
Lawrence Berkeley National Laboratory
Recent Work

Title
Spectral min-max cut for graph partitioning and data clustering

Permalink
https://escholarship.org/uc/item/0g18c027

Authors
Ding, Chris
He, Xiaofeng
Zha, Hongyuan
et al.

Publication Date
2001-05-07

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0g18c027
https://escholarship.org/uc/item/0g18c027#author
https://escholarship.org
http://www.cdlib.org/

LBNL-47848

ERNEST
BERKELEY

ORLANDO LAWRENCE
NATIONAL LABORATORY

Spectral Min-Max Cut for Graph
Partitioning and Data Clustering

Chris Ding, Xiaofeng He, Hongyuan Zha,
Ming Gu, and Horst Simon

National Energy Research
Scientific Computing Division

May 2001

.... •,.
~ . ~ ~ ~· ·. ·: .,

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBNL-47848

Spectral Min-Max Cut for Graph Partitioning and Data Clustering

Chris Ding, a Xiaofeng He, a,b Hongyuan Zha, b
Ming Gu, c and Horst Simona

aNational Energy Research Scientific Computing Division
Ernest Orlando Lawrence Berkeley National Laboratory

University of California ·
Berkeley, CA 94 720

bDepartment of Computer Science and Engineering
Pennsylvania State University

University Park, PA 16802

cDepartment of Mathematics
University of California, Berkeley

Berkeley, CA 94720

May 2001

This work was supported in part by the Director, Office of Science, Office of Laboratory Policy and
Infrastructure, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098, and by National
Science Foundation Grant No. CCR-9001986.

Spectral Min-max Cut for Graph Partitioning and Data Clustering

Chris Dinga, Xiaofeng Hea,b, Hongyuan Zhab, Ming Guc, Horst Simona

a NERSC Division, Lawrence Berkeley National Laboratory
University of California, Berkeley, CA 94720

b Department of Computer Science and Engineering
Pennsylvania State University, University Park, PA 16802

c Department of Mathematics
University of California, Berkeley, CA 94720

{ chqding,hdsimon }@lbl.gov, { xhe,zha }@cse. psu.edu, mgu@math. berkeley.edu

Abst:ract

An important application of graph partitioning is data
clustering using a graph model - the pairwise similari­
ties between all data objects form a weighted graph ad­
jacency matrix that contains all necessary information
for clustering. Here we propose a new algorithm for
graph partition with an objective function that follows
the min-:-max clustering principle. The relaxed version
of the optimization of the min-max cut objective func­
tion leads to the Fiedler vector in spectral graph par­
tition. The min-max cut algorithm is tested on news­
group datasets and is found to outperform other current
popular partitioning/ clustering methods. The linkage­
based refinements in the algorithm further improve the
quality of Clustering substantially. We also demonstrate
that the linearized search order based on linkage differ­
ential is better than that based on the Fiedler vector,
providing another effective partition method.

1 Introduction

Graph partitioning has very broad range of applications.
At one end are the near-regular graphs, the mesh of a
2D surface of an airfoil or a 3D engine cylinder. Par­
titioning such a mesh into subdomains for distributed
memory processors is a common task. Several popular
software packages for this partitioning task are devel­
oped [19, 18]. At another end are the graphs generated
from the World Wide Web. These graphs are highly ir­
regular or random, and node degrees vary dramatically.
Partitioning the web graph is useful to automatically

1

identify topics from the retrieved webpages for a user
query [17].

Here we emphasize graph partition as data cluster­
ing using a graph model. Given the attributes (coordi­
nates) of the data points in a dataset and the similarity
or affinity metric between any two points, the symmet­
ric matrix containing similarities between all pairs of
points forms a weighted adjacency matrix (weight ma­
trix) of an undirected graph. Thus the data clustering
problem becomes a graph partition problem.

The data clustering point of view of graph partition­
ing helps to define more appropriate criteria for parti­
tioning. In the simplest MIN cut algorithm, a connected
graph is partitioned into two subgraphs with the cutsize
(cut set) minimized. However, MINcut often results in
a skewed cut, i.e., a very small subgraph is cut away
[5, 4]. Various constraints are introduced, such as the
ratio cut [5, 16], the normalized cut [26], etc. to cir­
cumvent the problem. However, skewed cuts still occur
when the overlaps between clusters are large.

In this paper, we propose a new graph partition
method based on the min-max clustering principle: the
similarity or association between two sub graphs (cut
set) is minimized, while the similarity or association
within each sub graph (summation of similarity between
all pairs of nodes within a subgraph) is maximized.
These two requirements can be satisfied simultaneously
with a simple min-max cut function. We present anum­
ber of theoretical analyses of min-max cut, and show
that min-max cut always leads to more balanced cuts
than the ratio cut and the normalized cut.

Like m~ny other methods, the optimal solution to

the graph partition problem is NP-complete because of
the combinatoric nature of the problem. An effective
approach is to consider continuous relaxation of such
problems. An example is to compute a principal di­
rection/ component (principal eigenvector of the weight
matrix), and find a cut point along this direction so that
all points on one side belong to one subgraph, and all
points on the other side belong to another subgraph.
This establishes a linear search order on which the min­
max cut can be efficiently applied to search the optimal
cut.

The relaxed version of the min-max cut function op­
timization leads to a generalized eigenvalue problem.
The second lowest eigenvector, also called the Fiedler
vector, provides a linear search order. Thus the min­
max cut algorithm (we call it Mcut algorithm) provides
both a well-defined objective and a clear procedure to
search for the optimal solution. We tested the algorithm
on a number of newsgroup text datasets and compared
it with several current methods. The Mcut algorithm
always outperforms them.

We introduce a linkage difference metric that effec­
tively identifies nodes near the cut. We find many nodes
sitting on the wrong side of the optimai cutpoint, i.e.,
they have higher linkage to the other cluster than the
one they are currently assigned to. Swapping them to
the correct side, the objective function is reduced and
the clustering accuracy is improved substantially.

It is generally believed that the Fiedler order pro­
vides the best known linearized order to search for the
optimal cut [19, 18, 26]. Here we find a linkage differ­
ential order which provides a better ordination than the
Fiedler order. Searching based on linkage differential or­
der consistently outperforms those based on the Fiedler
order. The linkage differential ordering can start from
any existing clustering results and iteratively improve
the ordering and therefore the clustering.

2 Min-max Cut

Given a weighted graph G = G(E, V) with node set V,
edge set E and weight matrix W, we wish to partition it
into two subgraphs A, B using the min-max clustering
principle - minimize similarity between clusters and
maximize similarity within a cluster. This is a sound
principle well established in statistics, data mining and
machine learning areas. The similarity or association

2

between two subgraphs A, B is the cutsize

cut(A, B) = W(A, B) (1)

where

W(A, B)= L Wuv, W(A) := W(A, A). (2)
uEA,vEB

Similarity or association within a cluster (subgraph A)
is the sum of all edge weights within A: W(A). Note
that the weight Wuu on a node u is included in W(A),
which is important for some applications. Thus the min­
max clustering principle requires we minimize cut(A, B)
while maximizing W(A) and W(B) at the same time.
All these requirements can be simultaneously satisfied
by the following objective function,

M
_ cut(A, B) cut(A, B)

cut - W(A) + W(B) . (3)

We call this new objective function the min-max cut
function or Mcut for short. Mcut is inspired by previ­
ous works on spectral graph partition [24, 16, 26] (see
section 3). It turns out that the continuous relaxation
of Eq.(3) must be solved in a way that is different from
existing graph partition relaxations [24, 16, 26]. Tore­
veal the solution, we reorder the rows and columns of
W conformally with subgraphs A and B such that

(4)

Let x and y be vectors conformally partitioned with A
and B, i.e., x = (1·· ·1,0 · · ·O)T, y = (0· · ·0, 1· · ·1)T.
It follows from (1) that

cut(A, B)

W(A)

xT (D- W)x = yT (D- W)y, (5)

xT Wx, W(B) = yT Wy.

Hence the objective function (3) can be rewritten as

M
xT(D-W)x yT(D-W)y

cut = + "---'-;;;-::c::----'-'-
xTWx yTWy (6)

Observe that in Eq.(6), Mcut is invariant under changes

of llxll2 and IIYII2, and

Taking these relations into account, we obtain a useful
lower bound on (3) in Theorem 1 below. Observe that

the problem Eq.(6) can be relaxed into the following
optimization problem

mm
XT (I- W) X yT (I- W) y

- + -xTWx yTWy
(7)

subject to llxll2 = IIYII2 = 1, xT y = 0, xT Wx >
0, YT Wy > 0, where w = n-112 w n-112. The con­
ditions that xT W x > 0 and yT W y > 0 are neces­
sary since W in general is an indefinite matrix. Let the
largest 2 eigenvalues of W be >.1, >.2. >.1 = 1 by con­
struction. We have the following (proof omitted).
Theorem 1. Assume that >.1 + >.2 > 0. Let vectors x
and y solve problem Eq.(7). Choose fJ to be any col­

umn orthogonal matrix such that Q = (x, y, fJ) is an

n x n orthogonal matrix. Then

where a= (>.1 + >.2)/2, 111 = l>.1 - >.21 /2.

It follows from Theorem 1 that both ratios of (7) are
equal at the optimal solution:

XT (I- W) X YT (I- W) y

arid the optimal value is Mcut = 4/(>.1 + >.2)- 2.

Since Eq.(7) is a continuous relaxation of (3), the
fact that the two terms in (7) are equal at optimal so­
lution suggests that the two terms of (3) should also be
rather "close" to each other, implying W(A) should be
"close" to W(B). Hence the resulting clusters tend to
have similar weights and are thus well balanced. This
fact makes Mcut a much desired objective function for
data clustering. See Sections 4 and 7 for more discus­
sions on cluster balancing.

2.1 Fiedler linear search order

The solution to partition problem can be represented
by an indicator vector q, where th~ nodal value of q on
node u is qu = {a, -b}, depending on u E A or B.
Finding the optimal partition is NP-complete. A well­
known and effective solution is to first compute a linear
search order and then find a cut point along this index
order that minimizing Mcut objective.

Theorem 1 implies that the solution vectors x, y

must lie in the eigenspace of W. The first eigenvec­
tor z1 = D112 e, e = (1, ···,If with the largest eigen­
value >.1 = 1 does not match q. The second eigenvector

3

Z2 of W satisfies zr Z1 = 0 and has positive and nega­
tive elements, therefore is a good approximation of q.
Equivalently, we may directly show that

minMcut(A,B) =min JN(~B\12 => minJN(A,B)
q q 1- JN ,B q

where

Relaxing qu to real number in [-1, 1], the solution for
minimizing Rayleigh quotient JN(q) is given by

(D- W)q = (Dq, (9)

subject to qT e = 0. The solution to this generalized
eigenvalue problem is the second eigenvector q 2 , which
is also called the Fiedler vector. and the corresponing
eigenvalue (2 is called the Fiedler value. Sorting the
Fiedler vector provides the desired linear search order.
Furthermore, we obtain a lower bound for the Mcut
objective,

minMcut(A, B) 2:: (2
/

q . 1- (2 2
(10)

3 Related work on spectral graph
partition

Spectral graph partitioning is based on the properties
of eigenvectors of the Laplacian matrix L = D - W,
first developed by Donath and Hoffman [9] and Fiedler
[13, 14], and recently populated by the work of Pothen,
Simon and Liu [24]. The objective of the partitioning is
to minimize the cut size J(A, B) = cut(A, B) with the
requirement that two subgraphs have the same number
of nodes: IAI = IBI. Using indicator variable Xu, Xu =
{1, -1} depending on u E A orB, the cutsize is

t(A B)
_ '"' (xu- Xv) 2 W: _ xT(D- W)x

cu ' - ~ 4 uv - 2 '
euvEE

(11)
Relax Xu from { 1, -1} to continuous value in [-1, 1],
we can solve the eigensystem

(D- W)x == >.x. (12)

Since the trivial x1 = e is associated with >. 1 = 0, the
second eigenvector x 2 , the Fiedler vector, is the solu­
tion.

Hagen and Kahng [16] remove the requirement lA I=
IBI and show that the Fiedler vector provides a good
linear search oerder to the ratio cut (Rcut) partitioning
criteria[5]

R
_ cut(A, B) cut(A, B)

cut - IAI + IBI . (13)

The use of generalized eigensystem from Eq.(12), to
Eq.(9) has been studied by a number of authors [10,
6, 26]. Chung [6] especially emphasizes the advantage
of using normalized Laplacian matrix which leads to
Eq.(9). Shi and Malik [26] propose the normalized cut,

N
cut(A, B) cut(A, B)

cut = + ---'--c,...-:--'-

deg(A) deg(B)
(14)

and show that Ncut can be reduced to Ncut(A, B) =
JN(q) in Eq.(8). Therefore, Ncut uses the same linear
search order based on q2 as Mcut objective. Further­
more, we obtain a lower bound for the Ncut objective,

minNcut(A, B) 2: (2.
q

(15)

Here Rcut, Ncut and Mcut objective functions are
first prescribed by motivating considerations and then
the linear order of the Fiedler vector of (normalized)
Laplacian matrix is argued to be the appropriate search
order (by relaxing discrete indicator variables). It is im­
portant to note that the same objective functions can be
automatically obtained as the eigenvalues of the Fiedler
vector using a perturbation analysis on the (normalized)
Laplacian matrix [7]. This further strengthens the con­
nection between objective function and the Fiedler vec­
tor.

We emphasize that Mcut is close to Ncut when the
cut size is small. The degree of sub graph A can be split
into the weight of the subgraph A and cut(A, B):

deg(A) = L L Wuv = W(A) + cut(A, B) (16)
uEAvEG

Thus, Ncut can be written as

N cut(A, B) cut(A, B)
1 cut= W(A) +cut(A, B)+ W(B) +cut(A, B). (7)

When cut(A, B) (overlap between two clusters) is small,
Mcut is close to Ncut . If cut(A, B) is not small, we ex­
pect some substantial differences in the resulting sub­
graphs. The large overlap cases are more interesting:
if clusters are well separated, any method can easily
identify them correctly.

4

Beside spectral partitioning methods, other recent
partitioning methods seek to minimize the sum of sub­
graph diameters, see [8] or k-center problem [1] for ex­
amples. There are other clustering methods that use
singular value decompositions, for example [11]. For
another view on segmentation problems, see [21].

4 Random Graph Model

Perhaps the most important feature of Mcut method is
that it tends to produce balanced cut, i.e., the result­
ing clusters (subgraphs) has similar sizes. Here we use
the random graph model [3, 5] to illustrate this point.
Suppose we have a uniformly distributed random graph
with n nodes. For this random graph, there is a proba­
bility p that any two nodes are connected with an edge.
We consider the four partition objective functions, the

_traditional MIN cut, Rcut, Ncut and Mcut. We have the
following
Theorem 2. For random graphs, MIN cut favors highly
skewed cuts, i.e., very uneven sizes. Mcut favors bal­
anced cut, i.e., both subgraphs have the sarrie sizes.
Rcut and Ncut show no preferences.
Proof. We compute the object functions for the parti­
tion of G into A and B. Note that the number of edges
between A and Bare piAIIBI on average. We have

MINcut(A, B)= PIAIIBI

For Rcut, we have

PIAIIBI PIAIIBI
Rcut(A, B) = IAI + IBI = p(IAI + IBI) = np.

For N cut, since all nodes have the same degree (n - 1) p,

PIAIIBI PIAIIBI
Ncut(A, B)= PIAI(n- 1) + PIBI(n- 1) = n/(n- 1).

For Mcut, we have

Mcut(A, B) = PIAIIBI piAIIBI
PIAI(IAI- 1) + PIBI(IBI- 1)

IBI IAI
IAI- 1 + IBI - 1

We now minimize these objectives. Clearly, MINcut
favors IAI = n - 1 and IBI = 1 or 1!11 = n - 1 and
IAI = 1, both are skewed cuts. Minimizing Mcut(A, B),
we obtain a balanced cut: IAI = IBI, a highly desirable
property for clustering. Rcut and N cut objectives have
no size dependency and no size preference, which also
implies possible unstable results. This completes the
proof.

5 Mcut algorithm

The algorithm for partitioning a graph into two sub­
graphs becomes the following.

1. Compute the Fiedler vector from Eq.(9). Sort
nodal values to obtain the Fiedler order.

2. Search for the optimal cut point corresponding to
the lowest Mcut based on the Fiedler order.

3. Do linkage-based refinements (see section 8).

The computation of the Fiedler vector can be quickly
done via the Lanczos method [23]. A fast software pack­
age for this calculation, LANSO, is available online
(http:/ jwww.nersc.gov/~kewujplanso.html). The Lanc­
zos iteration has computational complexity ofO(IEI +
lVI).

Searching for minimum Mcut along the Fiedler order
. can be done efficiently by noticing that given a calcu­

lated W(A, B), calculating W(A+u, B-u) can be done
as W(A+u,B-u) = W(A,B)+W(u,B-u)-W(u,A),
which is order O(IVI) at most. One may also compute
Mcut at equally-spaced points to reduce computation.
We discussed steps (1) and (2) in some detail. Step (3)
will be discussed in section 8.

6 Experiments

Document clustering has been popular in analyzing text
information. Here we perform experiments on news­
group articles in 20 newsgroups. We focus on three
datasets, each has two newsgroups:

1/2: alt.atheism/comp.graphics
10/11: rec.sport.baseball/rec.sport.hockey
18/19: talk.politics.mideast/talk.politics.misc

(The newsgroup dataset together with the bow toolkit
for processing is available online[22]).

Word-document matrix X is first constructed. 2000
words are selected according to the mutual information
between words and documents

I(w) = LP(w, d)log2 (p(w, d)fp(w)p(d)]
d

where w represents a word and d represent a docu­
ment. Words are stemmed using [22]. Standard tf. idf
scheme for term weighting is used and standard cosine

5

similarity between two documents d1, d2 sim(d1, d2) =
d1 · d2/lddld2l is used. When each document, column
of X, is normalized to 1 using L2 norm, document­
document similarities are calculated as w = xT X. w
is interpreted as the weight/affinity matrix of the undi­
rected graph. From this similarity matrix, we perform
the clustering as explained above.

For comparison purpose, we also consider three other
clustering methods: the ratio cut [5, 16], normalized cut
[26] (see section 3) and the principle direction divisive
partitioning (PDDP) [2]. PDDP is based on the idea
of principle component analysis (PCA) applied to the
vector-space model on X. First X is centered, i.e., the
average of each row (a word) is subtracted. Then the
first principle component is computed. The loadings of
the documents (the projection of each document on the
principle axis) form a 1-dim linear search order. This
provides a heuristic very similar to the linear search or­
der provided by the Fiedler vector. Instead of searching
through to find a minimum based on some objective
function, PDDP simply cut data into two parts at the
center of mass.

To increase statistics, we perform these two-cluster
experiments in a way similar to cross-validation. We di­
vide one newsgroup A randomly into K1 subgroups and
the other newsgroup B randomly into K2 subgroups.
Then one of the I< 1 subgroups of A is mixed with one
of the I<2 subgroups of B to produce a dataset G. The
graph partition methods are run on this dataset G to
produce two clusters. Since the true label of each news
article is known, we use accuracy, percentage of news ar­
ticles correctly clustered, as a measure of success. This
is repeated for all [(1[(2 pairs between A and B, and
the accuracy is averaged. In this way, every news arti­
cles is used the same number of times. The mean and
standard deviation of accuracy are listed.

In Table 1, the clustering results are listed for bal­
anced cases, i.e., both subgroups have about 200 news
articles. Mcut performs about the same as Ncut for
newsgroups 1-2, where the cluster overlap is small. Mcut
performs substantially better than Ncut for newsgroups
10-11 and newsgroups 18-19, where the cluster overlaps
are large. Mcut performs slightly better than PDDP.
Rcut always performs the worst among the 4 methods
and will not be studied further.

In Table 2, the results are listed for unbalanced
cases, i.e., one subgroup has about 300 news articles
and another subgroup has about 200. This is generally

a harder problem due to the unbalanced prior distribu­
tions. In this case, both Mcut and N cut perform rea­
sonably well, no clear deterioration is seen, while the
performance of PDDP clearly deteriorated. This indi­
cates the strength of Mcut method using graph model.
Mcut consistently performs better than Ncut for cases
where the cluster overlap is large.

Dataset
NG1/NG2

NG10/NG11
NG18/NG19

Mcut Ncut Rcut PDDP
97.2±1.1 97.2±0.8 63.2±16.2 96.4±1.2

79.5±11.0 74.4±20.4 54.9±2.5 89.1±4.7
83.6±2.5 57.5±0.9 53.6±3.1 71.9±5.4

Table 1: Accuracy (%) of clustering experiments using
Mcut, Rcut, Ncut and PDDP. Each test set G is a mix­
tu~e of 400 news articles, 200 from each newsgroup.

Dataset
NG1/NG2

NG10/NG11
NG18/NG19

Mcut
97.6 ± 0.8%
85.7 ± 8.3%
78.8 ± 4.5%

Ncut
97.2± 0.8%

73.8± 16.6%
65.7± 0.5%

PDDP
90.6 ± 2.1%
87.4 .± 2.6%
59.6 ± 2.4%

Table 2: Accuracy of clustering experiments using
Mcut, Ncut and PDDP. Each test set G is a mixture
of 300 news articles from one newsgroup and 200 news
articles from the other newsgroup.

7 Skew.ed cut

We further study the reasons that Mcut consistently
outperforms N cut in large overlap cases. The most im­
portant reason is that Ncut often cuts out a very small
set, i.e., a skewed cut. We examine several cases and
one specific case is shown in Figure 1. The cut points

. for Mcut and Ncut and relevant quantity are listed in
Table 3. We see that Ncut has two pronounced val­
leys, and produces a skewe.d cut. while Mcut has very
flat valley and gives balanced cuts. Further examina­
tion shows that in both cases, the cutsizes obtained in
N cut are equal or bigger than the self-similarity within
a cluster as listed in Table 3. For example, in the case

in Figure 1, the Ncut produces a cutsize of 262.7, much
larger than the self-similarity W(B, B)= 169. In these
cases, clearly the N cut objective [see Eq .(17)] is not ap­
propriate. In the Mcut objective, the cutsize is absent in

the denominators; this provides a balanced cut. These
case studies provide some insights to the graph partition

6

methods.

~~:::: .J
-0.05 0 50 100 150 200 250 300 350 400

l~f':: : : ;:]
o.sL-----'-------'---'-------'-------'------"'-----'---_J

0 50 100 150 200 250 300 350 400

~::c . . : . . : : J
0 50 100 150 200 250 300 350 400

Sorted Nodes

Figure 1: Top: Nodal values of sorted Fiedler vec­
tor. Middle: Ncut values as the cut point moves from
icut = 1, 2, ... n. Bottom: Mcut values. A dataset from
NG18/NG19 in Table 1.

Method
Ncut
Mcut

Zcut

364
141

cut(A, B)
262.7

1026.6

W(A,A)
5312.6
1488.9

W(B,B)
169.0

2464.7

Table 3: Cut point, cutsize, within cluster similarities
for the case in Figure 1.

Prompted by these case studies, here we provide fur­
ther analysis and derive general conditions under which
a skewed cut will occur. Consider the balanced cases
where W(A) ::::: W(B). Let

cut(A, B)= f · (W), (W) = ~(W(A) + W(B)),

where f > 0 is the average fraction of cut relative to
within cluster associations.

In the case when the partition is optimal, A and B
are exactly the partitioning result. The corresponding
Ncut value is

cut(A, B) cut(A, B) 2/
Ncuta = + ::::: --

W(A) +cut(A, B) W(B) +cut(A, B) 1 + f
(18)

For a skewed partition A1, B1, we have W(A!) ~ W(Bl),
and therefore cut(A1, B1) ~ W(B1). The correspond­
ing Ncut values is

N
cut(A1,B1)

cut1 :::::: () () . W A1 +cut A1, B1
(19)

Using Ncut, a skewed or incorrect cut will happen if
Ncut1 < Ncuto. Using Eqs.(18, 19), this condition is
satisfied if

Ncut :

We can repeat the same analysis using Mcut and cal­
culating Mcuto and Mcut1. The condition for a skewed
cut using Mcut is Mcutr < Mcut0 , which is

Mcut:

For large overlap case, say, f = 1/2, the conditions for
possible skewed cut are:

Ncut: W(A 1) > cut(A1 , Bl)/2

Mcut : W(Ar) > cut(A1 , B1)

The relevant quantity is listed in Table 4. For datasets
newsgroups 10-11, and newsgroups 18-19, the condition
for skewed Ncut is satisfied most of the time, leading
to many skewed cuts and therefore lower clustering ac­
curacy in Tables 1,2. For t.he same datasets, condition
for skewed Mcut is not satisfied most of time, leading
to more correct cuts and therefore higher clustering ac­
curacy.

Dataset
NG1/NG2
NG10/NG11
NG18/NG19

cut(A,B)
549.4
772.8

1049.5

W(A,A)
1766.4
1372.8
2093.9

W(B,B)
1412.5
1581.0
1665.5

f
0.346
0.523
0.558

Table 4: Average values of cut(A,B), W(A,A), W(B,B)
and the fraction in three datasets using Mcut.

8 Linkage-based refinements

The heuristic linear search order provided by the Fiedler
vector is generally a good heuristic, as the results shown
above. Nevertheless, it may not necessarily be the per­
fect one. Here we explore this point and find an ef­
fective refinement method which substantially improves
the quality of graph partitioning.

7

The linear search order provided by sorting the Fiedler
vector q implies that nodes on one side of the cut point
must belong to one cluster: if q... 2: qv 2: qw where
u, v, w are nodes, then the linear search will not allow
the situation that u, w belong to one cluster and v be­
longs to the other cluster. Such a strict order is not
necessarily followed by the nodes near the cut. In fact,
in large overlap cases, we expect some nodes could be
moved to the other side of the cut while lowering the
overall objective function.

How to identify those nodes near the cut? For this
purpose, we define linkage £ as a closeness or similarity
measure between two sub graphs (clusters):

£(A, B)= W(A, B)/IAIIBI

here I AI, IBI are for normalization purpose so that £(A, B)
is insensitive to cluster sizes (this is motivated by the
average linkage in hierarchical agglomerative cluster­
ing). For a single node u, its linkage to subgraph A is
£(A, u) = W(A, u)jjAj. Now we can identify the nodes
near the cut. If a node u is well inside a cluster, u will
have a large linkage with the cluster, and a small linkage
with the other cluster. If u is near the cut, its linkages
with both clusters should be close. Therefore, we define
the linkage difference

~£(u) = £(u, A)- £(u, B). (20)

A node with small ~.e should be near the cut and is a
possible candidate to be moved to the other cluster.

In Figure 2, we show linkage difference ~.e for all
nodes. The vertical line is the cut point. It is interesting
to observe that not only many nodes have small~£, but
quite a number of nodes whose ~£ have the wrong signs
(e.g., ~l(u) < 0 if u E A, or, ~l(v) > 0 if v E B). For
example, node #62 has a relatively large negative ~£.
This implies node #62 has a larger linkage to cluster
B even though it is located in cluster A (left of the
cutpoint). Indeed, if we move riode #62 to cluster B,
the objective function is reduced. Therefore we find a
better solution for the graph partition problem (based
on the Mcut objective function) than the one obtained
by the linear search on the Fiedler vector.

After moving node #62 to cluster B, we try to move
another node with negative ~£ from cluster A to clus­
ter B depending on whether the objective function is
lowered. In fact, we move all nodes in cluster A with
negative ~£to cluster B if the objective function is low-

l)j
I

Cii

X 10--3
8r----.~--.----.----~--------~----r----

~o~---~L----1~00----1~so----2~oo----~2~----~3oo----~~Lo __ ~4oo
Sorted Nodes

Figure 2: Linkage difference of all nodes. The vertical
line indicates the cutpoint using Mcut. Nodes on the
left forms cluster A and nodes on the right forms cluster
B.

ered. Similarly we move all nodes in cluster B with pos­
itive .D.£ to cluster A. This procedure of swapping nodes
with wrong !::..1! signs to the opposite cluster is called the
"linkage-based swap". It is implemented by sorting the
array s(u)t::..l!(u) [s(u) = -1 if u E A and s(u) = 1 if
u E B) in decreasing order to provide a priority list and
then moving the nodes, one by one. The greedy move
starts from the top of the list to the last node u where
s(u)t::..l!(u) ?: 0. This swap reduces the objective func­
tion and increases the partitioning quality. In Table 5,
the effects on clustering accuracy due to the swap are
listed. In all cases, the accuracy increases. Note that in
the large overlap cases, NG9/NG10, NG18/NG19, the
accuracy increase about 10% over the Mcut without re­
finement. This represents our first refinement over the
spectral Mcut results.

If s(u)!::..1!(u) < 0 but close to 0, node u is the correct
cluster, although it is close to the cut. Thus we select
the smallest 5% of the nodes with s(u)t::..l!(u) < 0 as the
candidates, and move those which reduce Mcut objec­
tive to the other cluster. This is done in both cluster
A and B, and implemented by chosing the top 5% of
remaining nodes (after the swap) from the priority list.
We call these procedure "linkage-based move". Again,
these moves reduce Mcut objective a"ud therefore im­
prove the solution. In Table 5, their effects on improv-

8

ing clustering accuracy are shown. Adding together,
the linkage bassed refinements improve the accuracy by
20%. Note the final Mcut results are about 30-50% bet­
ter than Ncut and about 6-25% better than PDDP (see
Tables 5 and 1).

Note that our refinement is similar to Fiduccia and
Mattheyses(FM) heuristic algorithm [12). The priority
list based on linkage difference is similar to the list based
on gain in FM algorithm. We do greedy node moves
according to Mcut objective in one pass, whereas FM
allows non-greedy moves. FM uses the linear MIN cut
objective so that the effect of a node move is restricted
to its adjacent nodes, whereas for the Mcut objective,
the effect of a node move is felt by every node since both
the nominator and denominators in Eq.(3) are changed
(Mcut is more expensive to compute than MIN cut and
our linkage £(u) is introduced precisely for the purpose
of reducing the computation; otherwise we would have
used t::..Mcut(u) = Mcut(A,B;u E A)- Mcut(A,B;u E

B) directly to determine the priority list). Thus FM
algorithm cannot be directly applied to Mcut objective
efficiently. (However, by linearizing the Mcut objective,
a modified version of FM algorithm can be efficiently
implemented. Details will be reported in a future pa­
per.)

Dataset
NG1/NG2

NGlO/NGll
NG18/NG19

Mcut
97.2 ± 1.1%
79.5 ±11.0%
83.6 ± 2.5%

+Swap
97.5 ± 0.8%
85.0 ± 8.9%
87.8 ± 2.0%

+Swap+ Move
97.8 ±0.7%
92.8 ±6.3%
89.5 ±2.2%

Table 5: Improvements of clustering accuracy due to
linkage-based refinements for Mcut alone, Mcut plus
swap, and Mcut plus swap and move over 5% smallest
!::..1! on both sides of the cutpoint.

9 Linkage differential order

It is generally believed that the Fiedler order provides
the best known linearized order to search for the optimal
cut [24, 26, 18) (although delicate counter examples with
high symmetry (automorphism) exist [15, 27]). Is there
a linear search order better than the Fiedler order?

Our analysis in previous sections suggests a new lin­
ear search order. Given the linkage difference in Figure
2, we see that quite a few nodes far away from the cut
point have wrong !::..1! signs, that is, they belong to the

other subgraph. This strongly suggests that the Fiedler
order is not necessarily the best linear search order. In
fact, we can sort linkage difference !:l.l! to obtain a lin­
ear order different from the Fiedler order, which will
be referred to as linkage differential (LD) order. The
search to find the best Mcut cut point based on this
new LD order represents another improvement over the
standard Mcut method.

The results are given in Table 6. We see that the
Mcut values obtained on this new order are lower than
that based on the Fiedler order. The clustering accu­
racy also increases substantially. The quality of the
clustering based on this new order is slightly better than
the results obtained by using Mcut+swap in Table 5.
Therefore, we find a new linear order that leads to bet­
ter graph partitioning than that provided by the Fiedler
order.

Note that the LD order does not depend on the
Fiedler order. Given any clustering results of two clus­
ters, we can always calculate !:l.l! and sort !:l.l! to obtain
the LD order. For example, we can obtain the LD order
based on the PDDP results. Furthermore, the LD or­
der can be recursively applied to the clustering results
obtained from an eaTlier LD order for further improve­
ments.

Dataset
NG1/NG2

NG10/NG11
NG18/NG19

Acc(F)
97.2 ± 1.1%
79.5 ±11.0%
83.6 ± 2.5%

Acc(LD)
97.6±0.8%
87.2±8.0%
89.2±1.8%

Min(F) Min(LD)
0.698 0.694
1.186 1.087
1.126 1.057

Table 6: Improvements on accuracy (2nd and 3rd
columns) due to the linkage differential (LD) order over
Fiedler order (F). Improvements on min(Mcut) values
are also shown. (4th and 5th columns).

10 Hierarchical divisive Mcut

So far in this paper, we focus on bisection a graph into
two subgraphs. If more subgraphs or clusters are de­
sired, one can recursively apply Mcut and related refine­
ment to each subgraph, until certain stopping criteria
is met, either the desired number of clusters is reached
or min(Mcut) value is above certain pre-defined value.

Once the recursive division is stopped, some refine­
ments along the lines discussed in section 8 should be
applied. This is because even if during each bisection

9

step, all nodes are optimally partitioned, the final par­
tition is not necessarily optimal, since they are not ob­

. tained directly according to the optimal Mcut objective

when G is partitioned into K sub graphs, G1 , · · ·, G K.

Note that forK 2: 3, each term in McutK will be larger
than that in K = 2 cases because cut(Gp, Gp),p =
1, · · · K will increase on average while the weight (self­
similarity) W(Gp) will decrease. Thus, McutK would
differ from N cutK [26] much more than in the K = 2
cases [cf. Eq. (17)]. From the analysis regarding bal­
anced cuts in previous sections, Ncut is more likely to
produce skewed cuts. Therefore, Mcut is essential in
K -way partition.

When applying the refinements on K 2: 3 clusters,
one may apply the 2-way linkage-based refinement pair­

wisely on all pairs of clusters[20]. However, a direct K­

way linkage-based refinement procedure may be adopted:
Assume a node u currently belongs to cluster G;. The
linkage difference !:l.l;j(u) = l!(u,Gj) -l!(u,G;) for all
other K -1 clusters are computed. The smallest !:l.l!;j (u)
and the corresponding cluster id are stored as an entry
in a priority list. This is repeated for all nodes so every
entry of the list is filled. The list is then sorted according
to !:l.l!;j (u) to obtain the final priority list. Accordling
to the list, nodes are then moved one after another to
appropriate clusters if the overall McutK objective is
reduced. This completes one pass. For K 2: 3, several
passes may be necessary.

11 Summary

We introduce the Mcut algorithm for graph partition. It
is shown that the min-max objective function following
the clustering principle produces balanced partitions,
compared to many skewed cuts produced by Ncut al­
gorithm in cases of large cluster overlaps. The linkage
difference metric effectively identifies those nodes near
the cut, which leads to effective refinement procedures.
Finally, the new linkage differential order is shown to
provide a better linear search order than the best known
Fiedler order. Many datasets such as text information
are represented by bipartite graphs. Mcut algorithm
can also be applied to the hi-clustering model[28] on
these bipartite graph problems.

Acknowledgements. This work is supported in part
by Office of Science, Office of Laboratory Policy and
Infrastructure, of Department of Energy under contract
DE-AC03~ 76SF00098 through an LDRD grant.

[1] P.K. Agarwal and C.M. Procopiuc. Exact and ap~
proximation algorithms for clustering. Proc. 9th
ACM~SIAM Symposium on Discrete Algorithms,
pages 658-667, 1998.

[2] D. Boley. Principal direction divisive partitioning.
Data mining and knowledge discovery, 2:325-344,
1998.

[3] B. Bollobas. Random Graphs. Academic Press,
1985.

[4] C. Chekuri, A. Goldberg, D. Karger, M. Levin, and
C. Stein. Experimental study of minimum cut a!~
gorithms. Proc. 8th ACM~SIAM Syposium on Dis~
creet Algorithms, pages 324-333, 1997 ..

[5] C.~K. Cheng and Y.A. Wei. An improved two~way
partitioning algorithm with stable performance.
IEEE. Trans. on Computed Aided Desgin, 10:1502-
1511, 1991.

[6] F.R.K. Chung. Spectral Graph Theory. Amer.
Math. Society, 1997.

[7] C. Ding, X. He, and H. Zha. A spectral method
to separate disconnected and nearly~disconnected
web graph components. Proc. 7th A CM Int '1 Conf
Knowledge Discovery and Data Mining (KDD'01},
August 2001.

[8] S. Doddi, M.V. Marathe, S. S. Ravi, D. S. Tay~
lor, and P. Widmayer. Approximation algorithms
for clustering to minimize the sum of diameters.
Nordic Journal of Computing, 7(3}:185, Fall 2000,
Fall 2000.

[9] W .E. Donath and A. J. Hoffman. "Lower bounds
for partitioning of graphs. IBM J. Res. Develop.,
17:420-425, 1973.

[10]

[11]

[12]

R. V. Driessche and D. Roose. An improved spec~
tral bisection algorithm and its application to dy~
namic load balancing. Parallel Computing 21
1995. ' '

P. Drineas, A. Frieze, R. Kannan, S. Vempala and
V. Vinay. Clustering in large graphs and mat;ices.
In Proc. 19th ACM~SIAM Symposium on Discrete
Algorithms, 1999.

C.M. Fiduccia and R.M. Mattheyses. A linear time
heuristic for improving network partitions. Proc.
19th IEEE Design Automation Conference pages
175-181, 1982. '

10

[13] M. Fiedler. Algebraic connectivity of graphs.
Czech. Math. J., 23:298-305, 1973.

[14] M. Fiedler. A property of eigenvectors of non~
negative symmetric matrices and its application to
graph theory. Czech. Math. J., 25:619-633, 1975.

[15] S. Guattery and G. L. Miller. On the quality of
spectral separators. SIAM Journal of Matrix Anal.
Appl., 19(3), 1998.

[16] L. Hagen and A.B. Kahng. New spectral methods
for ratio cut partitioning and clustering. IEEE.
Trans. on Computed Aided Desgin, 11:1074-1085,
1992.

[17] X. He, H. Zha, C. Ding, and H.D. Simon. Web doc~
ument clustering using hyperlink structures. Tech
Report CSE~01~006, April 2001.

[18] B. Hendrickson and R. Leland.
Chaco mesh partitioning software.
http://www. cs.sandia.gov/CRF jchac.html.

(19] G. Karypis and V. Kumar.
graph partitioning software.
users. cs. umn. edu/ karypisjmetisj.

Metis
http:/ jwww~

[20] B. W. Kernighan and S. Lin. An efficient heuristic
procedure for partitioning graphs. The Bell System
Tech. J., 1970.

[21] J. Kleinberg, C. Papadimitriou, and P. Raghavan.
Segmentation problems: A micro~economic view of
data mining. In Proc. 30th A CM Symposium on
Theory of Computing, 1998.

[22] A. McCallum. Bow: A toolkit for statistical Ian~
guage modeling, text retrieval, classification and
clustering. http://www. cs. emu. edujmccallumjbow
1996. '

[23] B. N. Parlett. The Symmetric Eigenvalue Problem.
SIAM Press, 1998.

(24] A. Pothen, H. D. Simon, and K. P. Liou. Parti~
tioning sparse matrices with egenvectors of graph.
SIAM Journal of Matrix Anal. Appl. 11:430-452
1990. ' '

[25] G. Salton and M .J. McGill. Introduction to Modern
Information Retrieval. McGraw~Hill, 1983.

[26] J. Shi and J. Malik. Normalized cuts and image
segmentation. IEEE. Trans. on Pattern Analysis
and Machine Intelligence, 2000.

[27] J?.A_. Spielman and S.~H. Teng. Spectral parti~
twnmg works: Planar graphs and finite element
meshes. Proc. 37th IEEE Conference on Founda~
tions of Computer Science, 1996.

[28] H. Zha, X. He, C. Ding, M. Gu, and H.D. Simon.
Bipartite graph partitioning and data clustering.
Pennsylvania State University, Tech Report CSE~
01~008, 2001.

~·Ji:ll,._:fu' l'ii'riDilmWil!YAV4•J3~1i!l#! ID#I;oJ:ifl::l!l~ ~ ~

@;93 ~~II @13#Ut3L@1o ~ ~

