
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Scaling up from Micro Cognition to Macro Cognition: Using SGOMS to build Macro Cognitive
Models of Sociotechnical Work in ACT-R

Permalink
https://escholarship.org/uc/item/0g36w404

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 33(33)

ISSN
1069-7977

Authors
West, Robert
Somers, Sterling

Publication Date
2011

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0g36w404
https://escholarship.org
http://www.cdlib.org/

Scaling up from Micro Cognition to Macro Cognition:
Using SGOMS to build Macro Cognitive Models of Sociotechnical Work in ACT-R

Robert L. West (Robert_west@carleton.ca)

Institute of Cognitive Science, 1125 Colonel By Drive
Ottawa, ON K1S 5B6 Canada

Sterling Somers (sterling@sterlingsomers.com)
Institute of Cognitive Science, 1125 Colonel By Drive

Ottawa, ON K1S 5B6 Canada

Abstract

SGOMS is a way of scaling up GOMS models to model multi
agent work in complex sociotechnical systems. In particular,
it allows GOMS to handle interruptions, multi-tasking, and
re-planning. West and Pronovost (2009) discussed some of
the theoretical issues around building an SGOMS model in
ACT-R. This paper presents work in progress for two such
models. Specifically, we used ACT-R to create a model of a
worker in a sandwich shop and a model of a commercial
airline pilot. Problems with scaling ACT-R up to the macro
cognitive level are discussed and solutions are presented.

Keywords: ACT-R, GOMS, microcognition,
macrocognition, sociotechnical systems, cognitive modeling.

As Simon (1962) pointed out in his story about the two
watchmakers, when a system gets more complex it is more
likely to be organized in a hierarchical way, especially if the
system has to exist in a noisy environment. In the story, two
watchmakers make identical watches but one goes out of
business will the other one flourishes. The unsuccessful
watchmaker does not have a hierarchical approach to
making watches. Instead he makes a watch in one go, but if
he is interrupted it all falls apart. The successful
watchmaker makes various parts of the watch separately,
and then assembles them together into higher-level parts,
which are then assembled into even higher-level parts, and
so on until the watch is made. If he is interrupted only the
part he is working on falls apart. Because the watches are
popular there are many calls to order them and therefore
many interruptions, which are catastrophic for the first
watchmaker but manageable for the second watchmaker.

SGOMS is a theory of Macro Cognition that is based on
this idea. The argument behind SGOMS is that cognitive
modeling designed to work at the level of psychology
experiments (micro cognition) can scale up to higher-level
tasks where interruptions are common, if additional
hierarchical structure is added. If the system is truly
hierarchical then the micro cognitive processes should not
change when macro level processes are needed for a task.
SGOMS is a theory about what sort of macro level
processes need to be added. Specifically, SGOMS is a
theory of what needs to be added to GOMS modeling (Card
et al., 1983).

GOMS is based on the theory that all expert routine
behaviors and cognitions can be explained using a limited
set of control structures. These are: Goals, Operators,
Methods, and Selection-Rules (implemented as Production
Rules). In addition GOMS assumes that these elements are
organized as Unit Tasks (Newell, 1990). Unit Tasks are a
means of partitioning a task to avoid overloading the
cognitive system (i.e., taking in information too fast) and
downtime (i.e., taking in information too slowly). GOMS
works well for modeling isolated, individual tasks.
However, GOMS does not work well in environments
where interruptions, multi tasking, and teamwork are
common (West & Nagy, 2007). Simon’s (1962) story
suggests that this is due to insufficient hierarchical structure.

SGOMS augments GOMS by adding additional structure
to allow the productive use of GOMS in complex
sociotechnical environments. To accomplish this, SGOMS
adds a higher-level control structure and introduces an
additional constraint on unit tasks related to this structure. In
addition to avoiding overload and downtime, unit tasks must
also be small enough to avoid most interruptions (West &
Nagy, 2007). By adding this constraint unit tasks become
islands of work that will likely be completed without
interruption and where normal GOMS modeling can be
applied.

In SGOMS, control of the unit tasks is accomplished by
planning units. Planning units are higher-level
representations of the work that specify how to use unit
tasks to accomplish a particular part of the task. In our
experience so far, planning units can often be represented as
a list of unit tasks. Planning units can be interrupted,
bookmarked, and restarted; therefore planning units provide
a cognitive mechanism to deal with task interruptions and
multi-tasking.

West and Provnost (2009) characterized sociotechnical
systems as having a tension between sticking to an existing
plan and adapting to unforeseen local circumstances.
Sociotechnical systems require that workers act in a
coordinated way and this frequently involves having a plan.
Planning meetings and briefing sessions are common in the
sociotechnical workplace. However, it is often the case that
workers have to adapt to or work around events or
circumstances that were unforeseen in the plan. According
to SGOMS theory, when a worker is interrupted and cannot

1788

continue on a planning unit, they use constraint-based
decision making to switch to another planning unit. In an
SGOMS model, each planning unit is associated with a set
of constraints that can change based on events in the
workplace. These constraints include constraints related to
the plan; therefore, a worker can work around a problem (if
possible) without disrupting the existing plan.

Planning units are also theorized to produce a common
ground representation of the task (Klein, 2004), allowing
workers to communicate what they are doing or to instruct
others using the planning unit names. That is, planning units
are meant to represent the level at which the cognitive
representation of the work becomes shared. However, this
does not imply that everyone’s planning units would be the
same; instead it would depend on their role in the planning
unit. For example, a pilot and an air traffic controller might
share a planning unit names for various parts of the landing
sequence, but the contents of these planning units would not
be the same.

ACT-R and GOMS
GOMS models are often implemented in ACT-R

(Anderson & Lebiere, 1998). The reason for this is that
there are similarities between ACT-R and GOMS, and
ACT-R is capable of expressing all of the functionality
needed for GOMS modeling. In fact, it is arguable that a
GOMS model represents the simplest and most direct way
to express something in ACT-R. However, it is important to
note that ACT-R has more functionality than GOMS (the
biggest difference being that ACT-R can learn) and that
ACT-R has a detailed sub symbolic model for each type of
functionality, which GOMS does not have. Therefore,
expressing a GOMS model in ACT-R means adopting
specific ACT-R assumptions defining the sub-symbolic
systems. This is important to note because expressing a
GOMS model in a different architecture could result in
important differences.

It is also important to note that there are different versions
of GOMS. The four most well known systems are the
original version of GOMS, known as CMN-GOMS (Card et
al., 1983); the keystroke level model, KLM (Card, Moran &
Newell, 1980); NGOMSL (Natural GOMS Language,
Kieras, 1996); and CPM-GOMS (Cognitive-Perceptual-
Motor GOMS, John, 1988, 1990). To be clear about the
relationship between ACT-R and GOMS in our model we
defined our GOMS/SGOMS mechanisms in act-r terms.
Please note that these are our definitions and may differ
from definitions elsewhere in the GOMS literature.

Goals
In ACT-R the productions (i.e., selection rules) are triggered
by the content of the buffers, which contain chunks. Chunks
contain a limited number of predicate information bits (e.g.,
isa:dog name:rover color:brown). Productions fire if their if
condition matches the buffer contents. ACT-R has a number
of different buffers to represent the activity of different
modules (e.g., vision, audition, declarative memory, motor,

visual imagery). ACT-R also has a specific goal buffer,
which represents where it is in a task. However, we defined
the goal as the contents of all the buffers, which is the de
facto definition of goals in most ACT-R models. In fact, the
term goal is misleading as all of the buffers, including the
goal buffer, represent the current state of the system, not a
goal that the system wants to achieve. The goal directed
behavior of the system is emergent from the contents of the
buffers and the productions that they trigger

Operators
We defined operators as the lowest level at which a
production in ACT-R can hand off an action to a module. In
ACT-R, once an action has been handed off to a module,
that action can occur in parallel with the actions of
productions, so the level at which an operator is defined is
important. However, there is no firm theory about this.
Instead, judgments about the size of operators are based
mainly on introspection about the task. For example, move
hand to mouse, would be a typical GOMS operator because
intuitively we feel that, in most cases, we do not consciously
guide our hand to the mouse. However, we could break it
down more if we wanted to. For example, I could
consciously choose to guide my hand over the mouse and
then consciously place my hand on the mouse, which would
be two operators. To deal with this we propose that there is
a level of natural operators that the motor system commonly
uses and that, while it is possible to consciously control
actions below this level, it requires a deliberate decision to
do so and does not often occur. In addition to introspection,
research on motor actions should be used to define these
actions.

Methods
In GOMS, methods are sets of actions that are commonly
repeated in a task. In ACT-R, if a set of actions is frequently
repeated in the same order the actions will become
compiled. What this means is that instead of using
productions to retrieve information about what to do next
(typically stored in declarative memory) the compiled
version will consist of productions that directly call each
other in a fixed order and therefore fire ballistically, as a set.
This allows ACT-R to model the process of moving from
deliberate actions to automatic behaviors, although in
GOMS models the learning part is not needed since experts
would be expected to have optimized sets of compiled
productions. Therefore, we defined methods as compiled
sets of productions. This puts a limit on the size of methods
because in order to compile, the sequence must be exactly
the same and must occur relatively quickly. Therefore,
anything with variability or with delays introduced from the
environment will not become a method.

Selection rules
Selection rules in ACT-R are production rules, so this is
exactly the same. However, we found it useful to make a
conceptual distinction between task-related productions, i.e.,

1789

productions associated directly with the task, and system
production rules, i.e., production rules that implement the
general mechanisms for executing expert behaviors in
complex environments. Although the ACT-R architecture
treats all productions equally, it is the case that productions
can be specific to a task or generic.

Unit tasks
In ACT-R, a unit task is a set of related productions,
including compiled productions, or methods, that call
perceptual, motor, and cognitive operators to complete the
unit task. As in GOMS, unit tasks are about how the task is
divided up

Planning units
We represented planning units as sequentially chained
chunks in declarative memory. Each chunk represents a unit
task and also the unit task that should follow it. A planning
unit is executed by a set of productions that retrieves the
next unit task in a series after the current unit task is
finished. Each planning unit also separately stores a set of
constraints, information about where the agent is in the
planning unit, and information about the task that is non-
routine. These are stored separately as chunks and allow the
agent to judge if a planning unit is appropriate for the
situation, to remember where they were in a task when they
return to it, and to incorporate non-routine information, such
as exceptions in the plan and unexpected events by altering
the chunks.

Constraint based decision-making
The selection of productions in ACT-R is a form of
constraint-based decision-making (i.e., the contents of the
buffer provide the constraints for choosing a production).
However, the time scale for ACT-R production selection
seemed wrong. West and Nagy (2007) found that workers
could spend a considerable amount of time ruminating on
these decisions if the situation was complex. They also
found a lack of uniformity at this level. Our belief is that
this process is, itself, a form of expertise, and not a direct
product of the architecture. In ACT-R terms, this means that
the constraint based decision-making system would be built
out of productions and chunks and could be considerably
different across tasks and across individuals for non-routine
decisions. For example, West and Nagy (2007) found that
network maintenance workers often had to consider a large
number of constraints when deciding how to respond to an
unexpected event. In ACT-R terms this means that the
information needed to make the decision exceeded the
capacity of the buffers to hold it. Therefore, West and Nagy
(2007) proposed that the workers were using memory-based
heuristics to cope with this.

Models
The claim behind SGOMS is that all expert tasks can be
described with these mechanisms. Creating an ACT-R

model of how these processes operate and interact provides
a much more rigorous and testable model. It also provides a
test for ACT-R to see if it has the functionality to scale up to
the macro level. West and Provnost (2009) discussed how
this might be done. However, the key is to actually build
and test models of different tasks. The goal is to show that
our ACT-R model of SGOMS can parsimoniously model
different types of expert tasks, or to falsify it by showing
that this is inherently problematic. To do this we chose two
tasks, working in a busy sandwich/wrap restaurant (located
on our campus) and landing a large commercial jet airplane.

In addition to specifying how to build a model, SGOMS
is also a way of observing and analyzing human behavior.
Essentially, the SGOMS structure specifies what to pay
attention to and what to analyze in order to get the data to
build the model. In turn the model provides an organized,
principled way of understanding the data. The first phase of
data gathering involves the researchers tentatively filling in
as much of the model as possible by reading manuals and
interviewing experts. Later phases involve iteratively testing
and adjusting or amending the model (see West & Nagy,
2007). In this paper we report our progress at modeling data
from the first phase.

Sandwich making model
We began by trying to make a simple model of an expert
sandwich maker working in a sandwich shop. The model
was, on the surface, very simple. The worker could make
different types of sandwiches, work the cash, or clean up
(each of these was a planning unit). However, we
immediately ran into an issue. SGOMS needs to keep track
of a lot of information. In particular, at any given time a
worker knows what planning unit they are in, what unit task
they are in, what method they are doing, and where they are
in the method. While this amount of information can be
placed in a single chunk in the goal buffer, the size of the
chunk is very large and this goes against ACT-R theory.
Therefore, we created a set of goal buffers, with a buffer for
each of the SGOMS levels (i.e., planning units, unit tasks,
methods, and operators). This solution is very similar to
Salvucci & Taatgen (2008) who added more goal buffers to
allow ACT-R to multi-task. However, they added one buffer
for each task, which is different from the way we did it.
These differences are discussed below but here we wish to
note the convergence of opinion that multiple goal buffers
are needed for ACT-R to be flexible at the macro cognitive
level.

A second issue that arose was the need to interrupt unit
tasks with environmentally driven events. This requires that
the system be open to bottom up information from different
modalities (e.g., such as seeing the cheese on the floor, or
hearing something drop). ACT-R is driven by the
production system representing procedural memory, which
can be thought of as a top down system. However, this
system can receive bottom up information from the
environment through the perceptual modules and react to it
by firing a production. For example, there could be a

1790

production that fires when the auditory buffer contains the
sound of a fire alarm. If this production has a higher utility
it will fire instead of the top down, goal driven productions.
However, using this approach means that the production
system can be interrupted at any point, which creates an
ACT-R programming nightmare. A second, related problem
is what happens when two bottom-up interruptions occur
close together. In this case the reaction to the first
interruption is immediately canceled in order to react to the
second interruption, which creates more chaos. Although it
is possible to use ACT-R in this way, the problems created
suggest that this aspect of the architecture is incomplete.

Our solution to this was to add a module to ACT-R
representing the activity of the amygdala. The amygdala is
widely believed to function as a monitoring system for
negative events (Sergerie, Chochol, & Armony 2008;
Damasio, 1994). However, in order to do this the amygdala
module needed to function in a way similar to the
procedural module. Therefore, we created a second, parallel
production system to model the amygdala. However, the
productions it contains are merely reactionary, with each
production representing something the system finds
alarming. The amygdala module monitors the buffers of the
perceptual modules and if there is a match to a production it
fires and places a chunk in the amygdala buffer indicating a
problem and the modality that detected the problem (so
attention can be directed there). This releases the procedural
module production system from having to react to an
interruption immediately when the interruption occurs.
Under these conditions the procedural module production
system can monitor for interruptions within a cycle of
executing methods and/or operators. Furthermore, by
making the system for dealing with interruptions
interruptible in the same way, further interruptions can be
dealt with by simply updating the representation of the
situation and restarting the system for dealing with
interruptions.

With these augmentations in place we were able to model
the sandwich maker in a robust way so that they could make
sandwiches, respond to unexpected events in intelligent
ways, and work around problems. Although it was a
relatively simple task we required the agent to be able deal
with an interruption at any point and also to respond
differently to different types of interruptions. As far as we
can see, this would be difficult to achieve without our
augmentations, and the model would certainly be less
parsimonious.

Airplane pilot model
Our second task was to model the landing procedures on a
commercial airliner. Our eventual goal is to produce a
detailed model of the distributed cognition analysis
presented in Hutchins (1995). To start on this model we
used the Microsoft Flight Simulator and the X Plane flight
simulator to gain a basic knowledge of landing procedures.
We also discussed how we were modeling the procedure
with actual pilots. This task was considerably more complex

than making a sandwich and also had more real time
components.

The task fit well into the planning unit/unit task
framework, although we will follow this up by having real
pilots evaluate the model. We found that unit tasks often
reoccurred in different planning units, which was handled
easily and conveniently by our model. However, we also
found that the task involved a lot of monitoring and
adjusting, which is different from a unit task that steps
through a series of procedures towards a goal. For this we
introduced “looping” unit tasks. These are unit tasks that
continuously repeat until they are interrupted. Normally we
think of interruptions as a bad thing, but in this task we
found that task interruptions could function in a positive
way, as a signal to change unit tasks. For example, a voice
coming over the radio can act as signal to monitor the radio.
However, decisions have to be made about how much
information can be handled by the modules processing
bottom up information. For example, we initially thought
the auditory module should monitor the radio for the call
sign of the airplane but our experience with the flight
simulator indicated that novice pilots cannot do this.
Instead, based on our own experience, we had the auditory
module monitor for a voice over the radio, which could
trigger a top down monitoring to listen for the call signal.
The issue of how much intelligence can go into modules
that monitor the environment for information is important as
it can make a big difference in these models. An interesting
question related to this is whether these modules can learn
to handle more, as in the case of an expert, or if the
limitations are fixed.

Our discussions with real pilots also revealed some
differences in terms of the constraint satisfaction process
used to select planning units. West and Nagy (2007) had
found that network maintenance workers often considered
large numbers of constraints and used heuristics to make
decisions. In contrast, pilots often have definite rules or
decision-making schemes. For example, if a pilot is landing
and an incursion occurs on the runway they must switch to
aborting the landing. Because this rule is simple it can be
modeled with a single production rule. Also, pilots are
taught clearer priorities. For example, they learn first to
aviate, then to navigate, and last to communicate. They are
also taught rules for specific instances. For example, on the
last part of the landing they explicitly ignore radio
communications. This finding was consistent with the claim
that constraint satisfaction methods will be task dependent
(West and Nagy 2007).

Multi tasking
As mentioned above, our approach to multi tasking is
similar to Salvucci & Taatgen (2008) in that we increased
the number of goal buffers, but it is also different. One point
that is important to keep in mind is that the Salvucci &
Taatgen (2008) model is not a model of experts or of macro
cognition. The Salvucci & Taatgen (2008) model does a
good job of modeling how people learn to multi-task in lab-

1791

based situations. We have no story about learning; instead
we based our model on the broader requirements of
performing complex tasks in busy environments. In
Salvucci & Taatgen’s (2008) model, each task gets one goal
buffer. This allows switching between tasks without loosing
track of where you are in the task. Salvucci & Taatgen
(2008) also use a greedy polite resource-sharing model,
where resources are the modules that receive instructions
from the procedural production system. Greedy means that
task productions will take over a module if it is available
and needed. Polite means that if one task is controlling a
module, when it is finished it will not re-take it, but instead
will let another task use it.

As Salvucci & Taatgen (2008) note, there are other
models of multi-tasking with different abilities. These
include the ability to delay, interrupt, and prioritize (Freed,
1998), the ability to direct multi-tasking using schemas
(Norman and Shallice, 1986), and the ability to adapt to
constraints (Howes et al., 2004, 2007). Essentially our goal
was to develop a model that could do all of these things.
However, we also made things easier for ourselves by
focusing only on experts, thus ignoring the problem of how
people learn to do these things. Our way of doing this was
to use the ACT-R production system and the ACT-R
declarative memory system to build a hierarchical control
structure based on SGOMS. Within this hierarchy, multi-
tasking can occur in different ways.

At the level of switching planning units, multi-tasking
involves a constraint-based decision each time the task is
switched. However, if the there are simple rules for this, as
sometimes occurs with pilots, the switch can be achieved by
a single production rule and is therefore quite fast. The more
complex the constraint based decision process, the longer
the decision would take. As noted above, we believe that the
constraint based decision process is specific to the task.

Multi-tasking can also take place within a planning unit.
This could occur if a planning unit required two or more
distinct tasks to be completed. This could involve using a
deliberate schema for switching between the unit tasks
associated with each of the tasks. In the simplest case, this
could be expressed by the order of the unit tasks in the
planning unit.

Finally, multi-tasking can take place within a unit task if
the multi-tasking is a normal routine part of the unit task. In
this case we would expect the multi-tasking to be managed
by productions in the unit task in a way that is appropriate to
the task. The question of what happens below this brings up
an interesting question, which is, when does something
cease to be multi-tasking and become a single task?
Methods involve coordinating different activities, as do
operators, so really we are always multi-tasking.

Micro versus Macro
Psychology experiments are designed to get at micro
cognitive processes and to avoid the influence of macro
cognitive processes. To do this, experiments often involve
abstract and artificial tasks. This is useful and good because

it allows us to get at the micro mechanisms that underlie
macro level behavior. Salvucci & Taatgen’s (2008) model
of multi-tasking is a good example of a micro theory. It is a
way of understanding and experimenting on some of the
factors that underlie real world task switching. SGOMS is a
macro level theory. It is aimed instead at understanding how
real world multitasking can be understood in the context in
which it occurs.

In our view the macro and micro levels should be
complementary. For example, consider someone making a
cell phone call while driving, if it is the first time they have
done this then they are not experts, SGOMS does not apply,
and the Salvucci & Taatgen model would be a good choice.
However, if they frequently and routinely socialize on the
cell phone while driving (e.g., some taxi drivers) then
SGOMS predicts that they could have acquired expertise at
switching between their planning unit for driving and their
planning unit for socializing via cell phone. This would take
the form of a more sophisticated understanding of the
constraints involved in phoning and driving.

Alternatively, consider a husband who picks up his wife
everyday from a busy downtown office building where there
is no stopping allowed. To get around this he uses his cell
phone to call her just before he gets there so she can come
out, but otherwise he does not use the cell phone in the car.
In an SGOMS model the cell phone call and the driving
would be part of the same planning unit – picking up his
wife. Because there is no switching between planning units
SGOMS does not predict the use of constraint based
switching, instead SGOMS predicts the use of rules specific
to that situation (e.g., phoning when in a particular merging
lane that is always slow). However, in all cases, the micro
cognitive bottlenecks for resource allocation that underlie
the Salvucci & Taatgen model, and ACT-R in general,
would still apply. SGOMS is a theory of what else may
apply in specific contexts. In other words, it is a way of
scaling up micro cognition to macro cognition.

In terms of buffers, Salvucci & Taatgen (2008) use
different buffers to represent the goals of different tasks
whereas we use different buffers to represent different levels
of information about the task. As noted above, the most
important thing is the consensus that a single goal buffer is
not enough. If we were to allow for multiple buffers the
most natural place would be within planning units to
represent different unit tasks.

Conclusion
We have reported our progress so far in building two
SGOMS models of very different tasks. Building the models
is part of the SGOMS process, which involves iterating
between model building and gathering real world data. The
claim of SGOMS theory is that one cognitive framework
can be used to model all expert behavior. To test this and to
make SGOMS more specific we want to try SGOMS on
many different tasks. So far, we have not found a task that
cannot be easily accommodated by the SGOMS structure.

1792

In terms of implementing SGOMS in ACT-R, two issues
were found. The first was the need for a hierarchical goal
structure instead of the single goal buffer that ACT-R uses.
However, it is important to note that the extra buffers are to
keep track of activity within disruptive, multi-agent
environments and are not needed to model Psychology
experiments, which almost always involve simple, isolated
tasks. The other thing we found was the need for a system to
evaluate bottom up information. We created such a system
by modeling the amygdala as a production system, with the
caveat that it can contain only simple, reactive productions.
Something like this is needed to allow the ACT-R
procedural memory production system to deal with bottom
up interruptions, otherwise, in a noisy environment, the
procedural memory production system would be constantly
interrupted in order to evaluate bottom up information.

References
Anderson, J. R. & Lebiere, C. (1998). The atomic

components of thought. Mahwah, NJ: Erlbaum.
Card, S., Moran, T., & Newell, A. (1983) The Psychology of

Human-Computer Interaction. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Damasio, A.R. (1994). Descartes’ Error: emotion, reason,
and the human brain. New York: Grosset/Putnam.

Freed, M. (1998). Managing multiple tasks in complex,
dynamic environments. In Proceedings of the 1998
National Conference on Artificial Intelligence, Madison,
Wisconsin, 1998.

Howes, A., Vera, A., Lewis, R.L., and McCurdy, M. (2004).
Cognitive constraint modeling: A formal approach to
supporting reasoning about behavior. In Proc. Cognitive
Science Society.

Howes, A., Vera, A., Lewis, R.L. (2007). Bounding rational
analysis: Constraints on asymptotic performance. In W.
D. Gray (Ed.) Integrated Models of Cognitive Systems
(pp. 403-413). Oxford University Press.

Hutchins, E. (1995). How a Cockpit Remembers Its Speeds.
Cognitive Science, 19, 265-288.

Klein, G., Woods, D. D., Bradshaw, J. D., Hoffman, R. R.,
and Feltovich, P. J. (November/December 2004). Ten
challenges for making automation a “team player” in joint
human-agent activity. IEEE: Intelligent Systems, pp. 91-
95.

Newell, A. (1990). Unified theories of cognition.
Cambridge: Harvard University Press.

Norman, D. A., & Shallice, T. (1986). Attention to action:
Willed and automatic control of behavior. In R. J.
Davidson, G. E. Schwartz, & D. Shapiro (Eds.),
Consciousness and Self-Regulation (pp. 1-18). New York:
Plenum.

Salvucci, D. D., & Taatgen, N. A. (2008). Threaded
cognition: An integrated theory of concurrent
multitasking. Psychological Review.

Sergerie, K., Chochol, C., & Armony, J. L. (2008). The role
of the amygdala in emotional processing: A quantitative

meta-analysis of functional neuroimaging studies.
Neuroscience and Biobehavioral Reviews 32, 811–830.

Simon, H. (1962). The Architecture of Complexity.
Proceedings of the American Philosophical Society,
106:6, 467-482.

West, R.L., & Nagy, G. (2007). Using GOMS for modeling
Routine Tasks Within Complex Sociotechnical Systems:
connection Macrocognitive Models to Microcognition.
Journal of Cognitive Engineering and Decision Making.

West, R.L. & Pronovost, S. (2009). Modeling SGOMS in
ACT-R. Linking macro and micro cognition. Journal of
Cognitive Engineering and Decision Making.

1793

