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Field-angle dependence of sound velocity in the Weyl semimetal TaAs
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M.-E. Boulanger,1 M. Dion,1 L. Taillefer,1 and J. A. Quilliam1, ∗

1Institut Quantique and Département de physique,
Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada

2Department of Physics, University of California Berkeley, Berkeley, California 94720, USA
(Dated: August 21, 2020)

The elastic modulus c44 of a single crystal of the Weyl semimetal TaAs was investigated by
measuring relative changes in the sound velocity under application of a magnetic field up to 10 T.
Using an ultrasonic pulsed-echo technique, we studied the shear response of the crystal when the
angle between the sound wave propagation and the magnetic field is changed. We observe a broken
tetragonal symmetry at fields above 6 T, an anisotropy that is likely related to a longitudinal
negative magnetoresistance and therefore might provide evidence of the chiral anomaly, one of the
main topological signatures of this class of materials. We also observe quantum oscillations in the
sound velocity whose frequencies vary with magnetic field orientation. A fan diagram of Landau level
indices reveals topological and trivial Berry phases, depending on the field orientation, indicating a
sensitivity to different Fermi surface pockets that do or do not enclose Weyl nodes respectively.

INTRODUCTION

In recent years, numerous experiments have attempted
to show the existence of the chiral anomaly in Weyl
semimetals. One of the most cited pieces of evidence
of the anomalous Adler-Bell-Jackiw contribution is un-
doubtedly the longitudinal negative magnetoresistance
(LNMR) [1–6] predicted to occur when electric and mag-
netic fields are parallel, creating a charge transfer be-
tween two Weyl nodes of opposite chirality [7, 8]. While
observations of LNMR could indeed be signatures of the
chiral anomaly, some doubts have been raised with the
suggestion that they could also be the effect of a non-
uniform current distribution [9, 10]. Other claims of non-
trivial topological effects in Weyl semimetals include high
magnetic field studies in the quantum limit of transport
and thermodynamic properties [10, 11], optical conduc-
tivity measurements [12], Fermi surface topology stud-
ies via quantum oscillations [13–15] and Angle-resolved
photoemission spectroscopy (ARPES) [16–18]. In many
cases, the electronic properties associated with the chi-
ral anomaly are diluted with those of the topologically
trivial quasiparticles, making the analysis more complex.

Here, we report a new approach to revealing the chi-
ral anomaly in the canonic Weyl semimetal TaAs. Given
the coupling between the lattice and the conduction elec-
trons, we have measured the sound velocity in the pres-
ence of a magnetic field for a transverse acoustic mode.
Considering that phonons are generally insensitive to
magnetic field and in the absence of any field-induced
phase transitions, the observation of a dependence of
sound velocity or attenuation on field strength or orien-
tation may be attributed to a coupling between acoustic
phonons and conduction electrons. More precisely, the
shear strain waves propagating in this material give rise
to an oscillating electric field oriented along the direction
of propagation, q, via piezoelectricity. The discovery of a

field-induced anisotropy, for example a change in sound
velocity related to q ·B ∝ E ·B, may provide a promis-
ing measure of the chiral anomaly. Indeed an increase in
sound attenuation ∆Γ ∝ |B| cos2 ϕ, where ϕ is the an-
gle between sound wave propagation q and B, was pre-
dicted independently in two theoretical papers [19, 20].
More recently, Rinkel et al. also predicted a decrease in
sound velocity as the magnetic field is increased in the
quantum limit where only the chiral Landau level (LL)
remains active [21]. However, the predicted angular de-
pendence is rather non-trivial, with a constant decrease
in velocity for all angles except a narrow window around
ϕ = π/2. While this effect is directly related to the
LNMR that is expected in transport measurements, here
it is the dynamical conductivity at the sound-wave fre-
quency that is relevant. Effects of the chiral anomaly
on optical phonons have also been considered theoret-
ically [22, 23] and while one might expect stronger ef-
fets where optical phonon and plasmon frequencies are
matched, sound velocity measurements can be performed
to extremely high resolution (< 1 ppm) permitting the
detection of rather subtle effects on acoustic phonons.

Our measurements of the c44 elastic constant reveal
rich behavior as a function of magnetic field amplitude
and orientation. Two important results can be extracted
from our measurements. First, we discover quantum os-
cillations (QOs) originating from small Fermi surfaces, in
agreement with previous Shubnikov-de Haas (SdH) and
de Haas-van Alphen (dHvA) measurements [24]. We will
show that these oscillations can be used to determine the
Berry phase of the various Fermi pockets of TaAs and
thereby identify those of a topological nature (contain-
ing a Weyl node) and those that are topologically trivial.
Second, we show a breaking of tetragonal symmetry for
magnetic fields above ∼ 5 T as we tune the angle between
sound-wave propagation and the magnetic field within
the ab-plane, an effect that we suggest, given theoreti-
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FIG. 1. (a) Schematic of the sample showing the definition of the azimuthal angle ϕ and polar angle θ of the magnetic field B
with respect to the sound propagation direction q. (b) A sketch of a part of the Fermi surface reported in Ref. [24] showing two
types of Weyl pockets (W1 and W2) and trivial hole pockets (H1). Green and red dots indicate opposite chiralities of the Weyl
nodes. Here we show just the part of the Fermi surface oriented along [100]. There are also equivalent sections of the Fermi
surface oriented along [010], [1̄00] and [01̄0], thereby respecting the tetragonal symmetry of the lattice. (c) The unstrained
(left) and strained (right) unit cell. With propagation vector q||[110] and displacement u||[001], equal S4 and S5 components
of the strain tensor are generated. The d15 = d24 components of the piezoelectric tensor then result in a polarization P ||q.

cal predictions [21], may be a consequence of the chiral
anomaly.

EXPERIMENTAL METHOD

TaAs single crystals were grown by chemical vapor
transport. Polycrystalline precursors were first synthe-
sized using high purity Ta and As, ground and mixed
with a 1:1 ratio. This material has a tetragonal structure
with lattice parameters a = b = 3.44 Å and c = 11.64 Å.
The crystal was polished in order to obtain two opposite
and parallel faces with mirror-like aspect, separated by
L = 1.4 mm in the [110] direction. Directions and angles
are defined on the schematic drawing of the sample in
Fig. 1(a).

A pulsed-echo ultrasonic interferometer was used to
measure the velocity and amplitude of transverse acous-
tic waves propagating along the q ‖ [110] direction, with
polarization along u ‖[001]. In Voigt notation, the mea-
sured velocity is related to the c44 element of the stiff-
ness tensor via v44 =

√
c44/ρ, where ρ is the density

of the material. Acoustic waves were generated with a
LiNbO3 piezoelectric transducer with fundamental fre-
quency of ∼ 30 MHz. The measurement technique con-
sists of adjusting the frequency in order to maintain a
constant phase of a given echo. Relative variations of
velocity ∆v44/v44 are then equal to relative changes in
frequency, ∆f/f . A rough absolute value of the veloc-
ity v44 ' 2.8 km/s, was obtained from the transit time
between reflected echoes, in good agreement with calcu-
lations in Ref. [26].

This mode was chosen for several reasons. First, we
have chosen the direction of sound wave propagation
along [110] to minimize trivial sources of anisotropy, as

will be further discussed below. Second we have selected
a mode that is piezoelectrically active and induces a di-
electric polarization along the direction of sound wave
propagation, allowing us to probe transport in the ab-
plane. The longitudinal mode with q ‖ [110] would in-
duce a dielectric polarization along [001]. Finally, we
have selected a mode that probes a single element of the
stiffness tensor, that is C44 [27].

Here we assume that the coupling between this acous-
tic mode and conduction electrons is dominated by piezo-
electricity, although coupling via a deformation potential
could also contribute. With q ‖ [110] and u ‖ [001],
sound waves generate equal S4 and S5 components of
the strain tensor, as shown in Fig. 1(c). For the 4mm
point group of TaAs, the d24 = d15 components of the
piezoelectric tensor are non-zero [26, 28], thus through
the relation Pi = dijSi, a dielectric polarization is gener-
ated parallel to q. In the absence of conduction electrons,
this leads to an additional restoring force which increases
the sound velocity relative to the bare sound velocity v0
in the absence of piezoelectricity. However, conduction
electrons can screen this dielectric polarization, reducing
the effect. As discussed in Refs. [21, 29] for example, one
can obtain, for this particular mode, the relation

ω2 = q2
[
v20 +

d215
ρ(ε∞ + iqjσjkqk/ω|q|2)

]
. (1)

The sound velocity is then determined with v44 =
ω/R(|q|). While in principle this provides us with
a quantitative relationship between sound velocity and
conductivity σ, in practice it is difficult to obtain precise
values of the parameters used in Eq. 1. Qualitatively
speaking, an increase in conductivity along the direc-
tion of sound wave propagation will lead to a decrease in
sound velocity.
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FIG. 2. (Top) Field dependence of the sound velocity at T =
2 K for various orientations of the magnetic field with respect
to the ultrasound propagation, from θ = 0, (B ‖ [001], which
is perpendicular to q) to θ = 90◦ (B ‖ [110], which is parallel
with q), plotted as a function of 1/B. (Bottom) Same plot
for the amplitude. For all of the curves, ϕ = 0. The curves
were shifted vertically for clarity.

The measurements were carried out using a single axis
rotator to change the orientation of the magnetic field
with respect to the crystalline axes and therefore the
sound propagation direction q. We define θ as the angle
between the field and the c-axis direction (see Fig. 1a)
and ϕ as the angle between the field and the sound prop-
agation direction q ‖ [110] in the θ = 90◦ plane. Since
the crystal structure is tetragonal, we expect fairly sig-
nificant anisotropy as we turn the field from θ = 90◦ to
0◦. However, if there are anisotropies as a function of
ϕ in the θ = 90◦ plane (i.e. a breaking of the C4 sym-
metry by magnetic field), they may originate from the
chiral anomaly. For instance, in the absence of the chiral
anomaly we would expect very little difference between
ϕ = 0◦ (that is B ‖ q ‖ [110]) and ϕ = 90◦ (that is
B ‖ [11̄0] ⊥ q). Both of these directions are crystallo-
graphically equivalent and, moreover, the projection of
all of the various Fermi surfaces [a quarter of which are
shown in Fig. 1(b)] along the magnetic field is identi-
cal. This would not be the case for sound wave propa-
gation along [100] for example. That said, the applica-
tion of magnetic field within the ab-plane could break the
C4 symmetry of the system in other ways and definitive
proof of a topologically non-trivial effect will ultimately
depend on a connection between realistic theory and ex-
periment. Presumably the same dilemma applies to most
other experimental techniques, including transport mea-
surements.

RESULTS

The presentation of our results is organized into two
sections. First we discuss the observed QOs and their im-
plications for the topological nature of the Fermi surfaces
of TaAs shown in Fig. 1b. Next we discuss the in-plane
anisotropy (as a function of ϕ) as a possible demonstra-
tion of the chiral anomaly.

Quantum oscillations

While the quantum oscillations (QOs) observed in
our measurements (see Fig. 2) create a complicated
background signal for possible signatures of the chiral
anomaly, they also provide an opportunity to study the
various Fermi surfaces that are coupled to the lattice.
The Fermi surface topology in TaAs (see Fig. 1b) has pre-
viously been investigated by Arnold et al. [24] by means
of angle-dependent measurements of quantum oscilla-
tions in magnetization, magnetic torque and magneto-
resistance, providing a useful point of comparison for our
results. The ultrasound measurements presented here
similarly show clear oscillations periodic in 1/B, as shown
in Fig. 2, for both the velocity and the echo amplitude
(which is related to the inverse of attenuation).

A fast Fourier transform (FFT) performed for θ = 0
gives a dominant frequency of 6.9 T, in good agreement
with that found in Ref. [24] for B ‖ [001], which was
attributed to a set of electron pockets (W1, orbit α) each
containing a Weyl node. The temperature evolution of
the FFT amplitude confirms the very light effective mass
(of order 1% of the free electron mass) expected in such
a material. As the angle θ is moved away from 0, the
frequency increases as 1/ cos θ, again in agreement with
Ref. [24]. For θ = 90◦, the amplitude of oscillations from
the W1 pocket is negligible and a smaller frequency of
2.1 T is dominant. This is close to the value obtained by
Arnold et al. for B ‖ [110] which was attributed to a
topologically trivial hole pocket (H1, orbit β).

In order to confirm these Fermi surface assignments,
we consider the relative Berry phase between the two
distinct pockets to which we are coupled. In Fig. 3a and
Fig. 3b, we focus on the data at θ = 0 which most clearly
show oscillations from the W1 pocket. In Fig. 3c, we
present data for θ = 90◦ and ϕ = 0 highlighting the
oscillations from the H1 pocket. Each QO extremum
is the result of the crossing of a LL and the chemical
potential. As explained in Ref. [30], the conductivity σxx
is minimal when an integer number n of LLs is filled. The
field positions of these minima, Bn, are then described
by the following equation(

F

Bn
− δ +

ΦB

2π

)
= n− 1

2
. (2)
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FIG. 3. Upper panels: QOs for three measured quantities at T = 2 K and for two distinct directions of the magnetic field,
revealing two QO frequencies (2 and 7 T). (a) SdH effect form the W1 pocket at θ = 0 on a similar sample to the one used
for ultrasound measurements. The irregular shapes of maxima at low 1/B arise from the second harmonic. (b) Oscillations
from the W1 pocket in ultrasound amplitude at θ = 0 (blue curve), compared with the SdH oscillations (dashed green curve).
(c) Oscillations in sound velocity, ∆v/v, from the H1 pocket at ϕ = 0 and θ = 90◦. Lower panels: LL indices as a function
of 1/B, from the values identified in the upper panels, plotted as n − F/B where F is the main QO frequency obtained from
a linear fit of n vs 1/B. (d) For this pocket, the intercept is compatible with ΦB = π. (e) LL indices from sound amplitude
(triangles) and sound velocity (circles) give a non-trivial Berry phase as in (d) provided we identify maxima as integer indices.
There is an approximate π/2 phase shift between sound velocity and amplitude oscillations, as expected. (f) Keeping the same
convention for minima and maxima, we find an intercept of 0.135 for the 2 T oscillations in velocity. This is roughly a π phase
shift with respect to the velocity oscillations arising from the Weyl pocket and is therefore compatible with a trivial Berry
phase for this pocket.

The left-hand side contains the frequency F , the Maslov
index δ = 1/2 + γ (with γ = 0 in two dimensions and
γ = ±1/8 in three dimensions, where the sign is given by
the maximal or minimal cross section of the Fermi sur-
face [25]), and the Berry phase ΦB. No additional phase
difference is expected from the hole-like and electron-like
nature of the pockets for the SdH effect [25]. Neglecting
temporarily γ in Eq. 2, this reduces to F/B+ΦB/2π = n.
Hence a plot of n as a function of 1/B (known as an On-
sager plot) directly gives the frequency F as the slope
and the Berry phase ΦB/2π as the intercept. Similarly,
in the lower panels of Fig. 3, we have plotted n − F/B
vs 1/B, using the fitted value of F , revealing a constant
value equal to ΦB/2π.

In order to properly identify the extrema, we first com-
pare the QOs obtained in the conductivity σxx (Fig. 3a,
d) and ultrasound measurements (Fig. 3b, e) for the same
field orientation, that is with θ = 0. The conductiv-
ity was measured on a different sample from the same
growth. An Onsager plot of conductivity (minima as in-
teger indices) for this configuration yields a slope of 7 T
and an intercept of 0.5, implying ΦB = π (again as long
as we take γ = 0). A direct comparison of the extrema
shows that minima of conductivity correspond roughly
to maxima in sound velocity. Therefore, integer indices
are attributed to maxima and used in the Onsager plot

in Fig. 3e (blue circles). More precisely, the intercept in
Fig. 3e for the sound velocity is 0.58± 0.03. Again, this
likely implies ΦB = π and would allow for a non-zero
value of γ. Oscillations in signal amplitude (shown in
Fig. 3b) are phase shifted by roughly π/2 with respect
to the sound velocity, as can be seen from the change
in intercept in Fig. 3e (blue triangles). This is expected
given that the sound velocity and attenuation represent
the real and imaginary parts of the acoustic phonon dis-
persion relation, respectively.

Moving on to the sound velocity of the H1 pocket (β-
orbit) measured at θ = 90◦, shown in Fig. 3c, and apply-
ing the same identification of maxima with integer values
of n, we see that the intercept in Fig. 3f is roughly 0.135.
We can see that the difference in ΦB/2π between the H1
and W1 pockets is 0.465, that is very close to 1/2. Hence,
our quantum oscillation measurements confirm the con-
clusions of Arnold et al. [24], showing that the 7 T QO
frequency (from the W1 pocket) is topological in nature
whereas the 2 T QO frequency (from the H1 pocket) orig-
inates from a trivial hole pocket. The 0.135 value of the
offset in Fig. 3f, may imply γ = 1/8, as expected for a
3-dimensional band structure though it remains unclear
why this additional offset does not appear in the conduc-
tivity measurements.

It is worth emphasizing that, for the H1 trivial hole
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pocket, the last LL crosses the chemical potential around
6 T, leaving the electronic structure in the quantum limit,
which means that all electrons in this pocket are confined
to the highly degenerate n = 0 LL. The magnetic fields
employed here are not, however, sufficient to reach the
final chiral LL of the Weyl pockets.

High-field anisotropy

In order to get beyond the complicated angle-
dependent QO background and search for signs of the
chiral anomaly, we focus here on measurements per-
formed with the field in the ab-plane where the oscil-
lations are not as strongly angle dependent. Our main
results are shown in Fig. 4 in two contrasting ways. First,
in Fig. 4(a), we plot the relative change in sound veloc-
ity (v44(B) − v44(0))/v44(0) as a function of magnetic
field up to 10 T, at T = 2 K, and for different values
of the angle ϕ between the sound propagation direction
and the applied magnetic field. Above a threshold field
that happens to be close to the last minimum at ∼ 5 T,
a significant anisotropy appears. The difference between
ϕ = 0 and 90◦ curves is particularly informative as these
are crystallographically equivalent field orientations and
one would naively expect identical results. This appears
to be the case for the low-field QOs as seen in the polar
plot of Fig. 4(c), where the QO frequency respects the
tetragonal symmetry of the lattice. However, the differ-
ence between ϕ = 0 and 90◦ curves grows rapidly from 5
to 6 T before slightly decreasing to remain at a constant
value above roughly 8 T.

In Fig. 4(b), the sound velocity is measured as a func-
tion of the angle ϕ for various values of B from 0 to 10 T
at T = 5 K, again revealing anisotropy with respect to
field direction. A polar plot in Fig. 4(d) of the field value
at which the sound velocity is minimal, Bmin, shows a
clear breaking of the C4 symmetry of the ab-plane, again
contrasting with the QO frequency (Fig. 4c). Note that
a slight misalignment of the sample away from θ = 90◦

cannot explain this behavior and would instead result in
an observable change in the QO frequency.

Another well-known mechanism for field-induced
anisotropy in sound velocity is the Alpher-Rubin effect,
whereby the Lorentz force on electronic currents gener-
ated by the oscillating ionic charges leads to an increase
in the velocity of transverse sound waves when B is par-
allel with q [31, 32]. However this effect is found (based
on our sample’s conductivity of σxx ' 1 × 104 Ω−1m−1

at 10 T) to contribute a negligible change in velocity
(∆v/v ∼ 10−10) and, moreover, is at odds with the ob-
served decrease in sound velocity when B ‖ q.

Hence, we attribute this roughly 50 ppm breaking
of tetragonal symmetry in the sound velocity at high
magnetic fields to an anisotropy in the screening of the
strain-induced dielectric polarization resulting from an

anisotropy in conductivity. In this regime we are in the
quantum limit of the topologically trivial hole pockets
and the Weyl nodes may provide the most important
contribution to changes in sound velocity. We propose
that since sound waves generate an oscillating polariza-
tion parallel to q along with screening currents which
are more effective when B ‖ q, the observed anisotropy
is likely a demonstration of LNMR caused by the chiral
anomaly.

As predicted by Rinkel et al. [21], the difference in ve-
locity (between ϕ = 0◦ and ϕ = 90◦) reaches a constant
value at high field, and the velocity is found to be re-
duced for ϕ = 0◦ (see Fig. 4a). This is explained by the
fact that, in the absence of conduction electrons, piezo-
electric coupling leads to an increased velocity. Higher
conductivity leads to better screening of the dielectric po-
larization and therefore a drop in sound velocity toward
the value it would take in the absence of piezoelectricity.
Hence, the drop in sound velocity here could possibly be
attributed to LNMR. Ref. [21] predicts such a drop in ve-
locity to occur for all angles of the magnetic field, except
for a narrow window around ϕ = 90◦. However, it is also
noted that this window of increased sound velocity would
become broader and more easily observable once sample
disorder is considered. We cannot carefully study the an-
gular dependence of this difference in velocity given the
complexity of the underlying QOs and their dependence
on ϕ. In principle, a better approach would be to main-
tain a fixed field angle and vary the angle of sound-wave
propagation, but this would be prohibitively difficult.

It should also be noted that there is a considerable dis-
crepancy (well beyond the measurement uncertainty) be-
tween the measured anisotropy (50 ppm) and the theory
of Ref. [21] (nearly 40%). The calculation of Ref. [21]
is based on realistic parameters for TaAs, determined
from experiment or ab initio calculations [26], but does
consider only the contribution from the Weyl fermions,
which are modelled through a spherically symmetric
Hamiltonian. Furthermore, since the predicted angular
variation of sound velocity comes only from the lowest
energy chiral LL, the effect may be heavily diluted by
other LLs when not in the quantum limit of the Weyl
nodes, as is the case in our experiments.

Evidently more detailed theoretical calculations would
be valuable for understanding whether the measured ef-
fect can be entirely attributed to the topological nature of
the Weyl nodes. Since the application of a magnetic field
in the ab-plane necessarily breaks the C4 symmetry of
the lattice in any tetragonal system, and therefore could
generate an anisotropic sound velocity through a differ-
ent mechanism, it is crucial to quantify the effect of the
chiral anomaly. Similarly, a more robust understanding
of this phenomenon could also be achieved with a cam-
paign of similar experiments on a variety of topological
and trivial semimetallic systems. A study of NbAs could
be particularly beneficial. While it has similar structure
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(c) Angular variation of the quantum oscillation frequency F , showing C4 symmetry. (d) Angular variation of the field value
at which the sound velocity is minimal, Bmin, showing a breaking of the C4 symmetry.

and band structure to TaAs, ab initio simulations con-
clude that the Weyl nodes are well below the Fermi en-
ergy and nodes of opposing chirality are contained within
the same Fermi surface pockets meaning that the chiral
anomaly should not be present [33].

CONCLUSION

To summarize, we have carried out sound velocity mea-
surements on the Weyl semimetal TaAs, as a function of
magnetic field and field angle with respect to the sound
propagation direction. The observed quantum oscilla-
tions are found to be consistent with the dHvA and SdH
measurements of Arnold et al. [24] and the phase of these
oscillations have allowed us to identify a non-zero Berry
phase for one of the topological Weyl pockets. With the
field angle varied in the ab-plane, a significant anisotropy
that breaks the C4 symmetry of the structure is observed
at relatively high field (above ∼ 5 T). This anisotropy is
qualitatively consistent with theoretical predictions [21]
and might, therefore, be attributed to the chiral anomaly,
essentially providing a measurement of the negative lon-
gitudinal magnetoresistance without electrical contacts
and the extrinsic current-jetting effects that result.
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