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Epigraph

Nothing in biology makes sense except in the light of evolution.

—Christian Theodosius Dobzhansky (1973)
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ABSTRACT OF THE THESIS

The genomic landscape of beneficial fitness effects
by
Brian Bowen Hsu
Master of Science in Bioengineering
University of California, San Diego, 2016

Professor Trey ldeker, Chair

In this thesis, | develop a high-throughput framework to systematically
identify beneficial genetic perturbations relative to a wild-type strain using an
ultra-high density colony array. | applied the method to measure the fitness of
~8000 deletion and overexpression mutants across 6 metabolic conditions
after growth on either an environment supplemented with all amino acids or an
amino acid limited environment. | identified a set of genes corresponding to
the respiration pathway, specifically the pyruvate dehydrogenase (PDH)
complex, whose loss of function increases fitness. This phenomenon is
involved in cancer pathogenesis and contributes to the Warburg effect. We

find that the beneficial growth effect of loss of PDH function is only present

Xii



under amino acid limited environments, which could suggest conditional
requirements for beneficial events in cancer.

| also found that the environmental history experienced by the cell
affects the process of adaptation to a novel environment and can lead to a
beneficial growth effect. Although this is a transient process, it is further
evidence for the role of epigenetic inheritance in determining evolutionary

outcome.
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Chapter 1: Introduction

Organisms are constantly exposed to new environments and must
adapt to each successive environment in order to survive. Short-term survival
strategies include regulation of gene expression to produce the necessary
proteins required for survival in a new environment' ™, Long-term and more
permanent strategies include accumulation and propagation of beneficial
mutations, a process known as adaptive evolution*®, Currently, not much
empirical evidence exists about beneficial mutations. However, understanding
how beneficial mutations manifest in the genome will not only provide insights
into the origin of biological mechanisms but also into key phenotypes of
medical relevance such as drug resistance in cancer and bacteria®’. To
understand this phenomenon, a promising approach would be to
systematically probe the entire genomic landscape and identify potential
drivers of adaptation.

Recent technological advances in next-generation sequencing (NGS)
have made it feasible to identify beneficial mutations in evolve and resequence
(E&R) experiments®®. E&R experiments use laboratory evolution to adapt
populations to a specific environment, followed by NGS to analyze the
resulting genetic changes. This approach can be used to uncover the
molecular determinants of adaptation. However, these experiments are
resource intensive—requiring many replicates of a single strain to achieve

sufficient sequence coverage to call a mutation, time consuming—Ilasting from



weeks to months, and expensive—requiring multiple reagents and sequencing
runs. Most E&R experiments are conducted in bacteria and yeast, in part,
because of their short generation time; performing the same experiment in
mammalian cells could take 10x longer due to the difference in generation
time. Experimental design and execution is not the only challenge in these
experiments; analysis of the resulting mutation profile to differentiate adaptive
from passenger mutations can also be challenging.

All of the studies to date performing E&R experiments have been
conducted in static environmental conditions®"". While the results of these
experiments provide deep insights into adaptive evolution they do not
accurately reflect changes that would occur in nature, following a succession
of different environmental conditions. Adding this degree of complexity to a
laboratory evolution experiment would further decrease the tractability of the
experiment.

On the other hand, genome-wide screening technology has existed for
over a decade and helped functionally annotate most genes by identifying
specific phenotypes, the most common ones being slow growth and cell
death'?. Genome-wide screens typically utilize a library of mutants, where
each mutant contains a single gene perturbation. The S. cerevisiae Deletion
Project lead to the creation of the Yeast Knockout (YKO) collection, the first
and only complete, systematically constructed deletion collection for any
organism™'. The YKO collection has been used in a wide array of genome-

wide phenotypic screens aimed at understanding biological functions, stress



response, and mechanism of drug action. Historically, the majority of these
screens have focused on characterizing deleterious genetic perturbations,
which demonstrate a relationship between a gene and survival in an
environment. There remains a lack of research focused on beneficial genetic
perturbations because of their rarity. It was also recently discovered that
beneficial genetic perturbations identified in genome-wide screens have a high
concordance with beneficial mutations identified in E&R experiments''. This
opens up the possibilities of taking advantage of the high-throughput, low-cost,
and easy-to-use nature of traditional screening methodologies to study

adaptive evolution.



Chapter 2. Framework to identify beneficial genetic perturbations

2.1 Introduction

The use of genome-wide screens has been paramount in systematically
identifying the genotype-to-phenotype relationship in model organisms
including bacteria, yeast, and humans. This has been made possible through
the utilization of genome-wide libraries, an experimentally tractable tool
constructed from systematically perturbing most genes in the genome''>®.
The quantitative readout of these experiments is an estimate of fitness, which
is the overall contribution to survival and reproduction. Fitness is estimated for
each mutant containing a perturbed gene during growth in a specific
environmental condition to identify the functional relationship between gene
and environment.

Genome-wide screens in S. Cerevisiae measuring fitness fall into three
main categories: (1) colony size measurement on solid media'’, (2) growth
rate estimation in liquid media''®, and (3) barcode counts after competitive

growth in liquid media®®?’

. The effect of the genetic perturbation is then
determined based on the fitness of the altered mutant relative to the entire
population. The major limitation of growth rate estimation in liquid media is the
difficulty to increase throughput. The most common plates used are 384-
density plates. Therefore, sixteen 384-density plates would be required to

screen the entire yeast genome at one replicate per gene on a single

condition. This method would not be feasible because one replicate will not



provide sufficient statistical power to detect significant changes and screening
multiple conditions would be extremely resource intensive. The highest density
plate available is 1536-density plates, however these plates are expensive due
to their intricate design. On the other hand, the development of NGS has
solved this problem and significantly increased the throughput of barcode-
sequencing based methods. However, the main pitfall with barcode-
sequencing is the competition between mutants, which could confound the
interpretation of the results.

Because most screens have pinned cells on solid media, bioinformatics
packages to analyze this data type have been extensively developed to
generate robust and reproducible measurements of fitness based on colony

Size17,22

. These efforts are reflected by the highest average cross-study
correlation for colony-size based fithess measurements compared to fithess
measurements in competitive and liquid growth, suggesting that colony-size
captures fitness at a higher resolution and with less noise'”.

In the majority of these studies the phenotypic readout is either slow
growth or cell death, leading to the identification of genes with a deleterious
effect when perturbed. These methods have resulted in the identification of
thousands of genotype-to-phenotype relationships. However, traditional
methods to identify beneficial genetic perturbations are less well developed.
Beneficial genetic perturbations are defined as mutants whose fitness is higher

than the wild-type (WT) strain. Few studies exist that have attempted to

measure fitness of these perturbations using traditional screening methods



(Table 1). However, some of these studies neglect to use a control strain
making it difficult to estimate the true null distribution of WT behavior resulting
in a higher false positive rate’"?*. Other studies potentially grew their cultures
for too many generations® increasing the likelihood of secondary mutations
based on an estimated mutation rate of ~10"%bp/generation®?®, a
phenomenon known to occur with the yeast deletion collection?”. All of the
previous studies have also measured fitness following competition in liquid
media, where cells are known to cooperate with one another?®%°. These cell-
cell interactions will likely lead to different resultant phenotypes compared to
isolated growth, which may explain the ~25-50% correlation between fitness
estimations in solid media and competition in liquid'”. The competitive and
cooperative interactions between strains could potentially confound the
identification of true beneficial genetic perturbations.

Here, we have developed an experimental and computational
framework to identify beneficial genetic perturbations while circumventing the
experimental limitations of previous attempts. We built a high-density colony
array using the genome-wide yeast knockout collection and a single wild-type
strain interspersed throughout the array in order to quantify the fithess effects

of beneficial genetic perturbations in S. Cerevisiae.



Table 1: Compilation of studies characterizing beneficial genetic
perturbations in S. cerevisiae. Few studies exist that have systematically
studied beneficial genetic perturbations. Most of the previous studies used a
liquid-based approach, while we used an agar-based approach.

References Species Ploidy Fitness Growth Mutants Cont_rol Conditions
measurement strain tested
Sliwa et al. S. Homozygous Serial Lo HO _
2005  Cerevisiae diploid dilution ~ lauid ~4000 4 hion  N=T
Delneri et S. - All _
al 2008 Cerevisiae Heterozygous Growthrate Liquid ~4000 mutants N=1
diploid
Qian et al. S. Homozygous Barcode- Lo HO _
2012 Cerevisiae diploid sequencing Liquid - ~4000 deletion N=6
Haploid,
Payenetal. S Homozygous _D2r%% iquig ~soo0 Al N=3
2016 Cerevisiae e sequencing mutants
diploid
This stud : Haploid Colonysize Agar ~8000 HO N=6
Y Cerevisiae P y 9 deletion

2.2 Results

2.2.1 Identification of beneficial genetic perturbations.

To identify beneficial genetic perturbations, we took advantage of the
haploid yeast knockout collection containing 4,976 nonessential gene
deletions™. We used YDL227C (HO) as the WT strain because it is the same
background strain as all other deletion mutants tested. The deletion of HO
prevents mating type switching and is known to have a neutral effect. We re-
arrayed all deletion mutants with the WT strain (N = 3072) in order to minimize
plate-to-plate variability when making mutant to WT comparisons (Figure 2.1).
The high number of WT replicates increases the resolution of the null
distribution and the power to detect changes in fitness. Previous high-

throughput screens lacked a WT reference strain and used the weighted



average of the population as the reference’>***". First, because the underlying
null distribution of wild-type behavior is unknown, it is challenging to
confidently classify a mutant as either beneficial or deleterious. Second,
because the proportion and effect size of deleterious mutants are larger than
that of beneficial mutants, the average fitness of the population is lower than
the fitness of the WT leading to false classifications of beneficial genetic
perturbations.

We measured the colony size of each strain, which was used to
estimate fithess. We compared each deletion mutant to the WT strain to
determine if its fitness significantly deviates from WT behavior and calculated
a Q-value to correct for multiple testing hypothesis. We were able to achieve
such a high number of replicates by utilizing 6144-density plating technology,
which increased the throughput of our screen 4-fold*?.

We measured the fitness of each deletion mutant on synthetic complete
media + galactose (SCG) and minimal media + galactose (SDG) to assess the
effects of two commonly used laboratory conditions on yeast growth. Each
deletion mutant is classified as beneficial (Q < 1%, fitness > 99.5% of WT
fitness), deleterious (Q < 1%, fitness < 0.5% of WT fitness), and neutral based
on an effect size threshold of the WT distribution and a Q-value cutoff. The Q-
value was used to control the false discovery rate at 1% under multiple testing
hypothesis. On SCG, 3% of nonessential gene deletions are beneficial, 18%
are deleterious, and 79% are neutral (Figure 2.2). On SDG, 9% of

nonessential gene deletions are beneficial, 20% are deleterious, and 71% are



neutral. The number of deleterious mutants are similar to those reported
previously'. The majority of deletions are neutral, followed by deleterious, and

the smallest proportion are beneficial.

Fitness estimations

12
Wild-type . Colony array Mutants
strain » =W
(N =3072) \ Colonysize § ®
quantification & e Compare to WT
— G —
4000 g 4
mutant / e =
strains 2‘ Beneficial
(N=4) ° ! i 15
itness by colony size

Figure 2.1: Experimental pipeline to identify beneficial genetic
perturbations. Wild-type (AHO) and 4,976 mutant strains are arrayed on the
same plate. Each plate is imaged followed by colony size quantification using
“The Colony Analyzer Toolkit” (MATLAB). Fitness is estimated from the
normalized colony size. A strain is classified as beneficial if its fitness is
significantly larger than wild-type fitness. The distribution of all mutants and
the wild-type strain is shown in SDG.
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| |Beneficial
B Deleterious
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04

Number of strains
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—
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Figure 2.2: Beneficial genetic perturbations are environment-dependent.
94 deletion mutants have a fitness significantly higher than WT in SCG, while
297 deletion mutants have a higher fitness in SDG relative to WT. Deletion of
the majority of genes in the genome result in neutral fithess effects.

2.2.2 Reproducibility of fitness estimations

The reliability of our fitness estimations is reflected by the high
Pearson’s correlation coefficient between technical replicates (r = 0.96; Figure
S$2.1A) and biological replicates (r = 0.97; Figure S$2.1B). Biological replicates
were completed 1-2 months apart and represent freshly grown cells starting
from the glycerol freezer stock. The similarity between Pearson’s correlation
for biological and technical replicates suggest our results are reproducible in

independent experiments.
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However, this does not directly reflect the reproducibility of our
identified beneficial mutants. To estimate reproducibility, we applied our
pipeline to two independent experiments in SDG and calculated the
significance of the overlap between the identified beneficial mutants in each
experiment. We found 297 and 232 beneficial mutants in each biological
replicate with 154 overlapping mutants. We found a statistically significant
overlap between the identified beneficial mutants using a hypergeometric test,
suggesting our results are reproducible (P = 9.51 x 10%; Figure 2.3A). We
also calculated a reproducibility rate of 41% by taking the ratio between
number of overlapping mutants and the number of unique mutants identified in
both experiments. To verify the significance in reproducibility, we calculated
the expected reproducibility between experiments based on random chance
by randomly sampling the number of identified beneficial deletions in each
experiment (N = 297 and N = 232) from the population of mutants with a
fitness greater than the median WT fitness and calculating the resulting
reproducibility rate (Figure 2.3B). The average expected overlap is ~7% while
the actual overlap of beneficial mutants is ~41%, verifying the reproducibility of
our identified mutants. Although the reproducibility may be slightly low, it is
statistically significant and greater than expected by chance. We chose to
narrow down the population of mutants to those with a fitness greater than the
median fitness of the WT strain to account for the inherent difference in

reproducibility between beneficial and deleterious mutants. Deleterious
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mutants have a reproducibility rate of ~64% and have a more significant

overlap (Figure S2.2).
SDG Replicate 1 SDG Replicate 2

eplicate eplicate 0.95¢
.. 027 Expected Actual
s
c
A 0.157 p < 0.0001
-
2
g 0.1
o
o
" 0.05/

0 1 L L I}
8 0 0.1 0.2 0.3 04 0.5

Reproducibility

143

Figure 2.3: Identified beneficial mutants are reproducible in independent
experiments on SDG. (A) Beneficial mutants are identified on SDG in two
independent experiments. The identified gene sets significantly overlap each
other based on a hypergeometric test (P = 9.04 x 10®"). Reproducibility is
calculated as the number of overlapping mutants between two sets over the
number of unique mutants. (B) The expected distribution is calculated by
randomly sampling 297 and 232 from mutants with fithess > median WT
fithess in each experiment followed by reproducibility calculation.

2.2.3 Comparison to related datasets.

To further understand the reproducibility of our identified beneficial
mutants, we compared our results to another study identifying beneficial
genetic perturbations using bar-seq based fitness estimations>3. We tested our
pipeline in an independent experiment on YPAD and detected 130 beneficial
mutants compared to 227 identified previously resulting in a small but
significant overlap of 11 (P = 0.02; Figure 2.4). The difference in identified
beneficial mutants could be attributed to the difference in background strains

tested in each experiment, haploid deletion strains vs homozygous diploid
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deletion strains. The correlation between experiments (r = 0.49; Figure S2.3)
is within the range of correlations (0.14 — 0.70) calculated previously between
different methods of fitness estimation using the homozygous diploid strain’.
However this signal is driven by the deleterious mutants (r = 0.45), while the
correlation between beneficial mutants is almost negligible (r = 0.05). Previous
experiments found haploid strains to evolve faster and have higher growth

rates than diploid strains®*>°

, Which could explain the larger range of positive
fitness effects in our experiment (Figure $2.3). Another explanation could be
due to the inherent differences between fithess estimations, competitive
growth in liquid media followed by bar-seq vs. growth on solid media followed
by colony size measurement. The competition between ~4000 mutants could
decrease the maximum fitness achievable by a single mutant whereas growth
on solid media is less affected by the growth of other mutants.

We applied the same analysis to the deleterious mutants and detected
667 mutants compared to 1270 identified previously resulting in a more
significant overlap of 436 (P = 7.10 x'®*, Figure S2.4). These results are
consistent with the difference in calculated reproducibility rates between
beneficial and deleterious mutants described above. The distribution of fitness
effects for deleterious mutants ranges from 0~0.9 compared to 1.05~1.5 for
beneficial mutants. This could suggest larger fithess effects produce more
reproducible phenotypes compared to smaller fitness effects, which are prone

to more fluctuations in fitness. Fluctuations could be more likely to occur under

weaker phenotypes because the selective pressure is not as strong, thus
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small changes in fitness will not have an immediate impact on the overall

survival of the cell.

YPAD Qian et al.

This study

97 11 186

0
=2

(@)
el

.1851 3878

Figure 2.4: Overlap with beneficial mutants identified in previous studies.
We identify 130 beneficial deletions vs. 227 in Qian et al. 2012 on YPAD. After
intersecting gene spaces, these numbers reduce to 108 and 197, respectively.
11 beneficial mutants are found in both datasets (P = 0.02, OR = 2.18).

2.2.4 Validation of identified beneficial genetic perturbations.

We randomly selected 59 beneficial candidates from SDG and
performed an independent experiment using a lower-throughput 1536-density
colony array to validate our results. To better estimate the wild-type
distribution, we included 5 pseudogene mutants, 14 randomly selected
mutants from the barFLEX collection® with their plasmids removed using 5-
fluoroorotic acid (5-FOA) along with the AHO. A pseudogene is a DNA
segment that is highly homologous with a functional gene but contains

mutations that prevents its expression®’. Therefore, deletion of these genes is
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expected to be neutral. The barFLEX collection contains overexpression
mutants using a pGAL-ORF-URA3 plasmid. Removal of these plasmids using
5-FOA will result in wild-type behavior. Because our pipeline uses one
biological replicate of WT, however with 3072 technical replicates, we may be
underestimating the variance of the true wild-type distribution. We included
these 19 biological replicates of strains exhibiting “wild-type” behavior in
addition to the AHO strain used in the screen to provide a better estimation of
the wild-type distribution.

We calculated the validation rate of the candidate beneficial genetic
perturbations as the fraction of candidates growing faster than WT over the set
of beneficial mutants tested in the validation. We repeated this analysis for the
deleterious and neutral mutants. We found that the strains identified as
beneficial in out screen are more likely to validate than deleterious or neutral
strains. However, when using the same effect size threshold in the validation
experiment (99.5% of WT), we calculated a ~18% validation rate (Figure
2.5A). Although this is fairly poor, when the effect size threshold is increased
from 3 standard deviations (~99.7% of WT) to 6 standard deviations, the
validation rate significantly increases from ~18% to ~78% (Figure 2.5B). One
explanation for this discrepancy is the variance of the wild-type distribution in
the validation experiment is significantly larger than that of the wild-type
distribution in the main experiment. Therefore, the effect size thresholds will be

different between the screen and the validation experiment. The co-
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occurrence of an increase in validation rate with an increase in effect size

threshold suggests that high effect size mutants display a true biological effect.

0.7r1 1
A Beneficial B >3SD
0.6 — Deleterious >4SD
= Neutral >5SD
—>6SD

o
w
‘

o

o
o
[N

Fraction validated in SDG
o o
i-N [4,]
Fraction validated in SDG
© ©
o (o]

o
iy

I

0 ‘ : 0 : ‘ :
80 85 90 95 100 80 85 90 95 100
Threshold in validation set (%) Threshold in validation set (%)

Figure 2.5: Validation rate of identified beneficial mutants in SDG.
Fraction validated is the fraction of mutants identified as beneficial in the
validation experiment over the fraction of beneficial mutants (identified in the
screen) tested in the validation set. (A) The fraction validated is highest for
beneficial mutants and there is a 3-4x enrichment between the beneficial and
neutral mutants. (B) Fraction validated of beneficial mutants when using
different effect size thresholds in the screen. Effect size thresholds range from
3-6 standard deviations above the mean WT fithess. We find a significantly
higher validation rate when the initial effect size threshold is higher.

2.3 Discussion

In order to create a platform to identify beneficial genetic perturbations,
we developed an experimental and computational framework for measuring
the fitness effects of beneficial mutants using a genome-wide colony array.
Our framework provides a high-throughput and cost-effective alternative to
E&R experiments for studying adaptive evolution. We demonstrate our
platform is able to detect true beneficial mutants through validation in an
independent experiment using a low-throughput colony assay. In the two

environmental conditions tested, we found 3-9% of deletions to provide a
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beneficial fithess effect. Our findings are in accordance with the widely held
view across multiple evolutionary theories that beneficial mutations are rare
and occur less frequently than neutral and deleterious mutations®®°.

Our framework can also be applicable to different systems such as cell
lines. The majority of studies in cell lines are based on negative selection and
synthetic lethality screens to identify drug targets*®*'. However, there remains
a fundamental question to be answered: how does cancer evolve? Cancer
evolves through driver mutations providing cancerous cells with an increased
proliferative ability compared to surrounding non-cancerous cells, resulting in
unabated proliferation and eventually tumorigenesis. The key challenge is the
identification of driver mutations because they are sparse and vary
significantly patient-to-patient. Current solutions involve computational
methods leveraging machine-learning algorithms and biological networks such
as network-based stratification*? to analyze data from The Cancer Genome
Atlas*®. We provide an alternative methodology to study cancer evolution,
through the identification of adaptive clones providing a significant positive
fitness effect under either drug-treated conditions or high-glucose
environments. Genome-wide CRISPR libraries have been developed

recently’'®

, Which can be utilized to screen cancer cell lines and identify the
set of deletions conferring the largest positive fitness effects. The identified
candidates could then become a list of potential driver mutations.

Chapter 2, in part is currently being prepared for submission for

publication of the material. Hsu, Brian; Medetgul-Ernar, Kate; Hines, Cameron;
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Michaca, Manuel; Regent, Nick; Carvunis, Anne; ldeker, Trey. The thesis

author was the primary investigator and author of this paper.

2.4 Supplementary figures

Table 2: List of media recipes.

Growth Media

Composition (1L)

'YPAD

10g yeast extract, 20g bacto peptone, 20g dextrose, 20g bacto agar, 120mg adenine

Synthetic complete + galactose (SCG)

1.7g yeast nitrogen base without amino acids and ammonium sulfate, 1g monosodium
glutamic acid, 2g SC dropout mix, 20g galactose

Synthetic complete + casamino acids +
galactose (SCCG)

1.7g yeast nitrogen base without amino acids and ammonium sulfate, 1g monosodium
glutamic acid, 2g SC dropout mix, 5g casamino acids, 20g galactose

Minimal media + galactose (SDG)

1.7g yeast nitrogen base without amino acids and ammonium sulfate, 1g monosodium
glutamic acid, 0.25g histidine, 0.25g uracil, 0.25g methionine, 1.25g leucine, 20g
galactose

Synthetic complete + galactose + raffinose
(SCGR)

1.7g yeast nitrogen base without amino acids and ammonium sulfate, 1g monosodium
glutamic acid, 2g SC dropout mix, 20g galactose, 10g raffinose

Synthetic complete + casamino acids +
galactose + raffinose (SCCGR)

1.7g yeast nitrogen base without amino acids and ammonium sulfate, 1g monosodium
glutamic acid, 2g SC dropout mix, 5g casamino acids, 20g galactose, 10g raffinose

Minimal media + galactose + raffinose
(SDGR)

1.7g yeast nitrogen base without amino acids and ammonium sulfate, 1g monosodium
glutamic acid, 0.25g histidine, 0.25g uracil, 0.25g methionine, 1.25g leucine, 20g
galactose, 109 raffinose

Minimal media + galactose (SDG_D)

1.7g yeast nitrogen base without amino acids and ammonium sulfate, 1g monosodium
glutamic acid, 0.07g histidine, 0.07g uracil, 0.07g methionine, 0.36g leucine, 20g
galactose

Minimal media + lysine + galactose (SDLG)

1.7g yeast nitrogen base without amino acids and ammonium sulfate, 1g monosodium
glutamic acid, 0.22g histidine, 0.22g uracil, 0.22g methionine, 0.22g lysine, 1.11g

leucine, 20g galactose
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Figure S2.1: Correlation of fitness estimates across replicates. (A) Fitness

estimates in SDG are highly correlated between technical replicates (r

0.967). Technical replicates are mutants from the same starting population
grown at the same time. (B) Fitness estimates in SDG are highly correlated
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between biological replicates (r = 0.976). Biological replicates were grown
fresh from glycerol stocks at different times (months apart).

SDG Replicate 1 SDG Replicate 2

148 174

Figure S2.2: Reproducibility of identified deleterious mutants in SDG.
Deleterious mutants are identified in independent biological replicates on
SDG. Identified deleterious mutants have a significant overlap (P = 3.41 x 10
124) and ~64% reproducibility.
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Figure S2.3: Correlation of fithess estimates using colony size vs. bar-
seq. Fitness estimates using colony size vs. bar-seq on YPAD are correlated
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(r = 0.48). Overall correlation is driven by the deleterious mutants (r = 0.45),
while there is no correlation in the beneficial mutants (r = 0.05).

YPAD
This study

Qian et al.

69

613 3878

Figure S2.4: Overlap with deleterious mutants identified in previous
studies. We identify 667 deleterious deletions vs. 1270 in Qian et al. 2012 on
YPAD. After intersecting gene spaces, these numbers reduce to 108 and 197,
respectively. 436 beneficial mutants are found in both datasets (P = 3.13 x 10
%4 'OR = 21.15).



Chapter 3. Genomic landscape of beneficial genetic perturbations

3.1 Introduction

Cell survival is dependent on the coordination of thousands of cellular
processes each regulated via a distinct subset of genes. Genes can interact
with each other at the DNA, RNA, and protein level. These interactions are
responsible for the majority of biological processes to sustain life. The
combinations of all of these interactions contributes to the overall phenotype of
the cell. Therefore, the relationship between genotype and phenotype is not a
simple one-to-one mapping between genes and phenotype. Over the past few
decades, our understanding of the genotype-phenotype relationship has
evolved to reflect this (Figure 3.1). Genes are known to affect two or more
distinct and seemingly unrelated traits to produce different phenotypes, an
effect known as pleiotropy>>***°. Thus, the same genotype may result in

t*°. The effects of these

different phenotypes depending on the environmen
genotype-environment interactions are then propagated along the underlying
biological network resulting in a complex phenotype®’.

However, the genotype of a cell can be modified through a vast array of
genetic perturbations ranging from point mutations and deletions/insertions to
copy number variations and gene duplications. Most perturbations can be
categorized as either loss-of-function (LOF), when a gene product has

reduced or no function, or gain-of-function (GOF), when an altered gene

product possesses a new molecular function or new pattern of gene

21



22

expression. Both LOF and GOF mutations can have a variety of effects on the
cell ranging from lethality to uncontrolled proliferation. For example, in cancer,
GOF mutations in TP53 can inhibit AMPK activation signaling causing
upregulation of anabolic processes and glycolytic potential promoting
oncogenic functions*®*°. LOF mutations in BRCA1/BRCAZ2 lead to impairment
in G1/S and G2/M cell cycle checkpoint activation as well as homologous
recombination mediated repair of double stranded breaks, which can lead to

tumorigenesis®®~2.

Cancerous cells harboring these mutations have an
increased proliferative ability allowing them to grow faster and outcompete
non-cancerous cells for nutrients. Therefore, it is also important to consider the
methods of perturbation (deletion and overexpression) when performing
systematic analysis of each gene in order to determine the full spectrum of the
genotype-phenotype relationship.

Yeast maintain a species-specific balance in energy production
between respiration and fermentation based on either aerobic or anaerobic
conditions. Respiration yields 36 ATP and various cofactors such as NADH
and FADH; through the Citric Acid cycle (TCA) and oxidative phosphorylation
This process is more energetically favorable than fermentation, which yields 2
ATP and NADH. Similar to other eukaryotes, some yeast species such as
Kluyveromyces lactis prefer respiration in aerobic environments with glucose
and fermentation in anaerobic environments®. However, other species such

as S. cerevisiae prefer fermentative metabolism even under aerobic conditions

and glucose availability, a phenomenon known as the “Crabtree effect”*. The
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Crabtree effect is mediated by glucose repression, which describes the
inducible repression of respiration when glucose is available leading to
fermentative metabolism. However, this does not completely eliminate the
capacity for respiratory metabolism. As opposed to the “Warburg effect”, which
describes the irreversible switch to fermentative metabolism due to genetic
mutations®>*°. Thus, the balance in energy production determines the fate of
pyruvate, which is the precursor for three major pathways: 1.
Gluconeogenesis, 2. Ethanol fermentation, 3. Respiration.

The Warburg effect is a metabolic condition and a defining feature of
certain types of cancer cells and has been extensively studied. It provides a
growth advantage allowing cancer cells to outgrow normal cells. However, its
exact benefits for cell growth and survival are not yet resolved. We
hypothesized that the growth advantage of the Warburg effect could be
quantified in a systematic screen for beneficial mutants with repressed
respiratory metabolism in S. cerevisiae. We applied our experimental and
computational framework to classify ~8000 engineered Saccharomyces
cerevisiae deletion and overexpression mutants across 6 metabolic conditions
including amino acid limiting environments. We then applied hierarchical
clustering on the identified beneficial mutants to understand whether specific
biological modules play a role in the Warburg effect and the contribution of

each module.
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Figure 3.1: Fundamental systems level genotype-phenotype relationship.
One theory for the genotype-phenotype relationship is based upon the
interaction between genotype, environment, and biological network to produce
a phenotype. The phenotype then forms a feedback loop to regulate the
genotype for survival.

3.2 Results
3.2.1 Identification of beneficial genetic perturbations across multiple
environmental conditions.

We identified beneficial deletion and overexpression mutants from the
yeast knockout collection' and barFLEX overexpression collection®® across 6
different environmental conditions consisting of various combinations of
carbon and nitrogen sources listed in Table 2. We identified >4% of deletions
to be beneficial and >15% of deletions to be deleterious in each of the
conditions tested (Figure 3.2). For overexpression mutants, <1% are
beneficial and ~15% on average are deleterious across all conditions tested.
Overexpression mutants have larger experimental variability between
conditions tested, which could be because these six experiments were

completed at 3 separate times (SCG/SDG/SDGR, SCCG, SCCGR/SDGR).
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The first striking result is the >20-fold difference between the fraction of
beneficial deletion mutants compared to beneficial overexpression mutants
(Figure 3.2). Overexpression mutants are constructed using a GAL1/10
promoter to drive expression of each gene on a URA3-based CEN plasmid
pBY011°¢. GAL1/10 promoters are induced approximately 1000-fold in the
presence of galactose and strongly repressed in glucose® . Therefore, there
are two explanations that could explain the discrepancy: 1. Overexpression of
gene products at high concentrations is mostly either neutral or deleterious, 2.
Cells use transcriptional regulation, post-transcriptional modifications, and
other regulatory mechanisms to completely reduce the expression of each
gene product producing no significant phenotype compared to wild-type. The
latter explanation is not likely because we find a 43% overlap (p < 0.0001)
between deleterious mutants identified and the set of 769 toxic genes
identified in an independent overexpression experiment using the GAL1/10
promoter confirming the overexpression system is functional®®.

The second result is that there is a significantly larger fraction of
beneficial deletions identified in SDG and SDGR (N = 425, 453) compared to
other conditions tested (N ~ 170) (Figure 3.2A). The increased fraction of
beneficial mutants identified in SDG and SDGR is accompanied by a two-fold
increase in maximum fitness effect size (Figure 3.3). SDG contains the same
total amount of supplemented nutrients as SCG, however SDG is only
supplemented with histidine, leucine, uracil, and methionine while SCG

contains all amino acids and uracil at a lower concentration. Growth on amino
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acid limited environments induces the general amino acid control (GAAC)
mechanism via activation of GCN4, a transcriptional activator regulating genes

%980 Deletion of GCN4 decreases

expressed during amino acid starvation
fitness to 0.26 in SDG and maintains constant fitness at 1.04 in SCG
confirming activation of GCN4 in SDG (Figure 3.4). Cells are in different
cellular states in SDG compared to SCG; the transcriptome is rewired to
upregulate and downregulate the necessary genes for survival in each
environment. All of the environments supplemented with amino acids (SCG,
SCCG, SCGR, SCCGR) result in similar number of beneficial mutants (N ~
170), while the amino acid limited environments (SDG, SDGR) result in similar
number of beneficial mutants (N ~ 430) (Figure 3.2A). This could suggest that
a non-random relationship exists between the number of beneficial mutants

identified and the resulting cellular state based on the severity of the

environmental stress experienced.
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Figure 3.2: Genome-wide identification of beneficial mutants in six
environmental conditions. Each bar represents the total number of deletion
and overexpression mutants identified as either beneficial or deleterious
across six different environmental conditions using the methods described in
Chapter 1. The same six conditions were tested for the deletion and
overexpression mutants.
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Figure 3.3: Fitness range for identified beneficial deletion mutants. The
fitness effects of identified beneficial deletion mutants under an amino acid
limiting environment (SDG and SDGR) is between 1 and 1.6, while the range
for conditions with all amino acids supplemented is between 1 and 1.25.
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Figure 3.4: Deletion of GCN4 under amino acid limiting environments is
deleterious. GCN4 is activated under amino acid limiting environments (SDG
and SDGR). Therefore, the deletion of GCN4 causes a significant deleterious
fitness effect (P = 5.4 x 107%).
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3.2.2 Clustering fitness profiles of beneficial genetic perturbations

We selected the beneficial genetic perturbations with the strongest
effect size in each condition using a more stringent filter (Q<0.01, ES>99.9%
of WT) for further analysis (N = 289). We correlated the fitness profiles, i.e. the
fithess of the deletion or overexpression of a gene across all conditions tested
(N = 12), of the selected mutants against each other to generate a correlation
matrix. The correlation matrix was hierarchical clustered and the resulting heat
map is shown in (Figure 3.5).

Functionally related genes with similar fithess profiles tend to cluster

together®"®

. We performed functional enrichment analysis to identify if
clusters of beneficial genes enrich for gene ontology (GO) terms®. We found
three significant clusters representing genes involved in respiration (P <
0.001), phosphatase activity (P = 0.026), and amino acid metabolic processes

(P = 0.035). These results provide further evidence that beneficial mutations

are not random and specific biological modules are targeted.
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Figure 3.5: Correlation matrix for top beneficial mutants across all
conditions. The correlation matrix represents the correlations between fithess
profiles for 289 beneficial genetic perturbations across 12 conditions (6
environmental conditions for the deletion and overexpression). The resulting
matrix was hierarchically clustered followed by GO enrichment.

3.2.3 Characterization of respiration genes related to the Warburg effect
We selected the cluster of genes (N = 30) enriched for respiration for
further analysis because it has the highest average fitness effect in a single
condition. The fitness profiles of these 30 mutants was hierarchically clustered
and each resulting cluster was subject to enrichment analysis (Figure 3.6).
We identified two significant biological modules: the pyruvate dehydrogenase
complex (P < 0.001) and TORC signaling (P = 0.023). We also identified
several genes related to mitochondria. The deletion of these 30 genes

provides a beneficial advantage under amino acid limiting environments (SDG,
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SDGR, and SDLGR), while having no significant effect in conditions
supplemented with amino acids (SCG, SCCG, SCGR, SCCGR).

Pyruvate is metabolized via three major pathways: 1. Gluconeogenesis,
2. Ethanol fermentation, 3. Respiration (Figure 3.7). Each pathway will
generate a different amount of ATP, directly affecting the overall fitness of the
cell. The pyruvate dehydrogenase complex (PDH) catalyzes the direct
oxidative decarboxylation of pyruvate to acetyl-CoA, the precursor for the TCA
cycle and oxidative phosphorylation. The increase in fitness is only detected
when the PDH complex is disrupted on an amino acid limiting environment.
One explanation is that the flux of pyruvate is forced down the fermentation
pathway under amino acid starvation increasing immediate ATP production,
while less control is exerted on the flux of pyruvate when not starved resulting
in the metabolism of pyruvate via other pathways. In order to understand the
molecular mechanism for this increase in fitness, we need to identify the flux of
pyruvate in each pathway.

In the presence of glucose, S. cerevisiae exhibit an effect called
glucose repression, where cells repress the expression of a larger number of
genes that are required for the metabolism of alternate carbon sources
including: respiratory, gluconeogenic, and galactose genes®. Under these
conditions, the degree of respiration was measured to be zero, suggesting
exclusive fermentation on glucose®. However, growth on galactose leads to
simultaneous respiration and fermentation due to weaker repression of

respiratory and gluconeogenic genes compared to glucose®®. Respiration
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activity was measured to be roughly half of a fully respiratory metabolism®*.

During growth on 2% galactose, the flux of pyruvate down the

gluconeogenesis pathway should be minimal due to the repression of
gluconeogenesis genes®®. Deletion of phosphoenolpyruvate carboxykinase
(PCK1), a required enzyme in gluconeogenesis, has no significant effect on
fithess in SCG and SDG supporting this statement (Figure 3.8). Therefore, the
majority of pyruvate is processed via fermentation and respiration.
Under sufficient carbon availability yeast prefer fermentative metabolism,
utilizing alcohol dehydrogenase (ADH1) to reduce acetylaldehyde to ethanol.
Deletion of ADH1 decreases fitness by ~50%, most likely because cells are
forced to produce ATP via respiration (Figure 3.8). Respiration leads to
increased ATP production compared to fermentation, however this process
requires more proteins and the duration of a single cycle is significantly longer.
Thus, respiration leads to lower growth rates but higher biomass vyield in
steady state conditions®”.

Deletion of genes in the PDH complex (PDA1, PDB1, LAT1) increases
fitness by 30% only under amino acid limiting environments; no effect is
detected in SCG (Figure 3.8). This should increase the conversion of pyruvate
to acetylaldehyde for two reasons: 1. Gluconeogenesis genes are
downregulated, 2. Direct oxidative decarboxylation of pyruvate to acetyl-CoA
via PDH is blocked. Acetylaldehyde can either be processed by alcohol
dehydrogenase (ADH) vyielding 2 ATP, NAD®, and ethanol or by

acetylaldehyde dehydrogenase (ALD) yielding acetate, which can then be
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converted to acetyl-CoA via acetyl-CoA synthetase. The latter process is
termed the pyruvate dehydrogenase bypass pathway, which occurs in the
cytosol and yields acetyl-CoA by the action of the following enzymes: pyruvte
decarboxylase (PDC), cytosolic acetalaldehyde dehydrogenase (ADH), and
acetyl-CoA synthetase (ACS)®’. This is an ATP-dependent process and thus
reduces the net ATP yield, compared to the oxidative decarboxylation of
pyruvate via PDH which does not require ATP hydrolysis. The majority of
acetyl-CoA is synthesized via PDH because this is the more energetically
favorable process. However it has been shown that PDH deficient strains
maintain a fully respiratory metabolism through the pyruvate dehydrogenase
bypass pathway®’.

The differential fithess increase in our PDH deficient strain (APDA1)
under SDG compared to SCG is most likely because the amino acid starvation
response inhibits a member of the pyruvate dehydrogenase bypass pathway
(Figure 3.7). Therefore, when PDH is disrupted under SDG, pyruvate is
mainly processed via fermentation increasing net ATP yield and thus growth
rate. However, when PDH is disrupted under SCG, we believe that pyruvate is
processed via fermentation and the pyruvate dehydrogenase bypass pathway
yielding lower net ATP production and thus lower growth rate. This hypothesis
is supported by the equal fitness effects between the AALD1 mutants under

SCG and SDG (Figure 3.8).



34

YMR207C
YNL229C

YOR317W Pyruvate
YBRo26C dehydrogenase
YER178W complex
YNLO71W

YBR248C

YGL255W

YFRO40W

YPRO24W
YLR238W
YBL104C TO R_C
YDR128W signaling
YFLOOTW
YPL18OW

.YDL1 82w

14
1.3

12
1.1
1
09
08FH |
07
06

0.5

YML035C
YFLO18C

YHRO67W

YMRO75C-A

YPL154C

Yorszzc  Mitochondria-

YNLO96C related
YMRO55C

YGLOB7W
YMR225C
YILoooW

YKLO16C
YILo72W
YLLOOBW-A

KO SDG
KO SCGR
KO SCG
KO sCCG
OE SCCG
OE SCG
OE SCGR
OE SDG
OE SDGR

& S

a
8
e ¢

KO SDG_D
KO SCCGR
OE SCCGR

Figure 3.6: Clustering the fithess profiles of identified respiration genes
reveals enrichment in the pyruvate dehydrogenase complex and TORC
signaling. The identified respiration genes (N = 30) are hierarchically
clustered, revealing significant enrichment for two biological modules: pyruvate
dehydrogenase complex (P < 0.001) and TORC signaling (P = 0.023).
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Figure 3.7: The cellular fate of pyruvate is determined by three major
pathways: gluconeogenesis, fermentation, and respiration. Pyruvate is
metabolized in each of three pathways via different enzymes: pyruvate
carboxylase (PYC), pyruvate decarboxylase (PDC), and pyruvate
dehydrogenase (PDH), respectively. The main products of these pathways are
glucose-6-phosphate, ethanol/NAD*/2 ATP, and NAD'/32 ATP, respectively.
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Figure 3.8: Deletion of key fermentative and respiratory enzymes reveals
the cellular energy state. Deletion of PCK1, a key enzyme in
gluconeogenesis, results in no significant change in fithess suggesting
gluconeogenesis is not highly active. Deletion of ADH1, an enzyme required
for the reduction of acetaldehyde to ethanol, results in significant decrease in
fithess supporting high fermentative metabolism. Deletion of ALD1, an enzyme
involved in the pyruvate dehydrogenase bypass pathway, results in slightly
increased fithess suggesting small flux of pyruvate down this pathway.
Deletion of PDA1, E1 alpha subunit of the pyruvate dehydrogenase complex
(PDH), results in increased fitness only after SDG.

3.3 Discussion

We applied our framework to identify beneficial mutants across a range
of metabolic conditions and different types of genetic perturbations. We found
that positive fitness effects are highly dependent on the environment and type
of genetic perturbations. There are similar numbers of deleterious strains
between deletion and overexpression strains, however beneficial strains are
significantly underrepresented in overexpression versus deletion strains. This
is most likely because overexpression of gene products at ~1000x dosage is

either neutral or deleterious.



37

Beneficial mutants may tell us more about the adaptive potential of the
cell, or the ability to adapt to a novel environment. As mentioned previously,
we now have two metrics to describe the adaptive potential of a cellular state:
the fraction of beneficial mutants and the range of fitness effects of beneficial
mutants. The fraction of beneficial mutants can be thought of as the proportion
of the genome which when perturbed provides a beneficial effect, in essence
the probability that a random perturbation will provide a beneficial effect.
Therefore, the increase in this fraction could signify an increase in the adaptive
potential of the cell. In some cases, the difference in fraction of beneficial
mutants is also accompanied by an increase in the range of positive fitness
effects (Figure 3.3). The range of positive fitness effects could also be related
to the adaptive potential because perturbations with stronger positive effects
fixate in a population in a shorter period of time, and thus increase the rate of
adaptation. We calculated a larger fraction of beneficial mutants as well as a
stronger positive fitness range in the amino acid starvation environments
compared to environments supplemented with all amino acids. This could
suggest that the adaptive potential under stress is higher than in the absence
of stress because cells experience less selective pressure to survive in a
neutral environment compared to an environmental stress.

We are also able to recover specific biological modules out of our
identified beneficial mutants suggesting that at least a portion of beneficial
mutations that occur in evolution are not random. These mutations provide a

beneficial effect via a specific molecular mechanism related to the
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environment, as evidenced by the increase in fitness from the deletion of
respiration genes, specifically related to PDH activity, under galactose. Similar
molecular phenotypes occur in cancer, where the repression of PDH activity is
a key event known to provide a growth advantage in non-small cell lung and
head and neck squamous cell carcinomas through its contribution to the
Warburg effect®®®. S. cerevisiae has been discussed to be an effective
system to study cancer due to similarity in energy metabolism, highlighted by a
repression of oxidative metabolism and preference for aerobic glycolysis®. In
our systematic screen, we were able to detect and quantify the fitness effect of
loss of PDH activity in S. cerevisiae, which is known to have a similar
metabolic state to cancer. The loss of genes involved in the PDH complex
resulted in the largest fitness increase in our screen, which could signify the
evolutionary advantage to repress these genes in cancer as opposed to the
repression of other respiratory pathways.

Most of the time, genes representing the PDH complex are repressed in
cancer instead of mutated resulting in non-functional PDH activity. This could
be because it is not advantageous to lose PDH function for pleiotropic
reasons. The tumor micro-environment is dynamic and in some cases the loss
of PDH activity may be detrimental; for instance, the loss of PDH function in
yeast under glucose-limited environments or environments with only non-
fermentable carbon sources such as lactate results in significantly inhibited

growth®®®”. We were able to observe a similar pleiotropic effect in the APDA1
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mutant, where loss of PDH function resulted in a fitness increase in SDG but
no effect in SCG.

The origin of the Warburg effect is not fully understood, however our
current understanding is based on an increase in glucose uptake/glycolysis
and/or down-regulation of mitochondrial metabolism. The repression of PDH
function is a molecular mechanism known to contribute to this effect. However,
our results could suggest that it is only advantageous to repress PDH function
under amino acid starvation conditions. One possible theory for the origin of
the Warburg effect is that cells in regions of tissue with low nutrient availability
actively downregulate PDH function in order to survive.

Our methods may vyield insights into cancer evolution and the
mechanisms it utilizes to gain growth advantages under specific environments.
Therefore, screening multiple environments for beneficial mutants may paint a
better picture of the cellular states necessary for specific beneficial events to
manifest. The fact that we are able to quantify the effect of a molecular
phenotype known to provide a beneficial effect in cancer is evidence that we
can use this method to quantify the effects of other mechanisms in cancer. We
may then be able to determine which mechanism provides the strongest
beneficial effect in cancer, resulting in potentially better drug targets.

Chapter 3, in part is currently being prepared for submission for
publication of the material. Hsu, Brian; Medetgul-Ernar, Kate; Hines, Cameron;
Michaca, Manuel; Regent, Nick; Carvunis, Anne; ldeker, Trey. The thesis

author was the primary investigator and author of this paper.



Chapter 4. Environmental history affects evolutionary outcome

4.1 Introduction

Organisms are constantly exposed to a wide range of environments. In
order to survive they must adapt to these environmental changes. This can be
achieved through a variety of methods including regulation of gene
expression? and/or mutations. The fundamental question is what contributes to
this rate of adaptation and whether or not populations will be able to adapt
rapidly enough to avoid extinction. Classic evolutionary models estimate the
adaptation rate based on the allelic variation and Mendelian inheritance’.
However, there has been recent evidence suggesting that environmentally
generated variation can also influence the adaptation rate as well. Empirical
studies have shown that these environmentally generated effects are
transmitted across generations via nongenetic inheritance mechanisms.
Nongenetic inheritance includes transmission of epigenetic variation (i.e. DNA-
methylation patterns, RNA), parental glandular secretions, nutrients,
hormones, and behaviors to offspring”. These patterns have been previously
observed in transgenerational studies’*".

To further understand the mechanisms of epigenetic inheritance, other
studies have performed systematic analysis of S. cerevisiae in pretreatment
experiments. They found that yeast use information from their environment to

prepare for future threats, a phenomenon known as acquired stress

reistance’. This allows cells exposed to a mild dose of one stress to survive

40
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an otherwise lethal dose of a second stress and has been observed in diverse
organisms ranging from bacteria to humans®”. These studies identify genes
involved in acquired stress resistance by looking for slow growth/lethal
phenotypes in strains following pretreatment. Thus, we have been able to
thoroughly characterize the transcriptional program involved in the stress
response in S. cerevisiae, also known as the environmental stress response
(ESR)".

Although we know the past environment experienced by the cell affects
its growth on the subsequent environment, it is still unknown whether this
effect can cause cells to grow better. Therefore, we systematically tested
whether the environmental history experienced by the cell could provide a
beneficial effect for growth in subsequent conditions. We pretreated ~8000
engineered Saccharomyces cerevisiae deletion and overexpression mutants
on either an amino acid limiting environment or an environment supplemented
with all amino acids and then grew all mutants on 6 different environmental
conditions. We then compared the fithess on each of the 6 conditions after
growth on the pretreatment conditions to determine whether the environmental
history can selectively provide a beneficial effect.

4.2 Results
4.2.1 Identification of past-dependent mutants.

We estimated fitness in each of the 6 environmental conditions listed in

Table 2 after either an amino acid limiting environment or an environment

supplemented with all amino acids. We calculated the fitness differential for
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each mutant (N = 4) by taking the difference between fithess estimates after
each pretreatment condition. We applied the same calculation to the WT strain
(N = 3072) to estimate the null distribution. We then compared the fitness
differential of each strain to the null distribution using a Mann Whitney U test to
determine if there is a significant difference between the underlying
distributions, followed by multiple testing hypothesis correction using the Q-
value. The threshold used to identify significant hits was a fitness differential
above two standard deviations of the null distribution (Figure 4.1). We named
these our “past-dependent” mutants. To identify past-dependent beneficial
mutants we took our set of past-dependent mutants and and filtered out
candidates that were beneficial only after one pretreatment condition but not
the other (Figure 4.3A).

We correlated fithess estimations on SCCG after different pretreatment
conditions and after the same pretreatment condition and found that fitness
estimations are highly correlated (r = 0.97) after the same pretreatment
condition and less strongly correlated (r = 0.82) after different pretreatment
conditions. This supports that the environmental history does affect fithess on
subsequent environments (Figure 4.2).

To check the accuracy of our pipeline in identifying past-dependent
beneficial mutants, we applied this analysis to mutants growing on SCCG after
the same pretreatment condition and different pretreatment conditions. The
analysis of mutants growing on SCCG after the same pretreatment conditions

served as a negative control. We identify 48 past-dependent beneficial



43

mutants, 43 after SCG and 5 after SDG (Figure 4.3B). In our negative control,
we detect 0 past-dependent beneficial mutants.

We also applied this analysis to the SDGR condition and identified 60
past-dependent mutants, 53 after SCG and 7 after SDG (Figure 4.3B). In both
of the conditions tested, we find significantly more past-dependent beneficial
mutants after pretreatment in an environment supplemented with all amino

acids compared to an amino acid limiting environment.
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Figure 4.1: Experimental pipeline to identify past-dependent beneficial
mutants. Deletion and overexpression mutants are pretreated on either an
environment supplemented with all amino acids (SCG) or an amino acid
limiting environment (SDG) and subsequently grown on a new environmental
condition. Beneficial mutants are identified in each condition based on
methods described previously. The fitness differential is calculated by
calculating the difference between fitness effects on a condition after each
past. The null distribution is estimated by calculating the fitness differential
between the wild-type strains. Beneficial past-dependent mutants are
identified as beneficial only after one past and also having significant fitness
differential.
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Figure 4.2: Fitness estimations are less correlated after different past
environments. (A) Fitness estimations on SCCG after growth on SCG are
highly correlated (same past environment) (r = 0.97). (B) Fitness estimations
on SCCG after growth on SCG or SDG are less correlated (different past
environment) (r = 0.82).
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Figure 4.3: Identification of past-dependent beneficial deletion mutants.
For a beneficial mutant to be considered past-dependent, it must have a
fitness differential >97.5% or <2.5% of the null distribution (fithess differential
of the WT strain) and be beneficial only after one past. (A) Beneficial and
deleterious mutants are classified as past-dependent in a positive (different
pasts) and negative (same pasts) control experiment. (B) Past-dependence is
determined for beneficial mutants across six environmental conditions.
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4.2.2 Validation of past-dependent beneficial mutants.

We tested all of our past-dependent beneficial mutants in SCCG and
SDGR in an independent low-throughput 1536-density colony assay
experiment. We applied a similar pipeline as before, however now we only use
an effect size threshold of two standard deviations (Figure 4.4). We validated
2 past-dependent mutants in SCCG and 3 past-dependent mutants in SDGR.
This low validation rate could be due to a few reasons: 1. Increase in variance
of the wild-type distribution, 2. Inherent differences in experimental
methodologies. As mentioned previously, the variance of the WT distribution in
the validation experiment is larger than that of the genome-wide screen. This
causes the effect size threshold used previously to significantly underestimate
the same effect size threshold in the validation experiment, i.e. two standard
deviations of the old WT distribution is significantly smaller than two standard
deviations of the new WT distribution. Therefore, we pick up more false
positives due to this difference in the underlying WT distribution. In higher
density plates, individual colonies are also closer together and may exhibit
competitive effects in terms of nutrient availability and space limitations. This
may lead to cross-colony spatial interactions, which are non-existent at lower-
density formats. However, the 2-3 past-dependent beneficial mutants we
validated in each condition have the highest effect size and fitness differential
in the genome-wide screen suggesting that our problem lies in the effect size

threshold.
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Figure 4.4: Validation of past-dependent beneficial mutants. \We randomly
selected 40 and 53 beneficial past-dependent mutants in SCCG and SDGR,
respectively, for a follow-up validation experiment. We applied a similar
pipeline as in (Figure 4.3A), however this time we only used an effect size
threshold of two standard deviations. We validated 2 and 3 beneficial past-
dependent mutants in SCCG and SDGR, respectively.

4.2.3 Characterization of past-dependent beneficial mutants.

To determine whether the fitness effects of past-dependent beneficial
mutants are transient, we grew each mutant on SCCG and SDGR for 8 days,
the equivalent of 4 pin-transfers. For the three beneficial past-dependent
mutants (YDR128W, YFLOO1W, YKO016C) on SDGR, we see that initially on
pin 1 there is a significant differential fitness effect. However, this effect

diminishes over time and completely disappears during pin 2 (Figure 4.5).
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This suggests that any increase in fithess is only temporary and after
sustained growth in the novel environment the memory of the environmental
history will eventually disappear, as shown by the decrease in differential
fithess from Pin 2 to Pin 4 (Figure 4.5).

To understand the expected behavior of beneficial mutants, we plotted
the fitness over time of 9 beneficial past-independent mutants (beneficial after
either SCG or SDG) in SDGR (Figure 4.6). In each of the 9 beneficial past-
independent mutants, the fitness differential is almost non-existent on all 4
pins. There is a significant difference between the fitness patterns for the
beneficial past-dependent and past-independent mutants. The fitness of the
beneficial past-dependent mutants also fluctuates more than their
counterparts, which could suggest an important role in regulation. YDR138W
(MTCS) is a Seh1-associated complex which dynamically associates with the
vacuolar membrane, regulates TORC1 signaling, and is involved in
intracellular trafficking, amino acid biogenesis, and response to nitrogen
starvation®. YFLOO1W (DEG1) is a tRNA pseudouridine synthase which
introduces pseudouridines at position 38 or 39 in tRNA”". YKL016C (ATP7)
encodes for subunit d of the stator stalk of mitochondrial F1IFO ATP synthase.
Based on their functions, MTC5 and DEG1 may be involved with the
mechanism to sense the current nutrient and translational capacity,
respectively, of the cell. Therefore, disruption of these genes would lead to the

fluctuations in fitness we observe. Initially, ATP7 seems unrelated to the other
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two genes as being involved in regulation. However, this could suggest a new
regulatory role for ATP7.

Out of the 9 beneficial past-dependent mutants, three of them
(YER178W, YMR207C, YNLO71W) interestingly have similar fithess patterns
over time that are different than the other six (Figure 4.6). These mutants
were identified previously as part of the pyruvate dehydrogenase complex in
Chapter 2. This could provide evidence that similar molecular phenotypes
result in similar fitness estimates. The fitness of each of these three mutants
also increases over time from pin 1 to pin 4 whereas the fitness of the other six
remains constant in the same period of time, which could mean they are

involved in a molecular mechanism with a temporal effect.

YDR128W YFLOO1W YKLO16C
12 12 12
After SCG
1.15 1.15 1.15 —o— After SDG
1.1 1.1 1.1
3
2105 1.05 1.05
E
1 1 1
0.95 0.95 0.95
0.9 0.9 0.9
1 2 3 4 1 2 3 4 1 2 3 4

Figure 4.5: Dynamics of past-dependent beneficial mutants. The fitness
estimates of the 3 validated beneficial past-dependent mutants on SDGR over
4 pin-transfers after either SCG or SDG are plotted. The differential fithess
observed during pin 1 decreases over time and disappears after pin 2. All 3
mutants appear to approach the same steady-state fitness value in SDGR.
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Figure 4.6: Dynamics of past-independent beneficial mutants. The fitness
estimates of 9 validated beneficial past-independent mutants on SDGR over 4
pin-transfers after either SCG or SDG are plotted. The fitness differentials of
these past-independent mutants is almost non-existent across all 4 pins.
YER178W, YMR207C, YNLO71W all exhibit similar dynamic fitness profiles;
this set of genes is involved in the pyruvate dehydrogenase complex.

4.3 Discussion

We systematically tested whether the environmental history
experienced by the cell can provide a beneficial effect to the current cellular
state. We found that this phenomenon occurs in certain mutants, which have a
memory of their environmental history and thus provides a growth advantage
in the subsequent condition. This is supported by the differential fithess effects
for a single mutant following pretreatment on either SCG or SDG. However,

this effect is less pervasive and is only seen in <1% of beneficial mutants.
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One possible explanation for this phenomenon could be the temporal
aspect of transcriptional reprogramming that occurs in a novel environment.
Each environment has an associated optimal transcriptional state, or the level
of expression of each gene which will result in ideal cellular growth. When
cells transition to a novel environment they must reprogram their
transcriptome, which was optimized for growth in the old environment. The
deletion of a gene could potentially alter the reprogramming process. If a gene
product required for growth in an environment is missing, the cell will have to
compensate for this loss. This could be through the upregulation of another
pathway or the activation of a dormant pathway. However, the compensation
for one pathway could either be sufficient or cause a chain-effect requiring
modification of other pathways. The first option would result in a shorter time
for reprogramming, while the second option would result in a longer period for
reprogramming. Another possibility is that the gene product that is lost is a key
regulator gene, which controls multiple pathways. Therefore, when this gene is
deleted the cell must compensate for all of the processes/functions which that
gene was controlled. Thus, increasing the amount of pathways which must be
compensated will likely increase the amount of time for transcriptional
reprogramming to occur. The second option seems more probable and could
explain the temporal effects of fithess over time for the beneficial past-
dependent genes.

This phenomenon is not apparent for the majority of mutants and thus

these cells are able to reprogram their transcriptome with ease. However, for
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2-3 beneficial past-dependent mutants they’re fitness significantly fluctuates,
which could signify the active effort of the cell to reach the optimal
transcriptional state.

Our results show that before pin 2, beneficial past-dependent mutants
will have a growth advantage depending on their environmental history.
Therefore, there is a period of time when a strain with the same genotype will
have a selective advantage other strains of the same genotype after a specific
environment. During this period, a single strain could potentially take over the
population or an adaptive event may occur. This period is only around ~2 days
for S. cerevisiae. However, for other organisms with longer generation times
this effect may last for days, months, or even years. During this longer time
span, several changes could occur such as a mutation which could change the
evolutionary outcome between two identical strains with the same genotype
but different environmental histories.

Chapter 4, in part is currently being prepared for submission for
publication of the material. Hsu, Brian; Medetgul-Ernar, Kate; Hines, Cameron;
Michaca, Manuel; Regent, Nick; Carvunis, Anne; ldeker, Trey. The thesis

author was the primary investigator and author of this paper.



Chapter 5: Discussion

Beneficial mutations are paramount in the process of evolution.
However, the quantitative nature of these events remains elusive. There have
been very few studies regarding beneficial mutations, especially quantifying
their effects and how they contribute to the rate of adaptation. We developed a
method to study beneficial mutants and found that the fraction of beneficial
mutants and range of fithess effects is dependent on the environmental
condition. These two metrics could potentially be used to estimate the rate of
adaptation and positive selective pressure. This could be used to quantify the
rate of adaptation for cancer cells in different environmental conditions to
determine if a specific environment is causing cancer cells to evolve at a faster
rate. These metrics could also be compared to currently estimated rates of
beneficial mutations to understand whether they agree and can recapitulate
the same information. If in agreement, our method would provide a
significantly easier alternative to estimate the rate of beneficial mutations
compared to the traditional and costly method via E&R experiments.

We found that the deletion of genes encoding the pyruvate
dehydrogenase complex, a molecular phenotype also observed in cancer,
causes the largest increase in fitness. By quantifying the fitness effects, we
may be able to calculate the significance of each molecular mechanism to the
overall survival of the cancer cell. Thus, if we can detect the molecular

changes that will be selected for and occur from an evolutionary perspective in
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cancer, we may be able to gain a better understanding of cancer progression
and potentially slow down the rate of development.

Ultimately, we have developed a platform to study beneficial mutations and
adaptive evolution. For the past few decades, empirical research in this field
has lagged due to the lack of technological tools. However, we hope to provide
the necessary tools for others to utilize and advance the current understanding
in this field. Deepening our understanding of beneficial mutations will definitely

lead to great strides in understanding the evolution of cancer.



Chapter 6: Methods
Yeast strains and media

All deletion mutant strains used are based on the commercially
available yeast knockout (YKO) strain collection (Thermo Fisher Scientific Inc.,
Waltham/MA) with kanamycin as a deletion marker, the construction which
has been described previously’>. The YKO collection contains deletion of a
nonessential gene per haploid strain (BY4741). The overexpression mutants
strains used are based on the barFLEX collection®®. All overexpression
mutants were grown on the same exact conditions as the deletion strains
except URA was dropped out in each media. Yeast strains were grown in
various medias listed in Table 2. Amino acid dropout mix was made as

described previously’®.

Genome-wide screen

Each genome-wide screen started from a library of mutants maintained
on a set of 1536-density plates. This set of plates is pinned on to either SCG
or SDG for two consecutive pins. On the 3™ pinning, the plates are pinned on

to one of the medias listed in Table 2.

Fitness estimation

Agar-to-agar yeast transfers were conducted using a Singer RoToR
robotic plate handler (Singer Instrument Co. Ltd). Each agar plate was imaged
at multiple time points using a commercially available SLR camera (18Mpixel

Rebel T3i, Canon USA Inc., Melville/ NY) with an 18-55 mm zoom lens.

54



55

Images were normalized, spatially corrected, and quantified using a set of
custom algorithms (aka “The Colony Analyzer Toolkit”) written in Matlab
(MathWorks Inc., Natick/MA)'"*?,
Identification of beneficial genetic perturbations

We used the AHO (YDL227C) mutant as the WT reference strain to
estimate the relative fitness of every deletion strain in the genome-wide
screen. We calculated the significance between each deletion strain and the
WT reference using the Mann-Whitney U test. To correct for multiple testing
hypothesis, each p-value was converted to a Q-value’. Each deletion strain
was classified as beneficial, deleterious, and neutral based on a Q-value

threshold (Q < 0.01) and a fitness threshold (5% and 95% of WT).

Calculation of reproducibility rate

The reproducibility rate of beneficial mutants between two independent
experiments were calculated as follows: subsample the mutants to include
only those with a fitness greater than the median of the WT fitness for each
experiment, randomly sample the number of identified beneficial mutants from
each subsampled set, find the overlap between the two sets, find the unique
number of mutants from the union of both sets, divide the number of

overlapping mutants by the number of unique mutants.
Hierarchical clustering
Hierarchical clustering analysis was performed in Matlab using the

clustergram function. Values in each column were standardized to reduce
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noise between experiments. Distance metric used is Euclidean distance and
the distance between clusters was calculated using the average distance.
Validation of beneficial genetic perturbations

Validation experiments were performed in a 1536-density colony array
with N = 40 replicates per mutant. 288 mutants were randomly selected for
follow up validation. 20 control strains were used to estimate the wild-type
distribution: 14 randomly selected mutants from the barFLEX collection®® with
their plasmids removed following 5-fluoroorotic acid (5-FOA) treatment, 5
pseudogene strains (YLLO16W, YLLO17W, YFLO56C YCLO75W, YIL170W),
and the AHO (YDL227C). All mutant and control strains were randomly
arrayed onto a single plate using the Tecan Freedom EVO100. All mutants
were grown on either SCG or SDG for two consecutive pin-transfers. All
mutants were then pinned on to SCCG and SDGR and grown for 4 pin-
transfers over a span of 8 days. Fithess was estimated every 48 hours.
Mutants in the experiment were considered as validated if their fitness was

beyond larger than two standard deviations than the wild-type distribution.
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