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ABSTRACT

Scientists who make breakthrough discoveries can receive above-normal returns to their intellectual
capital, with returns depending on the degree of natural excludability, that is whether necessary
techniques can be learned through written repons or instead require hands-on experience with the
discovering scientists or those trained by them in their laboratory. Privatizing discoveries, then, only
requires selecting trusted others as collaborators, most often scientists working in the same
organization. Within organizational boundaries, incentives become aligned based on repeat and future
exchange, coupled with third-party monitoring and enforcement. We find that high value intellectual
capital paradoxically predicts both a larger number of collaborators and more of that network contained
within the same organization. Specifically, same-organization collaboration pairs are more likely when
the value of the intellectual capital is high: both are highly productive ‘star” scientists, both are
located in top quality bioscience university departments, or both are located in a firm (higher ability to
capture returns). Collaboration across organization boundaries, in contrast, is negatively related to the
value of intellectual capital and positively related to the number of times the star scientist has moved,
Organizational boundaries act as information envelopes: The more valuable the information produced,
the more its dissemination is limited. In geographic areas where a higher proportion of coauthor pairs
come from the same organization, diffusion to new collaborators is retarded.
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Science norms urge sharing of information, science rewards require publication in

refereed journals, and science training generally includes student access to new information

as active components of on-going research teams. In most sociology of science, it is

assumed that the information being created has value, but is treated as a public good:

scientists both contribute to and draw from a common resource pool that consists of

discoveries and refinements of those discoveries. In most economic treatments, it is assumed

that scientific discoveries have only fleeting value unless formal intellectual-property-rights

mechanisms are used to prevent use of the information; i.e., absent patents, trade secrets, or

actual secrecy, the value of a discovery erodes quickly as the information diffuses.

We have quite a different view. Scientific discoveries vary in the degree to which

others can be excluded from making use of them. Inherent in the discovery itself is the

degree of natural excludability: if the techniques for replication are not widely known prior

to the discovery, then any scientist wishing to build on the new knowledge must first acquire

hands-on experience. [ 1] If he or she cannot gain access to a research team or laboratory

setting with that know-how, then working in that area may be difficult if not impossible. We

argue that it is primarily in collaborations that the fine details and hands-on knowledge to

conduct cutting-edge bioscience is transmitted; only in collaborations are all biologic

materials freely shared, though requirements for making them more widely available once

research is published are growing (Eisenberg 1987: 197-205, 229-231).

Trust is extraordinarily important in communicating discoveries in biotechnology

because of their high scientific and commercial value. The resulting intense competition

produces an information dilemma, with contradictory incentives to communicate the new

knowledge and to withhold it (Schneider and Brewer 1987; Schneider 1990).[2]  In brief, if a

scientist communicates usable information about a new discovery, the benefits associated with
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exclusive access to that information are compromised.[3] But withholding information about

the new discovery may slow progress in the field as a whole.

Information dilemmas, usually couched as conflict between individual self-interest and

group interest, can be resolved by relying on close-knit collaborations, sharply limiting with

whom the new discovery is shared. While the information is not shared with the field as a

whole, it is shared with a group of collaborators that tends to grow over time. The

information boundaries that these collaboration structures define determine the extent of

diffusion of the new discovery. Because organizations have both established internal

exchange relations and enforcement mechanisms, we expect that trust among members of the

Same organization will be significantly higher than trust between members of different

organizations, and thus that organizational boundaries are

In general, the higher the value of the intellectual capital,

boundaries are used to limit its diffusion.

efficient information envelopes.

the more likely organizational

Thus, we can extend our argument one step further, to the effects of organizational

boundaries on diffusion of information. If trust is produced, and information flow is in fact

restricted along organizational lines, then diffusion should slow differentially. Specifically,

within a geographic area, the higher the proportion of same organization pairs of co-authors,

the less information should diffuse within that area. Indeed, our final model explains nearly

all of the variation in diffusion to new co-authors of scientific articles between geographic

areas, with significant amounts explained by variables related to value of intellectual capital

and the resultant patterns of collaboration within or between organizations.

Trust Production in Information Dilemmas

Trust production can occur when an individual is open to social influence from

another individual, or when a third party with whom both individuals are open to social
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influence intervenes to mediate (Zucker 1986). This reframes the trust problem substantially,

focusing attention on the mechanisms by which an individual becomes more or less open to

social influence from another individual (or the interaction becomes mediated). Predictability

or certainty is not sufficient for trust production, contra the Williamsonian (1979) argument;

for example, a narcissistic individual will behave predictability in his or her self-interest, but

this consistent behavior will on average produce distrust, since much of the self-interested

behavior is not open to influence by the other person in the exchange and ignores that other’s

interests.

Trust, by defining the group of others who are likely to be open to social influence

reciprocally, determines where the information boundaries will be drawn. The higher the

value of the information the more likely it is that trust production will be a central concern.

Trust production is often based on institutional mechanisms, including in-group preference

and formal rules and procedures defined by formal organization boundaries (Zucker 1983 and

1986; Brewer and Silver 1978).[4]  We expect that organizational boundaries will heavily

determine with whom to share recombinant DNA (rDNA) sequence discoveries.

In the economic literature, Darby and Kami (1993), Klein, Crawford, and

(1978),  and Darby and Lott (1989),  have studied the use of third party experts as

Alchian

one means

to create trust for parties to act more to maximize group values rather than simply to pursue

myopic self interest. Trusted agents receive a higher income from their “brand name

capital” which is reduced or lost if they do not behave consistent with that trust. Also, when

a third party is not available to monitor the exchange, anthropologists (e.g. Geertz  1978) find

that a combination of repeat exchange and expected future exchange best produce trust.

Within organizations, of course, both repeated and future exchange are common, as is

third party intervention, or at least the possibility of it. Senior managers, for example, are
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trusted experts with organizational and self interests aligned who potentially can apply

substantial sanctions in the face of self-seeking behavior. To the extent that within-

organization collaborations involve a third party, whether explicitly or only implicitly,

organizational involvement will help to increase the self-enforcing range, and thus produce a

higher rate of collaboration within organizational boundaries.151 Though we do not measure

these effects directly, our indirect measurement provides substantial support for this line of

argument.

Production of trust, then, involves information boundaries that are at least partially

constructed by collaborating within the same organization (university, research

institute/hospital, or firm). We in fact demonstrate that there are specific characteristics of

other scientists, generally those indicating the potential value of their discoveries, that lead

them to be included more often in scientific collaborations, and to be more often in

collaborations with scientists working in the same organization. Our finding is inconsistent

with expectations derived from the transaction coast approach, where the boundaries of the

firm are determined by the relative costs and benefits of using markets or the firm’s own

hierarchy to govern each exchange (Coase 1937 and 1988; Williamson 1979 and 1991). If

there exist similar exchanges both within and between organizations, the higher costs

involved in transacting across organizational boundaries should imply that these transactions

will have higher value, or not occur.

Cost and Demand in Trust Production

Social agency is required to produce trust. Human action is required to form repeat

collaborations or collaborations within an organization and to exclude alternative forms of

action. As Zucker has argued elsewhere (Zucker 1986; Zucker and Kreft 1994),  this social

agency involves activity that is costly, requiring human time, attention, and resources, and
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thus there must be some demand for trust before it will be produced. Yet social scientists

often unrealistically treat social process and the resulting structure as if they were simply a

byproduct of human activity, as ubiquitous as air, and therefore costless (Granovetter 1985).

In contrast, we argue that deciding to produce trust incurs drawing the opportunity cost of

resources away from other activities. It is unlikely that such resource flow will occur in the

absence of identified demand.[6]  We will first examine costs involved in production of trust

in the biosciences and then effects of the value of the information on generating demand for

trust.

Costs may not be simply the human energy and money expended, but also other

opportunities lost. In the case of collaborations among bioscientists, for example, a

colleague in the same institution may become a coauthor for the reasons outlined above, yet

not be the ideal choice as a coauthor in terms of potential intellectual contribution to the

project. Other bioscientists who might make a much more significant contribution to the

project are not included because their trustworthiness is too costly to establish compared to

the alternatives.

Costs also are incurred because defining who is trusted sufficiently to include in a

collaboration simultaneously defines a much larger group of scientists who are excluded.

While science norms call for inclusion of a large circle of trusted colleagues in an “invisible

college” model of both high volume and high velocity exchange of scientific

information/discovery (Merton 1938 and 1957; Crane 1969 and 1972; Gaston  1973),  there is

considerable evidence that whenever the discoveries have significant value, whether as pure

science or as a commercial product, some scientists will exploit nonpublic knowledge for

personal gains -- monetary or nonmonetary (Watson 1968; Taubes 1986). If the excluded

scientists recognize the value, then they become angry and voice complaints; much time and
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energy is spent responding to these complaints and either resolving specific difficulties or

creating new structures designed to define the amount of exclusion permitted. In a thorough

review of the early controversies in bioscience, Rebecca Eisenberg documents the kinds of

disagreements that occurred over access to cell cultures that, if access is denied, make actual

replication of the published research and later extension of it close to impossible (1987: pp.

197-205, 214-216, and 229-231, and examples throughout).

In the face of these costs of trust production, some positive demand must exist in

order for trust to be produced. Our hypothesis is that the major demand for trust in

scientific research is derived from the potential value of the specific discoveries.

Value of Intellectual Capital and Demand for Trust

Let us define “intellectual capital” as the value of nonpublic information possessed by

an individual in excess of the costs of learning the information (see Zucker, Darby, and

Brewer 1994). We conceive of translating nonmonetary returns to the information such as

prestige and professional advancement to monetary equivalents and then taking the present

value of the sum of the monetary value of all future monetary and nonmonetary returns and

subtracting the cost of learning the information.[7] So defined, intellectual capital is the

wealth value of the knowledge to an individual who makes a significant discovery or to

whom the information discovered is transmitted before it has diffused sufficiently to earn

only the normal returns to the cost of learning the information.

As information diffuses after a discovery, the associated intellectual capital of a

person who embodies the information declines both because the supranormal returns decline

as there are more scientists using the information competitively and because there is less time

remaining until the information is part of routine science and thus no longer capable of

earning supranormal returns. The value of intellectual capital created by a new discovery
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increases as the discovery involves techniques that must be learned first-hand through

collaboration or apprenticeship; that is, to the extent that they possess the “natural

excludability” necessary for relatively long-lasting supranormal returns. [8]

Scientists incorporate the information - transiently both nonpublic and yielding

supranormal returns -- as part of their human capital. The returns to this information may

come from other scientists, in the form of citations, promotions, job offers, and so on.

These returns may also come from commercialization of the discovery, in the form of

consulting income, patent royalties, ownership interest in the firm, and so on. In Zucker,

Darby, and Brewer (1994), we demonstrate that intellectual capital in conjunction with active

publishing is a strong predictor of founding new biotechnology enterprises. This reward

structure encourages other scientists to invest in learning the know-how to obtain the

supranormal returns, although as more come to know the information its capital value falls.

Students have especially strong incentives to work with scientists on the leading edge,

from whom they can gain knowledge that is not available from other scientists. As Harriet

Zuckerman discovered in her study of Nobel laureates (1967 and 1977), scientists working at

the intellectual frontier can obtain the best students, another form of capital, by diffusing the

knowledge to them. Zuckerman’s path-breaking work establishes as a central research

question the differences in scientific production between the first rank scientist in terms of

quality and those lower down in the prestige hierarchy of science.

We argue that the higher the value of the intellectual capital, the greater the demand

for production of trust and the use of information boundaries to create it. The value of

intellectual capital varies along many dimensions, four of which we will examine empirically

in this paper:

0 Quality of the individual scientist: We identify “star” scientists in terms of
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their productivity in biotechnology, and study these stars and their

collaborators. The quality of intellectual output generally will be higher if two

star scientists collaborate than if one star scientist collaborates with graduate

students, postdoctoral students, and/or other less distinguished scientists.

0 Quality of the university: We identify scientists in terms of their location at

one of 18 top quality universities, defined by having exceptionally high

ranking biochemistry, microbiology, and/or molecular biology programs (see

below). Working in one of these top quality university departments indicates

expected high quality intellectual output and greater use of information

boundaries.

0 Tie: As the discovery diffuses, the value of the intellectual capital declines.

Over time, then, we expect that information boundaries will be relaxed.

0 Appropriation regime: Firms are generally able to appropriate the value of

new discoveries more successfully than universities or research institutes, and

thus we expect greater use of information boundaries in firms,

Scientific Discovery and Collaboration Structure in Biotechnology

Discovery: Gene splicing is an extremely significant discovery that set off a cascade

of research in biotechnology (see Cohen, Chang, Boyer, and Helling 1973). Though there

were other very significant discoveries made in biotechnology at about the same time, only

genetic sequence discoveries were exhaustively cataloged in a data file, GenBank, created for

bioscientists.[9] Gene splicing has the distinction of being a scientifically valuable innovation

that has a virtually complete record of subsequent discoveries of genetic sequences, so that

the timing, extent, and other characteristics of its diffusion can be tracked. We extensively

reprogrammed the original GenBank files to identify the 315 “top producing” scientists: those
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scientists who discovered at least 41 genetic sequences from 1968 to 1990. Because some

sequences are harder to unravel, we added to these “star” scientists another 22 who published

20 or more articles identifying gene sequences, which made them among the most productive

scientists, but reported fewer genetic sequence discoveries per article. Thus, the star

scientists we identify world-wide total 337, listed as authors on 4,315 distinct published

articles in major joumals.[l0] The distribution of these publications over time can be seen in

Figure X. 1, along with the distribution for the 213 stars who ever work in the U.S.

 
Figure X.1 about here 

These reorganized GenBank data files contain a great deal of information on the

characteristics of the discoveries, including the list of authors who collaborated in making the

discoveries. These scientists are co-authors of our 337 star scientists, but do not themselves

meet the “star” criteria. These collaborators number 7,718, with 3,983 of them ever

working in the U.S. Because we are examining the effects of collaborating within the same

organization on fine-grain diffusion patterns, we will be focusing only on scientific

collaborations in the U.S. in our analyses in this paper.

Without adding to the original GenBank files we are able to study the general pattern

of diffusion. But information on the organizational membership (same versus different; type

of organization, including university, research institute or hospital, and firm) and on the

geographic location of the scientists is not contained in GenBank, nor are they available

except for the first author in any on-line data base (see MedLine). If star scientists always

appear first, the use of MedLine  affiliation would at least permit the study of the top

producers. But our informal information proved accurate: star scientists most often appear

last, so that among articles with U.S. stars, 71.2 percent of last authors are stars, compared
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to 16.4 percent of first authors.

At the beginning of the time period, in 1967, it was exceedingly difficult to make a

genetic sequence discovery. Over our time period, it gradually became easier to sequence

genes, until toward the end of our time period these discoveries become part of normal

science. Between 1967 and 1990, there is both increasing diffusion of the ability to gene

sequence and a decreasing value of the related techniques. Indeed, by 1987 or 1988

discovering a gene sequence could no longer earn a Ph.D. at any of the major U. S. research

universities. At the same time, machine-based technology was becoming more reliable and

relatively inexpensive. [ 1 l]

Organizational Location and Characteristics: Since our major hypotheses

concerning the role of trust in collaborations rest on organizational location, we pulled each

one of the 4,315 articles identified as containing “high quality” intellectual capital and coded

institutional affiliation and location of each author, including any dual affiliations and

changes in affiliation, from the headings of the articles. From these data, we find that

intellectual capital is rather concentrated: in the U.S., only 263 distinct organizations were

given at any time through 1990 as affiliations of any of the stars or collaborators in our

articles data set. There are 141 universities, 74 research institutes and hospitals, and 48

firms.

Our university data consist of all U.S. institutions listed as granting the Ph.D. degree

in any field in the Higher Education General Information Survey (HEGIS), Institutional

Characteristics, 1983-84.[12] Each university is assigned an institutional ID number, a

university flag, and located by zip code based on the HEGIS address file. Additional

information was collected for those universities granting the Ph.D. degree in biochemistry,

cellular/molecular biology, and/or microbiology which we define as “biotech-relevant” fields
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(see Jones, Lindzey, and Coggeshall 1982). In our analyses here, we rely only on the

National Academy of Science measure of university department quality, a scholarly

reputation rating based on responses from approximately fifteen percent of the faculty in the

fields studied. Since we were interested in identifying the very best programs, we considered

only the highest rated of the biochemistry, cellular/molecular biology, and/or microbiology

programs offered by a particular university. Whether or not any specific star or collaborator

in the U.S. is located in one of the most highly rated programs (rated above 4) is our

variable TQU, or “Top Quality University.“[13]

Firms and research institutes (including hospitals) listed as affiliations in the article

data set, received an institutional ID number and an institute/hospital flag, and obtained an

address with zip code as required for geocoding. For a review of additional data and sources

not used in the analyses presented in this paper, including non-U.S. information, see “Data

Sources” at the end of the reference list for this paper and Appendix A in Zucker, Darby,

and Brewer (1994).

Collaboration Structure: We now introduce a further refinement to our

measurement of collaborations. Since our sample is selected based on star scientists, and

sequence-reporting articles by collaborators appear in our sample only if one of our star

scientists is an author, we define the collaboration as all possible pairs of coauthors that have

at least one star in it. Our basic unit is thus the number of coauthor pairs in a collaboration

that have at least one star. By examining coauthor pairs, we are able to model explicitly the

selection criteria used in generating our sample: each pair must have at least one star. Most

of these coauthor pairs consist of one star and one collaborator, for a worldwide total of

22,034, with 9,181 of those having both scientists located in the U.S. and 10,732 having at

least one scientist in the U.S. Two-star pairs constitute 2,273 of the worldwide pairs and
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839 pairs in the U.S.

The distribution of coauthor pairs and the increasing number over time may be

attributed both to a dense interaction network of lab-based collaborations and to the diffusion

of the new technology.[ 141 But this is where our story really begins.

Organizations as Information Envelopes: Value, Trust, and Diffusion

Changes in patterns and relationships among bioscientists occur over time, reflecting

changes in the value of the information and the consequent demand for trust production.

Two aspects of the information flow identify gradual changes in use of information

boundaries consistent with the initial high value of intellectual capital and subsequent decline

in its value:

0 The number of coauthor pairs increases over time in part as a result of increasing

average collaboration size, such that wider access is being given to the new scientific

discoveries as the area develops. This suggests that the value of the intellectual

capital produced is falling. Figure X.2 shows the increasing average

authors per article worldwide, smoothed to reduce the effects of very

of articles published prior to the mid-1970s.

number of

small numbers

 
Figure X.2 about here 

0 More coauthor pairs are located in the same organization early in the process,

suggesting that within-organization collaboration is being used to limit information

flow more early in the diffusion process. The number of same-organization pairs

decline steadily over time, again pointing to the declining value of intellectual capital.

Figure X.3 shows the decrease in the percentage of the same institution coauthors

over time.
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Figure X.3 about here 

Specification of Variables and Models: While these over time changes are

suggestive of the relationships we hypothesize, we turn now to multivariate analysis of the

collaboration structure in the biosciences. Specifically, as the value of the genetic sequence

discoveries being reported increases, we expect that there will be more frequent same

organization collaboration, and less frequent collaboration with scientists from different

organizations, and that same organization collaborations will slow diffusion relative to

collaborations outside the same organization. Because of our focus here on the diffusion

process, we will limit our analyses primarily to the U.S., studying relative diffusion within

the 183 different BEA areas.

The variables designed to operationalize these concepts, including the value of the

intellectual capital being produced, the collaboration structure that results, measures of time

trends, scientist mobility, and the “birth” of new collaborators are all described in Table 1,

along with several control variables. All of the variables are based on characteristics of

coauthor pairs, where at least one scientist in each pair must be a star scientist and both must

be from the U.S. (except for one analysis, as indicated in the notes to the table), reflecting

our sampling frame and U.S. focus for these analyses.

 
Table X.1 about here 

The first seven variables listed in Table X.1 are indicators of high value in terms of

number of discoveries (star), quality of the university program (in biochemistry, molecular

biology, and/or microbiology), and high ability to capture rents from discoveries in firms

relative to universities and research institutes. Our measures of organizational and

geographic location are defined next in the table. We expect more valuable intellectual
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capital to involve more collaboration within the same organization. The number of times a

scientist moves between organizations is expected to widen collaborations to include a larger

number of scientists. We define geographic location in terms of the 183 functional economic

areas within the U.S. as defined by the U.S. Bureau of Economic Analysis (here called BEA

areas). Our diffusion measures examine both the size of a star’s collaboration network and

the “birth” of new collaborators in the same BEA. Control variables include measures of the

size of collaborations, years of entry into genetic sequence publishing, and time trends to

capture the declining value of intellectual capital.

For the most part, we select familiar statistical models. But because we are

attempting to explain “count” data, that is data that involves counting the number of new

collaborators, first from the perspective of each star (CLBNET) and then by BEA

(NCOLLAB), we rely on a slightly less familiar poisson regression technique, as suggested

by Hausman, Hall, and Griliches (1984). The poisson process is consistent with count

variables: non-negative integers, often with significant mass at zero. The poisson process

assumes that births of new collaborators in a BEA area with a probability xi, per unit time.

The logarithm of hi, is a linear function of the explanatory variables included in the

regression. We estimate these regressions using the LIMDEP package (Greene 1992: 539-

49).

Collaboration and Trust Production: We begin by examining the predictors of the

number of new coauthors in the stars’ coauthor network (CLBNET) in Table X.2. As might

be expected from the cosmopolitan/local models of scientific collaboration (Gouldner 1957-

58), star scientists that possess higher value intellectual capital generally have larger

networks of new coauthors, though the larger the number of collaborators who are also stars

(BSTARCLB), the smaller the total number of collaborators (CLBNET). At first glance the
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strong positive effects of both TQCOLNET and FIRMLAST  on the network size seem

inconsistent with our argument that higher value intellectual capital is more protected;

indeed, even scientists whose last affiliations are with firms (where capturing returns might

mean limiting dissemination of the discoveries) have a significant positive effect on network

size.

However, these results do not reflect the differential numbers of collaborators drawn

from inside the same organization. The number of collaborators from the same or different

organizations, SAMEOCLB and DIFFOCLB, both increase the size of collaboration

networks significantly, but having more coauthors from different organizations is a much

stronger predictor. Also, as expected, the number of times the star scientist moves from one

job to the next increases the size of his/her network. All of these effects are measured

controlling for the total number of publications by each US. star.

 
Table X.2 about here

Table X.3 shows that over 75% of collaborations with the same type of organization

occur within the organizational boundaries, increasing to nearly 95% for firms. Firm

scientists very rarely coauthor with scientists at other firms. Most collaboration outside

boundaries of the same organization takes place between university scientists and other

the

scientists located in research institutes and firms. Since universities are the “source,” that is

the location of many of the initial discoveries and talent, it is not surprising that both firms

and research institutes collaborate frequently with scientists in universities. If we take into

account all of these external collaborations regardless of organization type, the balance shifts

somewhat: 43 to 44% of all collaborations involving research institutes and firms take place

across organizational boundaries, while 64% of collaborations involving university scientists
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remain inside the organizational boundaries. Overall, our findings counter assumptions about

the open structure of scientific discovery across different universities.

 
Table X.3 about here 

What predicts whether any given coauthor pair is found within the organization’s

boundary or spans it? In Table X.4, we find a strong positive effect of higher value

intellectual capital, controlling for collaboration size and time, on the probability that the

collaboration pair come from the same organization. Again, we are examining only pairs in

which at least one author is a star and at least one author is from the U.S. We find strong

support for our hypothesis that intellectual capital of high value--where both coauthors are

stars, from top quality universities, or from firms that can capture value better--is more

likely to be within the information envelope created by working in the same organization.

As expected, the larger the collaboration size the less likely that any particular pair of

coauthors is from the same organization. However, time does not significantly alter the

probability of working in the same organization, net of the other variables in the equation.

 
Table X.4 about here 

Other than for protection of valuable intellectual capital, transaction cost may also

lead to collaborations inside organizational boundaries. Generally, higher costs are incurred

in transactions across organizational boundaries, as compared to within one’s own

organizations. Therefore, all else equal, transactions across organizational boundaries should

occur only when there are sufficient benefits to offset the additional costs involved. Looking

back at Table X.3, it appears that the reward/cost ratio of transacting with organizations of

the same type seldom make it worthwhile. This is especially so for firms, with very rare

collaboration with other firms, perhaps in part because of problems concerning property
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rights that don’t emerge when firms collaborate with scientists at universities or research

institutes.

But if we examine the average benefits of collaborations in terms of citations that the

research receives, occurring within or across organizational boundaries as shown in Table

X.5, there appears to be little support for a transaction cost explanation. First, average

citations to articles are not appreciably higher in general for collaboration pairs formed

across organizational boundaries than for those within, except for research

institutes/hospitals. This finding is primarily due to the much higher average citation rates

for their collaboration with firms. However, rather than use a transaction cost explanation, it

is more plausible to argue that the increase in citations in collaborations with firms is due to

the ability of firms to pick out and differentially reward scientists who have significantly

higher than average intellectual capital from both universities and research institutes:

Citations to research articles that involve firm-university pairs are significantly higher than

the average number of citations within universities, and the same is true for firm-research

institute/hospital pairs of coauthors.

 
Table X.5 about here 

 
Figure X.4 about here 

Organizational Boundaries and Diffusion: Our final analysis of the paper is in

many respects the most important. The two maps of the geographic location of stars and

collaborators in 1980 and 1990 in the U.S., displayed as Figure X.4, provides a clear picture

of the rapid diffusion of rDNA  techniques. These maps also depict both the dispersion and

the local agglomeration of intellectual capital in the biosciences. In Table X.6 the effects of

collaboration with trusted others within the same organization on diffusion of research
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reporting genetic sequence discoveries, measured as the number of new collaborators who

coauthor a publication in that year, are estimated within U.S. BEAs. As predicted,

coauthoring within the same organizational boundaries (SAMEORG) has a negative effect,

reducing the number of new coauthors “born” in that BEA,  while coauthoring across BEA

boundaries generally increases the number of new coauthors “born” in that BEA. These

results generally hold whether or not the lagged number of collaborators born in that BEA

are entered into the equation, although the positive effect of coauthorship across BEAs

(DIFFBEA)  is only significant when the lagged dependent variable is included in the

equation. The control variable, number of stars in the BEA, has a positive effect on the

“birth” of new collaborators. Effective information boundaries are in fact constructed:

Collaboration across geographic boundaries, thus between different organizations, increases

diffusion to new collaborators, while in geographic areas where a higher proportion of co-

author pairs come from the same organization, diffusion to new collaborators is retarded.

 
Table X. 6 about here 

Conclusion

Summary: Scientists who make breakthrough discoveries can receive above-normal

returns to their intellectual capital, with returns depending primarily on the degree of

“natural excludability,” so that at the extreme privatizing discoveries requires only selecting

trusted others as collaborators. Most often these trusted collaborators are scientists working

in the same organization where incentives become aligned based on repeat and future

exchange that is monitored and enforced by managers serving as third-parties to the

exchange. We find  that high value intellectual capital paradoxically predicts both a generally

larger number of collaborators and more of that network contained within the same
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organization. Specifically, same-organization collaboration pairs are more likely when both

are highly productive “star” scientists, both are located in top quality bioscience university

departments, or both are located in a firm (higher ability to capture returns). Collaboration

across organization boundaries, in contrast, is negatively related to the value of intellectual

capital, predicted by the number of times the star scientist has moved. As expected,

organization boundaries act as information envelopes, such that the more valuable the

information produced, the more its dissemination is limited.

Implications: There are a number of implications of our argument and results, some

of which have already been introduced above. First, belonging to the same organization as a

potential coauthor appears to be a powerful and effective means of generating trust:

collaboration within organizations is significantly more likely, compared to collaborating

across organizational boundaries, especially when the information produced from the

collaboration is potentially of high value (both star, both from top quality university, both in

firm). Second, there is some contrary evidence to the transaction cost-based argument that in

order to offset the costs of contracting across organizational boundaries, the payoff should be

much higher. Empirically, potentially high value collaborations are negatively related to

collaborating across organizational boundaries. And, although we have presented only a

preliminary analysis of citations, there is certainly no evidence that the actual outcomes of

collaborations across organizational boundaries are better than outcomes of within-

organization research.

Last, and most important, we have evidence that organizational boundaries operate

effectively to restrict diffusion. Collaborations across organizational boundaries increase the

“birth” of new collaborators in the local geographic area, while collaborations within the

same organization significantly retard it. The organizational literature marginalizes
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organizational boundaries relative to the technical core and the surrounding organizational

environment; without making invidious citations, a survey of seven major textbooks on

organizations revealed no more than a page or two on organizational boundaries but a chapter

or more on the organizational environment. In sharp contrast, we argue that is the

organizational boundary, and associated repeat/future interactions and monitoring by

managers, that identifies where trust is being actively produced.
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FOOTNOTES

1. Indeed natural excludability has created some problems for making the “enabling

disclosure” that is required for a valid U.S. patent application. In order to obtain the

seventeen-year monopoly granted by a patent the applicant must make a disclosure that will

enable the public to practice the innovation once the patent expires. After some litigation

and legislation, patents are now obtainable by biotech inventors who disclose their invention

by placing a culture in a recognized public depositary. (See Eisenberg 1987 for a discussion

of this history.) Disclosure by deposit eliminates the inherent difficulty in disclosing the art
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used to obtain the invention so that it can be readily replicated.

2. Very little research has examined trust production in organizational settings; most has

focused on the effects of trust once it exists (for an excellent review see Porter and Roberts

1976). Brewer and Silver (1978) found that ingroup members were rated as more

trustworthy, honest, and cooperative than their outgroup counterparts. Some laboratory

research on small groups, simulating organizations, has found that members of the same

organization are more likely to communicate freely with each other, assuming that

reciprocity of communication is more likely (Schneider 1990; see also Sato 1988, Kramer

and Brewer 1984). But this increased communication occurs only when individuals believe

that the benefits are going exclusively to members of their own group @awes, van de Kragt,

and Orbell  1987).

3. In biotechnology, withholding of information has been acknowledged as a common

strategy used by both academic and commercial scientists to “retain the exclusive benefits of

a discovery for themselves” (Eisenberg 1987:204).  As in many other fields of science,

recognition and other financial and social awards accrue to the scientist who solves the

problem first. As a result, significant deviation from the norms requiring biologic materials

necessary for replication to be made available to other scientists were acknowledged by a

majority of ad hoc committee members reviewing the publication policy of the Journal of

Biological Chemistry (Dr. Donald Brown, Department of Embryology, Carnegie Institution

of Washington; Dr. I.S. Johnson, Vice President, Lilly Research Laboratories, Eli Lilly; Dr.

Daniel Nathans,  Department of Microbiology, The Johns Hopkins University School of

Medicine; Dr. Jesse C. Rabinowitz, Department of Biochemistry, University of California,

Berkeley; as identified in Eisenberg 1987: 201-202, footnotes 132, 137, and 140).

4. Shapiro (1984 in AJS??) has also outlined some principals of formal structure that
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increase trust, but her argument is not process-focused and doesn’t relate directly to the

extension of organization theory proposed in our paper.

5. Explicit agreements, such as joint ventures between organizations, may produce

similar trust-enhancing results. We will estimate these equations in later work.

6. It is important to draw a parallel here to economic activity. It is empirically as

ubiquitous, but its production is seen as highly variable; when the incentives are not strong,

as in the command economies, economic action will be depressed and economic structure

will be poorly developed. We need to rethink institutional structure and social action in

these terms, and consider developing an explicit demand framework. We do already have

the concept of “resource mobilization, ” developed in social movement research, that

recognizes the need for resources to work for social change, effectively creating a demand

for institutions of a particular sort (McCarthy and Zald 1977). The concept of “social

capital” may also serve as a basis for revising sociological theory if it is redeveloped along

the lines suggested here (see Coleman 1986).

7. By the cost of learning the information, we specifically mean the eventual cost of

mastering the information as part of a normal education and/or on-the-job training program

of an entering scientist in the field. It is this cost, and not the cost of actually making the

discovery that will ultimately determine the returns to the information when equilibrium is

reached.

8. In the limit, where the discovery can be easily incorporated into the human capital of

any competent scientist, the discoverer(s) cannot earn any personal returns -- as opposed to

returns to intellectual property such as patents or trade secrets (see below). In the case of

biotechnology, it may be empirically difficult to separate intellectual capital from the

conceptually distinct value of cell cultures created and controlled by a scientists who used his
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or her nonpublic information to create the cell culture.

Besides natural excludability, the value of intellectual capital depends on the novelty

and value of the discovery. For example, many discoveries have little or no value--whether

monetary or nonmonetary. They are viewed as a dead-ends, of interest only within a few

collaborations. The techniques and research program crawl along, diffusing slowly if at all.

9. We used GenBank Release 65.0 which combines data from DNA Data Bank of Japan

(Mishima, Japan), EMBL Data Library (Heidelburg,  Germany), and GenBank (Los Alamos,

New Mexico). See H.S. Bilofsky and C. Burks (1988) for a description of the GenBank.

10. We excluded unpublished manuscripts and papers published in proceedings and in

obscure journals in order to obtain consistent information on institutional affiliation and

location.

11. Gene splicing machines were initially extremely unreliable. By 1983, the machines

had improved in reliability, but still not sufficiently for wide adoption (Gebhart 1983). The

high cost remained an additional barrier to adoption until the late 1980s.

12. See U.S. Department of Education, National Center for Education Statistics (1985).

13. The respondents were asked to rate programs using the following scale: 5 for

distinguished, 4 strong, 3 good, 2 adequate, 1 marginal, and 0 not sufficient for doctoral

education. The reported scores are the averages among respondents.

14. In informal discussion, Ed Penhoet emphasized the role of diffusion in increasing the

number of coauthors over time. As an early innovator in the area, both as a founder and the

current CEO of Chiron, he has deep insight into the development of the science over the full

time period of our study. We will explore this competing hypothesis more adequately in a

companion paper that develops a model of the diffusion process underlying rDNA research.
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Table X.1: Variable Definitions
Value of Intellectual Capital

BOTHSTAR   1 if both scientists in coauthor pair i are stars; 0 otherwise.

BOTHTQU    1 if both scientists in coauthor pair i are from top quality universities;

BOTHFIRM, 1 if both scientists in coauthor pair i are from firms; 0 otherwise.

0 otherwise.

BSTARCLB   For each star j, total number of distinct other stars listed as coauthors across all
articles.

TQCOLNET, For each star j, total number of distinct coauthors who list affiliation as top quality
universities across all articles.

FIRMLAST, 1 if last affiliation of star j was a firm;  0 otherwise.

STAR   Number of stars affiliated with an organization in BEA area k in year t.

Location: Organizational and Geographic

SAMEORG   1 if both scientists in coauthor pair i list affiliation  to the same organization; 0
otherwise.

SAMEOCLB   For each star j, total number of coauthors that Iist  affiliation to the same
organization.

DIFFOCLB   For each star j, total number of coauthors that list affiliation to different
organizations.

DIFFBEA, Number of coauthor pairs who list affiliations  in BEA area k and a different BEA
area in year t.

MOBILITY  

Diffusion Measures

CLBNET,

NCOLLAB  

NCOLLAB1  

Number of moves by each star j from one organization to another.

For each star j, total number of distinct coauthors across all articles.

Number of collaborators who are not also stars born in BEA area k in year t.

Lagged one year, number of collaborators, stars excluded, born in BEA area k in
year t.

Control Variables

CLBSIZE  

TOTPUBS   

FIRSTYR  

Number of authors of the article from which coauthor pair i is drawn.

Total number of articles by each star j.

Year of entry; calendar year of first article by star j; fast year is 1967.

Calendar year in which the article with coauthor pair i was published; first year is
1967.

Y E A R S Q Calendar year squared; YEARi2.
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Constant

SAMEOCLB

DIFFOCLB

BSTARCLB

TQCOLNET

FIRMLAST

MOBILITY

FIRSTYR

TOTPUBS

Table X.2
Poisson Regression on the Star’s Collaboration Network,

Distinct Coauthors Across All Articles, U.S. Only
1967-1990

Log likelihood = -974.57

33 .462***

0.003***

0.007***

-0.011**

0.003***

0.192***

0.036***

-0.016***

0.017***

[5.683]

[.0004]

[.0004]

[.0042]

[.005]

[.0454]

[.0045]

[.0029]

[.0020]

Notes:
Standard errors in square brackets.
* Parameter significant at the 0.05 level.
** Parameter significant at the 0.01 level.
*** Parameter significant at tbe 0.001 level.
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Table X.3
Number of Collaboration Pairs Within the Same Organization and Between Different Organizations:

Universities,  Research Institutes/Hospitals, and Firms, 1967-1990

University

Research Institute

Firm

Totals

Universitv Research Institute Firm
Same Different Same Different Same Different

2760 795 450 319

450 542 147 122

319 122 359 19

2760 1564 542 719 359 460

Notes:
Location based on affiliation given in the first article published by each pair of scientists.
Excludes scientists listing affiliation with more than one institution (N = 19).
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Table X.4
Logit Regression

Probability that a Pair
of Coauthors Are from Same U.S. Organization

Intercept

CLBSIZE

BOTHFIRM

BOTHSTARS

BOTHTQU

1.452** [.588]

0.000 [.007]

-O.256*** [.009]

4.613*** [.236]

0.480*** [.085]

2.510*** [.071]

1967-1990  

Chi-square for -2 log likelihood (5 d.f.) = 3529.6***

Concordance of predicted probabilities & observations:
Concordant 79.8%,  Discordant 16.3%, Tied 3.9%

Notes:
For each coauthor pair, at least one author must be from the U.S.
Standard errors in square brackets.
Results for predicting different organization are opposite signs, but same magnitude for coefficients.
* Parameter significant at the 0.05 level.
** Parameter significant at the 0.01 level.
*** Parameter significant at the 0.001 level.
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University

Research Institute

Firm

Table X.5
Average Number of Citations to Genetic Sequence Articles

By Location of Collaboration Pair, 1967-1990

University Research Institute Firm
Same Different Same Different Same Different

12.16 19.29 18.14 39.42

18.14 12.73 24.14 81.52

39.42 81.52 55.68 58.74

Notes:
Citation counts are for 1982,1987,and  1992.
Average number of citations is determined by dividing per scientist per year.
Excludes scientists listing affiliation with more than one institution (N = 19).
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Table X.6
Poisson Regressions:

Determinants of Number of Collaborators Born
By BEA Area in the U.S. and Year, 1967-1989

Dependent variable: NCOLLAB,

Independent
Variables

CONSTANT

SAMEORG

DIFFBEA

STAR

YEAR

YEAR2

NCOLLAB1

Coefficients and Standard Errors
Model 1 Model 2

-27.279* 10.278
(12.360) (12.700)

-0.011*** -0.003
(0.002) (0.002)

0.006 0.042***
(0.005) (0.005)

0.127*** 0.114***
(0.006) (0.006)

0.573 -0.353
(0.297) (0.306)

-0.003 0.003
(0.002) (0.002)

-0.030***
(0.002)

Log Likelihood -3064.51 -2972.98

Notes:
For each coauthor pair, both authors are from the U.S.
Each BEA gets l/2 birth credit for across BEA collaboration pairs.
Standard errors are in parentheses.
Results for predicting different organization are opposite signs, but same magnitude for coefficients.
* Parameter significant at the 0.05 level.
** Parameter significant at the 0.01 level.
*** Parameter significant at the 0.001 level.
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Figure X.1
Total Number of Articles Reporting Sequence Discoveries

Authored by Stars: Total and U.S. only, 1967-1989

 

.+.
. .+

+.

- U S A
. . Global

I I .+-:

: +

+

+
+ .0m-o-

.

/
\

0-o

0.
_c l ---c-’

_’

/-6 .
+” /

..,
4. _-f,‘-o+_,~.*.~~~~~r-‘5- l4 - -+’ _;c_

I I I 1

1970 1975 1980 1985

Year



Figure X.2
Average Number of Authors per Article Published by Stars, 1967-1989
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Figure X.3
Percentage of Coauthors from the Same Institution as the Star, 1967-1989
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Figure X.4
Cumulative Geographic Agglomeration and Distribution of Intellectual

Capital: Stars and Collaborators in the U.S., 1980 and 1990
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