops of serpentinite, amphibolite, biotite, chlorite schist, and 

gneiss (McBirney and Bass 1969; Sutton 2015).  

The island’s coastline is mostly vegetated or urbanized, though several palm-lined 

white sand beaches bound sections of the island. Exposed alluvium, phytokarst, and coastal 

boundstone form portions of the northwestern coast (Sutton 2015). The island averages 2,000 

mm of precipitation annually, with the preponderance falling during a rainy season in 

October and November (Stonich 1998). Less than 100 mm of rain falls during the dry season 

from January to June. The western side of the island receives more rain compared to the east, 

resulting in southeastern coastline covered in sparse vegetation of mixed shrubs and 

grassland (Tomczyk 2010).  

 Due to conservation efforts by Roatán Marine Park and the Bay Island Conservation 

Association, the surrounding coral reefs rank among the healthiest across the Mesoamerican 

Reef (Healthy Reefs for Healthy People 2015). Roatán has a high rate of herbivore biomass 

and coral cover compared to the rest of the Mesoamerican reef. The reef supports over 70 

species of corals, 41 species of sponge, 185 coral fish and large-vertebrates such as whale 

sharks, sea turtles, bottlenose dolphins, rays, pilot whales and orcas (Doiron & 

Weissenberger 2014).  
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Roatán is bisected by two municipalities: Roatán in the west and José Santos 

Guardiola in the east. The preponderance of tourism development has been concentrated on 

the western portion of the island in municipality of Roatán. José Santos Guardiola boasts all 

of the island’s terrestrial protected areas, including: Port Royal Wildlife Refuge (850 ha), 

Saint Helena Wildlife Refuge (1,422 ha) and the Barbareta Marine Reserve (10,108 ha) 

(Tomczyk 2010). The largest tract of mangroves (~400 ha) is found inside the St. Helene and 

Barbareta Marine Reserve. Red mangroves are most abundant on Roatán, with lesser 

amounts of black, white, and buttonwood mangroves present (Cahoon et al. 2003). Cutting 

mangroves is illegal under Honduran law (Doiron & Weissenberger 2014). 

Preprocessing and data selection 

Fifteen cloud free images collected by Landsat 5 Thematic Mapper (TM) and Landsat 

8 Optical Land Imager (OLI) and accessed from the USGS Earth Explorer website were 

used. The USGS TM and OLI Land Surface Reflectance Products were atmospherically 

corrected using the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) 

(see Masek et al. 2006) and L8SR algorithm (USGS 2016). We recognize that USGS’s 

LEDAPS products are still provisional and that sensor differences between the TM and OLI 

scenes may bias our results. All scenes, save the 2015 scene, were acquired between 

February and March to reduce phenological impacts. The 2015 scene was selected to closest 

match in-situ ground reference points collected with a Garmin handheld GPS from August – 

September, 2016.  

Bands 1-5 and 7 for TM and bands 1-5, 7 and 8 for the OLI images were combined 

with a Shuttle Radar Topography Mission SRTM digital elevation model and stacked into a 

single image using Exelis Visual Information Solutions (ENVI) 5.2 software. The 2015 OLI 



	
   9	
  

image was subsampled to contain only our study area. All other images were found to be free 

of co-georegistration errors by visual inspection and were subsampled to the 2015 scene. 

From the 2011 TM and the 2015 OLI scene, we manually selected 150 pixels to serve 

as training data for the following five land cover classes: tropical forest, mixed agriculture 

and tropical forest (MAF), urban, mangroves, and soil/non-photosynthetic vegetation (NPV).  

Because TM and OLI satellites collect different spectral data, two separate datasets were 

created. Criteria considered for each class included spectral reflectance, relationship to in-situ 

GPS-collected ground reference points, spatial pattern, and visual reference to Digital Globe 

high resolution imagery available from Google Earth. Transects from Roatán’s airport, 

Coxen Hole, and French Harbor provided a majority of the urban training data. Tropical 

forest training data were selected based on higher near-infrared reflectance and lower 

reflectance in the short-wave infrared (1650 to 2300 nm) due to liquid water absorption.  

MAF proved to be the most challenging class in terms of training data. We relied on 

high resolution images available from Google Earth for both 2011 and 2015 to help 

discriminate MAF from tropical forest and on in-situ ground reference points. Mangrove 

training data were selected from Saint Helena Wildlife Refuge and the Barbareta Marine 

Reserve (Cahoon et al. 2003), and confirmed with geo-referenced photographs during a 2016 

summer field visit. Most soil/NPV training data came from the steep, arid hills on the Port 

Royal Wildlife Reserve.  

Classification  

The 2011 and 2015 images and their respective datasets were classified using the 

Random Forest (RF) algorithm (Breiman, 2001) in R (R Development Core Team 2010 

version 2.12.2) statistical software. Random Forest is an ensemble classifier based on the 
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Classification and Regression Tree (CART) and has been shown to be a highly accurate and 

robust classifier of Landsat TM and OLI, with less noise compared to single CART 

classifiers (Breiman et al. 1984; Belgiu and Dragut, 2016). In RF a predetermined number of 

CART trees are fed training data via bootstrapping (sampling from the total set of training 

data with replacement). At each tree node only a user-defined subset of features are used. In 

this classification, standard values were used. When encountering new data, the algorithm 

uses the average determination of the trees. Separate classifications were performed for the 

TM and OLI scenes with training data from the 2011 and 2015 scenes used, respectively.  

Accuracy Assessment & Post Classification  

Because the RF algorithm selects training data via bootstrapping, approximately two 

thirds of the training data proved sufficient to train each individual tree. These data are 

referred to as the in-bag samples. The remaining one-third of the data, referred to as out-of-

bag sample (OOB), can be used to perform internal cross validation for estimating the RF 

performance (Breiman 2001). Several remote sensing studies have shown that OOB error is a 

reliable measure of classification accuracy (Lawerence et al. 2006; Zhong et al. 2014). In this 

study, our overall OOB error was 6.8% (93.2% correctly classified) and 3.2% (96.8% 

correctly classified) for the 2011 and 2015 images, respectively.  

After classifying each scene’s land cover, we masked the ocean to avoid 

misclassification of terrestrial land cover classes. Next, pixels classified as mangroves above 

25m, the maximum elevation of a red mangrove canopy, were masked as unclassified areas. 

Several post-classified scenes were removed from our final analysis. The TM scene from 

1991 was removed due to a high degree of misclassification of fire scars, which were 

common due to slash and burn agriculture prevalent on Roatán at the time, as urban. The 
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2000 image and both 2014 images were removed from our analysis because the images 

contained an unusually large number of physically impossible classification anomalies. Due 

to sediment blanketing the island after Hurricane Mitch (Cahoon et al. 2003), the RF 

algorithm misclassified damaged mangroves as urban (Fig. 1) for the scene from 1999. 

However, we retained this scene for our results to assess how mangroves were affected by 

the hurricane. Following scene classification, we calculated total land cover change between 

each image and overall change between 1985 and 2015. Finally, we calculated how each land 

cover class transitioned between time points and between the first and last scene.  

Results 

Between 1985 and 2015, tropical forest area varied considerably throughout our study 

period (Table 1), with an overall increase of 271 ha, or 4.3%. Substantial variation in the 

extent of tropical forest persisted throughout the 1990s. Similarly, the total area of MAF 

oscillated through the 1990s. Overall, MAF decreased 19.9% (917.3 ha) between 1985 and 

2015, suggesting a notable decline in agriculture (Table 1), consistent with 2016 field 

observations. During the same period, Soil/NPV remained largely unchanged. 

 

Table 1 Total land cover classification results from a random forest classification algorithm 
for each land cover class. Using the 1985 results as a baseline, total (ha), present, annual, and 
percent annual change in land cover classes between 1985 and 2015. 

Date   Forest (ha)   MAF (ha)   Urban (ha)   Mangroves (ha)   Soil/NPV (ha)  
2/1/1985   6377.31   4610.61   431.55   1171.08   423.45  
3/8/1986   4204.44   6095.88   784.26   999.18   931.32  
2/26/1994   6091.74   4761.18   736.20   1079.28   346.41  
2/13/1995   6598.44   4263.57   835.47   1034.73   278.82  
4/4/1996   5310.72   5303.25   870.48   962.55   568.08  
2/2/1997   7126.20   3866.58   720.72   1036.44   263.07  
2/5/1998   6220.44   4495.86   985.14   1036.44   273.87  
3/12/1999   5393.61   5244.93   1280.97   651.51   444.78  
3/1/2001   6280.83   4540.77   1085.67   766.98   341.10  
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12/4/2009   7367.67   3440.61   1044.99   992.16   169.02  
2/25/2011   6379.29   4043.70   1305.90   920.43   365.67  
9/26/2013   8155.08   2787.12   1030.59   865.53   172.98  
9/16/2015   6648.30   3693.33   1414.35   841.77   416.70  
      

1985 – 2015 
Total Change (ha) 270.99 -917.28 982.80 -329.31 -6.75 
Total % Change 4.25 -19.89 227.74 -28.12 -1.59 

Annual Change (ha) 98.18 -332.33 356.07 -119.31 -2.45 

% Annual Change 0.14 -0.65 7.43 -0.92 -0.05 

 

Figure 1  Total built area for 1985, 1995, 1999, and 2015. The built area in 1999 in 
northeastern Roatán reveals how, immediately following Hurricane Mitch, damaged 
mangroves are misclassified as urban area.  
 

Results indicate a 223% (928.8 ha) increase in urban area (Table 2), corresponding to 

a normalized annual urban growth rate of 7%. Urbanization was concentrated on the western 

edge of Roatán, though urban encroachment into higher elevations and the south eastern 

portion of Roatán are also evident (Fig 1). Urbanization accelerated between 1985 and 1995 

(Fig. 2), increasing 404 ha, and then plateaued through the late 1990s. From 2009 to 2015, 

urbanization boomed again, increasing 369.4 ha or 35% over six years.  
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Table 2 Using 1985 as baseline, land conversion to urban from between 1985 and 2015. 
Urban	
  Conversion	
  1985	
  -­‐	
  2015	
   Total	
  (ha)	
   %	
  Change	
  
Forest	
  to	
  Urban	
   352.98	
   5.5%	
  
MAF	
  to	
  Urban	
   486.54	
   10.6%	
  
Mangroves	
  to	
  Urban	
  	
   224.10	
   19.1%	
  
Soil/NPV	
  to	
  Urban	
   30.24	
   7.1%	
  

Figure 2 Total urban and mangrove area by year, with simple linear regression overlaid for 
both land cover classes. Tourism numbers were adopted from Doiron & Weissenberger 
(2014). 	
  

Using 1985 as a baseline land cover map, from 1985 – 2015 19.1% (224.1 ha) of 

mangroves were converted to urban area (Table 2). Visually, urban encroachment into 

mangroves is evident (Fig 3). The conversion of 486.5 ha of MAF to urban area reveals the 

conversion of formal agriculture areas to urban development. Roatán’s tropical forest 

remains less effected by urbanization. Only 4.3 (271 ha) of the tropical forest in 1985 was 

converted to urban areas by 2015. Results capture the extent of the damage of Hurricane 

Mitch on Roatán’s mangrove forest (Fig. 3). Roatán’s 1998 mangrove coverage of 1036.4 ha 

remained relatively static throughout the mid-1990s but dropped to 651.5 ha in 1999. This 
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37% decrease in mangroves is consistent with other post-hurricane field studies (Cahoon et 

al. 2003). Mangroves in eastern Roatán rebounded throughout the 2000s (Fig. 4), but 

continued to decrease on the island overall to 841.8 ha (Table 1).  

Figure 3 Total mangrove area (left) in eastern Roatán’s Saint Helena Wildlife Refuge and 
the Barbareta Marine Reserve recovered after Hurricane Mitch to near the 1985 baseline 
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levels (urban area is excluded for ease of viewing of mangrove loss and recovery). In 
Western Roatán (right), hyper urbanization and tourism development has led to illegal 
mangrove deforestation.  
 

Discussion  

Our results suggest that land use cover change in Roatán over the past thirty years is 

characterized by two spatial trends. The eastern portion of the island faced significant 

damage due to an extreme weather event. With limited human interference the terrestrial 

ecosystem rebounded and mangroves in the eastern half of the island today cover nearly the 

same area as they did in 1985 (Fig. 3). Conversely, the western end reveals the recent legacy 

of population growth and tourism development impressed on the island’s landscape. While 

results suggest less overall urbanization compared to our preliminary analysis of two Landsat 

scenes from 1985 and 2014 respectively (Tuholske et al. 2016), urbanization rates in Roatán 

over recent decades are comparable to China’s often cited rapid growth rates (Seto et al. 

2011). Mangroves have been cut illegally (often with impunity) for coastal development (Fig. 

4). And, while the eastern end of the island remains relatively pristine, in the fall of 2015 

Zolitur, the government body charged with zoning the island, released a new zoning plan, 

Plan de Ordenamiento Territorial de Islas de la Bahía, which promises to further accelerate 

coastal and inland residential and tourism development. Should recent trends continue 

framed within Zolitur’s new zoning regulations, the future of Roatán’s terrestrial ecosystem 

appears bleak: nearly the entire eastern portion of the island is zoned for residential or tourist 

development, including the entirety of Barbareta, which is currently protected from 

development. While Hurricane Mitch decimated Roatán’s mangroves, the mangrove forest in 

the Saint Helena Wildlife Refuge and the Barbareta Marine Reserve have since recovered. 
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Yet with category 4 and 5 hurricanes slated to increase in frequency, Roatán’s mangroves 

may not have the necessary recovery time to regenerate in the near future. 

 

Figure 4 Land cover classification results from a random forest classification algorithm for 
1985 and 2015.  
 

Rapid urban land expansion in Roatán is replacing mangroves and former agricultural 

areas at globally high rates. For comparison, East Asia and East Africa are often cited in 

development literature as having exceedingly high rates of rates of urbanization (United 
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Nations 2015), with mean urban land area expansion rates between 1970 and 2000 hovering 

at ~7% in China and ~4% in Africa (Seto et al. 2011). Roatán’s explosive rate of 7.8% 

between 1985 and 2015 matches or exceeds the pace of urbanization of even the most rapidly 

urbanizing regions, with the 35% increase from 2009 to 2015 far eclipsing rates observed in 

most regions. This rapid pace of urban growth, without commensurate water and sanitation 

development, places an extreme burden on Roatán’s fresh water supply with damaging 

implications for the near shore marine environment. The loss of mangroves, combined with 

increased runoff, burdens coral ecosystem. Scholars have already documented how the 

island’s hyper development has negatively affected human health, particularly increasing risk 

among low-income and marginalized groups (Stonich 1998). Unfortunately, the development 

of Roatán’s coastlines is not cheap, nor are its costs equally shared. Using the UNEP 

estimates of the economic benefits of mangroves, we approximate a combined social and 

ecological cost of mangrove loss to urban areas on the island to be nearly $70 million since 

1985. This estimate was calculated by adding the UN estimate economic benefit of 

mangroves for urban infrastructure ($151,948/ha) to the high end economic benefit of 

reduced carbon ($151,983/ha) and multiplying the sum by the total reduction of mangroves 

on the island between 1985 and 2015 (224.1 ha).  

Researchers have highlighted poor development regulation in Roatán, yet note that 

with suitably financed and integrative planning, the Bay Islands could become an economical 

and environmentally friendly model for Caribbean tourism development (Forest 1997). This 

has yet to happen. The post-Mitch tourism boom in Roatán was largely fueled by foreign 

land developers who morphed Roatán’s coastline into large-scale resorts and luxury housing 

(Stonich 2008). Indeed, Hurricane Mitch may have helped catalyze urbanization and tourism 



	
   18	
  

development policy incentives which, in turn, perversely subsidized the production of 

greenhouses gases contributing to the island’s increased vulnerability to more frequent and 

extreme hurricanes. Following the storm, the Honduran Government instituted a variety of 

reforms to spur post-hurricane development and reconstruction. For example, following 

Hurricane Mitch in 1998, the government opened foreigner and foreign company land 

ownership of coastal lands, including in the Bay Islands, which had formally been illegal, to 

spur foreign investment and post-Hurricane reconstruction (Stonich 2008).  

Mangrove loss and subsequent recovery illustrates that, while extreme weather events 

cause short term damage, without human encroachment, Roatán’s terrestrial landscape would 

remain remarkably resilient with substantial ecosystem and economic benefits. Urbanization 

and tourism development, however, create a feedback loop whereby the felling of mangroves 

further heightens the risks to damage by hurricanes through mangrove conversion and 

simultaneously contributes to the increased likelihood of hurricanes vis-a-vis increased 

carbon emissions. With reduced mangroves and weakening barrier reefs encircling the island, 

we wonder what will happen when the next category 4 hurricane slams into the island. 

Further research is needed measure to what extent anthropogenic threats compare and 

contrast to environmental threats in other coastal and terrestrial systems globally under dual 

human and climate change pressures.  
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