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 Abstract 

Modeling the co-development of strategic and conceptual knowledge in mathematical 

problem solving 

by 

Mariana Elaine Campbell 

Doctor of Philosophy in Science and Mathematics Education 

University of California, Berkeley 

Professor Alan H. Schoenfeld, Chair 

This dissertation explores the question of how strategic and conceptual knowledge co-
develop over the course of several episodes of mathematical problem solving. The core 
analytic work involves an in-depth microgenetic case study of a single pre-algebra 
student, Liam, who over six hours of videotaped interaction with a tutor/researcher 
constructs a deterministic and essentially algebraic algorithm for solving algebra word 
problems that have an underlying linear structure. Over six hours of videotaped 
interaction with a tutor/researcher, Liam’s later and conceptually more sophisticated 
strategy is seen to emerge as a gradual refinement of his initial strategy. This focal case 
study is used to develop a theoretical model of how strategic and conceptual knowledge 
co-evolve. A novel aspect of the present analysis is that both strategies and the 
knowledge needed to implement them in problem solving are modeled as complex 
knowledge systems. The analytic methodology employed in developing the theoretical 
model is a coordination of Knowledge Analysis (diSessa, 1993; Sherin, 2001) and 
Microgenetic Learning Analysis (Parnafes & diSessa, submitted; Schoenfeld, Smith, & 
Arcavi, 1993).  The model of co-development of strategic and conceptual knowledge that 
is developed through the analysis is one of mutual bootstrapping:  (1) Within a given 
strategic frame, a solver activates a particular projection of conceptual knowledge and (2) 
As the solver creates new conceptual schemes in the context of working within a given 
particular strategic frame, novel refinements to existing strategies can emerge. 
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Chapter 1: Introduction and Overview 
 

Attaining a deep understanding of change mechanisms is the holy grail of 
developmental psychology: a profound goal, not fully attainable but worth 
pursuing nonetheless.  Among the obstacles that prevent full realization of the 
goal are the impossibility of directly observing change mechanisms, and the 
sheer complexity of the developmental process.  Nonetheless, the pursuit of this 
goal is worth the effort because of what we learn along the way.   

 
- Siegler, 2006 

 
Liam is a seventh grade student who has just finished a course in pre-algebra.   

During a series of sessions with a university tutor/researcher, he constructs a 
deterministic and essentially algebraic algorithm that he uses to for solving algebra word 
problems that have an underlying linear structure. This strategy seemed to emerge 
continuously over several episodes of problem solving in which he gradually refined 
earlier approaches.  The question is, how does this happen? What mechanisms result in 
the development of his new conceptions? 

While this is a particular case, the pursuit of an adequate scientific explanation of 
such learning events immediately implicates a number of foundational and general issues.  
Did this student learn only a new way to accomplish the goal of solving problems that he 
recognized as having a similar structure?  Or was there some deeper conceptual residue 
of this experience?  What kind of theoretical and analytical tools would allow us to 
identify the knowledge that students like Liam draw upon when they are solving 
problems? How can we model the processes by which new knowledge is constructed? 

This dissertation explores the question of how strategic and conceptual knowledge 
co-develop. Solving problems, both in cases where individuals have a ready algorithm 
and in cases where they need to generate one on the spot is an extremely knowledge 
intensive process. Thus, the research is situated squarely at the intersection of 
fundamental research in problem solving and research on knowledge and learning.  

The analytic focus of this dissertation is on addressing the following research 
questions:  

1. What conceptual knowledge do individuals draw upon in implementing 
strategies?  

2. How do new strategies and new conceptual knowledge co-develop during 
mathematical problem solving?	
  

Overview of the dissertation 
The core analytic work in this dissertation revolves around an in-depth 

microgenetic analysis of strategy emergence in the case study of Liam.  The case study is 
used to develop a theoretical model that traces the evolution of the novel strategy at a 
fine-grained level of detail. A novel aspect of the present analysis is the consideration and 
the elaboration of the nature of the knowledge needed to implement observed strategies. 
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In particular, both strategies and the conceptual knowledge that undergirds their 
implementation are modeled as complex knowledge systems. This epistemologically 
grounded approach gives a new window into the study of strategy construction by 
characterizing not only the behaviorally observable actions that characterize the 
implementation of the strategy, but the forms of knowledge behind those actions. 

The organization of this document is set up to prepare for and explain the 
evolution of the model of strategy-conceptual co-development from an ongoing dialogue 
with theory and with the empirical data.  

Following this introductory chapter, I present the literature in mathematics 
education on the nature of mathematical knowledge and knowledge construction in 
Chapter Two.  In the literature review, I make a particular effort to evaluate the 
contribution of the literature and its potential applicability in developing the kind of 
moment-to-moment account of learning processes that I aim to develop.   

Chapter Three presents a brief overview of the background and design of the 
study from which the data for the focal case study of Liam came from.  

In Chapter Four, I discuss the epistemological framework that guides the analysis 
of the data – Knowledge in Pieces or KiP (diSessa, 1993).  I discuss the central principles 
of the framework as well as give some exemplar theoretical work that will serve as 
reference models in the analysis presented in this dissertation. 

In Chapter Five, I discuss the general empirical and analytical strategies that 
accompany this choice of epistemological perspective.  The analytical perspective I chose 
and developed in this dissertation is Knowledge Analysis (KA).  First, I discuss the 
general strategies and KA and how it departs from other perspectives on cognitive 
modeling.  I then mention a number of methodological problems that are inherent in the 
practice of KA and how they are negotiated. The second half of chapter five is devoted to 
a discussion of a complementary research method, microgenetic learning analysis (MLA) 
and neighboring perspectives on studying learning processes. This material prepares for 
the central analysis of the dissertation, which involves coordinating techniques from both 
KA and MLA.  

Chapter Six is the analytic core of the dissertation. The presentation of the 
analysis roughly follows the process of developing the model. Successive stages in the 
research process are presented in strands so that the reader can understand how the final 
theoretical model was developed in dialogue with both the data and the orienting 
theoretical perspective.  I begin with a discussion of Liam’s initial and final strategies.  
This provides an opportunity to frame the change that was observed in the sessions and to 
think about what might be helpful to model in order to understand it.  To help the reader 
understand what the epistemological analysis I will perform offers in light of competing 
or contrasting perspectives, I describe contrasting framings of the same data.  Following 
this, I move into a discussion of the main analysis. The first strand of the main phase of 
the analysis is to formulate the analytic enterprise in epistemological terms, and in 
particular, in terms that make contact with the general orienting theoretical perspective, 
Knowledge in Pieces (diSessa, 1993).  Here I indicate how one can think about strategies 
as complex knowledge systems, an idea that will be central to developing the analysis.  I 
then give a detailed discussion of how the analytical vocabulary of co-variation schemes 
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and knowledge of controlling the variation of linear functions was schematized “bottom-
up” from an analysis of the data.  At this point, the reader will be familiar with how both 
the central conceptual territory (controlling linear variation) and strategic territory are 
viewed through a complex systems perspective.  With this preparation established, it will 
be possible to go through a series of focal episodes in order to trace the co-evolution of 
Liam’s strategic and conceptual knowledge. For each focal episode, micro-developments 
and changes to the strategy system and growing conceptual system are noted.  This 
discussion prepares the reader to schematize general features of the change processes, 
sketching mechanisms that are potentially involved in this particular learning process.  
The final strand of analysis builds on this work and extracts general features of the 
interplay between conceptual and strategic knowledge and how they developed in this 
case to propose a theoretical model that describes the process of co-evolution of 
strategies and concepts. 

The final chapter, Chapter Seven, summarizes the findings and limitations of the 
case study and maps out directions for future work along substantive, methodological, 
and theoretical dimensions. 
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Chapter 2: Literature Review 
 

As discussed in the introductory chapter, the heart of this dissertation involves 
developing a fine-grained account of how particular mathematical understandings were 
constructed by an individual student.  Developing such an account poses significant 
analytical challenges and the main thrust of the dissertation is to develop theoretical and 
analytical tools that can help make sense of the complexities inherent in a close analysis 
of individual learning processes.  However, before embarking on this analytical work, I 
first survey the literature, both to take stock of the state of the art and to set the stage for 
how the account that will be developed in this dissertation differs in significant and 
important ways from those already existing in the literature. 

This chapter provides an overview of the way that researchers in mathematics and 
science education have conceptualized knowing and understanding in mathematics and 
science for the purpose of providing accounts of learning processes (at various time 
scales).  Throughout the chapter, the ways in which the literature does or does not make 
contact with the aims of the current study will be explicitly noted.  This discussion will 
be used to build the argument that an alternative perspective on knowledge and learning 
will be required in order to engage in the analytic work of this dissertation. 

Conceptions, misconceptions, and intuitions about mathematics and science 
 I begin with a review of the literature on conceptions, misconceptions, and 

intuitions in mathematics and science education.   Central questions that guide this body 
of work include: 

1. What kind of intuitions or ideas do students have about mathematical and 
scientific phenomena? What is the source of such intuitions? 

2. What is the status of such intuitions or ideas in learners’ conceptual systems?  Are 
they only obstacles or can they also be resources? 

3. What makes “conceptual change” a difficult process?  
4. What does it mean to “have” or to understand a concept? 

Many early studies of mathematics thinking in the constructivist tradition focused on the 
nature of students’ conceptions and preconceptions about particular conceptual domains 
(e.g., Confrey & Smith, 1995; Steffe & Cobb, 1998, Thompson, 1994; and Vergnaud, 
1994).  Like the current work, this research sought to analyze episodes of student 
thinking for the purpose of uncovering mental schemes that undergird children’s 
performance in these domains. An impetus of this line of work was to build domain-
specific theories of instruction (diSessa & Cobb, 2004).  

A subset of the early work on examining students’ conceptual structures focused 
on examining the nature of the systematic patterns of errors that students made on tasks 
across multiple domains.  A sample of the domains studied includes functions and graphs 
(Bell & Janvier, 1981), subtraction (Brown & Burton, 1978; Resnick, 1982; VanLehn, 
1982; 1990) and algebra (Clement, 1982; Matz, 1982; Sleeman, 1984).  Confrey (1990) 
provides a comprehensive review. Though this work does focus on the nature of students’ 
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mental schemes and reasoning processes, it mainly targets systematic difficulties students 
have with learning procedures.  Because it neither focuses on students’ conceptual 
resources nor on their role in learning, this literature does not offer tools for engaging 
with the focus of this dissertation: constructing an account of strategy emergence. 

In contrast to the literature on systematic errors, an emerging literature on 
embodied cognition (Barsalou, 1999; Johnson, 1987; Lakoff & Nuñez, 2000; Varela, 
Thompson, & Rosch, 1991) works to identify conceptual schemata such as image and 
spatial schemata that are generated from our experience in the world in human bodies.  
Such schemata can be understood as both resources and obstacles in developing 
understanding of mathematics through mechanisms such as conceptual metaphor and 
blending.  They are potential resources because they resonate with our everyday 
experiences, but they can also help explain why mathematical topics that are not possible 
to directly experience through our everyday interactions with the world are more difficult 
to learn (e.g., reasoning about infinite processes, visualizing concepts in projective, 
hyperbolic, or higher-dimensional geometry, etc.)   

A number of mathematics education researchers (e.g., Abrahamson, 2009; 
Edwards, 2009) are working on programs of research that develop and empirically 
ground these theoretical ideas in ways that make contact with the interests of 
mathematics and science educators.  However, while this literature draws attention to 
what is potentially an important class of conceptual resources, in the data under study in 
this dissertation, there was not extensive opportunity to observe the function of such 
schemata.  Thus, embodied frameworks were not chosen as a primary means or 
theoretical frames for interpreting this data.  

Other researchers have studied the nature and role of individuals’ intuitions about 
mathematics for learning (Ben-Zeev & Star, 2001; Fischbein, Tirosh, & Melamed, 1981; 
Fischbein, 1987; Tversky & Kahneman, 1974).  From this perspective, the source of 
students’ intuitions about mathematics is both experiential and curricular.  Within the 
field of mathematics education, Fischbein’s work was instrumental in establishing that 
students do have intuitions about mathematics and that effective instruction should make 
contact with and address students’ ideas.  Much of Fischbein’s work is developed in the 
domain of the development of probabilistic thinking and concerns the “intuitive biases” 
that individuals have about chance and probability. While the general commitment to 
investigating mathematical intuitions and their role in thinking and learning is a shared 
concern, in both content and methodology (many of the designs are cross-sectional and 
instructionally-oriented), this line of work does not support the construction of the 
particular account being developed in this dissertation.  

In a similar vein, Stavy & Tirosh have proposed a theory of “intuitive rules” that 
they use to account for error patterns in assessments of individual reasoning (Stavy & 
Tirosh, 1996; 2000; Tirosh & Stavy, 1999).  Though some of the intuitive rules they 
propose (e.g., More A corresponds to More B) bear some similarity to intuitive schemata 
that are drawn upon in the account I construct, their methodology (that relies upon post-
hoc attribution of the use of the scheme based on paper-pencil assessment items) does not 
allow them to make real-time attributions in the reasoning processes of individuals nor to 
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know what in an individuals’ knowledge system would cue such patterns of reasoning.  
Both issues are critical in the account I construct.  

The accounts above have all focused on the nature of students’ pre-instructional 
knowledge.  However, what is of interest in this dissertation study is how to coordinate 
representations of students’ knowledge structures with representations of their real-time 
reasoning processes.  In this direction, I turn now to accounts within the broad literature 
on conceptual change that addresses issues of change or lack of change in knowledge 
organization.  

Theories of conceptual change in science and mathematics 
Theories of conceptual change are characteristically focused around deep, 

difficult, and problematic learning.  One family of explanations for the difficulty of 
conceptual change is that nature of students’ intuitive or pre-instructional knowledge is 
the source of difficulty.  Intuitive ideas are understood as coherent or theory-like and seen 
to stand in contrast to normative knowledge.  Further, in order to achieve a normative 
understanding of a domain, deeply entrenched ideas may need to be substantially 
restructured or entirely replaced (Carey, 1999; Ionnides & Vosniadou, 2001).   However, 
the view that students’ ideas are coherent and theory-like is called into question by 
numerous empirical studies demonstrating the context-sensitivity and fragmentation in 
naïve knowledge systems. (See diSessa, Gillespie & Esterly, 2004 for a quasi-replication 
study that challenges the findings of Ionnides & Vosniadou.)  Clark, D’Angelo & 
Schleigh (2011) conducted a multi-national comparison study that confirmed the results 
of diSessa, Gillespie & Esterly. 

The debate on the nature and form of students’ pre-instructional knowledge has 
historically received more prominence in the science education community than in the 
mathematics education community. However, recent work drawing upon the framework 
theories approach (Christou, Vosniadou & Vamvakoussi, 2007; De Bock, Van Dooren, 
Janssens, & Verschaffel, 2002; Tirosh & Tsamir, 2004; Vamvakoussi & Vosniadou, 
2007; Vosniadou & Greer, 2004) has brought the debate into mathematics education. 
Such work typically focused on identifying students’ non-normative ways of thinking 
about literal symbols, proportionality, and rational number.  The work in mathematics 
from this perspective has not focused on the issues of context-sensitivity and 
fragmentation or on processes of change.  A contrasting body of work on conceptual 
change in mathematics informed by complex systems perspectives on thinking and 
learning has focused more analytic attention on understanding process data of real-time 
reasoning and has uncovered the same kinds of contextuality and fragmentation as was 
found in the science education literature (e.g., Chiu, Kessel, Moschkovich, & Muñoz-
Nuñez, 2001; Schoenfeld, Smith, & Arcavi, 1993; Izsák, 2000; 2005; Pratt & Noss, 2002; 
Wagner, 2006; 2010). 

Knowledge and learning: Perspectives within mathematics education  
Given the kind of data studied (real-time processes of individual reasoning) in this 

dissertation, the microgenetic methods used in these analyses is of particular importance 
to developing the analysis in this dissertation study.  Especially important features of 



 

 
 

 

7 

such analyses, along with a discussion of several illustrative exemplars of microgenetic 
analyses of learning processes, will be reviewed separately in the methodological review 
section in the chapter on analytic methodology (Chapter Five).  

In contrast to the work on conceptual change, which has been primarily developed 
thus far in science education, I now turn to three accounts of development of knowledge 
structures that have been primarily developed within mathematics education.  The three 
families of developmental accounts that are discussed are (1) Radical constructivism, (2) 
Process-Object theories of learning, and (3) Abstraction in Context. Following this, as a 
perspective intimately concerned with the development of mathematical competence, but 
contrasting from the previously discussed perspectives in that it concerns a discursive 
approach to the development of expertise in mathematics, Sfard’s “commognitive” 
perspective is briefly discussed. 

Radical constructivism, as a theoretical perspective for studying the structure and 
processes of mathematical thinking and learning, was introduced into mathematics 
education by the work of von Glasersfeld and Steffe (Steffe, von Glasersfeld, Richards, & 
Cobb, 1983; Steffe, Cobb, & von Glasersfeld, 1988, Steffe, 1994). The primary focus of 
attention is on mental schemes and how they are constructed and coordinated: the theory 
draws heavily on the learning mechanisms and structures posited by Piaget.  For 
example, mechanisms of development that are of particular interest from this perspective 
have included accommodation, interiorization, and reflective abstraction. Mental schemes 
are described as having a very specific structure including (1) an assimilatory structure 
that is activated when contexts of use are recognized (2) a set of mental and/or physical 
operations associated with the context, and (3) an anticipated outcome of the result of the 
operations.  Inspired by Piagetian trajectories of development, the expected 
developmental accomplishment is that individuals will come to be able to anticipate the 
results of operations without needing to perform them.  The original context for work in 
mathematics education guided by the perspective of radical constructivism concerned 
studies of children constructing meaning for whole number and whole number operations 
through counting activities.  However, this focus has been extended in further work (e.g., 
Olive, 1999; Thompson, 1993)   

Though the focus on mental schemes and their coordination is a shared focus 
between work on radical constructivism and the kind of account I seek to develop in this 
dissertation analysis, the a priori presumptions about the form and structure of schemes 
and the expected developmental mechanisms for their construction and coordination 
differ from the kind of account that I seek to develop.  The critical difference is that I 
seek to uncover the particular structure, content, form, and mechanism through the 
analysis itself.  

I now turn to discussing process-object theories, a second family of accounts 
within the mathematics education literature that concern the development of concepts as 
mental schemes.  This includes work by Dubinsky, 1991; Gray & Tall, 1994; Sfard, 
1991; Sfard & Linchevski, 1994, among others.  In process-object theories, “process” 
understandings (e.g. thinking of 3x+5 in terms of specific numeric calculations for each 
possible value of x) are posited to precede “object” understandings (e.g. being able to 
operate on 3x+5 as an object, such as what allows one to operate on the graph of y=3x by 
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shifting it up by 5 units to obtain the graph of y=3x+5.)   Process-object theories give a 
way to describe the compression that happens as earlier understandings become more 
routine and automatized.  In the account of Sfard & Linchevksi (1994), there are three 
stages offered in the transition from process understandings to object understandings (1) 
learning procedures (interiorization), (2) thinking more in terms of actions and results as 
opposed to focusing on all processes as equally important (condensation), and (3) 
processes become objects that can then become acted upon (reification).  Interiorization 
and condensation are thought to be slow, hard to observe processes and reification is 
thought to be a fast, hard to observe process.  

Besides the issue of how much of mathematical learning can be characterized in 
terms of the trajectory from processes to objects, process-object theories also suffer from 
being difficult to trace closely with empirical data.  Because the nature of the 
development in the account I seek to construct is not clearly on the process-object 
spectrum and also the time-scale of observations in my case is much finer than the 
learning mechanisms of interiorization, condensation, and reification, this family of 
accounts remains of limited use in my empirical work on tracking the knowledge 
construction processes that accompany strategy emergence.   

We now turn to discussing a third perspective: Abstraction in Context (AiC).  
Hershkowitz, Schwarz & Dreyfus (2001) present a model for the growth and change of 
knowledge structures in which abstraction is a key mechanism.  The model for the 
process of abstraction that they posit consists of three nested epistemic actions: R-actions 
(“recognizing with”), B-actions (“building with”), and C-actions (“constructing with).”  
The reason for identifying these observable actions in the empirical data of students 
reasoning is that though Hershkowitz, Schwarz, and Dreyfus study real-time reasoning 
processes of subjects, they do not hypothesize extensively about the structure and 
coordination of mental schemes underlying knowledge construction processes. Instead, 
they focus on identifying the nested epistemic actions described above which are 
observable.   The actions they describe are intended to be general and apply equally well 
across different content and tasks, and social and material settings.  Furthermore, the 
activities under study involve target strategies, concepts, and methods that can be 
described through an a priori task analysis.  

The focus on observable student actions and the comparison with hypothesized 
partial states of construction of target concepts are two features of the studies of 
Hershkowitz, Schwarz, and Dreyfus that distinguish them from the kind of approach 
needed for developing the analysis in this dissertation.  For the authors, the study of 
partial learning in terms of RBC actions helps inform the design of task sequences that 
are better tuned to be able to move students from initial conceptions to target conceptions 
(Ron, Dreyfus, & Hershkowitz, 2010).   This represents a fundamentally different goal 
than that of my study, which is to uncover empirically grounded knowledge structures 
and learning mechanisms that take into account what the learner perceives and infers.  As 
the work of Lobato (2003) and others has shown, what the student learns from an 
instructional activity may not align with the expected trajectory of learning.  Indeed, the 
focal case study developed in this dissertation involved an unexpected learning event that 
would not have been predicted by any a priori task analysis of the curriculum materials.  
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The linear interpolation strategy was not an a priori instructional goal, but rather emerged 
as through interactions around the activity.   

I now turn to our discussion of Sfard’s commognitive perspective.  Thus far in 
this review, we have focused our attention on theoretical perspectives about knowledge 
and knowledge construction involving mental structures and processes.  In contrast, 
Sfard’s perspective aims to conceptualize mathematics thinking and learning in terms 
communicative processes.   

Informed by Wittgenstein and Vygotsky, Sfard (2008) reconceptualizes learning 
as a process of “individualizing genres of interpersonal communication.” Empirically, 
this means that phenomena that have been traditionally approached from the perspective 
of conceptual change and cognitive structures are approached instead in terms of 
communicative structures and discourse change. Of particular interest in Sfard’s personal 
empirical work include how new mathematical objects are formed and the development 
of discourses around particular mathematical topics (e.g., algebra, negative number, etc.).   

One aim of Sfard’s commognitive program is to create a foundation for studying 
thinking and learning that does not involve the observation of mental entities. She makes 
the argument for the necessity of her perspective in her discussion of five controversies 
that research on cognition has struggled to resolve.  These include (1) contextuality and 
situativity of knowing, (2) what “understanding” means, (3) number, (4) misconceptions, 
and (5) learning disabilities. Drawing upon Blumer (1969), Sfard claims that current 
terms in the psychological literature such as “abstraction” and “understanding” fail 
several criteria: (1) instances of the underlying phenomenology of interest cannot be 
clearly identified based on the specification of these terms, (2) the theoretical boundary 
around the constructs and related theoretical constructs is not sharply drawn, and (3) 
because of these foundational referential problems, knowledge about the constructs 
cannot be accumulated.  

It is of interest to note that researchers from the Knowledge in Pieces community 
(e.g., diSessa & Sherin, 1998) have made several of these same kinds of arguments about 
the inadequacy of much existing theoretical machinery for studying concepts and 
conceptual development. However, though the commognitive and KiP perspectives are 
similarly broad in scope, they diverge on the foundational issue of the sensibility of 
studying mental structures and processes. 
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 Chapter 3: Research Design and Data Collection 

In this chapter, the broad context of the study and the methodology guiding data 
collection are introduced. Because the most detailed analyses presented in this 
dissertation focuses on only a very small part of the larger corpus of data collected, I first 
provide some details about the broad context for my study.   In particular, I first discuss 
at some length pilot data that I collected in middle school algebra classrooms and how it 
informed the later design of the tutorial/interview study.  The core analytic work in this 
dissertation involves a case study of one student, Liam, developed from the tutorial study 
data.   

The broader context framing the study 
The focus of this dissertation grew out of data collection and work I was doing as 

part of the Diversity in Mathematics Education (DiME) project, led at UC Berkeley by 
Alan Schoenfeld.1  I will start with some broad framing of the local context.  

Developing a way to address a district mandate to teach algebra to all eighth 
graders was an issue of critical importance to the teachers in the local middle schools. 
One of the main difficulties in implementing the mandate was the issue of whether all 
students in the district had been sufficiently prepared by their previous mathematical 
experiences in order to take the standard yearlong algebra course.2  To address this 
concern, the decision was made to offer two versions of algebra: the standard course and 
a slowed version of the same course (called “Algebra 1A/1B”) using the same curricular 
materials, offered over two years instead of the usual pacing of one year.   

In line with the concerns of the DiME project, my initial interest was to compare 
the tracked algebra and algebra 1A classes taught by the same teachers in order to 
examine the way that mathematics was presented, discussed, and taken up by students in 
the “standard” and “transitional” versions of algebra. Through my work with DiME, I 
was paired with an eighth-grade algebra teacher who was simultaneously teaching both 
the algebra and algebra 1A classes. As part of this project, I planned to follow the 
enactment of a particular strand of the curriculum, common to both the algebra and 
algebra 1A classes.   

                                                 
1 The DiME project was a NSF-funded Center for Learning and Teaching (also including 
UCLA and UW-Madison) that focused on issues of equity and diversity in mathematics 
education.   Each university campus had a local school district as a partner. As a graduate 
student fellow on this project, over the course of three years on the project, one of my 
roles was that of participant observer and classroom support for a middle school algebra 
teacher.  
2 The course used the reform “College Preparatory Mathematics (CPM) Algebra Year 
One” curriculum.  
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In consultation with the classroom teacher, the decision was made to collect data 
on how students understand and model word problems. Based on my observations of the 
classroom instruction in the focal classes, I chose to focus on how students make the 
transition from “informal” solution processes of “guessing and checking” organized in a 
chart form to a standard algebraic solution technique of setting up and solving equations.  

This strand of curriculum was of interest from a comparative perspective because 
in my classroom observations, I had observed that while both classes started from 
guessing and checking approaches, the Algebra class successfully and rather rapidly 
made the intended transition to variable modeling approaches, while the Algebra 1a class 
never really progressed beyond guessing and checking to solve problems.  

A particular sketch of steps that this transition was expected to follow was 
suggested by the curriculum used in these classes: College Preparatory Mathematics 
(Sallee, Kysh, Hoey & Kasmatis, 2000). The transition model has five instructional 
phases: (1) exploring students’ pre-instructional approaches, including trial and error (2) 
introducing a chart form (a “Guess and Check chart,” see below) to record sequences of 
trial values (3) making a connection to future symbolic expression of the relationships in 
the problem (4) symbolizing the relationships in the problem in the chart, and (5) purely 
symbolic expression without the chart.    

It was of interest to me to examine the continuities and discontinuities between 
this heuristic stage model for how students’ competence with solving algebra word 
problems develops and how students’ thinking actually develops as they engage with 
instruction attempting to follow this model.  This was of interest both in the classroom 
context and in a later follow-up tutorial study (described later in this chapter).  The 
purpose of the follow-up tutorial study was to get higher resolution data on processes of 
student thinking than would be possible with sampling students across several weeks or 
months of instruction in the classroom context. 

Below I discuss an example that illustrates the stages of the expected transition 
model.3  I use the following word problem as an example:   
 

The length of a rectangle is six more than three times the width.  If the 
perimeter is 148 ft, find the length and width. 

 
Phase One (Pre-instruction):  Students who engage in solving the word problem might 
make use of informal strategies (guess and check, diagrams, unwinding). These strategies 
might be rather idiosyncratic and suited to the problem at hand (i.e. context dependent), 
but not represent a general approach to solving word problems.  Another possibility is 
that students at this stage may not attempt to engage in solving the problem. One 
objective at this stage is to uncover students’ pre-instructional approaches.  
 
                                                 
3 This is based both on material in the CPM guide for teachers and also observations of 
how the teacher understood and set up for the “steps” in this transition model in her 
classroom instruction.  
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Phase Two:  The Guess and Check chart is introduced by the instructor and/or co-
constructed with students. Instruction with Guess and Check charts initially focuses on 
constructing the representation with the explicitly communicated goal of solving the 
word problems via a sequence of trial cases recorded in the charts.  The sequence of trial 
values is meant to develop students’ conception of variable quantities.  
 

Width Length Perimeter Check 
10 3(10)+6=36 10+36+10+36=92 Too low 
20 3(20)+6=66 20+66+20+66=172 Too high 
17 3(17)+6=57 17+57+17+57=148 Check 

Figure 1. A "Guess and Check" chart and its use in solving a word problem. 

Phase Three: At this point in the trajectory, students will have used the charts to solve a 
variety of problems (albeit of a rather narrowly defined semantic type).  After having 
been encouraged to write out how the variables in the problem are related, students are 
prompted to express these patterns symbolically in the last row of the chart.  The 
instructional goal is to connect the activity of solving the problems using guess and check 
to future symbolic methods of solving word problems.4  
 

Width Length Perimeter Check 
10 3(10)+6=36 10+36+10+36=92 Too low 
20 3(20)+6=66 20+66+20+66=172 Too high 
17 3(17)+6=57 17+57+17+57=148 Check 
W 3(w)+6 W+3w+6+w+3w+6 =148 

Figure 2. Symbolic expression of relationships in the last row of the chart. 

Phase Four:  Students are to make the charts, but only record their expressions for 
variables and relationships between variables in the problems symbolically.  
 

Width Length Perimeter Check 
W 3(w)+6 W+3w+6+w+3w+6 =148 

Figure 3. Recoding only the last row of the chart in solving the problem. 

Phase Five: Students are asked to not make the charts anymore, but just to write down 
the assignment of variables and solve the problem symbolically:  From the problem, we 
are given that l=6+3w.  So, P=2(6+3w)+2w.  Solving for w gives w=17 feet.  
Substituting for l gives 57 feet.  
 

                                                 
4 We should note that understanding how, exactly, the critical step:  bootstrapping from 
specific example calculations to “algebra” was precisely one of the potential 
discontinuities we wished to explore and get process data around in the follow-up tutorial 
study. 
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From the perspective of the development of algebraic reasoning, this strand was 
of interest because the transition model proposed by the curriculum and appropriated into 
the instruction of Ms. S. appeared to be consistent with mathematics education literature 
on the use of spreadsheets for supporting students in setting up and solving word 
problems using variable expressions (Abramovich & Nabors, 1998; Bills, Ainley, & 
Wilson, 2006; Haspekian, 2003; Rojano, 1996; Sutherland & Rojano, 1993).  This 
literature claims to provide some evidence that spreadsheets are a valuable tool to 
mediate the transition between solution approaches (making variable modeling 
approaches more meaningful by making algebraic symbolism more meaningful).  
However, none of the research studies in the literature provided data of a very high 
resolution on what students were actually understanding about spreadsheets, about 
variables, or about how exactly the spreadsheets mediated this “arithmetic” to “algebra” 
transition.  

The follow-up tutorial study I conducted was organized around the same 
trajectory as is found in the curriculum and discussed above. The objective of the tutorial 
sessions was exploratory—to see what aspects of the “transition” using this approach 
seemed sensible to students and whether and how the chart approach seemed to be 
supporting the intended transition.5    

Prior to this study, very little literature (and, as noted above, mainly only in the 
context of computer spreadsheets) existed on any aspect of this relatively recent 
curricular proposal (Abramovich & Nabors, 1998; Bills, Ainley, & Wilson, 2006; 
Haspekian, 2003; Rojano, 1996; Sutherland & Rojano, 1993).  Related perspectives come 
from the much wider literature on algebra learning and pattern generalization (e.g. Ellis, 
2007; Lannin, 2005; Noss, Hoyles, Mavrikis, Geraniou, Gutierrez-Santos, & Pearce, 
2009).  The sole research study found that made direct contact with the transition as 
specified by the CPM curriculum was a recent study of Izsák, Caglayan & Olive (2009) 
exploring classroom episodes around word problem solving from a meta-representational 
(diSessa, 2004) perspective. 

From the perspective of learning theory, this transition was of interest because it 
could provide an example of how students build on previous understandings (solving 
problems through a series of trial calculations) in building more “advanced” 
understandings (solving problems through solving for an unknown value).  Previous 
literature (Johanning, 2004; 2007) had identified guessing and checking to solve word 
problems as an activity that was of some value.  This was in contrast to previous 
literature that positioned “guessing and checking” as a problem solving approach that was 

                                                 
5 One difficulty that was evident both in the classroom observations and in the tutorial 
sessions is that the function of writing out calculations and recording them in the chart so 
that they can be available to reflect upon in the future is not necessarily well motivated 
and sensible to students.  From the perspective of students, the current objective is simply 
to find the answer to the particular problem at hand.  Asking them to do something that 
will be helpful in the future but that is not connected with the activity they are currently 
engaging in is a hard to justify pedagogical move.  
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an obstacle to learning the algebraic approach to solving problems (Stacey & MacGregor, 
2000).6 

Main phase of research 
Six students participated in the main phase tutorial study. These students were 

recruited from the seventh grade pre-algebra class at the same school as the classroom 
observations were conducted.  The interviews took place over the summer between the 
students’ seventh and eighth grade years.  
 
The subjects were:  

Table 1. Tutorial Study Subjects 

Student Gender Prior 
performance 

Class placement 
in 8th grade 

Group 

IP (Liam) Male Average Algebra A 
AV Male High Honors Algebra A 
SD Male Average Algebra B 
YA Female Average Algebra B 
MD Female Average Algebra B 
EC Male Low Algebra 1a B 
DT7 Female Low Algebra 1a A 

  
Prior performance in mathematics was based on self-report of the student and the 

assessment of the students’ seventh-grade teacher. The sessions were done over the 
course of two, two-week periods.  “Group” in the above chart describing the subjects 
refers to whether the student participated in the sessions conducted in the first two-week 
period (Group “A”) or second two-week period (Group “B”).  

 
Tutorial Sessions 

Each subject participated in a series of six sessions. Each of these sessions was 
designed to last one hour.  My role in the sessions was as a tutor-researcher (described 
more below).   
                                                 
6 One of the major themes that emerged in the pilot work (and that was followed up on in 
the tutorial study) was that the way that students make their choices about “next guesses” 
gives information about the state of their conceptual understanding.  The specific kind of 
knowledge that gets used is knowledge about how to control the variation of functions.  I 
will expand upon this type of knowledge later in the dissertation. 
 
7 DT had a great deal of difficulty engaging with the first problem in the session and 
asked to remove herself from the study. Though she withdrew from the study, her mother 
agreed to let me continue to tutor her on topics she identified (e.g., fraction operations) as 
problematic to her to help her prepare for eighth grade.  
 



 

 
 

 

15 

The sessions were designed to allow me insight into how a particular curricular 
proposal (as implemented in a local classroom) functioned.  The main difference was that 
instead of studying the trajectory over the course of the year in the classroom, I would 
attempt to simulate conditions on a shorter timescale (over the course of six session over 
two weeks).  Because there appeared to be a “singular point” in the curricular trajectory 
(and certainly the classroom implementation of the curriculum) between when students 
engaged in guessing and checking and when they later engaged in variable modeling, I 
wanted to “turn up the microscope” on this proposed trajectory.  
Table 2. Overview of the Objectives of Each Session. 

Session Description 
One The first session covered three major themes:  

- “Start-unknown” versus “start-known” problems – Could students articulate 
what was different about paired problems where one used a given value to 
compute the desired answer versus one where one “worked backwards” to 
solve the problem?  
- Introducing students to organizing sequences of guesses organized in charts 
– with no particular focus on strategy for choosing values  
- Introducing students to actually solving problems using the charts.   
The first session functioned partially as a pre-assessment to ascertain what 
approaches students would use to solving simple algebra word problems if 
none were instructed. 

Two The second session continued with a warm-up pair of start-known and start-
unknown problems.  The student was asked to organize the solution in the 
chart.  By design, all of the rest of the problems were to be solved using the 
charts.  Practices around the charts (e.g. writing out operations on inputs and 
intermediate calculations, noting and marking whether a particular guess was 
too high or too low, etc.) were discussed.  

Three The third session involved students solving problems using guessing and 
checking and then creating a final row where they wrote out the general form 
of the trial calculations they had been recording. Setting up equations from 
this information was discussed.  Students were asked about what the answer 
to the equation would be (to see if they understood that the answer they had 
just found using guessing and checking would also be the same answer as 
when solved by equation).  

Four Session four involved additional problems where students initially found a 
solution by using “guessing and checking” and then solved the problem a 
second time by setting up equations and solving them. 

Five Session five involved students setting up problems without reference to the 
chart form.  

Six Session six was a “post-assessment” where students solving problems using 
whichever method (guessing and checking or equation solving) they chose.  
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Above, I outlined the broad objectives of each of the six sessions that were 
conducted with students.  Sessions one and six were intended to “bookend” the sessions 
with an opportunity to observe how students approached problems at the beginning and 
ending of the sessions.  The interior sessions were each focused around a particular phase 
in the previously mentioned transition model. 

All problems worked in the sessions appear in the appendix outlining the 
interview session protocol (Appendix 1).   
 
Selection of problem pool 

A number of features of the problems in the session are worth noting. Some 
example features include: (1) virtually all problems involved the underlying structure of a 
linear equation in one variable, (2) had integer-valued solutions, (3) involved largely 
discrete quantities (integer relations, integer age relations, relations between mystery 
numbers, relations between number of objects like candy bars, etc.), though some 
problems involved familiar continuous quantities coming from measurement (e.g. yards 
in a football game, perimeters of rectangles, etc.). There was also some attempt to make 
the numbers in the problems not so small that the problems could be solved easily by 
inspection.  

The problems mirrored problems that were solved in the eighth grade algebra 
class that this study was meant to inform (In some cases they were taken directly from the 
curriculum, or slightly modified). The problem contexts were chosen so as to be simple 
and accessible, relying upon conceptual content that it could be assumed students would 
find familiar. 

 
Implementation of the protocol 

Though the sessions followed the instructional arc described above, during the 
time for the student to work on the tasks, the tutor/researcher usually avoided intervening 
in directive ways.  Example interactions included: 

1. Clarifying and reminding the student of conventions of the agreed upon approach 
(e.g. reminding the student to write out calculations) 

2. Asking the student to justify choices for guesses (getting the student to verbally 
articulate their reasons for choosing particular guesses)  

3. Encouraging students to continue/finish their calculations so that the trial could 
become a basis for making reasonable choices for next guesses. 

On occasion, some verbal feedback or encouragement was given concerning the specifics 
of a students’ approach.  In retrospect, it is not clear that this was strictly necessary to the 
sessions and should probably be avoided. However, the affective dimension of 
“maintaining the interaction” is important and cannot be discounted.  

Though there was a specified pool of problems and the sessions were globally 
structured around transitioning from guessing and checking approaches to solving 
problems to variable modeling approaches, there was some variation in the 
implementation of the protocol.    

Some variation in the sessions was due to the fact that students moved through 
problems more quickly or slowly.  The same basic pool of questions was used for all 
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students, but some students needed to do another problem of the same type or others 
could move through problems more quickly.  Thus, the sessions were thematically 
organized and the specific problems (within the initial pool) were decided upon during 
the sessions. Another constraint of the sessions was that they were to last exactly one 
hour.  Sometimes problems would be added to fill out time in the sessions or on occasion, 
work on problems would be cut short due to time constraints. This happened rarely. 

 Because the core analysis of this dissertation will focus on an in-depth analysis of 
the protocol from the sessions with one of the students, the variation in the 
implementation of the protocol across subjects is not relevant to our present concerns.  

 
Data collection procedures 

Problems were given to the student on 8.5 x 11 pieces of paper with ample room 
to write. Students were given pens to work with so that all of their calculations would be 
recorded. Students were also allowed to use a calculator. A calculator with particularly 
large keys was selected so that any calculations that were done would be able to be later 
discerned in viewing the video.   

Each of the six sessions was conducted individually with each of the six students 
over a two-week period. (So, there were 36 total hours of interviews).  The data corpus 
includes video and all written work for all of the sessions.  A basic, but novel, 
methodological advantage of the current study over previous studies documenting 
students’ “informal” approaches to word problem solving (Bednarz & Janvier, 1996; 
Johanning 2004; 2007) was that, because of the video record, the current study could 
examine the choices students were making as they were solving the problems.  As we 
will see in the focal case study, the richness of the video record is crucial in interpreting 
students’ work.  

Each of the six sessions with the six subjects was both video-recorded and audio 
recorded.  Because the main focus was being able to coordinate the students’ written 
productions with their verbal justifications and explanations, as well as any calculations 
they did with the calculator that was provided to them, the video camera was set up to 
focus on the subjects’ papers.  The camera was set-up behind the desk (over the 
shoulders) where the tutor and student were working. This also allowed for the analysis 
of any gestures that students made as they were constructing charts and solving problems. 
This allowed for the disambiguation of verbal descriptions (e.g. when students would say 
things like “for every one of these” such a statement could then be interpreted by 
referring to the video to see where the student was pointing).  The sessions were also 
audio-recorded as a back-up measure in case collection of video data failed in a particular 
session.  This did not occur and the audiotapes of the sessions were not used for analytic 
purposes. To aid in the collection of sufficiently good audio to capture students’ 
utterances, an external flat microphone was used.  

A re-design of data collection procedures could include capturing video that 
allowed a view of the entire interaction between student and tutor—allowing the tracking 
of eye gaze and facial expressions, as well as more interactional detail.  However, for the 
purposes of the particular analysis undertaken here, such detail did not present itself as 
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crucial.  Further, the single camera data collection set-up of this study was chosen 
because of logistical considerations.  

 
Narrowing of the analytical focus 

In this section, I briefly describe the process of selecting a focal phenomenon of 
interest from the larger data corpus.  The actual procedures of analysis and the arguments 
and principles that the analysis is subject to are discussed in the chapter on creating my 
analytical frame and then exemplified in my actual analysis.  

The design and implementation of the tutorial study was meant to track a 
particular arc of learning: students moving from one approach to solving problems 
(guessing and checking) to another approach (setting up and solving equations).   As 
noted above, there were many issues related to the implementation of this trajectory that 
were already noticed in the pilot classroom data.  The tutorial studies, in the attempt to re-
create the same learning trajectory as in the classroom, allowed for a cleaner 
documentation of some of these same issues.  The higher resolution was meant to provide 
a baseline for re-design of instruction in the classroom the following year and/or in future 
iterations of a tutorial study.  Along these lines, an important aspect of studying the 
process of moving from one approach to another was to find out what was more or less 
sensible to students about this activity.   

Within the framework of this focus, an extended sub-arc of episodes of 
considerable interest occurred within one of the student protocols.  A completely 
unexpected, but very interesting, development happened with one of the students, Liam. 
Over the course of the sessions, Liam refined his strategy for solving the problems in the 
session from a simple guessing and checking solution strategy to a more sophisticated 
and algorithmic approach based on the idea of linear interpolation.  This development 
was of great interest to me, partly because this new conceptual and strategic direction 
seemed to be so different, yet emerge so naturally from interactions around the 
“intended” trajectory of the sessions.  Finding a scientifically adequate way to describe 
the emergence of this novel strategy became the focal pursuit of the research reported in 
this dissertation. 

In the next chapter, the theoretical perspective that guides the analysis will be 
introduced and discussed in more depth. 
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Chapter 4: Theoretical Perspective 

The previous chapter discussed the broad framing for the study from which the 
focal case study data analyzed in this dissertation was drawn.  It is now time to re-focus 
attention on what will be my central concern for the remainder of the dissertation: the 
process by which novel strategies emerge during mathematical problem solving. To 
prepare for the case study analysis that will be the analytical core of the dissertation, I 
now turn attention to a discussion of the epistemological framework that will play a 
central role in developing the analysis.  

Empirical approaches to epistemological questions 
Before discussing the particular epistemological framework that informs the 

current study, I first make explicit some of my orientations and aesthetics with respect to 
the enterprise of modeling conceptual understanding and learning.  

First, one of the fundamental commitments taken in this dissertation is that 
analyses of learning processes should be epistemologically grounded, with the aim of 
extending our understanding of learning processes at a principled and theoretical level.  
An analysis being “epistemologically grounded” means that the assumptions being made 
about the nature of knowing and constraints on knowledge representation and change are 
made explicit by the researcher.  Furthermore, an explicit goal of the analysis is to make 
an epistemological contribution – that is, to further our understanding of what it means to 
know and learn mathematics.  The orientation to theory-building taken in this analysis 
could thus be identified as a type of “empirical epistemology” in that rather than 
introspective or philosophical arguments about the nature of mathematical knowledge 
and learning, we build up a theory of mathematical knowing by studying episodes of 
individuals and groups thinking about mathematics and engaging in a wide variety of 
mathematical activities.  The theory produced should apply across all of these contexts 
because it should say something fundamental about what it means to know and do 
mathematics.   

An empirical approach to studying epistemological issues was pioneered by 
Piaget, who established genetic epistemology as a field of study (Piaget, 1970).   DiSessa 
(1994) discusses an approach to “epistemological micro-modeling” in which the 
constraints of cognitive modeling and information processing concerns are joined with a 
focus on the perspective of developmental psychology in creating accounts of intelligent 
activity its development.  The current program of work is broadly informed by diSessa’s 
epistemological micro-modeling approach. 

I now discuss the epistemological framework that guides the analysis in this 
dissertation.  The rationale for choosing KiP as a theoretical frame to guide the analysis is 
based on its potential to give a unified approach to theorizing about a variety of important 
phenomena about the nature of knowing and learning mathematics that have been 
documented in the cognitive and learning sciences literatures as well as in the 
mathematics education literature.   
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Knowledge in pieces (KiP) 
The Knowledge in Pieces (KiP) epistemological perspective (diSessa, 1993) is a 

powerful and evolving heuristic framework for considering the nature of knowledge, its 
deployment, and how knowledge organization changes as individuals learn.  Though 
many of the principles can be (and have been) stated quite generally, KiP remains most 
elaborated in the domain of physics (Notable and more recent exceptions in the domain 
of mathematics that have strongly guided the current analysis include Izsák, 2000; 2005; 
Pratt & Noss, 2002; and Wagner, 2006; 2010).  

Historically, Knowledge in Pieces as a perspective on knowing and learning was 
informed by two main traditions: developmental psychology (e.g., Piaget’s genetic 
epistemology) and artificial intelligence.  From developmental psychology came an 
interest in and ultimate accountability to be able to explain long-term and central learning 
and developmental processes. From artificial intelligence came a commitment to the fine-
grained accountability that is required by attempts to model moment-to-moment 
cognitive activity, ultimately computationally. Thus, one can see that the commitment to 
understanding change across very long time scales is paired with the commitment to 
understand the details of learning at very small, moment-to-moment timescales. 

According to KiP (diSessa, 1993), individuals’ intuitive knowledge about the 
physical world (their “sense of mechanism”) can be productively modeled as a complex 
system of a diverse set of elements. Naïve knowledge systems are typically comprised of 
many, loosely coupled knowledge elements whose activation and use is highly context-
sensitive. The development of expertise largely involves the progressive systematization 
and re-organization of the naïve knowledge system.   

In choosing KiP as an orienting frame for the purpose of studying thinking and 
learning in other domains (such as mathematics), one is implicitly asking the question of 
to what degree that hypothesis about the nature of knowledge and how it changes as 
people learn is shared across domains.  In addition to the studies of mathematical 
thinking and learning cited above, the potential for KiP to provide a unified way to think 
about a wide variety of issues that emerge in learning mathematics, recommends it as a 
powerful heuristic frame for guiding analyses.  Though the specific elements (especially 
their source) may be different across domains, the idea of a “systems perspective” on 
conceptual development offers a lot (See Smith, diSessa, & Roschelle, 1993) to re-
framing many and diverse learning issues in mathematics (e.g. gradual construction of 
understanding of multiple and diverse facets of concepts, coordination of understanding 
across representational forms, the difference between “having” knowledge, recognizing 
that it is applicable, and using it effectively to construct proofs and solve problems, etc.)  

Other orienting assumptions of KiP include an attention to knowledge-in-use, 
especially with respect to potentially productive role of prior knowledge resources; a 
commitment to understanding the inner workings of concepts as they function for 
individuals at a sub-conceptual grain-size; and an accountability to the details of learning 
processes at multiple time-scales, especially including very short time-scales. This 
accountability gives an opportunity to coordinate our accounts of how novice knowledge 
structures develop over time into expert ones with the important nuances involved in 
local learning events. 
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To most important principles of KiP (as organized in diSessa, in preparation) are 
summarized below: 

1. The complexity of the naïve state. The assumption that students come to school 
with many intuitive ideas that should be leveraged in instruction is a fundamental 
assumption of constructivism and of KiP in particular.  The key phrase here is 
“complexity” – in the sense that students’ knowledge structures and systems are 
diverse and complex to understand and we need theoretical tools that help us to 
make sense of that complexity. 

2. Potential productivity of intuitive knowledge.  This principle stems from the 
constructivist roots of KiP.  In contrast to work on misconceptions, KiP studies of 
knowledge and learning aim to document knowledge structures that maintain 
continuity with both pre-cursor and successor forms.  

3. Grain size and structure.  The structure of knowledge is an empirical question 
and adopting a small grain size helps us to capture fine nuances in change.   

4. Focus on micro-details of learning processes. In contrast to before/after studies 
of mathematics learning, KiP studies are accountable to the details of learning 
events and thinking processes within them. 
 

Knowledge systems and their dynamics 
We now discuss some of the ways that KiP models of knowledge structures, 

organization, and dynamics capture the situativity and reactivity of knowledge. One of 
the key questions one would ask about any knowledge system is how its elements are 
cued to an active state.  Activation of elements depends very particularly on aspects of 
the mental context.  Thus, what is salient to a person and they are attending to in a 
context is very important for determining what knowledge is activated. Other important 
influences on what knowledge elements are cued to an active state are the knowledge that 
is already in play in the situation.  The constructs of cueing priority and reliability priority 
are measures of how likely knowledge elements are to be active at any given time. 

1. Cueing priority is a measure of how likely, given a particular set of conditions, it 
is for a certain element to be activated.  When this priority is high, little is 
required (in terms of the activation of other elements or the focusing of attention 
on particular aspects of the situation) for the element to be activated. 

2. Reliability priority is a measure of how likely the element will stay active once it 
is activated. If the reliability priority is high, the reasoning supported by the 
element is likely to be more confidently expressed. The source of a high reliability 
priority could be previous empirical feedback that indicated that the activation of 
that element was useful or explanatory in the particular context.   

 
There are several simple ways that knowledge systems are tuned toward expertise 
through experience.   

1. New experiences generate new elements that help individuals with the work of 
the knowledge system (e.g., explain their physical experience, figure out how to 
control quantities, etc.)  
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2. Changing of priorities (e.g., the weights of the elements).  Priority changes result 
in certain elements becoming more important and active in the system and other 
elements becoming less important.  To induce this mechanism of learning through 
instruction, one must have a very good sense of the relevant elements of the 
conceptual terrain.  Further, one must be aware of how the elements might be 
related since it is possible that several elements can be promoted/demoted in 
priority at the same time.  

3. Elements can take on new functions within the system.  
These general possibilities for how knowledge systems can increase in complexity will 
become important in the predictions we make about how the strategy and conceptual 
systems of interest in this dissertation grow and change. 

 
Reference models 

We close this chapter by introducing two reference models of knowledge 
structures and systems developed from the KiP perspective.  The analysis developed in 
this dissertation does not directly make use of the constructs of p-prims and coordination 
classes.  However, it is useful to have a sense for one, well theorized example of a more 
elemental class of knowledge structures (p-prims) and another example of knowledge 
systems (coordination classes).  To preview, the analysis in this dissertation will involve 
both elements (co-variation schemes) and systems (MEA and linear 
interpolation/extrapolation strategy systems and the linear control of variation system).  
 
Phenomenological primitives 

The first and most familiar theory from the Knowledge in Pieces tradition is the 
theory of phenomenological primitives (p-prims).  Phenomenological primitives are 
phenomenological in the sense that they are mental structures that are abstracted from 
experience and help individuals to form interpretations of their experiences.  They are 
primitive in the sense that they are self-explanatory to individuals and that they are 
encoded and evoked as a single unit (e.g., in contrast to concepts that may be very 
complexly encoded and evoked).  

As a knowledge system, the system of phenomenological primitives is quite large 
and is dense in the areas in which people have a lot of experience with the physical 
world.  In diSessa, 1993, several dozen p-prims were documented and discussed as part 
of the argument for showing the wide breadth of contexts in which p-prims function and 
also to demonstrate through example how this theoretical construct helps us to understand 
how people reason about the physical world.   

The hypothesis is that p-prims are abstracted from everyday experiences in the 
world and that the proper contextual recognizing takes years to establish through a 
process of “tuning towards expertise.”  In terms of encoding, p-prims are not well aligned 
with linguistic expression.  Researchers give labels to different p-prims, but the actual 
mental structure is not necessarily connected with language at all.  The prototypical p-
prims is Ohm’s p-prim “More effort begets more result.”  This p-prim is what accounts 
for what someone knows when they “know” that throwing a ball harder will make it go 
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farther or when they know that they will need to work harder in order to finish their 
dissertation in time! 
 
Coordination classes 

A coordination class (diSessa, 1994; diSessa & Sherin, 1998; diSessa & Wagner, 
2005) is a model of a particular kind of concept.  Unlike p-prims, coordination classes are 
a system of elements rather than just a unitary element.  The motivation for the idea of a 
coordination class is how individuals come to “see” theoretical kinds in a world that is 
perceptually diverse and complex.  For example, one determines “force” in situations 
differently in situations where one sees a book on a table, a ball tossed in the air, or an 
object pushed across a table. Typical issues in determining theoretical kinds in the world 
are that coordination classes (e.g., individuals’ knowledge systems) for determining 
particular quantities lack span (e.g., means of determining in different contexts) and lack 
alignment (e.g., the different strategies that individuals do have for making 
determinations do not give the same result across contexts).  As has been documented in 
several cases, the process of “generalization” of knowledge (e.g., increasing span) occurs 
through the accumulation of specifics – new strategies of determination as opposed to 
through processes like abstraction. 

In terms of actually “seeing” coordination classes in data, diSessa (2006; 2011) 
describes two key heuristics: 

1. Follow the “eye” (perceptual component – “readout strategies”). Track what 
individuals are attending to, why, and how.  

2. Follow the “mind” (inferential component – “causal net”).  Track what 
individuals are inferring from what they actually see.   

Coordination classes and p-prims are discussed here because they will be used as 
reference models in the work of the dissertation. 
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 Chapter 5: Analytical Perspectives 

While Knowledge in Pieces (KiP) describes the theoretical (epistemological) 
framework that informs the analysis in this dissertation, the family of empirical and 
analytical strategies that are well suited for investigations aligned with the central 
principles of KiP (e.g., that knowledge is diverse in form, complex in organization, and 
usage is highly contextual), is called Knowledge analysis (diSessa, 1993, 2004; Sherin, 
2001; Parnafes & diSessa, submitted). A characteristic feature of this family of analytic 
strategies is that the nature and form of knowledge and how it changes as individuals 
learn is not assumed a priori, but rather the structure and dynamics of particular classes 
of knowledge elements and systems are typically results of analyses.8   Further, the 
descriptions obtained through the analysis are accountable not only to the empirical data 
at hand in a given study, but other constraints also come into play (e.g., existing theory 
and literature, plausible developmental history of knowledge elements and systems, etc.).   

In this sense, the analysis in this dissertation is a prototypical example of 
developing a knowledge analysis – the structure and function of new (candidate) 
knowledge elements and systems are schematized and their dynamics studied in a way 
that is constrained both by theory and empirical data.  

Because this is a nascent genre of research and because the KiP/KA community 
investigates processes of thinking and learning across a wide variety of content domains 
(e.g., mechanics, algebra, basic probability and statistics, special relativity, etc.) using a 
range of empirical set-ups (e.g., clinical interviews and tutoring interactions, classroom 
discussions, peer work in pairs or groups), understanding and schematizing this range of 
analytic strategies is an ongoing and community effort.9 In an attempt to contribute to this 
effort, the presentation of the analysis in the following chapter (Chapter Six) has been 

                                                 
8 As we become more knowledgeable about how individual knowledge is structured, how 
it functions in activity, and how the organization of knowledge systems changes as 
individuals learn, we also need tools and techniques to reliably identify the already 
discovered knowledge types and their properties in data.  
9 Charting characteristic empirical strategies and analytic practices associated with doing 
a wide spectrum of work related to “Knowledge analysis” has been the focus of an 
ongoing research seminar at Berkeley (A. diSessa and M. Levin), conference symposia at 
AERA, ICLS, and EARLI (organized by M. Levin, O. Parnafes, L. Barth-Cohen, and S. 
Kapon), as well as the theme of recent workshops of the KiP community (“KiPshop 
2009: What is knowledge analysis?” and “KiPshop 2010: Knowledge analysis and 
Interaction analysis” and an AERA funded Educational Research Conference Program in 
2011 on synthesizing Knowledge analysis and Interaction analysis perspectives to 
studying learning and conceptual change).  Much of the material in this chapter is 
informed by discussions, presentations, and papers in these workshops, seminars, and 
conferences.    
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purposefully arranged so as to make visible the strategies and techniques of knowledge 
analysis that were particularly relevant to developing the final model of strategic and 
conceptual co-development presented in this dissertation. It is important to understand the 
programmatic nature of this work. Thus, one function of the current chapter is to prepare 
the reader to understand both the way the analysis in this dissertation was conducted, but 
also where we can expect such analyses to fit into larger programs of work.  

The first part of this chapter explores some of the general heuristics and strategies 
that guide some of the prototypical work and questions of interest to this community. The 
second part of the chapter discusses some related analytic perspectives that are related to, 
but differ in important ways from Knowledge Analysis.  The contrast perspectives we 
briefly survey include microgenetic analysis (Siegler, 2006), grounded theory (Glaser & 
Strauss, 1967; Shkedi, 2005), and phenomenography (Marton, 1981; 1986; Marton & 
Booth, 1996).  

Knowledge Analysis (KA) 
One indicator of the robustness of our scientific understanding of a phenomenon 

is our ability to build computational models of it.  A central focus of attention in 
knowledge analysis research is to work towards the ambitious program of creating 
computational models that capture the richness of real-time dynamics of thinking and 
learning processes.  The issue of “modeling at the knowledge level” and how such a 
program is distinguished from contrasting approaches to building computational models 
of cognition (e.g., symbolic modeling and approaches to unified models of cognition in 
the work of Newell & Simon, 1972 and John Anderson, 1996) is discussed in diSessa, 
1994 and diSessa, in preparation.  However, while an ultimate goal of this program of 
work involves computational explicitness, this is certainly not a proximal goal.  At 
present, most research is focused on the very question of characterizing the nature and 
form of students’ knowledge structures and systems (and, at the cutting edge, sketching 
mechanisms of change in form and function of elements and systems).   

To give an indication of the shape of this general program using the most 
prototypical and well-studied knowledge type in this line of research as an example, the 
empirical core of diSessa (1993) involved giving extended and explicit descriptions of the 
form and function of a large number of knowledge structures involved in individuals’ 
reasoning about the physical world (p-prims).  Modeling the behavior of these structures 
in terms of connectionist networks and structured priorities was discussed in general 
terms with the intent of sketching out a way to operationalize the program of modeling 
thinking and learning processes at the knowledge level. However, while modeling 
knowledge systems in terms of networks of elements with weightings that encode the 
likelihood of activation and suppression of elements and subsystems has been productive 
at a heuristic level, most current KA research does not yet devote significant attention to 
explicitly operationalizing models.10 As mentioned above, there is still such substantial 
                                                 
10 Sherin, in preparation, is an exception in his efforts to computationally realize some 
aspects of the methodology through the use of Latent Semantic Analysis (LSA), among 
other techniques.  However, Sherin’s suite of computational coding techniques serves a 



 

 
 

 

26 

work to be done at the level of mapping out the terrain of individual cognition in terms of 
types of knowledge that capture characteristic intellectual functions. From this 
perspective, the program of computational realization is still premature.  

An area where KA research is starting to break new ground is in the coordination 
of descriptions of the content, form, and organization of knowledge with descriptions of 
processes by which knowledge systems grow and change.  In the section of this chapter 
on microgenetic learning analysis (Parnafes & diSessa, submitted), we will discuss 
several studies that exemplify the coordination between a focus on the content, form, and 
organization of knowledge and processes of change (e.g., diSessa, in preparation; Izsák, 
2000; Kapon & diSessa, in preparation; Parnafes, 2007, submitted; Schoenfeld, Smith & 
Arcavi, 1993 and Wagner, 2006).  The discussion of microgenetic learning analysis will 
be especially important in laying the groundwork for the analysis in this dissertation, that 
builds on and extends this line of work.   

 
Heuristics and strategies for KA 

I now turn to a discussion of some of the heuristics and strategies that KA 
research uses in working with empirical data.  As KA research entails schematizing 
features of knowledge that are explanatory for making sense of the moment-to-moment 
details of individual thinking and learning processes, capturing and modeling conceptual 
nuances is an unavoidable complexity in this program of work.  Though making models 
of mental structures involves making hypotheses about entities that are not directly 
observable, video-based data of real-time thinking and learning processes can reveal quite 
a lot that constrains the models that one can build.  The table below summarizes just a 
few examples of the kind of nuance in real-time data that is potentially useful to track and 
the relevant indications of this nuance that are typically available in video records.  
Table 3. Features of real-time data useful for tracking of the content and form of knowledge. 

Aspect Data Indications/Guiding Questions for the Analyst 
Content - Individuals’ utterances – What did subjects actually literally say about 

the topic across all of the data?  
- Tracking the possibly many different ways that similar ideas are 
expressed (e.g., important differences in linguistic expression, encoding 
of understanding in gesture, etc.) 

Form - What do subjects seem to be focusing their attention on?  What seems 
salient to them about a situation?  (e.g., eye gaze, gestures, etc. can be 
indicators, as well as what they say and do).   
- What do subjects infer about the aspects of the situation that they find 
salient?   
- What do they do with the information that take in and reason about?  

                                                 
very different purpose in the broader landscape of KA work than work that centers 
around building models of knowledge structures and systems and how they function in 
activity. 
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Table 4. Features of real-time data useful for tracking the organization and dynamics of 
knowledge systems. 

Organization - Evidence that a subject takes a statement to be obvious and with no 
further explanation necessary can indicate a unitary encoding of 
structure (e.g., Explicit statement of obviousness, taking the idea as an 
unquestioned basis for reasoning, etc.)   
- Similar ideas expressed at different levels of abstraction can indicate a 
hierarchical structure with a common root element  
- What ideas has the subject expressed before a given point in time? 
Tracking the ideas before and after a focal point can give information 
about how individuals’ knowledge systems are organized   
- Are some ideas generated on the spot out of other concepts or ideas 
that are at high cueing or does the subject mainly seem to be reasoning 
from stable structures that are recognized in the situation?  Evidence 
can be expressions like “Oh!” or wait time that accompanies the 
assembly of a particular chain of reasoning.   
- Source of the knowledge element can give clues about what other 
knowledge or competences might be “in the vicinity” because of 
history of past usage. 

Stability and 
Dynamics 

- What ideas does the subject express first?  
- Do they remain consistent across instances where the idea should 
apply?  What if the subject’s attention shifts slightly within the context?  
Is the inferential process still consistent? 
- Does the expression of the idea remain consistent across contexts?   
- Confidence or conviction in the expression of ideas   
- Dynamic of the interaction: How does the subject respond to correct 
or incorrect ideas that are “available” over the course of the interaction.  
Do they find the “correct” ideas sensible and draw upon them?  
- In moments where it appears that there is a shift in conceptualization 
or thinking, are there candidate sources that could have supported the 
shift?  (e.g., interactional dynamics, interaction with a representation or 
physical model, etc.)  

 
The above chart is certainly not exhaustive with respect to the kinds of indications 

and evidence one can draw out of real-time data of reasoning processes.  However, it 
does give some sense for the kinds of things that knowledge analysts would try to track or 
follow in the video of real-time data they are analyzing.11  Further, these indications in 
                                                 
11 As I was creating the analytic narratives that were instrumental in the process of 
performing the analysis discussed in chapter six, I used a similar set of guiding questions.  
Because I did not begin the analysis with such a list of heuristics, in the case of my 
analysis such a list of what I was looking for in the data was one of the results that came 
from iterative analysis of the tapes and through comparison with reference models and 
contrasting methods.  
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the data are exactly the kinds of indications of interest that should be available in 
transcriptions that are prepared for the purpose of knowledge analyses.   

Note that the listed dimensions and sources of evidence can also be turned around 
to generate heuristics for the attributes of data that would be useful to collect about 
content, structure, organization, and dynamics.  

I note that looking for indications in the data about how knowledge is used and 
how it changes is a very important feature of knowledge analysis. Subjects will not 
typically be able to access or easily describe the cognitive structures that guide their 
thinking in a situation (e.g., especially if the knowledge was encoded kinesthetically, in 
which case verbal descriptions are only a pale approximation). 

The heuristics and guiding questions listed above for “open coding” of the data 
were especially useful in the case under study in this dissertation because the research 
was not conducted in a content domain in which extensive prior work in charting the 
conceptual territory had already been done.  Thus, heuristics for interpreting and 
interacting with empirical data like those given above were useful in the process of 
defining a relevant analytic vocabulary for the analysis.  This process is described in 
more detail in Chapter Six. 

In addition to the general kinds of indications about knowledge structure and 
organization that one can read out of data, principles and heuristics need to be developed 
for reliably identifying previously studied knowledge structures according to their 
characteristic features.  In addition to a list of some three-dozen p-prims that include 
typical structural and content features of each of the particular p-prims and their contexts 
of typical use, diSessa (1993) provides a description of fifteen heuristics for the 
identification of p-prims in general (as opposed to other kinds of knowledge elements).  
Many of these principles are meant to be specific to p-prims (e.g., principle of the body). 
However, some of them can be adapted and used as much more general principles in the 
analysis of knowledge structures and systems (e.g., diversity, coverage, functionality, 
continuity).  See diSessa, 1993 for more details on these heuristics and their role in 
guiding analyses. 

Contrast methodologies 
We will now briefly discuss two prominent perspectives on qualitative research 

that guide many current studies: grounded theory and phenomenography.  The purpose of 
highlighting the similarities and differences between these two methodologies and KA is 
to better understand which research practices are particular to KA (because of the nature 
of the data and intended scope of theorizing) and which practices are shared with other 
standard qualitative research methods.  
 
Grounded theory 

Grounded theory (Glaser & Strauss, 1967; Shkedi, 2005) is a qualitative research 
methodology in which theories emerge from iterative analyses of data – prototypically 
narrative accounts of individuals about some aspect of their experience.  The methods of 
grounded theory are particularly well suited in cases where either theoretical or 
researcher bias is a concern.  For example, grounded theory is a foundational 
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methodology in the study of culture for the reason that there is a strong danger of 
researchers overlaying their own cultural categories on the experiences of others. 
“Member checking” is one means of validating the accounts that are generated by 
grounded theory research. 

The analytic process begins with an “open coding” of the data in which initial 
line-by-line passes through the data corpus result in covering the entire corpus with a set 
of codes that capture important features of the data.  Through subsequent analysis, 
synthesis, and refinement, a coding scheme and relationships between coding categories 
emerge, from which the grounded theory is developed. The refinement of the coding 
scheme happens through a method of “constant comparison” of coded instances for the 
purpose of determining how to merge and separate categories.  The process of constant 
comparison continues until the categories are “saturated.”  Saturation happens when all of 
the instances of interest to the theory are covered by codes in the scheme. In terms of 
workflow, grounded theory researchers maintain records of the iterative process of 
generating transcripts, coding, and refining the coding in the transcripts.   

Shkedi (2005) describes a version of grounded theory that he uses in qualitative 
studies of multiple case narratives. The first step he discusses in the analysis involves the 
categorization of transcripts and subsequent mapping of the categories that are present in 
the transcripts.  After this stage, the analysis proceeds through a reduction and focusing 
phase in which the researcher decides what is more core to the data and what the focus of 
theorizing will be about.  After having located focal categories and relations, the 
researcher attempts to created a focused narrative report.  These stages are all interpretive 
stages that take place before the stages in which the theory-building stages.  The 
development of theoretical categories is a negotiation anew with the data and in dialogue 
with the literature.  The process continues in dialogue with the data to make sure that the 
categories that have emerged/been refined still cover the focal phenomena in the data.  In 
the conceptual/theoretical stage, relations between categories are searched for, especially 
those that bring together many topics.   

Grounded theory has been rarely used in studies of cognition. Taber & García-
Franco (2010) is one exception.  In this study, grounded theory is positioned as being 
involved in earlier stage work around identifying core constructs (e.g., like specific p-
prims in relevant to chemistry education) and then one moves out to larger N studies to 
validate the findings of the grounded studies.  Note, however, that Taber’s focus in these 
studies is on finding categories that capture students’ intuitions about physical and 
chemical phenomena, not on studying learning processes. 
 
Phenomenography 

The focus of phenomenographic research concerns the qualitatively different 
ways that people experience the world. Phenomenographic studies are by definition 
“second order” – that is, the object of study is how people perceive their own 
experiences. Phenomenographic studies can be of groups or individuals and can span 
many different aspects of experience.  The aim is to find categories of experience that 
apply across individuals.  Phenomenographic research typically focuses on participants’ 
narratives about their experience as opposed to inferring what subjects are noticing or 
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attending to based on their actions and words in an interaction.  As such, a typical output 
of phenomenographic studies is the generation of a set of conceptual categories shared 
across several individuals. Though many researchers who are informed by 
phenomenography choose to use the techniques and research processes of grounded 
theory, the perspective itself has no highly schematized and shared research process.  
 
Comparison with Knowledge Analysis 

Grounded Theory (Glaser & Strauss, 1967) and Phenomenography (Marton, 
1981; Marton & Booth, 1996) provide interesting points of similarity and contrast to KA.  
An important shared feature among all of the approaches is that they are focused around 
theory generation (as opposed to theory testing). Further, all three perspectives are 
concerned with the “bottom-up” generation of categories that capture the perceptions and 
perspectives of the subjects in the study (as opposed to data reduction techniques that use 
an a priori defined coding scheme).   

Both grounded theory and phenomenography rely upon narrative accounts as data 
and member checking as means of validation.  However, participant narratives would not 
be the most useful data for analyzing the structure, organization, and dynamics of 
learners’ knowledge systems.  For one thing, learners do not necessarily have access to 
language to describe their perceptions (especially for meaning that is encoded through 
other modalities). The data that is of most interest for KA research is that of knowledge 
systems-in-use. KA research also requires different means of validation of the accounts 
generated than grounded theory methods given that whether or not the technical analytic 
vocabulary generated through analysis is sensible to learners is not consequential in 
determining its validity.  Means of validating the models and analyses generated through 
KA are still being discussed and developed. There is a large space of issues to consider.  
Among others, these issues range from the replicability of analyses (e.g., Given a precise 
enough description of the final constructs and models developed, can other researchers 
reliably “see” the same constructs and models in data?) to the theoretical cogency of 
constructs or models resulting from analyses.12 

In terms of theoretical scope, while KA methodologies have been designed to 
develop theory concerning the structure, organization, and dynamics of knowledge 
systems, both grounded theory and phenomenography have typically been used more 
broadly to study the experiences of individuals in different cultural and situational 
contexts (e.g., how managers in companies interpret organizational changes, how 
individuals interpret poetry, the experiences of dying individuals in a health care system, 
etc.).  In particular, grounded theory and phenomenography methods are severely limited 
                                                 
12 Certainly, inter-rater reliability would be a way to address the standard issue common 
to all qualitative analyses about whether analytical constructs are adequately 
operationalized.  However, the issue of theoretical cogency of the epistemological 
constructs generated through the analysis and requires argumentation that is likely to be 
quite specific to KA research.  Competitive argumentation is one general technique that 
could inform this pursuit.  See vanLehn, Brown, & Greeno (1984) and Schoenfeld, 
Smith, & Arcavi (1993) for discussions of competitive argumentation.  
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in their ability to capture micro-processes of change.  Change in studies employing 
grounded theory tends to be restricted in scope to rather coarse-grained stage models 
(e.g., Isabella, 1990) and not well adapted for capturing the moment-to-moment shifts in 
understanding that KA research is accountable to. 

The specific prescribed research steps characteristic of grounded theory research 
are not a workflow processes shared uniformly by KA researchers, though some 
researchers implicitly do a version of this. One critical difference is that KA research 
requires a coordination of grounded “bottom-up” methods (open analysis) and “top-
down” methods (negotiation with epistemological principles that guide, but do not dictate 
the course of analyses).  There are many cycles of refinement of the constructs and 
models generated through KA13, but it is not easy to describe in advance the exact 
process that a researcher will need to go through in order to develop the specific models 
relevant to a particular research study.  Trying to characterize regularities of the research 
practice through methodological case studies is a current objective of the KiP/KA 
community.   

Microgenetic methods for studying learning  
This final section of the chapter discusses two qualitative research methods that 

are specifically designed for the study of processes of learning and change:  microgenetic 
analysis (e.g., Siegler, 2006) and its KA counterpart, microgenetic learning analysis 
(Parnafes & diSessa, submitted).   

This discussion of these two methodologies is especially important in laying the 
groundwork for the analysis in this dissertation.  Children’s strategy use and construction 
has been extensively studied by Siegler and his colleagues and in fact, microgenetic 
analytic techniques were invented for exactly this purpose.  However, the approach to 
studying strategy change that is developed in this dissertation entails characterizing both 
strategies and the knowledge involved in implementing them as complex knowledge 
systems and therefore requires a somewhat different methodology, building more on the 
techniques of knowledge analysis and microgenetic learning analysis.   

I start with a discussion of the way strategy use and change has been researched in 
the psychological literature using the techniques of microgenetic analysis and then turn to 
a review of a sample of exemplar microgenetic learning analyses and their characteristic 
features.  
 
Siegler’s approach to microgenetic analysis 

The use of microgenetic methods in cognitive psychology was developed 
substantially by Siegler in his work on children’s arithmetical strategies. One of the 
earliest and most detailed investigations of strategy use and construction was conducted 
by Siegler & Jenkins (1989) in which they studied kindergarten students solving 
arithmetic problems and inventing new ways to accomplish these tasks.    In this study, 
                                                 
13 See diSessa, 1991 for a discussion of Observe, Schematize, Systematize (OSS) cycles 
and Parnafes & diSessa (submitted) for a methodological case study and a discussion of 
theory-building phases.       
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the strategic transition in question concerned how children constructed the idea that they 
could “count on” from either of the two addends as opposed to a common earlier strategy 
of “counting all.”  The experimental set-up involved giving the children a large number 
of problems to solve and watching how their approaches changed over time.  Within the 
design of the sequence of tasks was the manipulation later on to give children problems 
that could be solved by “counting all,” but that would be easier to solve if one counted on 
from one of the addends instead.  In addition, the interviewer would ask the students how 
they solved the problem in between each problem.   A summary of the findings of Siegler 
& Jenkins’ study includes: 

1. Children used multiple strategies including  
a. the “count all” strategy, sometimes called the “sum strategy,”  
b. the “shortcut sum” strategy – where to compute 2+3, children would 

represent the addends with their fingers and count 1, 2 on one hand and 
then continue 3, 4, 5 on the other as opposed to a less efficient version of 
“count all” where children would count 1, 2 on one hand and then 1, 2, 3 
on the other hand, and then count all of fingers on both hands 1, 2, 3, 4, 5. 

c. the “count on” strategy – where children would find the sum by counting 
on from either one of the addends instead of both counting up to the first 
addend and then counting on from there to find the sum), 

d. the “count on from larger” optimization of “count on,” 
e. retrieval from memory,  and  
f. recognizing a given problem such as 7+3 as equivalent to another that they 

knew such as 5+5. 
2. Students made articulate and adaptive choices between the multiple strategies that 

they have available to them (e.g., the strategies listed above).  
3. Children were able to generate the new strategies simply through engaging in the 

task sequence. It was also noted that specific features of the task sequence, such 
as the presentation of “challenge” problems that included one addend much larger 
than the other, seemed to support change and adaptation.  

4. The “shortcut sum” strategy seemed to be a transitional strategy to “count on.”   
5. New strategies appeared to re-use and re-purpose parts of previous, successful 

strategies.    
6. New strategies or adaptations seemed to appear after previously used strategies 

failed, but that impetus for new strategy development did not need to be the 
failure of previously used strategies. 

7. The adaptation of strategies for use across a broader range of problems seemed to 
be a very slow process. 

Siegler’s work on children’s strategy usage spans many related phenomena.  His earlier 
work focused more on understanding why strategy shifts occurred for individuals (aligned 
with the focus of this dissertation) whereas later work became more focused around 
understanding patterns in children’s strategy choices and the reasons for particular 
strategies becoming more or less prominent in students’ repertoires. See Siegler (1996) 
for an extended discussion of Overlapping Waves Theory.   
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In Siegler’s early writing on strategy discovery, the default assumption was that 
the discovery of entirely new strategies involved sudden breakthroughs, whereas the 
extension of existing strategies to wider classes of problems was a more gradual and 
incremental process. However, further evidence (including evidence from computational 
modeling studies that built on the corpus of data collected in the studies of children’s use 
and discovery of arithmetic strategies) indicated that both processes were gradual and 
incremental (Siegler & Araya, 2005).  

In conducting this line of research on strategy discovery and change, Siegler 
called the methodology he employed in order to study strategy discovery and change 
“microgenetic analysis” (Siegler & Crowley, 1991; Siegler, 2006).  General features of 
the approach include:  

1. Observations span the entire period of change  
2. Observations must be dense compared to the timescale of expected change   
3. Intensive trial by trial analysis is used 

In Siegler’s formulation of microgenetic analysis, change is tracked at the level of 
performance on a single trial (e.g., where a “trial” is synonymous with one problem).  
The trials are then coded by a summary judgment of the key features of the procedure 
used by students to solve the problem.  In this way, trends and patterns in the approaches 
taken by students to solving a large battery of problems can be tracked at a problem-by-
problem grainsize.  At this level of granularity, one can identify the exact problem where 
a transition in strategy occurred. One can then look before this point for clues concerning 
what preceded the change and one can also look at the reaction of the child beyond the 
trial in question to see whether they recognized and drew upon certain features of their 
discovery in future trials. Such a design stands in contrast to designs that would sample 
students’ performance every couple of months (as in a longitudinal design), before or 
after an intervention (as in a pre-post design), or sample performance across groups of 
differing ages (as in a cross-sectional design).  

The strategy discovery and change literature places emphasis on tracking 
observable changes in problem solving procedures over several instances of solving 
similar problems. The nature and form of the mental representations and processes that 
undergird the implementation of such procedures are not typically the focus of the 
majority of these studies.  Notable exceptions include Opfer & Siegler (2007), Siegler, 
Thompson, & Opfer (2009), and Alibali (2005) who were concerned with tracking 
change at both the level of internal knowledge/representations and external problem 
solving actions.  However, in these cases, the relationship between internal representation 
and problem solving procedures is rather different than the model of the relationship that 
I formulated through the process of doing the analysis in this dissertation.  

 
Microgenetic Learning Analysis (MLA) 

The following studies illustrate microgenetic studies of emerging conceptual 
competence in a variety of educational contexts (tutorial sessions, pair problem session 
work between peers, and classroom discussions), over a variety of topics in science and 
mathematics (elementary statistics, oscillation, modeling/algebra, and equilibration) and 
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across a range of student populations (middle school, high school, and university 
students).  

These studies all share the property that they are focused on giving moment-by-
moment accounts of learning processes. In that sense, the temporal resolution and density 
of observations in the following studies is similar to that of Siegler.  However, because 
the process of change in question in these studies concern the development of conceptual 
competence, the nature of the relevant observations can look quite different than the types 
of observations that Siegler used to track strategy discovery and change (e.g. repeated 
trials).   

In the studies of open problem solving and explanation of how physical or 
mathematical phenomena work, there is no longer the forced “unit” of analysis that is 
provided by repeated trials.  However, analogues could be proposed for situations 
involving open problem solving and explanation generation.  One possibility is that 
“threads of inquiry” (e.g., Why does X happen?) serve an analogous function to the 
performance units (e.g., work on simple, individual problems) in these analyses.    The 
process of reasoning is more open to inspection in inquiry threads and the changes that 
are observed within and across inquiry threads may be of a different sort than the kind of 
changes that are observed across repeated trials.  One constraint of many microgenetic 
studies with repeated trials is that the trials or observations are simple enough that there is 
not much opportunity to observe the process within a given trial.  

Further, a key difference between the following microgenetic studies and the 
microgenetic studies conducted by Siegler is that a driving goal of the following studies 
is to develop explanatory models of learning processes in epistemological terms.  That is, 
to use qualitative case studies of learning processes in order to theories of learning that 
are accountable to the empirical details of how knowledge functions and changes 
organization in the episodes under study. These studies all share an important and highly 
consequential intellectual commitment to developing accounts that are attentive to what 
the learner attends to, perceives, infers, etc as opposed to characterizing emerging 
competencies in terms of a pre-determined inventory of performance types.  

These two features, (1) the nature of the observations under study as described 
above and (2) an eye toward theoretical innovation through the close analysis of episodes 
of conceptual learning, led Parnafes & diSessa (submitted) to distinguish studies of the 
form reviewed in this section to be exemplars of what they have termed “microgenetic 
learning analysis.” 

I organize the discussion of studies of microgenetic learning analysis according to 
contexts.  I start by discussing microgenetic learning analyses that take place in the 
context of clinical studies of teaching and tutoring (Schoenfeld, Smith, & Arcavi, 1993; 
Wagner, 2006; Kapon & diSessa, in preparation).  I then turn to the context of pairs of 
peers working together on open-ended tasks (Parnafes, 2007; submitted; Izsák, 2000).  
The final category includes a microgenetic learning analysis of a classroom discussion 
(diSessa, in preparation).  

Following the discussion of the exemplars of microgenetic learning analysis, I 
will describe how the analytic approach I employ in my dissertation shares features with 
both versions of microgenetic analysis (“Siegler school” and “Microgenetic learning 
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analysis”). I begin with a description of three microgenetic studies of clinical teaching 
and tutoring.  

Schoenfeld, Smith & Arcavi (1993) provides an important and foundational 
reference point for the microanalytic work in this dissertation.  Like in the analysis in this 
dissertation, the analysis in Schoenfeld, Smith & Arcavi is concerned with giving a rich 
and detailed account of the learning process of an individual student over a medium 
length of time (7 hours) in terms of knowledge structures and how they are organized.  
The context of the study was a series of tutorial sessions in which a 16 year-old student, 
IN, and a graduate student tutor jointly explored equations, functions, and graphs of 
linear functions in a computer microworld.  

The data and analysis in Schoenfeld et al. are illustrative of some of the particular 
aspects of contextuality and fragmentation in learners’ knowledge systems. Their analysis 
explains, in terms of the organization of the student’s knowledge structures and system, 
why they did not build lasting and stable knowledge of symbolic and graphical 
representations of functions.  For example, at the local level of knowledge structures, the 
“3-slot schema” (that three pieces of information are necessary to determine a linear 
function: slope, y-intercept and extraneously, the x-intercept) is an example of a 
knowledge structure that Schoenfeld, et al. found that the subject used.14  At a more 
systemic level, some fundamental misunderstandings about the Cartesian connection – 
that a point satisfies a functional relation if and only if the point is on the graph of the 
function in the plane – explained observed difficulties the student had in interpreting the 
meaning of the y-intercept across contexts. 

In conjunction with the analysis in the paper, the authors develop a description of 
a knowledge architecture that is consistent with the line-by-line analysis of IN’s 
performance.  In the model they propose, knowledge systems have four levels that are 
characterized by grain size. The topmost level includes schemata that organize 
expectations based on prior experiences.  The example given of a schemata is that “A line 
has equation y=mx+b if and only if its slope is m and its y-intercept is b.”  The next level 
down includes concepts and conceptual entities (e.g., Greeno, 1983).  These are the 
objects that fill slots in the schemata in level one.   The third level is the level of fine-
grained structure that determine properties of objects.  The example given here is the 
“Cartesian connection” (discussed above). The fourth level is that of conceptual 
elements. The example given of “conceptual elements” are the particular and non-
normative meanings that IN had for “y-intercept” across contexts.   

Schoenfeld et al. hypothesized that the procedures that the subject was using (that 
were abstracted from experience with the microworld and previous learning experiences) 
primarily involved “conceptual elements” from level four and because they were not 
connected to knowledge in the higher levels (e.g., fine-grained structures, conceptual 

                                                 
14 Moschkovich, 1999 found this same structure in use by other students in a separate and 
independent study.  This indicated that the 3-slot schema was not an idiosyncratic 
structure of one student but rather an understanding that could be identified in a broader 
population. 
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entities, and schemata), they were more easily used but also that new, correct knowledge 
that was introduced and used in the sessions was more easily forgotten.  

The microgenetic analytic methodology as developed in Schoenfeld et al. is a 
foundational reference point for the work in this dissertation. Like other microgenetic 
studies (e.g., Siegler, 2006) it involves a high density of observations of knowledge 
function and use in a particular domain over a short period of change. The particular 
focus of the analysis on elaborating relevant knowledge structures and making models of 
how knowledge is organized distinguishes it from microgenetic studies reviewed in 
Siegler.  

The program of elaborating and validating the four level model proposed in the 
paper would involve elucidating through the analysis of data in other specific learning 
events the form of conceptual elements, fine-grained structures, conceptual entities, and 
schemata and how they interconnect. Because there were few learning events observed in 
the data, this analysis contributed more to elaborating reasonable constraints on 
knowledge organization and learning as opposed to describing mechanisms and processes 
of learning.  Thus, to complement this work, a natural frontier is to consider data that is 
rich in learning events for the purpose of seeing knowledge construction in action.  

I turn now to a microgenetic case study of an undergraduate student, Maria, 
working with a tutor/researcher in the domain of elementary statistics (Wagner, 2006).  
Over the course of several sessions, Maria worked on a series of problems all of which 
concern the expected value of a random variable and the law of large numbers (e.g., that 
the average of a set of values randomly sampled from a population is more likely to be 
near the expected value – the population average – when the sample size is large).  The 
phenomenology of interest to Wagner’s study is how the student eventually came to 
reason about a diverse set of contexts in terms of a single principle, the law of large 
numbers, instead of offering solutions that involved different rationales and reasoning 
across cases.   

Through this extended analysis, Wagner develops a theoretical model for 
understanding knowledge transfer, a “transfer-in-pieces” perspective that builds on 
Knowledge in Pieces (diSessa, 1993) and coordination class theory (diSessa & Sherin, 
1998). Wagner’s analysis thus gives a knowledge-based alternative account for transfer to 
that given in the psychological literature.  Instead of Maria developing an abstract mental 
representation that allow her to solve of the problems with the same principle, the focus 
of Wagner’s account largely concerns when and how Maria perceives productive 
knowledge that she already has and uses in local contexts to be more widely relevant and 
useful. In coordination class theory terms, this observed incremental knowledge transfer 
is described as the span of her coordination class for expected value being extended 
through the addition of situation specific knowledge using various means such as 
sampling activities, interaction with a BOXER microworld, and direct comparison of 
problems.  Wagner’s analysis is squarely in the regime of microgenetic learning analysis.  
Though no new knowledge ontologies are uncovered through the analysis, the study 
extends coordination class theory in a fundamental way to develop an alternate model of 
knowledge transfer.   
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I now discuss a third example of a microgenetic learning analysis that took place 
in a clinical teaching/tutoring context. Kapon & diSessa (submitted) conducted a 
microgenetic cross-case comparison that analyzed the striking variability in how students 
made sense of an instructional analogical sequence about the existence of the normal 
force in physics (Kapon, 2010; Kapon & diSessa, submitted).  An output of the analysis 
was the “explanatory primitive” model that examined students’ reasoning in terms of 
classes of knowledge elements that students took to be explanatory as they reasoned 
about forces. The instruction in the study was based on an augmented version of a 
“bridging analogies” instructional sequence designed by Brown & Clement, 1989. The 
explanatory primitive model is a functional model (as opposed to a structural model) that 
can be thought of as a generalization of the p-prim model. This model was useful for 
explaining the differences in individual students’ reactions to and shifts in judgment 
about the clinical instruction.  Additionally, the model developed from this microgenetic 
analysis accounts for patterns in students’ reasoning in the target domain that were not 
explained by the literature on analogical reasoning (e.g., Structure Mapping Theory of 
Gentner, 1983). 
 I now discuss microgenetic studies that take place in the context of pairs of students 
working together to solve problems and reason about physical phenomena. 
 Parnafes, 2007 investigates the role that computer-based simulations play in the 
development of students’ conceptual understanding of harmonic oscillation.  Through a 
moment-by-moment microgenetic analysis of observations from eight pairs of middle and 
high school students engaging in explorations involving physical oscillators and 
computer-based simulations, Parnafes constructed a model to explain how representations 
mediated the aspects of the students’ growing understanding.  The fine conceptual and 
temporal resolution of the knowledge-in-pieces perspective (diSessa, 1993) and 
coordination class theory, in particular (diSessa & Sherin, 1998) was instrumental in 
tracing how the students’ knowledge systems interacted with representational features in 
the simulations.  The resulting model consists of four mechanisms: (1) detecting a pattern 
in the simulation (2) mapping the pattern detected in the representation onto 
corresponding physical phenomena (3) identifying a conceptual challenge in explaining 
the observed pattern, and (4) extension of existing inferential relations to new contexts.  
The methodological approach employed by Parnafes to elucidating the content, form, and 
mechanisms of change evident in the data was instrumental in devising the analytical 
framework and evolving stages of analysis (e.g., knowledge schematization and then 
mechanism schematization) in the case study developed in this dissertation.  
 A second study by Parnafes (submitted) investigates the explanations that pairs of 
students jointly constructed as they generated drawings of scientific phenomena that they 
were trying to explain.  Parnafes examines the process by which pairs of students work 
together to generate shared explanations and shared representations that explain how the 
phenomenon of the moon phases works.  A single pair of students worked together over 
ninety minutes to produce an explanation.  The study shows how the students, in 
interaction, guided occasionally by a researcher/teacher, came to activate and coordinate 
many pieces of knowledge of diverse types (ranging from mental models and general 
schemata to declarative facts) into a shared explanation.  Increasing the resolution and 
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range of the explanation were shown to be mechanisms that drove this learning process. 
As with Parnafes (2007), the focus on both the content and form of knowledge, in 
addition to learning mechanisms was a notable feature of this analysis.  However, it is 
worth noting that one aspect of this study that differs from previous studies reviewed thus 
far is that in this study, the activation and use of many, different forms of knowledge is 
traced through the analysis (e.g., as opposed to analyses in which only one knowledge 
system or knowledge type is of focal interest to the analysis, such as coordination 
classes).   This feature of accounting for and tracing diversity in forms of knowledge also 
informs the analysis in the current dissertation study. 
 A third exemplar of a microgenetic learning analysis taking place in the context of 
pairs of peers working together is Izsák (2000). Izsák studied students working together 
to model the behavior of a physical device called a winch. The relevant knowledge 
structures that came into play in Izsák’s analysis were symbolic forms (Sherin, 1996; 
2001), a knowledge structure that binds a symbol template with patterns of experience 
with how the world works.  Izsak’s analysis revealed the construction of a particular 
symbolic form: “base-plus-change” and the use of two mechanisms “mapping variation” 
(e.g., adjusting correspondences between the physical and algebraic representation) and 
“notation variation” (e.g., adjusting the number of terms and their compositions) in 
constructing a valid equation that would model the behavior of the winch. Izsák’s study 
contributes to the program of ongoing theory development and elaboration through 
tracing the construction and use of a particular knowledge type that had been identified in 
previous clinical work (Sherin, 1996; 2001) and then uncovering mechanisms of learning 
in his analysis.   
  The final context in which I look at microgenetic studies of learning includes a 
case drawn from a study of classroom interaction.  

DiSessa (in preparation) builds off extensive earlier work on characterizing 
elements of students’ intuitive conceptual ecology (diSessa, 1993) in order to understand 
an episode of learning taking place between students in a classroom.  The topic the 
students in the class are discussing is Newton’s law of heating and cooling (that the rate 
of temperature change between two objects in contact or between an object and its 
ambiance is proportional to the difference between the two temperatures).  The central 
episode under study in the paper concerns the students in the class observing a graph of 
the temperature curve obtained from experimental data and trying to explain its behavior. 

The explanation that is constructed by the students included a number of 
previously documented intuitive schemata (diSessa, 1993).  A notable feature of the 
analysis is the coordination of careful schematizations and descriptions of knowledge 
(building off a large corpus of previous work in the context of interviews with individual 
students) that can capture the nuances in meaning with their use in the social construction 
of an explanation.  Another advance of the analysis is the development of empirically-
grounded learning mechanisms. Some examples of relevant learning mechanisms 
introduced in the analysis and described in detail in the paper include: “context shifting” 
(i.e., In this case, the perception of agency in a situation where none is usually 
perceived.), "composition by causal chaining," "causal interpolation," "binding" (i.e., the 
mapping between features of intuitive schemes and attributes of the physical situation), 
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and “emergence” (i.e., generation of an explanation and judgment of satisfaction with the 
emergent explanation). 

 
Discussion 

As I described in the introduction to this section, although my methodology 
involves a version of “repeated trials” (and is thus similar to Siegler’s methodology), my 
analytic approach is strongly informed by the focus on theory development shared in the 
microgenetic studies described in the previous section.  One essential similarity between 
my study and the MLA studies is that in my analysis, I develop an explanatory account of 
strategy emergence through modeling both strategies and the conceptual knowledge that 
implements them as complex knowledge systems.  The content and form of the systems 
is schematized from the empirical data in the case, as are hypothetical mechanisms of 
learning.  This approach contrasts both with the approach of tracing students’ emerging 
conceptual understanding in terms of a pre-determined inventory of concepts that a 
researcher assumes students either have or lack and also with the approach of tracing 
emergent strategies in terms of performance types that roughly characterize the strategic 
actions that students took in solving a sequence of problems.   

Given the limited scope and span of the particular problems in any given problem 
sequence, the slice of conceptual knowledge activated certainly cannot allow us to make 
a representation of a very wide breadth of an individual’s knowledge about relevant 
concepts that might be identified in an a priori task analysis of the problems in the 
problem sequence.  It may not even be the case that the “pieces” of knowledge that the 
individual displays (e.g. what they base their reasoning upon) correspond neatly to 
“pieces” of the understanding that would be identified by an expert or by a textbook task 
analysis as component “pieces” of understanding.15   

The approach taken in this dissertation is that a major component of the analytic 
work lies in trying to uncover what the relevant pieces of knowledge in the context of 
solving particular problems are through studying the students’ thinking processes in 
action. Thus, the microgenetic study of problem solving over time is not intended to be 
diagnostic of the breadth of conceptual understanding of a particular topic.  However, the 
variety of microgenetic analysis I pursue does have the potential to allow a window into 
the quality and functioning of the knowledge required to solve the problems in the 
sequence.   

Now that we have introduced the research focus, the context of the study, the 
theoretical framework that will guide the analysis and relevant analytical perspectives 

                                                 
15 This is certainly the case in the analysis presented in this dissertation.  The progression 
of understanding that is tracked is an emergent phenomenon of the interaction between 
Liam and the tutor/researcher that is mediated by his prior knowledge, the way the 
activity is structured, the artifacts that are available to him or that he constructs.  Through 
the interaction, the student has the opportunity to learn much more (and different things) 
than an a priori task analysis would suggest.  See Saxe, 1988 and 2002 for a theoretical 
framing of the issue of emergent goals in the study of mathematics thinking and learning.  
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that frame the work of the dissertation, the next chapter will move into a discussion of the 
core analysis in the dissertation and how it was developed. 



 

 
 

 

41 

 

Chapter 6: Analysis 

The aim of this chapter is to develop an in-depth microgenetic case study of a 
single pre-algebra student, Liam, constructing a deterministic algorithm for solving 
algebra word problems that have an underlying linear structure (i.e., problems that one 
familiar with the domain would recognize as being of the form: “For a specified y, find 
the x value that solves the problem y=ax+b”). At the time of the study, Liam had not yet 
learned about linear functions in his pre-algebra class or about how to solve problems by 
formulating equations that model the situations described in problems. 

The deterministic strategy Liam constructs will be seen to emerge as a gradual 
refinement of his initial strategy: a simple, yet purposeful guessing and checking strategy 
based around a version of means end analysis (MEA) or the idea of “getting closer and 
closer to the solution.”  The strategy that Liam comes to construct over time can be 
recognized as linear interpolation/extrapolation. This later, conceptually more developed 
strategy is based around the idea of using the results of two trial values in order to find 
how much a unit change in input would affect the output. One can then extrapolate from 
a base value using this information of the worth of a unit-increment in order to determine 
the solution to the problem.  To elaborate on these two problem solving approaches 

• Means end analysis is a problem solving approach used to control searches over 
solution spaces.  Briefly, in this context, the idea behind the strategy is that one 
aims to choose a sequence of actions (e.g., a sequence of trial input values) that 
will result in successively reducing the difference between the results of the 
current trial and the target value specified in the text of the problem. 

• Linear interpolation (See Meijering, 2002 for a historical overview of 
interpolation techniques) is a method for approximating a value of a function 
using known values at other points.  In linear interpolation, approximations are 
obtained for function values between two given points based on assuming a model 
of linear variation between those points. 16 

To an observer with no knowledge of the intervening episodes, this shift in strategies 
would look quite dramatic and discontinuous.  The analysis in this chapter closely 
examines the content and form of Liam’s performance on several intermediate problems 
(and notably, the conceptual structures that supported the implementation of his 
strategies), for the purpose of tracing the process by which the novel strategy mentioned 
above emerged.  With the analysis at this grain size and with this analytic focus, one sees 
significant continuity.  The analysis developed in this chapter is organized around the 
goal of understanding, at a level of mechanism, how a novel strategy is constructed.   

                                                 
16 In the case we study here, Liam uses interpolation to find the worth of a unit increment 
and then determines out how he needs to adjust the input value through extrapolation to 
solve the problem. 
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Microgenetic analyses of strategy change have focused on developing techniques 
for tracking shifts in strategy usage at a fine-grained level of detail.  The analysis that 
follows also involves tracking strategy change at a fine-grained level of detail (both 
temporally and conceptually). However, the focus of interest in the current analysis is on 
processes by which novel strategies can be constructed out of conceptual resources as 
opposed to the processes by which individuals come to reliably activate and use one 
strategy over a competitor strategy. In addition to an interest in the identifying and 
tracking changes in the content and form of the knowledge needed to implement 
strategies, a key analytic move in developing an understanding of how a novel strategy is 
constructed was to give a specification of a problem solving strategy itself as a type of 
knowledge (a complex knowledge system, in fact).   

The analysis presented in this chapter offers an explicit look at strategic 
performance and mechanisms of strategy change, while also attending to the structure 
and organization of knowledge that undergirds strategic performance and how it changes. 
Such explicit and fine-grained focus on the interrelations between strategic and 
conceptual knowledge as they co-develop elaborates the kind of description of the 
construction of strategies that is found in the current psychological literature on strategy 
construction and strategy change (See Siegler & Jenkins, 1989 and Rittle-Johnson, 
Siegler, & Alibali, 2001).    

Outline of the analysis 
The presentation of the analysis will proceed in several phases, mirroring the 

process by which the analysis evolved in response to the analytic challenges involved in 
constructing a model of the process of strategy and knowledge co-development.  This 
rhetorical strategy was chosen to help the reader understand the particular choices that 
were made at each juncture of the analysis.  In the presentation of the analysis there is a 
deliberate and constant dialogue between (1) the model that is being developed in the 
context of explaining particular data (e.g. describing the process by which a particular 
strategy was constructed out of particular conceptual knowledge) and (2) the theoretical 
framework that both informs and is developed through the process of the analysis.   

The six strands of analysis that will be discussed are: 
1. Analytic strand one: Documenting, describing, and framing change in strategies 
2. Analytic strand two: Selecting an epistemological framework and interpreting 

the data to be analyzed with respect to the principles of the framework 
3. Analytic strand three: A “bottom-up” approach – Generating a base vocabulary 

of strategic and conceptual knowledge structures implicated in the process of 
change by schematizing knowledge-in-use 

4. Analytic strand four: Putting the new vocabulary to work – Re-describing 
snapshots of the strategy construction process in terms of underlying knowledge 
structures 

5. Analytic strand five: Locating instances of development across the entire 
learning process under study and positing sketches of learning mechanisms that 
result in the micro-developments identified 
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6. Analytic strand six: Putting it all together – Creating a model of the process of 
the co-development of strategic and conceptual knowledge 

To preview, and to help the reader orient toward the ultimate goal of this chapter I 
present here a top-level view of the model resulting from the analysis. The model shows 
the co-development of strategic and conceptual knowledge in this case to be a process of 
mutual bootstrapping. That is, there is a dialectic relationship between the performance of 
a strategy in the course of solving a problem and the conceptual underpinning of the 
performance.   

• Approaching problems within a particular “strategic frame” involves the 
activation of particular conceptual knowledge: Engaging in the activity of solving 
the particular problems activates a certain “pool” or slice of conceptual 
knowledge that is perceived (by the learner) to be necessary for solving the 
problems at hand. In the case analyzed in this chapter, an important class of 
knowledge that was identified as being relevant to solving problems is how to 
control the variation of a linear function.  The structure and function of this form 
of knowledge in this activity will be elaborated through the analysis.  

• Conceptual developments (in relation to the activity of solving these problems in 
this context) facilitate the construction of a new strategy: Over time and through 
engagement, the knowledge that is recruited in solving these problems forms an 
increasingly organized conceptual scheme.17 The development of this conceptual 
scheme then facilitates the development at other levels of the strategy as a 
knowledge system (e.g., the solver’s conceptual categories and relations).  
Developments at these levels then lead to the construction of a new strategy. 

 
Through the strands of analysis outline above, the specific details (e.g., the form and 
function of the strategy system in question, the nature of the conceptual scheme and 
component parts that are activated and refined, etc.) of this model will be elaborated.  In 
terms of mechanisms or mediators that drive the co-development process forward, in the 
particular case studied here, a concern for both efficiency and accuracy  (both identified 
as mechanisms of development in the previous literature on strategy change and 
construction – see Siegler & Araya, 2005) was seen to be instrumental. Thus, the model 
presented here gives a fine-grained view of how efficiency and accuracy drive the 
process of strategy construction forward, in addition to demonstrating the dialectic 
between strategic and conceptual growth.18 

The amount of both strategic and conceptual development observed was 
influenced by the pragmatics of the activity (e.g., continued development was contingent 
                                                 
17 Note, also, that in general, not all of the knowledge used in the service of solving a 
particular problem need come from the same conceptual scheme. The pool of knowledge 
activated over the course of solving a given problem may involve many pieces of 
knowledge of many forms (e.g., remembered facts or theorems, intuitive “rules,” 
embodied schemes, etc.)   
18 Liam was exceptional in his concern for efficiency and accuracy.  In Chapter Seven, I 
discuss this issue further.   
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upon what Liam considered “good enough” for the purposes of solving the particular 
problems he was given to solve).  It would be a mistake to consider the development of 
either Liam’s strategy or the ongoing tuning and articulation of his conceptual scheme 
without reference to the specifics of the context (including interactions) and the activity 
in which he was engaged. However, the end goal of the analysis is not only to explain 
what happened with this one particular student in this case.  The goal is to develop this 
understanding in a way that motivates future work. As we will see, negotiating with a 
theoretical framework throughout the analysis establishes grounds for and puts us in a 
position to conclude this analysis with a set of conjectures that will guide future work.  

In presenting the final model up-front, it is important to note that this is a top-
level summary of a model that was developed through the analysis presented in the rest 
of the chapter. The analytic process involved iterative and successive attempts at 
capturing the moment-to-moment dynamics of the co-development of strategic and 
conceptual knowledge.  The model we ultimately present was judged to be more 
explanatory and have a more adequate fit with the data than alternative models generated 
in earlier stages of this research.19  This brief aside is meant merely to attune the reader to 
a constant theme throughout the analysis:  the critical re-description and refinement of 
working models of processes of knowledge construction.    

Strand 1: Documenting, describing, and framing change 
To prepare for the discussion of how the conceptually more advanced strategy in 

this case emerged, data excerpts illustrating the approach taken by Liam at the beginning 
and ending of the sessions are given below.  One can see that while Liam’s initial 
approach was based on purposeful guessing and checking, his later approach is 
deterministic, building of the linear structure underlying the problem contexts, and in fact 
no longer involves “guessing” at all.  As the descriptions in this section are meant to 
highlight broad differences in Liam’s approach at beginning and ending points in the 
sessions, the presentation of the data here suppresses many details of the context and 
interaction.  The same two episodes will be revisited in fuller detail in strand four as the 
process of change is traced in close detail across the sessions.  
                                                 
19 An example of an earlier, related, but incomplete, working model involved an 
asymmetric conceptualization of the relationship between conceptual development and 
strategic development with shifts in conceptual understanding allowing a new strategy to 
emerge or be constructed. The earlier model was revised because it did not attend 
sufficiently to the structure of the conceptual scheme being developed, nor did it capture 
the structure and function of the strategy as a system of knowledge that selects for 
particular conceptual knowledge in its implementation.  However, one thing that made 
the earlier model plausible as a working model was that a key conceptual refinement at a 
particular moment along the trajectory is what eventually allowed the strategy 
construction to take place. So, strategy implementation invoked a conceptual scheme, the 
conceptual scheme got enriched and refined (not only adding in the unit iteration idea but 
also the idea of iteration of co-varying change).  This “new idea” then allowed for the 
construction of a new strategy. 
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Initial strategy: Systematic and purposeful guessing and checking 

In the episode discussed below, one can observe that Liam is using a systematic 
and purposeful guessing and checking approach to solve the given word problem.  This 
problem was the first in the sessions where the tutor had suggested Liam organize his 
guessing and checking strategy in a Guess and Check chart.  Previously, Liam had used 
the invented strategy of “guessing and checking” though not arranged in a chart.   

 
The base of a rectangle is three centimeters more than twice the height.  
The perimeter is 60 cm.  Find the base and the height of the rectangle. 

 

 
Figure 4. A schematized version of transcript coordinated with a typed reproduction of Liam's 

written work. 

Already in this episode, Liam is making very purposeful choices about the 
sequence of trial values he chooses. Inferences and utterances that Liam made on earlier 
problems give weight to the idea that Liam has a sense for the nature of the variation.  
There does seem to be some intuition (however inexplicit and inarticulate at this point) to 
back up the judgments he makes.  Certainly, his choices for guesses are far from random.  
In fact, he already appears to have at least an approximate sense for how the input/output 
pairs he generates co-vary linearly.  One can also note that he is making inferences in 
terms of both scalar judgments (“a lot lower”) and also approximately proportional 
judgments (“it’s a little less than twice” the target value).   
 
Later strategy: Leveraging linear structure to determine solutions 

Later in the sessions (session 5 of 6), Liam had refined his strategy from 
“purposeful guessing and checking” to “linear interpolation/extrapolation.”  In the 
following data excerpt, one can see Liam deploy his newly constructed linear 
interpolation strategy to solve a problem of a similar underlying (linear) form as in the 
problem above.  The problem he was working on was: 
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Three consecutive integers sum to 414.  Find the three integers. 
 

                   

 
Figure 5. A schematized version of transcript coordinated with Liam's written work on a 

contrasting problem in which he used "linear interpolation/extrapolation" to solve the problem. 

In solving this problem, Liam continues to organize his work in a “guess and 
check” chart (as shown above).  After having solved the problem and when asked to 
explain his solution strategy and Liam says  
 

“I took 408 and 423 [see chart above]. I have the difference between 
those [between 408 and 423] which is 15.  The difference between 
these two [between 135 and 140] is 5.  And 15 divided by 5 is three.  So 
that means that for every one this changes [indicates the first column], 
this one [indicates the sum column] changes by 3.  So, then I took 423 
and I subtracted that [moves hand up to problem statement to indicate 
the target value of the sum: 414]; the difference was 9.  3 times 3 is 
nine. So, I knew it [the value of the input that solves the problem] 
would have to be three less than this [indicates 140].” 

 
To give a quick recap of Liam’s activity with the second episode, we see that after 

Liam has finished the computations with two trial input values, he uses this information 
to determine the unit worth of one guess:  the amount the output will change 
corresponding to a change of one in the input.  Liam then takes the output corresponding 
to a particular trial input (he chooses the input of 140) as a reference and figures out how 
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far that output is away from the target output.  He then uses the unit worth of one guess to 
figure out how much he should change the input by in order to produce the change in 
output he just computed would be required in order to achieve the solution.   

In this episode, we see that Liam has refined his sense for how inputs and outputs 
co-vary.  He has now found a way to quantify and explicitly leverage his intuitions about 
the underlying linear relationship that all the input-output pairs in these problems satisfy.  
Note that the idea that a given input is “worth” a fixed amount in terms of its effect on the 
output is a refinement of the earlier approximate, qualitative versions of proportionality 
Liam used in the previous episode.  This is the sense in which Liam is learning to control 
the variation of a linear function—he uses the worth of one guess to extrapolate and 
move the input up or down by an amount that he has determined in advance will solve the 
problem.  The extrapolation that he performs (e.g. the scaling of unit worth) depends on 
the underlying linear structure of the problems.  
 
Discussion of the two contrasting episodes 

An important point of contrast between the two episodes described above is that 
in the first, Liam’s method is highly dependent on the inferences he draws about each 
particular guess. Each one is chosen purposefully, and the resulting output is compared 
to the target output given in the problem.  However, in the second episode, Liam has 
realized that his solution method is general, and depends only on determining the unit 
worth of one guess.  Furthermore, he purposefully uses two trial values, not for the 
purpose of converging to the solution to the problem, but for the purpose of determining 
an invariant (the rate of change between any two input/output pairs) of the underlying 
functional relation.  Once he has determined this invariant, he uses it to deduce the 
unknown value that will solve the problem.   

In the following sections, we will discuss the development of a way of seeing 
Liam’s activity that allows us to understand the co-development of Liam’s strategic and 
conceptual knowledge. We will return to these two particular episodes and put them in 
context later in strand four when we map out the process by which the second strategy 
emerged over the course of the activities of the sessions.  
 
Alternative framings of what changed and how 

One of the major motivations involved in analyzing the arc of strategy-knowledge 
development further than the bookend treatment given in the previous section is the 
desire to explore and characterize what Liam might have learned and accomplished in 
addition to developing a new (and more efficient) strategy for solving similar problems 
over the course of a small number of sessions.  

Describing what, exactly, he learned that supported his understanding of and 
development of this strategy is more of a challenge (and, indeed, responding to this 
challenge is the focus of the remaining five strands of analysis). Through the analysis that 
unfolds over the next several sections, we will ultimately be developing a grounded way 
to describe what Liam learned. Before we describe the characterization of strategy and 
conceptual knowledge systems resulting from this analysis, we first present some of the 
initial formulations of answers to the question “What changed?”  These are presented by 
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way of exposing alternative perspectives on the same data and also by way of discussing 
the trajectory of the analysis.  The very question of how one frames the issue of what 
Liam learned or what changed is part of the analysis.  The pros and cons of the different 
framings will be discussed for the purpose of motivating the need for the kind of analysis 
and the theoretical framework that we ultimately chose as the basis for our theorizing.   

 
The contrasting framings include:  

1. Development of algebraic thinking and reasoning (e.g., Carraher & Schliemann, 
2007; Kaput, 2007; Kieran, 2007) 

2. Development of particular “concepts” such as function, rate of change, co-
variation (e.g., Harel & Dubinsky, 1992; Sfard & Linchevski, 1991; co-
variational reasoning of Blanton & Kaput, 2008; Carlson & Oehrtman, 2005; 
Confrey & Smith, 1995; Saldahna & Thompson, 1998).  

 
Development of algebraic thinking and reasoning  

One might think of the arc of learning that we described as one pathway bridging 
“arithmetic” and “algebraic” problem solving approaches. There are reasons to describe 
aspects of his second strategy as “algebraic” whereas his first strategy was “arithmetic” in 
nature. Liam’s second strategy involved an algorithm to determine the unknown solution 
to the problem. In contrast, Liam’s first strategy involved converging to the answer 
through a sequence of specific numerical calculations.  Furthermore (as we will see in the 
more elaborated discussion of the episodes in strand four), Liam came to view the “cells” 
of the Guess and Check chart as standing for general quantities that could take on any 
value (e.g., generalized numbers).  In his algorithm for determining the solutions to 
problems, Liam was also describing general operations on cells in the chart that had 
specific properties (e.g., being the outputs of values that had been operated on via the 
functional relation given in the problem statement).  As he was constructing the linear 
interpolation/extrapolation strategy previewed in the previous section, he anticipated the 
actions he planned to take to solve the problem before any values and outputs he been 
specified.  

Researchers in mathematics education have hotly debated what exactly 
characterizes “algebra” and “arithmetic” and “algebraic” thinking. Kaput (2007) 
describes algebraic thinking in terms of symbolization and syntactically guided 
manipulations on the symbolizations individuals create.  Driscoll (2000) describes the 
habits of mind associated with algebra, especially those concerned with thinking about 
functions and how the impact a system’s structure has on calculations. Greenes and 
Findell (1998) identify the big ideas of algebraic thinking as representation, proportional 
reasoning, balance, meaning of variable, patterns and function, inductive reasoning, and 
deductive reasoning.  Standards documents (Common Core Standards for School 
Mathematics, 2010; National Council of Teachers of Mathematics, 2000) identify these 
among others in a broad pool of concepts and competences associated with algebra and 
algebraic thinking.    

Certainly, the move from “inductive” (e.g., guessing-based approaches) to 
“deductive” approaches (e.g., determining the solution), Liam’s recognition of the cells 
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as generalized numbers that he can operate on, and his awareness of functional co-
variation indicate that some of the hallmarks of algebraic thinking are in the process of 
being developed. However, while the descriptors “arithmetic” and “algebraic” might 
suffice for some purposes, they do not provide enough resolution to track moment-by-
moment shifts in understanding.  A more “tailored” description of how Liam understood 
and solved each problem is going to be necessary for the purpose of tracking moment-by-
moment conceptual dynamics.  Thus, it is the coarse temporal and conceptual resolution 
of frameworks for studying algebraic thinking, as well as the lack of definition around the 
core terms that make such frameworks unsuitable for a microanalytic study of knowledge 
growth and change. 

 
Development of specific concepts 

As noted above, Liam’s second strategy involved setting up a proportionality and 
determining the solution to the problem while in contrast, Liam’s first strategy involved 
converging to the answer through a sequence of specific numerical calculations. Thus, 
another possible way to frame the change in the sessions would be to zoom in from the 
general framing of Liam’s reasoning processes becoming more “algebraic” and instead 
focus on the development of particular key ideas such as proportionality, function, and 
co-variation.   There has been extensive literature on students’ thinking about these topics 
including  

1. proportional reasoning and its development (e.g., Fuson & Abrahamson, 2005; 
Karplus, Pulos & Stage, 1981; Noelting, 1980a; 1980b; Post, Behr, & Lesh, 1988; 
Tourniare & Pulos, 1985). 

2. function (e.g., Dubinsky & Harel, 1992; Leinhart, Zazlavsky & Stein, 1990; Sfard 
& Linchevski, 1991; Thompson, 1994) 

3. co-variation (e.g., Carlson & Oehrtman, 2005; Carlson, Jacobs, Coe, Larsen, & 
Hsu, 2002; Confrey & Smith, 1995; Saldanha & Thompson, 1998). 

However, none of the studies named above focus on the micro-development of these 
concepts for individual learners.  Furthermore, the original learning goals of the activity 
were framed around developing symbol sense (e.g., Arcavi, 1994; Schoenfeld & Arcavi, 
1988; Usiskin, 1988) and “algebraic” means of solving the problems (e.g., Stacey & 
MacGregor, 2000).  The task sequence itself was not particularly intended to develop 
ideas of proportional reasoning, function, co-variation, and rate of change.  Further, only 
very specific projections of these larger concepts show themselves in the learning 
trajectory that we are interested in modeling in this case study.  Thus, the data trace for 
the development of the many facets of any of these larger ideas is rather thin.  Though 
maintaining a focus on the content of what Liam learned is a central commitment of the 
analysis, developing a more direct approach of determining what Liam was specifically 
drawing upon and using in his reasoning processes was determined productive. 

Although any of the above framings would be suitable for illuminating or 
highlighting certain features of the process of change that we examine in detail in this 
case study, they all leave unexamined the crucial question of the nature and form of 
Liam’s knowledge elaborated in a way that could be insightful for understanding the 
micro-processes of change underlying the shift in strategies that we observe.  For this 
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reason, the heart of the analysis in this dissertation focuses on developing an analytic 
vocabulary for describing the nature and form of Liam’s knowledge-in-use and the 
processes by which it changes. 

Strand 2: Negotiating with the epistemological frame 
The first strand of the analysis involved recognizing that the approaches in these 

two episodes discussed were of a qualitatively different nature. We then discussed 
alternative perspectives on how to think about what changed in Liam’s understanding that 
could be used to help us make sense of the data.  However, to understand how Liam 
moved from one strategy to the other, we will have to go deeper than a top-level 
description of contrasting features of his initial and later strategies.  The task before us is 
to find a way to describe the relevant shifts in conceptual understanding that allowed this 
strategy “shift” to take place.  The question before us concerns making a representation 
of the organization of Liam’s knowledge-in-use in the sessions and tracking how that 
organization changes, and thus can be framed productively as an epistemological 
question.  

As previewed in the theory chapter, the analysis in this dissertation is informed by 
the Knowledge in Pieces (KiP) epistemological perspective.  In the literature review 
chapter, I described alternative theoretical perspectives on knowledge and knowledge 
construction (e.g., Radical constructivism, Process-Object theories, Sfard’s 
Commognitive perspective, Abstraction in Context, etc.) and also the pros/cons of each 
for an analysis like the one I pursue here.  This review, combined with the growing body 
of evidence within mathematics and science education that show systems perspectives on 
thinking and learning to well-capture key aspects of developing competence, is used to 
support the reasonableness of the decision to use and adapt a theoretical perspective from 
“outside” the mathematics education.   

As was discussed in Chapter Five, a generic attitude of KiP/KA research is that 
this theoretical frame is not simply “applied” in analyses, but rather the process is one of 
deliberate negotiation and adaptation of general epistemological principles so as to be 
tuned for use in the context under study.  See diSessa & Cobb (2004) for a discussion of 
this approach of generating and refining “humble theories” through particular analyses. 
Here, we remind the reader of some of the central features of the epistemological 
framework we will be adopting/adapting through the upcoming analytic strands.   

 
Initial contact between epistemological framework and data 

The Knowledge in Pieces (KiP) epistemological perspective (diSessa, 1993) 
proposes that individual knowledge can be productively modeled as a complex system of 
knowledge elements that are diverse in form and contextually sensitive in their activation 
and use.  In particular, naive knowledge systems are weakly organized (in contrast to 
being highly integrated, coherent systems). Learning and conceptual change involve 
refining when and how particular knowledge elements are activated and used, the 
coordination of the use of multiple knowledge elements, and the construction of new 
knowledge elements. Thus, this perspective brings into focus the structure and form of 
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intuitive knowledge and its positive role in the subsequent refinement, integration, and 
systematization of students’ knowledge systems.   

In my initial attempts to negotiate between the empirical data and the theoretical 
frame, I made the conjecture that it could be possible to present Liam’s problem solving 
strategies as compositions of smaller, sub-strategic and sub-conceptual knowledge 
elements.  Further, I hypothesized that the smaller pieces might potentially “belong” to 
many concepts and could be appropriately or inappropriately activated according to 
context and that the development across the sessions could be traced in terms of these 
sub-strategic and sub-conceptual pieces becoming increasingly coordinated.  As the case 
study progresses, I will show how this initial gloss for how the framework informed the 
analysis becomes increasingly specified and elaborated. 
 
Considering existing constructs of the theory 

In tackling the question of trying to exhibit the putative sub-strategic and sub-
conceptual elements that get activated and coordinated in the process of strategy 
construction, I first asked whether it made sense to adapt and/or modify existing 
constructs within the framework in relation to my data and context (e.g. p-prims, diSessa, 
1993; coordination classes, diSessa & Sherin, 1998 as described in more detail in chapter 
four).  In this initial phase, I found that the principles of KiP as an orienting framework 
were useful, but these specific existing constructs elaborated in the theory were not 
recognizable to me in a way that immediately helped me in thinking about the question of 
strategy emergence in my particular data.  For example, though the case of Liam did have 
to do with tracking increasing competence in a domain, it did not obviously have 
anything to do with the problem of establishing invariance of determinations across 
multiple contexts (the prototypical function for coordination classes) and the specific 
topic Liam was reasoning about did not seem obviously related to his comfort or surprise 
with aspects of his physical experience (the prototypical function for p-prims). 

However, as examples of extensive knowledge systems and how they function 
and develop, existing “primitive” knowledge structures like p-prims, and more extensive 
knowledge systems like coordination classes, served as reference models in the analysis.   
As the analysis progressed, as opposed to p-prims and coordination classes themselves 
being the central constructs of interest, elements and systems that played (in some sense) 
analogous roles did emerge (e.g., co-variation schemes, control of variation systems, the 
two contrasting strategy systems, etc.)  These constructs will be elaborated in the later 
phases of discussion of the analysis.  The important idea to stress at this stage is that 
though these existing constructs of the theory were themselves not directly importable to 
the current analysis, studying the literature that documented their relationship in other 
contexts provided useful reference models for how to interpret my data in terms of 
knowledge systems that were more adept at capturing the relevant features of the context 
under study.  

 
Reformulation: Strategies as complex systems 

Informed by the Knowledge in Pieces (KiP) perspective, I (eventually came to) 
consider a strategy to be a particular kind of complex knowledge system.  In attempting 
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to reformulate strategic knowledge from a complex systems perspective, one can take a 
functional perspective – asking what kind of role does the element or system play in a 
learner’s conceptual system.  From this perspective, the function of strategies, as complex 
knowledge systems, is to coordinate the many, diverse kinds of knowledge necessary in 
order to solve problems in a way that leads to a solution.  

There are many important aspects of understanding and using strategies 
effectively.  In this section, will first give an indication of the range of kinds of 
knowledge that could comprise a strategy system and then I will turn to explaining those 
facets that will be most useful for the analysis developed in this dissertation.  

To give an example of the breadth of kinds of knowledge that could be involved 
in the implementation of a strategy, consider the: (1) knowledge that would allow an 
individual to recognize when an already constructed strategy in their repertoire would 
apply, (2) knowledge about what it would mean to solve the problem (e.g., stopping 
criteria), (3) knowledge of the information one needs to determine or read out in order to 
reach the goal of solving the problem, (4) conceptual knowledge that enables the 
operation on this information in order to solve the problem, (5) control knowledge about 
how to determine how well the strategy is working and whether one should try adapting 
the strategy or choosing a new strategy mid-solution attempt, (6) knowledge about the 
alternative strategies and criteria for selecting other potentially viable strategies.    

Mapping out the diversity of kinds of knowledge involved in strategy systems and 
how this knowledge functions is a program of research in and of itself.  This analysis 
takes some initial steps in this direction of modeling strategic knowledge as a complex 
system. However, not all of the aspects listed above will be particularly accessible or 
relevant in the particular episodes we will be analyzing.  The purpose in listing them is 
merely to give some indication of the breadth of types of knowledge involved in 
implementing strategies – briefly, to make the case that strategy implementation is a 
highly knowledge intensive enterprise.  

For current purposes, the components of a strategy that we will trace through 
several focal episodes from Liam’s problem solving sessions include (1) strategic path, 
(2) conceptual categories, and (3) knowledge structures that encode relations between 
conceptual categories. Below, each of these components of the strategy system is 
described in more detail and selected illustrative examples that are relevant to the case 
study in question are given.  

 
1. Strategic path. Implementing strategies involves a strategic path – the solver’s 

image of the goal state (e.g., what it means to have solved the problem at hand, 
what information needs to be determined, and an image of how it should be 
operated on in order to achieve the goal of solving the problem).   
 

 In this case, the information that Liam perceives as necessary to collect shifts over 
the course of the sessions from a sequences of trial values that get closer and closer to the 
solution to a two trial values from which the answer to the problem can be determined.  
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2. Conceptual categories: Conceptual categories are the categories of attention that 
the solver either looks to in order to read out information and/or set in order to 
solve the problem. 

 
For example, In the case in question, the solver has to “set” the input variable and 

then “read out” information about the resulting output, and the target. Here, “setting” 
could be understood as “selecting a possible value for a conceptual category,” such as the 
input. Output and target are related in that one can read out the error involved for each 
guess and work to reduce it.  By determining the output and comparing it to the target, 
error is a conceptual category that a solver can know to look for and to read out 
information about. Briefly, input is a conceptual category that is set and output, target, 
and error are conceptual categories that are read out.  Looking ahead to future 
developments over the sessions, in the context of the activity in question, Liam 
eventually comes to recognize “unit increment” as a relevant conceptual category for 
determining solutions.20 
 

3. Knowledge structures that encode relations between conceptual categories: 
These are the inferential relations the solver forms between conceptual categories.  
 
We will later discuss the elements of the solver’s knowledge system that are 

particularly relevant for the case study here – those that capture expectations about the 
effect of varying the input.  We call these relational elements co-variation schemes – 
relations between inputs and resulting outputs that concern the effect on the output of 
varying the input (e.g., Input increases  Output increases, etc.)  The control of variation 
system is a conceptual system that gets build up and elaborated over the course of solving 
several problems.  The relations between conceptual categories form the “inferential net” 
(cf. diSessa & Sherin, 1998) of the strategy system, providing a conceptual justification 
for the choices of operations the solver takes in order to implement the strategy. 

In addition to the latter two components of the strategy system (that one could call 
“attentional” and “relational” components) listed above, there are other aspects of the 
strategy system that we will trace in our analysis. For instance, there is possibly quite 
diverse pool of knowledge that is activated in the course of solving problems. Though 
knowledge like arithmetic facts with simple units may not be a site for conceptual 
development (e.g., Liam may not learn anything new about multiplication for instance), 
these pieces of knowledge still support the implementation of the strategy.  In the line-by-
line analysis in strand four, I will group such knowledge under the category “activated 
auxiliary knowledge.” 

                                                 
20 An interesting methodological issue concerns the process by which the analyst 
determines how individuals construe what we identify as their conceptual categories and 
relations.  In this regard, it is helpful to recall the observation heuristics for coordination 
classes that were discussed in Chapter Five.  
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The reader will have ample opportunity to see these ideas concretized in the 
analysis when they are used to trace the development of the strategy over several 
episodes of problem solving (e.g., analytic strand four). 
 
Reconsidering the connection with coordination class theory 

In the above, the first class of knowledge in the strategy system (the attentional 
component: conceptual categories the solver looks to and/or sets) is more related to how 
the individual “sees” the problem context and what is required to solve the problem.  The 
second class of knowledge (the relational component: relations between conceptual 
categories) concerns more what the solver knows about how the categories of attention in 
the problem are related that will enable them to make progress toward a solution.  One 
could loosely make an analogy with coordination class theory (diSessa & Sherin, 1998) 
and say that the first class above is related to “readouts/setting” (perceptual component of 
a coordination class) and the latter class is related to the “inferential net” (inferential 
component of a coordination class).  Though this is merely a rough analogy between two 
classes of knowledge systems, one function of pointing out parallels between the 
definition of the strategy system given above and the definition of coordination classes is 
that it can be suggestive of phenomena that it could perhaps be helpful to be attentive to.  
For example, is there empirical evidence that other prototypical issues associated with 
coordination class theory, such as span and alignment across determinations, are relevant 
in the case of strategy systems?  For example, is having multiple and well-aligned means 
of determining particular conceptual categories (say, unit increment) a relevant issue?  

The next section describes the process by which the base vocabulary for 
knowledge-in-use that we use in modeling the process of strategy construction was 
schematized from transcripts.   

Strand 3: Developing an analytic vocabulary	
  
As indicated in the previous section, at the most general level, Knowledge in 

Pieces (KiP) posits that individual knowledge can be productively modeled as a complex 
system, both strategies and relevant conceptual knowledge are modeled as complex 
systems of elements that are diverse in form and function.  The overall goal of our 
analysis is to uncover the elements of these systems, how they are organized, and also 
how the systems relate to each other.  

While KiP suggested making the conjecture that it would be possible to re-frame 
the process of strategy emergence in terms the dynamics of complex systems, the task 
was still to think about how it made sense to deconstruct this process of knowledge 
construction into relevant sub-systems and elements.  Having temporarily eschewed the 
“top-down” approach of looking for specific types of knowledge elements such as p-
prims and coordination classes in my data, I instead settled on a “bottom-up” approach 
that involved trying to characterize Liam’s knowledge-in-use.21 
                                                 
21 In terms of chronology, this phase of bottom-up schematization of knowledge-in-use 
preceded the reformulation discussed in the last section of strategies as complex 
knowledge systems. Some of the relevant pieces of knowledge activated in context (co-



 

 
 

 

55 

In this section, I will present the analytical framework for tracing this co-
development process.  This analytical framework is one of the outputs of the analysis in 
that it was developed in a grounded fashion through observations of the empirical data 
and in negotiation with the theoretical perspective that guides this analysis.  Thus, while 
it is presented in advance of the analysis so that the reader can see the framework in 
action as we track some of the dynamics of change from initial to final strategy, this 
particular framework was the result of iterative passes through analyzing the empirical 
data and ongoing negotiation with the theoretical perspective that informed the analysis.  
  
A bottom-up schematization of knowledge-in-use 

In the initial phase of the analysis, the videos and transcripts were openly studied 
in order to identify and schematize the nature and form of the kinds of knowledge that 
Liam drew upon as he worked on problems.  

There were some aspects of the strategy implementation that remained constant.  
For example, unlike many students22, Liam had no difficulty “seeing” the paths of 
determination from input to resulting output that were specified by the conditions given 
in each problem.  From this open analysis, it was observed that the fundamental shift of 
interest to the case study involved a change in organization of knowledge related to the 
kind of justifications Liam gave for his next guesses.  Thus, an analytic decision was 
made to first focus analytic attention on characterizing the nature of Liam’s knowledge 
system in this area and how it changed. 

Liam adopted an “input/output” strategic frame in which he knew that at the very 
most general level, the organization of the solution strategy would follow the pattern of 
choosing a value for the input, operating on it as specified by the relation given in the 
problem, reading out the corresponding output, and checking that against the constraint of 
the “target output” given in the problem.  The solution would proceed by him adjusting 
the input in a way that would result in the corresponding output move closer to the target 
and ultimately achieve it. 

What is of interest is the way his awareness of how to adjust the input value so 
that the corresponding output would approach the target value became articulated over 
the course of solving several problems.  What started out as a general and inarticulate 
                                                 
variation schemes) were observed first and then it became necessary to try to model the 
knowledge systems involved in which we could observe these elements functioning. 
22 Seeing “paths of determination” is actually highly nontrivial for many of the other 
students observed in these sessions and in classroom sessions.  For many students, 
flexibility in seeing which number to guess values for and being able to determine other 
values from their choice was difficult.  Some of the exercise involved in working with the 
charts is actually to give students experience in recording and reflecting on how the 
independent variable gets operated on and one can use one value to determine the others.  
This is completely unproblematic for Liam.  It remains a difficulty in instruction to figure 
out how to support this kind of “intuition” about which number is “easiest” to guess 
values for.  It seems obvious to some students and is a completely nontrivial 
accomplishment for others.  
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intuition about how the inputs and outputs in each of the problems co-varied was 
eventually refined into a means to explicitly determine solutions based on the results of 
two guesses.  

 
Methodological notes concerning the observation of elements in data 

In general, it can be hard or impossible for an analyst to know a priori when they 
can expect to see particular knowledge invoked in an episode of reasoning.  However, the 
regular structure of the activity: (1) making a guess (2) reflecting on its effect and then 
(3) choosing another guess that will improve on the result of the previous guess, naturally 
implicates thought elements of an expected form and grain size.  That is, the chain of 
reasoning that occurs is for the individual to read out the output, compare it with the 
target value, determine (roughly or precisely) how big the error or discrepancy is and 
then make an adjustment to the input value. Thus, the regularity of the activity allows the 
analyst to predict what to expect in terms of the nature and type of thought elements 
invoked to support the reasoning process.  

Another assumption is that each time Liam chooses a next guess, this choice is, in 
fact, guided by his understanding of the underlying variation of the function.  A rival 
hypothesis to Liam drawing upon some knowledge or understanding of how the 
relationships in the problem contexts work would be that Liam is merely invoking a 
“More X corresponds to More Y” scheme because this has worked in the past for him.  
Throughout the sessions Liam has an explicit orientation to focus on “timesaving” and 
efficiency and the sequence of guesses he chooses reflect his version of the task which 
appears to be to solve the problem in the fewest number of guesses. That is, as we will 
see when we go through the set of focal episodes in sequence, there is a cumulative focus 
across the sessions to build on the problem solving approach used in previous trials and 
to refine it.  Liam appears to be attuned to the direct effect of his choice of input on the 
resulting output via the relation given in problem contexts. That is, the assumptions that 
he is thinking about co-variation and change appears warranted.  (Of course, I only flag 
this issue here.  Readers will have the chance to judge for themselves in analytic strand 
four).  
 
Creating a schematization of thought elements from transcript 

In the data excerpt below (that has been discussed in the previous section 
describing the before/after view of strategy change), I give an illustrative example of how 
I schematized the decisions Liam was making as he was choosing next guesses. Recall 
that the problem Liam was working on was:   
 

The base of a rectangle is three more than twice the height.  The 
perimeter of a rectangle is 60 inches. Find the dimensions of the 
rectangle.   

 
In line with the instructional expectations of the sessions, Liam organized his solution to 
this problem in a guess and check chart (a typed reproduction of which is given below). 
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Figure 6. A typed reproduction of Liam's work. 

For nearly all choices of input value, Liam either spontaneously offered or 
responded to a request with a justification of his choice.  This provided a sense as the 
problem was unfolding of what was salient to him.   

In the table below, I show the literal transcript that accompanied Liam’s choice of 
each guess.  One should note that since we are currently focused on schematizing the 
nature and form of Liam’s knowledge-in-use, for now, I show only Liam’s utterances.  I 
then provide a schematization of the thought process behind what Liam says as he is 
making his next guesses and finally, I show how these are interpreted in terms of (1) what 
Liam notices about each guess (“readouts”) and (2) the knowledge structures that 
support his choice of next guess (“co-variation schemes”).  In the section on dynamics 
(strand four), more of the interactional details between the tutor and Liam will be 
reintroduced. 
Table 5. Schematization of knowledge elements from transcript. 

Input Transcript Schematization of thought 
process 

Schematization of element 
activation in the episode 

18 “So it’s actually a lot 
lower.  I just realized 
that.” … “This is 
way too much.” 

If the result of my guess is 
way too high with respect to 
the target, then I should 
adjust by making the next 
guess much lower. 

Readout: Too high (with respect to 
the target).   
Co-variation scheme: Decreasing X 
 Decreasing Y.  

18 “It’s almost twice as 
much. So I’ll try 
with 10.” 

If the result my guess is 
about twice as high as the 
target, then I should adjust 
by making the next guess 
about half as much. 

Readout: Too high, in fact, about 
twice too high.   
Co-variation scheme: Decreasing X 
by about a factor of 2  Decreasing Y 
by about a factor of 2. 

10 “OK. So now I’ll try 
an 8.  That’ll be 
about right.”  
 
 

If the result of my guess is a 
little bit too high with 
respect to the target, then I 
should adjust by making the 
next guess a little lower.  

Readout: Too high, in fact, a little bit 
too high. 
Co-variation scheme: Decreasing X 
by a little bit  Decreasing Y by a 
little bit. 

8 “It’s probably nine.” 
…  “Well it was 
actually definitely 9 
if this [result of 
guess of 8] was too 
low and this [result 
of guess of 10] was 
too high.  Unless it 
was a decimal 
number.” 

If the result of one guess is 
too low and the result of 
another is too high with 
respect to the target, then I 
should choose my next 
guess to be in between the 
guesses that resulted in the 
outputs being compared.  
 
  

Readout: Too low.  Combine this 
with the observation that the input of 
10 resulted in an output that was too 
high.   
Composition of co-variation 
schemes:  
If a target Y value lies between two 
specified Y values, then the X value 
that achieves the target must lie 
between the corresponding X values. 
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In the above, Liam is attending to whether a particular guess is too high or too 

low, amending to that various attributions that qualify the initial assessment of too high 
or too low (such as “way too much” or “twice as much”).  Another important thing to 
note about the general form of the inferences that Liam is making to guide his next guess 
is that, at this point, they refer to the variation of the function as if it were assumed that 
the underlying linear function passed through the origin, combined with a rough sense of 
proportionality (e.g., that is, he initially makes inferences that would not be true for all 
linear functions of the form y=mx+b, but that are consistent with y=mx).  That is, it is not 
always true that reducing the input by a factor of two will result in reducing the output by 
a factor of two. This is true for functions of the form y=mx, but not y=mx+b. 

As we see from the above, patterns of related variation that Liam notices and uses 
to guide his choices include: 

• If I change the input (X) by A LOT, this will result in the output (Y) changing by 
A LOT. 

• If I increase/decrease X by a little bit, this will result in Y increasing/decreasing 
by a little bit 

• If I increase X by approximately a factor of 2, Y will increase by approximately a 
factor of 2 

An interesting issue is the degree to which any of these “elements” are distinct from each 
other or whether they all have a common root element “Change in X  (like) Change in 
Y.”  The model that I will develop in this case assumes that the elements are not 
independent from each other and they do share a common root element.   Another theme 
of the (upcoming) analysis will be showing how this approximate version of a linear 
model of the variation that initially guides Liam’s choices of next guess gets refined into 
a quantitative and “incremental” linear model that Liam can use to solve problems 
involving general linear functions of the form y=mx+b. It is not a priori clear that 
judgments that are consistent with a linear model (e.g., the initial, “global” judgments 
that Liam makes) imply (for Liam) the quantitative and incremental linear model that he 
later uses.   However, based on Liam’s patterns of reasoning and the extended time it 
takes him to “put together” certain inferences on the spot later, we will argue that we are 
directly observing the construction and refinement process of Liam’s model.  

 
Iterative description of knowledge elements 

Using this method of schematizing knowledge-in-use across the episodes allows 
us to get a first-pass idea of the nature and form of the relevant knowledge.  However, 
this is just a first iteration of giving descriptions of the knowledge in the sessions.  There 
is much more we want to know about the knowledge in the sessions in addition to just its 
rough form.  As we indicated in the theoretical framework and methods section, we will 
want to describe the structure and form of knowledge elements, how the relevant 
knowledge systems in which these elements function is organized, how the elements are 
activated and used, and how the system organization changes over time. 

Now that we have seen examples of them in data, below, I give definitions for co-
variation and correspondence schemes that explain some of their more general features.  
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The definitions below include specification of function, structure, dynamics, and 
hypothetical source of the knowledge structures.   The particular dimensions of 
specification are informed by the principles of KiP  (in particular, see “Theorizing about 
any knowledge system, diSessa, 1993, p. 8). 

This discussion is followed by a complete list of the schemes that appear in the 
data analyzed.  Again, in strand four the reader will have the opportunity to see these 
schemes used in the context of Liam’s activity. 

  
Co-variation schemes  
Below, we give a definition of co-variation schemes, a description of potential conditions 
of activation, and a sketch of potential genetic roots. 
 

1. Definition.  A co-variation scheme is a knowledge structure which functions to 
help an individual predict the effect of controlling a “cause” (or an independent 
variable).  The relevant structural features of the knowledge structure are (1) 
input, (2) cause or “path of determination” from input to output, (3) resulting 
output, (4) hypothetical change in input, (5) resulting change in output given the 
hypothetical change in input. 

2. Activation. In the context of the problem solving sessions we study in this 
analysis (a student solving algebra word problems by “guessing and checking,”) 
appropriate co-variation schemes are recognized based on (1) perception of 
distance and direction away from the target value and (2) awareness of the role of 
the functional relation given in the problem in determining the output and in 
determining how the output changes when the input is varied.  Activation of 
appropriate co-variation schemes is also reinforced through interactions that make 
the distance between results and the target salient.  A further factor that influences 
the activation of appropriate co-variation schemes is the history of the activity and 
the effectiveness of previously activated co-variation schemes (e.g., the activation 
of the co-variation schemes coinciding with expectations increases its cueing 
priority).  Increased quantification of the amount of error between the target and 
the output is also driven by the activity and the goal of solving problems that are 
recognized to be similar in more efficient ways.   

3. Source. I now give some examples of contexts outside of the one under study and 
in which individuals likely use co-variation schemes to structure their thinking. 
Firstly, note that in real life settings, time is adjustable and consider the situation 
of one asking oneself “How long should I pour in order to fill a glass up with 
water?”  In this example, time is the input that one has control over, the 
relationship between time and the height of the liquid is given by a linear function 
(assuming one is pouring at a constant rate).  The water level rises as one 
continues to pour.  One can either use qualitative descriptions like “One would 
need to pour a lot longer because the glass has been filling up slowly” or one 
could alternatively determine the exact amount the liquid level goes up per unit 
time.  
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Correspondence schemes 
Here, we mention a special class of co-variation schemes – correspondence schemes (Y 
changes by the same amount every time that X changes by some fixed amount).   
 

1. Definition. Correspondence schemes are knowledge structures that are involved 
in proportional reasoning.  The structural components of this knowledge structure 
are (1) number of units of one quantity (e.g., the input quantity) (2) number of 
units of another quantity (3) correspondence between these quantities.  
Correspondence schemes are used in extrapolating relationships and in 
conducting unit conversions. 

2. Activation.  In these sessions, worth schemes are activated by the need to find 
how to precisely adjust the input variable (e.g., by the need to determine how 
much an increment in X in worth in terms of Y).  

3. Source. One of the genetic roots for correspondence schemes are proposed to be 
“worth” schemes (diSessa, 1993).  In everyday life and from early ages, we assign 
correspondences between a certain number of discrete objects (e.g., movie tickets) 
and say prices.  We assume that if we know the price for one of these units, then 
we can predict the price for any number of them.  (In real life, the practice of 
giving discounts for purchasing more units competes with this scheme).   

 
Both co-variation and correspondence are recognized as two different facets of functional 
thinking (Blanton & Kaput, 2008; Carlson & Oehrtman, 2005; Chazan, 2000; Confrey & 
Smith, 1995; Saldanha &Thompson, 1998).  The activity under study in this analysis 
requires the coordination of these two perspectives.  That is, a student needs to think both 
in terms of the process that acts on inputs leading to resulting outputs and also think 
about the effect on the output of varying the input.  Though correspondence remains the 
“traditional” perspective on functional reasoning, a growing number of studies recognize 
the value of co-variational reasoning.    

In the above, the distinction between co-variation schemes and correspondence 
schemes is a slightly different one.  Correspondence schemes establish the “worth” of a 
number of increments in input to increments in output.  In this sense, they are more 
related to the formation of composite units (e.g., Steffe, 1994).  

In the tables that follow, I list the co-variation schemes (qualitative and 
quantitative co-variation schemes are listed in separate tables) observed in all the sessions 
with Liam.   Although it is easy to imagine that there could be many other co-variation 
schemes, apart from the ones listed here (just as a simple example, the family of 
primitives associated with inverse variation “If I increase X, Y decreases” is not listed 
here, the reader should note that this list contains only co-variation schemes that came up 
during the tutorial sessions (and because of the nature of the problems in the sessions, all 
the schemes involved at their root, direct, linear variation).   

Notation: In the following description, X stands for “input” values and Y stands 
for “output” values.  The ““ notation should be read as “results in.”  So, “Change X  



 

 
 

 

61 

Change Y” is read “A change in X results in a change in Y.”  More X  More Y should 
be read “More change in X results in more change in Y” and so on. 
Table 6. Qualitative co-variation schemes from across the sessions 

Descriptor Co-variation scheme Brief Description Transcript segments  
Direct 
variation 
 

More X More Y If I increase X, then Y 
increases. 

“I would know that I should go a 
little bit higher.” [His initial guess 
of 15 was too low and so Liam 
chose a next guess of 16 because 
increasing X  increasing Y]  
(Episode 1) 

 Less XLess Y If I decrease X, then Y 
decreases 

“Well, maybe 18 and I’ll see what 
happens there.  So for 18 – twice 
the height so it’s 36 then plus the 
… Ohhh, so it’s actually a lot 
lower.” [So, I need to decrease the 
input since decreasing X  
decreasing Y] (Episode 2) 

Qualitative 
proportionality 

Small change X  
Small change Y 

If I increase/decrease 
X by a small amount, 
then Y 
increases/decreases by 
a small amount 

“Yeah. so 15 plus 51 is 66, so I 
would know that I should go a 
little bit higher.” [Because 66 is 
just a little bit lower than 70, so 
you only need to increase X by a 
little bit to achieve a 
corresponding little increase in Y] 
(Episode 1) 

 Moderate change X 
 Moderate change 
Y 

If I increase/decrease 
X by a moderate 
amount, then Y 
increases/decreases by 
a moderate amount 

N/A. It is possible that only “big” 
and “little” adjustments are really 
seen in this data In any case, these 
are relative judgments to the other 
judgments subjects made in 
reasoning about the same problem.  

 Large change 
XLarge change Y 

If I increase/decrease 
X by a large amount, 
then Y 
increases/decreases by 
a large amount 

“Well, maybe 18 and I’ll see what 
happens there.  So for 18 – twice 
the height so it’s 36 then plus the 
… Ohhh, so it’s actually a lot 
lower.” (Episode 2)   

 Increasing/decreasing 
X by factor 2  
Increasing/decreasing 
in Y by a factor of 2 
(approximately) 

If I increase/decrease 
X by approx a factor 
of two, then Y also 
increases/decreases by 
approximately a factor 
of two.  

“This is way too much.” … “Uh, 
it’s almost twice as much.”  
(Episode 2) 
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Table 7.  Quantitative or incremental co-variation schemes across the sessions. 

Descriptor Co-variation 
scheme 

Brief Description Transcript 

Incremental 
worth 

Increase or 
Decrease in X 
by d  Increase 
or Decrease in 
Y by D 

If I increase or decrease 
X by an amount of d, 
then Y increases or 
decreases by an amount 
of D 

“That moved up 3 [input of 17]. Then this 
[corresponding output] moved up 12.” 
(Episode four, post-problem reflection) 
 
“So you could tell how many of these 
[indicating input column] equaled how 
many of these [indicating output column]” 
(Episode 5) 

Unit worth Increase or 
Decrease in X 
by 1  Increase 
or Decrease in 
Y by D/d 

If I increase or decrease 
X by 1, then Y 
increases or decreases 
by D/d 

“So, that means for every one that this 
changes [indicating first column], the 
answer changes 3.” (Episode 5)  

Iterated unit 
worth 

Increase or 
Decrease in X 
by a  Increase 
or Decrease in 
Y by a(D/d) 

If I increase or decrease 
X by a, then Y 
increases or decreases 
by a(D/d) 

“So, then I took 423 and I subtracted that 
[target value of 414]; the difference was 9 
and 3 times 3 is 9. Yeah, 3 times 3 is nine, 
so I knew it would have to be 3 less, for 
this [input of 140] and yeah.” [For every 
one the input changes, the output changes 
3. So, for every three the input changes, 
the output changes 9.] (Episode 5) 

 
Table 8. Compositions of co-variation schemes across the sessions. 

Descriptor Composition Brief  Description Transcript 
In between 
 

Qualitative 
Composite of 
direct variation 
(More  More 
and Less  
Less) 

 If the result of one 
guess undershoots the 
target output and 
another overshoots, 
then the target input is 
in between these two 
guesses. 

“Well it was actually definitely 9 if this 
[result for a guess of 8] was too low and 
this [result of a guess of 10] was too high.  
Unless it was a decimal number.” (Episode 
one) 

Exactly in 
between 

In-betweenness 
with the 
halfway point 
as a reference. 

If the result of two 
guesses overshoots the 
target by the same 
amount, then the target 
input should be exactly 
in between the first two 
inputs. 

“I just thought that it [the answer] was in 
between these two [between 12 and 16] 
because this [points to result for 12] was 20 
too low and this [points to result for 20] 
was 20 too high.  And this [16] was exactly 
between those [12 and 20]. (Episode three) 

Closer to 
one than the 
other 

In-betweenness 
(making 
instrumental 
use of half as a 
reference point) 

If guess one overshoots 
the target by less than 
guess two undershoots, 
then the target input 
should be closer to 
guess one.   

“I don’t know how you’ll put it in words, 
but this was lower [result from a guess of 
15] and this [result from guess of 20] was 
too high.  So, it would go – it would be 
further up [sweeping gesture] because I 
know that it’ll be in between these two [15 
and 20] already.  So, it would be higher up 
instead of being right in the middle.  It’ll be 
higher up.”  



 

 
 

 

63 

 
As discussed in the theory chapter, Knowledge in Pieces, as a deeply 

constructivist program of work is concerned with constraints placed by developmental 
perspectives on theorizing about knowledge systems.  In the course of one analysis in 
which knowledge elements are schematized from the data under study, it is not possible 
(unless a substantial corroborative literature base is already in existence) to have 
extensive information about the genetic roots of the elements of the systems under study.  
In large measure, this constraint is a point towards future work in situating the current 
analysis.  As a proxy for developmental study of some of the main ideas involved in the 
knowledge systems under current study, we engage in the brief thought experiment below 
that attempts to make the case that an idea like “in-betweenness” is a developmentally 
plausible idea that occurs in many contexts (not just the one under study). Recall that we 
engaged in a similar though exercise in discussing possible sources for co-variation and 
correspondence schemes.  

 
In-betweenness is an intuitive idea that is substantially supported by the 

continuity of experience.  In-betweenness is plausibly an intuitive precursor of ideas that 
students will encounter later in their studies in the form of the Intermediate Value 
Theorem. For example, the following scenarios are something that students will feel a 
great deal of intuition for, despite not being able to prove the mathematical theorem that 
justifies this intuition. Continuity of experience seems to strongly undergird intuitions 
about “intermediate values.”  

•  Example: Imagine that one is traveling 40 miles per hour at one point in time and 
then at a later point in time one is traveling 60 miles per hour.  One knows that 
there existed a point in time in between these two when they must have been 
going 50 miles per hour.  Similarly, one would expect to be able to estimate when 
this point in time occurred if they knew a time when they were going slightly less 
than 50 miles per hour and time when they were traveling slightly more than 50 
miles per hour. 

•  Example: Benjamin’s parents measure his height at 52 inches in March, but they 
forget to measure him again for another couple of months. They find that he’s 54 
inches by August. Thus, they know that sometime between March and August he 
was 53 inches (and, actually, given the continuity of human growth, there exist 
points in time at which he achieved all values in between 52 and 54 inches).  

The two examples above have slightly different “extra” assumptions in that people know 
that in order to go from 40 to 60 miles an hour, one has to speed up through all 
intermediate values.  However, it is still possible for the speed of the car to vary over an 
interval in ways that are not monotonic.  The growth example also appeals to the 
individuals’ intuition rooted in experience that generally people do not shrink and then 
get taller over some interval of time – their height only increases as time progresses until 
it plateaus when they reach their adult height.  

•  Example: Tuning a radio dial to find a particular frequency is a process that 
involves the continuous control of an input variable over a range of frequencies.  
Furthermore, one likely engages in a successive under/overshoot process in order 
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to zero in on the frequency.  A similar example comes from the continuous tuning 
of string instruments above and below the pitch in order to zero in on the pitch.23 
One difference between the examples of tuning a radio dial and tuning an 
instrument and the examples above (growth and car speed) is that in the second 
two examples, the focus is on a personal agent that is doing the tuning.   
 

Coordinating the top-down reformulation and the bottom-up schematization 
I have now discussed given an indication for how the theoretical framework 

guides the analysis (1) top-down by “suggesting” the reformulation of our problem in 
terms of complex knowledge systems and (2) bottom-up by looking directly at what Liam 
attends to and infers in activity.   The outline of the analytical framework that we are 
constructing is now starting to take shape.  In this section, we will take another pass 
through thinking about what we should expect about both relevant strategies and concepts 
as complex systems.  

Any strategy system relies on (possibly several) conceptual schemes to implement 
the strategy (in general).  In the case studied in this dissertation, there are two main 
strategy systems (means-end strategy system and the linear interpolation/extrapolation 
strategy system) and one main conceptual system (control of variation system).  We are 
interested in the interrelations and co-development between these two knowledge 
systems.  

Given that what is of interest is the conceptual schemes that are used in 
implementing the strategy, it is important to trace what particular aspects of Liam’s 
understanding of linear control of variation are called upon in particular instances of 
problem solving.   Furthermore, while we would contend that knowledge of how to 
control the variation of functions eventually becomes a more general conceptual system, 
we only get a chance to see this knowledge system engaged and activated in the context 
of this one activity.  So, for the purposes of the analysis, we show the conceptual pool of 
knowledge that is engaged in the problem solving activity (the control of variation 
system) as a “subsystem” of the strategy system. This subsystem is refined over the 
course of the episodes of problem solving that we analyze.  
 
System dynamics and generic mechanisms of change  

Continuing with the elaboration of our model of strategies and concepts as system 
of knowledge, the elements in the knowledge systems described above (“means-end” 
strategy system and the “control of linear variation” conceptual system) can be assigned 
various priorities that allow us to determine which elements will be activated when.  One 
of the qualities of the elements to note for an individual is how to tell which ideas are 
more or less likely to be activated.  The way we would say this is to ask whether elements 
are at high cueing priority (e.g. a measure of how likely is an element to be turned on or 
recognized in a context). Another kind of priority involves reliability priority (e.g., a 
                                                 
23 While this may appear to be an incidental example, the student who is the subject of the 
case study in this dissertation happened to be a violin student and so this particular 
example of overshooting and undershooting pitch would certainly be sensible to him.  
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measure of how likely the element is to be turned off once it is turned on).  Priorities can 
be increased/decreased by various mechanisms including interactions with others, with 
representations, etc.  The language of priorities is introduced here so that in the analysis it 
will be sensible to talk about system dynamics in terms of priorities. 

Strand 4: Using the analytical framework to trace the learning trajectory  
This section describes how the analytic vocabulary I discussed in the previous 

section makes contact with my data and is instrumental in studying the learning process 
under study.  I have selected six episodes along the trajectory of strategy construction on 
which to illustrate the fit between the data and the analytic vocabulary.  The six episodes 
span (1) spontaneous guessing and checking (2) purposeful guessing and checking 
organized in a chart (3) exactly in between (4) closer to one than to the other (5) re-
constructing the linear interpolation/extrapolation strategy and (6) re-applying the linear 
interpolation/extrapolation strategy.  

For each episode, I give the statement of the problem and describe the work on 
that problem in line-by-line detail.  This level of detail is important for showing how each 
episode gives a snapshot view of the strategy system in action as it is implemented. The 
conceptual categories that Liam looks to and sets, the inferences that support the actions 
he takes toward solving problems the conditions under which these elements are 
activated, as well as changes to the strategy system, will all be noted after each episode.  

The six selected episodes are presented in chronological order and span the six 
hours of interaction between Liam and the tutor/researcher.  All episodes that either 
prepared for or involved Liam solving problems using and refining a trial and error 
strategy were analyzed. The selection criterion for presentation in this section was that 
the episodes needed to illustrate the introduction of new ideas or developments related to 
the focal arc of strategy construction.  For each episode, an indication of what happened 
in between focal episodes is given as the data is presented.  

The following section can be expected to be quite dense to read, especially as we 
move through the events in the selected episodes line by line, and discuss after each one 
the features that are relevant to the model of strategy and conceptual co-development that 
we are constructing.  After each episode is a description of (1) the strategy system in 
terms of strategic frame, conceptual categories and relations, (2) dynamics of knowledge 
activation noted in the episode, (3) a “snapshot” of the current organization of the control 
of variation scheme, and (4) micro-developmental events of note during the episode. 

Analytic narratives like the six presented here were prepared for all seventeen 
episodes that were initially identified as potentially relevant to the trajectory of strategy 
construction. Thus, this section provides a sample of the kind of analytic work that was 
done in the construction of the final model.  Following the extended analytic narratives of 
selected focal episodes provided in this section, there are two sections that attempt to 
synthesize important features noted in these episodes and move the analysis toward the 
creation of the model of strategic and conceptual co-development. 
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Focal episode one:  Spontaneous guessing and checking 
 
The first problem in all six sessions was the following: 

 
Ben and Jerry each have a mystery number.  Ben’s mystery number is six 
more than three times Jerry’s.  If the sum of Ben’s and Jerry’s numbers 
is 70, find the two numbers.  

 
 In this episode, we will see Liam generating a means, on the spot, for solving this 
problem. The interest in this episode is mainly as a baseline for the further developments 
over the course of the sessions.   
 Though the primary mode of the sessions was tutorial in nature, Liam was asked 
to work on this first problem independently for the purpose of establishing what his 
previous experience solving similar problems was (e.g., whether he had a ready algorithm 
and whether this had been something he had explicit previous instruction about).  
Incidentally, Liam was the only student in the study willing to engage working on a 
problem that he had not previously learned (or could readily remember) a process for 
solving.   
 As Liam begins work on this problem, he began by doing some calculations in his 
head.  Since he is not writing down and calculations, I ask him to tell me what he’s 
thinking about doing. 
 

ML: Can you just sort of tell me what approach you’re thinking of right 
now?  What are you thinking about doing?  

Liam: I’m thinking of … like I’m thinking of a number, then multiplying 
it by three, and then …I’m not exactly sure. 

 
In the above, Liam has started on the path of choosing a specific number (“I’m 

thinking of a number”) and he then multiplies it by three.  It is interesting and of note 
also that he remarks that he’s “not exactly sure.”  This may indicate that even though 
Liam is guessing numbers for Jerry (he confirms this in the next turn) that he does not 
have a fully conceived of plan before beginning work on the problem for how he will 
solve the problem.  He may be trying to understand the relationships in the problem using 
a specific example and is constructing a strategy on the spot.24  
                                                 
24 Liam used an “unwinding” approach to solve a problem later in this session.  If the 
problem had been “Ben is thinking of a number, 70, and it is six more than three times 
the number Jerry is thinking of.  What number is Jerry thinking of?” then Liam may have 
started from Ben’s number, 70, subtracted six and then divided by three to find Jerry’s 
number.  However, the problem as stated gives the condition that both Ben and Jerry’s 
numbers are unknown and that the sum of them is 70.  This additional complexity in the 
task may be part of explaining why Liam decided to start from a particular choice for 
Jerry, but then was not immediately sure how to proceed.  However, if it is the case that 
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It is of interest that Liam tells me the approach in general terms “I’m thinking of a 
number and then multiplying it by three” as opposed to telling me the specific calculation 
he was working on.  This could be because I have asked him to describe his “approach” 
(implying that I am interested in a general description).  It does signal that he is thinking 
in terms of operating on a general category (e.g., he would do the same thing to any 
number) as opposed to only operating on specific numbers.  This is pertinent as a 
landmark in the development of his conception of variable (See Schoenfeld & Arcavi, 
1988, Usiskin, 1998) in that operating on a conceptual category (e.g., adjustable input) is 
different than operating on individual numbers (e.g., Sfard & Linchevski, 1991).    

After asking him if he wants to give me an example of one of the calculations he 
just did, he says: 
 

Liam: Well, basically like 15 … I guess I would do 15 times three is 45.  
Then, like it’s six more than three times. 

 
Note that here that Liam is starting with Jerry’s number and using the relations 

given in the problem to operate on Jerry’s number in order to get Ben’s number. So far, 
he has found what Ben’s number must be if Jerry’s number is 15.   

Recall that we call the ways one can go from the value of a quantity one “sets” to 
determining the value of another as following “paths of determination.”  Here Liam uses 
a determination path that involves identifying Jerry’s number as the “input” and Ben’s 
number as an “output.” The path to get from Jerry to Ben is that one multiples Jerry by 
three and then adds six.     
 

Liam: Yeah, so 15+51 [the sum of Ben and Jerry’s numbers] is 66, so I 
would know that I should go a little bit higher.   

ML: OK. 
Liam: So I’ll try 16 times 2 equals … plus six is 54.  [Liam stops 

working at this point because 16 and 54 sum to 70 and thus the 
problem is solved.] 

 
Several things are of note thus far.  Firstly, at this point, Liam has (or has 

constructed on the spot) conceptual categories for input, the resulting output, the target 
value, and the error between the resulting output and the target.  That is, these are 
categories that Liam sees the problem in terms of and uses to organize his work.  

Secondly, Liam concludes that an output of 66 means that he “should go a little 
bit higher” (with the input).  In making this determination, he has implicitly referenced 
another conceptual category of the target [70, the sum of Ben and Jerry’s numbers in this 
case] in his comparison of 66 to 70, noting that it is too low.  Further, this episode shows 
that Liam thinks about changing inputs as leading to or controlling results in changing 
                                                 
he is initially hesitant because he first “saw” the problem in terms of different conceptual 
categories, he constructs the strategy of guessing and adjusting fairly readily in the next 
turn.  
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outputs (since the output of 66 was too low with respect to the target, he decided needed 
to go a little bit higher with the input).  I argue that his recognition of how to control the 
variation (e.g., increasing the input by a little bit will result in increasing the output by a 
little bit) is based upon a growing conceptual scheme (that will become increasingly 
organized over the sessions) about how the underlying functional relation given in the 
problem statement behaves when x is varied.   

It is important to recognize this aspect of control of variation that is present from 
the beginning of the sessions for Liam.  Note that Liam’s focus on the path of 
determination and co-variation between input-output pairs stands in contrast to the 
conceptualization of a student who only recognizes that a given output corresponds to a 
particular input.    One would expect that a student who was less attuned to the variation 
between input and output pairs would treat each trial input as an independent event, rather 
than using the results from previous trials to get closer and closer to the solution with 
each subsequent trial.  

After he has finished his calculations that solve the problem, I ask him about his 
choices.  Liam explains as follows: 
 

 
ML: Okay, good.  So yeah, I’m very interested in what you did over 

here [pointing to Liam’s work on the page, shown above].  So 
you were telling me that you were guessing numbers, right? 
 

Liam: Yeah, just like something that I figure in the middle range – 
15 is a good even – you know. It’s a rounded number sort of – 
15 – and it turned out to be relatively – well, almost correct.  
So. And then from there, I would have thought, “Do I need 
more, a higher number or a lower number?”  And then I need 
to go up or down with this [points to 15 in his written 
calculations]. 

  
Before we move to working on another task, I ask him whether this is a way that 

his seventh grade (pre-algebra) math teacher had taught him to solve “these problems” or 
if this was something that he came up with himself.  He says 
 

Liam: I really forget, but I think that I came up with this myself 
[laughs a little bit, sounding proud].  It’s probably not as 
efficient, but I forgot what Mr. R taught us about this problem in 
particular. 
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What is of particular interest here is that Liam remarks on the efficiency of this 
method in contrast to other methods that he may or may not have been taught for solving 
such problems.  In any case, this shows that, from the very beginning of the sessions, 
efficiency is a criterion that Liam considers pertinent in evaluating and contrasting 
approaches to solving problems.  

Our current goal is to be able to track the micro-shifts in strategy implementation 
and knowledge organization over the course of six focal episodes.  To this end, I now 
present a thematically organized summary discussion of the first episode.  This will be a 
model for summary discussions that will follow the future five focal episodes, as well.  

The strands of the summary include: (1) snapshot of the strategy system in the 
episode, (2) organization of the growing control of variation scheme, (3) dynamics of 
knowledge activation, including the role of artifacts, interactions, and the activity, and (4) 
micro-developments that occurred during the episode.   
 
Snapshot of the strategy system  

Recall that the definition we gave of a strategy as a complex system included 
three components that we intended to track in the analysis:  strategic path, conceptual 
categories, and relations between conceptual categories.  

 
1. Strategic path. In this episode, Liam uses a strategic path based on the idea of 

trying to get “closer and closer” with subsequent trials. As discussed in the 
discussion of the analytic framework, such a strategic path is based on a version 
of “means end analysis” (MEA).   

2. Conceptual categories. The conceptual categories that Liam recognizes or 
constructs in this episode include: (1) adjustable input value, (2) resulting output, 
(3) target value, (4) error between each output and the target.   Liam sets the input 
value and then uses a path of determination so that the resulting output can be 
read out, and the target and output can be compared.   In this case he notes that 
there is a difference between the target and output, but the resulting output in this 
case was just a little bit too low.  

3. Relations between conceptual categories. In terms of relations between 
conceptual categories, with Liam’s first guess of 15, he explicitly notes that “15 + 
51 is 66, so I would know that I should go a little bit higher.”  One can schematize 
his thought process as “If the result of my guess is a little bit too low with respect 
to the target, then I should adjust by making the next guess a little bit higher than 
the previous one.  This relation is an example of a co-variation scheme, a unitary 
judgment about the effect of controlling an input value. 	
  
	
  

Organization of the control of variation scheme 
Recall that in addition to changes that occur at the level of Liam’s strategy 

system, we are modeling changes in Liam’s conceptual understanding of how to control 
the variation of linear functions. One of the claims of the analysis is that Liam’s 
knowledge about how to control the variation of linear functions gets increasingly 
organized over the course of solving several problems.  To trace this increasing 
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organization, after each episode, we will provide a “snapshot” of what we know about the 
organization of Liam’s knowledge of how to control the variation of a linear function.   

Throughout the sessions, one has to keep in mind that a control of variation 
scheme is being built up and called upon by Liam each time he solves a problem is just a 
projection of what Liam may know about co-variation and control of variation. In 
studying how Liam solves the problems in these sessions and how that changes, we are 
observing Liam exercising his knowledge about how to control variation across a short 
period of time and in a particular context.  There may be several elements that are related 
to the ones that are cued in solving a problem that Liam also has, but we do not have the 
opportunity to observe in action.   By observing Liam’s actions and utterances (e.g., wait 
time, confidence, etc.) we can make arguments about which elements may be constructed 
or recognized on the spot and which are more stable elements of his conceptual system.  
Despite these challenges, it is still of interest to track over several episodes what we 
observe and when about Liam’s knowledge of how to control the variation of linear 
functions. 

In this episode, Liam used (1) Changes in input result in Changes in output and 
(2) “Increasing X (by a little bit)  Increasing Y (by a little bit).”  The following 
template will be used to track elements that Liam is observed to have used (along with 
the sessions in which they were used).  Also, note that the organization of the template 
below has the “meta-element” Change in X  Like Change in Y at the top, since many of 
the individual inferences that Liam makes based on the information he reads out about 
the effect of his choice of guesses can be interpreted as “special cases” of this more 
general element.   
 

 
Change in X   Like Change in Y 

 
Monotonicity 

•  Increasing X  Increasing Y [Episode 1] 
 

Proportionality 
 Increasing X (by a little bit)  Increasing Y (by a little bit) 

[Episodes 1 & 2] 
 

Figure 7. Active elements in Liam's control of variation scheme in episode one. 

We now turn to a summary of what we observed in episode one about how and 
why particular knowledge elements were activated in Liam’s process of reasoning.  

In episode one, there were two general features of Liam’s activity that give 
evidence about where his attention was focused and what elements were likely to be cued 
as a result. 

 
1. Awareness that the path of determination mediates the effect of modulating 

the input value. Liam’s statement about how to choose his first guess (e.g., “just 
something that I figure in the middle range – 15 is a good even – you know – it’s 
a rounded number sort of...”) indicates that Liam is aware that the path of 
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determination between input and resulting output would be useful to attend to in 
making a determination about reasonable trial values.   

 
Across the focal episodes, we will be interested in evidence in the data that Liam 

is aware that the effect of modulating the input is mediated by the functional relation 
given in the problem statement. It will be interesting to track whether this awareness of 
the relation connecting input to output is tacit or more articulate.  
 

2. Readout of error. Readout of error plays a role in activating the thought element 
“Increasing X (by a little bit) results in increasing Y (by a little bit).”  In this 
episode, we have that Liam is attentive to both the direction and the relative 
magnitude of the error between the resulting output and the target value.  

 
One of the aspects that we will trace throughout the sessions is the changing 

nature of Liam’s attention to the direction and magnitude of errors.  To preview, we will 
see that Liam’s attention to the error becomes increasingly quantified and this has 
consequences for the development of Liam’s conceptual system.    
 
Based on the above discussion, two kinds of micro-development in the strategy system 
are worth noting and tracing in the analysis of subsequent episodes. 

 
1. Creation and stabilization of conceptual categories. In the episode described 

above, the conceptual categories that Liam used to organize his work included 
adjustable input, resulting output, error, and target.  However, an alternate way to 
solve the same problem would involve starting from the target value (e.g., 70) and 
“unwinding” to find Ben and Jerry’s numbers.  Thus, what was previously the 
target could be “seen” as the input or the starting place for a different computation 
leading to the solution.  That is, though the conceptual categories listed here may 
seem like the only possibility, the example just given shows that problems can be 
seen and parsed in many different ways and in terms of alternate sets of 
conceptual categories.  Thus, recognizing that the role of creation and 
stabilization of conceptual categories in the construction of strategies is important.  

2. New relations between categories incorporated into the existing (and 
growing) conceptual scheme (the control of variation scheme).  This point is 
related to our discussion above concerning the tracking of the structure of the 
control of variation scheme.  This will be important to track because adding 
relations between categories may enable different strategic actions and hence be a 
critical component of the development of a new strategy.   

 
Overview of what happened in between episode one and episode two 

Episode one was the first problem in the first session and episode two (discussed 
below) was the first problem of the second session (after a warm-up).  During the balance 
of the first session, Liam worked with problem stems and representing them in t-charts 
and then we revisited solving word problems, attempting to introduce the chart 
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organization.  The final episode of session one (analyzed, but not discussed in length 
here) was interesting for the reason that it revealed evidence that at least under certain 
conditions Liam found the “unwinding” approach to solving problems to be natural (and 
hence the conceptual categories discussed above were not completely “stable”).  
However, the increased negotiation around the use of the charts in the next episode 
served to stabilize the conceptual categories that are used in organizing a solution using 
guessing and checking.  Since we are interested primarily in the trajectory of refinement 
of Liam’s guessing and checking approach to his linear interpolation/extrapolation 
approach, this intermediate stage is not included as a focal episode.  

 
Focal episode two: Purposeful guessing and checking organized in a chart 

 
We will now discuss the second of six focal episodes.  In this episode, Liam is 

working on the following problem: 
 

The base of a rectangle is three centimeters more than twice the height.  
The perimeter is 60 cm.  Find the base and the height of the rectangle. 

 
This is the first problem of the second one-hour session and Liam is specifically 

asked to solve a word problem using guessing and checking organized in a chart.   In 
discussing this episode, I will break the discussion into several phases of activity: 
introduction and framing of the task, Liam’s work on the task, and a brief post-solution 
reflection. This pattern is fairly typical of work on the tasks in the sessions.  

As mentioned above, the task is introduced as one that we’ll try to solve by 
organizing our work in a Guess and Check chart.  Before working on the problem, Liam 
and I talk briefly about how Liam processes the information given to him in problems. 
Liam says that he typically doesn’t need to take notes or write anything down to process 
the information in word problems. Typically he can just “write down the equation 
quickly” or “just do it in my head if they’re really easy.”  He decides that the problem 
we’re working on (above) would be one that he’d have to think through a bit, remarking 
“This is pretty confusing to me.” Liam’s awareness of his own level of comfort or 
confusion as he is thinking about problems is notable.25   
                                                 
25 Liam’s confidence in his own methods as opposed to the instructionally sanctioned 
methods is interesting, an orientation that [as observed in his classroom the following 
year after this interview session was conducted] often got him in trouble with his 
classroom teacher. For this reason, my requests in the session for him to write down his 
work in the chart and to show all calculations and operations on variables were onerous 
to Liam and he needed to be reminded several times to continue to do this.  Sometimes I 
motivated these requests by asking him to write out his work in order to be able to “see 
the pattern” or finish writing out his calculations so that maybe knowing the result of the 
final calculation could be of help with choosing the next guess. As we will remark in the 
discussion of the analysis, the reliance upon such reasons (e.g., seeing particular patterns 
and preparing to express the relationships in variable notation) is not desirable because 
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The first part of the interaction around this problem involves us discussing the 
problem and the conventions for the construction of the chart (e.g., input, determination 
path to second variable, relation between variables given by the conditions in the problem 
and resulting output, and check are all included in the chart).   These terms were not used 
in discussing the problem, but rather we talked through the problem statement, 
identifying information that was given and that we might choose to record in a chart that 
we would construct while solving the problem that would serve as a record of the 
problem solving process. 

I ask him which of the height or base “helps us find the other” and Liam replies  
 

 
Liam: It could be either way.  It just depends which one you find first.  

Like, yeah, it could be either way. 
 

This is interesting because it signals Liam’s flexibility with paths of determination 
between variables – he could either find the base by adding three to twice the height or he 
could find the height by subtracting three from the base and dividing the result by two. 
Liam is notable in that throughout the sessions he did not have difficulty managing his 
choice of determination path and he usually chose the computationally easier path to 
manage.26 

In this problem, Liam has chosen the height to be the input.  The resulting output 
in this problem is the perimeter.  The path of determination between input and output 
involves a relation between the base and the height (the base is three more than twice the 
height) and another relation: using the base and height to find the perimeter.  The 
constraint in this problem is that the perimeter has to be 60 cm.  In terms of a “conceptual 
category” that is more consistent with Liam’s eventual construal, this becomes “target” 

                                                 
these are not meaningful reasons to students for why they should express their work in 
one mode or another.  The reasons and function are clear to the instructor and to the 
designer, but not to the student.  
26 Most people would find the computations easier to manage if they let the height be the 
independent variable.  However, this issue of which variable is more natural to choose 
values for (e.g., to let be the “input” or the independent variable) was not always clear to 
students.  Some students, both in the tutorial sessions and in the classroom pilot work, 
seemed to “intuitively” make the computationally simpler choice based upon a reading of 
the conditions in the problem and other students would not. Often, the students who 
didn’t choose the computationally simpler path of determination also had difficulty 
managing the path that they chose.  
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(as opposed to other descriptors for the category, like “constraint”). The check column is 
intended as a place to record whether the resulting output for a given input was above or 
below the “target” output (in this case, 60 cm).  

We begin below as he is beginning to work on the problem in the chart.  Even 
though we have just discussed the construction of charts, Liam begins work in this 
episode by wanting to guess the answer to the problem exactly (either through unwinding 
or other means – this is not clear as he is whispering to himself).  In line with the 
objectives of the sessions, I encourage him to solve the problem using guessing and 
checking in the chart form.   
 

Liam: Okay, so if I guessed about 18 [for the height] it wouldn't work.  
OK, I’ll just say 20 for now.  I know it’s a bit too high.  
 

ML: OK. 
 

Liam: Well, maybe 18 and I’ll see what happens there.  So for 18 – 
twice the height so it’s 36 then plus the – [starts writing down the 
calculations without writing how the variables are operated on] 

 

 
 

 
Throughout the episode above, it is of interest that Liam is explaining to me that 

he knows already that it will be too high and that his plan is to just see what happens with 
one value.  This seems to suggest that perhaps Liam believes that I am expecting that it is 
possible to solve the problem on the next try and he is explicitly letting me know that this 
next trial is just part of a process toward the solution.   

At this point, I interject and ask him to write out how the variable he has chosen 
to guess values for is being operated on.  Initially he had kept condensing the calculations 
in his head (e.g., writing down 36 instead of 2 times 18).  In the middle of this negotiation 
around the conventions for recording calculations, while beginning to write down the 
calculation for the perimeter, Liam notices that his first guess of 18 is going to lead to a 
result that greatly overshoots the target.  
 

Liam: Yeah.  Ohh::: so it’s actually a lot lower.   
ML: Oh. 
Liam:  [Laughing] I just realized that. 
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Liam’s laughter and the comment that he just realized that his initial guess was 
way too high may indicate that, to him, something about the result of that choice should 
have been obvious to him before that point.  This monitoring of the effect of his choices 
during the calculation is noticeable.  He has not yet finished the calculation, yet has 
noticed that it will result in an outcome that is too high.  Before having finished the 
calculation, he spontaneously leaves the calculation uncompleted after having ascertained 
that it is way too high and begins trying to make a next guess.  I suggest that we go 
through this example and then adjust.  At the same time as my suggestion, Liam guesses 
that the correct answer is probably six.  Without having completed the calculation at that 
point, his guess is notable.  It gives a sense for about how much he feels it would be 
necessary to adjust, but we have very little to access in terms of how he arrived at a next 
guess of six in particular.  Because purposeful guessing was one of the aspects of the 
activity that I wanted to encourage generally (and because I wanted all of the calculations 
to be recorded in the chart for later review and reflection), I asked him to go through with 
and complete the calculations for his initial trial value of 18. 
  

ML: ML:  Well, why don’t we go through with this?//  
Liam: //I think it’s six. 
ML: Why don’t we go through this example and then we can adjust, 

OK? 
 

At this point (see below), Liam gives some insight into how he sees the enterprise 
and the relations in this problem context by explicitly explaining this to me.  It appears as 
though he may be summarizing this information out loud for the purpose of displaying 
that this is now how he interprets the enterprise of solving problems in this way.  
 

Liam: OK.  So basically, you try to double this [base] then double that 
[height] then add them to try to get 60.   

 
This narration of the general plan for solving the problems indicates that he now 

sees an adjustable input, path of determination, resulting output, and target clearly.  
Again, this may indicate that, at least in his mind, when he chose the initial guess of 18, 
the full structure of this problem solving strategy may not have been fully evident to him. 
That is, the categories above may not have been stable for him at the beginning of the 
session.  This interpretation is consistent with the negotiation around solving problems 
that happened at the end of the first session:  Liam found “unwinding” to be a natural 
approach to solving problems, and because he had parsed the problems and solution path 
in terms of different conceptual categories, it was difficult for him to reconcile the two 
approaches.  

After some negotiation and discussion as the remaining calculations for the first 
guess were entered into the chart, Liam remarks again that the first guess and its result 
are way too much.  This is consistent in quality with his earlier assessment.  I push on 
that assessment and ask for some attention to degree of error, suggesting that this could 
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be useful information for guiding the solution process. Liam does not specifically 
acknowledge this and instead finishes writing the calculations for the first guess out. 
 
 
 
 
 
 
 
 
 

 
 
After he finishes this, I return to the point of how much too high the first guess was.   
 

ML: Now, about how much too high was it? 
 

Liam:  [Laughing] Uh, it’s almost twice as much.  So I’ll try it with 
10. 

 
Here Liam laughs again, perhaps surprised by how off his first guess was.  As will 

become more and more evident through the discussion of the subsequent episodes, Liam 
has a very strong number sense and ability to estimate.  So, it could be that Liam is 
personally surprised by how far off he was since this is not typical for him.  Notice that 
after Liam has written out the rest of the calculation for the guess of 18, he now has 
chosen to amend his initial choice for next guess from 6 to 10.  We don’t have access to 
why he thought 6 would be a good choice before, but that estimate came before he had 
articulated his image of the strategic plan. Further, the estimate of 10 comes directly after 
I have asked him again about how much too much his first guess was.  He gives an 
approximate reply of “About twice too much” which is notable for being a multiplicative 
comparison. Relationships of half as much as twice as much are more intuitively 
grounded and likely to be more salient than other multiplicative comparisons  

After having worked through the calculation for an input of 10 (and recording 
them exactly has been negotiated), Liam remarks  
 

Liam: Okay, 20 plus 46 equals … huh … so that’s a little bit too high. 
 

Liam: This is way too much. 
ML: How much too much is it?  Because even if it’s way too high, maybe we 

can use it to help us. 
 

Liam: //36 plus 36 – wait, no. 
ML: Okay, so let’s mark that as too high. 
Liam: Yeah. 
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 Note that Liam now spontaneously reflects about the result of the guess – both its 
direction and magnitude (“a little bit too high”).  What is of particular interest to us will 
be what Liam does next as a consequence of that noticing.  We see that Liam adjusts the 
input only a little, trying a next guess of 8. Liam explicitly notes that he believes that this 
choice would be about right (because he’s only a little too high and he is only moving the 
input by two units.)  Note that he only says that this guess would be about right, he does 
not make a claim about whether it is right. Note that the trial to solve the problem exactly 
model does show us more information about how he thinks about the relationship in the 
problem.  This orientation to problem solving means he is more attuned to attending to 
the nuance in the variation than a student who is just trying to make an incremental 
improvement over the results of the previous trials.  
 

Liam: Okay.  Okay, so now I'll try an 8.  [writing] That'll be about 
right. So, 16. [writing] 

 
He goes on to reflect that this might not be right either. Notice this as a shift 

towards working out the entire guess to see not only if it is right, but he also attends to 
what kind of adjustment is needed.  
 

Liam: I think that might not be right either.  8 plus 8 plus 2 plus 2 equals. 
So that’s 16 plus. Hold on I'll just use this [picks up the 
calculator]. 

 
Liam determines that the result of his computation is 54, that it is too low and that 

therefore it is probably nine.  It is at this point in the transcript that we see the 
composition of inferences to deduce that the input value that will achieve the target is 
probably nine.  In the current model of his learning process, this is attributed as either an 
on the spot composition of two previously unconnected inferences or as the invocation of 
a previously constructed knowledge element in his knowledge system. However, it is 
plausible, for example, that a version of a “Too high, too low, just right” scheme is 
something that could be independently recognized and invoked in reasoning about the 
procedures to solve such problems.   
 

Liam: 54.  54, too low.  So it’s probably nine.  
ML: It’s okay. [In relation to him running out of room on his paper] 
Liam: It’s probably nine. 
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Liam does the computations for a height of nine, resulting in the following final 
chart: 
 

 
After Liam has finished solving the problem, I ask him about his noticing that the 

answer was probably nine.  Before Liam addresses that question, he annotates his chart 
with the express purpose of making the result of the calculation clear to others.  This is an 
interesting positioning of the use of the chart – at this point it functions as a tool to 
communicate and display his thinking to other people.  This is in contrast to its potential 
use as an organizer or record of his thinking and problem solving processes.  And, yet 
again, that function of the chart in the process of solving the problem is different than the 
function of the chart to hold information in a particular format for later reflection.  I 
continue with asking about how he knew that the input that would solve the problem was 
definitely nine.   

 
ML: Yeah, okay.  So here [pointing to input column] when we were going 

between 10 and then you went to 8 and then you decided to go to 9 and 
you said that it was probably 9? 
 

Liam: Well, it was actually definitely 9 if this [guess of 8] was too low and 
this [guess of 10] was too high.  Unless it was a decimal number. 

 
Liam’s care in noting that the answer could potentially be a decimal number is 

interesting.  Also of interest is his conviction that the answer was between 8 and 10.  
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Based on his utterance and his conviction, that the answer lies between 8 and 10 is not in 
doubt to him.  
 
Snapshot of strategy system 
 As in the discussion of the previous focal episode, we begin by giving a snapshot 
of the current state of the Liam’s strategy in terms of our reformulation of strategies as 
complex system involving (1) strategic paths, (2) conceptual categories, and (3) relations 
between conceptual categories. 
 

1. Strategic path. The strategic path that Liam uses in this problem becomes Means 
End (MEA), but this is not established until the end of the first calculation.  
Liam’s initially “parsing” of the problem may have included a different set of 
conceptual categories (see below). 

2. Conceptual categories In this episode, there was some initial negotiation around 
the conceptual categories that Liam used to organize the solution to the problem. 
The categories of adjustable input, resulting output, error, and target were 
eventually established and these categories stabilized some after he had worked 
through the calculation with one trial value (e.g., when he narrates the actions he 
is taking “OK.  So basically, you try to double this [base] then double that 
[height] then add them to try to get 60.”) 

3. Relations between conceptual categories The co-variation schemes that are 
activated in this episode include: 

a. Decreasing X  Decreasing Y and Decreasing X (by a lot)  Decreasing 
Y (by a lot).  These elements are activated in response to Liam’s 
assessment that his initial guess of 18 was almost twice as much and that 
as a response he’d try a next guess of 10. Decreasing X (by about a factor 
of 2)  Decreasing Y (by about a factor of 2) was activated in response to 
a question to Liam about how much too high his guess of 18 was.   

b. Decreasing X (by a little bit)  Decreasing Y (by a little bit). This is 
activated in response to Liam’s second guess of 10 being a bit too high.   

c. Increasing X (by a little bit)  Increasing Y (by a little bit) is activated 
once Liam sees (e.g., reads out) that his third guess of 8 is a bit too low.   

d. In addition, inbetweenness a composite of two co-variation schemes is 
another form of element that is activated in this episode.   This is in 
response to noticing that one trial value resulted in an output that was too 
high with respect to the target and another resulted in an output that was 
too low.   

 
Organization of the control of variation scheme 

Overall, the elements that we have seen activated so far (over both sessions one 
and two) in the control of variation scheme include: 
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Change in X   Like Change in Y 

 
Monotonicity 
        Increasing X  Increasing Y [Episode 1 & 2] 
        Decreasing X  Decreasing Y [Episode 2] 

 
Proportionality 

 Decreasing X (by a lot)  Decreasing Y (by a lot) [Episode 2] 
 

 Increasing X (by a little bit)  Increasing Y (by a little bit) 
[Episodes 1 & 2] 

 Decreasing X (by a little bit)  Decreasing Y (by a little bit) 
[Episode 2] 
 

 Decreasing X (by about a factor of 2)  Decreasing Y (by about 
a factor of 2) [Episode 2] 

 
 In-betweenness 
        Somewhere in between [Episode 2] 
 

Figure 8. Active elements of Liam's control of variation scheme in focal episode two. 

As noted in the previous focal episode, there appears to be a meta knowledge 
element that underlies all of these inferences that Liam is drawing:  Changing X in some 
way  Changing Y in a “similar” way.    

As in the first episode, the strategy system incrementally changed with the formation 
of new conceptual categories and relations.    

 
1. New conceptual category formed 

a. The idea to focus attention on an interval in X and a corresponding 
interval in Y was seeded in this episode with the activation of the idea of 
“inbetweenness.”   This noticing is important for the future development 
of the strategy and underlying conceptual scheme.  

2. New relations activated or formed (through progressive quantification)  
a. Liam’s assessment that his first trial value was too high was in response to 

my question about how much too high his guess was.  He spontaneously 
had noticed it was too high mid-calculation.  I encouraged him to finish 
the calculation so that he could see the actual result of the calculation, he 
made the assessment that it was too high, and then I asked how much too 
high.   

b. Liam’s use of a multiplicative comparison (noting that his result was about 
twice too high). His assessment “It’s almost twice as much” now encodes 
not only direction of error, but a more quantitative assessment of error 
than just too high or a lot too high.  Thus, Decreasing X (by about a factor 
of 2)  Decreasing Y (by about a factor of 2) is now in the conceptual 
scheme. 
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Overview of what happened in between episode two and episode three 
In between episode two and three, Liam worked on two related problems about 

sums of consecutive integers and sums of consecutive odd integers.  In both cases, he 
used estimation to determine the solutions directly.  The first problem he solved directly 
in one trial and the second involved two trials. Because his work on these problems was 
not related to the arc of refining his guessing and checking strategy, they were not 
selected as focal episodes. These were the only two problems in between the focal 
episode concerning the perimeter of the rectangle and the next focal episode that 
concerned the perimeter of a triangle. 

 
Focal episode three: Exactly in between 

The next episode highlights a serendipitous, but important move toward 
progressive quantification of the error between outputs and the target that will be 
consequential in the construction of Liam’s linear interpolation/extrapolation strategy.  
Liam was working on the following problem: 
 

The perimeter of a triangle is 76 cm.  The second side is twice as long as 
the first side.  The third side is four cm shorter than the second side.  How 
long is each side? 

 
In this problem, Liam constructs a chart and begins right away guessing values for 

the first side.  Before moving on, I decide to mark this and check what Liam would say 
about how he knew which value was the independent variable.  
 

 
Liam: Okay.  So I’ll guess the first side is –  
ML: Okay, so have you decided that the first side is going to help you 

get the other ones?  
Liam: Yeah. 

 
I ask him if he’s sure about this choice of input and he provides a justification for 

what he was attending to – the given relation in the problem (that the second side is twice 
as long as the first).  Liam takes as given that it is the relation in the problem that 
determines how the output results from the input.  The relation determines that the first 
side is what allows you to get the second side.  In a way, this seems self-evident to him – 
of course it is the relation in the problem that indicates to him which value to guess 
values for.  
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ML: Are you sure of that? 
Liam: Because it says the second side is twice as long as the first side.  

So that determines that the first side is the first number, which 
is the only way that you can get the second side. 

 
I respond with an “okay”, and Liam continues to explain that the relation 

determines how the first side allows you to find all the other sides.   
 

Liam: By doubling the first side and then, from the second side, 
that’s the way that you get the third side because you subtract 
four from the second side. 

 
I validate this response, while Liam is already off to solving the problem.  He 

chooses (without verbalizing a justification) that his first guess will be 12.  
 

ML: ML:  Okay, excellent.  So it looks like the first side is a good//  
Liam: I’ll guess 12. 
ML: 12.  Okay.  
Liam: Okay, so I’ll make this 24// 

 
 Liam finishes the calculation for the guess of 12 and notices that a guess of 12 
resulted in 56.  Without giving an explicit reason for his next guess, he decides to try 20 
next.  Note that this is consistent with the usual constraints on guesses (the previous guess 
resulted in an output that was too low) and so he should increase it.  He judges that this is 
more than a mere fine-tuning required – 56 and 76 aren’t that close and so a more 
substantial adjustment is necessary in order to achieve the target value.  Though this is 
not stated, his prior and current actions are consistent with this attribution.   
 

Liam: 20 plus 24 plus 12, okay?  So that’s 44 [calculating] 56.   
ML: OK. 
Liam: I’ll try 20 now. 
ML: You’re going to try what? 
Liam: 20. 
ML: 20, OK. 

 
Liam then works through his computation for 20 and immediately assesses that it 

is “way too much.”   
 

Liam: 40 minus 4 equals 36.  20 plus 40 – oh, that’s way too much.  
[writing]  It’s too high. 
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In response, I ask for a quantification of the error. This time, I just ask how much 
too high it is, not for an approximation of how much too high it is.27  
 

ML: So you got 96?  Okay.  How much too high is it?   
Liam: 20. 
ML: 20 too high. 

 
It is curious that Liam asks if it is OK if he tries to guess again.  It may be that 

Liam has an idea for how to use the previous two guesses and he is eager to see if it 
works (and he wants to provide space for himself to make that guess as opposed to being 
asked further questions about this particular guess).   
 

Liam: I’ll just keep – is it okay if I try to guess again?   
ML: Yeah, of course.  
Liam: OK, I’ll say 16.   
ML: OK. 

 
Liam’s choice of 16 for the length of the first side of the triangle does indeed 

solve the given problem.  I ask him how he decided upon this guess.  That he starts out by 
saying that “he doesn’t know” is interesting.  His following explanation is cogent and 
articulate and showing the purposeful choice of 16 for the input based upon the previous 
two choices.  He first states his reason qualitatively – that he knows that the target output 
lies in between the outputs the first two guesses generated and so therefore the target 
input should be in between 12 and 20, the corresponding inputs.  After running through 
the qualitative reasoning for where the target should lie, he adds the rationale for his 
specific choice based upon the quantitative information about exactly how much too high 
and too low the previous outputs were relative to the target.  He invokes the idea that the 
two initial guesses are an equal amount too high and too low (stated in terms of the 
specific amounts too high and too low, in this case 20).   Noticing that the target lies 
exactly halfway in between the two previous outputs invokes the expectation (or 
conjecture) that perhaps the target input that will solve the problem will also be exactly in 
between the input values.  This is an invocation of “like changes in Y correspond to like 
changes in X.”  It is not immediately clear whether this invocation is based on the idea of 
correspondence (e.g., changes in Y of a particular sort correspond to changes in X of a 
similar sort) or whether it is based on the idea of the input (continuously and linearly) 
controlling the result.28  (e.g., If I change X by a little, then this will result in a change in 
                                                 
27 My intention in asking such questions is merely to encourage students to choose next 
guesses that build on previous guesses.  We will see evidence that the transition from 
answering such a question in an approximate form to answering in terms of an exact 
numerical value is important for Liam’s later conceptual development.   
28 This conceptual distinction between correspondence and co-variation is important.  The 
literature on co-variation and function has typically emphasized a pointwise 
“correspondence” view and what this activity encourages instead is a co-variational 
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Y by a little).  In any case, the idea of “like change” here is instantiated as “halfway.”  
That is, if the target output value lies halfway between two previous output values, then, 
according to this expectation, the target input value should also lie halfway between the 
corresponding two previous input values.  
 

 
Liam: [Writing] Okay, so that, yeah.  76, wait.  Okay, so check. 

 
ML: Okay, so how did you decide a guess of 16 here?   

 
Liam: I don’t know.  I just thought it was in between these two [12 

and 20] because this [56] was 20 too low and this [96] was 20 
too high.  And this [16] was exactly between those [12 and 20]. 

 
One question that remains could be whether Liam would notice that one guess 

was 20 too high and another was 20 too low if this information was merely summarized 
in the chart, not in the context of solving problems.  The particular sequence of guesses in 
this example (first guess 20 too low, second guess 20 too high) makes noticing “halfway” 
more salient than if this information needed to be discerned from a longer sequence of 
trials and outputs.  
 
Snapshot of the strategy system  

Below I give a snapshot of the strategy system in episode three: 
1. Strategic path. The strategic path that Liam starts this episode with is MEA. 
2. Conceptual categories. The conceptual categories that Liam starts out with are 

the same as before:  adjustable input, resulting output, target, and error.   
3. Relations between conceptual categories. The following co-variation schemes 

were activated in this episode: 
a. Increasing X  Increasing Y 
b. Increasing X (by a lot)  Increasing Y (by a lot).   
c. Another scheme that is activated (or constructed) is the halfway in 

between or “midpoint” scheme.  This is a composite that builds upon the 

                                                 
perspective on function.  For this reason, it is of interest to track the usage of 
correspondence and co-variational ways of thinking about function over the course of the 
episodes.  
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simple composite from episode two that uses two trial values and the 
assumption of monotonicity to bound the search space (e.g., if one guess is 
too low and another is too high, then the solution must lie in between the 
first two).   
 

With respect to where Liam’s attention is focused and the role that played in activating 
the categories and relations above, I note: 

1. Attention to amount and direction of error. In this episode, Liam’s co-variation 
schemes are activated by him reading out that his first guess was too low and that 
he would need to increase it substantially in order to achieve the target.  After he 
notices that his first trial value resulted in an output that was 20 too low and his 
second resulted in an output that was an equal amount too high, he decided to try 
the midpoint between his previous two inputs with the expectation that this would 
achieve the midpoint between the previous two outputs.  

2. Awareness of mediating role of function relation on effect of modulating 
input.  In this episode, it is clear that Liam “sees” clearly the path of 
determination from input to output – he describes the way you get from one to the 
other using the relation.  However, it is not clear if this plays a role in his choice 
of next guesses – it appears that, in this case, the equal amount above and below 
the target plays more of a role in the construction of the midpoint scheme than the 
actual relation.     

 
Organization of the control of variation scheme 

As in the previous episode, we will keep track of all of the co-variation schemes 
that Liam has activated in order to guide his choices of next guesses. This is for the 
purpose of getting a cumulative sense of the control of variation scheme that Liam is 
building up. 
 

Change in X   Like Change in Y 
Monotonicity 

Increasing X  Increasing Y  
Decreasing X  Decreasing Y  

 
Proportionality 

 Increasing X (by a lot)  Increasing Y (by a lot) [Episode 3] 
 Decreasing X (by a lot)  Decreasing Y (by a lot) [Episode 2] 
 Increasing X (by a little bit)  Increasing Y (by a little bit) 

[Episodes 1 & 2] 
 Decreasing X (by a little bit)  Decreasing Y (by a little bit) 

[Episode 2] 
 Decreasing X (by about a factor of 2)  Decreasing Y (by 

about a factor of 2) [Episode 2] 
 In-betweenness 
        Somewhere in between [Episode 2] 
        Halfway in between [Episode 3] 

Figure 9. Liam's active elements in his control of variation scheme in focal episode three. 
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Here we discuss micro-developments and mechanisms of change that are indicated in this 
episode: 

1. Development of new relation (composite co-variation scheme). The “in-
betweenness” element from episode two has now been refined to be exactly in 
between. This episode was selected because of its clear role in the trajectory of 
“progressive quantification.”  By Liam quantifying the errors of his first two 
guesses and seeing that they were equal, this opened up the possibility for Liam to 
construct the new element or relation of “exactly in between.”  This is an advance 
over “in-betweenness.”  This development is possible because the errors were 
quantified and it was possible to recognize them as the same.  
 

Overview of what happened in between episode three and episode four 
The next two problems in between focal episode three and four were a pair of 

problems that concerned guessing and checking strategies for problems involving 
systems of two linear equations. With relative ease, Liam succeeded in solving the first 
problem, but struggled with the second problem and ultimately did not solve it. Partly 
because these problems pertain to his work with systems of equations and partly because 
after quite some time he didn’t finish working on the second problem (we ran out of time 
in the session and Liam needed to leave), Liam’s work on these problems was not 
selected as focal episodes.  The very next problem in the sessions (at the beginning of 
session three, end of the first week of sessions) was focal episode four.  
 
Focal episode four: Closer to one than the other 

This episode involves both Liam’s independent work on the problem and a 
discussion with the researcher-tutor afterwards in which they reflect on solving this 
problem.   

 
Jabari is thinking of three numbers.  The greatest is twice the least.  The 
middle is three more than the least.  The numbers total 75.  Find the 
three numbers. 

 

 
 

Liam reads the problem and immediately determines that the “least” number is the 
independent variable (“So you’d have to work off the least…”).  His phrasing here is 
notable in that he has used similar process-oriented language in previous episodes (e.g., 
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building off of, how you get the others, etc.)  He proceeds to make a chart to organize his 
work.  He chooses a first guess of 15 (“So, let’s say the least is like 15”).  He finishes this 
calculation and pauses and laughs as he chooses his next guess.  (“I’ll go up to 20.”).  
The use of “going up” is interesting here because it possibly evokes the idea of motion 
along a path.   I note that this gave him 83.  Liam responds “That’s too high. So I’ll go 
17.” Liam notes that 71 (the result of the calculation for 17) is “a little bit too low, so 18.”  
He works out the calculation and sees that he has solved the problem.  

After Liam solved the problem, I asked him what he based the decision to go from 
17 to 18 on.  He says 
 

Liam:  ‘Cause it was only 4 too low, so, I figured that these numbers 
[the inputs] wouldn’t be that much different.  

 
Following the solution of the problem, Liam and I discuss the problem some 

more.  I direct his attention to his guesses for inputs of 17 and 20 and ask if there was a 
way he could tell how to predict his next guess based on the results of those trials.29   

He quantifies the error for both of those guesses [for 17 and 20] and then thinks 
about things silently for a little bit.  He then decides to compare the results for guesses of 
15 and 20 instead of the guesses of 17 and 20 that were initially suggested.  

 

 
Liam: For, this [20] – I got 83, and that is – that’s 8, too high; and for 

this is [17], 4, too low. (7 second pause). 
 

I think I’ll compare these two [indicating 15 and 20], ‘right?  
 

ML: Okay, so if you compared these two [15 and 20, following Liam's 
suggestion], what would you get? 
 

Liam: OK, so this [63, corresponding to a guess of 15] was – well it’s 
                                                 
29 It should be noted that I do not remember why I did this, in particular.  The discussions 
we had around problems were open and not scripted, so this move did open the 
possibility for him to refine his strategy. But from my perspective, this post-solution 
discussion was just a discussion, not an a priori goal for instruction.  This is one place 
where we see the goal of refining his strategy emerging. 
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too low and it was – 12 too low 
 

ML: OK. 
 

Liam: This  [83, corresponding to a guess of 20] was only 8, too high.  
 

So, this [63] was – I don’t know how you’ll put it in words, but 
this [pointing to 63, corresponding to a guess of 15] was lower  

 
and this [moving his hand down to 83, corresponding to a guess 
of 20] was too high.  

 
So, it would go [moving his hand down the sum column and then 
picking it up to go to the “least” column] –  

 
It would be further [starts at 15 and gestures down the “least” 
column], ‘ 

 
‘cause I know that it’ll be in between these two already [between 
15 and 20, pointing to both simultaneously with index and third 
finger of one hand].  

 
So, it would be higher up [moves hand from 15 down to 20 in the 
“least” column] instead of being right in the middle, it’ll be 
higher up. 

 
In the last line, we hear him explicitly referring to half as a benchmark or 

reference point.  Note that “halfway” in between 15 and 20 would be 17.5.  But he knows 
that the answer has to lie closer to 20 because 83 [output of 20] is closer to 75 [target 
output] than 63 [output for a guess of 15].    Note that this reasoning path is not the one 
that he used to solve the problem initially as previously, he chose 17 and not 18 as his 
next guess after 15.  

The post-solution reflection on this problem continues as I return to the guesses of 
17 and 20 and ask him what would happen if he “moved his guess by one.”  He pauses to 
think silently for a while (9 seconds).  We then determine that the guess of 20 was 8 too 
high and the guess of 17 was 4 too low.  I then point out that this means that when the 
output went down 12, the input went down 3.  I then ask him what would happen if we 
moved down 1 from 20 to 19.  He thinks for a little bit (4 seconds) and then says   
 

Liam: It would – wait. So, that moved up 3 [touching input of 17, in the 
comparison of 17 to 20]. Then this [output resulting from a guess 
of 17] moved up 12, so (7 second pause) you would have to move 
this down 4 [from 20 to 19]. 
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I verify that he means that each time you would move down four.  This very 
brief, but additional emphasis on the iterative effect of the increment provokes Liam to 
immediately say “Oh, so you can tell from that.” Though he immediately asserts that 
you could determine the answer based on this information, at this point we do not (yet) 
know what he has in mind by that assertion.  We will have the opportunity to unpack this 
more in the next episode. 

This post-solution reflection is a key moment in the arc of learning that is 
described.  For one thing, as we have just seen constructed above, this is the first place in 
the sessions where the idea of the “unit worth” of one guess and the effect of iterating this 
incremental worth arises.  A strong source of evidence for the claim that Liam is 
constructing this idea on the spot is the amount of wait time while Liam thinks about the 
question of what would happen if he moved his guess down by one (from 20 to 19).  
Also, he stops himself as he begins an explanation, in order to think things through step-
wise, [“So, that moved up 3 [input of 17], then this moved up 12. So (long pause) you 
would have to move this down 4.”] This step-by-step construction indicates that this is 
not pre-compiled knowledge.   

In this episode, Liam has talked about controlling the variation in terms of “going 
up/down” (e.g., after his first guess of 15 resulted in an output that was too low, he said 
“I’ll go up to 20.”) The language of “going up/down” was not used prior to this episode, 
but it was used by both Liam and myself later in the episode and may play a supporting 
role in the conceptual development in this episode that led to the construction of the 
linear interpolation/extrapolation strategy.  

As in the episodes prior to this, the chart appears to serve a mainly 
communicative function in that it plays the role of a prop to which Liam can point as he 
is explaining his solution process to me, pointing out “these numbers” for example.  This 
allows him to give very compact descriptions of his rationale and to explain quickly what 
he is focusing on or thinking about without needing to expand his description in ways 
that could compromise conciseness and clarity.  

As might be evident from the number of new ideas that were introduced in the 
previous episode and post-solution reflection (e.g., going up/down, concatenation of 
errors to reveal a linked increment in X and Y, scaling the increment to a unit, iterating 
this unit), episode four was one of the sites of significant learning within the arc of 
knowledge construction that we focus on.  The summary discussion that follows of 
activated knowledge, control of variation scheme, and micro-developments will take 
place in two phases:  the independent solving phase of the episode and the post-solution 
reflection phase.  
 
Snapshot of the strategy system (Independent solving phase)   
 
In this phase, a summary “snapshot” of the strategy system is: 

1. Strategic path. The strategic path that Liam chooses is guided by MEA, as in the 
earlier episodes.   
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2. Conceptual categories. The conceptual categories remain the same as in previous 
episodes: (1) adjustable input, (2) resulting output, (3) target value, (4) error 
between output and target. 

3. Relations between conceptual categories. Co-variation schemes that are 
invoked to guide choices for next guesses in this episode include:  

a. Increasing X (a little bit)  Increasing Y (a little bit)  
b. Decreasing X (a little bit)  Decreasing Y (a little bit).   
c. Sandwiching was also invoked in this episode, as is successive 

sandwiching (or “iterated application of in-betweenness” below) 
 
Organization of the control of variation scheme  
 
The control of variation scheme now looks like: 
 

 
Change in X   Like Change in Y 
 
Monotonicity 

Increasing X  Increasing Y [Episode 2 & 3] 
Decreasing X  Decreasing Y [Episode 2] 

 
Proportionality 

 Increasing X (by a lot)  Increasing Y (by a lot) [Episode 3] 
 Decreasing X (by a lot)  Decreasing Y (by a lot) [Episode 2] 

 
 Increasing X (by a little bit)  Increasing Y (by a little bit) 

[Episodes 1, 2 & 4] 
 Decreasing X (by a little bit)  Decreasing Y (by a little bit) 

[Episode 1, 2, & 4] 
 

 Decreasing X (by about a factor of 2)  Decreasing Y (by about a 
factor of 2) [Episode 2] 

 
 In-betweenness 

Somewhere in between [Episode 2] 
Halfway in between [Episode 3] 
Iterative application of in-betweenness [Episode 4] 
 

Figure 10. Active elements in Liam's control of variation scheme in focal episode four. 

We now turn to the post-solution reflection. Recall that this begins with me asking 
Liam if there is a way to predict the answer to the problem knowing the results of the 
calculations for 20 and 17.  This was a spontaneous question on my part and not part of 
the planned instructional arc, but it did open up the possibility for Liam to refine both his 
conceptual and strategic knowledge.  Since this is taking place after the problem is 
solved, there is no strategic frame that guides these reflections.  This discussion is still 
focused on considering the information one would need to solve problems, so in this 
sense it is still situated in terms of problem solving and strategy and not a pure discussion 
about concepts that Liam could draw upon in his solution process.   
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Snapshot of the strategy system (Post-solution reflection) 
 
Following the post-solution reflection discussion, Liam’s strategy system included: 
 

1. Conceptual categories.  
a. Adjustable input, resulting output, error and target remain conceptual 

categories. 
b. Because error involved overshoots and undershoots in the cases of the two 

trial values that Liam compares, he can concatenate these errors to form an 
interval in Y such that the corresponding interval in X will contain the 
solution to the problem.  These two intervals and their linkage is another 
conceptual category that Liam can now set in the future by making 
guessing so that they over and undershoot the target.    

c. Benchmarks (e.g., halfway) become a new conceptual category in 
considering the linked intervals that have now been constructed from 
concatenating errors.   

2. Relations between conceptual categories. In this post-solution reflection 
episode, three main relations between categories are formed:   

a. Closer to one than to another 
b. Worth of a unit increment  
c. Iterated application of unit increment.   

 
The construction of these ideas will be discussed below in the section on micro-
developments.  In our description of strategy systems, we focused mainly on strategic 
path, conceptual categories, and relations between conceptual categories. However, we 
also noted that in implementing strategies, the knowledge activated in the moment could 
be of many forms (e.g., declarative facts, co-variation schemes, etc.).  In this episode, 
based on Liam’s utterances  
 

“I don’t know how you’ll put it in words, but this [pointing to 63, 
corresponding to a guess of 15] was lower and this [moving his hand 
down to 83, corresponding to a guess of 20] was too high. So, it would 
go [moving his hand down the sum column and then picking it up to go to 
the “least” column] – It would be further [starts at 15 and gestures 
down the “least” column], ‘‘cause I know that it’ll be in between these 
two already [between 15 and 20, pointing to both simultaneously with 
index and third finger of one hand]. So, it would be higher up [moves 
hand from 15 down to 20 in the “least” column] instead of being right in 
the middle, it’ll be higher up.” 

 
an image schema (“motion along a path”) could possibly be supporting Liam’s reasoning 
in this episode.   
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Organization of the control of variation scheme 
Below, is the state of Liam’s growing control of variation scheme, after the post-

solution reflection in episode four.  
 

 
Change in X   Like Change in Y 

 
Monotonicity 

Increasing X  Increasing Y [Episode 2 & 3] 
Decreasing X  Decreasing Y [Episode 2] 

 
Proportionality 

 Increasing X (by a lot)  Increasing Y (by a lot) [Episode 3] 
 Decreasing X (by a lot)  Decreasing Y (by a lot) [Episode 2] 

 
 Increasing X (by a little bit)  Increasing Y (by a little bit) 

[Episodes 1, 2 & 4] 
 Decreasing X (by a little bit)  Decreasing Y (by a little bit) 

[Episode 1, 2, & 4] 
 

 Decreasing X (by about a factor of 2)  Decreasing Y (by about a 
factor of 2) [Episode 2] 

 
Worth 

• Increasing X by 1  Increasing Y by d [Episode 4B] 
• Every time X increases by 1  Y increases by d [Episode 

4B] 
 

In-betweenness 
Somewhere in between [Episode 2] 
Halfway in between [Episode 3] 
Closer to one than to the other [Episode 4B] 
Iterative application of in-betweenness [Episode 4A] 

Figure 11. Active elements in Liam's control of variation scheme in the post-solution reflection after focal 
episode four. 

In this section, I will describe the construction of the new conceptual categories and 
relations that will ultimately seed the linear interpolation/extrapolation strategy.  First, I 
discuss the construction of new conceptual categories: 
 

1. New conceptual categories formed 
a. Construction of linked increments (e.g., an increment of d in X is linked 

to an increment D in Y). In making the comparison between 17 and 20, 
Liam focuses first on the conceptual category of the error between the 
result of 17 and the target and the result of 20 and the target.  He gives an 
exact quantification of the error in both cases (so he is now attending not 
only to direction of error and rough magnitude of error, but also exact 
quantity of error.) Through concatenation of errors from overshooting and 
undershooting the target the conceptual category of “linked increments” is 
formed. After doing this, Liam announces that he would rather compare 
the results of trials for 15 and 20 than for 17 and 20.  Overshooting and 
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undershooting the target make the X and Y intervals easier to “see” than if 
Liam were to compare two guesses that were on the “same side” of the 
error.”  This under and overshooting aspect of the trials that Liam chooses 
to compare, as well as his focus on going up and going down (along a 
path) from a fixed start place (base) will become consequential to the 
construction of the strategy 

b. Use of half as a benchmark. After having switched to comparing the 
results of 15 and 20, Liam quantifies the error between the results and 
target for each.  This shows a shift in focus to exact quantity of error and 
also, based on what Liam says later in this episode about this comparison, 
a possibly instrumental use of half as a benchmark.  This is a new category 
to set (as can be seen from what was done here in the choice of comparing 
15 and 20) as well as to read out.  The relevance of this benchmark may be 
heightened by the activation of an image schema – motion along a path.   

c. Correspondence to co-variation shift. The formation of intervals and 
then the focus first on the change in Y values and then how much that 
change corresponds to in X values makes sense in terms of this activity 
structure.  However, there is another shift from the correspondence (e.g., A 
change of 3 in X corresponds to a change of 12 in Y) to thinking about 
increments and unit increments (e.g., Changing the input by one unit 
results in changing the output by four units).  

 
Overview of what happened in between episode four and episode five 

Between episode four and five (e.g., throughout the rest of session three of six), 
there were three problems that Liam solved using guessing and checking.  However, in 
each of these cases Liam solved the problems using estimation and no new developments 
along the trajectory of strategy refinement were noted.  In addition to these problems, the 
next phase of the sessions involved Liam formulating equations. In his work on several 
problems, Liam was asked to use a chart to organize the finding of the relevant 
expressions (e.g., in identifying the entities that needed to be symbolized) and then 
formulate an equation. Recall that this was the objective of session three:  to transition 
from guessing and checking approaches to equation-based approaches.   

I now move to discussing a focal episode in which Liam re-constructs the linear 
interpolation strategy while solving a problem.   

 
Focal episode five: Re-constructing linear interpolation/extrapolation 

Before discussing the following episode in which Liam constructs the linear 
interpolation/extrapolation strategy, I will pause for a moment to discuss where the 
episodes that have been discussed so far occurred in the scheme of the six sessions.  The 
work to this point had occurred in the first three sessions out of six.  The first episode 
discussed in this section occurred in session one, the second and third were in session 
two, and the last “closer to one than the other” episode occurred in the third session.  A 
full weekend passed before Liam and I met again to discuss the following problem.  
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Three consecutive integers sum to 414.  Find the three integers. 
 

Though this episode has been discussed previously in contrast with Liam’s earlier 
solution strategies, this time through we will take the opportunity to discuss the material 
leading up to the concise final description that Liam gives.  This is so that one has the 
opportunity to see how the strategy unfolds and Liam puts everything together.  The 
schematized treatment of the linear interpolation strategy in terms of variation primitives 
will follow the discussion with the line-by-line transcript. 

In this discussion, Liam’s artifacts have been modified so that the reader can see 
what his work looked like as he was solving the problem and describing his thinking.   
 

Liam: I’m gonna guess one hundred-thirty-five.  
ML: OK 

 
It is of note that Liam’s first guess is already quite close to the solution to the 

problem.  In a similar problem that Liam solves in a later session he explains that he 
knows that consecutive numbers are all about the same amount and so roughly 1/3 of 414 
would be a good first guess.  

There is a pause in talking as Liam is engaged in making the chart template with 
columns labeled “1”, “2”, “3”, “Sum”, “Ch” and labeling his “target” of 414 above the 
“Sum” label. 
 

 
ML: OK. 
Liam: 408. So, that’s a bit too low. 
ML:  OK. 
Liam: I guess 140. [5 second pause]  

 
Hmmm. The number that I’m aiming for is// 
 
//Wait, you could do that when you have two… [rows], (pause) 
 
Okay. 140 [he writes 140 down in the chart as his next guess] 

 
In reviewing the transcripts, Liam’s “Wait, you could do that when you have 

two…” is the first hint that Liam is starting to think of what will become the full version 
of his linear interpolation/extrapolation strategy.  Here, we see him realizing that, based 
on the brief reflection we had after the last problem he’d solved using guessing and 
checking [an entire weekend had elapsed since that session], the problem could be solved 
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with only two guesses.  This comes right after noticing that his first guess was too low.  It 
could be that this noticing of the first guess being too low prompted him to remember that 
he had previously thought about another way to solve the problem in which only two trial 
values were necessary to determine. 

At this point, however, I, as the tutor, do not know that Liam remembers the 
impromptu reflection in the previous session and I do not realize that he is referring to his 
previous construction in the problem on Jabari’s numbers when he says that he can “do it 
with two” here.   
 

 
ML: So, what were you thinking of doing right there? [when he said that 

he could do it when you have two]. 
 

Liam: Well, compare the – like how much off this number  
was [indicates 408, the result of his first calculation],  
 
and compare it to a different guess [indicates 140 and then the  
whole second row – currently blank except for 140 in the “1”  
column – referring to the process of working through the  
calculation with 140]  
 
and look at that [points to currently blank entry in the sum column  
in the second row],  
 
see how much off it was, then you could get this [pointing to the  
sum of 414 in the problem statement]. 

 
In the above, note that Liam’s language of “how much off this number was” 

indicates a focus on the error between the results of a guess and the target.  He then 
indicates that you could specify another guess and look at the result of that calculation to 
see how much off that guess was from the target value of 414.  Liam does not yet reveal 
how he is going to get the target value of 414 from that information, but at this point, he 
shows that he does believe that the information from two guesses and their results is 
sufficient information to solve the problem.   

It is important to notice in this segment, that Liam’s plan for finding the solution 
to the problem using two guesses involves comparing the results of each trial calculation 
to the target and determining how far off the result of each calculation was from the 
target.  This approach is to be explicitly contrasted with what he will do in the next 
segment where he looks directly at the difference between the results of the two 
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calculations.  In the next segment, he skips comparing each result to the target output to 
determine the error for each, and goes directly to taking the difference between the 
outputs.   
 

ML: Okay, and what did you say?// 
 

Liam: // Like the difference between this result [pointing to 408 in sum 
column] and this result [indicating the second row of sum 
column, which is currently blank]  
 
and see how far apart these [pointing to the “inputs” 135 and 
140] were,  
 
so you could tell how many of these [pointing to the entries in 
the “1” column] equaled how many of these [pointing to the 
entries in the “Sum” column]. 

 
In the above exchanges, Liam restates his approach, now in terms of the particular 

numbers that he has chosen. Liam is focusing attention on relationships between 
input/output pairs from the column labeled “1” (the input) and the column labeled “Sum” 
(the output). His gestures also indicate that he is concerned with the number that occupies 
this position rather than focused on the particular value that happens to be currently 
occupying that position.   

This is an important point—he is describing a general algorithm, not specific 
numerical calculations. This is a clear precursor to the idea of variable – thinking about 
the general relations between quantities in the problem and operations on whatever value 
will occupy a “cell” once he has finished the relevant computation.   

I ask again for clarification about what Liam wants to do and Liam says “I 
remember how to do it with two of them.” I (who am still trying to understand Liam’s 
proposed approach that, to me, has come out of the blue) interpret this as a reference to a 
previous problem that Liam has solved with a sum of two consecutive odd integers, not to 
a further elaboration of the idea of using the inputs and outputs recorded in two rows to 
predict the value of the first integer that will achieve the sum of 414. I suggest that for the 
moment we just continue with the calculation for 140.  Below, Liam has completed the 
calculation for 140 as the first number. 
 

Liam: Yeah. [having verified the calculations for a guess of 140 with 
the calculator.] That’s a little bit too high. 
 

ML: OK. 
 

Liam: I said that was 408 [results from input of 135] and this 423 
[results from input of 140].   
 



 

 
 

 

97 

The difference of this is [gesturing between 408 and 423 in the 
“Sum” column]—it’s 15, [now moves hand over to column 
labeled “1”].  
 
So for every one of these [points to entries in the “1” column], 
it’s 3 there [points to “Sum” column].   
 
Okay, so I’m trying to get 414.  So… (pauses to think).  
 
Ah. (pauses). The difference between these two [indicates 423, 
the result of the calculation for 140, and 414, the target value] is 
9,  
 
So this should be less [points to 140 in the “1” column]. 

 
Above, Liam is now explaining how he is trying to figure out how to predict the 

answer while he is the process of working with specific numbers.  He is mapping from 
his “general” idea of how this process should work, to how it works in the case with these 
particular values. 

There is a pause in talking as Liam completes the next row of the chart using his 
predicted guess of 137 (since he had decided that he needed to adjust his guess by 
lowering it from 140 to 137). Below, there is a brief exchange about whether his 
calculations for 137 achieved 414.  
 

 
 ML: Good. So can you recap your reasoning?  How did you decide that 

137 was the best guess? 
 

Liam: Well, it isn’t really a guess once you get to the third one! [gesturing 
between the entries in the “sum” column]  

 
I took 408 and 423. [pointing to 408 and 423 in the sum column, as 
he is explaining]  

 
I have the difference between those [between 423 and 408], which 
is 15.   

 
The difference between these two [pointing to 135 and 140 in the 
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“1” column] is 5, and 15 divided by 5 is 3.  
 

So, that means that for every one that this [pointing to 140 in the 
“1” column] changes, [moves hand over to the “sum” column] 
the answer changes 3.  

 
So, then I took 423 and I subtracted that [moves hand up to 
problem statement to indicate the target value of the sum: 414];  

 
The difference was 9.  

 
Three times three is nine, [moves hand over to 140 in the “1” 
column] so I knew it would have to be 3 less than this [pointing 
again to 140 in the “1” column],  

 
and yeah. 

 
This exchange is striking for the clarity of Liam’s meta-observation about the 

generality of his algorithm.  This shows that it was not just a question of Liam happening 
upon this method and noticing that it solved this problem.  He is quite aware that the 
information from the first two guesses is all that is necessary in order to solve the 
problem.  The final guess not really a “guess” since it’s chosen so that it will solve the 
problem.  

We will now move into the summary discussion of this episode to take a look at 
how the analytic framework interfaces with the data discussed in the previous episode.  
Because there were three distinct phases within this episode, I will discuss the state of the 
knowledge activated by the end of the episode, while aiming to communicate where 
certain ideas were introduced within the episode. While this episode will not contain 
many completely new pieces of knowledge that have not appeared previously in the 
episodes, this is the first time that we see Liam re-constructing the linear 
interpolation/extrapolation strategy on the spot as he is solving a problem.  So, the way in 
which these pieces of knowledge get activated is novel here in addition to their role in the 
growing conceptual “control of variation” scheme.  
 
Snapshot of the strategy system  

1. Strategic path. Liam begins this episode with the same sort of strategic path as 
he has used in the past problem solving episodes: Means End Analysis (MEA) and 
ends the episode having constructed a version of Linear Interpolation and then 
Extrapolation. 
 
Liam uses the relations in the problem to make a good initial first guess and notes 

the error between the resulting output and the target value. However, already before 
having even selected the second trial value, Liam is contemplating how he can use two 
trial values in a different way than he has in the past. There are three phases through 
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Liam’s construction of the strategy.  In the first phase, Liam merely states that two trial 
values would be sufficient information to solve the problem.  In the second phase, he 
elaborates “Well – compare – like how much off this number was [indicates 408, the 
results corresponding to his first input] and compare it to a different guess [indicates 
140, and the whole second row that is currently blank] and look at that [points to the 
currently blank entry in the sum column in the second row], see how much off it was and 
then you could get this [pointing to the sum of 414 in the problem statement.]”  In the 
third phase, he has actually worked through the calculations for 140 and describes in 
detail how he determines the unit worth of one increment and uses it to extrapolate to find 
the solution to the problem. Thus, though the episode began with Liam using MEA, the 
episode ended with him solving the problem by an entirely different means that he had 
(re-)constructed on the spot: Linear Interpolation/Extrapolation.   

 
2. Conceptual categories. Initially, the same categories are relevant again:  

adjustable input, resulting output, target, and error.  However, throughout the 
course of this problem solving episode, several other conceptual categories 
became relevant to set and readout information about.  For example, as opposed 
to thinking about error for each resulting output and the target, now the interval 
comprised of the difference between two outputs itself has increased in priority.  

a. Difference between two results is now a conceptual category (as opposed 
to forming the interval through the concatenation of errors). 

a. Error between any output and the target value (e.g., in order to establish a 
base from which to iterate the incremental worth in order to solve the 
problem) becomes another quantity to “set” in the course of solving 
problems.  

b. Number of increments (in X and Y) that are required to solve the problem. 
  

3. Relations between conceptual categories. 
a. The number of increments in input equals the number of increments in 

output required to move from the base output value to the target value. 
This relation bears some similarity to the Change in X corresponds to 
(like) change in Y element.  One can see this relation in play when Liam 
makes the determination that if the difference between an output and the 
target is 9 and the worth of a unit increment is 3, then it will take three 
increments in the X value to achieve the target Y value.  

b. Note also the difference between correspondence (“For every one here 
[inputs], it is three there [outputs]”) and co-variation (Every time this 
[inputs] increases or decreases by one, then this [outputs] increases or 
decreases three).   
 

4. Activated auxiliary knowledge.  As we have noted before, not all of the 
knowledge pieces required to implement the strategy are “relations between 
conceptual categories” or elements of the control of variation system.  Below we 
list two additional supporting pieces of knowledge relevant to this episode. 
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a. Simple units. A piece of knowledge that plays a role in the construction 
process is (as in episode four) the convenient presence of simple units in 
Liam’s calculations (e.g., Five three’s is fifteen, in this case). The 
determination of how much to move up or down from a base value would 
be much more difficult (and perhaps Liam would not see how to do it in 
general) if the particulars of the problem were not expressed in simple 
units, at least initially. 

b. Base +/- change. In order to implement Liam’s strategy, he needs to 
increment up/down from a “base” value.  In this sense, the final form of 
Liam’s strategy is supported by a base +/- change scheme.  Such a scheme 
is like the conceptual scheme part of the base + change symbolic form 
(Sherin, 2001).   

 
Organization of the control of variation scheme 

Below, we give the current organization of the control of variation scheme.  Note 
that this is not significantly different from the final organization after the post-reflection 
portion of focal episode four.  However, one should note that focal episode five involved 
calling upon and using the scheme whereas focal episode four involved adding new 
categories and relations to the scheme. 

 
Change in X   Like Change in Y 

Monotonicity 
Increasing X  Increasing Y [Episode 2 & 3] 
Decreasing X  Decreasing Y [Episode 2 & 5] 
 

Proportionality 
 Increasing X (by a lot)  Increasing Y (by a lot) [Episode 3] 
 Decreasing X (by a lot)  Decreasing Y (by a lot) [Episode 2] 

 
 Increasing X (by a little bit)  Increasing Y (by a little bit) [Episodes 1, 2 

4, 5] 
 Decreasing X (by a little bit)  Decreasing Y (by a little bit) [Episode 1, 2, 

4, & 5] 
 

 Decreasing X (by about a factor of 2)  Decreasing Y (by about a factor 
of 2) [Episode 2] 
Unit increment (Co-variation) 

• Increasing X by 1  Increasing Y by d [Episode 4B, 5] 
• Every time X increases by 1  Y increases by d [Episode 4B, 5] 

In-betweenness 
Somewhere in between [Episode 2] 
Halfway in between [Episode 3] 
Closer to one than to the other [Episode 4B] 
Iterative application of in-betweenness [Episode 4A] 

Worth (Correspondence) 
For every one here [input], it is d there [output] [Episode 4B, 5] 
Number of increments in X equals the number of increments in output required to move from 
the base Y value to the target value. [Episode 5] 

Figure 12. Active elements in Liam's control of variation scheme in focal episode five. 
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The following are micro-developments and mechanisms of change that are observed in 
this episode. 
 

1. Construction of new conceptual categories.  As mentioned above, the new 
strategic plan requires the setting and reading out of several new kinds of 
information from the previous strategy.  The difference between any two trial 
outputs and trial inputs become new categories, as does the difference between 
any output and the target value. 
 

2. Construction of new relations between conceptual categories.  A new relation 
between the linked input and result intervals shows how to use the “worth” or 
linkage of this interval in order to solve the problems.  The path that Liam follows 
involves him scaling these linked intervals in order to find the worth of a unit 
increment and then extrapolating from that to solve the problem.  The relation that 
he constructs is that “the number of increments in input is equal to the number of 
increments of the Y interval needed in order to move from the base value to the 
target Y value.”    
 

 Liam currently has one path for determining the worth of a unit increment and 
also how to use it.  Though not necessary for executing his strategy, eventually one 
would expect that Liam would come to develop other ways to determine the worth of unit 
increments.   

 In addition to concatenation, “elision” (See diSessa, in preparation) is a 
potentially important mechanism.  This is how Liam (after the first time working through 
how the solution path worked) no longer needed to find the error from each result to the 
target and instead he realized that it was sufficient just to look for the relation between 
two input/output pairs.  
 
Overview of what happened in between episode five and episode six 

Following Liam’s re-construction of the linear interpolation/extrapolation strategy 
here (beginning of episode four), the sessions turned to concentrate more on the 
formulation of equations for solving problems and there was no opportunity for Liam to 
use his algorithm throughout the rest of session four and five.  The next episode that we 
will discuss comes from session six, the last in the series of sessions.   

 
Focal episode six: Re-application of linear interpolation/extrapolation 

The next and final episode that we will discuss in this arc of strategy/conceptual 
co-development gives some demonstration of the stability of Liam’s construction.  This 
episode is taken from the final session with Liam, in which the format was more of a re-
cap and review of the sessions.  Unlike during sessions two through five, where the 
method of problem solving approach was specified, in the sixth session, Liam was free to 
decide to solve the problems in any way he wanted.  The problem that Liam was working 
on in this episode was: 
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Anne is twice as old as Paul.  Bill is five less than Anne’s age.  Together, 
Anne’s and Bill’s ages sum to 147.  How old are Paul, Bill, and Anne? 

 

 
 

Almost immediately after the problem is read, Liam remarks on how old the 
protagonists in the problem are. While not surprising, given the sort of “magnitude sense” 
Liam has shown on other problems, it definitely shows that Liam almost reflexively 
attends to what range to reasonably expect the answer to be in.  It could be that because 
of this computational facility, he doesn’t think about ways to simplify his new algorithm 
(e.g. he could start guessing with any value – it is no longer necessary to choose guesses 
so that they get closer and closer to the solution).  In this sense, vestiges of “guess and 
check” still remain even in the implementation of his new algorithm.  
 

Liam: Wow, they’re pretty old.  Okay.  Anne is twice as old. [Working on 
problem]  
 
Okay I would do this in the guess and check chart. 

ML: OK. 
Liam: [Constructing the chart with Paul, Anne, and Bill.]  

 
And I got that sum.  [Drawing an arc over Anne, Bill and Sum to 
indicate that he’s finding the sum of just Anne and Bill’s ages.]  
 
But I’m still checking for him [points to Paul]. 

 
Such a spontaneous explanation of what he plans to do is probably prompted by 

the fact that the condition in the problem “violates” the usual pattern he’s seen in other 
problems where all three quantities are involved in the condition.  He is flagging that he 
still knows that Paul’s age is the appropriate quantity to guess values for even though on 
the surface it may not appear to be involved in the test condition.   
 

ML: I see, okay. 
 

Liam: OK.  So I’ll guess Paul is (thinking, 8 seconds) 35.   
 



 

 
 

 

103 

[Works through the computations related to a guess of 35 for Paul].  
 
Okay, so that was a bit too low.  I will guess—(thinking, 6 seconds).  
 
I’ll just guess 40.  It’s probably less time consuming than trying to 
find out the relation from this [Paul] to that [Sum] in some sort of 
equation. 

 
Here, after having guessed a value for Paul and seen that it was a bit too low, 

Liam decides to try at first to come up with a way to tell the relation between Paul and 
the Sum in “some sort of equation.” However, he decides that in this case, where the 
relationship is not very clear to him to just choose another test value.  Again, note his 
choice of 40 (that overshoots the target value for the sum). We cannot be sure if this is 
purposefully chosen to be so or is merely a consequence that he did not plan.  In any case, 
it is notable that if he were trying to figure out the relationship between Paul and the 
Sum, he did not choose his next value to be 36 so that he could see how much the sum 
increases when the independent variable increases one. 
 

Liam: Some sort of equation.   Okay so 40 times 2 equals 80.  80 
minus 5 equals 75.  So that’s 155.  Or is that 155?  80 plus 75 
equals—hold on.  So it [the result from155] is too much.  
 
(Thinking. 8 seconds).  
 
Okay so the difference between these two [between 135 and 
155] is 20.  The difference between these [35 and 40] is 5; 20 
divided by 5 is 4.   
 
So that means every time I change this by one [left hand 
touching Paul column] this [right hand descends and indicates 
Sum column] changes four.  So I should lower this [40] by two. 

 
Liam chooses to stick with the same version of his algorithm as before where he 

(1) has a guess that results in overshooting and another that undershooting the target sum, 
(2) where he figures out the multi-unit intervals and scales them back to units, (3) 
extrapolates from units to figure out that he must reduce his second guess by two in order 
to achieve the target sum for Anne and Bill.   

When asked about his choice his comment about it being less time-consuming to 
just find the relation, he answers 
 

Liam: “Unless the equation is easier or it’s something like consecutive 
numbers where I can easily figure out…where it’s four numbers 
or it’s three numbers [referring to problems he’s solved that have 
asked him to find the first of three consecutive integers given the 
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sum], you’ll increase or decrease by three.   
 
If it’s harder—if it’s a different equation like this [the relation 
given in the Paul, Bill, and Anne problem], I think it would be 
less time consuming to just move on and make another guess 
than find the difference.” 

 
So, while this statement does affirm his focus on efficiency and saving time and 

this being the basis upon which he decided to try to go with the “sure-fire” three guess 
strategy as opposed to figuring out the relation in his head, it also shows that he does not 
recognize that another valid choice for a guess (and one that would be advantageous 
because it would involve a simpler calculation) would be a number consecutive to his 
guess.  One interpretation is that Liam is aware of these two ways of computing the unit 
worth of one guess, but they are not yet coordinated for him.  Recall that the impetus for 
the strategy construction initially began with my questioning what happens to the 
resulting output when the input variable is adjusted by one unit. So, the idea of “moving 
by one” is certainly familiar. 

It appears, however, that in Liam’s later usage of the strategy, he did not see (or 
did not consider important in this case) how to begin from this simpler way of 
determining the unit worth and instead relied upon calculations with two “arbitrary” 
values.  In fact, upon inspection, the two values that he chooses are not arbitrary, but 
rather have the property that one guess undershoots the target and the other overshoots.  
This has the result of being able to find the unit rate, but by his usual longer chain of 
reasoning.  As the activity stands, Liam knows this method of choosing two values and 
using their results to compute the unit worth to extrapolate from is going to work.  Within 
the context of the activity, there is no strong impetus for him to change to a slightly more 
efficient version of this determination. Note also that in the excerpt from Liam directly 
above, he cites efficiency and which choice is more time efficient.  This supports the 
interpretation for why there is not the conceptual coordination between the two ways to 
determine unit worth.  However, he explicitly remarks that he finds it to be harder to find 
the “relation” in this problem.  

After Liam finishes working on this problem, I ask him if he thinks that this 
strategy would always work. He says 
 

Liam: I think it only works when this [inaudible] when the number 
that you guess is involved in the equation. And if the number 
you guess wrong isn’t involved in the equation really, then you 
would just pick someone else’s [number]. 
 
And it also might depend on how you guess.  If you guess like a 
certain odd number that can’t really be divided as easily, that 
might be a bit of a difficulty. Depending on what you guess, if 
we had a difference of like 17.  You couldn’t really divide it, so 
it’d be harder. 
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I think if I did that, I would just move on to make another, more 
even, guess.  But I should keep this in mind for the future.  
When I do this, I should try to guess more even, rounded 
numbers. 

 
I ask “What if the answer isn’t an even, rounded number?” 
 

Liam: That would be a problem.  I could probably find a new method 
in the future. 

 
At this point, at the end of the sessions, I mention that an assumption that we are 

using is that there is a common proportion between any two input-output pairs.  We 
check this for some pairs of inputs/outputs.  Liam reflects 
 

Liam: If it turns out that it doesn’t work on certain problems, I could 
just start over on that problem and try to solve it in an equation 
or in a different way. 

 
Snapshot of the strategy system  
 
At this point, at the end of the sessions, Liam’s functioning strategy system involves the 
following: 
 

1. Strategic path.  The strategic path that Liam uses to organize his activity in this 
last episode is a hybrid of MEA and Linear Interpolation/Extrapolation.  Even 
though Liam has constructed a strategy that will work in three trial values, Liam 
is still interested in being able to solve the problem in fewer trials if possible.  
Thus, he still chooses very purposeful initial guesses with the hope that it could 
get close enough to solve the problem.  He then repeats this, paying attention to 
how the functional relation interacts with increasing the input by one.  Only after 
Liam attempts to solve the problem without linear interpolation/extrapolation.  

2. Conceptual categories. The categories of “difference between two results” and 
“difference between two inputs” are seen to be stabilized in this episode as 
opposed to seeing it get constructed in focal episode five (e.g., first the Y interval 
was constructed from the sum of the errors between two results and the target and 
the later the Y interval was constructed as the difference between the two results).  

3. Relations between conceptual categories. In this episode, we now see that “unit 
increment” is something that Liam is aware that he could determine (and he 
knows how to) from the beginning of the episode.  Thus, it is a new “conceptual 
category” of information to read out or determine. 
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Organization of the control of variation scheme 
Because there were no further conceptual changes or strategic refinements 

between last episode and this one, the control of variation scheme from focal episode five 
has remained stable. The figure below shows which co-variation schemes were used in 
this episode.   
 

 
Change in X   Like Change in Y 

 
Monotonicity 

Increasing X  Increasing Y  
Decreasing X  Decreasing Y  

 
Proportionality 

 Increasing X (by a lot)  Increasing Y (by a lot) [Episode 3] 
 Decreasing X (by a lot)  Decreasing Y (by a lot) [Episode 2] 

 
 Increasing X (by a little bit)  Increasing Y (by a little bit) 

[Episodes 1, 2 4, 5] 
 Decreasing X (by a little bit)  Decreasing Y (by a little bit) 

[Episode 1, 2, 4, & 5] 
 

 Decreasing X (by about a factor of 2)  Decreasing Y (by about a 
factor of 2) [Episode 2] 

 
Unit increment (Co-variation) 

• Increasing X by 1  Increasing Y by d [Episode 4B, 5, 6] 
• Every time X increases by 1  Y increases by d [Episode 

4B, 5, 6] 
 

In-betweenness 
Somewhere in between [Episode 2] 
Halfway in between [Episode 3] 
Closer to one than to the other [Episode 4B] 
Iterative application of in-betweenness [Episode 4A] 

 
Worth (Correspondence) 

For every one here [input], it is d there [output]. 
Number of increments in X equals the number of increments in output required to move 
from the base Y value to the target value. 

 

Figure 13. Active elements in Liam's control of variation scheme in focal episode six. 

Strand 5: Micro-developmental steps in the learning process 
The aim of the previous section was to use the analytic machinery that developed 

in reformulating both strategies and concepts as complex knowledge systems to analyze 
the data of Liam’s strategy construction process over the course of six focal episodes. 
The approach of the last chapter was to take “snapshots” of the state of Liam’s strategy 
system and the state of the conceptual sub-system (control of variation system) that was 
being organized and enriched over the course of several episodes of problem solving.  

We traced changes to the strategy system (e.g., formation of new conceptual 
categories and relations that resulted in the formation of new strategic plans) and we also 
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traced how Liam’s growing control of (linear) variation scheme got built up over the 
course of the sessions.  For example, we saw that a “key idea” that was instrumental in 
allowing the construction of Liam’s linear interpolation/extrapolation strategy was that 
from the information generated in two trials, Liam could determine and then use the 
worth of a unit increment to solve problems.   

In preparing for the work of this section, we also marked, episode-by-episode, 
changes to the system that occurred during each of the focal episodes.  The aim of this 
section is to synthesize the work done across the focal episodes in the last section and to 
schematize and collect together examples of the kinds of micro-developments (in terms 
of both the strategic and conceptual systems) that occurred over the course of the session.  

The developments listed below are drawn from the transcript in temporal order, 
and so they give an overview of the trajectory of development that we have already 
observed and discussed between Liam’s initial and final strategy.  
 
General classes of micro-developments that account for observed changes 

The following are steps by which Liam’s conceptual schemes were refined over 
the course of the sessions.  These include:  

 
1. Progressive quantification – Increasing attention to quantity in judgments.  

a. Benchmarking -- Instrumental use of ½ (or some other benchmark) as a 
reference point. 

b. Composition  
c. Decomposition (Scaling and Unitizing) 
d. Iteration of co-varying changes 

 
I now briefly describe and exemplify each of the proposed micro-developmental steps of 
knowledge construction in this case.   

 
Progressive quantification refers to a family of means by which Liam 

increasingly attended to quantity in making judgments about choosing a next guess.  This 
transition was progressive and took place in stages, via separate mechanisms, and hence 
“quantification” is not a mechanism on its own.  One site of progressive quantification 
was the nature of what was noticed about the “error from the target” for each guess. This 
noticing was instrumental in constructing precise intervals (as in the case of constructing 
“half as a reference point” or “closer to one than another” or “multi-units”) that then 
could get scaled to unit intervals. That is, the increasing noticing of exact quantity of 
error eventually allowed the transformation of “more X  more Y” into “increasing X by 
1  increasing Y by m.”   

One example of “progressive quantification” comes in episode three when Liam 
(serendipitously) notices that his first guess (serendipitously) resulted in an output that 
was 20 too low and his second guess resulted in an output that was 20 too high.  Because 
the error was noticed in terms of the exact amount of discrepancy, this opened up the 
possibility for him to make the conjecture that the variation with respect to the domain 
interval between 12 and 20 would work the same way.   (Reflecting on the way he had 
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chosen 16 as his guess: “I just thought it was in between these two [12 and 20] because 
this [56] was 20 too low and this [96] was 20 too high.  And this [16] was exactly 
between those.”)   (Episode 3). 

The next several developments are related to the idea of “progressive 
quantification.”  We will discuss (a) benchmarking, (b) composition, (c) decomposition, 
scaling, and unitizing, and (d) iteration of co-varying change.   

 
Benchmarking refers to the instrumental use of ½ (or some other benchmark) as a 

reference point.  Notice that in the discussion above, Liam noticed that the target output 
was halfway in between the outputs for his first two guesses.  However, because this was 
this was not an instrumental use of ½ as a reference point this is not considered deliberate 
benchmarking.  Episode four, however, provided an example of benchmarking in action.  
 

“So, it would go – it would be further [sweeping gestures up and down 
input column], ‘cause I know that it’ll be in between these two [15 and 
20] already. So, it would be higher up instead of being right in the 
middle, it’ll be higher up.” (Episode 4) 

 
In this quote, we see Liam making clear reference to “right in the middle” as a 

landmark or reference point for use in determining where the target input value should 
be.  Note that we see him invoking both the idea of “in-betweenness” (he explicitly says 
he knows it will be in between 15 an 20] and “half as a reference point” in this utterance.  

Another consequence of benchmarking in this learning trajectory is that since it 
involves a focus on the entire X and Y intervals defined by the two trials and also a 
specific landmark value on those two intervals, it is one way in which Liam’s reasoning 
about choosing next guesses becomes increasingly attuned to quantity.  

 
Composition is meant to refer to the process of constructing a unified object of 

attention (e.g., an interval) out of sub-objects (e.g., sub-intervals). The way this 
mechanism comes into play in this case study is in the concatenation of errors between 
the target and outputs from a trial that was too high and a trial that was too low.  For 
example, if the result of trial one was D1 units too high with respect to the target output 
and the result of trial two was D2 units too low with respect to the target, then one could 
consider the entire range D=D1+D2 and ask how much of a change in X corresponded to 
a change of D in Y.  That is, form the element “Increasing X by d results in increasing Y 
by D.” This is an advance over sandwiching or bounding of the error in that instead of 
focusing on the bounds established by two previous guesses for the purpose of 
concluding that the target input must lie in between the two previous inputs, the function 
here is to determine how much an increase of D units in the range corresponds to in the 
domain.  This marks a transition from global and qualitative assessments like “more X  
more Y” to incremental and quantitative assessments like “changing X by d  changing Y 
by D.” 
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In terms of the data in this case, notice the transition in the following episode 
(episode 5).  In the first explanation Liam gives, he is comparing each output to the target 
and then composing these errors to form an interval.   
 

“Compare the – like how much off this number [indicates output of 408 
corresponding to 135] was, and compare it to a different guess 
[indicates 140 and then whole second row potentially referring the 
process of working through the calculation with 140] and look at that 
[blank sum in second row], see how much off it [output corresponding to 
a guess of 140] was then you could get this [indicating the target value of 
414]” 

 
Minutes later, after having worked through the calculations, when he is 

summarizing his process, he explains the process slightly differently:  
 

“Like the difference between this result [pointing to 408 in sum 
column] to and this result [pointing to second row of sum column, 
which is currently blank] and see how far apart these were, so you 
could tell how many of these [domain increments] equaled how many of 
these [range increments]. 

 
In the given example, notice how in the first explanation of what he was doing, he 

compared the “error” of each output to the target output, whereas in the second 
explanation, he compares the results of his calculations to each other.  In this way, the 
focus of attention becomes the difference between the two outputs as opposed to the 
difference between output one and the target and the difference between output two and 
the target separately.  This was a fleeting, but consequential, transition that allowed for 
the formation of increments.  

 
Decomposition (scaling and unitizing) refers to the transformation of the scheme 

“Changing X by d  Changing Y by D” into the scheme “Changing X by 1  Changing 
Y by D/d.”  
 

“It would – wait. So, that moved up 3 [touching input of 17]. Then this 
[corresponding output] moved up 12, so (7 second pause) you would 
have to move this down 4 [to go from an input of 20 to one of 19]” 

 
In this segment, we can see that Liam is working out how to go from the “multi-

unit” increment  “If I increase X by 3, Y increases by 12” to unit increment “If I decrease 
X by 1, Y decreases by 4.”  This transformation builds upon the previously constructed 
intervals (described above in “composition”).  We do not know the exact mental process 
by which Liam constructed this unit increment, but we do know that the interval 
increment from before is implicated in the construction.  Note how this process 
contributes to progressive quantification:  “more X  more Y” has been transformed to 
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“d more X  D more Y” which has then been transformed to “1 more X  D/d more 
Y.”  

Composition and decomposition of units are common processes that have been 
studied with respect to the development of students’ understanding of whole number 
multiplication (e.g., Steffe, 1988).  
 

Iteration of co-varying changes, in this case, is implicated in the process of 
instrumentally using the unit increment (or multi-unit increment) to determine how to 
move the domain values in order to achieve a particular target value in the range.  In 
order to implement this strategy, one needs to choose one of the trials to iterate from and 
one needs to determine how many increments to iterate by. 
 

So for every one of these [points to entries in the “1” column], it’s 3 
there [points to “Sum” column].  Okay, so I’m trying to get 414.  So… 
(pauses to think).  Ah.  The difference between these two [indicates 423, 
the result of the calculation for 140, and 414, the target value] is 9, so 
this should be less [points to 140 in the “1” column].   

 
The iteration of co-varying changes is more evident when he unpacks the 

statement for why it would be less and indicates in particular that it [the target input] 
would be three less [than the input for the chosen trial –140].  
 

Three times three is nine, [moves hand over to 140 in the “1” column] so 
I knew it would have to be 3 less than this [pointing again to 140 in the 
“1” column]. 

 
Here, note that he indicates that three times three is nine, so it should be three 

less.  This is in contrast to taking the range and dividing it into three pieces.  His language 
indicates that, at least in this initial instance, he thinks about iterating the unit three times 
to fill out corresponding increment of nine.  

For the sake of concreteness two trajectories of “progressive quantification” are 
worth mentioning to help the reader with tracking the kind of incremental changes that 
occurred in this particular trajectory of strategy and conceptual co-development: (1) the 
progressive quantification of the benchmarks along the interval defined by the bound 
established through sandwiching and (2) the progressive quantification of co-variation 
schemes themselves.  These two trajectories are pictured below: 
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Figure 14. Two trajectories of progressive quantification.  The left trajectory shows increasingly 
quantified abilities to express where the solution lies between bounds.  The right trajectory shows 
the progression toward incremental co-variation. 

It is important to note that these two trajectories are not unrelated. Liam is trying 
to solve the problems in the session, so it is natural that he is focused on considerations 
like bounding the search space.  The reason that this is valid in this case depends on 
properties of the functions that underlie the problem contexts.  They are all continuous 
and linear functions, so bounding the search is valid. Liam may have an “intuition” for 
why these moves are valid, but it is certain that the connection between his problem 
solving actions and the justification at this level is not explicit for him (and we would not 
really expect it to be at this point).  
 
General classes of mechanisms by which knowledge systems develop 

In this section, I reformulate some of the changes observed in the sessions in more 
general terms as phenomena of systems dynamics (as opposed to “idiosyncratic” changes 
that happened to particular schemes in interaction with a tutor, representation, activity, 
etc.).  Framing things in more general systems terms allows us to make contact with the 
theoretical framework again and prepare for the final section of the analysis where we 
will “lift” out general features of the case study and make conjectures about the co-
development of strategic and conceptual systems in general. 

There are several different types of processes that appear to be instrumental, to a 
greater or lesser extent, in building up Liam’s growing (linear) control of variation 
scheme (and in building up conceptual schemes in general).  I enumerate and describe 
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several classes of such processes here, in order of their prominence in the current case:  
(1) creating new conceptual categories and relations, (2) activation of specific knowledge 
that mediates processes of learning by triggering the activation of other relevant 
knowledge, (3) increasing/decreasing priorities of elements, and (4) increasing span and 
improving alignment of determinations across contexts. I will now discuss each in turn. 
 
Creating new conceptual categories and relations 

 The mechanism of creating new conceptual categories and relations is especially 
germane to the development of strategy systems. Several instances of this mechanism of 
change were marked as we traced through the discussion of the focal episodes in strand 
four.  I recall for the reader of some selected examples of these processes.  

1. Formation of new conceptual categories: “Seeing” an interval that must contain 
the solution and coming to see quantitative or metric benchmarks along that 
interval (e.g., one half, closer to one than the other); worth of one unit increment 
becomes a conceptual category to determine, etc.  

2. Refinements to the relations between conceptual categories: For example, moving 
from “Increasing X  Increasing Y” to “Increasing X (a little bit)  Increasing 
Y (a little bit)” to “Increasing X by 3  Increasing Y by 12”) is an example of a 
refinement or change to the relations between conceptual categories.  

The creation of new conceptual categories and relations is particularly relevant for 
understanding the phenomenon of strategy construction and change in the activity of 
problem solving. On the other (conceptual) side, recall that constructing the unit 
increment was a conceptual advance that then allowed the construction of a more 
sophisticated strategy to determine the solution to the problem as opposed to successively 
make guesses for the solution.  
 
Activation of specific knowledge  

There are at least three places in the building up of this strategy where the 
activation of very particular knowledge supports the continued progress of strategy 
construction: 

1. The activation of the image schema “motion along a path” is conjectured to play a 
role in constructing the strategy in this case.   

2. The fact that the problems involved “simple units” facilitated the construction.   
3. The focus on “correspondence” and then switching back to a “co-variation” 

perspective to leverage the correspondence/worth of one unit increment to 
determine the solution was possibly important. 

These three examples were noted in the discussion in the previous section, but the general 
idea of very specific ideas “cueing” others once they have been introduced into the 
stream of thinking has been noted by several researchers (diSessa, 1993; diSessa, in 
revision; Sherin, Krakowski, & Lee, in press; Wagner, 2006).  
 
Increasing/decreasing priorities of elements in the system 

A third and rather generic mechanism for knowledge development that we discuss 
is the increasing/decreasing of the priorities of elements in systems.  As mentioned in the 
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previous section, as each inference is made about the effect of controlling the variation, 
the knowledge element that supported that inference gets added into the growing (linear) 
control of variation scheme.  In line with the predictions of the theoretical framework, the 
cueing priority of inferences of the result of adjusting variation that align with Liam’s 
expectations will increase and those inferences that do not align with his expectations 
will decrease in cueing priority.  In this case, Liam gets only strong feedback that aligns 
with his expectations about how function variation works in this context.  This is partially 
explanatory for the way the conceptual scheme gets built up over several episodes of 
problem solving. 

 Some potential examples from the sessions that could be modeled by changing 
priorities: 

1. Going from “global” to “incremental” determinations (“global assessments” get 
demoted and “incremental assessments” promoted) 

2. Error between each result and the target get demoted and instead the linked 
difference between two outputs and two inputs is promoted (as a way to 
determine the unit increment.) 

The specific reasons for these changes in priority can be described at different levels.  At 
one level, you could trace through interactions for evidence that particular interactions 
supported the move from global to incremental determinations or an increasingly 
quantified focus on the “error.”  At another level, these changes in priority are consistent 
within the larger frame that Liam is trying to solve problems increasingly efficiently and 
that each of this more local/micro moves helps him to employ a strategy that he feels 
achieves his objective of being efficient about his solution process.  
 Modeling changes in knowledge organization in terms of changes in weighting of 
knowledge elements is a general way to account for the dynamics of knowledge systems 
in activity.  It is discussed in diSessa, 1993 and has been more or less explicitly named in 
many subsequent KiP analyses (See, for example, Kapon & diSessa, in preparation).  
 
Increasing span and improving alignment of means of making determinations 

A fourth general class of ways that knowledge systems develop is through 
increasing span and alignment of means of determination.  This is a very general class of 
improvement to knowledge systems in that increasing span and alignment can happen 
through many different mechanisms (e.g., accumulation of situation-specific knowledge, 
among other ways).  

In the case under study, one potential place where increasing span and improving 
alignment is relevant is in Liam eventually needing to develop an increased repertoire of 
ways to determine the unit worth of an increment. For example, in this case, one could 
take two values that are consecutive and compare them in order to determine the unit 
worth of an increment, or, if the function is linear, one can take any two values and 
compute the ratio of the difference in outputs to the difference in inputs. These means of 
determination need to be coordinated eventually.  In the particular episodes under study, 
we see only some progress in this direction.  However, we must keep in mind that the 
activity observed was constrained by the pragmatics of problem solving.  The goal of the 
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activity to both Liam and to the tutor was not maximal understanding of each of the 
conceptual underpinnings of the strategy he employed.  

A further expected direction for improvement or change involves increasing span 
and alignment of means of determination across representational contexts.  In this case 
study, we only looked at Liam implementing his algorithm and solving problems in a 
tabular environment.  However, it could be interesting to observe the process of coming 
to recognize the features of the growing conceptual scheme in a different representational 
context (say, graphical)30.  

The next two sections on functional niches and a priori dimensions for graded 
improvement serve to elaborate some principled speculations about the nature of expected 
developments to knowledge systems like the ones that Liam is developing in this case.  
 
Functional niches 

The starting place for the discussion in this section is the observation that even at 
the end of the sessions, Liam does not use a “pure” version of the linear 
interpolation/extrapolation strategy.  He begins problems first by trying to assess whether 
he can guess the answer by estimating well.  However, he explicitly remarks in focal 
episode six that after one guess, he thinks it would be less time consuming to go ahead 
and make another guess as opposed to trying to figure out the relation (e.g., the path of 
determination and how it affects the output when the input is changed).  So, while he 
starts out each problem with the strategy of “hoping to get lucky,” he is definitely aware 
that if his efforts at estimating don’t work out after the first couple of tries, he has a 
surefire solution path that will use the information that he’s already collected. In this 
sense, Liam has a hybrid strategy system at the end of the sessions.  This illustrates one 
way that the pragmatics and particulars of the problem-solving situation in which we 
observed Liam affect what we have the opportunity to observe of his strategic and 
conceptual knowledge.   

Certainly, these problem-solving activities were never meant to be an in-depth 
assessment that would allow us to fully chart the rich landscape of everything that Liam 
(or others) might know about functional co-variation.  However, studying protocols of 
problem solving does allow some window into the organization of individuals’ 
knowledge systems. For example, as opposed to a map of a learner’s conceptual ecology 
“in the abstract,” what we do learn about instead is the nature and form of the knowledge 
of functional co-variation that is relevant and drawn upon by students in order to solve 
these problems.  Because this knowledge is being activated for the purpose of solving 
problems, recognizing this also gives us insight into conceptual refinements that may 
have been within Liam’s reach, but were not consequential or important for improving 
his performance on solving the problems (or were not relevant given the way the activity 
was framed in the sessions).  

                                                 
30 Note that the conceptual content of Liam’s strategy in this context is equivalent to that 
statement that two points determine a line and that one can use the slope of the line to get 
from a point on the line to any other point. 
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Throughout the analysis, we referred to Liam’s growing “control of variation 
scheme” that included increasingly organized knowledge structures (co-variation 
schemes) that were used in this context to guide Liam’s choices for next guess.   
However, though we see Liam’s knowledge about controlling variation “grow up” in the 
context of this activity, we should not expect that this is the only place where such 
knowledge is ever engaged.  The particular context of solving problems using guessing 
and checking is a functional niche for Liam’s conceptual knowledge related to controlling 
the variation of linear functions.  

An expectation about knowledge in transition is that knowledge that served a 
particular purpose in past activity will still continue to be drawn upon as it makes sense 
for it to do so.  We see this phenomenon, known as functional residue, at work as Liam 
transitions from guessing and checking approaches to approaches based on linear 
interpolation/extrapolation.  As we remarked above, he used a hybrid approach because it 
was functional for him to do so in the context of this activity, as opposed to cleanly 
switching over to the “more sophisticated” linear interpolation/extrapolation approach. 
(See diSessa, 2004 for a discussion of functional niches and functional residues).  
 
Dimensions of graded improvement 

In this section, we move away from considering the conceptual knowledge as 
being activated for the purpose of solving particular classes of problems (e.g., away from 
the particular functional niches we have the opportunity to observe it functioning in) and 
we speculate here about a number of dimensions for graded improvement to a conceptual 
system (like the control of variation system).  The discussion here is general (e.g., not 
particularly bound to the control of variation or other relevant systems to this analysis) 
and more speculative in nature.  The point of this discussion is to give the reader some 
indications for avenues for future work and what we would expect in terms of future 
development to both Liam’s strategic and conceptual systems from a complex systems 
perspective.  

The graded improvement dimensions discussed here are a priori or expected 
dimensions of improvement of a knowledge system like the control of variation system 
that Liam is developing.31  As we discussed when we introduced the analytic framework, 
in solving problems, the general case we would expect is that individuals do not just draw 
on knowledge from one subsystem (e.g., control of variation system), but rather it is 
possible that knowledge from many and diverse subsystems are engaged.  That is, the 
conceptual knowledge that one relies upon in solving problems is a mixed inferential 
system.     

The three dimensions we discuss here include: (1) purification, (2) exploration of 
inferential possibilities, and (3) justification.  These three dimensions are discussed in 
relation to the knowledge systems of interest in this dissertation.  However, as we said 
above, these are fairly general expectations about the process by which knowledge that 
                                                 
31 This discussion of “graded improvement dimensions” and the particular components of 
purification, exploring inferential possibilities, and justification are based on personal 
communication with A. diSessa. 
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“grows up” in one context becomes increasingly recognizable as its own system/sub-
system, as opposed to being bound to the context in which it originated. 
 

1. Purification. Initially, strategy systems involve many, diverse types of 
knowledge all invoked together for the local purpose of solving a particular kind 
of problem. 

 
 We saw this in the analysis of Liam’s protocols:  there were conceptual categories 
that Liam looked to and set, relations of various sorts between these categories, and then 
specific pieces of conceptual knowledge, ranging from individual co-variation schemes to 
image schemata to declarative facts.  Eventually, we’d imagine that the strategy system 
would become “purified” in the sense that relevant subsystems of knowledge would 
become more systematically organized and tightly connected.  We modeled a bit of this 
“purification” process in following the increasing organization of the co-variation 
schemes within the control of variation system.  Thus, though we see co-variation 
schemes and the control of variation scheme function only in this activity, we have 
reason to believe that this sub-system in particular will continue to develop on its own or 
in conjunction with other systems.  This expectation is based on the fact that we know 
that people reason about variation in contexts that are not tied to the particular goal 
structure of the problems in these sessions. Purification is a dimension of improvement 
that is aimed at broadening the range of contexts in which knowledge can be applied by 
“freeing” it of what were initially contextual contingencies.  

 
2. Exploring inferential possibilities. This dimension of graded improvement is 

aimed at filling out the range of means of making determinations and 
accomplishing goals.   

 
While one initially may only have one means of accomplishing something or 

making a determination, it is clearly better to have multiple means.  This is helpful for 
comparison and error detection/correction or also some possibilities may be better 
adapted to particular contexts. One example where this came up in the sessions was 
around the determination of the worth of a unit increment. There are many ways to make 
this determination (e.g., take any two values of the function that are computed and then 
find the ratio of the difference in output to the difference in input; take any two 
consecutive values and see how much the output increases from one to the next; consider 
the relation between input and output and think about what would change in each term if 
you were to increase each term by one, look at a graph of the function and read off the 
slope of the line, etc.  All of these methods for determining need to be coordinated and 
they need to lead to the same result.  
 

3. Justification. The third dimension of graded improvement we discuss involves 
knowing why what one is doing (e.g., in the case of a strategy system) works.  
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This is useful when strategies need to be adapted or when one needs to recognize 
when a strategy even applies.  Note that this is important once one ventures outside of the 
mode of operation where there is an expected strategy to be applied to solve a particular 
regularly presented type of problem (e.g., the situation in this study).  While this mode is 
fine for learning and refining strategic operation, it is only one mode of many that 
individuals will have to be fluent in.  The justification structure will ultimately play a key 
role in developing that fluency.  

Strand 6: Modeling the co-development of strategic and conceptual knowledge  
The aim of the analysis in this dissertation has been to develop a model of how 

strategic and conceptual knowledge co-develop.  Over the course of several strands of 
analysis, we have been building up to the point where we can state, in general terms, a 
model of this process.  

Our general research strategy has been to use data of such a process of strategic 
and conceptual co-development as a basis for building theory about how such processes 
work in general. Naturally, the data that has been analyzed for this purpose has numerous 
contingencies given that it is case study data from a single case.  To account for this, 
throughout the analysis, I have attempted to articulate and name both what is quite 
specific about the case analyzed and also what we can expect to be more general. 

In studying the process by which strategic and conceptual knowledge co-develop, 
we used an analytic strategy that continually coordinated between bottom-up 
consideration of the particulars of the data under analysis and top-down considerations 
inherited from the general theoretical perspective guiding the analysis.  

The analysis proceeded in several phases.  The first phase of analysis involved 
figuring out how to describe and frame the change that was observed in the sessions. 
Even once it was established that Liam constructed a novel strategy over the course of the 
episodes and a preliminary description of the bookends was given, it still wasn’t clear 
how to describe what allowed him to construct this strategy and what he “learned” 
through his interactions with the tutor/researcher and the task sequence.  Several 
candidate framings for how to describe what Liam learned and how were engaged.  In 
this chapter, we presented a discussion of two of these alternate framings and their pros 
and cons. This phase of activity led to the determination that modeling this learning 
process could be productively approached through developing a complex systems 
perspective. 

The second phase of analysis involved the beginnings of negotiating with a 
particular epistemological perspective, Knowledge in Pieces, that models the conceptual 
understanding of individuals and how it grows in terms of complex systems, together 
with several other commitments (e.g., developmental perspective on the nature and form 
of the elements of the system, etc.)  that have been found to be productive in other studies 
of mathematics and science learning. The process of reformulating and developing the 
analysis in this way was intricate work that went through several phases and continued 
throughout the analytic process. Reference models based on the existing literature 
developed from this perspective were consulted throughout the analysis, which ultimately 
led to the recognition of both strategies and conceptual schemes implicated in the 
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implementation of the strategies as complex knowledge systems.  The process of coming 
to an appropriate definition for the strategy and conceptual systems from this perspective 
happened in dialogue with the theory and was also constrained by the kind of 
phenomenology observed in the data analyzed in this case.   

The third phase of the analysis approached the task of further elaborating and 
specifying the nature and form of the elements of the strategy and conceptual systems 
that were relevant to this particular analysis.  This was a bottom-up program of 
schematizing knowledge-in-use in the sessions.  The entire corpus of data (all six hours) 
was analyzed to exhaustively list the knowledge structures that were relevant for the 
strategy and conceptual co-development process.   

The fourth phase of analysis involved coordinating the grounded analytic 
framework developed in phase three and the general formulation of the enterprise in 
terms of complex systems developed in phase two.  Six focal episodes were purposefully 
selected to trace out the trajectory of strategic and conceptual co-development observed 
in the sessions.  Through the process of putting the analytic framework and theory in 
contact with the data, “snapshots” of the process of change at both the strategic and 
conceptual level were taken and the changes to both systems were noted, episode-by-
episode. 

This prepared for phase five of the analysis in which the episode-by-episode 
changes that were observed were schematized both into specific micro-developments 
informed by the particular case of knowledge construction under study and general 
mechanisms of change that were informed by or suggested by the theoretical framing.  
The entire trajectory could then be understood in terms of models of the knowledge 
structures and mechanisms of change developed through the analysis.   

The final phase of analysis involved synthesizing the work in the previous five 
strands in order to propose a theoretical model for how strategies and concepts co-
develop.  

It is now time to summarize both what we have learned and what we would 
conjecture, based on the theory we have been building, about the process of how 
strategies and conceptual knowledge co-develop. 
 
Strategy change and conceptual change: A process of mutual bootstrapping 

At the very top level, the model of strategy emergence developed in this 
dissertation is that new strategies emerge when then underlying conceptual knowledge 
and schemes that are used to implement them change in structure and organization.  The 
strategies one uses to solve problems require the activation and use of a particular set of 
conceptual resources.  Constructing a new strategy and exercising and using that strategy 
can lead to conceptual refinements.  For example, Liam did not start the sessions with an 
understanding of how to determine the worth of a unit increment or a coordinated 
understanding of the many ways one could go about this.  These conceptual 
developments were made possible (to some degree) by the activity he was engaged in.  
On the other hand, conceptual refinements (like the construction and instrumental use of 
the worth of a unit increment) allowed a novel strategy to be constructed.  Thus, the 
process of strategic and conceptual change was bi-directional and mutually constitutive. 
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An important aspect of the model developed in this research is that both strategies 
and concepts are represented as complex knowledge systems.  This is productive for 
accounting for the great diversity of aspects of what it means to “know” a strategy.  In the 
course of the activity, recall that the knowledge system that we traced involved strategic 
path, conceptual categories and relations between conceptual categories.  The strategic 
path included things like means end analysis and linear interpolation/extrapolation. The 
conceptual categories included adjustable input, resulting output, target, error and 
eventually worth of unit increment. The relations between categories included knowledge 
what we were calling “co-variation schemes” – knowledge structures that encode 
expectations about the effect on the output of “controlling the values of the input 
variable.”  

While the conceptual knowledge of co-variation of functions supported this 
problem solving process, at least in the sessions we observed, we did not observe it as a 
knowledge system that was completely autonomous and being “called” by the strategy 
system as a module. Rather the conceptual scheme was getting built up and enhanced 
through the process of solving problems.  We thus conjecture that a system of knowledge 
around the co-variation of functions and control of variation schemes exist as 
independent entities to be used in other contexts, but we did not observe them to be 
functioning in this way in this particular analysis.    

 
Drivers of the process of strategic and conceptual co-development 

Consistent with the literature on strategy change (Siegler & Araya, 2005), 
efficiency and accuracy of solution approaches are considerations that drive development 
of novel strategies.  Progressive quantification played an important role in this case in 
terms of driving conceptual and strategic development because quantifying various 
aspects of the problem solving process were instrumental in improving efficiency and 
accuracy.   

However, we also discussed some general mechanisms related to the processes by 
which complex systems grow and change as people learn.  Given that one of the strengths 
of the current model is that both strategies and “concepts” are presented as complex 
systems, it makes sense to posit these as mechanisms in the general model that we are 
building.  These mechanisms include: 

1. Creating new conceptual categories and creating and/or refining new relations 
between conceptual categories that result in the creation of new strategic paths 

2. Changing priorities of elements – Both particular schemata and entire strategies 
can be promoted or demoted based on various judgments of the individual.  This 
is related to specific interactions with representations, judgments about 
efficiency/accuracy of solution paths, and also related to other mechanisms below 
(e.g., activation or trigger ideas, etc.) 

3. Increasing span and improving alignment across ways of determining (including 
across representational forms).  

4. Activation of specific knowledge supported reasoning in context  
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Thus, we have now described both the statics and the dynamics of the strategy/conceptual 
systems, both in general terms (this section) and in specific terms (strands four and five 
where we elaborated the systems, their components, and traced specific changes in 
detail). 

In the next chapter, the results of the dissertation along substantive, theoretical, 
and methodological dimensions are discussed, as are limitations of the current study and 
directions for future study. 
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Chapter 7: Discussion, Limitations and Future Work 

The aim of this dissertation analysis has been to develop a model of the process of 
how strategic and conceptual knowledge co-develop.  Our general research strategy has 
been to use data of such a process of strategic and conceptual co-development as a basis 
for building theory about how such processes may work in general.  Naturally, the data 
that has been analyzed for this purpose has numerous contingencies given that it is case 
study data from a single case.  To account for this, throughout the analysis, we have 
tracked the particular details of how strategies and conceptual knowledge were refined in 
the case of Liam, while at the same time marking what we would expect is general about 
the process (on the basis of the epistemological perspective that guided the analysis).  
One of the advantages of developing the case study in close “dialogue” with the 
theoretical perspective, while also staying close to the details of the particular case under 
study, is that we not only understand better how the process of conceptual and strategic 
co-development occurred in the particular case of Liam, but also, and more importantly, 
we have a developed an entirely new approach to the study of such processes.   

Here, I discuss both the conclusions and the contingencies of the current case 
study.  I situate this work with respect to the future work.  I begin with a discussion of 
several questions that one might ask about the current study: (1) How representative is 
Liam as a subject? (2) What are some features of the empirical set-up that may limit the 
generality of the findings of this study? (3) What are features of the scope and sequence 
of the problem sequence that may limit the conclusions we can draw? (4) How concerned 
should one be about the breadth of data analyzed at this stage in the process of 
developing theory about how strategies and conceptual knowledge co-develop?  We 
discuss each of these issues in turn. 
 
How representative is Liam? 

On one hand, Liam was exceptional among students in the sessions in that he was 
the only student to more or less independently come up with the algorithm we discuss 
here.  However, Liam was an average math student in school (e.g., of three tracks of 
algebra, Liam was placed in the middle track in the year following this study).  One way 
in which Liam was different from many of the students I studied was that he was more 
articulate than average about what he was doing and why, and he seemed to be constantly 
reflective about this.  This quality made this case desirable as a context in which to study 
processes of strategy development because there was more access to what Liam was 
doing and what understandings might be supporting that.   

That said, there were two qualities of Liam that may have had more of an effect 
on the way the particular trajectory of knowledge construction studied here unfolded.  
The first is that, Liam’s capacity for estimation and computational fluency in general, 
were above average in students that I observed in the pilot classroom work.  While the 
heavy amount of computation may have been onerous to many other students, such 
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concerns were in the background for Liam. The second is that, throughout the sessions, 
Liam displayed an aesthetic for the efficiency of his solution approaches.  Given such an 
aesthetic, it is natural that over the course of working on several similar problems using a 
similar approach, Liam would work to improve upon his method. Certainly, it will be of 
interest empirically and theoretically to conduct studies of extended episodes of problem 
solving across a broader range of subjects.   
 
The co-development of strategic and conceptual knowledge in a particular context 

We have studied a process of the co-development of strategic and conceptual 
knowledge in depth, but under very specific conditions.  We would expect the process by 
which strategies and concepts co-develop to look rather different in cases such as this, 
where subjects are engaging with a problem sequence involving repeated trials with 
similar problems solvable by expected and similar means, as opposed to situations in 
which the solver needs to construct a means for solving a problem on the spot and may 
go through several, iterative, attempts at doing so. Though these situations are rather 
different, we would still expect the theoretical machinery that comes with viewing 
strategies and concepts as complex knowledge systems to be productive for 
understanding this broader range of situations.     

A second aspect of the current data that should be noted is that the process of 
knowledge construction we studied took place in a clinical instructional context.  
Interactions between the tutor/researcher and the student undoubtedly shaped the 
particular trajectory of knowledge construction observed.  However, the focus of this 
study was to examine the organization of the student’s knowledge system and how that 
organization changed as the student learned.  The particular “moves” of the 
tutor/researcher were back-grounded for the purpose of understanding the nature and 
form of the student’s knowledge system and how it changed.  This was a deliberate 
analytic choice.  

Firstly, the particular development analyzed in this study was more of an 
emergent interactional phenomenon between the tutor and the student – not a “designed” 
part of the study.  Thus, while we can be attentive to the effect of certain interactions, 
treating this as “purposeful instruction” is a bit misleading.  Future work systematically 
incorporating what appeared effective in this case would be of interest in strengthening 
any claims about the effects of particular interactions on knowledge construction 
processes. 

Secondly, our expectation is that generalizable knowledge about how to support 
students as they construct their understandings is of more central interest than the specific 
findings from one study about how one tutor supported one student in making particular 
conceptual connections.  To this end, having a better-specified theory of students’ 
knowledge systems and how they grow and change (across a wide range of interactional 
contexts and across a wide spectrum of content) is foundational in the larger program of 
work around developing theories of effective instruction that are sensitive to individual 
differences.  
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Problem sequence and scope 
The problem sequence in this study was selected for the purpose of tracing out the 

transition from “informal” problem solving strategies (e.g., guessing and checking) to 
algebraic problem solving strategies (e.g., modeling problems with equations) with a 
particular interest in the role of a curricular tool, a Guess and Check chart in mediating 
this transition.  This particular sequence of problems was not designed as a window into 
students’ conceptual understanding of functions and co-variation.  For this purpose, it is 
severely limited in the sense that, except for the problems that deal with systems of linear 
equations, all of the functions underlying problem contexts have to do with direct, linear 
variation.   

How individuals develop knowledge of functional relations and co-variation 
became central in this study because it was a pool of knowledge that individuals drew 
upon in solving the problems in this study using guessing and checking approaches. 
Developing this analysis required taking a close look at the knowledge in this area that 
individuals were drawing upon and make conjectures about how it was likely organized 
and what likely processes of change were.  A future trajectory for this work would be to 
make a more systematic study of how individuals understand co-variation and how this 
develops over time.  This would be an interesting pursuit in and of itself and would also 
provide triangulating data for the account provided in this dissertation study. 
 
Amount of data analyzed in the process of developing the model 

One of the limitations of this study is that in addition to being a single case study 
design, the number of episodes and observations analyzed is admittedly few, especially in 
contrast to study designs that involve students solving perhaps hundreds of problems over 
an extended period of time.  The current study focuses on a single student and a particular 
arc of learning that took place over six hours.  Even within this six-hour span, only 
Liam’s work on six selected focal episodes was presented in detail in the analysis.   

However, the main thrust of the work in this study concerned the development of 
a theoretical model in close dialogue with both data and theory and thus the focus on a 
single case was appropriate.  Certainly now that we have developed theoretical and 
analytic machinery for approaching the question of how strategies and conceptual 
knowledge co-develop, it is of interest to consider more cases across a wider range of 
content, subjects, and empirical set-ups.  

Theoretical, methodological, and substantive contributions 
A primary contribution of the analysis in this dissertation was the development of 

analytical tools for studying processes of mathematics thinking and learning.  In the 
context of this analysis, this included the explicit modeling of strategies and concepts as 
complex knowledge systems allowing Knowledge in Pieces (KiP) as a theoretical 
perspective to guide the analytic process involved in trying to understand how strategies 
and concepts co-evolve. This approach contributes novel new tools to our repertoire for 
studying the phenomenon of strategy use and construction. This approach also elaborates 
the KiP theoretical perspective through the recognition of strategies as knowledge 
systems with certain characteristic functions and properties.   
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Developing analyses in which we make very explicit the epistemological 
principles guiding the analysis and also show how those principles make contact with the 
data allow us a basis upon which to make judgments about what good representations of 
thinking and learning are and how we can improve them in future work. Specific ideas 
that were developed included how to negotiate between a modeling language and the 
specifics of the knowledge that we are trying to model.   

Because this is a relatively new type of analysis (at least in educational circles) 
the work involved in developing the methodology and the modeling language was a 
highly nontrivial part of the iterative analysis of the video and transcripts. As a relatively 
new methodology, an ongoing focus of attention within the community of researchers 
interested in developing such perspectives on thinking and learning processes, is to better 
explain and schematize the methods by which analyses are developed from data.  
Although quite a bit of detail was suppressed and streamlined in the presentation of the 
analysis, the choice to show how the model was created through layers of analysis (e.g., 
reformulating the concepts and strategies in question from a systems perspective, 
generating an analytic framework including a fine-grained description of knowledge-in-
use, showing the mapping between the analytic framework and the data across the span 
of the learning process in question, and developing both specific and general sketches of 
learning mechanisms) was purposeful in that the aim was to expose some of the analytic 
processes that go into generating a model such as the one developed in this analysis.  
However, as we discussed in the previous section, there are numerous contingencies and 
specificities in any one case of thinking and learning and so we can expect that several 
such “methodological case studies” will be needed in order to better understand the 
spectrum of analytic strategies associated with “knowledge analysis.” 

One of the substantive contributions of this dissertation (e.g., on the particular 
content and form of knowledge implicated in the trajectory of change) is the idea that 
there is much more to “understanding a strategy” than just knowing the procedures that 
one goes through in order to solve particular problems.  The interplay between strategic 
knowledge and the conceptual knowledge that it takes to implement strategies is 
important to understand.  On one hand, we can use strategic performance as a (limited) 
window into the organization of individuals’ conceptual knowledge.  On the other hand, 
we can use this window into individuals’ conceptual knowledge in order to understand 
what and how people learn through problem solving.  

One of the major efforts of the dissertation has been to contribute to explore the 
productivity of modeling mathematical knowledge and knowledge construction using a 
complex systems perspective, guided in particular by the commitments of Knowledge in 
Pieces.   Through contextual tuning and elaboration to engage particular questions about 
processes of thinking and learning, epistemological micro-modeling (diSessa, 1994) is a 
general and powerful approach.  It is hoped that the general methods elaborated in the 
process of developing this particular analysis merely mark the beginning of a long line of 
work on developing our understanding of processes of mathematical thinking and 
learning.  
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Appendix 1:  Problems Solved in the Sessions 

 
A complete list of the problems solved in the sessions is given together with information 
about the session in which the problems were worked on and the approach specified (e.g., 
none, guessing and checking using a chart, using a chart to transition to equation 
modeling, equation modeling).  Problems that are in bold were selected as focal episodes 
in the current analysis.  Problems that are starred are from the CPM Algebra Year One 
curriculum.  
Table 9. Problems Solved in the Sessions 

Session One 
Session Specified 

Approach 
Problem 

1 Open Ben and Jerry each have a mystery number.  Ben’s mystery number is six 
more than three times Jerry’s.  If the sum of Ben and Jerry’s numbers is 
70, find the two numbers.  How would you do find the two numbers if I told 
you that Jerry’s number was 16?  What would be different about the problem? 

1 N/A Express the following relationship in a table: Anna is three more than five times 
as old as Juan. 

1 Chart Andre and Rosa’s ages:  Andre is 20 less than 3 times Rosa’s age.  If Andre is 
25, how old is Rosa? 

 
 

Session Two 
2 Chart PAIR: Maria is one less than five times Andrew’s age.  If Andrew is fourteen, 

how old is Maria?  and  Maria is one less than five times Andrew’s age.  If 
Maria is fourteen, how old is Andrew?  

2 Chart PAIR:  Amanda is four times as old as Derek.  If Derek is sixteen years old, 
how old is Amanda?  and Amanda is four times as old as Derek.  If Amanda is 
sixteen years old, how old is Derek?   

2 GC-Chart The base of a rectangle is three centimeters more than twice the height.  
The perimeter is 60 centimeters.  Find the base and height of the rectangle.  

2 GC-Chart Find three consecutive integers that sum to 126. 
2 GC-Chart Find two consecutive odd numbers whose sum is 376.* 
2 GC-Chart 

(System) 
Jennifer has only quarters, dimes, and pennies in her pocket.  There are eight 
coins in all and the total value is 83 cents.  How many of each type of coin does 
she have?* 

 GC-Chart 
(System) 

The drama department at Galileo High is having a production.  Tickets cost $3 
for members of the student body and $5 for anyone else.  A total of 515 tickets 
were sold bringing in $1785.  How many student body members attended?* 

2 GC-Chart The perimeter of a triangle is 76 centimeters.  The second side is twice as 
long as the first side.  The third side is four centimeters shorter than the 
second side.  How long is each side? 

 
 
 
 
 



 

 
 

 

135 

Session Three 
3 GC-Chart Jabari is thinking of three numbers.  The greatest is twice the least.  The 

middle is three more than the least.  The numbers total 75.  Find the three 
numbers. 

3 GC-Chart The length of a rectangle is three less than four times the width.  If the length 
plus the width is 92 feet, find the length and width of the rectangle. 

3 GC-Chart Melanie sold 3 times as many candy bars as Jeremy.  Jeremy sold four more 
candy bars than Elaine.  Together, Melanie and Elaine sold 132 candy bars.  
How many candy bars did Melanie, Elaine, and Jeremy [each] sell? 

3 GC-Chart In the football game, Rocky gained 3 times as many yards as Bullwinkle.  
Rocky also gained 10 yards more than Boris.  The 3 players gained a total of 
410 yards.  How many yards did Boris gain?*  

 
Session Four 

4 GC-Chart Find three consecutive integers that sum to 414. 
4 Transition 

to equation 
On a 520 miles trip, Gerald and Robert shared the driving.  Robert drove 80 
miles more than Gerald drove.  How far did each person drive? 

4 Transition 
to equation 

The length of a rug is one foot less than twice the width.  If it takes 34 feet of 
fringe to wrap around its perimeter, find the length and the width of the rug.* 

4 Transition 
to equation 

Rachel is three years older than Lauren.  Lauren is twice as old as Mariah.  The 
sum of Mariah’s age and Rachel’s age is 85.  How old is Lauren? 

 
Session Five 

5 Equation Susan is buying three different colors of tiles for her kitchen floor.  She is 
buying 25 more red tiles than beige tiles and three times as many navy blue tiles 
as beige tiles.  If Susan was buying 435 tiles in total, how many of each color 
tile does she buy? 

5 Equation Margaret is twice as old as Jennie and Sarah is thirty years older than Margaret. 
Sarah is older than Jennie and the difference between their ages is 63.  How old 
are Margaret, Sarah, and Jennie? 

5 Equation A rectangle has length that is 4 inches more than 5 times its length.  The 
perimeter is 68 inches.  Find the length and the width of the rectangle. 

5 Equation The State Market has 27 more apples than oranges.  There are 301 apples and 
oranges all together.  How many apples are at the market?* 

5 Equation Raisa cut a string of 112 cm.  The second piece is 3 times as long as the first 
piece. How long is each piece?* 

5 Equation A rectangle has width that is 25 inches shorter than twice its length. If three 
times the length is twice the width is 83 inches, find length and width of the 
rectangle. 

 
Session Six 

6 Open The sum of three consecutive numbers is 222.  What are the three numbers?   
6 Open The length of a rectangle is three more than four times its width.  If the 

perimeter of the rectangle is 148 feet, find the dimensions of the rectangle. 
6 Open Anne is twice as old as Paul.  Bill is five less than Anne’s age.  Together, 

Anne’s and Bill’s ages sum to 147. How old are Paul, Bill, and Anne? 
6 Open Jane has a rectangle that has a length and width that sum to 10 feet.  Four times 

the area of her rectangle is 64 feet squared.  Find the length and the width. 
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Appendix 2. Transcription Conventions 

 
Punctuation Meaning 
… Voice trailing off 
// Interruption 
[italic brackets] Explanatory text.  Used to disambiguate unclear 

references or to add detail about gestures or other non-
verbal actions. 

(pause) Pauses of significant duration are marked by text. (e.g., 
“8 second pause”) 

Bold italics Emphasis added by the analyst 
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