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Abst:ract 

An important application of graph partitioning is data 
clustering using a graph model - the pairwise similari­
ties between all data objects form a weighted graph ad­
jacency matrix that contains all necessary information 
for clustering. Here we propose a new algorithm for 
graph partition with an objective function that follows 
the min-:-max clustering principle. The relaxed version 
of the optimization of the min-max cut objective func­
tion leads to the Fiedler vector in spectral graph par­
tition. The min-max cut algorithm is tested on news­
group datasets and is found to outperform other current 
popular partitioning/ clustering methods. The linkage­
based refinements in the algorithm further improve the 
quality of Clustering substantially. We also demonstrate 
that the linearized search order based on linkage differ­
ential is better than that based on the Fiedler vector, 
providing another effective partition method. 

1 Introduction 

Graph partitioning has very broad range of applications. 
At one end are the near-regular graphs, the mesh of a 
2D surface of an airfoil or a 3D engine cylinder. Par­
titioning such a mesh into subdomains for distributed 
memory processors is a common task. Several popular 
software packages for this partitioning task are devel­
oped [19, 18]. At another end are the graphs generated 
from the World Wide Web. These graphs are highly ir­
regular or random, and node degrees vary dramatically. 
Partitioning the web graph is useful to automatically 
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identify topics from the retrieved webpages for a user 
query [17]. 

Here we emphasize graph partition as data cluster­
ing using a graph model. Given the attributes ( coordi­
nates) of the data points in a dataset and the similarity 
or affinity metric between any two points, the symmet­
ric matrix containing similarities between all pairs of 
points forms a weighted adjacency matrix (weight ma­
trix) of an undirected graph. Thus the data clustering 
problem becomes a graph partition problem. 

The data clustering point of view of graph partition­
ing helps to define more appropriate criteria for parti­
tioning. In the simplest MIN cut algorithm, a connected 
graph is partitioned into two subgraphs with the cutsize 
(cut set) minimized. However, MINcut often results in 
a skewed cut, i.e., a very small subgraph is cut away 
[5, 4]. Various constraints are introduced, such as the 
ratio cut [5, 16], the normalized cut [26], etc. to cir­
cumvent the problem. However, skewed cuts still occur 
when the overlaps between clusters are large. 

In this paper, we propose a new graph partition 
method based on the min-max clustering principle: the 
similarity or association between two sub graphs (cut 
set) is minimized, while the similarity or association 
within each sub graph (summation of similarity between 
all pairs of nodes within a subgraph) is maximized. 
These two requirements can be satisfied simultaneously 
with a simple min-max cut function. We present anum­
ber of theoretical analyses of min-max cut, and show 
that min-max cut always leads to more balanced cuts 
than the ratio cut and the normalized cut. 

Like m~ny other methods, the optimal solution to 



the graph partition problem is NP-complete because of 
the combinatoric nature of the problem. An effective 
approach is to consider continuous relaxation of such 
problems. An example is to compute a principal di­
rection/ component (principal eigenvector of the weight 
matrix), and find a cut point along this direction so that 
all points on one side belong to one subgraph, and all 
points on the other side belong to another subgraph. 
This establishes a linear search order on which the min­
max cut can be efficiently applied to search the optimal 
cut. 

The relaxed version of the min-max cut function op­
timization leads to a generalized eigenvalue problem. 
The second lowest eigenvector, also called the Fiedler 
vector, provides a linear search order. Thus the min­
max cut algorithm (we call it Mcut algorithm) provides 
both a well-defined objective and a clear procedure to 
search for the optimal solution. We tested the algorithm 
on a number of newsgroup text datasets and compared 
it with several current methods. The Mcut algorithm 
always outperforms them. 

We introduce a linkage difference metric that effec­
tively identifies nodes near the cut. We find many nodes 
sitting on the wrong side of the optimai cutpoint, i.e., 
they have higher linkage to the other cluster than the 
one they are currently assigned to. Swapping them to 
the correct side, the objective function is reduced and 
the clustering accuracy is improved substantially. 

It is generally believed that the Fiedler order pro­
vides the best known linearized order to search for the 
optimal cut [19, 18, 26]. Here we find a linkage differ­
ential order which provides a better ordination than the 
Fiedler order. Searching based on linkage differential or­
der consistently outperforms those based on the Fiedler 
order. The linkage differential ordering can start from 
any existing clustering results and iteratively improve 
the ordering and therefore the clustering. 

2 Min-max Cut 

Given a weighted graph G = G(E, V) with node set V, 
edge set E and weight matrix W, we wish to partition it 
into two subgraphs A, B using the min-max clustering 
principle - minimize similarity between clusters and 
maximize similarity within a cluster. This is a sound 
principle well established in statistics, data mining and 
machine learning areas. The similarity or association 
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between two subgraphs A, B is the cutsize 

cut( A, B) = W(A, B) (1) 

where 

W(A, B)= L Wuv, W(A) := W(A, A). (2) 
uEA,vEB 

Similarity or association within a cluster (subgraph A) 
is the sum of all edge weights within A: W(A). Note 
that the weight Wuu on a node u is included in W(A), 
which is important for some applications. Thus the min­
max clustering principle requires we minimize cut( A, B) 
while maximizing W(A) and W(B) at the same time. 
All these requirements can be simultaneously satisfied 
by the following objective function, 

M 
_ cut( A, B) cut(A, B) 

cut - W(A) + W(B) . (3) 

We call this new objective function the min-max cut 
function or Mcut for short. Mcut is inspired by previ­
ous works on spectral graph partition [24, 16, 26] (see 
section 3). It turns out that the continuous relaxation 
of Eq.(3) must be solved in a way that is different from 
existing graph partition relaxations [24, 16, 26]. Tore­
veal the solution, we reorder the rows and columns of 
W conformally with subgraphs A and B such that 

(4) 

Let x and y be vectors conformally partitioned with A 
and B, i.e., x = (1·· ·1,0 · · ·O)T, y = (0· · ·0, 1· · ·1)T. 
It follows from (1) that 

cut( A, B) 

W(A) 

xT (D- W)x = yT (D- W)y, (5) 

xT Wx, W(B) = yT Wy. 

Hence the objective function (3) can be rewritten as 

M 
xT(D-W)x yT(D-W)y 

cut = + "---'-;;;-::c::----'-'-
xTWx yTWy (6) 

Observe that in Eq.(6), Mcut is invariant under changes 

of llxll2 and IIYII2, and 

Taking these relations into account, we obtain a useful 
lower bound on (3) in Theorem 1 below. Observe that 



the problem Eq.(6) can be relaxed into the following 
optimization problem 

mm 
XT (I- W) X yT (I- W) y 

- + -xTWx yTWy 
(7) 

subject to llxll2 = IIYII2 = 1, xT y = 0, xT Wx > 
0, YT Wy > 0, where w = n-112 w n-112. The con­
ditions that xT W x > 0 and yT W y > 0 are neces­
sary since W in general is an indefinite matrix. Let the 
largest 2 eigenvalues of W be >.1, >.2. >.1 = 1 by con­
struction. We have the following (proof omitted). 
Theorem 1. Assume that >.1 + >.2 > 0. Let vectors x 
and y solve problem Eq.(7). Choose fJ to be any col­

umn orthogonal matrix such that Q = ( x, y, fJ) is an 

n x n orthogonal matrix. Then 

where a= (>.1 + >.2)/2, 111 = l>.1 - >.21 /2. 

It follows from Theorem 1 that both ratios of (7) are 
equal at the optimal solution: 

XT (I- W) X YT (I- W) y 

arid the optimal value is Mcut = 4/(>.1 + >.2)- 2. 

Since Eq.(7) is a continuous relaxation of (3), the 
fact that the two terms in (7) are equal at optimal so­
lution suggests that the two terms of (3) should also be 
rather "close" to each other, implying W(A) should be 
"close" to W(B). Hence the resulting clusters tend to 
have similar weights and are thus well balanced. This 
fact makes Mcut a much desired objective function for 
data clustering. See Sections 4 and 7 for more discus­
sions on cluster balancing. 

2.1 Fiedler linear search order 

The solution to partition problem can be represented 
by an indicator vector q, where th~ nodal value of q on 
node u is qu = {a, -b}, depending on u E A or B. 
Finding the optimal partition is NP-complete. A well­
known and effective solution is to first compute a linear 
search order and then find a cut point along this index 
order that minimizing Mcut objective. 

Theorem 1 implies that the solution vectors x, y 

must lie in the eigenspace of W. The first eigenvec­
tor z1 = D112 e, e = (1, ···,If with the largest eigen­
value >.1 = 1 does not match q. The second eigenvector 
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Z2 of W satisfies zr Z1 = 0 and has positive and nega­
tive elements, therefore is a good approximation of q. 
Equivalently, we may directly show that 

minMcut(A,B) =min JN(~B\12 => minJN(A,B) 
q q 1- JN ,B q 

where 

Relaxing qu to real number in [-1, 1], the solution for 
minimizing Rayleigh quotient JN(q) is given by 

(D- W)q = (Dq, (9) 

subject to qT e = 0. The solution to this generalized 
eigenvalue problem is the second eigenvector q 2 , which 
is also called the Fiedler vector. and the corresponing 
eigenvalue (2 is called the Fiedler value. Sorting the 
Fiedler vector provides the desired linear search order. 
Furthermore, we obtain a lower bound for the Mcut 
objective, 

minMcut(A, B) 2:: (2 
/ 

q . 1- (2 2 
(10) 

3 Related work on spectral graph 
partition 

Spectral graph partitioning is based on the properties 
of eigenvectors of the Laplacian matrix L = D - W, 
first developed by Donath and Hoffman [9] and Fiedler 
[13, 14], and recently populated by the work of Pothen, 
Simon and Liu [24]. The objective of the partitioning is 
to minimize the cut size J(A, B) = cut(A, B) with the 
requirement that two subgraphs have the same number 
of nodes: IAI = IBI. Using indicator variable Xu, Xu = 
{1, -1} depending on u E A orB, the cutsize is 

t(A B)
_ '"' (xu- Xv) 2 W: _ xT(D- W)x 

cu ' - ~ 4 uv - 2 ' 
euvEE 

(11) 
Relax Xu from { 1, -1} to continuous value in [ -1, 1], 
we can solve the eigensystem 

(D- W)x == >.x. (12) 

Since the trivial x1 = e is associated with >. 1 = 0, the 
second eigenvector x 2 , the Fiedler vector, is the solu­
tion. 



Hagen and Kahng [16] remove the requirement lA I= 
IBI and show that the Fiedler vector provides a good 
linear search oerder to the ratio cut (Rcut) partitioning 
criteria[5] 

R 
_ cut( A, B) cut(A, B) 

cut - IAI + IBI . (13) 

The use of generalized eigensystem from Eq.(12), to 
Eq.(9) has been studied by a number of authors [10, 
6, 26]. Chung [6] especially emphasizes the advantage 
of using normalized Laplacian matrix which leads to 
Eq.(9). Shi and Malik [26] propose the normalized cut, 

N 
cut(A, B) cut(A, B) 

cut = + ---'--c,...-:--'-

deg(A) deg(B) 
(14) 

and show that Ncut can be reduced to Ncut(A, B) = 
JN(q) in Eq.(8). Therefore, Ncut uses the same linear 
search order based on q2 as Mcut objective. Further­
more, we obtain a lower bound for the Ncut objective, 

minNcut(A, B) 2: (2. 
q 

(15) 

Here Rcut, Ncut and Mcut objective functions are 
first prescribed by motivating considerations and then 
the linear order of the Fiedler vector of (normalized) 
Laplacian matrix is argued to be the appropriate search 
order (by relaxing discrete indicator variables). It is im­
portant to note that the same objective functions can be 
automatically obtained as the eigenvalues of the Fiedler 
vector using a perturbation analysis on the (normalized) 
Laplacian matrix [7]. This further strengthens the con­
nection between objective function and the Fiedler vec­
tor. 

We emphasize that Mcut is close to Ncut when the 
cut size is small. The degree of sub graph A can be split 
into the weight of the subgraph A and cut(A, B): 

deg(A) = L L Wuv = W(A) + cut(A, B) (16) 
uEAvEG 

Thus, Ncut can be written as 

N cut( A, B) cut(A, B) 
1 cut= W(A) +cut( A, B)+ W(B) +cut( A, B). ( 7) 

When cut( A, B) (overlap between two clusters) is small, 
Mcut is close to Ncut . If cut( A, B) is not small, we ex­
pect some substantial differences in the resulting sub­
graphs. The large overlap cases are more interesting: 
if clusters are well separated, any method can easily 
identify them correctly. 
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Beside spectral partitioning methods, other recent 
partitioning methods seek to minimize the sum of sub­
graph diameters, see [8] or k-center problem [1] for ex­
amples. There are other clustering methods that use 
singular value decompositions, for example [11]. For 
another view on segmentation problems, see [21]. 

4 Random Graph Model 

Perhaps the most important feature of Mcut method is 
that it tends to produce balanced cut, i.e., the result­
ing clusters (subgraphs) has similar sizes. Here we use 
the random graph model [3, 5] to illustrate this point. 
Suppose we have a uniformly distributed random graph 
with n nodes. For this random graph, there is a proba­
bility p that any two nodes are connected with an edge. 
We consider the four partition objective functions, the 

_traditional MIN cut, Rcut, Ncut and Mcut. We have the 
following 
Theorem 2. For random graphs, MIN cut favors highly 
skewed cuts, i.e., very uneven sizes. Mcut favors bal­
anced cut, i.e., both subgraphs have the sarrie sizes. 
Rcut and Ncut show no preferences. 
Proof. We compute the object functions for the parti­
tion of G into A and B. Note that the number of edges 
between A and Bare piAIIBI on average. We have 

MINcut(A, B)= PIAIIBI 

For Rcut, we have 

PIAIIBI PIAIIBI 
Rcut(A, B) = IAI + IBI = p(IAI + IBI) = np. 

For N cut, since all nodes have the same degree ( n - 1) p, 

PIAIIBI PIAIIBI 
Ncut(A, B)= PIAI(n- 1) + PIBI(n- 1) = n/(n- 1). 

For Mcut, we have 

Mcut(A, B) = PIAIIBI piAIIBI 
PIAI(IAI- 1) + PIBI(IBI- 1) 

IBI IAI 
IAI- 1 + IBI - 1 

We now minimize these objectives. Clearly, MINcut 
favors IAI = n - 1 and IBI = 1 or 1!11 = n - 1 and 
IAI = 1, both are skewed cuts. Minimizing Mcut(A, B), 
we obtain a balanced cut: IAI = IBI, a highly desirable 
property for clustering. Rcut and N cut objectives have 
no size dependency and no size preference, which also 
implies possible unstable results. This completes the 
proof. 



5 Mcut algorithm 

The algorithm for partitioning a graph into two sub­
graphs becomes the following. 

1. Compute the Fiedler vector from Eq.(9). Sort 
nodal values to obtain the Fiedler order. 

2. Search for the optimal cut point corresponding to 
the lowest Mcut based on the Fiedler order. 

3. Do linkage-based refinements (see section 8). 

The computation of the Fiedler vector can be quickly 
done via the Lanczos method [23]. A fast software pack­
age for this calculation, LANSO, is available online 
(http:/ jwww.nersc.gov/~kewujplanso.html). The Lanc­
zos iteration has computational complexity ofO(IEI + 
lVI). 

Searching for minimum Mcut along the Fiedler order 
. can be done efficiently by noticing that given a calcu­

lated W(A, B), calculating W(A+u, B-u) can be done 
as W(A+u,B-u) = W(A,B)+W(u,B-u)-W(u,A), 
which is order O(IVI) at most. One may also compute 
Mcut at equally-spaced points to reduce computation. 
We discussed steps (1) and (2) in some detail. Step (3) 
will be discussed in section 8. 

6 Experiments 

Document clustering has been popular in analyzing text 
information. Here we perform experiments on news­
group articles in 20 newsgroups. We focus on three 
datasets, each has two newsgroups: 

1/2: alt.atheism/comp.graphics 
10/11: rec.sport.baseball/rec.sport.hockey 
18/19: talk.politics.mideast/talk.politics.misc 

(The newsgroup dataset together with the bow toolkit 
for processing is available online[22]). 

Word-document matrix X is first constructed. 2000 
words are selected according to the mutual information 
between words and documents 

I(w) = LP(w, d)log2 (p(w, d)fp(w)p(d)] 
d 

where w represents a word and d represent a docu­
ment. Words are stemmed using [22]. Standard tf. idf 
scheme for term weighting is used and standard cosine 
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similarity between two documents d1, d2 sim(d1, d2) = 
d1 · d2/lddld2l is used. When each document, column 
of X, is normalized to 1 using L2 norm, document­
document similarities are calculated as w = xT X. w 
is interpreted as the weight/affinity matrix of the undi­
rected graph. From this similarity matrix, we perform 
the clustering as explained above. 

For comparison purpose, we also consider three other 
clustering methods: the ratio cut [5, 16], normalized cut 
[26] (see section 3) and the principle direction divisive 
partitioning (PDDP) [2]. PDDP is based on the idea 
of principle component analysis (PCA) applied to the 
vector-space model on X. First X is centered, i.e., the 
average of each row (a word) is subtracted. Then the 
first principle component is computed. The loadings of 
the documents (the projection of each document on the 
principle axis) form a 1-dim linear search order. This 
provides a heuristic very similar to the linear search or­
der provided by the Fiedler vector. Instead of searching 
through to find a minimum based on some objective 
function, PDDP simply cut data into two parts at the 
center of mass. 

To increase statistics, we perform these two-cluster 
experiments in a way similar to cross-validation. We di­
vide one newsgroup A randomly into K1 subgroups and 
the other newsgroup B randomly into K2 subgroups. 
Then one of the I< 1 subgroups of A is mixed with one 
of the I<2 subgroups of B to produce a dataset G. The 
graph partition methods are run on this dataset G to 
produce two clusters. Since the true label of each news 
article is known, we use accuracy, percentage of news ar­
ticles correctly clustered, as a measure of success. This 
is repeated for all [(1[(2 pairs between A and B, and 
the accuracy is averaged. In this way, every news arti­
cles is used the same number of times. The mean and 
standard deviation of accuracy are listed. 

In Table 1, the clustering results are listed for bal­
anced cases, i.e., both subgroups have about 200 news 
articles. Mcut performs about the same as Ncut for 
newsgroups 1-2, where the cluster overlap is small. Mcut 
performs substantially better than Ncut for newsgroups 
10-11 and newsgroups 18-19, where the cluster overlaps 
are large. Mcut performs slightly better than PDDP. 
Rcut always performs the worst among the 4 methods 
and will not be studied further. 

In Table 2, the results are listed for unbalanced 
cases, i.e., one subgroup has about 300 news articles 
and another subgroup has about 200. This is generally 



a harder problem due to the unbalanced prior distribu­
tions. In this case, both Mcut and N cut perform rea­
sonably well, no clear deterioration is seen, while the 
performance of PDDP clearly deteriorated. This indi­
cates the strength of Mcut method using graph model. 
Mcut consistently performs better than Ncut for cases 
where the cluster overlap is large. 

Dataset 
NG1/NG2 

NG10/NG11 
NG18/NG19 

Mcut Ncut Rcut PDDP 
97.2±1.1 97.2±0.8 63.2±16.2 96.4±1.2 

79.5±11.0 74.4±20.4 54.9±2.5 89.1±4.7 
83.6±2.5 57.5±0.9 53.6±3.1 71.9±5.4 

Table 1: Accuracy (%) of clustering experiments using 
Mcut, Rcut, Ncut and PDDP. Each test set G is a mix­
tu~e of 400 news articles, 200 from each newsgroup. 

Dataset 
NG1/NG2 

NG10/NG11 
NG18/NG19 

Mcut 
97.6 ± 0.8% 
85.7 ± 8.3% 
78.8 ± 4.5% 

Ncut 
97.2± 0.8% 

73.8± 16.6% 
65.7± 0.5% 

PDDP 
90.6 ± 2.1% 
87.4 .± 2.6% 
59.6 ± 2.4% 

Table 2: Accuracy of clustering experiments using 
Mcut, Ncut and PDDP. Each test set G is a mixture 
of 300 news articles from one newsgroup and 200 news 
articles from the other newsgroup. 

7 Skew.ed cut 

We further study the reasons that Mcut consistently 
outperforms N cut in large overlap cases. The most im­
portant reason is that Ncut often cuts out a very small 
set, i.e., a skewed cut. We examine several cases and 
one specific case is shown in Figure 1. The cut points 

. for Mcut and Ncut and relevant quantity are listed in 
Table 3. We see that Ncut has two pronounced val­
leys, and produces a skewe.d cut. while Mcut has very 
flat valley and gives balanced cuts. Further examina­
tion shows that in both cases, the cutsizes obtained in 
N cut are equal or bigger than the self-similarity within 
a cluster as listed in Table 3. For example, in the case 

in Figure 1, the Ncut produces a cutsize of 262.7, much 
larger than the self-similarity W(B, B)= 169. In these 
cases, clearly the N cut objective [see Eq .( 17)] is not ap­
propriate. In the Mcut objective, the cutsize is absent in 

the denominators; this provides a balanced cut. These 
case studies provide some insights to the graph partition 
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methods. 

~~:::: .J 
-0.05 0 50 100 150 200 250 300 350 400 

l~f':: : : ;:] 
o.sL-----'-------'---'-------'-------'------"'-----'---_J 

0 50 100 150 200 250 300 350 400 

~::c . . : . . : : J 
0 50 100 150 200 250 300 350 400 

Sorted Nodes 

Figure 1: Top: Nodal values of sorted Fiedler vec­
tor. Middle: Ncut values as the cut point moves from 
icut = 1, 2, ... n. Bottom: Mcut values. A dataset from 
NG18/NG19 in Table 1. 

Method 
Ncut 
Mcut 

Zcut 

364 
141 

cut( A, B) 
262.7 

1026.6 

W(A,A) 
5312.6 
1488.9 

W(B,B) 
169.0 

2464.7 

Table 3: Cut point, cutsize, within cluster similarities 
for the case in Figure 1. 

Prompted by these case studies, here we provide fur­
ther analysis and derive general conditions under which 
a skewed cut will occur. Consider the balanced cases 
where W(A) ::::: W(B). Let 

cut(A, B)= f · (W), (W) = ~(W(A) + W(B)), 

where f > 0 is the average fraction of cut relative to 
within cluster associations. 

In the case when the partition is optimal, A and B 
are exactly the partitioning result. The corresponding 
Ncut value is 

cut( A, B) cut(A, B) 2/ 
Ncuta = + ::::: --

W(A) +cut( A, B) W(B) +cut( A, B) 1 + f 
(18) 



For a skewed partition A1, B1, we have W(A!) ~ W(Bl), 
and therefore cut(A1, B1) ~ W(B1). The correspond­
ing Ncut values is 

N 
cut(A1,B1) 

cut1 :::::: ( ) ( ) . W A1 +cut A1, B1 
(19) 

Using Ncut, a skewed or incorrect cut will happen if 
Ncut1 < Ncuto. Using Eqs.(18, 19), this condition is 
satisfied if 

Ncut : 

We can repeat the same analysis using Mcut and cal­
culating Mcuto and Mcut1. The condition for a skewed 
cut using Mcut is Mcutr < Mcut0 , which is 

Mcut: 

For large overlap case, say, f = 1/2, the conditions for 
possible skewed cut are: 

Ncut: W(A 1 ) > cut(A1 , Bl)/2 

Mcut : W(Ar) > cut(A1 , B1) 

The relevant quantity is listed in Table 4. For datasets 
newsgroups 10-11, and newsgroups 18-19, the condition 
for skewed Ncut is satisfied most of the time, leading 
to many skewed cuts and therefore lower clustering ac­
curacy in Tables 1,2. For t.he same datasets, condition 
for skewed Mcut is not satisfied most of time, leading 
to more correct cuts and therefore higher clustering ac­
curacy. 

Dataset 
NG1/NG2 
NG10/NG11 
NG18/NG19 

cut(A,B) 
549.4 
772.8 

1049.5 

W(A,A) 
1766.4 
1372.8 
2093.9 

W(B,B) 
1412.5 
1581.0 
1665.5 

f 
0.346 
0.523 
0.558 

Table 4: Average values of cut(A,B), W(A,A), W(B,B) 
and the fraction in three datasets using Mcut. 

8 Linkage-based refinements 

The heuristic linear search order provided by the Fiedler 
vector is generally a good heuristic, as the results shown 
above. Nevertheless, it may not necessarily be the per­
fect one. Here we explore this point and find an ef­
fective refinement method which substantially improves 
the quality of graph partitioning. 
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The linear search order provided by sorting the Fiedler 
vector q implies that nodes on one side of the cut point 
must belong to one cluster: if q... 2: qv 2: qw where 
u, v, w are nodes, then the linear search will not allow 
the situation that u, w belong to one cluster and v be­
longs to the other cluster. Such a strict order is not 
necessarily followed by the nodes near the cut. In fact, 
in large overlap cases, we expect some nodes could be 
moved to the other side of the cut while lowering the 
overall objective function. 

How to identify those nodes near the cut? For this 
purpose, we define linkage £ as a closeness or similarity 
measure between two sub graphs (clusters): 

£(A, B)= W(A, B)/IAIIBI 

here I AI, IBI are for normalization purpose so that £(A, B) 
is insensitive to cluster sizes (this is motivated by the 
average linkage in hierarchical agglomerative cluster­
ing). For a single node u, its linkage to subgraph A is 
£(A, u) = W(A, u)jjAj. Now we can identify the nodes 
near the cut. If a node u is well inside a cluster, u will 
have a large linkage with the cluster, and a small linkage 
with the other cluster. If u is near the cut, its linkages 
with both clusters should be close. Therefore, we define 
the linkage difference 

~£(u) = £(u, A)- £(u, B). (20) 

A node with small ~.e should be near the cut and is a 
possible candidate to be moved to the other cluster. 

In Figure 2, we show linkage difference ~.e for all 
nodes. The vertical line is the cut point. It is interesting 
to observe that not only many nodes have small~£, but 
quite a number of nodes whose ~£ have the wrong signs 
(e.g., ~l(u) < 0 if u E A, or, ~l(v) > 0 if v E B). For 
example, node #62 has a relatively large negative ~£. 
This implies node #62 has a larger linkage to cluster 
B even though it is located in cluster A (left of the 
cutpoint). Indeed, if we move riode #62 to cluster B, 
the objective function is reduced. Therefore we find a 
better solution for the graph partition problem (based 
on the Mcut objective function) than the one obtained 
by the linear search on the Fiedler vector. 

After moving node #62 to cluster B, we try to move 
another node with negative ~£ from cluster A to clus­
ter B depending on whether the objective function is 
lowered. In fact, we move all nodes in cluster A with 
negative ~£to cluster B if the objective function is low-
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Figure 2: Linkage difference of all nodes. The vertical 
line indicates the cutpoint using Mcut. Nodes on the 
left forms cluster A and nodes on the right forms cluster 
B. 

ered. Similarly we move all nodes in cluster B with pos­
itive .D.£ to cluster A. This procedure of swapping nodes 
with wrong !::..1! signs to the opposite cluster is called the 
"linkage-based swap". It is implemented by sorting the 
array s(u)t::..l!(u) [s(u) = -1 if u E A and s(u) = 1 if 
u E B) in decreasing order to provide a priority list and 
then moving the nodes, one by one. The greedy move 
starts from the top of the list to the last node u where 
s(u)t::..l!(u) ?: 0. This swap reduces the objective func­
tion and increases the partitioning quality. In Table 5, 
the effects on clustering accuracy due to the swap are 
listed. In all cases, the accuracy increases. Note that in 
the large overlap cases, NG9/NG10, NG18/NG19, the 
accuracy increase about 10% over the Mcut without re­
finement. This represents our first refinement over the 
spectral Mcut results. 

If s( u )!::..1!( u) < 0 but close to 0, node u is the correct 
cluster, although it is close to the cut. Thus we select 
the smallest 5% of the nodes with s(u)t::..l!(u) < 0 as the 
candidates, and move those which reduce Mcut objec­
tive to the other cluster. This is done in both cluster 
A and B, and implemented by chosing the top 5% of 
remaining nodes (after the swap) from the priority list. 
We call these procedure "linkage-based move". Again, 
these moves reduce Mcut objective a"ud therefore im­
prove the solution. In Table 5, their effects on improv-
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ing clustering accuracy are shown. Adding together, 
the linkage bassed refinements improve the accuracy by 
20%. Note the final Mcut results are about 30-50% bet­
ter than Ncut and about 6-25% better than PDDP (see 
Tables 5 and 1). 

Note that our refinement is similar to Fiduccia and 
Mattheyses(FM) heuristic algorithm [12). The priority 
list based on linkage difference is similar to the list based 
on gain in FM algorithm. We do greedy node moves 
according to Mcut objective in one pass, whereas FM 
allows non-greedy moves. FM uses the linear MIN cut 
objective so that the effect of a node move is restricted 
to its adjacent nodes, whereas for the Mcut objective, 
the effect of a node move is felt by every node since both 
the nominator and denominators in Eq.(3) are changed 
(Mcut is more expensive to compute than MIN cut and 
our linkage £( u) is introduced precisely for the purpose 
of reducing the computation; otherwise we would have 
used t::..Mcut(u) = Mcut(A,B;u E A)- Mcut(A,B;u E 

B) directly to determine the priority list). Thus FM 
algorithm cannot be directly applied to Mcut objective 
efficiently. (However, by linearizing the Mcut objective, 
a modified version of FM algorithm can be efficiently 
implemented. Details will be reported in a future pa­
per.) 

Dataset 
NG1/NG2 

NGlO/NGll 
NG18/NG19 

Mcut 
97.2 ± 1.1% 
79.5 ±11.0% 
83.6 ± 2.5% 

+Swap 
97.5 ± 0.8% 
85.0 ± 8.9% 
87.8 ± 2.0% 

+Swap+ Move 
97.8 ±0.7% 
92.8 ±6.3% 
89.5 ±2.2% 

Table 5: Improvements of clustering accuracy due to 
linkage-based refinements for Mcut alone, Mcut plus 
swap, and Mcut plus swap and move over 5% smallest 
!::..1! on both sides of the cutpoint. 

9 Linkage differential order 

It is generally believed that the Fiedler order provides 
the best known linearized order to search for the optimal 
cut [24, 26, 18) (although delicate counter examples with 
high symmetry (automorphism) exist [15, 27]). Is there 
a linear search order better than the Fiedler order? 

Our analysis in previous sections suggests a new lin­
ear search order. Given the linkage difference in Figure 
2, we see that quite a few nodes far away from the cut 
point have wrong !::..1! signs, that is, they belong to the 



other subgraph. This strongly suggests that the Fiedler 
order is not necessarily the best linear search order. In 
fact, we can sort linkage difference !:l.l! to obtain a lin­
ear order different from the Fiedler order, which will 
be referred to as linkage differential (LD) order. The 
search to find the best Mcut cut point based on this 
new LD order represents another improvement over the 
standard Mcut method. 

The results are given in Table 6. We see that the 
Mcut values obtained on this new order are lower than 
that based on the Fiedler order. The clustering accu­
racy also increases substantially. The quality of the 
clustering based on this new order is slightly better than 
the results obtained by using Mcut+swap in Table 5. 
Therefore, we find a new linear order that leads to bet­
ter graph partitioning than that provided by the Fiedler 
order. 

Note that the LD order does not depend on the 
Fiedler order. Given any clustering results of two clus­
ters, we can always calculate !:l.l! and sort !:l.l! to obtain 
the LD order. For example, we can obtain the LD order 
based on the PDDP results. Furthermore, the LD or­
der can be recursively applied to the clustering results 
obtained from an eaTlier LD order for further improve­
ments. 

Dataset 
NG1/NG2 

NG10/NG11 
NG18/NG19 

Acc(F) 
97.2 ± 1.1% 
79.5 ±11.0% 
83.6 ± 2.5% 

Acc(LD) 
97.6±0.8% 
87.2±8.0% 
89.2±1.8% 

Min(F) Min(LD) 
0.698 0.694 
1.186 1.087 
1.126 1.057 

Table 6: Improvements on accuracy (2nd and 3rd 
columns) due to the linkage differential (LD) order over 
Fiedler order (F). Improvements on min(Mcut) values 
are also shown. (4th and 5th columns). 

10 Hierarchical divisive Mcut 

So far in this paper, we focus on bisection a graph into 
two subgraphs. If more subgraphs or clusters are de­
sired, one can recursively apply Mcut and related refine­
ment to each subgraph, until certain stopping criteria 
is met, either the desired number of clusters is reached 
or min(Mcut) value is above certain pre-defined value. 

Once the recursive division is stopped, some refine­
ments along the lines discussed in section 8 should be 
applied. This is because even if during each bisection 
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step, all nodes are optimally partitioned, the final par­
tition is not necessarily optimal, since they are not ob­

. tained directly according to the optimal Mcut objective 

when G is partitioned into K sub graphs, G1 , · · ·, G K. 

Note that forK 2: 3, each term in McutK will be larger 
than that in K = 2 cases because cut(Gp, Gp),p = 
1, · · · K will increase on average while the weight (self­
similarity) W(Gp) will decrease. Thus, McutK would 
differ from N cutK [26] much more than in the K = 2 
cases [ cf. Eq. ( 17) ]. From the analysis regarding bal­
anced cuts in previous sections, Ncut is more likely to 
produce skewed cuts. Therefore, Mcut is essential in 
K -way partition. 

When applying the refinements on K 2: 3 clusters, 
one may apply the 2-way linkage-based refinement pair­

wisely on all pairs of clusters[20]. However, a direct K­

way linkage-based refinement procedure may be adopted: 
Assume a node u currently belongs to cluster G;. The 
linkage difference !:l.l;j(u) = l!(u,Gj) -l!(u,G;) for all 
other K -1 clusters are computed. The smallest !:l.l!;j ( u) 
and the corresponding cluster id are stored as an entry 
in a priority list. This is repeated for all nodes so every 
entry of the list is filled. The list is then sorted according 
to !:l.l!;j ( u) to obtain the final priority list. Accordling 
to the list, nodes are then moved one after another to 
appropriate clusters if the overall McutK objective is 
reduced. This completes one pass. For K 2: 3, several 
passes may be necessary. 

11 Summary 

We introduce the Mcut algorithm for graph partition. It 
is shown that the min-max objective function following 
the clustering principle produces balanced partitions, 
compared to many skewed cuts produced by Ncut al­
gorithm in cases of large cluster overlaps. The linkage 
difference metric effectively identifies those nodes near 
the cut, which leads to effective refinement procedures. 
Finally, the new linkage differential order is shown to 
provide a better linear search order than the best known 
Fiedler order. Many datasets such as text information 
are represented by bipartite graphs. Mcut algorithm 
can also be applied to the hi-clustering model[28] on 
these bipartite graph problems. 
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