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                    The Feature-Label-Order Effect In Symbolic Learning  
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Department of Psychology, Stanford University,  

Jordan Hall, Stanford, CA 94305. 
 
 

Abstract 

We present a formal analysis of symbolic learning that 
predicts significant differences in symbolic learning 
depending on the sequencing of semantic features and 
labels. A computational simulation confirms the Feature-
Label-Ordering (FLO) effect in learning that our analysis 
predicts. Discrimination learning is facilitated when 
semantic features predict labels, but not when labels 
predict semantic features. A behavioral study confirms 
the predictions of the simulation. Our results and analysis 
suggest that the semantic categories people use to 
understand and communicate about the world might only 
be learnable when labels are predicted from objects.  

Introduction 
The ways in which symbolic knowledge is learned 

and represented in the mind are poorly understood. We 
present an analysis of symbolic learning—in particular, 
word learning—in terms of error-driven learning, and 
consider two possible ways in which symbols might be 
learned: learning to predict a label from the features of 
objects and events in the world; or learning to predict 
those features from a label. This analysis predicts 
significant differences in symbolic learning depending 
on the sequencing of objects and labels, confirmed in 
computational simulations and an empirical study. 
Discrimination learning is facilitated when semantic 
features predict labels, but not when labels predict 
semantic features. We call this the Feature-Label-
Ordering (FLO) effect. Our results and analysis suggest 
that the semantic categories people use to understand 
and communicate about the world can only be learned if 
labels are predicted from objects. 

Learning 
Formally, learning can be conceived of as a process 

by which probabilistic information is acquired about the 
relationships between important regularities in the 
environment (such as objects or events) and the cues 
that allow those regularities to be predicted (Rescorla & 
Wagner, 1972). This process is driven by discrepancies 
between what is expected and what is actually observed 
in experience (termed error-driven learning). The 
learned value of a given cue produces expectations, and 
any difference between the value of what is expected 
and what is observed produces further learning. The 
predictive value of a cues are strengthened when 
relevant events are under-predicted, and weakened 

when they are over-predicted (Kamin, 1969; Rescorla 
& Wagner, 1972). As a result, cues compete for 
relevance, and the outcome of this competition is 
shaped both by positive evidence about co-occurrences 
between cues and predicted events, and negative 
evidence about non-occurrences of predicted events. 
This process produces patterns of learning that are very 
different from what would be expected if learning were 
shaped by positive evidence alone (a common portrayal 
of Pavlovian conditioning, Rescorla, 1988). 

Symbolic learning 
Language learning involves acquiring information 

about the relations between labels and their semantic 
features. Here we define labels as tokens of language, 
such as the word ‘pan,’ and semantic features as the 
properties of the objects and events communicated 
about in language. In turn, we can distinguish two 
possible forms that symbolic learning about labels and 
features can take:  

(i) cues are labels and events are semantic features;  
 (ii) cues are semantic features and events labels. 
In (i), which we call Label-to-Feature or LF-

Learning, one learns to predict and expect certain 
features given a label. In (ii), which we call Feature-to-
Label or FL-Learning, one learns to predict and expect 
labels given a feature or certain set of features. To 
explain the difference between what is learned in LF-
learning versus FL-learning, it is important to note 
some differences between labels, as they are employed 
in language, and the aspects of the environment they 
typically describe. 

The structure of labels and the world 
Symbolic labels are relatively discrete, and possess 

little cue-structure, whereas objects and events in the 
world are far less discrete, and possess much denser 
cue-structure. (By cue-structure we mean the number of 
potentially discriminable cues that are simultaneously 
present.) Consider a situation in which say, a pan is 
encountered in the environment. A pan presents to a 
learner many discriminable features: shape, color, size, 
etc. However, because objects are not discrete (i.e., 
pans share many features with things that are not pans), 
some of these features will cue other labels as well. 

By contrast, consider the label ‘pan.’  A native 
English speaker can parse this word into a sequence of 
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phonemes [ph an], but will be unable to discriminate 
many further features. This is not to say that there are 
no other discriminable features within speech (such as 
emphasis, volume, or pitch contour), but rather to say 
that the dominant semantic feature is at the level of the 
phoneme. Other features of speech do not compete with 
phonemes in predicting meaning in the same way that 
color might vie for relevance with shape in predicting 
an object label. Further, because phonemes occur in a 
sequence rather than simultaneously, there can be little 
to no direct competition between them as cues. Thus, 
labels such as ‘pan’ provides little competitive cue-
structure: ‘pan’ essentially provides the learner with 
only a single cue, i.e. the label ‘pan’ itself.  

The difference in cue-structure in turn affects the 
formal properties of the two forms of learning we 
described above. In LF-learning, because labels serve as 
cues and since individual labels have little cue-
structure, learning involves predicting a set of features 
(the semantic features of objects and events) from a 
single cue (the label). Thus, LF-learning has a one-to-
many form: one cue to many features.  

     By contrast, in FL-learning, when object or event 
serve as cues, learning involves predicting a single 
response (a label) from a large set of cues (the features 
of an event or object). Thus FL-learning, has a many-to-
one form: from many semantic features to a label.  

Cue-competition in learning 
Where many cues are presented simultaneously, they 

can compete for relevance in the prediction of a 
particular event. If a cue successfully predicts an event 
over time (positive evidence), the associative strength 
between the cue and the event will increase. 
Conversely, when a cue unsuccessfully predicts a given 
event—i.e., the event does not follow the cue (negative 

evidence), the associative strength between the cue and 
the response will decrease.  

In one-to-many LF-learning, a single cue will be 
predictive of each of the many features encountered in 
an object or event. Because no other cues are available 
to compete for associative value, there can be no loss of 
potential associative value to other cues over the course 
of learning trials. By contrast, in many-to-one FL-
learning, because many cues are available to compete 
for relevance, learning will separate the highly reliable 
cues from the less reliable cues, favoring cues with a 
high degree of positive evidence and disfavoring those 
with a high degree of negative evidence. FL-learning 
and LF-learning thus differ significantly in terms of 
cue-competition; the dense cue-structure of FL-learning 
fosters cue-competition, while the sparse cue-structure 
of LF-learning inhibits it. 

Cue-structure and symbolic learning 
To see how these factors affect symbolic learning, 

consider a simplified environment in which there are 
two kinds of objects: wugs and nizes. These objects 
have two salient features: their shape and their color. 
Wugs are wug-shaped and can be either blue or red. 
Likewise, nizes are niz-shaped and can be either blue or 
red. Suppose now that one is learning what wugs and 
nizes are under FL-learning conditions. Figure 1 
represents FL-learning in this simplified environment:   

At (i), a learner encounters an object with two 
poentially relevant features, shape-1 and red, and then 
hears the label ‘wug’. The learner acquires information 
about two equally predictive relations, shape-⇒‘wug’ 
and red⇒‘wug’. At (ii), the learner two new cues and a 
new label, and forms two new equally weighted 
predictive relations, shape-2⇒‘niz’ and blue⇒‘niz’. 
Then at (iii), the learner encounters two previously seen 
cues, shape-1 and blue.  

 
 

Figure 1. Cue competition in Feature-to-Label learning. The top panels depict the temporal sequence of events: an object is 
shown and then a word is heard over three trials.  The lower panels depict the relationship between the various cues and labels. 
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Figure 2. In Label-to-Feature Learning, the absence of cue competition results in a situation where the outcome of learning is 
simply a representation of the probability of the features given the label. 
 

Given what the learner already knows—i.e., shape-
1⇒‘wug’ and blue⇒‘niz’—she expects ‘wug’ and 
‘niz,’ but, only ‘wug’ actually occurs. As a result: (1) 
given positive evidence of the occurrence of ‘wug’, the 
associative strength for the relation shape-1⇒‘wug’ 
increases; and importantly (2) negative evidence about 
the non-occurrence of ‘niz’ causes blue⇒‘niz’ to lose 
associative strength. Crucially, as the associative 
strength of blue⇒‘niz’ decreases, its value relative to 
shape-2⇒ ‘niz’ changes as well. At (iv), a similar 
situation occurs. The learner encounters shape-2 and 
red and expects ‘niz’ and ‘wug’. Only ‘niz’ is heard, so 
the associative strength of shape-2⇒‘niz’ increases, 
while red⇒‘wug’ loses associative strength. 

FL-learning is thus competitive: if a cue loses 
associative strength, its value can change relative to 
other cues. Since one cue’s loss can be another’s gain, 
this may shift associative value from one cue to another.  

 Now consider LF-learning in a similar scenario 
(Figure 2). At (i), a learner encounters the label ‘wug’ 
and then an object with the two salient features, shape-1 
and red. She thus learns about two equally valuable 
predictive relations ‘wug’ ⇒shape-1 and ‘wug’⇒red. 
Similarly, at (ii), the learner acquires two further 
equally valued relations ‘niz’⇒shape-2 and 
‘niz’⇒blue. Now, at (iii), the learner hears ‘wug’ and 
expects red and shape-1. However, shape-1 occurs and 
blue occurs. This has three consequences: (1) positive 
evidence induces an increase in the associative strength 
of ‘wug’⇒shape-1; (2) ‘wug’⇒blue becomes a new 
predictive relation; (3) negative evidence decreases the 
strength of ‘wug’⇒red. However, since ‘wug’ is the 
only cue, this loss of associative strength is not relative 
to any other cues (likewise at iv). LF-learning is thus 
non-competitive, and simply results in the learning of 
the probabilities of events occurring given cues. 

The Feature-Label-Order Hypothesis 
Both FL and LF-learning capture probabilistic 

information predictive relationships in the environment. 
However, there are fundamental differences between 
the two. In FL-learning, predictive power, not 
frequency or simple probability, determines cue values. 
LF-learning is probabilistic in far more simple terms. 
Given this, it seems that the sequencing of labels and 
features ought to have a marked affect on learning. We 
call this the Feature-Label-Order hypothesis. 

We formally tested the FLO hypothesis in 
simulations using a prominent error-driven learning 
model (Rescorla &Wagner, 1972; see also; Allen and 
Siegel, 1996). We should note that the analysis of 
symbolic learning described here could be implemented 
in a number of other models (e.g., Pearce & Hall, 1980; 
Rumelhart, Hinton & McClelland, 1986; Barlow, 2001) 
and applied to learning other environmental regularities.  

The Rescorla-Wagner model formally states how the 
associative values (V) of a set of cues i predicting an 
event j change as a result of learning in discrete training 
trials, where n indexes the current trial. 

Equation (1) is a discrepancy function that describes 
the amount of learning that will occur on a given trial; 
i.e., the change in associative strength between a set of 
cues i and some event j:1 

 

ΔVij
n

 =α i β j  (λj - VTOTAL)          (1)  

 
 

If there is a discrepancy between λj (the total possible 
associative value of an event) and VTOTAL (the sum of 
current cue values), the saliency of the set of cues α and 
the learning rate of the event β  will be multiplied 
against that discrepancy. The resulting amount will then 
be added or subtracted from the associative strength of 
any cues present on that trial.  
                                                             
1 Vij is the change in associative strength on a learning trial n. 
α denotes the saliency of i, and β  the learning rate for j. 
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 The associative strength between a set of cues i and 
an event j will increase in a negatively accelerated 
fashion over time, as learning gradually reduces the 
discrepancy between what is predicted and what is 
observed. Given an appropriate learning-rate, learning 
asymptotes at a level that minimizes the sum-of-squares 
prediction error for a set of observed cues to an event.  

 

 
Figure 3. The development of cue values in a simulation of 
the LF-learning scenario depicted in Figure 2.  
 

 
Figure 4. The development of cue values in a simulation of 

the FL-learning scenario depicted in Figure 1. 
  

 Discrimination and interference 
Two computational simulations (in the Rescorla & 

Wagner, 1972 model, described below)2 formally 
illustrate the differences in the representations of what 
gets learned in LF and FL-learning. As Figure 3 shows, 
LF-learning simply results in a representation of the 
probability of each feature given the label; e.g., the 
learned associative value of ‘wug’⇒red is about half of 
the associative strength of ‘wug’⇒wug-shaped, 
because ‘wug’ predicts red successfully only 50% of 
the times and wug-shaped successfully 100% of the 
time. In FL-learning (Figure 4), the learned 
representations reflect the value of cues: the associative 
relationship ‘wug’⇒wug-shaped is very reliable, and is 
highly valued relative to cues that generate prediction 
error. In this case the association ‘wug’⇒red is 
effectively unlearned. 

                                                             
2 The simulations assume either a niz or a wug is encountered 
in each trial, that each species and color is equally frequent in 
the environment, and that color and shape are equally salient. 

It is important to note that in LF-learning, the lack of 
discrimination produced by learning can lead to 
problems of interference in predicting events (or 
responses to them). LF-learning tends to produce 
representations in which a number of competing 
predictions are all highly probable.  To illustrate this, 
we return to our wug / niz example.  Imagine a world in 
which there were fifty times as many blue wugs as blue 
nizzes in the population, and fifty times as many red 
nizzes as red wugs. In this scenario, the color red will 
cue “niz” about 98% of the time and “wug” less than 
2% of the time, simply based on frequency of 
occurrence. For a child trying to name a red wug, 
there’s again a near 100% probability that wug-shaped 
= wug, but now there’s also a 98% probability that red 
= niz. There will thus be a large degree of uncertainty 
regarding the correct answer.  We call this response 
interference. The problem here is that tracking the 
frequencies of successful predictions does not pick out 
the cues that best discriminate one prediction from 
another. Thus, while both FL and LF-learning may 
produce successful response-discrimination in an ideal 
world, LF-learning will fail to discriminate events when 
their frequencies vary; and in the actual world, these 
frequencies inevitably will. 
 

Non discriminating 
features 

Discriminating  
features 

 

1 2 3 1 2 3 4 5 6 

75% 1 0 0 1 0 0 0 0 0 Category 
1 25% 0 1 0 0 1 0 0 0 0 

75% 0 1 0 0 0 1 0 0 0 Category 
2 25% 0 0 1 0 0 0 1 0 0 

75% 0 0 1 0 0 0 0 1 0 Category 
3 25% 1 0 0 0 0 0 0 0 1 

Figure 5: The abstract representations of the category 
structures used to train the Rescorla-Wagner models 
 
Simulating interference 

To illustrate the problem of response interference, we 
simulated category learning in the Rescorla-Wagner 
model using abstract representations of the category 
structures in Figure 5. The training set comprised 3 
category labels and 9 exemplar features (3 non-
discriminating features that were shared between 
exemplars belonging to different categories, and 6 
discriminating features that were not shared with 
members of another category). The frequency of the 
sub-categories was manipulated so that each labeled 
category drew 75% of its exemplars from one sub-
category and 25% of its exemplars from another 
subcategory. The two sub-categories that made up each 
labeled category did not share any features, such that 
learning to correctly classify one of the sub-categories 
paired with each label would provide no assistance with 
learning the other sub-category paired with that label. 
Finally, each low frequency sub-category shared its 
non-discriminating feature with the high frequency 
exemplars of a different labeled category. This 
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manipulation was designed to create a bias towards the 
misclassification of the low-frequency exemplars. 
Learning to correctly classify low frequency exemplars 
necessarily required learning to weigh the 
discriminating feature more than the non-discriminating 
feature, despite its lower overall input frequency. 

Two simulations were configured to created two 
networks of feature and label relationships. The first 
network learned associative weights from the 9 
exemplar features (serving as cues) to the 3 labels 
(serving as events; “FL training”), while in the second 
case the network learned from the 3 labels (serving as 
cues) to the 9 features (serving as events; LF training). 
Each category had a high frequency exemplar, 
presented on 75% of the training trials for that category, 
and a low frequency exemplar (occurring 25% of the 
time). On each training trial a label and appropriate 
exemplar pattern were selected randomly to train each 
of the two networks. Training comprised 5000 trials, 
which allowed learning to reach asymptote. The model 
has several parameters that affect learning. For 
simplicity, the simulations assumed equally salient cues 
and events (α=0.01 for all i; β=0.01 for all j) and equal 
maximum associative strengths (= 1.0). 

To test the FL-network, exemplar features were 
activated to determine the subsequent activation of the 
labels. Propagating these values across the weights 
learned by the network then determined the associative 
values that had been learned for each label given those 
features. Luce’s Choice Axiom (Luce, 1959) was used 
to derive choice probabilities for the 3 labels given 
these activations, revealing that the FL-trained network 
categorized and discriminated well (the probability of 
correct classification for the low and the high frequency 
exemplars was p=1).  

LF-network testing involved activating the labels in 
order to determine subsequent activation of the features. 
In turn, each label was given an input value of 1, and 
this then produced activation levels in the features, 
which were determined by the associative values 
learned in training. In order to assess the network’s 
performance, the Euclidean distance between the 
predicted activations and the actual feature activations 
of the appropriate exemplar were calculated. For each 
label there were two sets of feature activations: those 
corresponding to the high and low frequency 
exemplars. To test learning of both exemplar types, a 
category and a frequency (either high or low) were 
selected, and the difference between the feature 
activations predicted by the network and the correct 
values for the category exemplars was computed. These 
differences were then converted to z-scores, and from 
these the probabilities of selecting the correct exemplar 
given the category label were calculated as follows: 

 

P(x) = exp(-z(dist(x,t))   (2) 
 

where P(x) is the likelihood of the network selecting 
exemplar x, z(·) returns the z-score of its argument 
relative to its population, dist(·,·) is the Euclidean 
distance function, and t is the exemplar pattern 
generated by the network. The P(x) likelihoods were 
normalized using Luce’s Choice Axiom to yield 
normalized probability estimates. These revealed that 
the LF network performed poorly. At asymptote, it 
predicted the correct feature pattern with only p=.35 
confidence for low frequency exemplars (chance), and 
p=.75 confidence for high frequency exemplars. 

Testing the FLO Hypothesis 
Consistent with our hypothesis, a notable Feature-
Label-Order Effect was detectable in the simulations. 
The following experiment was designed to see whether 
human learning would show a similar effect. 
Participants  

32 Stanford Undergraduates participated for credit.  

 
Figure 6. The category structures Experiment 1. (The stimuli 
are fribbles created by Michael Tarr’s lab at Brown 
University.) The features that need to be weighted to 
successfully distinguish the sub-categories are circled on the 
low-frequency “dep” and high-frequency “tob” exemplars. 
 

Method and Materials 
Three experimental categories of “fribbles” were 

constructed, each comprising two sub-categories 
clustered around a non-discriminating feature and a set 
of discriminating features. The two sub-categories that 
made up each labeled category did not share features, 
and so learning to correctly classify one of the sub-
categories paired with each label provided no assistance 
with learning the other sub-category paired with that 
label. The sub-categories were again manipulated so 
that 75% of the exemplars of a category belonged to 
one sub-category, and 25% to another, and each non-
discriminating feature was shared by high frequency 
and low frequency exemplars that belonged to different 
categories. Thus learning to correctly classify low 
frequency exemplars necessarily required learning to 
weigh the discriminating feature more than the non-
discriminating feature. A control category served to 
check that there were no differences in learning 
between the two groups other than those we 
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hypothesized: all its exemplars shared just one, highly 
salient feature (all were blue). Because learning this 
category involved a binary pairing blue⇒bim, there 
was no “predictive structure” to discover. In the 
absence of competing exemplars, learning was 
predicted to be identical for FL and LF training. 

To enforce LF or FL relationships as our participants 
studied “species of aliens” we minimized their ability to 
strategize (word learning is rarely a conscious process). 
All four categories were trained simultaneously, 
exemplars of each category were presented in a non-
predictable sequence, and each exemplar was presented 
for only 175ms to inhibit participants’ ability to search 
for features. FL training trials comprised 1000ms 
presentation of a label (“this is a wug”), followed by a 
blank screen for 150 ms, followed by 175ms exposure 
to the exemplar. LF training trials comprised 175 ms 
exemplar, 150 ms blank screen and 1000ms label (“that 
was a wug”). A 1000ms blank screen separated all trials 
(see Figure 10). A training block comprised 20 different 
exemplars of each experimental category – 15 high-
frequency exemplars and 5 low-frequency exemplars – 
and 15 control category exemplars. Training comprised 
2 identical blocks, with a short rest between the blocks. 

Testing consisted of speeded 4 alternative forced-
choice tasks. Half the participants matched an exemplar 
to the 4 category labels, and half matched a label to 4 
previously exemplars drawn from each category. 
Participants were instructed to respond as quickly as 
they could (after 3500ms, a buzzer sounded and no 
response was recorded). Each sub-category (and the 
control) was tested 8 times, yielding 56 test trials. 
Results and Discussion 

The results of the experiment were remarkably 
consistent with our predictions; a 2 x 2 ANOVA 
revealed a significant interaction between exemplar- 
frequency and training (F(1,94)=20.187, p<0.001; 
Figure 6). The FL-trained participants classified high 
and low frequency items accurately (FL high p=.98; 
low p=.78), while the LF-trained participants only 
accurately classified high-frequency items (p=.86) and 
failed to classify the low frequency exemplars above 
chance levels (p=.36, t(47)=0.536, p>0.5). The control 
category was learned to ceiling in both conditions. 
Analyses of confusability (i.e., the rates at which 
exemplars were misclassified to the category with 
which they shared non-discriminating features) showed 
the same interaction between frequency and training 
(F(1,94)=8.335, p<0.005), with higher confusion rates 
after LF training (M=22.6%) than FL (M=6%; 
t(16)=5.23, p<0.0001). These differences were not due 
to a speed / accuracy trade-off; participants trained FL 
were faster as well as more accurate (LF M=2332ms, 
FL M=2181ms; t(190)=1.677, p<0.1).  

 
Figure 7: Performance of participants training and exemplar type.   
Note here that SX corresponds to Label-to-Feature (LF) and XS to 
Feature-to-Label (FL).   
 

To the degree that learning is driven by prediction 
error (and there is considerable evidence that it is) the 
Feature-Label-Ordering effect may be an inevitable 
feature of learning. We believe it has many implications 
for our understanding of language and cognition. 
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