
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Policy-aware sender anonymity in Location-based services

Permalink
https://escholarship.org/uc/item/0g925953

Author
Vyas, Avinash

Publication Date
2011
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0g925953
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Policy-Aware Sender Anonymity in Location-based Services

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Avinash Vyas

Committee in charge:

Alin Deutsch, Chair
Sujit Dey
Richard Hull
Tara Javidi
Yannis Papakonstantinou
Victor Vianu

2011



Copyright

Avinash Vyas, 2011

All rights reserved.



The dissertation of Avinash Vyas is approved, and it is ac-

ceptable in quality and form for publication on microfilm and

electronically:

Chair

University of California, San Diego

2011

iii



DEDICATION

To my parents, Mrs. Roop Kaur Vyas and Mr. Suresh Vyas, who have

endured many hardships to help me reach here. To my Wife, Minakshi

Bohra, for her valuable support. To little ones, Anshu and Aarush, for

allowing me the time to do this work.

iv



EPIGRAPH

Some goals are so worthy, it’s glorious even to fail.

—Lieutenant Manoj Kumar Pandey,

Indian Army.

v



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Location-based Services . . . . . . . . . . . . . . . . . . . 1
1.2 Prevailing Model of LBS . . . . . . . . . . . . . . . . . . . 3

1.2.1 Sender . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Location Server . . . . . . . . . . . . . . . . . . . . 4
1.2.3 LBS Provider . . . . . . . . . . . . . . . . . . . . . 6

1.3 Privacy Incidents . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 Crimes: Robbery, Heist, Stalking . . . . . . . . . . 7
1.3.2 Commercial Big brother . . . . . . . . . . . . . . . 7
1.3.3 Government Big brothers . . . . . . . . . . . . . . . 8

1.4 User Privacy in Location-based Services . . . . . . . . . . . 8
1.4.1 Sender Anonymity . . . . . . . . . . . . . . . . . . 8
1.4.2 Location Privacy . . . . . . . . . . . . . . . . . . . 9
1.4.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 2 Anonymous Communication . . . . . . . . . . . . . . . . . . . . 11
2.1 Anonymity in messaging systems . . . . . . . . . . . . . . 11

2.1.1 Mix Network . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Crowds . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Onion Routing . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Anonymity measure . . . . . . . . . . . . . . . . . 14

2.2 Sender Anonymity in LBS . . . . . . . . . . . . . . . . . . 14
2.2.1 Sender anonymity via Spatial Cloaking . . . . . . . 15
2.2.2 Trade-off: Anonymity vs Cost . . . . . . . . . . . . 16

vi



2.2.3 Problem statement . . . . . . . . . . . . . . . . . . 18

Chapter 3 Snapshot Policy-aware Sender k-anonymity . . . . . . . . . . . . 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 LBS Models . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Basic LBS Model . . . . . . . . . . . . . . . . . . . 25
3.2.2 Privacy-conscious LBS Model . . . . . . . . . . . . 28

3.3 Policy-aware k-anonymity . . . . . . . . . . . . . . . . . . 29
3.4 Optimal k-anonymity . . . . . . . . . . . . . . . . . . . . . 35

3.4.1 Reducing the Policy Search Space . . . . . . . . . . 37
3.4.2 A First-Cut Algorithm . . . . . . . . . . . . . . . . 38

3.5 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6.1 Bulk Anonymization Time . . . . . . . . . . . . . . 52
3.6.2 Cost Overhead of Stronger Privacy . . . . . . . . . . 53
3.6.3 Effect of Optimizations . . . . . . . . . . . . . . . . 54
3.6.4 Incremental Maintenance . . . . . . . . . . . . . . . 56
3.6.5 Utility Loss in Parallel Anonymization . . . . . . . 56

3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.9 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.9.1 Proposition 1 . . . . . . . . . . . . . . . . . . . . . 63
3.9.2 Proposition 2 . . . . . . . . . . . . . . . . . . . . . 63
3.9.3 Theorem 1 . . . . . . . . . . . . . . . . . . . . . . 63
3.9.4 Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . 72
3.9.5 Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . 74
3.9.6 Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . 74
3.9.7 Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . 76
3.9.8 Lemma 5 . . . . . . . . . . . . . . . . . . . . . . . 77

3.10 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 77

Chapter 4 Trajectory-aware and Policy-aware Sender k-anonymity . . . . . . 80
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2 Location Based Services . . . . . . . . . . . . . . . . . . . 86

4.2.1 Basic LBS Model . . . . . . . . . . . . . . . . . . . 86
4.2.2 User History . . . . . . . . . . . . . . . . . . . . . 90

4.3 TP-aware k-Anonymity . . . . . . . . . . . . . . . . . . . . 92
4.3.1 Bundles . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.2 Anonymizing Policy . . . . . . . . . . . . . . . . . 94
4.3.3 TP-aware Sender k-anonymity . . . . . . . . . . . . 95

4.4 Optimum Anonymity . . . . . . . . . . . . . . . . . . . . . 97
4.4.1 Optimal policy . . . . . . . . . . . . . . . . . . . . 98
4.4.2 Approximation Algorithm . . . . . . . . . . . . . . 101

vii



4.5 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.5.1 USeq-Quad tree . . . . . . . . . . . . . . . . . . . . 117
4.5.2 From Quad to Binary Tree . . . . . . . . . . . . . . 120
4.5.3 Pruning Suboptimal Configurations . . . . . . . . . 121
4.5.4 Precomputation . . . . . . . . . . . . . . . . . . . . 122
4.5.5 Runtime Pruning . . . . . . . . . . . . . . . . . . . 122

4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.6.1 Scalability . . . . . . . . . . . . . . . . . . . . . . 123
4.6.2 Related anonymization techniques . . . . . . . . . . 124

4.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.9 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.9.1 Lemma 6 . . . . . . . . . . . . . . . . . . . . . . . 135
4.9.2 Lemma 7 . . . . . . . . . . . . . . . . . . . . . . . 136
4.9.3 Lemma 8 . . . . . . . . . . . . . . . . . . . . . . . 137
4.9.4 Lemma 9 . . . . . . . . . . . . . . . . . . . . . . . 138
4.9.5 Lemma 10 . . . . . . . . . . . . . . . . . . . . . . 140
4.9.6 Lemma 11 . . . . . . . . . . . . . . . . . . . . . . 140
4.9.7 Theorem 3 . . . . . . . . . . . . . . . . . . . . . . 140
4.9.8 Theorem 4 . . . . . . . . . . . . . . . . . . . . . . 142
4.9.9 Theorem 5 . . . . . . . . . . . . . . . . . . . . . . 145
4.9.10 Theorem 6 . . . . . . . . . . . . . . . . . . . . . . 146

4.10 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 146

Chapter 5 Legal Requirements and Industrial Practices . . . . . . . . . . . . 147
5.1 LBS Privacy Laws . . . . . . . . . . . . . . . . . . . . . . 147

5.1.1 US Privacy Laws for Location-based Services . . . . 147
5.1.2 European Union Privacy Laws for Location-based

Services . . . . . . . . . . . . . . . . . . . . . . . . 150
5.2 Privacy in commercial LBS Ecosystem . . . . . . . . . . . . 153

5.2.1 Obtaining user consent . . . . . . . . . . . . . . . . 153
5.2.2 Control over LBS data . . . . . . . . . . . . . . . . 154
5.2.3 Anonymizers . . . . . . . . . . . . . . . . . . . . . 154

Chapter 6 Conclusion and Open Issues . . . . . . . . . . . . . . . . . . . . 155
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.2 Open Issues . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.2.1 Anonymity against background information . . . . . 157
6.2.2 Privacy built into the LBS . . . . . . . . . . . . . . 157
6.2.3 User education and feedback . . . . . . . . . . . . . 158
6.2.4 Policy-awareness in Data Anonymization . . . . . . 158

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

viii



LIST OF FIGURES

Figure 1.1: LBS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 2.1: Mix Router . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2.2: Crowd System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 2.3: 8-anonymity Spatial cloaking . . . . . . . . . . . . . . . . . . . . 16
Figure 2.4: Spatial cloaking based anonymizer . . . . . . . . . . . . . . . . . . 17
Figure 2.5: Anonymity breach due to agressive minimization . . . . . . . . . . 18

Figure 3.1: 2-inside policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 3.2: Population Density . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 3.3: 5000 Street Intersections . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 3.4: Tree structure built on 1M data . . . . . . . . . . . . . . . . . . . . 52
Figure 3.5: Linear running time in |D| and k . . . . . . . . . . . . . . . . . . . 53
Figure 3.6: Parallel and Incremental Anonymization . . . . . . . . . . . . . . . 55
Figure 3.7: Effect of Optimizations on Bulkdp . . . . . . . . . . . . . . . . . . 55
Figure 3.8: Effect of Pruning on Optimized Bulkdp . . . . . . . . . . . . . . . 56
Figure 3.9: Privacy breach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 3.10: Locations of user tuples representing vi . . . . . . . . . . . . . . . 66
Figure 3.11: Representation of a clause . . . . . . . . . . . . . . . . . . . . . . 78
Figure 3.12: Junction configuration . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 4.1: User locations at instant t1 . . . . . . . . . . . . . . . . . . . . . . 82
Figure 4.2: User locations at instant t2 . . . . . . . . . . . . . . . . . . . . . . 82
Figure 4.3: LBS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 4.4: Quad-tree Partitioning . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 4.5: Trajectories of length 2 . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 4.6: Trajectory Anonymization using Quad-tree . . . . . . . . . . . . . 100
Figure 4.7: Subgraph of G-graph induced by 1-step generalization . . . . . . . 102
Figure 4.8: Policy P1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 4.9: Policy P2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 4.10: Uniform Cloak-sequence Tree . . . . . . . . . . . . . . . . . . . . 115
Figure 4.11: Execution time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 4.12: Time spent in various phases . . . . . . . . . . . . . . . . . . . . . 125
Figure 4.13: Cost: Clustering vs Traj-anon (len 10) . . . . . . . . . . . . . . . . 128
Figure 4.14: Cost: Clustering vs Traj-anon (len 30) . . . . . . . . . . . . . . . . 128
Figure 4.15: Exec time: Clustering vs Traj-anon (len 10) . . . . . . . . . . . . . 129
Figure 4.16: Exec time: Clustering vs Traj-anon (len 30) . . . . . . . . . . . . . 129
Figure 4.17: Cost: Hilbert vs Traj-anon . . . . . . . . . . . . . . . . . . . . . . 130
Figure 4.18: Exec time: Hilbert vs Traj-anon . . . . . . . . . . . . . . . . . . . 130
Figure 4.19: 2-sharing policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Figure 4.20: Locations corresponding to the binary data in a Relational Table . . 143

ix



Figure 4.21: Optimum cloak sequence . . . . . . . . . . . . . . . . . . . . . . . 145
Figure 4.22: Uniform cloak sequence . . . . . . . . . . . . . . . . . . . . . . . 145

Figure 5.1: Obtaining user consent in Safari . . . . . . . . . . . . . . . . . . . 153
Figure 5.2: Fire Eagle Anonymizer . . . . . . . . . . . . . . . . . . . . . . . . 154

x



LIST OF TABLES

Table 3.1: Location Database D1 . . . . . . . . . . . . . . . . . . . . . . . . . 23

Table 4.1: Snapshot policy-aware 2-anonymous policies . . . . . . . . . . . . . 82
Table 4.2: Location log of length two . . . . . . . . . . . . . . . . . . . . . . 88
Table 4.3: LBS request log . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 4.4: Cost Comparison: Clustering vs Traj-anon . . . . . . . . . . . . . . 131
Table 4.5: Running Time Comparison: Clustering vs Traj-anon . . . . . . . . . 131
Table 4.6: Cost Comparison: Hilbert vs Traj-anon . . . . . . . . . . . . . . . . 132
Table 4.7: Running Time Comparison: Hilbert vs Traj-anon . . . . . . . . . . . 132

xi



ACKNOWLEDGEMENTS

During my PhD years, my advisor, mentors and co-workers helped me to define

and reach work goals, develop my research skills and shape my career. I am sincerely

grateful to all of them for contributing to my success.

My earnest acknowledgement goes to my advisor, Alin Deutsch, and my mentor

Richard Hull, who from the beginning guided me in finding a dissertation topic, form-

ing a doctoral committee and carry out the thesis proposal. Their encouragement and

suggestions helped me a lot in learning the right way of tackling difficulties one faces in

research environment. Research meetings and long discussions with them, were one of

the most instructive part of my graduate education.

I would like to thank my my senior colleagues at Bell Laboratories, Lucent Tech-

nologies, specially Michael Benedikt, Jerome Simeone, Juliana Friere and Mary Fer-

nandez (at ATT Research) for giving me (prior to coming to UCSD) the opportunities

to participate in very novel research projects. I would like to specially thank Michael

Benedikt, who along with Richard Hull, was instrumental in persuading the manage-

ment at Bell Laboratories to support me for the PhD program at UCSD. And special

thanks to my manager Lalita Jagadeesan for continuing the support and providing con-

stant encouragement and guidance at Bell Laboratories, Alcatel-Lucent.

I would like to thank Kevin Kaliang Zhao, my colleague in Database Group at

UCSD, for his insights and contributions towards this study. I would also like to thank

my other colleagues in CSE Dept at UCSD, Mayank Kabra, Nicola Onose, Kian Win,

Yannis Katsis, Heasoo Hwang, Emiran Curtmola, Nathan Bales, Elio Demmagio and

Liang Chen for the friendly banter, discussions, gossips and their invaluable help at

various moments in my stay at UCSD.

Last, but not the least, I would like to thank all the members of my doctoral

committee, specially Yannis Papakonstaniou, for their advice, suggestions and questions

during the thesis proposal phase and the defense talk.

Chapter 3, in full, is a reprint of the material as it appears in IEEE International

Conference on Data Engineering 2010. Deutsch, Alin; Hull, Richard; Vyas, Avinash;

Zhao, Kevin Keliang. The dessertation author was the primary investigator and author

of this paper.

xii



Chapter 4, in part is currently being prepared for submission for publication of

the material. Kevin Kaliang Zhao at UCSD and Richard Hull at IBM, together with Alin

Deutsch, made an important contribution to the material. The dessertation author was

the primary investigator and author of this material.

xiii



VITA

1999 B. E. in Computer Science and Engineering, M.B.M. Engineering
College, Jodhpur, Rajasthan, India.

2001 M. Tech. in Computer Science and Engineering, Indian Institute
of Technology, Kanpur, Uttar Pradesh, India.

1999-2001 Teaching and Lab Assistant, Indian Institute of Technlogoy, Kan-
pur, Uttar Pradesh, India.

2001-2011 Member of Technical Staff - 1, Bell Laboratories, Murray Hill,
New Jersey, United States of America.

2011 Ph. D. in Computer Science, University of California, San Diego,
California, United States of America.

PUBLICATIONS

Richard Hull, Bharat Kumar, Daniel Lieuwen, Peter Patel-Schneider, Arnaud Sahuguet,
Sriram Varadarajan, Avinash Vyas, “Rule-Based Service Customization via Houdini”,
WWW Poster, 2003.

Richard Hull, Bharat Kumar, Daniel Lieuwen, Peter Patel-Schneider, Arnaud Sahuguet,
Sriram Varadarajan, Avinash Vyas, “Enabling Context-Aware and Privacy-Conscious
User Data Sharing”, IEEE Conference on Mobile Data Management, 2004.

Mary Fernandez, Jerome Simeon, Avinash Vyas, “The Simplest XML Storage Manager
Ever”, XIME-P, 2004.

Michael Benedikt, Angela Bonifati, Sergio Flesca, Avinash Vyas, “Adding Updates to
XQuery: Semantics, Optimization and Static Analysis”, XIME-P 2005.

Michael Benedikt, Angela Bonifati, Sergio Flesca, Avinash Vyas, “Verification of Tree
Updates for Optimization”, International Conference on Computer Aided Verification,
2005.

Alin Deutsch, Richard Hull, Avinash Vyas, Kevin Keliang Zhao, “Policy-Aware Sender
Anonymity in Location Based Services”, IEEE International Conference on Data Engi-
neering, 2010.

xiv



ABSTRACT OF THE DISSERTATION

Policy-Aware Sender Anonymity in Location-based Services

by

Avinash Vyas

Doctor of Philosophy in Computer Science

University of California, San Diego, 2011

Alin Deutsch, Chair

Sender anonymity in Location-based services (LBS) refers to hiding the identity

of a mobile device user who sends requests to the LBS provider for services in her

proximity (e.g. “find the nearest gas station etc.”). The goal is to keep the requester’s

interest private even from attackers who (via hacking or subpoenas) gain access to the

LBS request and to the locations of the mobile user and other nearby users at the time

of request. In an LBS context, the best-studied privacy guarantee is known as sender

k-anonymity. We show that the state-of-the art solutions for sender k-anonymity defend

only against the naive attackers who have no knowledge of the anonymization policy

that is in use. We strengthen the privacy guarantee to defend against more realistic

“policy-aware’ attackers.’. We describe a polynomial algorithm to obtain an optimum

anonymization policy. Our implementation and experiments show that the policy-aware

xv



sender k-anonymity has the potential for practical impact, being efficiently enforceable,

with limited reduction in utility when compared to policy-unaware guarantees.

Next we extend the policy-aware privacy guarantee to a class of attackers who

knows historical user locations i.e. trajectory-aware. We call it the trajectory-aware

policy-aware sender k-anonymity guarantee. We describe how this novel privacy guar-

antee is provided in an offline scenario, when a LBS provider logs the LBS requests sent

by its users over a period of time and later wants to publish/share these logs. While

these logs can be extremely valuable for advertising, data mining research and network

management, we show they pose serious threat to anonymity of the LBS users. We

describe a method to anonymize these LBS request logs and preserve trajectory-aware

policy-aware sender k-anonymity in the offline scenario. We show that finding the op-

timum offline policy that provides trajectory-aware policy-aware k-anonymity is NP-

Hard. Hence, we describe a novel bounded approximation algorithm and empirically

show the effectiveness of this approximation algorithm for anonymizing large sizes of

data (up to 1 million users).

xvi



Chapter 1

Introduction

Recent years have witnessed increased demand for Location-Based Services. In-

tuitively, a Location-Based Service refers to a information service that answers requests

of mobile device users for services, facility, or other users in their proximity (e.g. “find

the nearest gas station” or “alert me when a friend is within 1 mile of my location”’).

Formally, it is defined in [lbs] as follows.

1.1 Location-based Services

Location-based services (LBS) refers to an information or entertainment service,

accessible with mobile devices through the mobile network and utilizing the geographic

location of the mobile device . The location is used by the LBS in one of the following

possible ways:

• sort or filter the result of a user query to those that are closest to user location.

• show/announce the location of a user as a pointer on the map to other users.

• trigger an event when a user moves inside/outside a predefined region.

The above definition describes a LBS in its most common forms, focusing on

the 1st generation of LBS that are primarily available through the mobile networks.

But the field of LBS is still evolving and therefore some of the newer applications

(e.g. location-enabled web services using HTML 5) may not be described using above

1



2

definition. Next we describe some of the popular classes of commercial LBS that uses

the location data in one of the above described ways.

Proximity Search. The location-based services in this class are examples of LBS

that sort or filter the result of user queries, using their location. The most common

example in this category is an application that helps users to find services they seek

in their proximity e.g. “nearest gas station”, or “Thai restaurant”. The location is not

an enabler for this service but rather acts as a filter for the result of the user queries.

Google Maps [gma] is an example of such application. Groupon [gro] is another popu-

lar application that allows users to find discount coupons for the shops in their proximity.

Social Networking. The location-based services in this class are examples of LBS

that allows a user to share/announce their location to other users. These applications

use the location to enable and/or enhance the social networking scenario. It is widely

believed that the location provides added value to the initiation of a social interaction.

For e.g. a person is more likely to meet/interact with friends in close proximity to him.

Google Latitude [gla], Facebook Places [fb], Gowalla [gow] and FourSquare [fou] are

examples of such LBS. All these applications allow a user to disclose his/her location

on a map to (a subset of) other users, who then can use this information in a manner

deemed fit to them.

Marketing and Advertising. The location-based services in this class are examples of

LBS that trigger an event when a user moves inside/outside a predefined region. For e.g.

when some users pass by a store, they are sent a discount coupon. The location-based

marketing and advertising has emerged as the latest tool in support of the traditional

marketing and advertising strategies. Applications like Shopkick [sho] and Foursquare

[fs] track a user’s visits to retail shops and businesses and encourage them to visit new

retail shops and their favorite shops frequently by providing them incentives such as

discount, freebies and access to special events.



3

Most of these LBS applications uses the query-response model i.e. the user

(or a client application) sends a request to an LBS server that contains details of the

requested information or operation. In the response the LBS sends back the status of the

operation or the requested information back to the client. Some of the LBS applications

use subscriptions, allowing a user to subscribe for certain event(s). The server later

sends response(s)/notification(s) when the event(s) occurs. But as the users move, they

need to send location updates to the server, thus as such these LBS can also be modeled

as query-response. We elaborate more on the working a LBS in the next section.

1.2 Prevailing Model of LBS

Sender

CSP

LBS
Server

1

2

3

85

6 7

4

Location
Server

Figure 1.1: LBS Model

This section introduces the prevailing model of a LBS, describing the entities



4

involved in the delivery of the service. Even though a LBS does not dictate how the

location of the user is obtained (e.g. it can be provided explicitly by the user), in this

model we assume that the location is computed automatically using the mobile device

and/or the wireless network. Infact improved location computing technologies for mo-

bile devices is a major contributor to the popularity of LBS.

As shown in Figure 1.1 there are four core elements in the delivery of a

location-based service: the user making a request, typically called the sender, the

(wireless) Communication Service Provider, denoted as CSP, the Location Server,

denoted as LS, and the Location Based Service (LBS) provider, denoted as LBS. Next

we give a functional overview of these core elements and describe the the message flow

and computations behind an interaction of a user and a LBS.

1.2.1 Sender

The sender initiates the LBS request, typically using an application (client

part of the LBS service) from his mobile device. These client applications can be

native to a mobile platform (e.g. iOS or Android) or they can be implemented as

web applications (e.g. HTML5) running in the browser. Whether the LBS request

is sent using a native application or a web application, it typically contains a unique

device identifier (e.g. IP-address, MAC-address, IMEI number (International Mobile

Equipment Identity)). Unlike traditional wireline telephones, the mobile devices are not

shared, hence a unique identifier associated with a mobile device represents a unique

user. These applications obtain the “current” location of the mobile device from the

run-time environment on the mobile device, which in turn obtains it from the Location

Server.

1.2.2 Location Server

The Location Server (LS) refers both to the infrastructure that computes the

location of a mobile device and to the interface that provides access the computed



5

location. There are two classes of location computing infrastructure, Network-based

and Device-based. Next we describe the two most prevalent methods for computing

mobile device location, one from each of the above mentioned class.

Network based. The wireless network based location computing infrastructure was

developed to compute the location of mobile device locations for E911 [E91] purposes.

There’s more than one technology to develop such infrastructure, we briefly describe

on such technology known as Time Difference of Arrival (TDOA). The wireless

networks that uses TDOA deploys specialized network components known as Location

Measuring Unit (LMU) and Position Determining Entity (PDE). These components

computes the location of a mobile device by measuring the time of arrival of a radio

signal from a mobile device at three or more separate cell towers. Using the (known)

speed of propagation of radio waves, the difference in the arrival times at a pair of cell

towers allows one to draw a curve on which the transmitting device is located. The

intersection of 2 or more of these curves gives the location of the device. The computed

location can be accessed through specialized network component such as the Mobile

Positioning Center (MPC) in the CDMA network.

Handset based. Handset based solutions are commonly used in smartphone platform

(e.g. iOS and Android) to provide location data to the smartphone applications. This

approach uses the mobile device to measures the strength of various radio signals (WiFi,

2G, 3G etc) from the nearby WiFi access points and cell towers and sends them to

a server, along with the identities of the access points. The server has a database of

locations of WiFi access points and cell towers and it uses the the data sent by the

mobile device to compute the location of the mobile device relative to the location of the

access points. The computed location is then sent back to the mobile device. SkyHook

[sky] and Google Location Service [gls] compute location of a mobile device using this

method. The location computed with this method is primarily used in non-emergency

LBS, because it is not guaranteed to be accurate (e.g. if a WiFi access point’s is moved

and its location in server’s database is not updated then its going to lead to wrong result).



6

1.2.3 LBS Provider

The LBS provider implements the required functionality to provide the required

service. It uses the location in the LBS request to respond to the user query or perform

the requested operation. In addition, some of the LBS providers logs the LBS requests

and use them to enable new services or improve existing services. This is a common

practice as indicated in the prevailing data retention and privacy policies of the popular

LBSs such as Facebook Places, FourSquare, Loopt, Google Maps and Gowalla.

These core elements, together form the LBS ecosystem. The message flow that

we describe next represents how these elements interact when a sender initiates a LBS

request.

• The sender invokes the client application on the mobile device to send a LBS

request. But before the LBS request can be sent to the LBS provider, it needs to

obtain the current location of the mobile device. The run-time environment on

the mobile device obtains this location from the Location Server, on behalf of the

client application. This is shown as messages (1) and (2) in Figure 1.1.

• The Location Server (LS) which is either the MPC in the CSP’s network or an

Over-The-Top (OTT) service such as SkyHook or Google Location Service com-

putes the location of the mobile device and sends it back to the user device. This

is shown as messages (3) and (4) in Figure 1.1.

• The client sends the obtained location in the LBS request (e.g. “nearest Chinese

restaurant”) to the LBS provider through the CSP’s network. This is shown as

messages (5) and (6) in Figure 1.1.

• The LBS provider compute the response of the LBS service request using the

location sent with the request. The response is then sent back to the sender over

the CSP’s network.



7

1.3 Privacy Incidents

While users have liked the innovative uses of location data in the form of

location-based services, there is an increasing concern that these services brings new

threats to user privacy. And to show that these concerns are not entirely theoretical, we

list some recent incidents reported in the media that highlights some of the key privacy

concerns.

1.3.1 Crimes: Robbery, Heist, Stalking

Several incidents of robbery, heist and stalking have been attributed to the disclo-

sure of location on social networking sites such as Facebook, Twitter and FourSquare.

These incidents were a result of victims revealing their location on the social network-

ing sites without realizing that every user on the site had the permission to see the post.

The burglars used these posts to identify the victims that were not at their homes. This

is highlighted on Please Rob Me! [rob] website that has numerous examples of users

inadvertently disclosing their location on social networking sites. The use of social net-

working site for crimes is in fact such a growing trend that insurance companies, such

as More Than [mth], are thinking about taking this factor into account in the insurance

costs, after their survey revealed that monitoring social networking sites is now a big

business for criminals.

1.3.2 Commercial Big brother

In addition to these ignorant disclosure of LBS requests by the users, several in-

dependent research studies [loc, wsj, EGC+10] have revealed that many LBS providers

are logging user LBS requests along with some form of device identifier (IP-address,

MAC-address). This includes companies such as Google Maps[gma], Foursquare [fs]

and Facebook Places [fb]. Not only the LBS providers, even the companies such as

Google and Apple that provide application platforms for mobile devices are tracking

user location every time a user sends an LBS request. And finally, as reported in a study

[wsj] in Wall Street Journal, the LBS client applications on the mobile device are col-

laborating with the advertisers and are sending the LBS request data to them. Over a



8

period of time, the locations visited by the user and the LBS requests can reveal a lot

about the user, including his social and political interests and other information such as

his employer and medical condition (to some extent).

1.3.3 Government Big brothers

The LBS providers and advertisers are not alone in seeking the LBS data of the

users. Law enforcement agencies have also started aggressively seeking LBS data from

the LBS providers and the Location Servers. The ACLU report [acl] summarizes a par-

tial list of incidents (reported in media) when authorities accessed or tried to access such

information. For e.g. in 2008, FBI sought and received location-tracking information

not just for a robbery suspect, but for 180 other innocent people without a warrant. Such

practices are most likely kept secret to avoid disclosing the investigatory techniques of

the Law enforcement agencies and avoid potential backlash from consumers. Therefore,

one can assume that if needed, these agencies can approach the LBS providers to gain

access to user LBS requests.

1.4 User Privacy in Location-based Services

All these incidents have drawn the attention of the users, privacy advocates, re-

searchers and the legislative bodies towards user privacy issues. The users and the pri-

vacy advocates have been demanding better privacy measures, while researchers have

been working on finding solutions to these privacy problems. The two problems that

have attracted the maximum attention from researchers are Sender Anonymity and Lo-

cation Privacy.

1.4.1 Sender Anonymity

Consider a LBS service that helps users to find services they seek in their proxim-

ity (e.g. “nearest Thai restaurant” or “nearest Pet Store”). The requests sent to this LBS

by the users can reveal their personal interests such as “what food they like”, “whether

they have a pet”, to the LBS. Some of these interests such as political affiliation may be



9

considered sensitive by the users and therefore may not want the LBS (or any other per-

son) to know about it. Thus while they want to access the LBS i.e. send LBS requests,

they do not want the LBS (or any other person) to know that the request came from

them. We refer to this problem of hiding the identity of the sender of a LBS request as

sender anonymity.

The important aspect of any sender anonymity solution is the attackers against

whom the sender anonymity is achieved. One solution may provide sender anonymity

against an eavesdropper who can intercept the LBS requests but cannot view its content.

But the same solution may fail to hide the identity of a sender from the LBS providers

who can view the content of the LBS. Or it may fail to provide sender anonymity against

a law enforcement agency that can use subpoena to obtain the LBS requests from the

LBS provider and user locations from the Location server.

1.4.2 Location Privacy

Consider a LBS service that allows users to disclose their location on a map to

(a subset of) their family and friends (e.g. “I am at UTC mall” or “I am at Qualcomm

stadium” ). The users may not want to disclose their location all the time or to every

body (e.g. a user may want to tell his friends that he is at Qualcomm stadium but does

not want his spouse to know that). We refer to this problem of hiding the location of a

mobile device (of a user) from an attacker as location privacy. Note that in this problem

the focus is on preventing the disclosure of a user location in the LBS ecosystem. It

does not prevent location disclosure against other threats such as physical surveillance.

The two problems of location privacy and sender anonymity described above

are complementary to each other. In location privacy the goal is to hide the precise

location of the user but one is not required to hide the identity of the user, while in

sender anonymity the goal is to hide the identity of the user but one is not required to

hide the location.



10

1.4.3 Scope

In this study, we focus on the problem of sender anonymity in LBS. But since

the problem of sender anonymity has been studied extensively in traditional messaging

systems such as E-mail and Web-transactions, we first briefly describe the the charac-

teristics of these solutions and then show why they cannot provide sender anonymity in

LBS.



Chapter 2

Anonymous Communication

In the context of e-communication, the early cryptographic encryption systems

for public networks were focused on hiding the content of a message but not on hiding

who is communicating with whom and how often. In particular, without looking at the

content, the sender of a message can be identified, and the sender and receiver can each

be identified as participating in some communication. The later problem is referred to

as Sender Receiver Unlinkability and the former problem as Sender Anonymity [PW87].

Next we look at the some of most popular and publicly available solutions

[Cha81, RR98, GRS99, DMS04] for sender anonymity in the the context of mes-

saging systems such as E-mail and World Wide Web. Some of these solutions

[GRS99, DMS04] are independent of applications and are applicable to any messag-

ing system. In describing these solutions we focus particularly on the attacker against

whom the sender anonymity is achieved. A solution may provide sender anonymity

against a local eavesdropper that can observe the messages received by a receiver but

not against a global observer that can observe all the messages in the system.

2.1 Anonymity in messaging systems

2.1.1 Mix Network

First proposed in the context of anonymous email-system [Cha81], a mix net-

work consists of a network of special purpose routers called mix. A mix (shown in

11



12

Figure 2.1: Mix Router

Figure 2.1 is a specialized router that uses cryptographic transformations and reordering

to make it difficult to relate an outgoing message with an incoming message. Thus a

mix acts a black box and does not allow an observer to track a particular message us-

ing specific bit-pattern, size or ordering with respect to other messages. A message is

passed through a series of Mix routers making it even more difficult to track a particular

message in the network.

The Mix network provides sender receiver unlinkability against a global ob-

server since it is not possible to identify who is communicating with whom. It also

provide sender anonymity against the receiver since the receiver cannot trace the sender

of a message. The working of mix network requires that the mix are trusted and are

never compromised and are available all the time.

2.1.2 Crowds

Crowds is a system to provide sender anonymity to the users for web transac-

tions. The approach is based on the idea of “blending in the crowd” i.e. hiding one’s

actions within actions of many others. To execute anonymous web transactions, a user

first joins a set of other users known as the crowd. A user’s request to the web server is

first passed to a random member of the crowd. That member can either submit the re-

quest directly to the end server or forward it to another randomly chosen member, and in

the latter case the next member chooses to submit or forward independently. When the

request is submitted, it is submitted by a random member. Figure 2.2 shows schematic

representation of this process.

The web server receiving a request is unable to identify the true sender because it

is equally likely to have originated from any member of the crowd. Even the collaborat-

ing crowd members cannot distinguish the originator of a request from a member who



13

Web Server

Figure 2.2: Crowd System

is simply forwarding the request. Thus crowds provide sender anonymity against the

web server (even in the presence of collaborating members) i.e. the receiver. It neither

provides sender anonymity nor sender receiver unlinkability against a global observer.

2.1.3 Onion Routing

Onion routing is a general purpose infrastructure for anonymous communication

over a public network such as Internet. It consists of a network of special purpose routers

called onion routers that are connected by a longstanding (permanent) connections. To

provide anonymity the messages sent through the network are multiplexed over these

longstanding connections.

Onion routing’s anonymous communications are protocol independent and exist

in three phases: connection setup, data movement and connection tear-down. The setup

consisting of choosing the sequence of onion routers in between the sender and the re-

ceiver. All the communication passes through this route established by the setup phase.

The route is setup in a way that each onion router can only identify the previous and

the next hops along a route. To every message, the sender adds a layer of encryption

for each onion router on the route. As the message moves through the predetermined

path, each onion router removes one layer of encryption, so it arrives at the receiver as

plain-text.

Since the receiver is only aware of the the last onion router on the path, this

approach provides sender anonymity against the receiver. Due to layering cryptographic

operations, when the data moves through the network it appears different to each onion

router. Therefore, it provides sender anonymity and sender receiver unlinkability against



14

eavesdropper and global observers.

2.1.4 Anonymity measure

The anonymity measure used in these studies for sender anonymity is known

as anonymity set [Cha88]. In the context of a messaging system, the anonymity set is

defined as the set of users who could have possibly sent a particular message. The size

of an anonymity set is used as an indicator of the level of anonymity provided to the

sender. In the worst case, the size of the anonymity set is 1, which means no anonymity

and in the best case it equal to the number of users in the system, which means any user

could have sent the message. The goal of these anonymity solutions is to increase the

size of the anonymity set.

2.2 Sender Anonymity in LBS

The LBS model described earlier is also an example of a messaging system,

therefore one can try to use one of the above described solutions to provide sender

anonymity to LBS requests. But these systems provide sender anonymity against at-

tackers who has access to the LBS requests but cannot access its content. They fail to

provide sender anonymity when the attacker has access to the content of the messages

(e.g. receiver) as the contents may reveal the identity of the sender (e.g. if the message

includes userid or other forms of user identifier). This is exactly the case with a LBS

provider who can access the contents of the LBS requests.

It was first shown in [GG03] that the location of a sender included in a LBS

requests can also reveal the identity of the sender in some cases. Consider a scenario

when a user sends a LBS request from his home at 11:00 pm in the night. The location

in this LBS request can be correlated with a database of geo-coded postal address to

identify the residence. This address can be further used to do a lookup in property

listings, to reveal the owner who most likely is the sender. Thus, if a user sends a LBS

request from a location that exclusively belongs to him (at the time he sends the request),

his anonymity can be breached using the location in the LBS request. Therefore the

solutions that provide sender anonymity in a messaging system, alone cannot provide



15

sender anonymity to the users of LBS.

Thus research in the area of sender anonymity for LBS focuses on preventing

an attacker from using the location of the sender to breach sender anonymity. The most

studied approach to address this problem is known as Spatial Cloaking.

2.2.1 Sender anonymity via Spatial Cloaking

Spatial cloaking [GG03] refers replacing the location in a LBS request with a

region (of some predetermined shape) that includes the location of the sender. Thus

a attacker who has access to the LBS request cannot use the region in the request to

determine the sender. But this approach may fail if the sender is the only user in the

region and the attacker can observe the locations of the users within that region.

Thus to prevent such a case, the region that is used in the LBS request is picked

such that it includes k-1 users in addition to the sender. We refer to this as k-anonymous

spatial cloaking. When an attacker who has access to such a LBS request and locations

of all the users in that region, tries to reverse engineer the possible sender, there are k

users (any one of) who could have sent the request. Without any additional information,

the attacker cannot narrow down his choices of possible senders to less than k. Thus it

provides sender anonymity by hiding the sender in a crowd of k potential senders. We

refer to this as sender k-anonymity.

Example 1. Figure 2.3 shows an example of spatial cloaking by an anonymizer, that

replaces the location A in the LBS request with a region containing the location A and

location of 7 other nearby users.

Figure 2.4 shows the architecture of a privacy conscious LBS that uses spatial

cloaking based anonymizer. The anonymizer acts as the proxy between the users and

the LBS server. When a user wants to access a LBS, he sends the LBS request with

his precise location to the anonymizer. The anonymizer computes a region that contains

the locations of the sender and k-1 additional users. The anonymizer replaces the exact

location of the user in the LBS request with this region. The LBS request containing

region is forwarded to the LBS server.



16

Anonymizer

Figure 2.3: 8-anonymity Spatial cloaking

2.2.2 Trade-off: Anonymity vs Cost

If privacy was the only consideration, one could replace the location in the LBS

request with a very large region that contains hundreds of additional users (e.g. the

entire neighborhood around the user). The use of a region in the LBS request affects

the quality of the response (i.e. utility) and/or the cost of providing the LBS service.

For e.g. a LBS query requesting the locations of nearby coffee shops that uses a bigger

region will yield far more results than a similar query that uses a location. The greater

number of results requires more processing at the server, increased transmission cost

of the result and decreased value to a user. Thus another consideration, when selecting

a region to replace a location in a LBS request, is to try and minimize the area of the

region. But as described in the next example, a spatial cloaking that replaces locations

in the LBS requests with the smallest region containing the user location and those of

k − 1 other users may not provide sender k-anonymity as intended.

Example 2. Consider the spatial cloaking for locations shown in Figure 2.5 that pro-

vides sender 2-anonymity by picking the smallest region containing the sender and one



17

Sender

CSP

LBS
Server

1

2

3

85

6 7

4

Location
Server

Anonymizer

Figure 2.4: Spatial cloaking based anonymizer

additional user. For the LBS requests sent from location A and B, the anonymizer uses

the region R, and for LBS request sent from location C it uses the region S. If an at-

tacker observes an LBS request with region S, he can successfully reveal that the sender

is C.

This brings us to an interesting conundrum. While a bigger region can provide

better sender k-anonymity in comparison to a small region, it increases the processing

cost of a LBS request and can reduce its value to its users. On the other hand, while

smaller regions reduces the LBS processing cost, trying to reduce the size of the regions

too aggressively, could result in breach of sender k-anonymity. These opposing consid-

erations results in a trade-off between privacy and cost/utility, as we want to minimize

the area of the region while preserving sender k-anonymity.

Thus a spatial cloaking based solution should not only provide sender k-



18

CA

B

S

R

Figure 2.5: Anonymity breach due to agressive minimization

anonymity, but should also ensure that the regions picked for spatial cloaking are op-

timal. As we describe next, this is one of the key challenges that we address in our

study.

2.2.3 Problem statement

As mentioned earlier, a key aspect of sender anonymity solution is the type of

attacker against whom it is achieved. In this study we consider two classes of attackers

that represents current (realistic) threats to sender anonymity of the users of LBS.

• Policy-aware attacker: an attacker who has access the LBS request, the locations

of all the users at a given instant of time and who knows the complete design of

the system used to provide this protection.

• Trajectory-aware and Policy-aware attacker: a policy-aware attacker who has

access to the past LBS requests sent by a user during a given interval of time and

the locations visited by all the users during that interval.

Snapshot Policy-aware Sender k-anonymity

We refer to the sender k-anonymity guarantee against the class of policy-aware

attackers as policy-aware sender k-anonymity. Ensuring sender anonymity against

policy-aware attacker is non-trivial since such an attacker is aware of each and every



19

aspect of defense mechanism. The privacy breach in Example 2 is also due to the at-

tacker being aware of the spatial cloaking function (i.e. region picked for each location).

The key challenges addressed in this study are :

[1] we define the notion of policy-aware sender k-anonymity and propose a spa-

tial cloaking based solution that preserves policy-aware sender k-anonymity. We aim

for a strong information theoretic privacy guarantee that depends upon the information

available to an attacker but there is no limiting assumption on the available processing

power.

[2] Since spatial cloaking reduces utility of the LBS response and/or increases

the cost of processing a LBS request, we propose a spatial cloaking solution that finds

the optimum spatial cloaking for the LBS requests without

[3] study the affect of the choice of regions (e.g. circular, quadrants) on the

complexity of finding the optimum spatial cloaking.

This version of policy-aware sender k-anonymity only applies to requests sent

by the users at a given instant of time. It does not consider the LBS requests sent by the

users in the past (other instant of time). Therefore we extend the policy-aware sender

k-anonymity against an attacker who also has access to the history of location visited by

the users (trajectory) and their prior requests.

Trajectory and Policy aware Sender k-anonymity

As indicated by the data retention policies of the popular LBS applications such

as Facebook Places, FourSquare, Loopt and Gowalla, the LBS providers log all the

LBS requests sent by the LBS users. This even includes some of the sensitive requests

of the users (e.g. for the local campaign headquarter of a given political party or spiritual

center for a given religion). And since there are no commercial or public anonymizers

available to the users of LBS, the responsibility to preserve anonymity of the users lies

with the LBS provider.

Thus in this scenario, the LBS provider needs to anonymize the request logs to

provide sender k-anonymity against an attacker who can access the anonymized request



20

logs, all the past locations (trajectory) of the users and design of the system that provides

the sender k-anonymity. We refer to this privacy guarantee as the Trajectory and Policy

aware Sender k-anonymity.

The key challenges addressed in this study are :

[1] propose sender k-anonymity guarantee against an attacker who has access to

the LBS requests log, user trajectory over a period of time and who knows the design of

the system used to provide privacy.

[2] propose a method based on spatial cloaking to anonymize the LBS request

logs to preserving the sender k-anonymity against the attacker who gains access to LBS

requests, user trajectories and complete details of the anonymization.

[3] find the optimum privacy preserving anonymization for the LBS request logs.

The remainder of this thesis is organized as follows. In Chapter 3 we address the

challenges of policy-aware sender k-anonymity for the requests issued at single instant

of time. In Chapter 4 we address the above mentioned challenges of trajectory and

policy aware sender k-anonymity for the log of LBS request. In Chapter 5 we discuss

the legal requirements of privacy (or lack of it) in various countries for location-based

services. In Chapter 6 we discuss some of the open problems in sender anonymity for

Location-based services.



Chapter 3

Snapshot Policy-aware Sender

k-anonymity

3.1 Introduction

Recent years have witnessed increased demand for Location-Based Services

(LBS), which answer requests of mobile device users for services in their proximity

(e.g. “find the nearest gas station”, “Thai restaurant”, “hospital”). While some such

LBS providers are available in wireless networks since 2001 [exa], their proliferation

has been limited, among other reasons, by privacy concerns.

In this chapter we address one such concern, which pertains to hiding the identity

of the sender of more sensitive requests (e.g. for the local campaign headquarters of a

given political party, spiritual center for a given religion, etc.) in order to keep her

interests private. The sender’s identity must be protected even against attackers who,

via hacking or subpoenas, gain access to a) the request (from the LBS provider’s log)

and b) to the locations of the mobile user and other nearby users at the time of the request

(from the wireless service provider) and c) who know the “design” of the system used

to provide this protection. The assumption c) about the attackers is based on a well

accepted principle of designing a private and secure system - “The design is not secret”

[Sal74]. This is indeed a realistic threat since an attacker with subpoena powers (e.g. a

federal agency) or a disgruntled ex-employee can obtain the “design” of the system.

21



22

In the context of LBS, the best-studied identity protection measure is known

as sender k-anonymity [KGMP07], which is intended to guarantee that the request

log and precise location information are insufficient to distinguish among the ac-

tual requester and k-1 other possible requesters. Typical sender anonymization algo-

rithms [GG03, MCA06, KGMP07, XC07] are based on hiding the sender’s precise lo-

cation in the request, substituting instead a cloak, i.e. a region containing this location.

The cloak is usually chosen from among regions of a pre-defined shape (circular, rect-

angular, etc.), to include at least k-1 other mobile users. To maximize the utility of the

answer to the service request, usually the tightest cloak containing k users is picked. We

refer to these utility-maximization policies of choosing cloaks as k-inside.

In the version of sender k-anonymity provided by the k-inside policies [GG03,

MCA06, XC07], the principle that the design of a system is not secret is ignored. There-

fore, such privacy guarantee does not hold against an attacker who knows the “design”

i.e. the policy used to pick the cloaks for locations. The next example illustrates how

an attacker who knows the cloaking policy (“policy-aware” attacker) can identify the

sender when the cloaks are selected using a k-inside policy.

Example 3. Figure 3.1 shows the 2-inside policy obtained using the algorithm de-

scribed in [MCA06] for the location database of Table 3.1. The algorithm assumes a

static quad-tree based partitioning of a geographic space and uses quadrants and sub-

quadrants (combination of two adjacent quadrants) as possible cloaks. For a given

requester, the algorithms picks the smallest cloak (containing the requester) that con-

tains k-1 other users. For k=2 the algorithm cloaks A and B to R1, C to R3 and S and

T to R2. Since each of these cloaks contains at least 2 locations this is a 2-inside policy.

Assume there is an attacker that has access to the location database D1 (via hacking or

subpoena) and is “design-aware” i.e. knows the 2-inside policy used to provide sender

2-anonymity. If this attacker observes an LBS service request with cloak R3, he can

identify the sender as C!. �

The privacy guarantee of the k-inside policy have been refined by additional

constraints such as k-reciprocity[KGMP07] and k-sharing [CM07]. We show (in Section

4.7) that since the policy-aware attacker is not considered, these additional constraints

also fail to provide sender k-anonymity.



23

S

C

A

B

T

R2
R1

1 2 3 4

1

4

R3

Figure 3.1: 2-inside policy

userid locx locy
· · · · · · · · ·

Alice 1 1
Bob 1 2

Carol 1 4
Sam 3 1
Tom 4 4
· · · · · · · · ·

Table 3.1: Location Database D1

As described later in detail, to preserve sender k-anonymity against a policy-

aware attacker, in some cases the cloak used for a location needs to be bigger (and

include more than k locations) than the cloak picked by a k-inside policy. As a result,

a cloaking that provides policy-aware sender k-anonymity (policy-aware cloaking)

may have reduced utility in comparison to a k-inside policy. Moreover unlike k-inside

policies where one can find the utility-maximizing (optimum) cloaking for each user by

considering a small subset of all the users, for optimum policy-aware cloaking one has

to consider all the users (as described later in Section 3.4), which is computationally

more expensive than optimum k-inside policy. Hence policy-aware sender k-anonymity

trades utility and performance for stronger privacy. In this chapter, we describe our

findings on identifying the “sweet spot” in this tradeoff.

Our contributions. In addition to showing that k-inside policies achieve sender



24

anonymity only against attackers who are policy-unaware, and is not proof against

policy-aware attackers, our contributions include the following.

[1] We formalize the classes of policy-unaware and policy-aware attackers, and

define a novel, stronger privacy guarantee: sender anonymity against policy-aware at-

tackers. We prove formally that this guarantee strictly subsumes sender anonymity

against policy-unaware attackers.

[2] We study the problem of finding, among all policy-aware sender k-anonymi-

zations of a set of mobile users, one with optimum utility. We show that the problem

of finding optimum policy-aware sender k-anonymity depends upon the type of cloaks

used. In particular, we show that when the cloaks are circles whose centers are selected

from a given set of points, the problem is NP-complete, but becomes PTIME for cloaks

picked from among the quadrants of a quad-tree-based partition of the map (a common

choice in state-of-the-art anonymization solutions [GG03, MCA06]).

[3] We implement and evaluate experimentally our optimum policy-aware

anonymization algorithm. Even though finding optimum policy-aware anonymization

is computationally costly in comparison to finding optimum k-inside policy (that uses

the same cloak types) we show that our algorithm is practical and scales extremely well

with the number of service requests: it takes less than 1 second to anonymize 250k re-

quests from users in the San Francisco Bay area (using a single anonymization server)

and can scale up to 1 million requests using 16 servers in parallel.

[4] As stated earlier, the policy-aware cloaking may result in some loss of utility

in comparison to a k-inside policy (that uses the same cloak type). We show empirically

that the utility reduction traded for the stronger privacy guarantee is reasonable: the

average cloak area is at most 1.7 times the average area of the tightest cloaks used for

policy-unaware anonymity.

Scope of our work. More recently, several extensions to sender k-anonymity has been

proposed, such as allowing user specified k (in [GL05, CM07]) and defending against

trajectory-aware attacker [BWJ05, XC07, CM07] where the attacker has knowledge

of when multiple requests have originated from the same (a priori unknown) user, even



25

if they are sent at different times and from different locations. While these extensions

are important, our work improves upon the foundations of these extensions, namely

make it policy-aware. We leave as future work the extension of the policy-aware sender

k-anonymity to handle trajectory-awareness and user-specified k.

Paper outline. The remainder of the chapter is organized as follows. In Section 3.2,

we show how we model an LBS. We define sender anonymity and the classes of attacks

it defends against in Section 3.3. Section 3.4 gives our PTIME algorithm for finding a

policy-aware anonymization of maximum utility. In Section 3.5 we describe how we

utilize the inherent parallelism in the problem to obtain greater scalability and report on

the experimental evaluation in Section 3.6. We discuss related work in Section 4.7 and

conclude in Section 3.8.

3.2 LBS Models

This section introduces a basic model of providing location based services, based

on information about user locations provided by a wireless network. It then describes

modifications and additional components required for privacy support.

3.2.1 Basic LBS Model

Wireless “Communications Service Providers” (CSPs) can derive the approxi-

mate location of user devices, through a variety of mechanisms, including triangulation

based on signal strength or time-delay to multiple cell towers, and GPS capabilities on

the device. In the US, the E911 Requirement [E91] mandates that CSPs provide the

necessary infrastructure to determine the location of mobile devices within a range of

50 to 300 meters, depending on the technology used. This infrastructure must be avail-

able when users call the emergency 911 number, but can also be used to support other

services, including location-based information services. It is now common for CSPs to

include specialized network components, which are called Mobile Positioning Center

(MPC) in the CDMA standard, that serve as a logically centralized point that provides

access to device locations for E911 and other location based services.



26

An abstract model is used here to study location-based services and their privacy

characteristics. For simplicity, we model a geographic area as a 2-dimensional space and

user’s location as integer coordinates within this 2-dimensional space. There are four

core elements in the delivery of a location-based service: the user making a request,

typically called the sender, the (wireless) Communication Service Provider, denoted as

CSP, the Mobile Positioning Center operated by the CSP, denoted as MPC, and the Lo-

cation Based Service (LBS) provider, denoted as LBS. We view the CSP to be a trusted

agent that operates the MPC. Although in practice the MPC provides the approximate

location of each user’s device, for simplicity we take the value produced by the MPC as

the device’s exact location. A sender’s request for a location-based service is processed

by the CSP, which obtains the user’s location from the MPC and forwards the request to

the LBS.

We abstract from the fact that location is usually determined only on demand,

and assume in our investigation that the locations of all devices are eagerly computed

and available. This eagerness assumption is appropriate in connection with the study of

privacy guarantees, since we target attackers who might be able to reconstitute all device

locations, perhaps by hacking in real-time, by hacking logs, or by subpoena-induced

cooperation of the CSP.

Location Database. In the abstract model, for simplicity we assume that the device

locations made available by the MPC are stored in a relational database, called the lo-

cation database. (This database might be virtual.) Although its actual schema can vary

from CSP to CSP, it is essentially equivalent to a single relation schema

D = {userid, locx, locy}.

Here, the domains of attributes locx and locy are the domains of x and y coordinates in

the 2-dimensional space used to model the geographic region.

In this investigation, we assume that the location database is updated periodi-

cally (e.g., every 30 seconds) to reflect the movement of users. Multiple location-based

requests can be made against each snapshot. Thus the state of a location database over

a period of time can be modeled as a sequence of different instances of schema D.



27

We represent the set of all possible instances of D by D. An example instance

D1 ∈ D is shown in the Table 3.1, and illustrated diagrammatically in Figure 3.1.

The following definition allows us to focus on the precise information associ-

ated with a sender’s request for a location-based service. (In the following section we

describe how this request might be modified by the CSP to provide privacy protections

before forwarding to the LBS.)

Definition 1. [Service Request] A service request is a tuple 〈u, (x, y), V 〉 where u is

a sender identifier, (x, y) are coordinates in 2-dimensional space and V is a vector of

name-value pairs. We say that the service request is valid w.r.t a location database D if

〈u, x, y〉 ∈ D.

Intuitively, the name-value pairs contain the categories and specifics of the

sought services.

We define the function id(SR) that returns the user id in the service request and

another function loc(SR) that returns the location co-ordinates (x, y).

Although a service request SR itself is created by the CSP, based on a request

from a sender u, we sometimes refer to SR as having been sent by u.

Example 4. The following are examples of service requests sent respectively by users

Alice, Bob, Carol, Sam, and Tom:

SRa = 〈Alice, (1, 1), [(poi, rest), (cat, ital)]〉,
SRb = 〈Bob, (1, 2), [(poi, groc), (cat, asian)]〉,
SRc = 〈Carol, (1, 4), [(poi, rest), (cat, ital)]〉,
SRs = 〈Sam, (3, 1), [(poi, rest), (cat, ital)]〉,
SRt = 〈Tom, (4, 4), [(poi, cinema), (cat, drama)]〉.

(Here “poi” stands for “point of interest”, “cat” stands for “category”, “rest” stands

for “restaurant”, etc.) All five service requests are valid w.r.t. the location database

instance D1 of Table 3.1. �

In the abstract model, the service requests are created by the CSP using a combi-

nation of a request for information from a user, along with the user’s location as provided

by the MPC. We will therefore assume for our ongoing discussion that each service re-

quest is valid w.r.t. the current location database instance.



28

3.2.2 Privacy-conscious LBS Model

In realistic privacy solutions, the goal is not to hide information from everybody,

but rather to minimize the number of parties one needs to trust to achieve the desired

communication. The fundamental assumption underlying the privacy-conscious LBS

model studied here is that the CSP is a trusted party, and nobody else is. In particular,

the LBS is not trusted, reflecting the fact that it is usually a third-party provider that is

not under the CSP’s control.

We extend the basic LBS model of Subsection 3.2.1 to support mobile users in

accessing the LBS without revealing their identity to anyone except for the CSP. Users

rely on the CSP to ensure this goal. While we assume that the CSP can be trusted

to perform the privacy-ensuring computations and not log them, we will assume that

attackers may be able to obtain information about the locations of individual users at

different times. (This might arise due to hacking, or to subpoenas, if the CSP is logging

user locations for the purposes of advertising or service personalizations.) For the worst

case, then, we assume that the sequence of location databases is available to the attacker.

In the privacy-conscious LBS model, a user sends a location-based request to

the CSP over a channel that is assumed to be secure (this is typically the case in cell

phone networks). The CSP constructs the corresponding service request SR, and based

on this, will send a request on behalf of the user to an LBS L. The CSP cannot sent SR

itself, because this includes the sender’s identity, which would be revealed to both the

LBS provider (which may be an attacker) and to any potential attackers listening on the

channel. Also, simply removing the sender identity from SR does not suffice, because

the identity can be obtained by examining the location database (which is assumed to be

available to attackers). While there are many approaches to anonymize a request SR so

that it does not reveal the requester’s identity, for the current investigation we shall use

the following classical one.

Definition 2. [Anonymized Request] An anonymized request is a tuple 〈rid, ρ, V 〉
where rid is a unique request identifier, ρ is a connected, closed region in the plane,

and V is a vector of name-value pairs. If ρ is a rectangular region with vertical and



29

horizontal sides, then we also denote this anonymized request as

〈rid, (x1, y1, x2, y2), V 〉

where (x1, y1) ((x2, y2)) specifies the southwest (respectively northeast) corners of a

rectangular region.

From now on we refer to these regions in anonymized requests as cloaks. We

also define a function reg(AR) that returns the cloak from an anonymized request AR.

Example 5. The following is a list of anonymized requests, whose cloaks are depicted

in Figure 3.1.

ARa = 〈167, (0, 0, 1, 2), [(poi, rest), (cat, ital)]〉
ARb = 〈168, (0, 0, 1, 2), [(poi, groc), (cat, asian)]〉
ARc = 〈169, (0, 0, 2, 4), [(poi, rest), (cat, ital)]〉
ARs = 〈170, (2, 0, 4, 4), [(poi, rest), (cat, ital)]〉
ARt = 〈171, (2, 0, 4, 4), [(poi, cinema), (cat, drama)]〉 �

Definition 3. We say that an anonymized request AR = 〈id, ρ, V 〉 masks a service

request SR = 〈u′, (x′, y′), V ′〉 if the location (x′, y′) is an element of the cloak ρ and

V=V’.

Example 6. For each x in {a, b, c, s, t}, the anonymized request ARx of Example 5

masks the service request SRx of Example 4. �

Instead of sending a service request SR to the LBS provider, the CSP forwards

to the LBS provider an anonymized request that masks SR. The next section discusses

how such anonymized requests are constructed.

3.3 Policy-aware k-anonymity

Prior research considers anonymization algorithms that cloak the sender’s lo-

cation with a region covering the location of k − 1 additional mobile users [GG03,

MCA06, XC07]. The intention is that an attacker who observes the anonymized request

and has access to the location database can not reduce the number of possible senders



30

below k, since there are k potential service requests, one for each of the senders covered

by the cloak of the anonymized request, that could have lead to the same anonymized

request. While the cloaking algorithms proposed in the literature use different cloak

shapes (quadrants [GG03, MCA06], minimum bounding circles [XC07], etc.) they

agree in one important aspect: to maximize utility of the service, the tightest cloak that

includes k users is picked. We term this class of cloaking policies as k-inside policies.

The results in this section are motivated by the observation (described in Section

3.1) that if the attacker is aware of the k-inside policy used by the CSP, then for some lo-

cation databases he is able to reduce the number of possible senders below k, defeating

the purpose of anonymization. We set out to defend against such “policy-aware” attack-

ers (for general classes of cloaking policies, including but not limited to the k-inside

policy). To this end we need to formalize the classes of policy-aware and -unaware at-

tackers. In turn, this requires the formalization of the notion of cloaking policy, as the

CSP’s method of obtaining an anonymized request AR from a service request SR and

a given location database instance D.

Definition 4. [Policy] A policy is a deterministic procedure P that takes as input a

location database instance D and a service request SR, and outputs an anonymized

request AR:

P : {instances of location database} × {service requests} → {anonymized requests}.

A policy P is masking if for every service request, the location specified in the service

request lies within the cloak in the anonymized request it is mapped to. Formally,

∀D ∀SR loc(SR) ∈ reg(P (D, SR)).

In this investigation we consider only masking policies, so from now on we use

the term policy to refer to a masking policy.

Example 7. Assume that the current location database instance is D1, as shown in

Table 3.1. The policy P1 for the service requests shown in Example 4 is as follows:

P1(D1, SRa) = ARa P1(D1, SRs) = ARs

P1(D1, SRb) = ARb P1(D1, SRt) = ARt

P1(D1, SRc) = ARc



31

where ARa, ARb, ARc, ARs, ARt are the anonymized requests of Example 5 and the

cloaks used in these anonymized requests are shown in Figure 3.1 (where reg(ARa) =

reg(ARb) = R1, reg(ARc) = R3 and reg(ARs) = reg(ARt) = R2). �

The Attacker Model. We now proceed to formalizing the privacy guarantee of policy-

aware sender k-anonymity. To this end, we need a framework for describing what an

attacker knows about the policy being used by the CSP to anonymize requests. At the

one extreme, an attacker may know exactly which policy is being used; as formally

defined below these will be called “policy-aware” attackers. At the other extreme of

interest here, an attacker may know only that the policy is based on the use of some

family C of possible cloaking regions (e.g. rectangles, quadrants of a given quad tree,

circles with center from a given set). Given such a family C, we let PC denote the set

of all policies that use cloaking regions from C. As formally defined below, attackers

who know only that the policy used is an element of PC for some set C will be called

“policy-unaware (relative to C)”.

We target a strong, information-theoretic definition of privacy. To this end,

we model attackers as a function taking certain input to launch the attack. There are

no limiting assumptions on the computational resources expended to compute this

function. The only assumptions are on what input the function has (intuitively, the

information that the attacker sees). We classify this input into two groups as follows.

Design time: Even before the attacker observes any anonymized request, he may know

• the targeted level k of sender k-anonymity, and

• the family of candidate policies P (which in our study is typically either a single-

ton, or a set PC for some family C of cloaking regions)

Run time: The attacker can observe (or reconstruct after the fact, via log hacking or

subpoenas)

• the instance D of the location database (corresponding to a snapshot of all of the

sender locations), and

• the set of anonymized requests made against this snapshot.



32

Notice that hacking attacks may be unable to reconstruct the entire location database. If

sender k-anonymity is provided under the above assumptions, then it is also provided if

the attacker has only partial knowledge of D.

The attack function models the following attack: starting from the observation

of a set A of anonymized requests and the full knowledge of the location database D,

the attacker “reverse engineers” the anonymized requests to obtain the possible service

requests masked by A and compatible with the candidate policies in P . We capture this

result of the attack by defining the notion of Possible Reverse Engineering (PRE) of a

set of anonymized requests.

Definition 5. [Possible Reverse Engineering] Consider a family of policies P, a loca-

tion databaseD and a set of anonymized requestsA = {ARi}1≤i≤n. A Possible Reverse

Engineering (PRE) π ofA w.r.t.D and P is a function from anonymized requests to ser-

vice requests such that

• π(ARi) is valid w.r.t. D for all 1 ≤ i ≤ n, and

• there exists some P ′ ∈ P, such that P ′(D, π(ARi)) = ARi for each 1 ≤ i ≤ n.

Intuitively, a PRE π associates with every anonymized request AR in A a

possible service request that could have generated AR, based on some fixed policy P ′

from the family of candidates P. We represent the set of all PREs of a set A w.r.t. D

and P as PRE(A,D,P).

Sender k-anonymity. We are now ready to define sender k-anonymity. Intuitively,

this will capture the property that, even if the attacker uses the available information

to flawlessly compute (no matter at what computational cost) all PREs of the observed

set of anonymized requests, these PREs still point to at least k possible senders for

each anonymized request. We consider it a breach of sender k-anonymity if the attacker

succeeds in reducing the set of possible senders to fewer than k. We first define sender

k-anonymity as a property of a set A of anonymized requests w.r.t. a location database

D and a family of policies P. Since the anonymized requests are obtained using a policy

P , it is easy to extend the definition as a property of a policy P .



33

Definition 6. [Sender k-Anonymity] Let P be a family of policies and D a location

database. Let A be a finite set of anonymized requests obtained using a policy P ∈ P.

We say that A provides sender k-anonymity against P-aware attackers on D if there

are PREs π1 . . . πk ∈ PRE(A,D,P) such that for each AR ∈ A and each pair i, j

satisfying 1 ≤ i < j ≤ k, id(πi(AR)) 6= (id(πj(AR)).

We say that policy P provides sender k-anonymity against P-aware attackers

on D if for each finite set S of service requests (valid w.r.t. D), the set of anonymized

requests {P (D,SR) | SR ∈ S} provides sender k-anonymity against P-aware attackers

on D.

We say that P provides sender k-anonymity against P-aware attackers if for

every location database D, P provides sender k-anonymity against P-aware attackers

on D.

Since our attacker model is parameterized by the family of candidate policies P
and the set of observed anonymized requestsA, by varying these sets one can enumerate

different classes of attackers and the corresponding flavors of sender anonymity. In this

investigation we focus on two extremes.

• A policy-unaware attacker (relative to family C of possible cloaking regions) does

not know which particular cloaking policy in PC is used by the CSP, and observes

only one anonymized request.

• A policy-aware attacker knows the specific policy P used by the CSP, and is able

to observe and memorize all anonymized requests.

We show next that the class of policy-aware attackers is strictly more powerful

(in terms of breaching sender k-anonymity) than the class of policy-unaware attackers.

Example 8. Let’s revisit Example 3 of Section 3.1. It can be easily observed that for

the users of Table 3.1 the policy P1 in Example 7 is based on the cloaking described in

Example 3 When the policy-unaware attacker observes ARc and tries to reverse engi-

neer the service requests that could have generated it. He finds 3 PREs π1(ARc) = SRc

and π2(ARc) = 〈Alice, (1, 1), [(poi, rest), (cat, ital)]〉 and π3(ARc) = 〈Bob, (1, 2),



34

[(poi, rest), (cat, ital)]〉 with distinct users, Alice, Bob and Carrol. So policy P1 pro-

vides sender 2-anonymity against policy-unaware attackers on D1. In contrast, the

{P1}-aware attacker who observes ARc can construct only one PRE, involving Carol,

whose identity is completely compromised. Thus the {P1}-aware attacker breaches

sender 2-anonymity in a case when policy-unaware attacker cannot. �

In the remainder of the chapter we target an anonymization algorithm that pre-

serves sender k-anonymity against the class of policy-aware attackers. Such an algo-

rithm will also defend against policy-unaware attackers. This claim is formalized below

(for proof see[DHVZ09]).

Proposition 1. Let A be a set of anonymized requests obtained using policy P on loca-

tion database D. If A provides sender k-anonymity against a policy-aware attacker on

D, it also provides sender k-anonymity against a policy-unaware attacker on D.

Sender k-Anonymity and k-inside Policies. We first check the privacy provided by

some of the cloaking algorithms proposed in the literature [GG03, MCA06, XC07]

against the two classes of attackers introduced above. As it turns out, they only defend

against policy-unaware attackers.

Recall that all of these algorithms implement a k-inside cloaking policy, which

we use to obtain generic results that hold for all algorithms in this class.

The following example shows a 2-inside policy that provides sender 2-

anonymity against policy-unaware attackers.

Example 9. For location database instance D1 of Figure 3.1, the policy P1 of Example

7 uses cloaks R1, R2 and R3 to anonymize the service requests. Since each of these

cloaks contains at least 2 locations, P1 is a 2-inside policy. Now recall from Example 8

that the policy-unaware attacker could not reduce the set of possible senders of each

request to less than 2. �

We can show that the finding in Example 9 is not accidental:

Proposition 2. A k-inside policy provides sender k-anonymity against policy-unaware

attackers.



35

In contrast, recall that Example 8 illustrates a case in which a k-inside policy

does not provide sender k-anonymity against a policy-aware attacker, leading to the

following claim.

Proposition 3. Not all k-inside policies provide sender k-anonymity against policy-

aware attackers.

Since by Proposition 3, the prior anonymization algorithms do not satisfy our

goal of defending against policy-aware attackers, we need to search for a novel algo-

rithm.

Before presenting this algorithm in Section 3.4, we illustrate a policy that does

provide sender 2-anonymity against policy-aware attackers.

Example 10. For the location database instance D1, we describe a policy P2 for the

service requests shown in Example 4:

P2(D1, SRa) = 〈167, R3, [(poi, rest), (cat, ital)]〉,
P2(D1, SRb) = 〈168, R3, [(poi, groc), (cat, asian)]〉,
P2(D1, SRc) = 〈169, R3, [(poi, rest), (cat, ital)]〉,
P2(D1, SRs) = 〈170, R2, [(poi, rest), (cat, ital)]〉, and

P2(D1, SRt) = 〈171, R2, [(poi, rest), (cat, thai)]〉.
The cloaks R2 and R3 used in these anonymized requests are those depicted in Figure

3.1. The readers can check that P2 provides privacy against {P2}-aware attackers since

for each anonymized request one can construct 2 PREs using policy P2. �

3.4 Optimal k-anonymity

For the same location database, there may exist several policies that provide

policy-aware sender k-anonymity, raising the obvious question of which one to use. In

this section we address the problem of finding the policy of highest utility to the users.

Prior work on policy-unaware anonymity proposes that one way to maximize utility

is to minimize the cloak area. A smaller cloak allows for more efficient processing of

range queries (e.g. find gas stations within 2 miles) at the LBS as well as more efficient

filtering of results at clients. Since we don’t know a priori the users who are going to



36

send a request at a given snapshot of location database, we compare policies for the

case when every user sends a request.

Cost of a policy. We introduce the cost of a policy to quantitatively capture the fact

that the utility is maximized as the cloak area is minimized. We define the cost of an

anonymized request AR as the area of its cloak reg(AR). Given a location database

D and a set S of service requests valid w.r.t. D, the cost of S under P is defined

as
∑

SR∈S cost of P (D,SR). The cost of a policy P on D, denoted Cost(P,D), is

computed as the cost of the set of service requests obtained if every user in D issues

precisely one request (of immaterial parameters); it is the cost of the set of service

requests

S = {〈u, (x, y), V 〉| (u, x, y) ∈ D}

where V is some arbitrary vector of name-value pairs.

Optimal policy. We next focus on the problem of obtaining, for a given location

database D, an optimal (cost-minimal) policy that provides sender k-anonymity against

policy-aware attackers. We show that the complexity of this problem depends upon the

type of cloaks used in the anonymization. In particular we show that the problem is

NP-complete if the cloaks are of circular shape, and are picked by choosing the cen-

ter from a given set of points (e.g. public landmarks such as libraries, train stations or

cell towers) and by choosing the radius freely. It comes therefore as a pleasant surprise

that the problem becomes PTIME for a version in which cloaks are picked among the

quadrants of a quad-tree-based partition of the map.

We first detail the circular-cloak version of the problem. Let D be an instance

of location database and SC be a set of possible centers. Find a policy-aware sender k-

anonymous policy P that minimizes Cost(P,D). P uses circular cloaks, each centered

at some point from SC, with no restriction on the radius. We call this problem Optimal

Policy-aware Bulk-anonymization with Circular cloaks. We find the following negative

result.

Theorem 1. Optimal Policy-aware Bulk-anonymization with Circular cloaks is NP-

Complete.



37

Note that the NP-completeness is in the size of the location database, meaning

that optimal policy-aware anonymization is practically infeasible.

There is good news, however, if we consider a different type of cloaks from

which the policy may choose. This result has high practical impact, since the cloak type

in question is already widely used in the literature. We consider cloaks picked from

among the quadrants corresponding to a quad-tree-based partitioning of a planar area.

The quad tree is a well-known structure for organizing spatial data, and it has been used

in a number of anonymization solutions [GG03, MCA06]. As the name suggests, it is a

tree in which every non-leaf node has exactly 4 child nodes. In a quad tree representation

of a (square shaped) map, the root node represents the entire map. The region is then

divided equally into 4 non-overlapping square quadrants, each of whom represents a

child node of the root. Each quadrant is then again divided into 4 equal sub-quadrants

that correspond to grandchildren of the root. This four-way splitting goes on until the

desired level of granularity for the minimum region is reached.

A policy that anonymizes locations to cloaks represented by nodes of the quad-

tree representation of a given map is known as quad-tree policy.

This brings us to our main finding.

Theorem 2. An optimal quad-tree policy providing sender k-anonymity against policy-

aware attackers can be found in PTIME.

In the remainder of this section, we describe a PTIME algorithm to find an opti-

mal quad-tree policy.

3.4.1 Reducing the Policy Search Space

Given a map with its associated quad tree T , and a location databaseD, it is easy

to see that the space of all quad-tree policies cloaking locations in D by nodes in T is

exponential in the size of D. This rules out solutions based on enumerating all policies.

Intuitively, the following key observation reduces the search space to polynomial

size: both the property of being policy-aware sender k-anonymous, and the cost of the

policy depend only on how many locations are cloaked by each node N of the quad tree

T , being indifferent to which particular locations are cloaked by N . Calling policies



38

equivalent if every quad tree node cloaks the same number of locations under both

policies, one need not enumerate individual policies, enumerating policy equivalence

classes instead. It turns out that only polynomially many such classes need to be

inspected.

Equivalent Policies. We formalize this intuition next. Given location database D

and quad tree T , two policies are equivalent under D,T if every node N of T cloaks

the same number of locations from D under both policies. When D and T are clear

from the context, we may not mention them. The following justifies why we need not

discriminate among equivalent policies.

Lemma 1. If policies P1, P2 are equivalent under D,T , then

(a) P1 and P2 have the same cost; and

(b) P1 provides policy-aware sender k-anonymity on D if and only if so does P2.

3.4.2 A First-Cut Algorithm

For simplicity of exposition, we start by presenting a first-cut PTIME algorithm

derived in the most direct way from the insight that equivalence classes suffice. We

leave its optimization to Section 3.5.

Configurations. The first-cut algorithm manipulates equivalence classes of policies. It

represents an equivalence class by keeping track for each quad tree node of the number

of locations it cloaks. For technical convenience, this is done by equivalently tracking

for each node N the number of locations that are located within N yet are not cloaked

by N or any of its descendants. It is easy to translate between the two equivalence class

representations.

Definition 7. [Configuration] LetD be a location database, and T be a quad tree rooted

at node r. Let d(m) denote the total number of locations from D that occur in the quad-

rant m. A configuration C of T is a function from the nodes of T to natural numbers,

such that

(i) for every leaf node m in T , C(m) ≤ d(m); and



39

(ii) for every internal node m, C(m) ≤
∑4

i=1C(mi),

where m1 . . .m4 are the children of m.

We say that C is complete if C(r) = 0.

Item (i) of Definition 16 simply states that a node can be used to cloak at most as

many locations as contained in its quadrant (since we only consider masking policies).

Item (ii) states that the number of locations not cloaked by m’s children is higher than

the number of locations not cloaked by m, which is an immediate consequence of the

fact that each child quadrant is contained in its parent.

Note that, given a policy, location database D and quad tree T , and a configura-

tionC for T , we can exhibit in linear time one of the policiesC represents (by arbitrarily

selecting the C(m) locations for each node m). The first-cut algorithm’s strategy is to

find a minimum-cost configuration, then exhibit (in linear time) one of the policies rep-

resented by it, picked nondeterministically.1 Note that a configuration is exponentially

more succinct than an explicit listing of the policies it represents; if we focus on any

node m alone, there are exponentially many ways to pick C(m) locations among those

occurring in m.

Before explaining how the desired configuration is found, we address two

technical issues that need to be solved to allow the first-cut algorithm to manipulate

configurations without materializing policies (except for outputting the result). First,

how to compute the cost of the represented policies without materializing them. Sec-

ond, how to check if a configuration corresponds to policy-aware sender k-anonymous

policies.

Computing Cost from Configurations. We define the cost of a configuration as the

cost of the policies it represents (uniquely defined by Lemma 1(a)). This cost can be

computed without materializing any represented policy, using the following function.

Definition 8. [Configuration Cost] Let D be a location database instance and C be a
1For the sake of conciseness, in the following we overload the term policy to denote functions from

user locations to cloaks (instead of from service requests to anonymized requests as in Definition 4). The
two notions of policy are inter-reducible.



40

configuration of a quad-tree T. We define the cost of C on D, denoted Costc(C,D), as

Costc(C,D) :=
∑

n∈nodes(T )

f(n,C)

where f(n,C) is given by

f(n,C) =

(d(n)− C(n))× area(n), n is leaf

((
∑4

i=1C(ni))− C(n))× area(n), n is internal

where n1 . . . n4 are the children of n and area(n) is the area of the quadrant correspond-

ing to quad node n.

We can show that the configuration cost is precisely the cost of the represented

policies:

Lemma 2. Given a location database D, a quad tree T , a quad-tree policy P based on

T and a configuration C representing P ’s equivalence class, we have Costc(C,D) =

Cost(P,D).

Checking Sender Anonymity from Configurations. We turn to checking if the poli-

cies in the equivalence class represented by a given configuration are policy-aware

sender k-anonymous, without materializing them. By Lemma 1(b), either all repre-

sented policies qualify, or none does. It turns out that it suffices to check directly that

the configuration satisfies a property we call k-summation.

Definition 9. [k-summation] Let D be a location database instance and C a configura-

tion of a quad tree T rooted at n. C satisfies k-summation if

• for a leaf node m

(i) if d(m) < k, then C(m) = d(m).

(ii) if d(m) ≥ k, then either C(m) = d(m) or

C(m) ≤ (d(m)− k).

• for an internal node m let ∆ =
∑4

i=1C(mi),

where m1 . . .m4 are the children of m



41

(iii) if ∆ < k, then C(m) = ∆.

(iv) if ∆ ≥ k, then either C(m) = ∆ or C(m) ≤ (∆− k).

Intuitively, in Definition 18, clause (i) states that if node m’s quadrant contains

less than k locations, none of them can be cloaked by m lest k-anonymity be compro-

mised. The cloaking responsibility for all d(m) of them is “passed up” to m’s ancestors

(C(m) = d(m)). By clause (ii), if there are at least k locations, then either all of them

are passed up, or at most d(m)−k (since at least k must be cloaked together to preserve

k-anonymity). ∆ represents the number of locations whose cloaking responsibility is

passed up from m’s children to m. If there are too few of them (less than k) then they

cannot be cloaked by m, who in turn passes the responsibility to its ancestors (in clause

(iii)). Otherwise,m has the choice of either cloaking none of them (C(m) = ∆ in clause

(iv)), or cloaking at least k and passing up at most ∆− k.

Lemma 3. Let T be the quad-tree representation of a map and D be an instance of

the location database for that map. If C is a configuration of T and P a policy in the

equivalence class C represents, then P is policy-aware k-anonymous on D if and only

if C satisfies the k-summation property.

Algorithm Bulkdp. Lemmas 2 and 3 justify an algorithm that explores the space of

configurations satisfying k-summation, in search for a complete minimum-cost config-

uration under Costc.

The exploration is carried out as follows. Recall from Definition 8 that the cost

of configuration C of a quad tree T rooted at m depends only on the number C(m)

of locations not cloaked by T ’s nodes, and is independent of the cloaking at the nodes

outside of T . For this reason, it suffices if the search space includes, for every quad tree

node m, all possible numbers u of locations whose cloaking responsibility is passed up

to m’s ancestors. That is, all possible values u for C(m). For each such pair (m,u), the

minimum cost is computed among all possible configurations C ′ of T with C ′(m) = u.

To this end, the algorithm considers all possible counts u1, . . . , u4 of locations passed up

to m by its children m1, . . . ,m4, and recursively computes the corresponding minimum

cost for each (mi, ui) pair.

Redundant cost re-computation for m,u pairs is avoided by storing the result in



42

the corresponding cell of a bi-dimensional matrix M indexed by quad tree nodes and

by values for u. To enable the easy retrieval of the min-cost configuration from M ,

the entries for node m carry, besides the minimum cost, some bookkeeping information

relating to the configurations at the children of m.

This yields the following dynamic programming algorithm Bulkdp that, given

quad tree T and location database D, fills in a configuration matrix M of dimension

|T | × |D|, where |T | denotes the number of nodes in T and |D| the number of loca-

tions in D. Each entry M [m][u] in the matrix is a tuple of the form 〈x, u1, u2, u3, u4〉,
pertaining to a configuration C for the quad sub-tree rooted at m, such that C(m) = u,

Costc(C,D) = x, and C(mi) = ui where m1, . . . ,m4 are the children of m. The al-

gorithm traverses the quad-tree T bottom-up starting from its leaf nodes, and for each

node m and 1 ≤ u ≤ n fills in the entry M [m][u] using the rows for m1, . . . ,m4.

Notice that it is easy to retrieve in polynomial time a minimum-cost complete

configuration from M , by a top-down traversal of T . First, pick a minimum-cost entry

in the row corresponding to the root of T . This entry lists for each child mi of the

root the value C(mi) = ui leading to the minimum cost. Now inspect for each mi the

corresponding row in M , picking again a minimum-cost entry, and continue recursively

until all leaf nodes are reached.

Function F (m) in line 16 limits the possibilities of the number of locations

whose cloaking can be passed up by m. Notice that it rules out the values d(m)− k+ 1

through d(m) − 1 since these imply cloaking less than k locations at m, which would

immediately compromise k-anonymity. Quantity x is the minimum cost among all con-

figurations C with k-summation for which C(m) = u. This is computed from the costs

of the configurations at the 4 children, and the term area(m)× ((
∑4

l=1 ul)− u), where

(
∑4

l=1 ul) − u is the number of locations actually cloaked by m. Recall that the cost is

found in the first component of the tuple stored in the matrix entry, whence the need for

the projection operation M1.

Notice how the algorithm mirrors the definition of the k-summation property

(Definition 18) to ensure that only configurations satisfying k-summation are con-

sidered. By Lemma 3, these configurations represent only policy-aware sender k-

anonymous policies. For instance, line 8 corresponds to case (i) in Definition 18, which



43

Algorithm 1 Bulkdp
1: for 1 ≤ m ≤ |T | do

2: for 1 ≤ u ≤ |D| do

3: M[m][u] := 〈∞, 0, 0, 0, 0〉 {initialize}
4: end for

5: end for

6: for all node m ∈ T do

7: if (m is a leaf node) and (d(m) < k) then

8: M[m][d(m)] := 〈0, 0, 0, 0, 0〉
9: else if (m is a leaf node) and (d(m) ≥ k) then

10: M[m][d(m)] := 〈0, 0, 0, 0, 0〉
11: for 0 ≤ u ≤ d(m)− k do

12: M[m][u] := 〈area(m)× (d(m)− u), 0, 0, 0, 0〉
13: end for

14: else {m is a non-leaf node}
15: let m1,m2,m3,m4 are children of m

16: for all u in F(m) do

17: pick u1 ∈ F (m1), u2 ∈ F (m2), u3 ∈ F (m3),

18: u4 ∈ F (m4) that minimize the quantity

19: x :=
∑4

l=1M
1[ml][ul]+ (area(m)× ((

∑4
l=1 ul)− u))

20: where

F (m) denotes the set [0..(d(m)− k)] ∪ {d(m)},
and M1[i][j] returns the first component of the

tuple at M [i][j]

21: M[m][u] := 〈x, u1, u2, u3, u4〉
22: end for

23: end if

24: end for

25: return M



44

prescribes that no locations are to be cloaked by m (all d(m) locations occurring in its

quadrant are passed up, C(m) = d(m)). Thus by Definition 8, the resulting cost is 0,

which is what line 8 fills into the first component of M [m][d(m)]. Similarly, line 10

gives the cost corresponding to the case in the first disjunct of line (ii) of Definition 18;

line 12 corresponds to the second disjunct. It’s easy to see that:

Lemma 4. Algorithm Bulkdp computes in each M [m][u] = 〈x, u1, u2, u3, u4〉 the mini-

mum configuration cost x among all configurations C with k-summation where C(m) =

u and where C(mi) = ui, with m1, . . . ,m4 the children of m.

By the above discussion, the information in M suffices to retrieve in PTIME a

minimum-cost configuration.

Complexity analysis. The running time of Algorithm Bulkdp is dominated by

steps 16-18 , which, for internal node m, ranges each of u, u1, u2, u3, u4 over at most

|D| values (since F (n) ≤ d(n) ≤ |D| for every n), resulting in O(|D|5) iterations.

Summing up over all nodes m of the quad-tree, we obtain the complexity of Bulkdp
in (O|T ||D|5). Lemma 4 and this complexity analysis directly imply Theorem 2.

While polynomial, and thus a welcome surprise in contrast to Theorem 1, the degree

5 is impractically high given the large size of the location database, which is why we

consider optimizations in Section 3.5

Incremental Maintenance ofM . AlgorithmBulkdp computes the optimal policy for a

snapshotD of the location database starting from scratch (hence the name). As the users

of the mobile network move around, the location database snapshot changes from D to

D′ at the next snapshot. Any optimal policy computed at snapshot D may not remain

optimal forD′, or may not provide policy-aware sender k-anonymity to users inD′. One

can simply re-compute the optimal policy from scratch, calling algorithm Bulkdp on D′

and T . Alternatively, if there are a large number of users inD but only few of them move

between consecutive snapshots it makes sense to consider incremental re-computation

of the optimal configuration matrix forD′ starting from the optimal configuration matrix

for D. This is easily accomplished by running the same bottom-up steps as algorithm

Bulkdp, with the added twist that the algorithm starts only from the quad tree leaves m



45

whose quadrants now contain a changed number d(m) of locations.

3.5 Optimizations

While the first-cut algorithm Bulkdp is polynomial, it is far from practical yet,

since a degree of 5 is prohibitive given the typical sizes of location databases (the

location database of a wireless service provider in the San Francisco Bay may contain

about one million users). In this section, we describe a series of optimizations of the

naive algorithm to achieve practical running time, while guaranteeing to preserving the

optimal cost.

From Quad to Binary Trees. The algorithm described in [GG03] pioneers the idea

of using quadrants of a quad-tree as cloaks. In a quad-tree, if cloaking a location to a

node does not provide the desired k-anonymity, the next possible option is the parent

node. Since the parent node is 4 times the size of a child node, the granularity of cost

increase is large. The cloaking policy in Casper [MCA06] reduces this granularity by

considering semi-quadrants as cloaks (where a semi-quadrant is obtained by splitting a

quadrant into two rectangles, either vertically or horizontally). The cloaks obtained in

this approach are never larger than the cloaks obtained with the original quad-tree, and

on average the cloak size is reduced.

While [MCA06] uses this idea to improve utility, we additionally exploit it here

to improve running time. We too allow cloaks to be chosen among both the original

quadrants of quad tree T , and their semi-quadrants. To this end we define a modified

tree whose nodes are of either shape. It is a binary tree B obtained from T as follows.

For each node m in T , let its 4 children in T be mNW ,mSW ,mSE,mNE , where the

subscript gives their location (Southeast, etc.) inm. We dividem into two vertical semi-

quadrants (rectangular) sW in the West and sE in the East. In B, m becomes the parent

of sW and sE , sW the parent of mNW ,mSW , and sE the parent of mSE,mNE . Notice

that each node in B has only 2 children, each non-leaf quadrant node is a parent of two

semi-quadrants, and each non-leaf semi-quadrant is a parent of two quadrants. Casper

chooses between vertical or horizontal sub-quadrants at run-time, while for simplicity



46

we statically partition quadrants into vertical semi-quadrants only.

We adapt the Bulkdp algorithm to this binary tree. The only change required

is in step 5 of the algorithm. When computing each entry M[m][u] of the optimum

configuration matrix we have to iterate through the configurations of two children only

(compared to four in Bulkdp). This reduces the complexity of the loop to O(|D|2) from

O(|D|4), and that of the algorithm to O(|B||D|3).

Note that the cost of the optimal binary-tree based policy for a given location

database instance may be different from the optimal cost of the original quad-tree

based policy. If the size of a leaf node is kept the same in the binary tree and quad tree

then the binary tree will need to have twice the height of the quad-tree to cover the

same region. If k is also kept the same, than the cost of an optimal binary tree based

policy is not more than the cost of an optimal quad tree policy, since any policy-aware

anonymous quad tree policy is also a policy-aware anonymous policy for the binary

tree. The remaining optimizations in this paper focus on the binary tree.

Pruning Suboptimal Configurations. For any node m of the binary tree, in the for

loop of step 5, Bulkdp inspects (d(m) − k + 1) sub-tree configurations (all possible

configurations that satisfy k-summation) for the sub-tree rooted at m. We realize that

some of these configurations need not be considered, as they are guaranteed to be sub-

optimal. In fact we claim the following lemma:

Lemma 5. For a node m with height h(m) (where the height of the root is 0), any

configuration in which m passes up to its ancestors the cloaking responsibility for more

than (k + 1)h(m) but less than d(m) locations, is not optimal.

By Lemma 5, it suffices to compute (k + 1)h(m) configurations, by simply

replacing function F in step 5 of algorithm Bulkdp with function F ′(m) = [0..((k +

1)h(m))] ∪ {d(m)}.
With this insight, the number of columns required in the optimum configuration

matrix M becomes at most kh, where h is the height of the tree. In step 5, for a

non-leaf node m, the algorithm computes O(kh) configurations and to compute each

such configuration, the “pick” action iterates over O(kh) configurations of m’s two

children. This leads to a new upper bound of the overall running time, O(|B|(kh)3).



47

Note that if we fix a minimum area corresponding to the leaves of the tree, the height

depends only on the area of the covered map, and, remarkably, we find a complexity

upper bound that is independent of the size of the location database! However, this

upper bound is only of theoretical interest, since we actually implement yet another

optimization: we do not eagerly materialize all nodes of the binary tree. Instead, we

split a (semi-)quadrant only if it contains sufficient users to maintain anonymity. In our

experiments, we observed that the number of materialized nodes |B| does depend on

the size of the location database.

Precomputation. Again we focus on the FOR loop in step 5 of the Bulkdp algorithm.

We observe that, across iterations of the loop, the “pick” command will repeatedly in-

spect certain configurations of m’s children. For example, if one iteration works on the

M entry for (m,u), inspecting for instance (m1, u1) and (m2, u2) such that u1 +u2 = u

for some v, then the next iteration (m,u+1) will inspect the cases (m1, u1+1), (m2, u2)

and (m1, u1), (m2, u2 + 1), among others. The idea is to reuse this computation across

iterations. To this end, we stage the computation in 2 parts. In the first stage we iterate

over the O(kh) configurations of both children to compute a temporary matrix temp.

An entry temp[m][j] in this matrix stores the minimum cost c of having j = l1 + l2

un-anonymized locations in the two children m1 and m2 of m (with l1 in m1 and l2 in

m2).

temp[m][j] := min
l1+l2=j

{M [m1][l1] +M [m2][l2]} .

There are O(kh) entries in this matrix and the complexity of this stage is bounded by

O((kh)2). In the second stage, we create O(kh) configurations using the O(kh) entries

of temp.

x := min
j=i or j≥i+k

{temp[m][j] + (j − i)× area(m)} .

Thus the running time for the second stage is also bounded by O((kh)2). Therefore the

overall complexity of the modified step 5 is O((kh)2) and the overall complexity of the

algorithm is O(|B|(kh)2).

Runtime Prunning. We add further pruning to the optimized O(m(kh)2) version

of our algorithm. In the second step of above mentioned optimization, for every



48

non-leaf node m, we iterate through the temporary matrix b to find the cost c of

having i un-anonymized locations in m, for 1 ≤ i ≤ hk. For a given value of i, as

we iterate through matrix b to find the minimum cost, i.e. for 1 ≤ j ≤ hk, the value

of the expression (j − i)cost(m) increases. If (j − i)cost(m) becomes greater than

the current minimum we can break the iteration for that i since for every succes-

sive value of j, value of (j − i)cost(m) will remain greater than current minimum

(since and b[m][j] is always non-negative). Because of the this pruning some b[m][j]’s

are never used in computing any of theM [m][i] therefore we compute the matrix b lazily.

Complexity Analysis in terms of |D|. Our complexity analysis so far was carried out

for precision in terms of the size and height of the quad tree. While a gross upper bound

for |B| and h is |D|, leading to cubic running time in |D|, the real values of h and B

depend on the skew of the locations in D. For instance, if the location distribution is

uniform, it follows that |B| ∈ O( |D|
k

) and h ∈ O(log( |D|
k

)), and the overall running time

becomes O(k|D| log2( |D|
k

)), i.e. linear for practical purposes in both k and |D|.
It turns out that this analysis is highly robust to relaxing the assumption on

uniformity. Our experiments in Section 3.6.1 confirm the above formula even for

realistic data whose distribution is quite skewed from uniform: 1.75 million locations

reflecting the actual population density in the entire San Francisco Bay Area. The only

examples we could create to force non-linear behavior are contrived.

Parallel Anonymization. We next explore a powerful technique for scaling the anony-

mization algorithm to cover large areas. The result is based on the key observation that

the spatial nature of the problem features inherent parallelism that is easily exploited:

just partition the region into sub-regions, putting each under the jurisdiction of an inde-

pendent anonymization server. The servers run in parallel, each maintaining their own

binary tree and location database, and seeing only requests issued in their jurisdiction.

The policy in this distributed setting is a master policy which anonymizes a location l

by referring to the policy constructed by the individual server under whose jurisdiction

l falls.

One concern is that the obtained anonymization cost may no longer be optimal.



49

To see why, consider cases when the best way to anonymize location l by server 1 is to

issue a cloak that spans the jurisdiction of server 1 and its neighboring server 2. Since

server 1 does not have access to the requests and location database in server 2, it will

use a different, larger cloak, completely contained within its own jurisdiction. However

these cases occur only on the border of jurisdictions, and the case when the spanning

cloak is unavoidable requires very low population density at the borders. We therefore

expect only a minimal divergence from the optimal cost. We verify this expectation

experimentally in Section 3.6.5, showing that the system throughput can be effectively

increased as more servers are added, while the cost remains within 1% of the optimum.

Assuming a fixed pool of servers, we would like to partition the map into ju-

risdiction so as to balance server load (the number of locations per server). We show

that this is satisfactorily achieved even by an unsophisticated partitioning scheme. We

adopt a greedy scheme which, given a location database and a binary tree B, picks ju-

risdictions from among the nodes of B. The greedy partitioning algorithm starts with

the root as the only jurisdiction in the list L. At every step, the algorithm picks a node

from the list, all of whose children have either 0 or at least k locations. If multiple such

nodes exist, pick the one with the higher number of locations. The node is then replaced

in L with its children. This repeats until the size of the list reaches the desired num-

ber of servers. Intuitively, we first greedily split the nodes with the highest number of

locations, to balance the number of locations falling in each jurisdiction.

Our experiments reported in the next Section 3.6 uncover the potential of paral-

lel anonymization solutions. Note that in this work we do not advocate re-partitioning

the map upon every location database snapshot, but instead picking a few representa-

tive snapshots and performing a static partition for each. The representatives pertain

to various times of the day such as rush hours, night time, business hours, etc. In fu-

ture work, we will study the systems issues related to the dynamic maintenance (and

load re-balancing) of the server pool for highly dynamic fluctuations of the population

density.



50

3.6 Experiments

We next verify experimentally that our optimized algorithm scales well with

the size of the location database, and that the stronger privacy guarantee comes at a

reasonable cost increase.

Platform. All our experiments were performed on an Intel Pentium4 3.20GHz machine

running Linux with 2GB memory.

Figure 3.2: Population Density

Location Data. We set out to generate location data starting from a real-life map, using

a real distribution of population density. Figure 3.2 illustrates the population density

for the San Francisco Bay area in 1990, and is available from [Bow]. Unfortunately,

the actual data values are not available, which is why we generated them as follows.



51

Figure 3.3: 5000 Street Intersections

We obtained a data set of street intersections in the same region (available at [Bria]).

This dataset contains about 175k street intersection points. We conjectured that the

population density is highly correlated with the intersection density. We validated this

conjecture by plotting a random sample of 5000 points from this dataset (shown in

Figure 3.3), and observing that it is roughly similar to the actual population density

graph of Figure 3.2.

We inserted 10 locations around each intersection using a Gaussian distribution

with standard deviation of 500 meters. We obtained a Master dataset of 1.75 million

locations. We believe this number to be realistic, since although the total population of

the San Francisco Bay area is around 7M, it corresponds to the maximum market share

at national level for any single national wireless provider (according to the statistics

published in [sta]). To scale the size of the location database for our experiments, we

draw random samples of increasing sizes (100k, 200k etc.) from the Master data set.

Warm-up experiment: shape of the quad tree. Recall from Section 3.5 that the

binary tree is not computed eagerly; we split a (semi-)quadrant only if the resulting

children contain sufficient users to maintain anonymity. Figure 3.4(a) illustrates the tree



52

(a) Complete view (b) Zoomed-in view

Figure 3.4: Tree structure built on 1M data

structure built on the 1M sample of the master file with k = 50. It plots the quadrants

and semi-quadrants in a 2-dimensional plane. The height information is presented by

the gray scale, so that nodes of greater height are brighter. It turns out that a binary

tree of maximum height 20 suffices to cover 1M locations, with no leaves containing

more than 50 locations. Even when growing |D| to 1.75M locations, the height of the

tree never reaches 25. As expected, the denser areas lead to greater height, showing that

the algorithm exploits the larger density to materialize finer-grained (semi-)quadrants,

which in turn lead to smaller cloaks and better utility. Figure 3.4(b) gives a zoomed-in

view at a portion of the map, illustrating the variation of leaf (semi-)quadrant sizes as a

function of population density.

3.6.1 Bulk Anonymization Time

In this experiment we evaluate the running time of our algorithm (the optimized

version) varying the size of the location databases, the anonymization degree k, and the

number of anonymization servers. Figure 3.5(a) shows, for fixed k = 50, the running

time for computing an optimum configuration with increasing location database size,

with one curve per number of servers. The horizontal axis shows the number of loca-

tions while the vertical axis shows the time in seconds. The running time is linear in

the number of locations |D| for up to 1.75M locations, as predicted by the complexity

analysis at the end of Section 3.4. Notice that 16 servers can bulk anonymize 1.75M



53

locations in less than 1s, and 32 servers in less than 0.5s. We note that this is extremely

good scalability, especially since our experiment stress-tests the algorithm to sizes of

the location database that far exceed the ones reported in prior work on policy-unaware

sender anonymity: at most 300K in [KGMP07].

(a) Running time vs |D| (b) Running time vs k

Figure 3.5: Linear running time in |D| and k

Next, we inspect how the running time scales with k, keeping the number of

locations fixed at 1M. Figure 3.5(b) shows that the time increases quasi-linearly (really

sub-linearly) with k, again as predicted by the analysis at the end of Section 3.4.

3.6.2 Cost Overhead of Stronger Privacy

We expect that the stronger privacy guarantee will result in higher cost, by re-

quiring larger cloaks in the anonymized requests. To evaluate the increase in cost from

policy-unaware to policy-aware sender k-anonymity, we compared the Cost (in Defini-

tion 3.4) of the optimum policy-aware sender k-anonymous policy obtained using our

algorithm, with that of

• Casper: since it is the state-of-the-art policy-unaware anonymizing system based

on semi-quadrants [MCA06], and our binary tree optimization was inspired by it.

• Optimum policy-unaware binary tree (PUB): since it uses the same type of cloak

as our algorithm and a comparison would give a good measure of the penalty of

stronger privacy.



54

• Optimum policy-unaware quad tree (PUQ): since this was the first system [GG03]

that proposed to use quad-tree based cloak to provide (policy-unaware) sender k-

anonymity.

We could not use the original implementation of Casper in our experiments since

the interface allows no bulk anonymization: Casper reads the input one location tuple

at a time and for each location generates the cloak using only locations read up to that

point. Instead of changing the original code, we decided to build a prototype of Casper

based on the basic algorithm described in [MCA06]. We did not implement the adaptive

algorithm since it only affects the running time and not the size of the cloak. We also

implemented the policy-unaware quad-tree policy described in [GG03] that finds the

smallest quadrant that contains the requesting location and at least k-1 other location as

the cloak. We implemented the same approach over a binary tree to obtain an optimum

policy-unaware binary tree.

Figure 3.6(a) shows the comparison of average cloak areas obtained using the

4 algorithms described above. The horizontal axis represents the number of locations

in the location database, and the vertical axis represents the average area (in square

meters) of anonymized regions. k is fixed at 50. As expected, Casper has the minimum

average cost among all the policies since it can select between horizontal or vertical

semi-quadrants in contrast to fixed horizontal or vertical semi-quadrants selected by the

policy-unaware binary tree. The cost of policy-aware sender k-anonymous policy is

nearly identical to that of the policy-unaware quad-tree, and is at most 1.7 times that of

Casper.

3.6.3 Effect of Optimizations

We evaluate the improvement of running time given by the optimizations pre-

sented in Section 4.4. We implemented our naive Bulkdp algorithm described in section

3.4.2 and then introduce the optimizations one at a time to obtain five different ver-

sions of our anonymizing algorithm. These includes Bulkdp, O(mn3), O(m(kh)3),

O(m(kh)2) and O(m(kh)2) + pruning. In Figure 3.7 we show the time required by

O(mn3), O(m(kh)3) and O(m(kh)2) to compute the optimal configurations for differ-

ent size of location database and fixed k = 50. The x-axis shows the number of locations



55

(a) Average cloak area for various policies (b) Incremental Maintenance time for

|D| = 1M,k = 50

Figure 3.6: Parallel and Incremental Anonymization

in the location database and the y-axis shows the time in seconds. We decided not to

include the running time for Bulkdp since it was significantly slower in comparison to

O(mn3) even on small dataset of 1000 locations. The graph shows a big advantage in

performance by O(m(kh)2) even on small inputs.

Figure 3.7: Effect of Optimizations on Bulkdp

Figure 3.8 shows the comparison of time required by O(m(kh)2) and

O(m(kh)2) + pruning for computing optimal configuration on much larger datasets

and k = 50. The improvement in running time obtained due to pruning described in

section 4.4 is more than 50%. In particular, the most optimized version manages to

compute the optimal configuration for 1M locations in 8.5 seconds.



56

Figure 3.8: Effect of Pruning on Optimized Bulkdp

3.6.4 Incremental Maintenance

We have also studied the performance of incrementally maintaining the optimum

configuration matrix M from (the optimized version of) algorithm Bulkdp. For the case

of 1M locations and k = 50, we varied the number of locations that move from one

snapshot of the location database to another. To this end, we randomly selected a set of

distinct users updated their locations to a point at a randomly selected distance (bounded

by 200 meters, that represents the maximum possible movement within 10 seconds) in

a randomly selected direction. Figure 3.6(b) shows the comparison of performance of

incremental maintenance with bulk re-computation. As expected, the time for incremen-

tal maintenance of M is always below that of the bulk re-computation as we increase

the percent of moving users. However, we were surprised to notice that, once this per-

centage reaches 5%, the two times become virtually identical, and there is no gain in

incremental maintenance. This is because most binary tree leaves require updating in

that case, and incremental degenerates into bulk anonymization.

3.6.5 Utility Loss in Parallel Anonymization

Recall from Section 3.5 that one concern when splitting the map into jurisdic-

tions is the sub-optimal utility due to cases when the best cloak to anonymize a location

is missed because it spans jurisdictions. As discussed in Section 3.5, we predict in

general only a minimal divergence from the optimal cost. We verified this expectation

experimentally by a stress test in which we increased the number of jurisdictions be-



57

yond reasonable limits: despite the above experiment showing that 16 suffice. Up to

2096 jurisdictions, the measured cost was identical to that of the optimal policy for the

single-jurisdiction case, while the cost overhead for up to 4096 jurisdictions remained

less than 1%.

3.7 Related Work

In the context of LBS, the two aspects of user privacy that have received the

most attention are location privacy [BS03] and sender anonymity. The line of work on

location privacy is complementary to this paper, as location privacy refers to hiding the

precise location of the user (one is not required to hide the identity of the user) while

sender anonymity refers to hiding the identity of the user (one is not required to hide

the location, on the contrary, one assumes it falls in the attacker’s hands). As described

in the introduction, the extensions to user-defined k and trajectory-aware attacker are

out of the scope of this paper and we leave them as future work.

Extensions of k-inside. Most of the proposals for sender anonymity are based on k-

anonymity [Swe02b]. While a majority of these [GG03, MCA06, XC07] are simply

based on the k-inside policy (described earlier, and shown to not defend against policy-

aware attacks), some use variations. In [GL05], the cloaking policy ensures that at

least k − 1 other users issue LBS requests from the cloaked region. It’s been shown

[GG03, KGMP07, CM07] that a k-inside policy fails to provide sender k-anonymity to

“outlier” locations in some cases. To address this issue in k-inside policies, additional

constraints of k-reciprocity [KGMP07] and k-sharing [CM07] have been proposed. k-

reciprocity requires that among the ≥ k locations inside the cloak R of a location x, at

least k−1 have x in their cloak, while k-sharing requires that at least k−1 of them have

R as their cloak. We found that these additional constraints also fail to provide sender

k-anonymity against a policy-aware attacker.

Consider the cloaking algorithm in [CM07] that takes into account the request-

ing locations to generate cloaking groups (set of locations that are cloaked to the same

region). For locations in Figure 3.9(a), if the first request is made by C the algorithm



58

groups C with B where as if the first request is made by B then it puts B and A in the

same cloaking group to satisfy 2-sharing property. In the case when the initial request

contains the cloak corresponding to {C,B}, a policy-aware attacker can infer that the

sender is C!

S

C

A

B

T

1 2 3 4 

1 

4 

Requester = C 

Requester = B 

(a) with 2-sharing

•

(b) with 2-reciprocity

Figure 3.9: Privacy breach

Next, consider a cloaking algorithm that generates circular regions centered at

the base station nearest to the cloaked location. As shown in Figure 3.9(b) user Alice is

closest to station S1, hence her cloak is centered at S1. User Bob is closest to station

S2 so his cloak is centered at S2. Since both users are inside the intersection of both

circular cloaks, this cloaking satisfies 2-reciprocity. When a policy-aware attacker

observes the cloaking region centered at S1, he can infer that the only possible sender is

Alice!

Utility-maximizing cloaking. The problem of finding optimum k-anonymous cloak-

ing that preserves privacy against a policy-unaware attacker has been considered (in

[KGMP07]) to be NP-hard, by borrowing the results [MW04] from data k-anonymity.

In [GL05] the authors study the problem of finding optimum cloaking using a minimum

bounding box as the cloak and found it to be NP-hard and thus provide an approximate

algorithm. Moreover it only uses the locations with pending requests for generating the

cloak, as a result the cloak size can be quite large as not all users in a small region are

expected to use LBS at nearly same time. The FindMBC algorithm in [XC07] computes

the minimum bounding circular cloak that preserves privacy against a policy-unaware



59

attacker. By Theorem 1, extending it to optimal policy-aware anonymization is likely

hard.

Data k-anonymity. One may argue that some of the algorithms developed for

data k-anonymization can be applied to the location database, to reduce sender k-

anonymization to the classical data k-anonymization problem. Data anonymization al-

gorithms come to mind that are based on generalization [Swe02a, LDR05, FWY05].

They require as input a generalization hierarchy for the anonymized data. One could

conceptually use quad-tree based regions to represent such a generalization hierarchy

for the location data. However, the reduction from sender to data k-anonymization is in-

advisable since the problem of finding the minimum-cost data anonymization is known

to be NP-complete [MW04], leading to algorithms for optimal anonymization that run

in time hn, where h is the height of the generalization hierarchy (quad-tree for us) and n

is the number of tuples (the size of the location database for us). As we show here, more

headway can be made by exploiting the additional structure of the problem, namely that

the data to be anonymized is location data.

Some of the recent proposals [LW08, AFK+06, BKBL07, CT07] for k-

anonymizing data are based on clustering techniques. Most of these clustering

algorithms [LW08, BKBL07, CT07] use a static distance metric where the cost of

including a point x in a cluster C is independent of the cost of including another point

y in C. For location data, since the cost model uses the area of anonymizing regions,

the point farthest from the center of the cluster determines (and thus affects) the cost

for other points in the cluster. This precludes a reduction from sender anonymity to

cluster-based data anonymity. The cost model in a recent proposal [AFK+06] takes

care of this situation and thus its proposed clustering algorithm is a candidate to be

investigated in future work for cloak generation in sender anonymity.

Private Information Retrieval. [GKK+08] starts from the initial idea of having the

requests mention no location information at all. The LBS sends all n points of interest

from the entire map and the client filters them locally. An optimization consists in using

cryptographic techniques that allows the sender to include its exact location in encrypted



60

form, and the LBS to return
√
n points of interest which include the ones closest to the

sender. The result is directly obtained in encrypted form and its clear form is hidden

even from the LBS.

This solution addresses a different point in the space of possible trade-offs of pri-

vacy versus feasibility. It achieves maximal anonymity since all senders are cloaked by

the entire map area. The price to pay includes costly adoption, low throughput, and lim-

ited billing model. Adoption is hindered by the need to change the operation of current

LBS to include cryptographic query evaluation. Throughput is impacted because cryp-

tographic query evaluation is expensive: [GKK+08] reports 20-45 seconds per query

when the LBS maintains 65K points of interest. This time is lowered to 6-12 seconds

per query when the computation is parallelized over 8 servers, depending on the length

of the encryption key. Scaling to (tens of) thousands of requests per snapshot would

therefore lead to either unacceptably slow response or prohibitively expensive massive

parallelization. Secondly, the LBS’s business model is limited because it does not know

what query answers it returns. This precludes insertion of relevant ads, and rules out

a Google-like model in which advertisers/service providers are charged by the volume

of their ads/service postings reaching users. Since the LBS does not know what query

answers it returns, this precludes insertion of relevant ads, and rules out a advertising-

based business model in which advertisers/service providers are charged by the volume

of their ads/service postings reaching users.

In contrast, our solution trades privacy (k is typically much lower than the

number of all users) for feasibility: It requires virtually no change in existing LBS in-

terfaces, whose input is essentially the one we describe above. It provides per snapshot

a sub-second initialization time to bulk-anonymize over one million users, after which

individual queries can be served in milliseconds. Indeed, serving a query requires

looking up the location’s cloak according to the computed policy, then evaluating a

nearest-neighbor search for this cloak. Our experiments show that cloak lookup takes

0.3–0.5 ms. In [MCA06], Casper reports 2ms per nearest-neighbor query when k = 200

and there are 10K points of interest, using GIS indexing techniques. Adopting Casper’s

GIS-based query evaluation results in a per-snapshot throughput increase of 3 orders

of magnitude over the cryptographic query evaluation of [GKK+08]. Finally, flexible



61

billing is facilitated since the LBS knows which advertisers/service providers to charge

as it knows the query results.

Beyond k-anonymity: l-diversity and t-closeness. Taking a page from recent devel-

opments that improve on data k-anonymity, it is natural to ask if there are corresponding

extensions of the notion of sender k-anonymity. The answer is positive, in the fol-

lowing sense. In data k-anonymity, there is a class of attacks based on counting the

frequency of sensitive attribute values in the anonymized table. L-diversity [MGKV06]

defends against the situation when all tuples in an anonymized group share the same

sensitive attribute value, in which case they are all compromised. T-closeness [LLV07]

goes beyond, defending even against attacks that compare the frequency of sensitive

attribute values in the whole table against the frequency of sensitive attributes in in-

dividual anonymized groups. Whenever the two frequencies differ, the attacker learns

something about the secret, and this fact is considered a privacy leak. The analogous

attacks in our setting would consist of counting in each snapshot the number of dupli-

cate requests, grouping by cloaking area and request values. For instance, the (unlikely)

event of observing in a snapshot as many identical requests from the same cloak as the

number of locations residing in it at that time exposes all senders. This assumes that

a sender can issue a single request per snapshot, which is reasonable given the short

snapshot duration.

The following simple modification of our approach to sender k-anonymity

precludes the same class of frequency-based attacks as l-diversity and t-closeness: the

anonymization server caches the query results returned by the LBS, indexed by the

anonymized request. This means that the LBS does not even see duplicate anonymized

requests during the same snapshot, and therefore cannot count their frequency (nor can

it log it and thus make the count available to hacking or subpoena). For queries about

stationary points of interest (most businesses and tourist attractions), the anonymizer

can use the cache for a long time, thus precluding counting even across multiple

snapshots. To adjust for the appearance and disappearance of points of interest, it

suffices to flush the cache at infrequent intervals (for instance once a day). To help the

LBS with billing, the anonymizer can keep a total count and submit it to the LBS at



62

cache flushing time.

Anonymizer Architecture. The anonymizing framework in [GG03, GL05, MCA06,

KGMP07, XC07] (and in this submission) is based on a centralized trusted anonymizer.

The anonymizer has access to the location of all the users and their requests. We

have not formally studied the impact of a distributed architecture of the anonymizer

on our techniques. We have however shown empirically that, by running a farm of

anonymization servers in parallel, we can arbitrarily reduce anonymization time while

incurring less than 1% of cost overhead over the optimal cost.

Trajectories. Recent papers [BWJ05, XC07, CM07] have studied sender anonymity in

the context of user “trajectories”. The attacker has knowledge of when multiple requests

have originated from the same (a priori unknown) user, even if they are sent at different

times and from different locations. As it stands, our work is incomparable to [BWJ05,

XC07, CM07], since we assume trajectory-unaware but policy-aware attackers, while

[BWJ05, XC07] assumes trajectory-aware but policy-unaware attackers. We leave as

future work the extension of the policy-aware anonymization algorithm presented here

to handle trajectory-awareness.

3.8 Conclusion

We introduce the notion of sender k-anonymity against policy-aware attackers.

This privacy guarantee is stronger than the sender k-anonymity in prior work, which

defends against policy-unaware attackers only. Our results show that the novel guarantee

strikes a pragmatic balance in the trade-off between strength of the privacy guarantee,

utility, and running time for enforcement.

We also show the considerable amenability of the problem to parallelization,

which reduces the anonymization time while preserving the optimal utility in virtually

all cases. Indeed, dividing the San Francisco Bay area among 4K servers –far more than

needed since 16 suffice– leads to only 1% divergence of the cost from the optimum. 16

servers already provide anonymization time of about half a second for 1 million users.



63

3.9 Proofs

3.9.1 Proposition 1

Proof. SinceA provides policy-aware sender k-anonymity, there exists k PREs π1 . . . πk
in PRE(A,D,P) where P = {P}. The policy P is a member of the family PC

of candidate policies that a policy-unaware attacker must consider. Therefore these k

PREs also belong to PRE(A,D,PC) and witness that A provides sender k-anonymity

against the policy-unaware attacker.

3.9.2 Proposition 2

Proof. Without loss of generality lets assume that the k-inside policy picks cloaks of

type C (where C could be any region type such as quadrants, circle or rectangle). The

policy-unaware singleton-observer attacker only knows the type C of the cloaks. We

model this by defining the set P to include all the policies that anonymize locations to

cloaks of type C.

Let AR be an anonymized request observed by such an attacker. Let U be the

set of locations in D covered by the cloak R = reg(AR). The k-inside policy ensures

that there are at least k locations in this cloak i.e. |U | ≥ k. We randomly select k

locations l1 . . . lk from U and construct k PREs π1 . . . πk such that for all 1 ≤ i ≤ k,

πi(AR) = SRi where loc(SRi) = li.

Thus a k-inside policy provides sender k-anonymity against the class of policy-

unaware attackers.

3.9.3 Theorem 1

Let D be an instance of location database, Γ be a set of possible centers and

K and C are constants. Policy-aware Bulk-anonymization with circular cloaks deci-

sion problem, denoted as Bulk(D,Γ, K, C), refers to finding a policy-aware sender

k-anonymous policy P whose cost Cost(P,D) ≤ C, where P uses circular cloaks

each centered at some point from Γ with no restriction on the radius. For a given in-

stance Bulk(D,Γ, K, C), if a policy P k-anonymizes all the locations in D and its cost



64

Cost(P,D) ≤ C, then we call it a successful policy. Next we show that finding suc-

cessful policy for Bulk(D,Γ, K, C) is NP-complete for cases K ≥ 4.

Proof. Polynomial time verification: LetBulk(D,Γ, K, C) be an instance of a policy-

aware bulk-anonymization with circular cloaks decision problem. Let P be a policy that

uses circular cloaks centered at some point from Γ. We show now that the following can

be checked in polynomial time:

• Cost(P,D) ≤ C : For each user U in D, we create a service request SR (using

arbitrary vector V of name-value pairs) and compute the cost ofAR = P (D,SR).

The sum of costs of all the service requests is Cost(P,D).

• Policy-aware k-anonymous: For every AR obtained above we can check if there

are k distinct users (u1 . . . uk) whose location is inside reg(AR) and whose service

requests (SR1 . . . SRk) are anonymized to AR1 . . . ARk respectively under P and

reg(AR) = reg(AR1) = . . . = reg(ARk).

Reduction: We reduce 3-satisfiability (3-SAT) [GJ90] to the Policy-aware Bulk-

anonymization with Circular cloaks decision problem. Given an instance S = (V,E) of

3-SAT problem, where V is the set of variables and E is the set of clauses, we create an

instance (D,Γ, 4, π × |D|) of Policy-aware Bulk-anonymization with Circular cloaks

decision problem where D is an instance of location database and Γ is a set of possible

centers and the goal is to find a policy P that is policy-aware sender 4-anonymous such

that Cost(P,D) ≤ π × |D|. We show that E in S is satisfiable if and only if we can

find a policy P with above mentioned properties. Our reduction is inspired by [MS84]

and we contrast our approach to them in the end. For ease of presentation we assume

that a policy anonymize a location to a region.

We first describe the reduction at a high level. Let S(V,E) be an instance of

3-SAT, to construct a corresponding instance of Policy-aware Bulk-anonymization with

Circular cloaks decision problem, 3 special structures are used. Each variable vi ∈ V
= {v1, · · · , vn} has a corresponding “circuit of circles” (similar to one shown in Figure

3.11 that contributes locations to D and possible centers to Γ. Each clause Ei ∈ E =



65

{E1, · · · , Em} has a corresponding “Clause configuration” (as shown in dark dashed

circles in Figure 3.12) that contributes locations to D and possible centers to Γ. A

“clause configuration” determines how the circuits corresponding to the variables in

the clause, relate to each other. It may not always be possible to draw the “circuit of

circles” and “clause configurations” in euclidean space without intersecting circuits.

To represent these intersections between circuits, a special structure called “Junction

Configuration” is used. We call the geometrical representation of the constructed

problem, a circuit mash. The locations introduced by these structures in the circuit

mash has the following key properties (additional properties are presented later):

Property P1: For a circular region centered at one of the points in Γ to anonymize ≥ 4

locations, needs to have a radius r ≥ 1.

Property P2: Each user location (along with 3 other user locations) can be anonymized

to a circular region with radius 1 and centered at one of the points in Γ.

As we describe the construction of circuit mash of Bulk(D,Γ, 4, π× |D|) using

the structures introduced above, we will show that the locations and possible centers

contributed by each structure preserves P1 and P2. In turn, these properties (together

with other properties described later) ensure that, S is satisfiable iff there exists a

successful policy P for Bulk(D,Γ, 4, π × |D|) that only uses anonymized regions with

radius 1.

Circuit for Variables: For each variable vi we build a circuit Ci = {Ci
1 . . . C

i
ri
} of

circles where each circle has radius 1 and ri is even (the exact value of ri is determined

at the end of the construction) with centers pi1 . . . p
i
ri

. In general, the distance between

centers of two adjacent circles is 2 (dist(pij, p
i
j+1) = 2) and the distance between centers

of first and last circles is also 2 (dist(pi1, p
i
ri

) = 2), but this property will not hold for

some circles that participate in junctions. The adjacent circles (that do not participate in

the junction) intersect at a single point (i.e. they touch each other). The point of contact

qij of two adjacent circles Ci
j and Ci

j+1 that do not participate in the junction is called



66

circuit critical point. We include all the circuit critical points of a circuit in the set Γ

(the set of possible centers). We put 2 user locations at the center of each circle in the

circuit (except for some of the circles at the junction as explained later). Figure 3.10

illustrates a segment of a circuit, where numbers in the brackets indicates the number of

users at the location. To anonymize any 4 locations in the circuit using a circular region

centered at a circuit critical point it must have a radius r ≥ 1. Additionally, any location

can be 4-anonymized (along with 3 other user location) to a circular region of radius 1

that is centered on one of the circuit critical points. Thus the locations introduced by

the circuit satisfies property P1 and P2.

Figure 3.10: Locations of user tuples representing vi

Next we describe a property that we later use to obtain a satisfying assignment

for S, given a successful policy.

Property P3: In the circuit mash, for a circuit Ci corresponding to a variable vi, if

a successful policy uses a circuit critical point qij as center of one of the anonymiz-

ing regions then it cannot use the circuit critical points qij−1 and qij+1 (where 2 ≤ j ≤ ri).

We prove this using contradiction. Suppose a policy P is successful and for

a circuit Ci it uses two successive circuit critical points qij and qij+1 as center of the

anonymizing regions arij and arij+1 respectively. Since P satisfies property P1, these



67

regions must have radius 1 otherwise the total cost of anonymizing D will exceed π ×
|D|. Since there are only 6 locations inside arij and arij+1, P cannot be policy-aware

4-anonymous and hence cannot be a successful policy, a contradiction.

In a circuit Ci corresponding to a variable vi, we call the even numbered circuit

critical points, qij for j=0, 2, 4, · · · as true points. Similarily, the odd numbered circuit

critical points qij+1 for j=0, 2, 4, · · · are called the false points. We can restate the

property P3, as follows.

Property P4: In a successful policy, there are only two ways of chosing circuit critical

points (as centers of anonymized regions) in a circuit: Either it chooses all the even

points or all the odd points i.e. either it chooses qij or qij+1 where j=0, 2, 4, · · · .

As described later when creating a satisfiable assignment to S corresponding to

a successful policy P , property P4 is key to having a unique truth value assignment to

the variable corresponding to the circuit.

In a successful policy, there are essentially two ways that circuit critical points

can be chosen. Either it selects qij or qij+1 where j = 0, 2, 4 . . . . We call former

the true circuit critical points and later the false circuit critical points. The first

case can be visualized as assigning true value to vi, and the latter case as assigning

false value to vi. From the point of view of cost it does not matter whether the

anonymized regions are centered at true points or false points. Later when we describe

the configuration for Clauses we will show how this choice affects the satisfiability of S.

Clause Configuration: Suppose we have a clauseEs = (vi∨¬vj∨vk). In our reduction

we use a configuration of 4 circles of radius 1 (that are not part of any circuit). The

Figure 3.11 shows the dark dotted circles corresponding to Es and how it is used to join

the circuits corresponding to variables vi, vj and vk. We draw 3 circles Di
s, D

j
s, and Dk

s

with radius 1 such that their centersQi
s,Q

j
s,Q

k
s form an equilateral triangle where length

of each side is 2 i.e. each circle intersect the other 2 circles. The 3 points zijs , zjks and zkis ,

where the circles intersect each other are called clause critical points and are included in

the set Γ. We draw a 4th circle Dw
s with radius 1, centered at the circumcenter Qw

s of the



68

triangle formed by Qi
s, Q

j
s and Qk

s . We call Qw
s the center of the clause configuration.

Note that Dw includes zijs , zjks and zkis .

We draw the circlesDi
s,D

j
s andDk

s such that they pass through the circuit critical

points of the circuits Ci, Cji and Ck respectively. If the variable vi in the clause is

positive then we draw Di
s such that it passes through a true circuit critical point of Ci

and if the variable vi in the clause is negative then we drawDi
s such that it passes through

a false circuit critical point of Ci. For each clause we select a circuit critical point that

is not used by any other clause configuration. We place 1 user each at Qi
s, Q

j
s and Qk

s

and 2 users at Qw
s and include these users in D.

To 4-anonymize the 2 locations at Qw
s , the circular region must have a radius 1

and centered at one of the zijs , zjks or zkis . Without loss of generality let us assume the

region is centered at zijs . This region anonymizes 4 locations: the 2 locations at Qw
s and

1 each at Qi
s and Qj

s. The user location at Qk
s , cannot be anonymized by this region. To

4-anonymize the user location at Qk
s , we must use a region of radius at least 1 that is

centered at one of the circuit critical points in Ck. In particular if we use circuit critical

point that intersects with circle Dk
s we can 4-anonymize location at Qk

s with a region of

radius 1. Clearly, the clause configuration satisfies both P1 and P2.

Also if S is satisfiable then a successful policy satisfies P3 even in the presence

of clause configuration. In a clause configuration, there is only 1 location that can be

anonymized to a region of radius 1 centered at the circuit critical point of a circuit.

Therefore any successful policy P that selects two successive circuit critical points qij
and qij+1 as center of the anonymizing regions arij and arij+1 (with radius 1) cannot be

policy-aware 4-anonymous since there are only 7 locations (6 from the circuit and 1

from the clause) inside regions arij and arij+1.

We would like to draw reader’s attention to the relation between anonymization

of the 5th location in a clause by a successful policy to a assignment for S. For a

successful policy that satisfies P3, choice of the location that is anonymized using a

region centered at circuit critical point also decides whether it chooses the true critical

points or false critical points in a circuit. This in turn relates to the truth assignment for

the variable corresponding to the circuit as explained later.



69

Junction: In order to make above configuration possible in euclidean space, we need

to allow different circuits to intersect each other. Suppose the circuit Ci for a variable

vi need to intersect with circuit Ch for variable vh. We design this intersection to make

sure that property P1 and P2 are preserved and a successful policy satisfies P3. In order

to do so we will describe the 2 exceptions to our circuit construction. We coincide a

circle Ci
j (centered at pij) of circuit Ci with circle Ch

k (centered at phk) of circuit Ch such

that they have a common center i.e. pij = phk (we call this the junction center). Next we

require that the points pij−1, p
i
j and pij+1 are in a straight line which is perpendicular to a

straight line joining the points phk−1, p
h
k and phk+1. Next we describe the 2 exceptions:

• Distance: We adjust the distances so that d(pij−1, p
i
j) = d(pij, p

i
j+1) = d(phk−1, p

h
k) =

d(phk, p
h
k+1) =

√
2.

• Number of locations: We reduce the number of users located at each of the pij−1,

pij+1, p
h
k−1 and phk+1 to 1, and increase the users located at each of the pij−2, pij+2,

phk−2 and phk+2 to 3. At the junction center (pij = phk), there are exactly two users

(we remove 2 users).

Due to the reduced distance between the junction center and the centers of adja-

cent circles, the circle centered at the junction center now intersects with its following

and preceding circles in the two circuits at 4 points TT , TF , FT and FF , We call them

junction critical centers and add them to Γ, the set of possible centers. The junction

critical centers also serves as the circuit critical (that no longer exists because of the re-

duced distance) in their corresponding circuits to satisfy property P3. The first alphabet

in the name of a junction critical center indicates whether the point corresponds to a true

or a false circuit critical center for the horizontal circuit and the second alphabet indicate

the same for vertical circuit. Figure 3.12 illustrates the junction of the circuits Ci and

Ch described above. In addition, we also require that there are at least 7 points between

two successive junctions on a circuit.

This configuration preserves the property P1 since to 4-anonymize the 2 loca-

tions at pij = phk , the anonymized region must have a radius at least 1 and centered at one

of the circuit critical points. For other locations its easy to observe that an anonymizing

region must have a radius of at least 1.



70

The junction also preserves the property P2. Any location at the center of the

circles in the circuit (other than the junction center) can be 4-anonymized using one of

the circuit critical centers. The 2 locations at the junction center can be 4-anonymized

(along with 2 other locations at the center of adjacent circles) using a region of radius 1

that is centered at one of the junction critical centers.

Its not obvious that a successful policy can satisfy P3 in the presence of a

junction. We prove this using a counting argument. Without loss of generality, let P

be a successful policy that selects two adjacent circuit critical centers qij−2 and qij−1 in

the junction configuration as the centers of the anonymizing regions arij−2 and arij−1.

There are only 6 locations inside the two anonymizing regions and hence P cannot be

policy-aware 4-anonymous. Even if one of the two adjacent centers is a junction critical

point, (for e.g. qij−1 and TF in figure 3.12) there are still only 7 locations in the two

anonymizing regions and therefore P cannot be 4-anonymous. Similarly if both the

adjacent centers are junction critical points (for e.g. TF and FF in figure 3.12) there

will be total 5 locations in the two anonymizing regions and therefore P cannot be

policy-aware 4-anonymous.

IF: If there is a satisfying assignment for 3-SAT then there is a policy-aware 4-

anonymous policy P such that Cost(P,D) ≤ (π × |D|).

To show the IF part, suppose there is a satisfying assignment α to the instance S

of 3-SAT problem. We construct a policy Pα that provides 4-anonymity using regions

of radius 1 using α. Since all the regions in Pα are of radius 1, the cost Cost(Pα, D) =

|D| and thus Pα is a successful policy.

First we anonymize the locations introduced by the circuits of circles. Suppose

Ch be a circuit of circles corresponding to variable vh. If α(vh) = true (or false) then

we use all the true (or false) circuit critical points on the circuit Ch as centers and

draw regions of radius 1. Each such region covers (and anonymizes) exactly 4 user

locations introduced by the circuit. For e.g. a circle of radius 1 centered at qhi covers and

anonymize 2 locations each at the centers phi and phi+1 of adjacent circles Ch
i and Ch

i+1.

Note that regions of radius 1 centered at all the true critical points anonymizes all the



71

locations introduced by the circuit of circles. Same is true if we use all the false points

as centers of regions.

Next we show how Pα anonymizes locations introduced by the clause configu-

rations using the configuration of an example clause Es shown in figure 3.11. Since α is

a satisfying assignment, at least one literal of Es must be true, w.l.g. lets assume it is vi.

If multiple literals are true we can use any one of them. In policy Pα, we anonymize the

single user location at the Qi
s to the region of radius 1 drawn at true circuit critical point

of Ci that intersects with Di
s. Note that in Pα this region is already used to anonymizes

4 locations of the circuit (since α(vi) = true), therefore it can be used to anonymize

location at Qi
s. The 2 user locations at the center Qw

s of the clause configuration along

with 1 user location each at Qj
s and Qk

s are anonymized using a region of radius 1 cen-

tered at clause critical point zjks . Note again that all the locations introduced by clause

configurations are 4-anonymized using regions of radius 1.

We again use an example to demonstrate how Pα anonymizes locations at a

junction. We consider the junction of two variables vi and vh as shown in Figure 3.12.

Without loss of generality, let’s assume α(vi) = true and α(vh) = false. We first draw

a region with radius 1 centered at TF junction critical point. This region anonymizes

the 2 locations at the junction center and 1 location each at pij−1 and phk−1 (the center

of circles preceding the central circle). Note that if the truth assignment to (vi, vh)

where different i.e. either (T, T ) or (F, T ) or (F, F ) then we would have used region

centered at TT or FT or FF respectively to anonymize the locations at the center of

the junction. The location at pij+1 and the 3 locations at pij+2 are anonymized to a region

of radius 1 centered at the true circuit critical point qij+1. Note that this does not conflict

with any choices made in the previous steps since α(vi) = true. Similarly the 1 location

at phk+1 and the 3 locations at phk+2 are anonymized to a region of radius 1 centered at

false critical point qhk+1. Thus at a junction configuration, the policy Pα can anonymize

all the locations using region of radius 1.

ONLY IF: If there is a policy-aware 4-anonymous policy P such that

Cost(P,D) = (π × |D|) then there is a satisfying assignment for 3-SAT prob-

lem S.



72

In our reduction of S to Bulk(D,Γ, 4, π × |D|) we have shown that locations

introduced by all our constructions satisfies property P1, and P2 therefore there exists

a successful policy in which all anonymizing regions are of radius 1. Let P be such a

successful policy. We construct a satisfying assignment αp for S as follows.

As described earlier, a successful policy that satisfies properties P1 and P2 also

satisfies property P3. This means that for any circuit Ci corresponding to a variable vi,

P either uses all the true points as centers of anonymizing regions or all the false circuit

points. Thus if P uses all true points in Ci then we define α(vi) = true and if P uses all

false points then we define α(vi) = false.

Next we show that α obtained from P as described above is a satisfies S. We

show this using an example clause configuration shown in Figure 3.11. Since this con-

figuration satisfies property P1, P must be using one of the clause critical points zijs ,

zjks or zkis as center of an anonymizing region of radius 1. Let’s assume it uses zijs and

anonymizes 2 locations Qw
s and 1 each at Qi

s and Qj
s. The user location at Qk

s , cannot

be anonymized by this region. To 4-anonymize the user location at Qk
s , P must use

a region of radius 1 centered at true circuit critical point qkg . This means that P must

have selected all the true critical points in the circuit Ck otherwise P cannot satisfy P3.

Therefore α(vk) = true and it would satisfy Es. Similarly we can show that all the other

clauses of E are satisfied by α and hence S is satisfiable.

3.9.4 Lemma 1

Proof. (a) Let D be a location database with n locations and policies P1 and P2 are

equivalent for anonymizing D w.r.t. quad tree T . We can describe the cost of anonymiz-

ing the n locations using P1 as:

Cost(P1, D) = Cost(P1(D, l1)) + Cost(P1(D, l2)) + . . .+ Cost(P1(D, ln))

= area(m1) + area(m2) + . . .+ area(mn)
(3.1)

where mi ∈ T and mi = P1(D, li) for 1 ≤ i ≤ n. Note, for i 6= j, mi and mj can be

the same node in T . Similarly we describe the cost of anonymizing the n location in D



73

using P2 as:

Cost(P2, D) = Cost(P2(D, l1)) + Cost(P2(D, l2)) + . . .+ Cost(P2(D, ln))

= area(m′1) + area(m′2) + . . .+ area(m′n)
(3.2)

where m′i ∈ T and m′i = P2(D, li) for 1 ≤ i ≤ n. Note, for i 6= j, m′i and m′j can be

the same node in T . Since P1 and P2 are equivalent, if a node m ∈ T is used by P1

to anonymize x locations then m is also used by P2 to anonymize the same number of

locations. Therefore

area(m1) + area(m2) + . . .+ area(mn)

= area(m′1) + area(m′2) + . . .+ area(m′n) (3.3)

because each quadrant appears same number of times on right sides of the Equation

(3.1) and (3.2) for Cost(P1, D) and Cost(P2, D). Therefore,

Cost(P1, D) = Cost(P2, D)

(b) Let P1 provides policy-aware sender k-anonymity to D. Therefore, each node m ∈
T , P1 either anonymizes (≥ k) locations using m or none. We are given that P1 and P2

are equivalent under D,T , therefore they both anonymize the same number of locations

using m. Therefore, P2 either anonymizes (≥ k) locations using m or none. Thus, P2

also provides policy-aware sender k-anonymity to D. Similarly we can show that if P2

provides policy-aware sender k-aonymity to D, so does P1.

Next we assume that P1 does not provide policy-aware sender k-anonymity to

D. Hence, there must exist a node m ∈ T that is used by P1 to anonymize 1 ≤ i < k

locations. Since P1 and P2 are equivalent, P2 also anonymizes i locations using the

node m. Since 1 ≤ i < k, P2 also does not provide policy-aware sender k-anonymity to

D.



74

3.9.5 Lemma 2

Proof. The cost of policy P for anonymizing the location database D with n locations

as:

Cost(P,D) =
∑
l∈D

Cost(P (D, l))

= Cost(P (D, l1)) + Cost(P (D, l2)) + . . .+ Cost(P (D, ln))

= area(m1) + area(m2) + . . .+ area(mn)

(3.4)

where mi ∈ T and mi = P (D, li) for 1 ≤ i ≤ n. Since, for i 6= j, mi and mj can be the

same node in T , we can rewrite the above equation as follows:

Cost(P,D) =
∑
m∈T

f ′(m,P )× area(m)

where f ′(m,P ) is the number of locations anonymized by P using quadrant m. Since

C represents the equivalence class of P , the number of locations anonymized to each

quadrant is same in P and C.

∀m ∈ T, f ′(m,P )× area(m) = f(m,C)

where f(m,C) is as defined in Definition 8. Therefore the cost of configuration C on

D can be written as:

Costc(C,D) =
∑
m∈T

f(m,C)

=
∑
m∈T

f ′(m,P )× area(m)

= Cost(P,D)

(3.5)

3.9.6 Lemma 3

Proof. Let P be a quad-tree policy and C be the configuration representing the class of

policies equivalent to P .

First we assume that P provides policy-aware sender k-anonymity and show that

C satisfies k-summation property. Since P is policy-aware sender k-anonymous, each

quadrant m ∈ T is used in P to anonymize either ≥ k locations or none. Thus



75

• for a leaf node m ∈ T

(i) If d(m) < k, then P cannot anonymize any location using m, therefore

C(m) = d(m).

(ii) if d(m) ≥ k, then P could either anonymize ≥ k locations or none. In

former case C(m) ≤ (d(m)− k) while in later case C(m) = d(m).

• for an internal node m ∈ T let ∆ =
∑4

i=1C(mi),

where m1 . . .m4 are the children of m in T

(iii) if ∆ < k then there are total ¡ k locations passed up by children of m. Thus

P cannot anonymize any locations using m and therefore, C(m) = ∆.

(iv) if ∆ ≥ k then the children ofm passes up≥ k locations. Therefore, P could

either anonymize ≥ k locations or none. In former case C(m) ≤ (∆ − k)

while in later case C(m) = ∆.

Thus C satisfies k-summation property. Moreover since P anonymizes every location

to some region, C(root) = 0. Therefore, C is well-formed as well.

Next we assume that C satisfies k-summation property and show that P provides

policy-aware sender k-anonymity. Equivalently we show that under C, each cloak of T

is used to anonymize either ≥ k locations or none. Since C satisfies k-summation, it

implies:

• for a leaf node m ∈ T

(i) if d(m) < k, then C(m) = d(m). Thus P does not anonymize any location

using m.

(ii) if d(m) ≥ k, then either C(m) = d(m) or

C(m) ≤ (d(m)− k). In the later case P anonymizes ≥ k location using m,

while in former case none.

• for an internal node m ∈ T let ∆ =
∑4

i=1C(mi),

where m1 . . .m4 are the children of m in T



76

(iii) if ∆ < k, then C(m) = ∆. Thus P does not anonymize any location using

m.

(iv) if ∆ ≥ k, then either C(m) = ∆ or C(m) ≤ (∆ − k). In the later case P

anonymizes ≥ k locations using m, while in former case none.

Thus P provides policy-aware sender k-anonymity.

3.9.7 Lemma 4

Proof. We use structural induction to prove that each node m in the quad-tree T and an

integer l ≤ d(m),

costalg(m, l) = costmin(cset(m, l))

, where costalg(m, l) represents the cost computed byBulkdp for passing up l (unanony-

mized) locations at m and costmin(cset(m, l)) represents minimum cost of passing up l

locations at m among all the configurations that passes up l (unanonymized) locations

at node m and satisfies k-summation property.

Basis: For a leaf node m and an integer l ≤ d(m), it is obvious by construction that

costalg(m, l) = costmin(cset(m, l)).

Induction: Let m be a non-leaf node in the quad-tree T and m1,m2,m3,m4 be the

children of m. Let l be an integer such that l ≤ d(m) and cset(m, l) be the set of config-

uration that passed up l (unanonymized) locations at node m and satisfies k-summation

property. We show that ∀g ∈ cset(m, l), costalg(m, l) ≤ cost(g(m)), where cost(g(m))

represents the cost of g at node m. If g(m1) = l1, g(m2) = l2, g(m3) = l3, and

g(m4) = l4, the cost of m in g can be written as

cost(g(m)) := [cost(g(m1)) + cost(g(m2)) + cost(g(m3)) + cost(g(m4))

+ area(m)× (l1 + l2 + l3 + l4 − l)]

By induction hypothesis we assume that costalg(m1, l1) ≤ cost(g(m1)), and

similarly costalg(m2, l2) ≤ cost(g(m2)), costalg(m3, l3) ≤ cost(g(m3)), and



77

costalg(m4, l4) ≤ cost(g(m4)). Therefore

costalg(m1, l1) + costalg(m2, l2) + costalg(m3, l3) + costalg(m4, l4)

≤ cost(g(m1)) + cost(g(m2)) + cost(g(m3)) + cost(g(m4))

And by adding the constant value area(m) × (l1 + l2 + l3 + l4 − l) to both the

sides we get

costalg(m, l) ≤ cost(g(m))

Similarly for each node m and each integer l ≤ d(m), and each configuration

g ∈ cset(m, l), we can show that costalg(m, l) ≤ cost(g(m)). Therefore costalg(m, l) =

costmin(cset(m, l)).

3.9.8 Lemma 5

Proof. Let D be a location database instance, B a binary tree, C an optimal configu-

ration of B, and P a policy it represents. Suppose there is a node m ∈ B such that

(k + 1)h(m) < C(m) < d(m). Then there is a set S of at least k locations such that (i)

all locations in S occur in m’s area, and (ii) all locations in S are cloaked by P using

some ancestor a of m, and (iii) if all locations in S are removed from their respective

cloaks under P , the cloaks continue to contain at least k locations. Construct a policy

P ′ that cloaks the locations in S using m instead of its ancestors. P ′ continues to be

policy-aware sender k-anonymous, but has lower cost, contradicting the optimality of

P .

3.10 Acknowledgements

My co-authors and collaborators, Kevin Keliang Zhao at UCSD and Richard

Hull at IBM, together with Alin Deutsch, made important contributions to the material

that formed the basis of this chapter.



78

Figure 3.11: Representation of a clause



79

Figure 3.12: Junction configuration



Chapter 4

Trajectory-aware and Policy-aware

Sender k-anonymity

4.1 Introduction

A Location-based service (LBS)[lbs] is an information or entertainment service,

accessible with mobile devices through the mobile network and utilizing the geographic

location of the mobile device (e.g. “find the nearest gas station”, “Thai restaurant”,

“hospital”). In recent times, the availability and usage of Location-based service has in-

creased significantly because the location information of mobile device can be computed

automatically (without any input from the user) by the wireless network (via triangula-

tion of mobile device signal) and at the mobile devices (via embedded GPS chipset).

Most of the popular Location-based services such as Facebook Places [fac],

FourSquare [fou], Gowalla [gow] and Loopt [loo] log the LBS requests sent by their

users. The data retention policies of these LBSs have provisions that describe this intent.

We refer to these logs as LBS request logs. A LBS request log, containing LBS requests

collected over a period of time, is of great value to the advertisers and researchers as

it can be used to answer queries such as “the requests sent by users that move from a

location A to location B” or “requests sent by the same user over a period of time”. But a

LBS request log may also contain some sensitive requests of the users (e.g. for the local

campaign headquarter of a given political party, spiritual center for a given religion). In

80



81

the event an attacker gains access to a LBS request log, the privacy of the senders, who

wants to keep their interests private, is at risk.

In this paper we investigate how to protect identity of the sender of the LBS

requests against attackers who (via hacking or subpoenas or financial agreement) gain

access to a) the LBS request log (from the LBS provider) and b) to the sequence of

locations (trajectory) visited by the mobile users, for the duration the LBS requests are

logged (from the wireless service provider or location computing servers such as Sky-

Hook [sky]) and c) who know the “design” of the system used to provide this protection.

The assumption c) is based on a well accepted principle of designing a private and se-

cure system - “The design is not a secret” [Sal74]. The assumption b) is a realization of

the fact that an attacker can obtain the locations visited by the users from many sources

including surveillance. A recent article in Wall Street Journal [wsj] and a joint study

[EGC+10] by Intel Labs, Penn State, and Duke University provides the evidence that

the advertisers are logging the trajectories of the mobile device users.

In the context of LBS, the best-studied identity protection measure is known as

sender k-anonymity [KGMP07], which is intended to guarantee that the content of a

LBS request and precise location of the users are insufficient to distinguish among the

actual sender and k-1 other possible senders. This privacy guarantee is targeted towards

the LBS requests sent by the users at a given instant of time. The underlying model does

not consider the LBS requests sent by the users in the past (other instants of time). We

refer to this privacy guarantee as snapshot sender k-anonymity, and any solution that

targets such guarantee as snapshot k-anonymization.

Typical snapshot anonymization algorithms such as [GG03, MCA06, KGMP07,

DHVZ10] are based on hiding the sender’s precise location in the request, substituting

instead a cloak, i.e. a region containing this location. The cloak is usually chosen from

among regions of a pre-defined shape (circular, rectangular etc.), to include locations

of at least k-1 other mobile users. The policy to choose the cloak takes into account

the locations of the nearby users and the cloak selected for anonymizing any possible

requests from them. We refer to such a cloak selection policy as snapshot k-anonymous

policy. Next we show an example of a snapshot 2-anonymous policy.

Example 11. Figure 4.1 and Figure 4.2 show the location of five users at two instants



82

4

31

2

5

R3

R2

Snapshot of user locations at t1

Figure 4.1: User locations at instant t1

4

3

1

2

5

R3

R4

Snapshot of user locations at t2

Figure 4.2: User locations at instant t2

Table 4.1: Snapshot policy-aware 2-anonymous policies
P1 P2

· · · · · ·
1→ R2 1→ R3

2→ R2 2→ R4

3→ R2 3→ R4

4→ R3 4→ R3

5→ R3 5→ R3

· · · · · ·

t1 and t2. Table 4.1 shows the cloak selection policies P1 and P2 that use the quadrants,

of a static quad-tree based partitioning of the geographic space, as cloaks. Suppose at

instant t1, user 1 sends a LBS request L1. Policy P1 anonymizes L1 by substituting the

location in the request with the cloak R2 (shown in Figure 4.1). Note that R2 includes

the location of users 1, 2, 3 and a request sent by any one them is anonymized by P1

using the same cloak R2. Thus when an attacker, who has access to the user locations at



83

t1 and policy P1, observes the anonymized request with cloak R2, he cannot distinguish

whether the sender is user 1 or 2 or 3. Thus P1 provides snapshot sender 2-anonymity.

Suppose user 1 sends another LBS requestL2 at instant t2. Policy P2 anonymizes

L2 by substituting the locations in the request with cloak R3 (shown in Figure 4.2). An

attacker who has access to user locations at t2 and policy P2 cannot distinguish the

sender among users 1, 4 and 5 since requests from all these users are anonymized using

R3. Thus P2 provides snapshot sender 2-anonymity. Note that policy P2 does not take

into account the user locations at instant t1 and their anonymizations using policy P1

(and vice versa).

Thus an obvious approach to preserve sender k-anonymity of users, whose LBS

requests are logged, is to anonymize the LBS request logs using one of the snap-

shot k-anonymization solutions [GG03, MCA06, KGMP07, DHVZ10]. Our next ex-

ample demonstrates the anonymization of a LBS request log using the snapshot k-

anonymization policy of Example 11.

Example 12. Consider the locations of five users, at two instants t1 and t2, shown in

Figure 4.1 and Figure 2. User 1 sends LBS requests L1 (at t1) and L2 (at t2), which

are logged by the LBS. The LBS uses the snapshot anonymization policies P1 and P2

(shown in Table3.1) to 2-anonymize L1 and L2 respectively, as described in Example

11. To preserve the linkage information that both the requests were sent along the same

trajectory, the LBS inserts same pseudo-id in both the anonymized requests.

Unfortunately snapshot anonymization of a request log does not provide sender

k-anonymity against an attacker who has access to the LBS request log and the locations

of all the users for the period the requests are logged. This is because, while anonymiz-

ing LBS requests in a given instant, a snapshot sender k-anonymous policy does not take

into account the anonymization of LBS requests in other instants. The next example de-

scribes a scenario when sender k-anonymity can be breached if the LBS request log is

anonymized using a snapshot k-anonymous policy.

Example 13. Lets consider the snapshot k-anonymization of request logs of Example

12. Lets assume the anonymized request log is observed by an attacker who knows the

policies P1 and P2 and the locations of users in the two instants the request were sent



84

(shown in Figure 4.1 and Figure 4.2. As described in Example 11, the attacker can use

the knowledge of the policies to identify the sender for the first request to be one of the

1, 2 or 3 and that for the second request to be one of the 1, 4 or 5.

Next he observes that both the requests where sent by the same user. Since

user 1 is the only common user across the set of possible senders for the two requests,

the attacker successfully concludes that user 1 must be the sender, breaching sender

2-anonymity! �

In Example 13 the attacker is able to breach sender 2-anonymity because the

request logs enables him to associate the two requests to the same trajectory and the

snapshot 2-anonymization policy P2 does not take into account the anonymization of

request from user 1 at instant t1 using policy P1. Thus the above breach could have been

avoided if either the two requests were not linked with the same trajectory or if instead

of policy P2 we use a policy P ′2 that anonymizes requests from users 1, 2 and 3 using the

region R3. While we are independent to change the anonymization policy to preserve

sender k-anonymity, we do not wish to entirely remove the association of requests with a

trajectory in the anonymized LBS request log since this is a valuable information. This

poses an interesting challenge for the LBS: how can it publish the LBS request logs

and some form of linkage information between requests and the trajectories, without

jeopardizing k-anonymity of the users? The LBS needs to ensure this against an attacker

who knows locations of all the users for the period the LBS requests are logged and who

knows the “design” i.e. the policy used to pick cloaks for anonymizing requests. We

call this problem the offline TP-aware sender k-anonymity problem since a LBS request,

sent by a user in the past, can be anonymized after observing his future requests. We

contrast this with the problem of online TP-aware sender k-anonymity, in which

• The LBS is not trusted, therefore a LBS request is anonymized before it is sent to

the LBS.

• the anonymization of a LBS request, sent by a user in the past, cannot be changed

or altered after observing his future requests.

We leave the problem of online TP-aware sender k-anonymity for future work.

In this paper, we propose a solution to the offline trajectory-aware sender k-

anonymity problem. Instead of anonymizing each of the LBS requests sent by a user



85

independently, we anonymize all the requests from the same user together. To this effect

we propose to use a sequence of cloaks to anonymize the set of LBS requests sent by a

user, over a period of time. With each cloak in the sequence we associate a set of LBS

requests devoid of any location and sender identity information. Such a sequence S of

cloaks represents LBS requests sent along a set of user trajectories that pass through S,

thus preserving the coarser association between LBS requests and the trajectories they

were sent along. Moreover S provides offline trajectory-aware sender k-anonymity, if

it represents the LBS requests of k distinct users whose trajectories passes through the

sequence of cloaks. We describe our approach in detail in Section 4.3.

Our contributions. In addition to showing that snapshot k-anonymization policies, if

used for anonymizing LBS request logs, can jeopardize sender k-anonymity against an

attacker who has complete knowledge of the snapshot k-anonymization policy and the

trajectories of the users, our contributions include the following.

[1] We identify and formulate the problem of offline sender k-anonymity in LBS

request logs against the class of trajectory-aware and policy-aware attackers. We ex-

tend the snapshot sender k-anonymity guarantee and define a novel TP-aware sender

k-anonymity guarantee.

[2] We study the problem of finding, among all the offline policies that provide

TP-aware sender k-anonymity, one with the optimum utility. We show that finding the

optimum offline policy that uses cloaks that are chosen among the quadrants of a quad-

tree based partition of the map is NP-Hard.This is significant since it was shown in

[DHVZ10] that for such cloak types optimum snapshot k-anonymization is P -time.

[3] We show that the problem of optimum TP-aware sender k-anonymity is ap-

proximable (i.e. one can always find a solution that is within well defined bounds relative

to the optimum solution).

[4] In particular, we describe a novel l-approximation algorithm to anonymize

a LBS request log spanning user trajectories of length l and novel optimizations to im-

prove the average cost of anonymization.

[5] We implement and experimentally evaluate our offline trajectory-aware

sender k-anonymous algorithm and show that it is practical and scales extremely well

with the number of user trajectories: it takes less than 5 minutes to anonymize 1 million



86

user trajectories of length 30 in the San Francisco Bay area.

Paper outline. The remainder of the paper is organized as follows. In Section 4.2,

we describe a prevailing model of an LBS and the logs maintained by the various en-

tities involved in the delivery of the LBS. We define offline trajectory-aware sender

k-anonymity in Section 4.3 and describe our solution that uses a sequence of cloak

to preserve trajectory-aware sender k-anonymity while publishing blurred linkage in-

formation between anonymized requests and set of user trajectories. In Section 4.4 we

show that finding the optimum offline policy that provides trajectory-aware k-anonymity

is NP-hard and hence in Section 4.4.2 we propose a polynomial time l-approximation

algorithm. In Section 4.5 we describe the optimizations and our implementation of op-

timized approximation algorithm. We report on the experimental evaluation in Section

4.6, discuss related work in Section 4.7 and conclude in Section 4.8.

4.2 Location Based Services

This section introduces a prevailing model of location-based services, based on

automatic computation of the location of user mobile devices. It describes various en-

tities in the LBS ecosystem, the data flow among these entities and the data logged by

them.

4.2.1 Basic LBS Model

As shown in Figure 4.3 there are four core elements in the delivery of a location-

based service: the user making a request, typically called the sender, the (wireless)

Communication Service Provider, denoted as CSP, the location server that computes

the location of the mobile device, denoted as LS, and the Location Based Service (LBS)

provider, denoted as LBS. We view the CSP, Location Server and LBS provider to be

trusted agents and assume that the communication between them is secure.

To access an LBS, a sender uses an application on the mobile device (typically

provided by the LBS). The application fetches the location from the run-time environ-

ment on the mobile device, which in turn gets it from the location server. The location



87

Figure 4.3: LBS Model

server is a specialized network component in CSP’s network, known as Mobile Posi-

tioning Center (MPC) in the CDMA standard, that provides access to device locations

for E911 [E91] and other location-based services. The location can also be obtained

from a service that operates outside the CSPs network and can compute the location of

a mobile device using the signal strength of nearby cell-towers and WiFi access points

observed on the mobile device (e.g. SkyHook [sky] and Google Location Service [gls]).

The application then sends a service request containing the location and the specifics

of information/operation requested by the sender (e.g. ”car dealership in 5 mile radius

from my location” or ”notify me when a friend is within 1 mile from my location”. The

LBS provider responds to the LBS request using the location sent with the request.

Henceforth we abstract from these details and focus on the treatment of location

data and the LBS service requests in the LBS ecosystem. For simplicity of presentation,

we model a geographic area as a 2-dimensional space and user’s location as integer

coordinates within this 2-dimensional space.

Location Server. The Location Server (LS) is a logically centralized point that provides



88

access to the locations of mobile devices. We abstract from the fact that location is

usually determined only on demand, and assume in our investigation that the locations

of all devices are eagerly computed and available. We also assume that the location

server logs the location of all devices after every fixed interval of time. While the actual

duration of the interval is not important to our discussion, we do assume that the LS logs

the locations of all the users at the same instant in time, thus capturing a “snapshot” of

user locations at that instant. We refer to the sequence of the snapshots of user locations

as the location log and the locations of a user in the sequence of snapshots represent his

trajectory.

For ease of presentation, we use consecutive natural numbers to represent the

time instant for consecutive snapshots, starting with ’0’ for the first snapshot. Note that

it still preserves the ordering of locations visited by the users. Our techniques are equally

applicable to currently prevailing representations for time (e.g ISO 8601 [tim]).

In this paper we only consider locations logs with finite number of snapshots, and

consequently, finite number of locations in a user trajectory. The number of snapshots

in a request log is referred to as the length of the request log and the number locations in

a trajectory is referred to as the length of the trajectory. Table 4.2 represents a location

log containing five user trajectories of length 2.

Table 4.2: Location log of length two
userid 1 2
Alice (1,2) (1,3)
Bob (1,2) (2,2)

Carol (2,2) (2,2)
Sam (2,1) (4,4)
Tom (3,3) (3,3)

Our assumptions about location logs are motivated by applications such as

SpotRank [spo]. SpotRank claims to correctly predict the number of users at a given

location, at a given day and time. To make the prediction, it uses the location logs

collected by the Skyhook location server [sky] over a period of time. To enable such a

service, the location logs must be organized to find the location of all the users at the

same instant of time.



89

LBS Provider. The LBS provider uses the location in the LBS requests to respond to

the user query or perform the requested operation. We assume that after responding to

each LBS request, the LBS provider logs the request. We refer to this log as the LBS

request log. Each logged request is associated with the identifier of the device that sent

the request (e.g. IP-address or MAC-address). This allows the LBS provider to identify

the requests sent by the same user in the LBS request log. This assumption reflects the

prevailing data retention and privacy policies among the popular LBSs such as Facebook

Places, FourSquare, Loopt and Gowalla.

Table 4.3: LBS request log
deviceid 1 2
ida v1 v2
idb v3 -
idc - v4
ids v5 -
idt - v6

Example 14. Let us consider the five users whose trajectories are shown in Table 4.2.

Suppose at instant 1, a LBS L logs the requests v1, v3 and v5 sent by the users Alice, Bob

and Sam (respectively). At instant 2, L logs the requests v2, v4 and v6 sent by the users

Alice, Caroll and Tom (respectively). Table 4.3 shows the request log of L where ida,

idb,idc,ids and idt are the device-ID of Alice, Bob, Caroll, Sam and Tom respectively.

�

Our assumptions about the location server and the LBS provider are not only

indicative of the current prevailing data collection practices, but are also appropriate in

connection with the study of privacy guarantees. This is because we target attackers

who might be able to reconstitute all device locations, perhaps by hacking logs, or by

financial agreement or by subpoena-induced cooperation of the location server and the

LBS provider.

As a mobile user moves and sends LBS requests from different locations at dif-

ferent times, the LBS provider logs these requests and using the device-id builds a his-

tory of LBS requests sent by the same user. Although this history does not contain the

identity of the sender, it can be linked with the user trajectories in the location log at



90

the location server and thus can be associated with the actual sender. Therefore we need

way represent all all the data corresponding to a user that is available in the LBS model

described above.

4.2.2 User History

Next we define an abstract class User-history that represents the data correspond-

ing to a LBS user, stored in the location log and the LBS request log. The class user-

history consists of two core methods, location() and request(), defined over the set of

natural numbers. The method location() maps the natural numbers to a set of points in

the 2-dimension coordinate space and the function request() maps the natural numbers

to LBS requests in the LBS request log.

Definition 10. The user-history is an abstract class with following three methods:

i) rid() returns a id, where domain of id is the set of all mobile device identifier of

users. (e.g. IP-address or MAC-address).

ii) location(i) takes as an input a natural number i and returns a point (xi, yi) in the

2-dimensional integer coordinate space (used to represent a geographic area).

iii) request(i) takes as an input a natural number i and returns the set of name-value

pairs {V1 · · ·Vq} that represents a set of LBS requests, each request devoid of any

location information.

In the above definition, the set of name-value pairs {V1 · · ·Vq} contain the cat-

egories and specifics of the sought services (e.g. [(poi, rest), (cat, ital), (dist, 2mi)]

represents “find all the Italian restaurants within 2 miles of my location”). It preserves

the ordering of locations in the user trajectory as witnessed in the location logs. It also

preserves our snapshot assumption (described above) about the location log since for

any natural number i, and for any two users u and v, the locations u.location(i) and

v.location(i) represent their location in the same instant in time i.e. same snapshot .

At a high level, the function location() represents the trajectory of a user and

the function request() represents the set of LBS requests sent by that user along his

trajectory. In particular, u.location(i) is the location of the user u.userid() as observed



91

in the snapshot i of the location log and u.request(i) is the set of LBS requests in the

LBS request log that were sent from u.userid() from the location u.location(i).

Since in this paper we focus on user trajectories of finite lengths, we say a a user

history is of length l if the functions location(i) and request(i) are defined only for

1 ≤ i ≤ l. Henceforth, we represent a user-history of length l as

(uid, 〈loc1, loc2, . . . locl〉, 〈V1, V2, . . . Vi〉)

where uid is the userid of the user, loci is the location of the user at instant i and Vi the

request sent by the user at instant i from li. In the rest of the paper, we use the term

user-history to refer to an object of the user-history class.

Example 15. Consider the location log shown in Table 4.2 and the LBS request log

shown in Table 4.3. The user-history corresponding to the five users whose data is in

these logs are as follows:

ua = (Alice, 〈(1, 2), (1, 3)〉, 〈v1, v2〉)
ub = (Bob, 〈(1, 2), (2, 2)〉, 〈v3, 〉)
uc = (Carrol, 〈(2, 2), (2, 2)〉, 〈, v4〉)
us = (Sam, 〈(2, 1), (4, 4)〉, 〈v5, 〉)
ut = (Tom, 〈(3, 3), (3, 3)〉, 〈, v6〉) �

Even though a user-history is not materialized and available as shown above, it

is a succinct and accurate representation of information about a LBS user that can be

obtained by an attacker (as described earlier) in our LBS model. Thus the data available

in the LBS model (in the logs), corresponding to a set of LBS users, can be represented

as a set of user-history objects. The set of user-history objects contains very useful

data for researchers and advertisers since it can be used to answer queries such as “the

requests sent by users that move from a location A to location B”. On the other hand it

also contains some sensitive requests of the users and other private information such as

as what LBS requests were sent by a user along a particular trajectory.

This brings us to the privacy issue that we study in this paper i.e. how can

the LBS provider anonymize the set of user history objects such that it preserves some

form of linkage between the service requests and the trajectories, but an attacker who

has access to the anonymized user history objects and who knows the policy used for



92

anonymization, cannot breach sender k-anonymity of the users. As shown in the Exam-

ple 13 in section 3.1, the snapshot sender k-anonymity solutions cannot provide sender

k-anonymity in this scenario.

4.3 TP-aware k-Anonymity

In this section we describe our approach for anonymizing the set of user-history

objects to provide sender k-anonymity against the class of attackers who are aware of

user trajectories and the anonymization algorithm. The anonymization preserves the

linkage information between LBS requests and trajectories to an extent that does not

pose any risk to the sender k-anonymity of the users.

4.3.1 Bundles

Our approach is based on the observation made in section 3.1 that a LBS request

in the LBS request log should not be anonymized without considering the anonymization

of other LBS requests in the LBS request log sent along the trajectory of that user. To

overcome this problem, in our approach we anonymize all the requests sent along a

trajectory of a finite length l, simultaneously, using a sequence of cloaks.

To this effect, we define an abstract class bundle that consists of two core meth-

ods, cloak() and requests(), defined over the set of natural numbers. The function

cloak() maps the natural numbers to 2-dimension cloaks of a pre-determined shape

(e.g. circular, rectangular or quadrants of a quad-tree) and the function requests() maps

the natural numbers to sets of LBS requests.

Definition 11. [Bundle] A bundle object b is an instantiation of an abstract class with

following three methods:

i id() returns an identifier (e.g. integer) that uniquely identifies the bundle.

ii cloak(i) takes as an input a natural number i and returns a 2-dimensional region

ci.

iii requests(i)takes as an input a natural number i and returns the set of name-value

pairs {V1 · · ·Vq} representing a set of LBS requests, each request devoid of any



93

location information.

In the above definition ci is a finite representation of a 2-dimensional region (e.g.

[(x1, y1) (x2, y2)] for axis-parallel rectangles, where (x1, y1) and (x2, y2) are coordinates

of lower-left and upper-right corners of rectangle respectively). We denote a bundle as a

tuple = [rid, 〈r1, · · · , rl〉, 〈s1 · · · sl〉], where r1 · · · rl is a sequence of l cloaks and s1 · · · sl
is a sequence of l sets of LBS requests.

Example 16. The following are examples of bundles that use quad-tree based cloaks

shown in the Figure 3.9(a) and the requests described in Example 15.

b1 = (1, 〈R2, R3〉, 〈{v1, v3, v5}, {v2, v4}〉)
b2 = (2, 〈R3, R3〉, 〈{v1, v3, v5}, {v2, v4, v6}〉)
b3 = (3, 〈R2, R4〉, 〈{v3}, {v4}〉)
b4 = (4, 〈R3, R4〉, 〈{v3}, {v4}〉) �

At a high level, the function cloak() represents a sequence of cloaks and the

function requests() represents a set of LBS requests sent along the cloak sequence,

that is each LBS request in the set requests(i) is sent from some location in the cloak

cloak(i). This allows us to use a bundle b to represent a set of user-history objects

whose trajectories passes through all the cloaks of the bundle. Next we formally define

this notion.

Definition 12. [Masking] Given a bundle b and a user-history u, we say the bundle b

masks a user-history u if

a) (region containment): ∀i, u.location(i) ∈ b.cloak(i); and

b) (information preservation): ∀i, u.request(i) ⊆ b.requests(i)

The requirement a) region containment describes the correctness condition for the

coarser trajectory i.e. location of the user u at instance i must be contained within the

region cloak(i) of the bundle b. The requirement b) information preservation enforces

the correctness condition for the set of request associated with the coarser trajectory.

That is the set of LBS requests sent by the user u from location u.location(i) must be a

subset of the set of LBS requests sent from the region b.cloak(i) of bundle b.



94

Example 17. The bundle b1 in the Example 16 masks the users-history objects Alice,

Bob, Carrol and Sam of the Example 15. Similarly the bundle b3 masks the user-

history objects Bob and Carrol. �

The bundle object obfuscates the association of the LBS requests with the

trajectory of the actual sender since for any two requests, rx ∈ requests(i) and

ry ∈ requests(j), sent from two separate cloaks cloak(i) and cloak(j) in the sequence,

where i 6= j, one cannot distinguish if they were sent by the same user. The high-level

intuition here is that instead of publishing the set of user-history objects, the LBS

publishes a set of bundle objects that masks the user-history objects. The bundle

objects are so chosen that an attacker, who has access to the location() function i.e.

trajectories of all the users, cannot associate a request in the bundle with any one user

thus preserving sender anonymity. We formalize this next.

4.3.2 Anonymizing Policy

Definition 13. [Anonymizing Policy] We define an Anonymizing Policy as a function

that takes as an input a set U of users history objects and outputs a set B of bundles.

Formally:

P : {user history objects } → { bundle objects }

A policy P, is a masking policy, if for each user-history object u, the bundle P(u)

masks u. In this investigation we only consider masking policies, henceforth the term

policy refers to a masking policy. Next we give example of a masking policy.

Example 18. The following anonymizing policy P1 anonymizes the 5 user-history ob-

jects in Example 15 using the bundle objects shown in Example 16.

P1(Alice) = b1 P1(Bob) = b3

P1(Carrol) = b3 P1(Sam) = b1

P1(Tom) = b2

�



95

As described in the section 3.1 using snapshot k-anonymization for anonymizing

LBS request log does not provide sender k-anonymity because a LBS request sent by

a user u in one instant is anonymized without considering the anonymization of his

other LBS requests in other instants. The anonymizing policy takes into account all the

requests sent by a user (via the user-history object) in the anonymization.

4.3.3 TP-aware Sender k-anonymity

Now we define the TP-aware sender k-anonymity guarantee. To do so we need to

formalize the class of attackers who are aware of user trajectories and the anonymization

algorithm.

Attacker Model. We target a strong information-theoretic definition of privacy

therefore we model the attacker as a function taking certain input to launch the attack.

There are no limiting assumption on the computation resources expended to launch

the attack. The only assumptions are on what input the function has (intuitively, the

information that the attacker sees). We classify the input into two groups as follows.

Design time: Even before the attacker observes the set of bundle objects, he may know

• the target level k of k-anonymity.

• the specific anonymizing policy P used to k-anonymize the users.

Run time: The attacker can obtain (via surveillance or subpoenas or financial agree-

ment)

• the functions userid() and location() for all the user − history objects (the

trajectory of all the users).

• the published bundle objects.

We refer to class of such attackers as Trajectory-aware and Policy-aware attackers.

The attack function models the following attack: starting from the observation of

a set S of bundle objects, the knowledge of trajectories of all the users and the

anonymization policy, the attacker reverse engineers the bundle objects to obtain the

possible user-history objects masked by S and compatible with the anonymizing policy



96

i.e. user-history objects that are anonymized to bundle objects in S.

We are now ready to define TP-aware) sender k-anonymity. Intuitively, it cap-

tures the property that for each observed bundle object b there are at least k user-history

objects that are anonymized to it. We consider it a breach of sender k-anonymity if for

any bundle b the attacker succeeds in reducing the number of user-history objects that

can possibly be anonymized to it, to less than k. We first define sender k-anonymity as

a property of set of bundle objects w.r.t. a set of user-history objects and an anonymiza-

tion policy. Since the bundles are obtained using a policy P , it is easy to extend the

definition as a property of policy P .

Definition 14. [TP-aware Sender k-anonymity] Let P be an anonymization policy

and U be a set of user-history objects. Let B be the set of bundles obtained using the

policy P . We say B provides TP-aware sender k-anonymity if for each bundle b ∈ B
there are at least k distinct user-history objects in U that are anonymized to b under P .

We say that policy P provides TP-aware sender k-anonymity, if for every set

of user-history objects U , the set of bundles {P (u)|u ∈ U} provides TP-aware sender

k-anonymity.

Using the above definition of TP-aware sender k-anonymity and the attack model

described earlier, we show that the policy P1 in Example 18 does not provides TP-aware

sender 2-anonymity.

Example 19. The policy P1 of Example 18 anonymizes the set of user-history objects

{ua, ub, uc, us, us} shown in Example 15 to the set of bundles {b1, b2, b3} shown in Ex-

ample 16. When the trajectory-aware policy-aware attacker observes b1, he tries to

reverse engineer the user-history objects that could have anonymized to it. He finds two

user-history objects, ua and us, corresponding to users Alice and Sam. Therefore b1
provides TP-aware sender2-anonymity. Similarly for b3, there are 2 users ub and uc that

could be anonymized to b3. In contrast, when the attacker observes b2, he can breach

sender 2-anonymity since there is only one user-history object ut that is anonymized to

b2 under P1. Thus policy P1 does not provide TP-aware sender 2-anonymity.

In the remainder of the paper we target an anonymization policy that preserves



97

TP-aware sender k-anonymity. We start with first showing an example policy that pro-

vides TP-aware sender 2-anonymity to the users of Example 15.

Example 20. For the five user-history objects in Example 15 we describe the following

anonymizing policy P2 that uses the bundle objects shown in Example 16.

P1(Alice) = b2 P1(Bob) = b3

P1(Carrol) = b3 P1(Sam) = b2

P1(Tom) = b2

For both the observed bundle b2 and b3, there are at least 2 user-objects that can be

anonymized to each one of them under policy P2. When the trajectory-aware policy-

aware attacker observes the published bundles, he tries to reverse engineer the user-

history objects that could have anonymized to them. For both the bundles b2 and b3,

he finds at least 2 users. Hence P2 provides sender 2-anonymity against the trajectory-

aware and policy-aware attackers. �

4.4 Optimum Anonymity

For the same set of user-history objects there may exist several anonymiza-

tion policies that provide TP-aware sender k-anonymity, raising the obvious ques-

tion of which one to use. In this section we address the problem of finding the k-

anonymous policy of highest utility to the consumers of the published data. Prior

work[DHVZ10, KGMP07, GG03, MCA06] on snapshot sender k-anonymity propose

that one way to maximize utility is to minimize the area of the cloaks. For the log

of LBS requests, an analogous measure would be to minimize the sum of the area of

sequence of cloaks used in the bundles to anonymize the users.

Cost of a bundle. We introduce the cost of a bundle to quantitatively capture the fact

that the utility is maximized, as the sum of the area of cloaks in the cloak sequence of

the bundle is minimized. Given a bundle b = [rid, 〈r1 · · · rl〉, 〈s1 · · · sl〉], we define the

cost of b as the sum of area of cloaks in its cloak sequence.

Cost(b) =
i=l∑
i=1

area(ri)



98

Given a collection U of user objects and an anonymizing policy P , we define the

cost of a policy P for anonymizing U , denoted Cost(P,U), as

Cost(P,U) =
∑
u∈U

Cost(P (u))

4.4.1 Optimal policy

Using the cost model described above, one can quantitatively compare two

anonymization policies and identify the one that has lower cost and therefore better

utility. We next focus on the problem of finding the optimum (minimum cost) policy

that provides TP-aware sender k-anonymity to a given set of user-history objects.

For policy-aware snapshot k-anonymity, it was shown in [DHVZ10] that the

complexity of finding optimum policy depends upon the type of cloaks used for

anonymization. In particular, finding optimum policy among all the policies that use

circular cloaks is NP-hard [DHVZ10] whereas one can find a optimum policy that use

quad-tree based cloaks in polynomial time (of the number of users) [DHVZ10]. We

investigate whether similar results hold for the problem of finding optimum policy that

provides TP-aware sender k-anonymity. We study this problem for two types of cloaks:

• Circular cloaks: when the cloak used in the cloak sequence of bundles are circu-

lar, and each cloak is centered at a point from a given set of points (e.g. public

landmarks such as libraries, train stations or cell towers) with no restriction on the

radius.

• Quad cloaks: when the cloaks used in the cloak sequence of bundles are picked

among the quadrants of a quad-tree based partitioning of the map. The quad

tree is a well-known structure for organizing spatial data, and it has been used in

a number of anonymization solutions [GG03, MCA06, DHVZ10] for snapshot

sender k-anonymity.

Anonymization using Circular cloaks. Let U be a set of user-history objects and

SC be a set of points in the 2-dimensional space that contains the trajectories of the

users. We define circular cloak sequence as a sequence of cloaks where each cloak is

centered at some point from SC, with no restriction on the radius. Let P be the set

of all those policies that use circular cloak sequence in the bundles for anonymizing



99

user-history objects. The problem of Optimum Offline TP-aware k-anonymization with

Circular cloaks is to find a policy in P that minimizes the cost of anonymizing U .

Theorem 3. Optimum Offline TP-aware k-anonymization with Circular cloaks is NP-

hard.

R8

R4

R3 R2

R1R0

Figure 4.4: Quad-tree Partitioning

Anonymization using Quad-cloaks. Now we consider policies that uses cloaks picked

from among the quadrants corresponding to a quad-tree-based partitioning of the ge-

ographic region. The root node of the quad-tree represents the entire region (square

shaped) which is then partitioned into 4 equal non-overlapping square quadrants, each

of whom represent a child node of the root. Each quadrant is then again divided into 4

equal sub-quadrants that correspond to grandchildren of the root. This four-way splitting

goes on until the desired level of granularity for the minimum region is reached. Figure

4.4 shows a part of a quad-tree based partitioning: region R8 represents a quadrant in

the quad-tree that is divided into 4 equal sub-quadrants (e.g. R4). The sub-quadrant R4

is further divided into 4 equal sub-quadrants R0, R1, R2, and R3.

Given a quad-tree representation Q of a region, we refer to a sequence of

cloaks, where each cloak is one of the quadrant of Q, as a quad-cloak sequence. For

e.g. 〈R0, R3〉 is a quad-cloak sequence of length 2 that uses the quadrants of quad-tree

partitioning shown in Figure 4.4. A policy that anonymizes user-history object using

bundles with quad-cloak sequence is referred to as a quad-cloak policy.



100

R4

R3 R2

R1
R0

a
b

c

R4

R3 R2

R1R0
b c

a

(t1)

(t2)

Figure 4.5: Trajectories of length 2

…

R0 R0

R3R3
R1

R2R2

R1

R0

R0

R3
R1

R2

R3

R0

R3
R1

R2

…R0 R0 R0 R3… R3 R0 R3 R3…

…
R0

R3
R1

R2

R0

ab c

ab
b c

b ca

Figure 4.6: Trajectory Anonymization using Quad-tree

Optimum quad-cloak policy. Given a quad-tree Q and a set U of user-history objects,

there exists several quad-tree policies that can be used to anonymize U . The number



101

of quad-tree policies that can be used to anonymize U can be easily determined if one

knows the number of quad-cloak sequences that masks the trajectory of a user-history

object.

Let us assume the user-history objects in U are of length l and the quad-tree Q is

of height h. For any location in the trajectory of a user-history object, there are h cloaks

in Q that masks it (all the cloaks from leaf to root in Q). Therefore, for a trajectory

of length l, there are hl different quad-cloak sequences that mask the entire trajectory,

representing the number of ways in which a user-history object can be anonymized using

Q. If there are n user-history objects in U , then there are (hln) or (h(nl)) different ways

of anonymizing them using quad-cloak sequences of Q. It also represents the number

of different quad-tree policies that can possibly anonymize U , although not all of them

provide TP-aware sender k-anonymity.

The problem of optimum offline TP-aware sender k-anonymity with quad-cloaks

is to find a quad-cloak policy P that has the minimum cost of anonymizing U . Clearly

a brute force search among all (h(nl)) of the quad-tree policies to find the optimum

that provides TP-aware sender k-anonymity cannot be done in polynomial time. As

shown by our next result one cannot hope to do better i.e. find the optimum policy in

polynomial time (unless P = NP).

Theorem 4. Optimum offline TP-aware sender k-anonymity with quad-cloaks is NP-

Hard.

In hindsight the above result was expected given the role (curse) of dimensional-

ity, since each location in the trajectory (acting as a variable) has (discrete) finite choices

of cloaks. The combination gives rise to exponential number of choices of cloak se-

quence to anonymize a set of user-history objects.

4.4.2 Approximation Algorithm

The next best thing in lieu of an polynomial time optimum solution is to find a

polynomial time approximation solution with bounded approximation factor. In this sec-

tion, we show that the problem of optimum offline TP-aware sender k-anonymity with



102

quad-cloaks is approximable and describe a polynomial time bounded approximation

solution.

In our approach, we restrict the choices of cloak sequence that a policy can

use, to a subset of all the possible choices of quad-cloak sequences. This amounts to

identifying a subset S ′ of the set S of all the quad-cloak policies. The subset S ′ is chosen

such that an optimum quad-cloak policy relative to S ′ can be found in polynomial time,

and that this policy is a bounded approximation of optimum quad-cloak policy in S.

To simplify the description of a subset S ′ of all the quad-cloak policies and the

algorithm that finds the optimum solution w.r.t. S ′, we utilize a structural relation that

exists between quad-cloak sequences of a given length l. We refer to this relation as

1-step generalization.

R2R0 R2R1 R2R3R2R2

R2R4

R0R0 R0R1 R0R2

R0R4 R1R4

R3R0 R3R1 R3R3R3R2

R3R4
R4R0

R4R4R0R8 R8R0

R8R4

R1R8

R4R8

R2R8 R3R8

R0R3 R1R0 R1R1 R1R3R1R2

Figure 4.7: Subgraph of G-graph induced by 1-step generalization

1-step Generalization. Let Q be a quad-tree and s be a quad-cloak sequence of length

l that uses quadrants of Q. Let s′ be a quad-cloak sequence obtained by replacing one of

the cloaks in s with its parent in Q. We refer to s′ as 1-step generalization of s. For each

quad-cloak sequence of length l (with the exception of the quad-cloak sequences that

contain the root quadrant of Q), there are l different 1-step generalizations. Also, each

quad-cloak sequence of length l (with the exception of the cloak sequences that contain

one ore more leaf quadrants of Q) is 1-step generalization of l quad-cloak sequences.

The 1-step generalization relation induces a directed acyclic graph over all the quad-

cloak sequences of a given length l obtained using a quad-tree Q. We refer to this graph



103

as the Generalization Graph. Formally

Definition 15. [Generalization graph] Given a quad-tree partitioning Q of a region, a

Generalization graph (G-graph) of length l is a directed acyclic graph G = (V , E) where

• V is the set of all possible quad-cloak sequences of length l that uses quadrants of

Q, and

• E is the set of edges (si, sj) where si, sj ∈ V and sj is the 1-step generalization

of si.

Figure 4.7 shows a subgraph of the G-graph induced by 1-step generalization

on the quad-cloak sequences of length 2 that uses quadrants of the quad-tree shown in

Figure 4.4.

In a G-graph of length l it is easy to observe that a trajectory of length l masked

by a quad-cloak sequence s is also masked by the 1-step generalization of s. We refer

to this property as the containment property. The containment property states that any

trajectory masked by a cloak sequence s is also masked by all the nodes on all the paths

from s to root node of the G-graph. An an example, consider the trajectory of the user a

shown in Figure 4.5. This trajectory is masked not only by the quad-cloak sequence c =

〈R0, R3〉 shown in Figure 4.6, but also by those such as 〈R0, R4〉 and 〈R4, R4〉 that lies

on all the paths from c to the root node of the G-graph.

Next, using a G-graph we restate our approach to find an polynomial time ap-

proximation solution to the problem of optimum offline TP -aware sender k-anonymity

with quad-cloaks. Given a G-graph G of length l and a set U of trajectories, let PG
be the set of all the policies that uses quad-cloak sequences from G. The problem of

optimum offline TP -aware sender k-anonymity with quad-cloaks is to find the optimum

policy in PG. Since this is NP -hard, we identify a subspace T of the G, and find the

optimum policy in the set PT of all the policies that use cloak sequences from T . The

choice of T is such that the optimum policy can be found in polynomial time and it is a

bounded approximation of the optimum policy in PG. In the next section we describe

the characteristics of such a subspace.

Generalization Tree. Given a G-graph G, we define a Generation tree (G-tree) as

a tree T in which every node has bounded degree and that preserves the ancestor-



104

descendant relationship between nodes as observed in G. Formally, a generalization

tree T of a G-graph G is defined as:

a) the nodes of T are a subset of the nodes in G.

b) If y is the parent of x in T , then y must be a ancestor of x in G.

c) each node in T has a finite bounded degree (i.e. each non-leaf node has finite

number of children, known apriori).

The condition a) and b) ensure that a G-tree identifies a subspace of a G-graph. In other

words the set PT of all the policies that use the cloak sequences in T is a subset of all the

quad-cloak policies PG. In addition, property b) above also preserves the containment

property of G-graph in the corresponding G-tree. As a result any trajectory masked a

node in T is also masked by its parent in T . As described next, this property along with

condition c) is important in finding a polynomial time approximation solution.

Note that using the above definition, one can obtain multiple G-trees corre-

sponding to a G-graph. The choice of a G-tree dictates the bounded approximation

factor and the complexity of the algorithm that achieves the bound. We address the issue

of identifying a G-tree with bounded approximation factor in Section 4.4.2. We first

describe a generic algorithm that takes as input a G-tree T and finds the optimum policy

w.r.t. to PT for anonymizing a set of trajectories U in polynomial time (polynomial in

number of trajectories in U and number of quad-cloak sequences in T ).

Algorithm

To obtain a polynomial time algorithm that finds an optimum policy that uses

quad-cloak sequences from a G-tree T , we utilize two unique properties of such

policies. Using the first property we define equivalence classes of policies such that all

the policies in an equivalence class have the same cost and anonymize same number of

trajectories to each quad-cloak sequence in T . This allows us to reduce the problem

of finding the optimum policy to finding the equivalence class corresponding to the

optimum policy. Even though there are fewer equivalence classes than the policies, the

total number of choices is still exponential (in number of cloak sequences in T ). The



105

second property allows us to use a divide and conquer strategy to prune and search the

exponential search space of equivalence classes and find the one corresponding to the

optimum policy.

Property 1: Cost of a policy is determined by the number of trajectories anonymiz-

ed to each node in T . For a policy in PT , the property of being TP-aware sender

k-anonymous and the cost of the anonymization depends upon how many trajectories

are anonymized by each node in T , being indifferent to which particular trajectories are

anonymized. Our next example demonstrate this observation.

R0R3R0R0

ab

R0R4

R4R4

Figure 4.8: Policy P1

Example 21. Consider trajectories a and b shown in Figure 4.5. Figure 9 and Figure

10 show the anonymization of these trajectories under two policies P1 and P2. Pol-

icy P1 anonymizes a to cloak sequence 〈R0R4〉 and b to 〈R4R4〉, where as policy P2

anonymizes a to cloak sequence 〈R4R4〉 and b to 〈R0R4〉. Except for this difference, all

the other trajectories are anonymized identically in P1 and P2. Since

Cost(P1(a)) = Cost(P2(b)) and

Cost(P1(b)) = Cost(P2(a))

and therefore

Cost(P1(a)) + Cost(P1(b)) = Cost(P2(b)) + Cost(P2(a))



106

R0R3R0R0

ab

R0R4

R4R4

Figure 4.9: Policy P2

as a result, the cost of two policies P1 and P2 is identical. �

We formalize this observation as an equivalence relation among policies in PT
that use quad-cloak sequences inG-tree T . Two policies in PT are equivalent for a given

set of trajectories if every node in G-tree T anonymizes the same number of trajectories

under both policies.

Lemma 6. If policies P1, P2 are equivalent for a G-tree T , then

(a) P1 and P2 have the same cost; and

(b) P1 provides TP-aware sender k-anonymity on T if and only if so does P2.

Using this equivalence between a set of policies we reduce the problem of

finding optimum policy in PT that provides TP -aware sender k-anonymity, to the

problem of finding the equivalence class of that optimum policy. Next we formally

define this equivalence class using a Configuration function.

Configuration. The function Configuration is defined to keep track of the number of

trajectories anonymized by each node m in a G-tree T . For technical convenience, this

is done by equivalently tracking for each node m the number of trajectories that are

masked by m yet are not anonymized using m or any of its descendants. We refer to

these trajectories as passed up. It is easy to translate between the two equivalence class

representations.



107

Definition 16. [Configuration] Let U be a set of trajectories and T be a G-tree rooted

at r. Let d(m) denote the total number of user trajectories that are masked by the cloak

sequence represented by node m. A Configuration C is a function from nodes of T to

natural numbers, such that

(i) for every leaf node m, C(m) ≤ d(m); and

(ii) for every internal node q, C(m) ≤
∑f

i=1C(mi), where m has f children m1, . . .,

mf .

We say that C is complete if C(r) = 0. �

Condition (i) in the above Definition 16 restricts a configuration to represent only

masking policies and (ii) represents the fact that a trajectory can be anonymized to only

one cloak sequence. Note that under our cost function, all the policies in the equivalence

class represented by a configuration C have the same cost. We call this the cost Costc
of the configuration C. We can compute this cost directly using the configuration and

without enumerating any policy.

Definition 17. [Configuration cost] Let U be a set of trajectories and C be a configu-

ration of the G-tree T . We define the cost of C for U , denoted Costc(C,U), as

Costc(C,U) :=
∑

m∈nodes(T )

f(m,C)× Cost(m)

where f(m,C) is given by

f(m,C) =

(d(m)− C(m)), If m is leaf

((
∑l

i=1C(mi))− C(m)), If m is internal

where m1 . . .ml are the children of m and Cost(m) is the sum of area of the cloaks in

cloak sequence corresponding to node m. �

We can show that the configuration cost is precisely the cost of the represented

policies:

Lemma 7. Given a setU of n trajectories of length l, a tree T of quad-cloak sequences of

length l, a policy P that use cloak sequences from T and a configuration C representing

P ’s equivalence class, we have

Costc(C,U) = Cost(P,U)



108

.

Thus finding the optimum quad-tree policy that uses cloak sequences from T to

anonymize a set U of trajectories is equivalent to finding optimum configuration C of

the tree T w.r.t. U . Our algorithm does exactly that, i.e. we first find the minimum

cost configuration and then materialize a policy corresponding to the minimum cost

configuration, in polynomial time.

In addition to showing that finding the minimum cost configuration is equivalent

to finding minimum cost policy, we need to ensure that this configuration corresponds

to TP-aware sender k-anonymous policies.

Checking Sender Anonymity from Configurations. We turn to checking if the poli-

cies in the equivalence class represented by a given configuration are TP-aware sender k-

anonymous, without materializing them. By Lemma 6(b), either all represented policies

qualify, or none does. It turns out that it suffices to check directly that the configuration

satisfies a property we call k-summing.

Definition 18. [k-summing] Let U be a set of trajectories and C a configuration of the

tree T rooted at r. C is a k-summing configuration if

• for a leaf node m

(i) if d(m) < k, then C(m) = d(m).

(ii) if d(m) ≥ k, then either C(m) = d(m) or

C(m) ≤ (d(m)− k).

• for an internal node m let ∆ =
∑l

i=1C(mi),

where m1 . . .ml are the children of m in T

(iii) if ∆ < k, then C(m) = ∆.

(iv) if ∆ ≥ k, then either C(m) = ∆ or C(m) ≤ (∆− k).

Intuitively, in Definition 18, clause (i) states that if quad-cloak sequence corre-

sponding to node m masks less than k trajectories, none of them can be anonymized

by m lest k-anonymity be compromised. The responsibility of anonymizing all d(m)



109

of them is passed up to m’s ancestors (C(m) = d(m)). By clause (ii), if there are at

least k trajectories, then either all of them are passed up, or at most d(m) − k (since

at least k must be anonymized to the same cloak sequence to preserve k-anonymity).

For an internal node m, ∆ represents the number of trajectories whose anonymization

responsibility is passed up from m’s children to m. If there are too few of them (less

than k) then they cannot be anonymized using cloak sequence of m, who in turn passes

the responsibility to its ancestors (in clause (iii)). Otherwise, m has the choice of either

anonymizing none of them (C(m) = ∆ in clause (iv)), or anonymizing at least k and

passing up at most ∆− k.

Next we show that the k-summing configuration is equivalent to all its repre-

sented policies being TP-aware sender k-anonymous.

Lemma 8. Let T be aG-tree of quad-cloak sequences and U be a set of trajectories. Let

C be a configuration of T for anonymizing U and P be a policy in the equivalence class

C represents. P provides TP-aware k-anonymity to U if and only if C is a k-summing

configuration.

Lemmas 7 and 8 justify an algorithm that explores the space of k-summing

configurations, in search for a complete minimum-cost configuration. But for a set of n

trajectories and a G-tree T with m nodes there are O(nm) possible configurations. Next

we describe the second property of the policies in Pt that enables a divide and conquer

approach to find the optimum k-summing configuration.

Property 2: Optimum cost of anonymizing a subset of trajectories using a

node in T can be computed locally. Let C be a k-summing configuration C of a

G-tree T of quad-cloak sequences. For a node m in T , C(m) represents the number

of unanonymized trajectories passed up by m. These passed up trajectories are

anonymized at one of the ancestors of m and hence affects the anonymization cost

of other trajectories masked by the ancestors of m. But they do not affect how the

d(m) − C(m) trajectories are anonymized using m and its descendants. Thus for a

given value of C(m), one can optimize the anonymization of d(m)−C(m) trajectories

using m and its descendant independent of the rest of the trajectories. Before we

describe how we compute this local optimum for each m, we need to point out that at



110

this stage we don’t know the value of C(m) in the optimum configuration. For this

reason we compute the optimum costs of passing up 0, 1 . . . d(m) trajectories i.e. all

possible values of C(m). For each such pair (m,u), the minimum cost is computed

among all possible configurations of Tu where C(m) = u (as there are many possible

configurations with C(m) = u).

Computing all local optimum costs. To compute the (local) optimum value of passing

up u trajectories at node m, the algorithm considers all possible counts 〈0, 1 . . . d(m1)〉,
〈0, 1 . . . d(m2)〉, . . ., 〈0, 1, . . . , d(mf )〉 of trajectories passed by its children m1, . . . ,mf

respectively. Then it recursively computes the corresponding minimum cost for each

(mi, ui) pair. Redundant cost re-computation for m,u pairs is avoided by storing the

result in the corresponding cell of a bi-dimensional matrix M indexed by the nodes of

Tu and values of u. To enable the easy retrieval of min-cost configuration from M ,

the entries for node m carry, besides the minimum cost, some bookkeeping information

relating to the configurations of the children of m.

This yields the following dynamic programming algorithm Traj-anon that,

given a set U of trajectories of length l and a tree T with cloak sequences of length

l, fills in a configuration matrix M of dimension |T | × |U |, where |T | represents the

number of nodes in T and |U | the number of trajectories in U . Each entry M [m][u] in

the matrix is a tuple of the form 〈x, u1, u2, . . . , uf〉, pertaining to a configuration C such

that C(m) = u, and where x is the minimum cost of passing up u trajectories, with the

child nodes m1,m2, . . . ,mf of m passing up u1, u2, . . . , uf trajectories respectively.

The algorithm traverses the tree T bottom-up starting from the leaf nodes, and for each

node and 1 ≤ u ≤ d(m) fills in the entry M [m][u] using the rows from child nodes

m1,m2, . . .mf .

Selecting the optimum configuration. The optimum configuration is obtained when

the optimum cost of C(r) = 0 is computed, where r is the root node of T . After that it

is easy to retrieve the complete configuration from M in polynomial time by a top-down

traversal of T . The minimum cost entry M [r][0] for root r lists for its each child mi the

value C(mi) = ui leading to the minimum cost. Now inspect for each mi the ui entry



111

in M , picking again the minimum cost entry for passing up ui trajectories at mi and

continue recursively untill all leaf nodes are reached.

Function F (m) in line 16 limits the possibilities of the number of trajectories

whose anonymization responsibility can be passed up by m. Notice that it rules out

the values d(m) − k + 1 through d(m) − 1 since these imply anonymizing less than

k trajectories at m, which would immediately compromise k-anonymity. Quantity x

is the minimum cost among all configurations C with C(m) = u and which satisfies

k-summation property. This is computed from the costs of the configurations at the f

children, and the number of trajectories anonymized by m i.e. ((
∑f

l=1 ul) − u). Recall

that the cost is the first component of the tuple stored in the matrix entry, whence the

need for the projection operation M1.

Notice how the algorithm mirrors the definition (Definition 18) to ensure that

only k-summing configurations are considered. By Lemma 8, these configurations rep-

resent only TP-aware sender k-anonymous policies. For instance, line 8 corresponds to

case (i) in Definition 18, which prescribes that no trajectories are to be anonymized by

m (all d(m) trajectories inside the cloak sequence of m are passed up, C(m) = d(m)).

Thus by Definition 17, the resulting cost is 0, which is what line 8 fills into the first com-

ponent of M [m][d(m)]. Similarly, line 10 gives the cost corresponding to the case in the

first disjunct of line (ii) of Definition 18; line 12 corresponds to the second disjunct. It’s

easy to see that:

Lemma 9. Algorithm Traj-anon computes in each M [m][u] = 〈x, u1, u2, . . . , uf〉 the

configuration with minimum cost x among all k-summing configurations C where

C(m) = u and where C(mi) = ui, with m1, . . . ,mf the children of m.

By the above discussion, the information in M suffices to retrieve in PTIME a

minimum-cost configuration.

Complexity analysis. The running time of Algorithm Traj-anon is dominated by steps

16-18. For internal node m, it ranges each of u, u1, u2, . . . , uf over at most |U | values

(since F (m) ≤ d(m) ≤ |U | for every m), resulting in O(|U |f ) iterations where the

degree f represents the maximum number of children of a node m ∈ T . Summing

up over all nodes m of the tree subspace T , we obtain the complexity of Traj-anon in



112

Algorithm 2 Traj-anon
for 1 ≤ m ≤ |T | do

for 1 ≤ u ≤ |U | do

M[m][u] := 〈∞, 0, 0, 0, 0〉 {initialize}
end for

end for

for all node m ∈ T do

if (m is a leaf node) and (d(m) < k) then

M[m][d(m)] := 〈0, 0, 0, 0, 0〉
else if (m is a leaf node) and (d(m) ≥ k) then

M[m][d(m)] := 〈0, 0, 0, 0, 0〉
for 0 ≤ u ≤ d(m)− k do

M[m][u] := 〈area(m)× (d(m)− u), 0, 0, 0, 0〉
end for

else {m is a non-leaf node}
let m1,m2, . . . ,mf are children of m

for all u in F(m) do

pick u1 ∈ F (m1), u2 ∈ F (m2), . . ., uf ∈ F (mf )

that minimize the quantity

x :=
∑f

l=1M
1[ml][ul] + (sarea(q)× ((

∑f
l=1 ul)− u))

where

F (m) denotes the set [0..(d(m)− k)] ∪ {d(m)},
and M1[i][j] returns the first component of the

tuple at M [i][j]

M[m][u] := 〈x, u1, u2, . . . , uf〉
end for

end if

end for

return M



113

(O|T ||U |f ). The algorithm is polynomial time where the degree f of the polynomial

depends upon the chosen tree T of G-graph.

Algorithm 3 Config2Policy

for all node m of T-uniform do

m.tempgroup← []

end for

for all node m of T-uniform from bottom up do

if m is a leaf node then

m.tempgroup← trajectories within m

end if

x← the number of trajectories to be passed up from m

s← the subsequence of last x trajectories in m.tempgroup

Remove the last x trajectories in m.tempgroup

Append s to the end of m.parent.tempgroup

Trajectories in m.tempgroup are anonymized by cloak sequence m

end for

Policy from Configuration. We do not enumerate all the policies of the equivalence

class corresponding to the optimum configuration. Note that a C configuration is expo-

nentially more succinct than an explicit listing of the policies it represents; if we focus

on any node m alone, there are exponentially many ways to pick C(m) trajectories

among those occurring in m. Yet, we can obtain one of the policies C represents in

linear time by non-deterministically selecting the C(m) trajectories for each node m as

follows. After an optimal configuration is computed, we can create a concrete policy by

creating groups of trajectories that are anonymized to nodes of the tree T . This is guided

by the number of trajectories that should be passed up from the optimal configuration.

Algorithm 3 gives the pseudo-code of this procedure. It performs a bottom-up traversal

of T and for each node, it creates a temporary list tempgroup that holds all the trajec-

tories passed up from the children. For a leaf node, this array contains the trajectories

that are within the cloak sequence. The trajectories to be passed up to the parent are

selected from the end of the tempgroup. The remaining trajectories are anonymized by



114

the node.

l-approximation

Our approach for finding an approximation solution to the problem of optimum

TP-ware sender k-anonymity using quad-tree policy consists of a) identifying a subset

S ′ of all the possible quad-cloak sequences and b) finding the optimum policy among

those policies that only uses the cloak sequences from S ′.

In the previous subsection we described an algorithm Traj-anon that can find

the optimum policy w.r.t. a tree subspace of the G-graph of quad-cloak sequences. In

this section we describe a subset of quad-cloak sequences that defines a tree subspace

T , and show that the optimum policy w.r.t. T is a bounded approximation of the over all

optimum policy. Our first tree subspace Tu is obtained by limiting the choice of cloak

sequences to uniform cloak sequences.

Uniform Cloak-Sequence Tree. Let D be a G-graph of quad-cloak sequences of

length l that use quadrants of a quad-tree Q. Consider a quad-cloak sequence in D in

which all the cloaks are of the same size. We refer to such a cloak sequence as uniform

quad-cloak sequence. The cloak sequences 〈R0, R0〉, 〈R0, R3〉 and 〈R4, R4〉, shown in

Figure 4.6, are examples of uniform quad-cloak sequence. Let s be a uniform quad-

cloak sequence in D. Let sp be the cloak sequence obtained by replacing each cloak in

s with its parent in Q. We refer to sp as the total 1-step generalization of s. Thus total

1-step generalization is a well defined function over the set of quad-cloak sequences.

We show that the subset S ′ consisting of uniform quad-cloak sequence from D and the

total 1-step generalization function defines a tree Tu as follows.

• each uniform quad-cloak sequence in D is a node in Tu.

• If sp is the total 1-step generalization of s ∈ Tu, then sp ∈ Tu and we set sp as the

parent of s.

The tree Tu is a subspace of G-graph D since it has the following properties.

• the nodes in Tu are a subset of the nodes in D, since the uniform quad-cloak

sequences in Tu are selected from D.



115

• the total 1-step generalization sp of s is obtained by replacing all the cloakes in s

with their parents in Q, therefore sp is an ancestor of s in D.

• each quad-cloak sequence in Tu has a unique total-step generalization. In other

words, every node in Tu has only one parent, which makes Tu a tree.

• Since every quadrant in Q have 4 child nodes, there exists 4l uniform quad-cloak

sequences of length l that have the same total 1-step generalization. Thus each

node in Tu has finite bounded degree (4l).

R0 R0

R3R3
R1

R2R2

R1

…R0 R0 R0 R3… R3 R0 R3 R3…

R4

R1 R2

R3R0

Figure 4.10: Uniform Cloak-sequence Tree

Figure 4.10 shows an example of such a tree where each node is a uniform cloak

sequence that uses quadrants from the quad-tree shown in the left of the tree. Note that

its nodes are subset of G-graph shown in Figure 4.6, and the parent node 〈R4, R4〉 is

obtained using total 1-step generalization of the child nodes (e.g. 〈R0, R0〉). Also the

parent 〈R4, R4〉 and its child nodes have ancestor-descendant relationship in G-graph.

Since the length of the cloak sequences is l = 2, there exists 42 (bounded) child nodes

for each parent node in this tree.

We refer to this tree as the Uniform Cloak-Sequence Tree (T-uniform) since it

includes only and all the uniform quad-cloak sequences of the G-graph. The root of

T-uniform is the sequence of quad-cloak corresponding to root of Q. The leaf nodes are

the uniform cloak sequences where each cloak is a quad-cloak corresponding to a leaf

node of Q.The intermediate nodes are uniform quad-cloak sequences where each cloak

is a quad-cloak corresponding to a non-leaf node of Q. The height of T-uniform is same

as Q i.e. h since for each leaf uniform cloak sequence h − 1 successive total 1-step



116

generalizations leads to the root uniform cloak sequence.

Uniform policies. A policy that only uses uniform quad-cloak sequence in the bundles

is referred as uniform quad-cloak policy. Note that in a uniform quad-cloak policy, the

cloaks need not be of same size across different cloak sequences.

Let U be a set of user trajectories and Q be a quad-tree. Let Pu be the set of

all the uniform quad-cloak policies that anonymizes U using the quadrants from Q.

As shown in Theorem 5 the best policy (lowest cost) among Pu that provides TP-aware

sender k-anonymity is an approximation of the optimum quad-cloak policy that provides

TP-aware sender k-anonymity to U .

Theorem 5. Given a set U of trajectories of length l, a quad-tree Q and degree of

anonymity k, the cost of the optimum uniform quad-cloak policy that provides TP-aware

sender k-anonymity is at most l-times that of optimum quad-cloak policy that provides

TP-aware sender k-anonymity.

Therefore to anonymize a set U of trajectories of length l, we use the Traj-anon

algorithm to obtain the optimum configuration w.r.t. T-uniform Tu of length l andU . The

obtained configuration represent the equivalence class of policies that have the optimum

cost among all the uniform policies, for anonymizing U . Due to Lemma 9 and Theorem

5, we can claim the following.

Theorem 6. Algorithm Traj-anon computes the l-approximation solution to the prob-

lem of optimum offline TP -aware sender k-anonymity.

Complexity analysis. As described earlier the complexity of Algorithm Traj-anon

depends upon the maximum number of children of a node in chosen tree subspace.

For a uniform tree Tu of length l, each non-leaf node has 4l child nodes. Hence the

complexity of Traj-anon is (O|Tu||U |4
l). Even though the algorithm is polynomial time,

the degree 4l is impractically high as, in practice we expect long and large number of

trajectories. In the next section we describe our optimization techniques to reduce the

complexity of the Traj-anon on Tu without increasing the bounded cost.



117

4.5 Optimizations

In this section we describe optimizations to reduce the complexity of Traj-anon

algorithm for T-uniform without affecting the upper bound on the cost i.e. the optimized

algorithm is also an l-approximation of the optimum.

As mentioned in the section 4.4.2 the complexity of Traj-anon is determined

by the maximum number of child nodes in a G-tree. In the case of a T-uniform Tu

with cloak sequences of length l, each non-leaf node has (4l) child nodes and hence

the complexity of Traj-anon for Tu is (O|Tu||U |4
l). Our first optimization reduces the

number of maximum number of child nodes in Tu without eliminating any nodes from

Tu thus reducing the complexity of Traj-anon without affecting the approximation factor.

4.5.1 USeq-Quad tree

Given a T-uniform tree Tu of uniform cloak sequences of length l, we introduce

intermediate nodes (cloak sequences of length l) between a non-leaf node m ∈ Tu and

it’s child nodes such that the resulting structure has the following properties:

• it is a G-tree .

• has all the nodes of Tu (and some additional nodes).

• y is an ancestor of x in this G-tree, if y is parent of x in Tu.

• each non-leaf node in this G-tree has exactly 4 child nodes.

We refer to this G-tree as USeq-Quad tree. The nodes that are inserted between a node

m ∈ T and its children are not uniform cloak sequences and are obtained by ordered

1-step generalization, that we describe next.

Ordered 1-step generalization. As described earlier, there are l 1-step generalizations

of a cloak sequence of length l, one corresponding to each cloak in the cloak sequence.

Ordered 1-step generalization refers to the process of obtaining l sequence of cloaks by l

“successive” 1-step generalizations, such that the ith 1-step generalization is obtained by

replacing the ith cloaks in the cloak sequences obtained by (i−1)th 1-step generalization.

Given a T-uniform Tu of length l, we obtain the USeq-Quad tree by inserting

intermediate nodes, between node m and its 4l child nodes, that are obtained by or-

dered 1-step generalizations of the child nodes. For each child node, we obtain l cloak



118

sequences using ordered 1-step generalization and during the computation of ordered

1-step generalization, the cloak sequence obtained by ith 1-step generalization is made

a parent of the (i− 1)th 1-step generalization. Each each child node, we obtain the node

m in the lth 1-step generalization.

We use only one node to represent a cloak sequence even if is obtained via total

1-step generalizations or two or more nodes. For all the child nodes, consider the 1st

1-step generalization in the ordered 1-step generalization. Since each quadrant in Q

has 4 child nodes, there are 4 child nodes that have identical 1st 1-step generalization.

Thus each of these intermediate nodes has 4 child nodes. Similarly each cloak sequence

obtained in the ith 1-step generalization is common for 4 intermediate nodes that were

obtained (i− 1)th 1-step generalization. In the lth 1-step generalization we obtained the

node m from the 4 intermediate nodes obtained by (l − 1)th 1-step generalization.

Thus even after inserting the intermediate nodes, the resulting structure is a

USeq-Quad tree, containing all the nodes of Tu, where each non-leaf node has exactly

4 child nodes. Moreover since the parent cloak sequences a 1-step generalization of its

child, the parent nodes in G-tree completely masks their child nodes.

Next we adapt the Traj-anon algorithm to find the optimum configuration C for

for a given USeq-Quad tree Tusq and a set U of users. C represents the equivalence class

of policies that has the optimum cost among policies that use cloak sequences from Tusq

to anonymize the set U of user-history objects. Moreover the cost of these policies is

never worse then the cost of optimum policy that uses only uniform cloak sequences i.e.

nodes in Tu.

Since Tusq is a quad-tree the complexity of the above algorithm dominated by

the steps 16-18 is O(|Tusq||U |5) where |Tusq| represents the number of nodes in Tusqand

|U | represents the number of user-history objects. Note that ordered 1-step generaliza-

tion inserts O(4l) nodes between a non-leaf node and its children in Tu, therefore the

resulting USeq-Quad tree Tusq has O(m ∗ 4l) more nodes then Tu but this number is in-

dependent of the number of trajectories hence a constant factor. The reduced complexity

results in reduced running time for finding the optimum configuration as observed in our

experiments.



119

Algorithm 4 Modified Traj-anon
1: for 1 ≤ m ≤ | QT-super| do

2: for 1 ≤ u ≤ |U | do

3: M[m][u] := 〈∞, 0, 0, 0, 0〉 {initialize}
4: end for

5: end for

6: for all node m ∈ QT-super do

7: if (m is a leaf node) and (d(m) < k) then

8: M[m][d(m)] := 〈0, 0, 0, 0, 0〉
9: else if (m is a leaf node) and (d(m) ≥ k) then

10: M[m][d(m)] := 〈0, 0, 0, 0, 0〉
11: for 0 ≤ u ≤ d(m)− k do

12: M[m][u] := 〈area(m)× (d(m)− u), 0, 0, 0, 0〉
13: end for

14: else {m is a non-leaf node}
15: let m1,m2, · · · ,m4 are children of m

16: for all u in F(m) do

17: pick u1 ∈ F (m1), u2 ∈ F (m2), · · · , u4 ∈ F (m4)

that minimize the quantity

18: x :=
∑4

l=1M
1[ml][ul] + (sarea(m)× ((

∑4
l=1 ul)− u))

19: where

F (m) denotes the set [0..(d(m)− k)] ∪ {d(m)},
and M1[i][j] returns the first component of the

tuple at M [i][j]

20: M[m][u] := 〈x, u1, u2, · · · , u4〉
21: end for

22: end if

23: end for

24: return M



120

Even though Traj-anon for a USeq-Quad tree of length l has reduced complexity

in comparison to Traj-anon for a T-uniform of length l, we do trade cost to achieve better

complexity. This is shown by the following result.

Lemma 10. Given a USeq-Quad tree Tusq of length l, T-uniform Tu of length l and a

set U of user-history objects of length l and the level of anonymity k, the cost of the

optimum k-summing configuration for Tusq is never more than the cost of the optimum

k-summation configuration for Tu.

As a result the upper bound on the approximation ration i.e l still holds for a

USeq-Quad tree. This follows directly from Lemma 10.

Theorem 7. Algorithm Modified Traj-anon computes the l-approximation solution to

the problem of optimum offline TP-aware sender k-anonymity.

Moreover the average case cost of optimum policy that uses Tusq is lower than

the policy that uses Tu since when using Tusq a policy has more options for choosing a

sequence of cloaks to anonymize a user object.

While the above optimization leads to polynomial time algorithm with constant

exponent, the degree 5 is still high given the typical number of LBS users in a metro

city (in the range of 1 million for city like San Francisco). Next we describe a pair of

optimizations to further reduce the complexity of Traj-anon and run-time optimizations

to achieve practical running time, while guaranteeing to preserve the approximation

bound. These optimizations are inspired by the optimizations for Bulkdp described in

Section 3.5.

4.5.2 From Quad to Binary Tree

In the USeq-Quad-tree, if anonymizing a trajectory to a node does not provide

the desired k-anonymity, the next possible option is the parent node. Since the parent

node is 1-step generalization of the child, the cost of the new cloak in the parent cloak

sequence is 4 times that of the replaced cloak in the child cloak sequence. As shown first

in [MCA06] and also in Section 3.5, the granularity of this cost increase can be reduced

by converting a quad-tree into a binary tree by using semi-quadrants as cloaks (where



121

a semi-quadrant is obtained by splitting a quadrant into two rectangles, either vertically

or horizontally). Use semi-quadrants in the uniform cloak sequences to anonymize the

trajectories leads to following:

• The Traj-anon algorithm finds the optimum policy among all the policies that use

uniform semi-quadrant cloak sequences.

• The policy obtained using Traj-anon is l-approximation of the optimum policy

that use semi-quadrant cloak sequences.

• Using total 1-step generalization we can obtain USeq-Btree (analogous to USeq-

Quad tree) that contains all the uniform semi-quadrant cloak sequences, and in

which each node has exactly 2 child nodes.

As a result of this optimization, the complexity of the optimized Traj-anon for a USeq-

Btree Tusqb and a set of trajectories U , is O(|Tusqb||U |3). In addition, since the semi-

quadrants are smaller than the quadrants, this optimization also reduces the average cost

of anonymization.

4.5.3 Pruning Suboptimal Configurations

For any node m of the USeq-Btree, in the for loop of step 16, Traj-anon inspects

(d(m) − k + 1) configurations (all possible k-summing configurations). We realize

that some of these configurations need not be considered, as they are guaranteed to be

sub-optimal. In fact we claim the following lemma:

Lemma 11. For a node m with height h(m) (where the height of the root is 0), any

configuration in which m passes up to its ancestors the cloaking responsibility of more

than (k + 1)h(m) but less than d(m) trajectories, is not optimal.

By Lemma 11, it suffices to compute (k + 1)h(m) configurations, by simply

replacing function F in step 16 of algorithm Modified Traj-anon with function F ′(m) =

[0..((k + 1)h(m))] ∪ {d(m)}. Thus for a non-leaf node m, the algorithm computes

O(kh) configurations and to compute each such configuration, the “pick” action iterates

over O(kh) configurations of m’s two children. This leads to a new upper bound of the

overall running time, O(|Tusqb|(kh)3).



122

4.5.4 Precomputation

Similar to Bulkdp, there is significant overlap in the computations across iter-

ations of For loop in Step 16 of Modified Traj-anon. For example, if one iteration

works on the M entry for (m,u), inspecting for instance (m1, u1) and (m2, u2) such

that u1 + u2 = u, then the next iteration (m,u+ 1) will inspect the cases (m1, u1 + 1),

(m2, u2) and (m1, u1), (m2, u2+1), among others. The idea is to reuse this computation

across iterations.

To this end, we stage the computation in 2 parts. In the first stage we iterate over

the O(kh) configurations of both children to compute a temporary matrix temp. There

areO(kh) entries in this matrix and the complexity of this stage is bounded byO((kh)2).

In the second stage, we create O(kh) configurations using the O(kh) entries of temp.

Thus the running time for the second stage is also bounded by O((kh)2). Therefore the

overall complexity of the modified step 16 is O((kh)2) and the overall complexity of

the modified algorithm becomes O(|Tusqb|(kh)2).

4.5.5 Runtime Pruning

We implement a runtime optimization to further reduce the running time of the

modified Traj-anon. We create the USeq-Btree top-down by successively splitting the

semi-quadrants, starting from the root node. But we do not eagerly materialize all nodes

of the USeq-Btree, instead, we split a (semi-)quadrant only if it contains sufficient users

to maintain anonymity.

4.6 Experiments

In this section we describe a set of experiments to evaluate the effectiveness

of our optimized Traj-anon algorithm. We describe experiment to show the scalability

and performance of Traj-anon. We also compare the cost of anonymization and ex-

ecution time of Traj-anon with those of other related anonymization techniques. Our

experiments show that Traj-anon scales linearly with the number of trajectories and can

anonymize up to 1 million trajectories of length 30 within 5 min. We show that the



123

other anonymization techniques either have higher anonymization cost than Traj-anon

(as high as 70 times) or are extremely slow in comparison (takes more than 6 days).

The key challenge in these experiments was to obtain user trajectory data

from the location logs of commercial LBS ecosystem. To avoid any legal hurdles, we

decided to use the Brinkhoff generator [Brib] to generate the trajectory data for our

experiments. The Brinkhoff generator has been widely used to generate moving object

data for studies in various fields including location-based services.

Trajectory Data. We use the Brinkhoff generator to generate the trajectories data of

the mobile users in a metro area. The generator takes as input the road network of a

region and generates trajectories of various classes of moving objects that are bounded

by the road network. The classes differ in number and speed with which the trajectories

move relative to each other. We generated a master data set of 1 million trajectories

of length 30, with 5 different classes of moving objects, using the road network of the

San Francisco Bay area [Brib]. Then we drew random samples of increasing number of

trajectories (10k, 50k, 100k etc.) of length 10 and 30.

Platform. Unless otherwise stated all our experiments were executed using a server

with 2 quad-core Intel(R) Xeon(R) processors (2.50Ghz) with 4 GB RAM and running

Linux. In one of the experiment, we had to use a machine with Intel Pentium Core2 Duo

processor (2.4Ghz) with 2 GB RAM and running Cygwin on Windows XP because the

binary we got from the authors of [YBLW09] was compiled for that configuration.

4.6.1 Scalability

In the first set of experiments we evaluate the scalability of the optimized Traj-

anon algorithm by increasing the number of trajectories to be anonymized, from 10k to

2 million, for a fixed k=50. As shown in Figure 4.11, the algorithm scales linearly with

increasing number of trajectories. In fact Traj-anon can anonymize 1 million trajectories

of length 30 in less than 5 min!

Figure 4.12 shows the break up of the time spent in the three phases of the

anonymization algorithm: a) loading the user trajectories from a file to the main memory



124

0.00

50.00

100.00

150.00

200.00

250.00

300.00

0 200000 400000 600000 800000 1000000 1200000

# of Traj
T
im
e
 (
s
e
c
)

Traj Len 30 Traj Len 10

Figure 4.11: Execution time

data structures, b) obtaining the optimum configuration for the user trajectories and, c)

obtaining the policy from the configuration. The anonymization step b) takes about

50%-60% of the total time while the time for obtaining the policy from the optimum

configuration is less than 10%.

4.6.2 Related anonymization techniques

As described in the Section 4.7 (Related Work), the previously proposed algo-

rithms for trajectory-aware sender k-anonymity, are not completely policy-aware and

as shown in Section 3.1 the policy-aware snapshot sender k-anonymizing algorithms

[DHVZ10] are not trajectory aware. Therefore as a Strawman approach we decided to

extend the algorithm for policy-aware snapshot sender k-anonymity to TP-aware sender

k-anonymity. We chose the Bulkdp algorithm in [DHVZ10] since it provides the opti-

mum anonymization for a snapshot and uses quad-tree based cloaks. (since Traj-anon

uses quad-cloak sequences).

In addition we consider solutions proposed for trajectory anonymity, a privacy

problem orthogonal to sender anonymity. In trajectory anonymization, the goal is to

anonymize user trajectories such that an attacker, who knows locations of users in cer-

tain snapshots (partial trajectories), cannot infer whether a user visited a particular loca-

tion (i.e. whether a user’s trajectory passes through a particular location). This problem



125

0.00

50.00

100.00

150.00

200.00

250.00

300.00

10000 50000 100000 200000 600000 1000000

# of Traj (len 30)

T
im
e
 (
s
e
c
)

Loading Anonymization Policy Gen

Figure 4.12: Time spent in various phases

differs from sender anonymity in two important aspects: a) the attacker does not know

the complete trajectory of the user and b) minimization of cloak area can breach trajec-

tory anonymity. We explain these in detail next.

In trajectory anonymity the assumption is that attacker does not now the com-

plete trajectory of the users. In sender anonymity we do not make such an assumption,

on the contrary, it is assumed that the attacker might know the entire trajectory of the

users. Due to the difference in this assumption, some of the data transformation tech-

niques such as deletion of locations, addition of locations, and shifting locations from a

trajectory, that are used in trajectory anonymization solutions cannot be used in a solu-

tion for sender anonymity.

To explain the second difference, we consider a location l such that k trajectories

passes through it. If a user sends a LBS request from l, then using the location (instead

of a cloak that masks the location) in the sequence of cloaks used to anonymize user

does not violate TP-aware sender k-anonymity. In fact an optimum algorithm would try

to minimize the area of the cloaks as much as possible. In contrast, consider an attacker

who does not know that a user trajectory passes through l. If l is used in the sequence

of cloaks for anonymizing user trajectories passing through l then it violates trajectory

anonymity.

Even with these differences, we identified a class of trajectory anonymization so-



126

lutions whose techniques can be adapted to provider TP-aware sender k-anonymity. This

class of solutions use some clustering algorithm to partition user trajectories into groups

of k trajectories and then applies other data transformations (described earlier) to pre-

serve trajectory anonymity. We realize that one can adapt the clustering techniques, that

partitions a set of user trajectories, to provide offline TP-aware sender k-anonymization.

We use the clustering techniques from state of the art trajectory anonymization solu-

tions [NAS08, YBLW09] to obtain three different solutions for offline TP-aware sender

k-anonymity. Next we describe these three solutions along with the Strawman approach

based on snapshot policy-aware sender k-anonymity.

• Strawman TP-aware is based on the bulk anonymization algorithm Bulkdp de-

scribed in [DHVZ10]. We format the input trajectory data as sequence of snap-

shots. We anonymize the first snapshot of input trajectory data using Bulkdp and

create groups of trajectories whose locations in the first snapshot are anonymized

to the same region. Since Bulkdp provider policy-aware sender k-anonymity each

such group must have at least k members. For each group of trajectories, for each

snapshot, we find the smallest quadrant that masks the locations of the trajectories

in the group. Thus for each group we obtain a sequence of quadrants that we use

in a bundle to anonymize the trajectories in that group. This anonymization pro-

vides TP-aware sender k-anonymity since there are at least k trajectories that are

anonymized to the same sequence of cloaks.

• Fast Clustering is based on fast TGA in [NAS08]. It creates a cluster of k tra-

jectories by first randomly selecting an unanonymized trajectory as the center of

the cluster and then adding its k-1 nearest neighbor trajectories to the cluster. The

distance between two trajectories is the sum of the “distance” between their lo-

cations in each snapshot and the distance between two locations is the log of the

area of the smallest axis-parallel minimum bounding rectangle (rectangle whose

sides are parallel to the x and y axis of a 2-dimensional plane) that masks the two

locations.

• Slow Clustering is based on multi TGA in [NAS08]. To create a cluster of k

trajectory, it first randomly selects an unanonymized trajectory as the center of



127

the cluster and add k-1 additional trajectories one by one that minimizes the cost

of the cluster. The cost of a cluster is the sum of the log of area of axis-parallel

MBRs, that masks the locations of the trajectories in the cluster, in each snapshot.

• Hilbert-based Clustering [YBLW09] uses Hilbert index to find the nearest k-1

trajectories for each trajectory and create a cluster. The original approach requires

identification of certain locations in a trajectory as quasi-identifier (uniquely iden-

tifies the user). Since we assume that entire user trajectory is accessible to the

attacker, every location in his trajectory is a potential quasi-identifier. Thus in the

input to the Hilbert-based clustering algorithm we specify all the locations of a

trajectory as its quasi-identifier. As a result, the distance between two trajectories

is the sum of the absolute difference between the Hilbert values of the locations

of trajectories in each snapshot. Since the algorithm computes the clusters of k-1

nearest neighbors for each trajectory independently, two clusters can have some

trajectories in common. They merge the two clusters that have one or more tra-

jectories in common.

In the three clustering based approaches, after computing the clusters, all the

trajectories in a cluster are anonymized using the sequence of axis-parallel MBRs (rect-

angle whose sides are parallel to the x and y axis of a 2-dimensional plane) that masks

the locations of the trajectories (in the cluster) in each snapshot. We compare the execu-

tion time and cost of anonymization obtained using the four algorithms described above

with those of Traj-anon. To make a fair comparison, we modify the output of Traj-anon

and replace the quadrants in the cloak sequence with axis-parallel MBRs ensuring that

the MBR that replaces a quadrant must be included in the quadrant.

We implement the Strawman algorithm, the fast and the slow clustering algo-

rithms in C++ and use the executable of Hilbert-based clustering obtained from the

authors of [YBLW09] that is compiled for Cygwin on Windows XP.

Figure 4.13 and Figure 4.14 shows the cost of anonymizing increasing number

of trajectories (10k, 50k, 100k, 200k, 600k and 1M) and of length 10 and 30 respec-

tively, using Traj-anon and the four anonymization algorithms described above. The

x-axis in the graphs represents the number of trajectories and the y-axis represents

the cost of anonymization in log scale. Figure 4.15 and Figure 4.16 shows the time it



128

1.00E+15

1.00E+16

1.00E+17

1.00E+18

1.00E+19

1.00E+20

0 200000 400000 600000 800000 1000000

# of Traj (len 10)

C
o

st
 (

lo
g

 s
ca

le
)

Traj-anon Fast Clustering Slow Clustering Online

Figure 4.13: Cost: Clustering vs Traj-anon (len 10)

1.00E+15

1.00E+16

1.00E+17

1.00E+18

1.00E+19

1.00E+20

0 200000 400000 600000 800000 1000000

# of Traj (len 30)

C
o

st
 (

lo
g

 s
ca

le
)

Traj-anon Fast Clustering Slow Clustering Online

Figure 4.14: Cost: Clustering vs Traj-anon (len 30)

takes to anonymize trajectories of lengths 10 and 30 respectively, using Traj-anon and

the four anonymization algorithms described above. The x-axis represents the number

of trajectories and the y-axis represents the time in seconds in log scale. In all these

experiments the value of k used is 50.

Comparison with snapshot-based Strawman. As shown in Figure 4.13 and Figure

4.14 the Strawman approach has the highest cost among all the anonymization algo-

rithms. It is significantly more than than Traj-anon. In Table 4.4, it can be seen that for

600k trajectories and more the cost of anonymization with Strawman is 10 times that

of Traj-anon. This is because having optimum cost for one snapshot leads to bigger



129

0.10

1.00

10.00

100.00

1000.00

10000.00

100000.00

1000000.00

0 200000 400000 600000 800000 1000000

# of Traj (len 10)

T
im

e 
(l

o
g

 s
ca

le
)

Traj-anon Fast Clustering Slow Clustering

Figure 4.15: Exec time: Clustering vs Traj-anon (len 10)

1.00

10.00

100.00

1000.00

10000.00

100000.00

1000000.00

0 200000 400000 600000 800000 1000000

# of Traj (len 30)

T
im

e 
(l

o
g

 s
ca

le
)

Traj-anon Fast Clustering Slow Clustering

Figure 4.16: Exec time: Clustering vs Traj-anon (len 30)

cost for other snapshots when the trajectories diverge in other snapshots (since the

trajectories in a group must be anonymized together in all the snapshots).

Comparison with Fast Clustering. As shown in Figure 4.13 and Figure 4.14 the cost

of anonymizing trajectories using fast clustering is more than that with Traj-anon and

slow clustering. As can be seen in Table 4.4, the difference between the anonymization

cost increases with number of trajectories and for 1 million trajectories of length 30, the

anonymization cost of fast clustering is 10 times more than that of Traj-anon.

In terms of execution time, as shown in Figure 4.15 and Figure 4.16, the fast

clustering takes a lot longer in comparison with Traj-anon. In Table 4.5 it can be seen



130

1.00E+15

1.00E+16

1.00E+17

1.00E+18

1.00E+19

10000 20000 30000 40000 50000

# of Traj

C
o

st
 (

lo
g

 s
ca

le
)

Traj-anon (30) Hilbert (30) Traj-anon (10) Hilbert (10)

Figure 4.17: Cost: Hilbert vs Traj-anon

0.1

1

10

100

1000

10000

100000

10000 20000 30000 40000 50000

# of Traj

T
im

e 
(l

o
g

 s
ca

le
)

Traj-anon (30) Hilbert (30) Traj-anon (10) Hilbert 10

Figure 4.18: Exec time: Hilbert vs Traj-anon

that Traj-anon takes less than 5 min to anonymize 1 million trajectories of length 30 in

comparison to 302 min by fast clustering.

Comparison with Slow Clustering. As shown in Figure 4.13 and Figure 4.14 the cost

of anonymizing trajectories using slow clustering is lower than that with Traj-anon. But

as shown in Figure 4.15 and Figure 4.16 it is the slowest of all the anonymization tech-

niques. As shown in Table 4.5 it takes more than 6 days for the slow clustering algorithm

to anonymize 1 million trajectories of length 30, in comparison to 4 min with Traj-

anon. The poor performance of slow clustering is not just empirical (for this data set)

but intrinsic to the algorithm due toO(n2) distance computations between n trajectories.



131

Comparison with Hilbert-based Clustering. Figure 4.17 compares the anonymiza-

tion cost of Hilbert-based clustering with that of Traj-anon. We could not process more

than 50k trajectories because the implementation of Hilbert-based clustering algorithm

does not scale with number of trajectories. The cost of Hilbert-based clustering is con-

siderably higher than Traj-anon. In Table 4.6, it can be seen that for 10k trajectories

the cost of Hilbert-based clustering is 10 times more than that of Traj-anon and the

difference is 60 times for 40k trajectories. The possible reason for the higher cost of

Hilbert-based clustering is the error introduced in mapping 2-dimensional space to sin-

gle dimension and using sum of Hilbert distances as the distance function.

Table 4.16 shows the running time of Hilbert-based clustering. The Hilbert-

based clustering takes 7 hours to anonymize 50k trajectories of length 30, while Traj-

anon takes 12 sec to anonymize them. Even though the Hilbert-based clustering uses a

simpler distance function, since the number of comparisons to find the nearest k neigh-

bors dominate the running time, it is slower than Traj-anon.

Table 4.4: Cost Comparison: Clustering vs Traj-anon
Algo len 10k 50k 100k 200k 600k 1M

Straw- 30 4.38e+17 2.02e+18 3.95e+18 7.97e+18 2.36e+19 3.92e+19
man 10 6.81e+16 2.57e+17 4.66e+17 9.68e+17 2.76e+18 4.53e+18
Fast 30 2.12e+16 8.74e+16 2.02e+17 4.89e+17 1.84e+18 3.20e+18
Clust 10 5.25e+15 1.18e+16 2.09e+16 4.75e+16 1.72e+17 2.83e+17

T-anon 30 2.04e+16 4.91e+16 7.22e+16 1.07e+17 2.06e+17 2.85e+17
(MBR) 10 2.15e+15 3.85e+15 4.57e+15 6.47e+15 9.76e+15 1.18e+16
Slow 30 7.87e+15 1.48e+16 2.03e+16 2.84e+16 5.00e+16 6.59e+16
Clust 10 1.65e+15 2.10e+15 2.41e+15 3.02e+15 4.11e+15 4.77e+15

Table 4.5: Running Time Comparison: Clustering vs Traj-anon
Algo len 10k 50k 100k 200k 600k 1M

T-anon 30 1.32 11.72 26.69 54.20 161.24 265.22
(MBR) 10 0.60 4.30 9.27 19.77 63.78 110.00

Fast 30 7.17 104.04 407.52 1444.60 6466.43 18176.67
Clust 10 2.96 73.12 193.71 805.99 3130.31 8391.40
Slow 30 192.27 1781.35 7075.29 31664.37 201490.11 521191.83
Clust 10 67.35 1818.98 6205.36 14972.30 100617.18 209226.44



132

Table 4.6: Cost Comparison: Hilbert vs Traj-anon
Algorithm len 10k 20k 30k 40k 50k
Traj-anon 30 2.04e+16 3.00e+16 3.76e+16 4.36e+16 4.91e+16

(MBR) 10 2.15e+15 2.57e+15 3.27e+15 3.84e+15 3.85e+15
Hilbert 30 6.32e+17 1.27e+18 1.92e+18 2.70e+18 n/a

Clustering 10 2.32e+17 4.69e+17 7.02e+17 9.47e+17 1.17e+18

Table 4.7: Running Time Comparison: Hilbert vs Traj-anon
Algorithm length 10k 20k 30k 40k 50k
Traj-anon 30 1.8 4.03 6.66 10 12.41

(MBR) 10 0.78 1.64 2.6 3.56 4.56
Hilbert 30 2478 8522 12587 25206

Clustering 10 220 650 1216 1758 2584

4.7 Related Work

In the context of LBS, the two aspects of privacy that have received most

attention are trajectory anonymity and sender anonymity.

Trajectory privacy. As mentioned earlier, the line of work on trajectory privacy

[NAS08, YBLW09, TM08, MKA+08] is complementary to this paper, as trajectory pri-

vacy refers to hiding user’s precise location over a period of time (one is not required to

hide the identity of the user) while sender anonymity refers to hiding the identity of the

user where one is not required to hide the trajectory, on the contrary, one assumes it falls

in the attacker’s hand. The problem earlier referd to as location privacy can be viewed

as a special case of trajectory privacy where trajectory length is 1.

Even though the problem of trajectory privacy is orthogonal to the problem

studied in this paper, as described in Section 3.6 a class of clustering based solutions

can be adapted to provide offline policy-aware trajectory-aware sender k-anonymity.

Not all the techniques used for trajectory anonymity such as Point Suppression [TM08]

or Trajectory Suppression [NAS08] or Space Translation [ABN08] or Randomized

Reconstruction [NAS08] are applicable for sender anonymity since they assume that

the actual trajectories of the users are not available to the attacker.



133

Classes of Attackers. The solutions for sender k-anonymity in the context of location-

based services can be classified into 4 categories based on the class of attackers they

prevent against:

• Policy-unaware trajectory-unaware: The solutions [GG03, MCA06, KGMP07]

in this class are also known as k-inside policies [DHVZ10] as these solutions use

tightest cloak (of a pre-defined shape) that includes the sender and k-1 other users.

This class of solutions neither preserve privacy against a policy-aware (as shown

in [DHVZ10]) nor against a trajectory-aware attacker (also shown in [BWJ05,

XC07, CM07]).

• Policy-aware trajectory-unaware: This class of solutions [BMWJ07, DHVZ10]

ensure that there are at least k users anonymized using the same cloak. The pri-

vacy guarantee of these solutions is strictly stonger than the policy-unaware solu-

tons i.e. they also defends against the policy-unaware attacker but not vice-versa.

But as shown in Section 3.1 they fail to preserve privacy against a policy-aware

trajectory-aware attacker.

• Policy-unaware trajectory-aware: This class of solutions [XC07, GDVM09,

CM07, BWJ05] tries to provide anonymity against the trajectory-aware attack-

ers using a sequence of cloaks that masks the user and the same k-1 users for the

entire duration of the user trajectory. The claims of policy-awareness in [CM07]

are debatable as it is not clear what is known to the policy-aware attacker: a) the

function that maps the users trajectories to the sequence of cloaks or b) or the

algorithm by which the function is obtained in addition to the function itself. This

argument is illustrated by showing the privacy problem with a 2-sharing policy in

the Example 22 below.

Example 22. Consider the cloaking algorithm in [CM07] that takes into ac-

count the requesting location to generate cloaking groups (set of locations that

are cloaked to the same region). For locations in Figure 4.19, if the first request is

made by C the algorithm groups C with B whereas if the first request is made by

B then it puts B and A in the same cloaking group to satisfy 2-sharing property.

In the case when the initial request contains the cloak corresponding to {C,B}, a

policy-aware attacker can infer that the sender is C!



134

S

C

A

B

T

1 2 3 4 

1 

4 

Requester = C 

Requester = B 

Figure 4.19: 2-sharing policy

• Policy-aware trajectory-aware: We are not aware of any work that provides com-

plete policy-aware trajectory-aware sender k-anonymity and therefore in this pa-

per we propose a solution to provide policy-aware trajectory-aware sender k-

anonymity. As illustrated in the Section 3.1 even this privacy guarantee does

not allow to completely publish the linkage between multiple requests sent by the

same user. It does allow to publish the requests made along a (set of) trajectory

that is very useful for researchers, advertisers and wireless network management

tasks.

LBS:Trusted or Untrusted. Most of the sender anonymity solutions

[GG03, MCA06, KGMP07, BWJ05, DHVZ10, BMWJ07, XC07, GDVM09, CM07]

till date assume that users need not trust the LBS providers and the LBS requests

should be anonymized before they are sent to the LBS. We are not aware of the

use of any of these anonymization methods by the users of LBS, hence in the

model used in this paper we assume that the LBS provider is a trusted entity and

responsible for anonymizing the user requests that it collects over a period of

time. We share this assumption with a line of work on trajectory anonymization

[NAS08, YBLW09, TM08, ABN08, MFD09, MKA+08] where the location provider

(who logs user trajectory) is trusted and is responsible for anonymizing the trajectory

data.



135

Online vs Offline. Another contrasting feature between the previous trajectory-aware

sender anonymity proposals and that in this paper is the mode of anonymization. In

[XC07, GDVM09, CM07, BWJ05] LBS requests are anonymize as they are issued i.e.

Online while we anonymize the requests after there response has been sent i.e. Offline.

One can possibly use the online solutions for the offline trajectory-aware policy-aware

sender anonymity problem but with a greater cost since the future movement of the

users are not known at the time of anonymization and the cloak that masks the same set

of k users can become arbitrarily large if their trajectories diverge.

4.8 Conclusions

We introduce the problem of offline trajectory-aware policy-aware sender k-

anonymity. We show that trajectory-awareness requires stronger defense and extend

the snapshot policy-aware sender k-anonymity to trajectory-aware attackers. We show

that trajectory-aware policy-aware anonymization is harder than snapshot policy-aware

anonymization and in particular finding optimum trajectory-aware policy-aware anony-

mization is NP-hard. We propose a polynomial time l-approximation algorithm for

anonymizing trajectories of length l and empirically show the effectiveness of this algo-

rithm.

4.9 Proofs

4.9.1 Lemma 6

Proof. (a) Let U be a set of n trajectories and policies P1 and P2 are equivalent for

anonymizing U w.r.t. a G-tree T . We describe the cost of anonymizing U using P1 as:

Cost(P1, U) = Cost(m1) + Cost(m2) + . . .+ Cost(mn)

where mi ∈ T and mi = P1(U, ui) for 1 ≤ i ≤ n. Note, for i 6= j, mi and mj can be the

same node in T . Similarly we describe the cost of anonymizing U using P2 as:

Cost(P2, U) = Cost(m′1) + Cost(m′2) + . . .+ Cost(m′n)



136

where m′i ∈ T and m′i = P2(U, ui) for 1 ≤ i ≤ n. Note, for i 6= j, m′i and m′j can be

the same node in T . Since P1 and P2 are equivalent, if a node m ∈ T is used by P1 to

anonymize x trajectories in U then m is also used by P2 to anonymize the same number

of trajectories in U . Therefore,

Cost(m1) + Cost(m2) + . . .+ Cost(mn)

= Cost(m′1) + Cost(m′2) + . . .+ Cost(m′n) (4.1)

because each quadrant appears same number of times on both sides of the Equation 4.1.

Therefore,

Cost(P1, U) = Cost(P2, U)

(b) Let P1 provides TP -aware sender k-anonymity to U w.r.t. T . Therefore, for each

node m ∈ T , P1 either anonymizes (≥ k) trajectories to m or none. We are given

that P1 and P2 are equivalent for T , therefore they both anonymize the same number

of trajectories using m. Therefore, P2 either anonymizes (≥ k) trajectories using m or

none. Thus, P2 also provides TP -aware sender k-anonymity to U w.r.t. T . Similarly

we can show that if P2 provides TP -aware sender k-aonymity to U , so does P1.

Next we assume that P1 does not provide TP -aware sender k-anonymity to U .

Hence, there must exist a node m ∈ T that is used by P1 to anonymize 1 ≤ i < k

trajectories. Since P1 and P2 are equivalent, P2 also anonymizes i trajectories using the

node m. Since 1 ≤ i < k, P2 does not provide TP -aware sender k-anonymity to U .

4.9.2 Lemma 7

Proof. We describe the cost of anonymizing the set U of n trajectories using policy P

as:

Cost(P,U) =
∑
u∈U

Cost(P (U, u))

= Cost(m1) + Cost(m2) + . . .+ Cost(mn)

(4.2)

where mi ∈ T and mi = P (U, ui) for 1 ≤ i ≤ n. Since, for i 6= j, mi and mj can be the

same node in T , we can rewrite the above equation as follows:

Cost(P,U) =
∑
m∈T

f ′(m,P )× Cost(m)



137

where f ′(m,P ) is the number of trajectories anonymized by P using cloak sequence m.

Since C represents the equivalence class of P ,

∀m ∈ T, f ′(m,P ) = f(m,C)

where f(m,C) is as defined in Definition 17. Therefore the cost of configuration C of

T can be written as:

Costc(C,U) =
∑
m∈T

f(m,C)× Cost(m)

=
∑
m∈T

f ′(m,P )× Cost(m)

= Cost(P,U)

(4.3)

4.9.3 Lemma 8

Proof. Let U be a set of trajectories and T be a G-tree of quad-cloak sequences. Let P

be a policy that uses the cloak sequences from T andC be the configuration representing

the class of policies equivalent to P .

First we assume that P provides TP-aware sender k-anonymity and show that

C is k − summing configuration. Since P is TP-aware sender k-anonymous, each

quad-cloak sequence in T is used in P to anonymize either ≥ k trajectories or none.

Thus

• for a leaf node m ∈ T

(i) If d(m) < k, then P cannot anonymize any trajectory using m, therefore

C(m) = d(m).

(ii) if d(m) ≥ k, then P could either anonymize ≥ k trajectories or none. In

former case C(m) ≤ (d(m)− k) while in later case C(m) = d(m).

• for an internal node m ∈ T let ∆ =
∑l

i=1C(mi),

where m1 . . .ml are the children of m in T

(iii) if ∆ < k then there are total ¡ k trajectories passed up by children ofm. Thus

P cannot anonymize any trajectory using m and therefore, C(m) = ∆.



138

(iv) if ∆ ≥ k then the children of m passes up ≥ k trajectories. Therefore, P

could either anonymize ≥ k trajectories or none. In former case C(m) ≤
(∆− k) while in later case C(m) = ∆.

Thus C satisfies k − summing property.

Next we assume that C is k-summing configuration and show that P provides

TP-aware sender k-anonymity to U . Equivalently we show that under C, each cloak

of T is used to anonymize either ≥ k trajectories or none. Since C is k-summing

configuration, it implies:

• for a leaf node m ∈ T

(i) if d(m) < k, thenC(m) = d(m). Thus P does not anonymize any trajectory

using m.

(ii) if d(m) ≥ k, then either C(m) = d(m) or

C(m) ≤ (d(m) − k). In the later case P anonymizes ≥ k trajectory using

m, while in former case none.

• for an internal node m ∈ T let ∆ =
∑l

i=1C(mi),

where m1 . . .ml are the children of m in T

(iii) if ∆ < k, then C(m) = ∆. Thus P does not anonymize any trajectory using

m.

(iv) if ∆ ≥ k, then either C(m) = ∆ or C(m) ≤ (∆ − k). In the later case P

anonymizes ≥ k trajectories using m, while in former case none.

Thus P provides TP-aware sender k-anonymity.

4.9.4 Lemma 9

Proof. We use structural induction to prove that each node m in the G-tree T and an

integer l ≤ d(m),

costalg(m, l) = costmin(cset(m, l))



139

, where costalg(m, l) represents the cost computed by Traj-anon for passing up l

(unanonymized) trajectories at m and costmin(cset(m, l)) represents minimum cost of

passing up l trajectories at m among all the k-summing configurations that passes up l

(unanonymized) trajectories at node m.

Basis: For a leaf node m and an integer l ≤ d(m), it is obvious by construction that

costalg(m, l) = costmin(cset(m, l)).

Induction: Letm be a non-leaf node in theG-tree T andm1,m2, · · ·mf be the children

of m. Let l be an integer such that l ≤ d(m) and cset(m, l) be the set of k-summing

configuration that passes up l (unanonymized) trajectories at node m. We show that

for each configuration g ∈ cset(m, l), costalg(m, l) ≤ cost(g(m)), where cost(g(m))

represents the cost of g at node m. If g(m1) = l1, g(m2) = l2, · · · and g(mf ) = lf , the

cost of m in g can be written as

cost(g(m)) := [cost(g(m1)) + cost(g(m2)) + · · ·+ cost(g(mf ))

+ cost(m)× (l1 + l2 + · · ·+ lf − l)]

By induction hypothesis we assume that costalg(m1, l1) ≤ cost(g(m1)), and

similarly costalg(m2, l2) ≤ cost(g(m2)), · · · , costalg(mi, li) ≤ cost(g(mi)), · · · ,
costalg(mf , lf ) ≤ cost(g(mf )). Therefore

costalg(m1, l1) + costalg(m2, l2) + · · ·+ costalg(mf , lf )

≤ cost(g(m1)) + cost(g(m2)) + · · ·+ cost(g(mf ))

And by adding the constant value cost(m)× (l1 + l2 + · · ·+ lf − l) to both the

sides we get

costalg(m, l) ≤ cost(g(m))

Similarly, for each node m and each integer l ≤ d(m), and each configuration

g ∈ cset(m, l), we can show that costalg(m, l) ≤ cost(g(m)). Therefore costalg(m, l) =

costmin(cset(m, l)).



140

4.9.5 Lemma 10

Proof. Let the optimum k-summating configuration for Tu be C. Since all the nodes in

Tu are also in Tusq we can define a configuration C ′ for Tusq as follows

• C ′(m) = C(m) for m ∈ Tusq and m ∈ Tu
• C ′(m) =

∑4
l=1C

′(mi) for m,m1 . . .m4 ∈ Tusq and m 6∈ Tu, where m1 . . .m4

are child nodes of m

The above conditions ensure thatC ′ only uses those nodes of Tusq for anonymization that

are also in Tu. Each node m that is not in Tu pass-up all the trajectories that are passed

up by m’s child nodes to be anonymized by m’s ancestors. C ′ is a valid configuration

since ∀m, C ′(m) < d(m) and C ′(m) ≤
∑4

l=1C
′(mi). C ′ is k-summing since C is

k-summing and Cost(C ′) = Cost(C) since the newly inserted nodes are not used for

anonymization and the nodes that are used for anonymization have the same cost in the

two G-trees.

4.9.6 Lemma 11

Proof. Let U be a set of user trajectories, B a USeq-Btree, C an optimal configuration

of B, and P a policy it represents. Suppose there is a node (cloak sequence of semi-

quadrants) m ∈ B such that (k + 1)h(m) < C(m) < d(m). Then there is a set S

of at least k trajectories such that (i) all the trajectories in S are masked by m, and

(ii) each trajectory in S is anonymized by P using some ancestor a of m, and (iii) if

all the trajectories in S are removed, the cloak sequence they are mapped to under P ,

continue to anonymize at least k trajectories. We construct a policy P ′ that anonymize

the trajectories in S usingm instead of its ancestors. P ′ continues to be TP-aware sender

k-anonymous, but has lower cost, contradicting the optimality of P .

4.9.7 Theorem 3

Proof. We prove this by reducing the decision version of optimum policy-aware snap-

shot k-anonymization with circular cloaks to the decision version optimum offline TP-

aware k-anonymization with circular cloaks. First we briefly describe the problem of

policy-aware snapshot k-anonymization with circular cloaks.



141

LetD be an instance of location database with schema S = {userid, locx, locy}
and SC be a set of points in 2-dimensional space. A snapshot policy with circular cloaks

is defined as a deterministic function that maps locations in D to circular cloaks, each

centered at some point from SC, with no restriction on radius. The cost of a snapshot

policy with circular cloaks is computed as:

Costs(P,D) =
∑
l∈D

Cost(P (D, l))

where the cost of the cloak P (D, l) is the area of circular cloak.

Definition 19 (Snapshot k-anonymity with circular cloaks). Given an instance D of

location database and SR be the set of points in 2-dimensional space. Is there a snapshot

policy P with circular cloaks that provides policy-aware sender k-anonymity and whose

Costs(P,D) ≤ C.

We reduce an instance I of the above problem to an instance I ′ of the optimum

offline TP-aware sender k-anonymity with circular cloaks. For each tuple t ∈ D, we

create an user-history object u with trajectory of length 1 and set u.userid() = t.userid

and u.location(1) = (t.locx, t.locy). Let the resulting set of user-history objects be U .

We create an instance I ′ of optimum offline TP-aware k-anonymization with circular

cloaks using U and SR. We prove that there is snapshot policy P with circular cloaks

that provides policy-aware snapshot sender k-anonymity w.r.t. D andCosts(P,D) ≤ C,

if and only if there is an anonymization policy Pt that provides TP -aware sender k-

anonymity solution w.r.t. U and Cost(Pt, U) ≤ C.

Let Pt be an offline policy that uses circular cloaks and provides TP-aware sender

k-anonymity to the set U of user-history objects (constructed above). Let the cost of Pt
be Cost(Pt, U) ≤ U . Since the user-objects in U are of length 1, the bundles ob-

tained with Pt are also of length 1. We use Pt to obtain a snapshot policy Ps for D as

follows. For each tuple t ∈ D, we define Ps(D, (t.locx, t.locy)) = b.cloak(1) where

b = Pt(U, u) for the user-history object u such that u.userid() = t.userid. Since Pt pro-

vides TP-aware sender k-anonymity, there exists at least k user-history objects that are

anonymized to a bundle b. Therefore the policy Ps as defined above also anonymizes at

least k locations to the circular cloak in bundle b. Hence Ps provides policy-aware snap-



142

shot k-anonymity. Moreover, sinceCost(Pt, U) ≤ C andCost(Pt, U) = Costs(Ps, D),

therefore Costs(Ps, D) ≤ C.

Suppose there exists an snapshot policy Ps with circular cloaks that provides

policy-aware sender k-anonymity to D and whose cost Costs(Ps, D) ≤ C. We use Ps
to obtain a policy Pt as follows. For every user-history object u ∈ U correspond-

ing to the tuple t ∈ D such that u.userid() = t.userid, we define Pt(U, u) = b

where b is a bundle of length 1 and b.cloak(1) = Ps(D, (t.locx, t.locy)). Since Ps
provides policy-aware snapshot sender k-anonymity, there exists at least k locations

that are aonymized to the same cloak. Therefore there are at least k user-history ob-

jects that are anonymized to the same bundle and Pt is TP-aware sender k-anonymous.

Moreover, since the Costs(Ps, D) ≤ C, and Cost(Pt, U) = Costs(Ps, D), therefore

Cost(Pt, U) ≤ C.

4.9.8 Theorem 4

Proof. We prove this by reducing the problem of optimum k − anonymization of re-

lational tables on binary alphabet, shown to be NP-hard in [PBD09, BW10], to the

optimum offline TP-aware sender k-anonymity with quad-cloaks.

We first briefly describe the problem of optimum k − anonymization of rela-

tional tables on binary alphabet with suppression. Let T be a relational table with m

columns where each tuple contains data corresponding to a unique user. The tuples of T

can be considered to be m-dimensional vectors vi drawn from Σm, where Σ = {0, 1}.
Thus T can be also be represented as a subset T ⊆ Σm. Let ? be a fresh symbol not in

Σ. We define suppression as follows:

Definition 20 (Suppressor). Let f be a map from T to (Σ ∪ {?})m. We say f is a a

suppressor of T if for all t ∈ T and j = 1, . . . ,m it is the case that f(t)[j] ∈ {t[j], ?}.

Inuitively, a suppressor function replaces the values of certain attributes in cer-

tain tuples with ∗. The idea behind a suppressor function is that by replacing values of

certain attributes in a set of tuples with ∗, it can make all of them identical such that an

attacker cannot associate a tuple in that set to the actual user. This is formalized in the

following definition.



143

Definition 21 (k-Anonymity). Let T be a relational table and f a suppressor function.

The anonymized table f(T ) is said to be k-anonymous if for any t ∈ T , there exist k

distinct vectors in T such that f(t1) = f(t2) = · · · = f(tk) = f(t).

Since there can be many possible suppressor functions, the goal is find the one

that minimizes the number of suppressed values i.e. number of ∗ in the anonymized

table. We define the problem of optimum k-anonymization of relational tables on binary

alphabets as follows.

Definition 22 (optimum k-anonymity). Given a relational table T ⊆ Σm, and a positive

integer c ∈ N, is there a suppressor f such that f(T ) is k-anonymous, and the total

number of vector coordinates suppressed in f(T ) is at most c?

For ease of presentation we use k=3 and reduce the optimum 3-anonymity of

relational table on binary alphabet to optimum offline TP-aware sender 3-anonymity.

Given a relational table T with n m-dimensional tuples over binary alphabet {0, 1}, we

create a set of n user-history objects with trajectories of length m. For each tuple ti, we

create a user-history object ui and set the location at the jth snapshot of the trajectory as

• (i, i) if the j-th column in ti has the value 0.

• (nr + i, i) otherwise, where r = 2dlg
√
2mne.

Figure 4.20: Locations corresponding to the binary data in a Relational Table



144

We construct a quad-tree Q such that the root node represents the square region

(0, 0) (left-bottom coordinates) to (2nr, 2nr) (right-top coordinates) as shown in Figure

4.20. The root quadrant is divided into 4 equal square sub-quadrants. We show that the

cost of the optimal 3-ANONYMITY solution for T is at most c if and only if the cost

of the optimum policy that provides TP-aware sender k-anonymity to the set of users U

constructed above is at most (4c+ 1)n2r2.

Suppose that there is a solution that finds the optimum quad-cloak policy P of

cost at most (4c+ 1)n2r2. We construct a suppressor f that k-anonymizes T as follows.

For any 1 ≤ i ≤ n and any 1 ≤ j ≤ m, if the jth location in the trajectory of ui
is masked by the root node of Q in the cloak sequence used to anonymize ui, then

f(ti)[j] = ? and f(ti)[j] = ti[j] otherwise. Given the upper bound on the cost of the

policy there can be at most c such locations in the trajectories of the users objects that

are to the root node of Q in the cloak sequences used to anonymize them. Therefore

the cost of f is at most c. Moreover, since P preserves sender 3-anonymity, there must

be 3 trajectories that are anonymized to the same cloak sequence and by construction

these 3 trajectories will be anonymized the same way by the suppressor f and hence f

is 3-anonymous.

Next let assume f is a suppressor that provides 3-anonymity to T and whose

cost is at most c. Using f we define a quad-cloak policy P for the set U of user-history

objects constructed above. If the value in the jth column in the ith tuple of T is not

suppressed by f , then

• If the value is 0, then P uses a cloak sequence with the quadrant (0, 0) to (n, n) at

the jth position to anonymize user ui.

• If the value is 1, then P uses a cloak sequence with the quadrant (nr, 0) to (nr +

n, n) at the jth position to anonymize user ui.

P is a valid policy as every cloak used masks the corresponding location. For

any two tuples ta and tb, f(ta) = f(tb) implies that P uses the same cloak sequence

to anonymize users-history objects ua and ub. Given that f provides 3-anonymity to

T there must be 3 users that are anonymized using the same cloak sequence hence P

provides TP-aware 3-anonymity to the set of users U . Furthermore, since the cost of

f is at most c, there are at most c suppressions and hence at most c locations in the



145

trajectories of the users in U are anonymized by P to the root node of Q. The sum of

the area of these cloaks is at most 4cn2r2. The remaining locations in the trajectories

of users of U are anonymized using cloaks of size n2. Since there are at most mn such

locations, the total cost of P is 4cn2r2 +mn3 ≤ 4cn2r2 + 2mn3 ≤ (4c+ 1)n2r2.

4.9.9 Theorem 5

Figure 4.21: Optimum cloak sequence

Figure 4.22: Uniform cloak sequence

Proof. Let policy Popt be the optimum quad-cloak policy that provides TP-aware sender

k-anonymity to U using cloaks from Q. Let u be a trajectory in U that is anonymized by

Popt using a cloak sequence s = {q1, q2, . . . , ql}. Let R be the size of the biggest cloak

in s and let the area of all the other cloaks in s is very small i.e. ε, therefore the cost of

s is R + (l − 1) × ε. Given a quad-cloak x ∈ Q whose size is less than or equal to R,

we denote by fR(x) the quad-cloak of size R that contains x in Q, i.e. fR(x) is either x

itself or an ancestor of x. We construct P ′u such that P ′u(u) uses the sequence of cloaks

s′ = {fR(q1), fR(q2), . . . , fR(ql)}. Clearly the cost of sequence s′ is l × R that is less

than l × cost(s). Therefore the cost of P ′u is at most l times the cost of Popt.

Since Popt is TP-aware sender k-anonymous, there are at least k trajectories

anonymized using cloak sequence s. By construction the same k or more users are



146

anonymized using cloak sequence sequence s′. Therefore the policy P ′u as constructed

above provides TP-aware sender k-anonymity.

4.9.10 Theorem 6

Proof. Let U be a set of trajectories. Lemma 9 shows that Traj-anon computes opti-

mum uniform quad-tree policy for anonymizing U . According to Theorem 5 this opti-

mum solution is l-approximation of the optimum quad-tree policy for anonymizing U .

Therefore, Traj-anon computes the l-approximation solution to the problem of opti-

mum TP-aware sender k-anonymity using quad cloaks.

4.10 Acknowledgements

My co-author and collaborator, Kevin Keliang Zhao at UCSD and Richard Hull

at IBM, together with Alin Deutsch, made important contributions to the material that

formed the basis of this chapter.



Chapter 5

Legal Requirements and Industrial

Practices

5.1 LBS Privacy Laws

Privacy is a sensitive issue in the modern democratic society and is often con-

sidered a fundamental right of an individual. Its scope and expectation often depends

upon the social and political culture of the society and thus varies across national and

regional boundaries. In many countries there are legal requirements (applicable even

for the government agencies) on honoring the privacy of individuals. In this section we

look at the privacy laws of two regions, United States and European Union, that relates

to the collection and use of location data and LBS requests.

5.1.1 US Privacy Laws for Location-based Services

In United States the right to privacy is acknowledged very strongly in the consti-

tution itself. In the context of LBS, its important to consider the possible application of

the Fourth amendment.

Constitutional protection

The Fourth amendment protection states the requirement of a warrant and a prob-

able cause prior to any search or seizure. Whether the consumer location falls under the

147



148

umbrella protection of Fourth amendment has been debated in the courts and verdicts fa-

voring both sides of the argument have been seen in the recent past. A couple of supreme

court rulings, something known as “third-party doctrine”, states that once information

is revealed to third-party businesses, there should be no reasonable expectation of pri-

vacy. But, this doctrine was established by the supreme court in the pre-Internet era and

in recent times the Fourth amendment protection has been extended to the contents of

documents, files and networked computers accessible to third-parties. But the Fourth

amendment protection only applies to federal and other government agencies. It was

stated in a recent hearing [hea] of Senate Judiciary Subcommittee on Privacy, Tech-

nology and the Law that as of now the Fourth amendment protection doesn’t apply to

businesses.

Outdated Statutory Laws

The Electronic Communications Privacy Act (ECPA) is a statutory federal law

introduced in 1980s to protect electronic communications and records (e.g. files) against

possible wrongful use and public disclosure by law enforcement agencies or unautho-

rized private parties. But the statutory law was introduced in 1986 and have not been

updated to addressed the privacy issues associated with most of the new communication

technologies that are in use today. The ECPA dictates separate privacy requirements for

a “communication” service from a “remote computing” service. With the LBS, its diffi-

cult to adjudicate whether a Location-based service constitutes a communication service

or a remote computing service. This has resulted in following inconsistent treatment of

the LBS data (location and LBS request).

For e.g. when a person uses a smartphone to place a phone call, the wireless

communication service provider cannot disclose his location (at that instant) to a third

party without his explicit consent. But when the same person uses the same smartphone

and accesses a LBS (to find a nearest restaurant) then the wireless communication ser-

vice provider is legally free to disclose his location to anyone without the explicit or

implicit consent of the person.



149

Location Privacy Act of 2011

United state legislature has introduced a new bill named Location Privacy Act

of 2011 that would require a company to get a customer’s consent before collecting his

location data and before sharing that with third parties. The bill is mainly focused on

avoiding the use of location data for unlawful purposes such as stalking while allowing

the companies to obtain this data for innovative services.

CTIA Recommendations

In the absence of a clear Law addressing the issue of privacy in LBS, CTIA, the

International Association for the Wireless Telecommunications industry, has proposed

a set of best practices [cti] for LBS providers. The most important element of these

recommendations is notice. It states that the LBS provider should give explicit notice

to the users as to how their location information is used by the LBS provider. It should

also disclose its data retention policy (e.g. data retention period) and the measures taken

by the LBS provider to safeguard this data. This should be done irrespective of whether

the data is retained or used in its original form or aggregated or anonymized form.

Shortcomings

The Law in United States is unclear on the privacy expectations of a LBS user

regarding his location data and LBS requests. It is not clear to the users what kind of

data is collected by the various entities (LBS providers, Wireless communication service

providers, Location Providers, Smartphone manufacturers) and what methods are used

to protect user’s interest while the data is under their control. Its also unclear for the LBS

providers, Location servers and other entities that collect the data, when they should and

when they should not share this data with third parties or law enforcement agencies.

The bill proposed to address the privacy concerns of the LBS users, is focused

mainly on obtaining user’s consent before collecting and sharing his data. It does not

address the issue of protecting user’s interest once he gives the consent for collecting

and using his location and LBS requests. More specifically there are no requirements

stating the duration for which such data can be kept, or on how it should be anonymized



150

or aggregated.

It also does not address the issue when the subscriber of a wireless service is dif-

ferent from the user (e.g. the family plan). In many cases, the actual user may not want

the subscriber to be the authority for the consent for collecting and sharing the location

and LBS requests (e.g. the spouse may not want the other spouse to be the authority

for his/her location and LBS requests). In the current scenario the wireless communi-

cation service provider only knows about the subscriber and not the user. Hence, the

proposed law needs to address this scenario and ensure that the consent of the actual

user is required.

It should be realized that user’s consent is not required for every instance the

data is collected, used or shared. The “once for all” kind of consent makes it difficult

for the users to realize when and how his data is collected, used or shared. Moreover

to avoid user anxiety and scrutiny, such a consent may be included in the middle of a

lengthy service agreement, which is a common practice for obtaining user consent in

non-LBS services and products. Or the LBS provider (and other entities) can make it

such that if a user wants to use a LBS service, he has to give the consent or not use the

service. It should be realized that in some ways this is even worse than not having the

law since it gives a false sense of privacy to the users, and provides legal validation and

ethical justification to the entities that collects and use this data.

5.1.2 European Union Privacy Laws for Location-based Services

The Europen Union has been more proactive in addressing the privacy issues

related to LBS. There are three directives that address privacy in various aspects of a

user’s location data and LBS requests. These directives are:

Directive (95/46/EC) on processing of personal data. This directive is a general

directive and applies to any personal data (including location data and LBS requests)

that does not fall into the scope of any sector-specific directive.

Directive (2002/58/EC) on processing of personal data in e-communication. This

directive, popularly known as e-Privacy Directive, applies to all the traffic data and



151

location data that is processed in an electronic communication network. The traffic data

means any data processed for the purpose of the conveyance of a communication on an

electronic communication network.

Directive (2006/24/EC) on data retention. This directive regulate the storage and

retention of traffic data in a communication network. It requires the service providers to

store the traffic data (not the content of communication) for the purpose of investigation,

detection and prosecution of serious crime. The required duration of storage is at least

six months with a maximum of two years. It must be ensured that the retained data is

provided only to the competent national authorities in specific cases and in accordance

with national law.

All these directives together affects the privacy treatment of the location data

and LBS requests in different types of LBS. The privacy of the location data is primarily

regulated by the e-Privacy directive, while that for the LBS requests is regulated by

the data retention directive and directive for privacy of personal data. These directives

describe the following measures:

a. Requirement of consent. The LBS provider must obtain user’s consent for using

the location data to provide the location-based service. The consent means any

freely given specific and informed indications by which the individual signifies its

agreement to use its location data and LBS requests. Consent may be given for

any individual use or by an overall consent for a variety of similar use.

b. Right to withdrawal of consent. If the users give their consent to the LBS

provider to use their location data, and retain the LBS request data, they must

have the ability to rescind the consent in the future. Its unclear though that once

the user rescinds his consent, whether the LBS can use the previously collected

data or not.

c. Right of temporary refusal of processing. In addition to revoking the consent

for using their location data to provide location based services, the user must be

able to temporarily suspend usage of their location data and the LBS requests.



152

The LBS provider must provide this mechanism free of charge, but the actual

mechanism depends upon the service provider.

d. Information to the subscriber or user. The service provider must inform the

users, prior to obtaining their consent, about (1) the type of data (location, LBS

requests) that will be collected, (2) the purpose and the duration for which the data

is collected and (3) if the data is going to be shared with a third party and how it

is going to be used by the third party.

e. Restricted data access. Access to the location data and the LBS requests must

be restricted to personnel acting under the authority of the communication service

provider and the LBS provider. The data must be used strictly to provide the

service and not for any other auxiliary purpose. For e.g. the service providers

cannot even use the location data and LBS requests for the purpose of promoting

its services.

f. Sharing with third parties. The LBS provider can share the location data (other

than the one required for routing) with third parties provided they fully inform the

users about the sharing and obtain their consent for doing so.

The directive leaves space for the member nations to interpret, adapt and imple-

ment them in accordance with their nation law. This is specially the case with countries

that already have legal requirements on collection, use and sharing of location data and

LBS requests.

Shortcomings

Even though the EU has clearly stated privacy requirements for the LBS

provider, they still lag behind the state of the art data collection and usage practices.

As an example, consider the requirement of anonymizing the personal data after it is not

required for value added service. There are no specific requirements for the anonymiza-

tion techniques or anonymized data. As a result, the LBS providers are free to choose

the anonymization technique of their choice which may or may not preserve privacy of

the user.



153

Even if the shortcomings of legal requirements are fixed, their jurisdiction is lim-

ited to the LBS providers that operate in that country or union. These legal requirements

are cannot be enforced on LBS providers that operate from other countries or union that

lack the legal framework for user privacy in LBS.

5.2 Privacy in commercial LBS Ecosystem

Most of the commercial LBS do just enough to comply with the legal require-

ments and/or recommendations of the country they operate from. Below we summarize

the measures taken by commercial LBS to preserve user privacy in location-based ser-

vices.

5.2.1 Obtaining user consent

Almost all the LBS providers deploy some mechanism to obtain before a user

can use their services. This could be as a part of service agreement when users down-

load LBS client to their mobile device or when they sign up for the service at the LBS

provider’s website or every time the user access the service. Figure 5.1 shows the pop-

up in Safari (browser) that is used to obtain user consent when a location-enabled Web

service wants to access their location.

Figure 5.1: Obtaining user consent in Safari



154

5.2.2 Control over LBS data

Once a user sends an LBS request, the amount of control available to him over

his LBS requests, varies across different LBS. While some applications (e.g. Google

Maps) give no control to the users, some applications (e.g. FourSquare) allows the users

to delete some or all the LBS requests sent in the past.

5.2.3 Anonymizers

As of now the only publicly available spatial cloaking anonymizer is Fire Eagle

[fe] from Yahoo. It is primarily a location sharing platform that allows user to update

their location in multiple subscription based LBS. The user sends their location updates

to fire eagle that acts as the central repository. The user authorized LBS applications then

can access his current location from the central repository. The anonymizer does not use

k-anonymity as the privacy model but provides 3 levels of spatial cloaking (Figure 5.2):

exact location, city containing the location, nothing.

Figure 5.2: Fire Eagle Anonymizer



Chapter 6

Conclusion and Open Issues

6.1 Conclusion

We introduce the notion of policy-aware sender k-anonymity via spatial cloak-

ing for LBS. The stronger privacy guarantee provides sender k-anonymity against an

attacker who knows the complete details of the system used to provide the protection.

We show that it is strictly stronger than policy-unaware sender k-anonymity. We show

that problem of finding the optimum policy-aware sender k-anonymization of a set of

users depends upon the type of cloak used. We show that it is NP-complete if the cloaks

are circles whose centers are selected from a given set of points, but becomes PTIME

if cloaks are picked among the quadrants of a quad-tree based partitioning of the map.

We propose a polynomial time algorithm for optimum policy-aware k-anonymization of

a set of mobile users and show that is practical and scales extremely well: it takes less

than 1 second to anonymize 250k requests and up to 1 million requests in less than 4 sec-

onds. We show that with policy-aware cloaking, the reduction in utility in comparison

to a k-inside policy is reasonable: the average cloak area is at most 1.7 times the average

area of the tightest cloaks used for policy-unaware anonymity. Thus this novel privacy

guarantee strikes a pragmatic balance in the trade-off between strength of privacy guar-

antee, utility and running time of enforcement. We also show considerable amenability

of the problem to parallelization which reduces the anonymization time while preserv-

ing optimal utility in virtually all cases. Using 16 servers, we can anonymize 1 million

requests within 1 sec with only 1% divergence of the cost from the optimum.

155



156

But since the users have been using the LBS without any anonymization, some

of their LBS requests that they consider private, have been logged by the LBS provider

along with their other LBS requests. We describe the problem of offline trajectory-

aware policy-aware sender k-anonymity for these LBS request logs. We show that

trajectory-awareness requires stronger defense and extend the snapshot policy-aware

sender k-anonymity to trajectory-aware attackers. We introduce bundles as a mech-

anism to publish the LBS requests logs with linkage information while preserving

trajectory-aware and policy-aware sender k-anonymity. We show that trajectory-aware

policy-aware anonymization is harder than snapshot policy-aware anonymization and

that finding the optimum anonymization is NP-Hard, even with cloaks that are cho-

sen among the quadrants of a quad-tree based partition of the map .This is significant

since we showed earlier that for such cloak types optimum snapshot policy-aware k-

anonymization is P -time. We show that problem of optimum trajectory-aware and

policy-aware sender k-anonymity is approximable and propose a novel l-approximation

algorithm to anonymize a LBS request log spanning user trajectories of length l. We

describe novel optimizations to improve the average cost of anonymization of approx-

imation algorithm. We implement our approximation algorithm and empirically show

that it is practical and scales extremely well with the number of user trajectories: it

takes less than 5 minutes to anonymize 1 million user trajectories of length 30 in the

San Francisco Bay area.

6.2 Open Issues

The study of sender anonymity for LBS is in no way complete. We identified and

addressed only some of the issues pertaining to sender anonymity, but there are still some

open questions that needs to be addressed to move closer to the illusive goal of perfect

anonymity. Next we describe some of these open problems. In addition our study have

also raised some interesting questions in other related areas such as k-anonymization in

data publishing.



157

6.2.1 Anonymity against background information

Policy-aware sender k-anonymity is an information theoretic guarantee, which

means that the privacy guarantee depends upon the information with the user rather than

his computation capabilities (like some of the cryptographic techniques). Therefore the

solution proposed in this study may not provide sender k-anonymity against an attacker

that has additional information about the user (e.g. some background information that

allows it to use the query parameters to identify the sender). Thus there is a need of a

framework to model the background information of a user that is available to an attacker

and propose solution for sender k-anonymity against such attackers. The problem of

optimum k-anonymity is known to be NP-hard, there is a need to study and identify

cases or restriction when the problem is polynomial.

6.2.2 Privacy built into the LBS

Based on the study of various commercial LBS, their privacy and data retention

policies and the privacy incidents associated with them (described in the Introduction), it

is quite evident that user privacy in 1st generation of commercial LBS is an after thought,

i.e. it is not inherent in the design or working of the LBS. In fact, the vested interests

of entities in the LBS ecosystem, other than the sender, view the privacy preserving

solutions as a deterrent to their services or businesses. For e.g. an LBS that provides

free service to its users but integrates location-based ads in the response, will be wary

of any change that would make the ads less relevant to the user. On top of it, there are

financial considerations such as ”who should bear the responsibility and the cost of an

anonymizer”. As a result, the commercial adaptation of the privacy preserving solutions

has been negligible.

This is understandable for the 1st generation of LBS, given that there was nei-

ther a clear commercial viability for any particular LBS services delivery model nor a

complete understanding of user privacy issues. But now that LBS has gained popularity

and there is a prevalent model for LBS, the 2nd generation of LBS should be designed

with inbuilt privacy features. For e.g. the LBS providers should have the capabilities

to process LBS requests anonymized using spatial cloaking. As another example, the



158

location server computes only k-anonymized location (a region) so that there is no re-

quirement of an anonymizer. Such features would not only address privacy concerns of

the LBS users but also reduces the number of trusted entities required for anonymous

access to the LBS.

6.2.3 User education and feedback

In recent times the research community, consumer advocates and media have

been considerably active in making the users aware of their location privacy, but the

problem of sender anonymity has not received the same level of scrutiny. More efforts

are required from these communities to educate the users about

• data collection practices of LBS providers i.e. what kind of data they collect, how

long they keep it, whom they share it with.

• methods used by the LBS providers to obtain this data.

• potential misuse of the collected data.

• measures that could provide sender anonymity.

From the privacy research point of view, the last action item in the above list is very

important because the success and widespread adoption of any privacy measure depends

to some extent on the layman’s understanding of that measure.

6.2.4 Policy-awareness in Data Anonymization

Our investigation of sender k-anonymity privacy guarantee in LBS has revealed

that anonymity against a policy-aware attacker has been ignored or mishandled. Most

solutions does not even consider a policy-aware attacker and thus fail to provide anony-

mity against them. Some consider such an attacker, yet as shown they fail to provide

anonymity. Since the notion of k-anonymity has also been used for data anonymization,

one must evaluate the data k-anonymization solutions to check if they preserve user pri-

vacy against a policy-aware attacker. While we are not aware of any study that considers

a policy-aware attacker in data k-anonymity, there are certain variations of k-anonymity



159

that consider attackers who are aware for certain properties of the k-anonymizing pol-

icy. In [WFWP07], the privacy guarantee defends against an attacker who knows that

k-anonymizing policy in use tries to minimizes the data distortion.



Bibliography

[ABN08] Osman Abul, Francesco Bonchi, and Mirco Nanni. Never walk alone: Un-
certainty for anonymity in moving objects databases. In ICDE ’08: Pro-
ceedings of the 2008 IEEE 24th International Conference on Data Engi-
neering, pages 376–385, Washington, DC, USA, 2008. IEEE Computer
Society.

[acl] ACLU of Northern California.
http://www.aclunc.org/issues/technology/location-
based services time for a privacy check-in.shtml.

[AFK+06] Gagan Aggarwal, Tomás Feder, Krishnaram Kenthapadi, Samir Khuller,
Rina Panigrahy, Dilys Thomas, and An Zhu. Achieving anonymity via
clustering. In PODS ’06: Proceedings of the twenty-fifth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages
153–162, New York, NY, USA, 2006. ACM.

[BKBL07] Ji-Won Byun, Ashish Kamra, Elisa Bertino, and Ninghui Li. Efficient -
anonymization using clustering techniques. In Kotagiri Ramamohanarao,
P. Radha Krishna, Mukesh K. Mohania, and Ekawit Nantajeewarawat, ed-
itors, DASFAA, volume 4443 of Lecture Notes in Computer Science, pages
188–200. Springer, 2007.

[BMWJ07] Claudio Bettini, Sergio Mascetti, X. Sean Wang, and Sushil Jajodia.
Anonymity in location-based services: Towards a general framework. In
MDM ’07: Proceedings of the 2007 International Conference on Mo-
bile Data Management, pages 69–76, Washington, DC, USA, 2007. IEEE
Computer Society.

[Bow] Professor William Bowen. DIGITAL ATLAS OF CALIFORNIA.
http://130.166.124.2/CApage1.html.

[Bria] Thomas Brinkhoff. A framework for generating network-based moving
objects.
http://www.fh-oow.de/institute/iapg/personen/brinkhoff/generator.

160



161

[Brib] Thomas Brinkhoff. A framework for generating network-based moving
objects.
http://iapg.jade-hs.de/personen/brinkhoff/generator/.

[BS03] Alastair R. Beresford and Frank Stajano. Location privacy in pervasive
computing. IEEE Pervasive Computing, 2(1):46–55, 2003.

[BW10] Jeremiah Blocki and Ryan Williams. Resolving the complexity of some
data privacy problems. 2010.

[BWJ05] Claudio Bettini, Xiaoyang Sean Wang, and Sushil Jajodia. Protecting pri-
vacy against location-based personal identification. In Willem Jonker and
Milan Petkovic, editors, Secure Data Management, volume 3674 of Lec-
ture Notes in Computer Science, pages 185–199. Springer, 2005.

[Cha81] David L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM, 24:84–90, February 1981.

[Cha88] D. Chaum. The dining cryptographers problem: unconditional sender and
recipient untraceability. J. Cryptol., 1:65–75, March 1988.

[CM07] Chi-Yin Chow and Mohamed F. Mokbel. Enabling private continuous
queries for revealed user locations. In 10th International Symposium of Ad-
vances in Spatial and Temporal Databases, volume 4605 of Lecture Notes
in Computer Science. Springer, 2007.

[CT07] Chuang-Cheng Chiu and Chieh-Yuan Tsai. A k-anonymity clustering
method for effective data privacy preservation. In ADMA ’07: Proceed-
ings of the 3rd international conference on Advanced Data Mining and
Applications, pages 89–99, Berlin, Heidelberg, 2007. Springer-Verlag.

[cti] Best Practices and Guidelines for Location-Based Services.
http://files.ctia.org/pdf/CTIA LBS Best Practices Adopted 03 10.pdf.

[DHVZ09] Alin Deutsch, Richard Hull, Avinash Vyas, and Kevin Zhao. Policy-
aware sender anonymity in location based services. Technical Report TR
CS2009-0939, UCSD, 2009.

[DHVZ10] Alin Deutsch, Richard Hull, Avinash Vyas, and Kevin Keliang Zhao.
Policy-aware sender anonymity in location based services. In Feifei Li,
Mirella M. Moro, Shahram Ghandeharizadeh, Jayant R. Haritsa, Ger-
hard Weikum, Michael J. Carey, Fabio Casati, Edward Y. Chang, Ioana
Manolescu, Sharad Mehrotra, Umeshwar Dayal, and Vassilis J. Tsotras,
editors, ICDE, pages 133–144. IEEE, 2010.



162

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: the second-
generation onion router. In Proceedings of the 13th conference on USENIX
Security Symposium - Volume 13, SSYM’04, pages 21–21, Berkeley, CA,
USA, 2004. USENIX Association.

[E91] Wireless 911 Services.
http://www.fcc.gov/cgb/consumerfacts/wireless911srvc.html.

[EGC+10] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon
Jung, Patrick McDaniel, and Anmol N. Sheth. TaintDroid: an information-
flow tracking system for realtime privacy monitoring on smartphones. In
Proceedings of OSDI 2010, October 2010.

[exa] Au’s GPS cell phone shows how to get to McDonald’s.
http://www.mobilemediajapan.com/headline2.asp?page=AU/KDDI.

[fac] Facebook Privacy Policy.
http://www.facebook.com/policy.php.

[fb] Facebook Places.
http://www.facebook.com/places/.

[fe] Fire Eagle: Take your location to the web.
http://fireeagle.yahoo.net/.

[fou] FourSquare Privacy Policy.
http://foursquare.com/legal/privacy.

[fs] Foursquare.
https://foursquare.com/.

[FWY05] Benjamin C. M. Fung, Ke Wang, and Philip S. Yu. Top-down specialization
for information and privacy preservation. In ICDE ’05: Proceedings of
the 21st International Conference on Data Engineering, pages 205–216,
Washington, DC, USA, 2005. IEEE Computer Society.

[GDVM09] Aris Gkoulalas-Divanis, Vassilios S. Verykios, and Mohamed F. Mokbel.
Identifying unsafe routes for network-based trajectory privacy. In SDM,
pages 942–953. SIAM, 2009.

[GG03] Marco Gruteser and Dirk Grunwald. Anonymous usage of location-based
services through spatial and temporal cloaking. In MobiSys ’03: Proceed-
ings of the 1st international conference on Mobile systems, applications
and services, pages 31–42, New York, NY, USA, 2003. ACM.

[GJ90] Michael R. Garey and David S. Johnson. Computers and Intractability;
A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New
York, NY, USA, 1990.



163

[GKK+08] Gabriel Ghinita, Panos Kalnis, Ali Khoshgozaran, Cyrus Shahabi, and
Kian-Lee Tan. Private queries in location based services: anonymizers
are not necessary. In SIGMOD ’08: Proceedings of the 2008 ACM SIG-
MOD international conference on Management of data, pages 121–132,
New York, NY, USA, 2008. ACM.

[GL05] Bugra Gedik and Ling Liu. Location privacy in mobile systems: A per-
sonalized anonymization model. In ICDCS ’05: Proceedings of the 25th
IEEE International Conference on Distributed Computing Systems, pages
620–629, Washington, DC, USA, 2005. IEEE Computer Society.

[gla] Google Latitude.
http://www.google.com/mobile/latitude/.

[gls] Google Location Service.
http://www.google.com/intl/en/about/products/index.html.

[gma] Google Maps for Mobile.
http://www.google.com/mobile/maps/.

[gow] Gowalla Privacy Policy.
http://gowalla.com/privacy.

[gro] Groupon.
http://www.groupon.com.

[GRS99] David Goldschlag, Michael Reed, and Paul Syverson. Onion routing. Com-
mun. ACM, 42:39–41, February 1999.

[hea] Chairman Franken’s Opening Statement on Mobile Privacy.
http://www.youtube.com/watch?v=ZRHR7QK91fI.

[KGMP07] Panos Kalnis, Gabriel Ghinita, Kyriakos Mouratidis, and Dimitris Papa-
dias. Preventing location-based identity inference in anonymous spatial
queries. IEEE Trans. on Knowl. and Data Eng., 19(12):1719–1733, 2007.

[lbs] Permanent Reference Document SE.23: Location Based Services.
http://www.gsmworld.com/documents/se23.pdf.

[LDR05] Kristen LeFevre, David J. DeWitt, and Raghu Ramakrishnan. Incognito:
efficient full-domain k-anonymity. In SIGMOD ’05: Proceedings of the
2005 ACM SIGMOD international conference on Management of data,
pages 49–60, New York, NY, USA, 2005. ACM.

[LLV07] Ninghui Li, Tiancheng Li, and S. Venkatasubramanian. t-closeness: Pri-
vacy beyond k-anonymity and l-diversity. Data Engineering, 2007. ICDE
2007. IEEE 23rd International Conference on, pages 106–115, April 2007.



164

[loc] Why Are Apple, Google, Tracking Your Phone.
http://abcnews.go.com/Technology/google-apple-track-users-location-
information/story?id=13436330.

[loo] Loopt.
https://www.loopt.com/.

[LW08] Jun-Lin Lin and Meng-Cheng Wei. An efficient clustering method for k-
anonymization. In PAIS ’08: Proceedings of the 2008 international work-
shop on Privacy and anonymity in information society, pages 46–50, New
York, NY, USA, 2008. ACM.

[MCA06] Mohamed F. Mokbel, Chi-Yin Chow, and Walid G. Aref. The new casper:
query processing for location services without compromising privacy. In
VLDB ’06: Proceedings of the 32nd international conference on Very large
data bases, pages 763–774. VLDB Endowment, 2006.

[MFD09] Noman Mohammed, Benjamin C.M. Fung, and Mourad Debbabi. Walking
in the crowd: anonymizing trajectory data for pattern analysis. In CIKM
’09: Proceeding of the 18th ACM conference on Information and knowl-
edge management, pages 1441–1444, New York, NY, USA, 2009. ACM.

[MGKV06] Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthu-
ramakrishnan Venkitasubramaniam. ` -diversity: Privacy beyond κ -
anonymity. In ICDE ’06: Proceedings of the 22nd International Confer-
ence on Data Engineering, page 24, Washington, DC, USA, 2006. IEEE
Computer Society.

[MKA+08] A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke, and L. Vilhuber. Pri-
vacy: Theory meets practice on the map. pages 277–286, apr. 2008.

[MS84] N. Megiddo and K. J. Supowit. On the complexity of some common geo-
metric location problems. Siam J. Comput., 13(1):182–196, February 1984.

[mth] More Than.
http://www.morethan.com/.

[MW04] Adam Meyerson and Ryan Williams. On the complexity of optimal k-
anonymity. In PODS ’04: Proceedings of the twenty-third ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages
223–228, New York, NY, USA, 2004. ACM.

[NAS08] Mehmet Ercan Nergiz, Maurizio Atzori, and Yucel Saygin. Towards tra-
jectory anonymization: a generalization-based approach. In SPRINGL ’08:
Proceedings of the SIGSPATIAL ACM GIS 2008 International Workshop on
Security and Privacy in GIS and LBS, pages 52–61, New York, NY, USA,
2008. ACM.



165

[PBD09] Gianluca Della Vedova Paola Bonizzoni and Riccardo Dondi. The k-
anonymity problem is hard. In FCT, pages 26–37, 2009.

[PW87] A Pfitzmann and M Waidner. Networks without user observability. Com-
put. Secur., 6:158–166, May 1987.

[rob] Please Rob Me: Raising awareness about over-sharing.
http://pleaserobme.com/.

[RR98] Michael K. Reiter and Aviel D. Rubin. Crowds: anonymity for web trans-
actions. ACM Trans. Inf. Syst. Secur., 1:66–92, November 1998.

[Sal74] Jerome H. Saltzer. Protection and the control of information sharing in
multics. Commun. ACM, 17(7):388–402, 1974.

[sho] Shopkick.
http://www.shopkick.com/.

[sky] Skyhook.
http://www.skyhookwireless.com/.

[spo] SpotRank by SkyHook.
http://www.skyhookwireless.com/spotrank/index.php.

[sta] Verizon Reports Sustained Revenue Growth and Continued Strong Cash
Flows for 4Q and Full-Year 2008.
http://news.vzw.com/news/2009/01/pr2009-01-27.html.

[Swe02a] Latanya Sweeney. Achieving k-anonymity privacy protection using gener-
alization and suppression. Int. J. Uncertain. Fuzziness Knowl.-Based Syst.,
10(5):571–588, 2002.

[Swe02b] Latanya Sweeney. k-anonymity: a model for protecting privacy. Int. J.
Uncertain. Fuzziness Knowl.-Based Syst., 10(5):557–570, 2002.

[tim] Numeric representation of dates and time.
http://www.iso.org.

[TM08] Manolis Terrovitis and Nikos Mamoulis. Privacy preservation in the publi-
cation of trajectories. In MDM ’08: Proceedings of the The Ninth Interna-
tional Conference on Mobile Data Management, pages 65–72, Washington,
DC, USA, 2008. IEEE Computer Society.

[WFWP07] Raymond Chi-Wing Wong, Ada Wai-Chee Fu, Ke Wang, and Jian Pei.
Minimality attack in privacy preserving data publishing. In Proceedings
of the 33rd international conference on Very large data bases, VLDB ’07,
pages 543–554. VLDB Endowment, 2007.



166

[wsj] Your Apps Are Watching You.
http://online.wsj.com.

[XC07] Toby Xu and Ying Cai. Location anonymity in continuous location-based
services. In GIS ’07: Proceedings of the 15th annual ACM international
symposium on Advances in geographic information systems, pages 1–8,
New York, NY, USA, 2007. ACM.

[YBLW09] Roman Yarovoy, Francesco Bonchi, Laks V. S. Lakshmanan, and
Wendy Hui Wang. Anonymizing moving objects: how to hide a mob in
a crowd? In EDBT ’09: Proceedings of the 12th International Conference
on Extending Database Technology, pages 72–83, New York, NY, USA,
2009. ACM.




