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o ABSTBACT |
we form;late the non-relativistic scattering problem as an

integral equation with a kernel which 18 completely continuous

for all energles; previous formulations have used kernels which'

 are unbounded for real positive ehergy, We then are able to
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. to £ind e number of useful by=-products:

give a rigorous justification for_thé Fredhoim'method, quesi- ;f
particle method, and, for weak enough 1ﬁtéractions; the Born

expansion. We also give an explicit lower bound for the

»—i?~'-A radius of convergence of the Born series and of the Born series

modified by the introduction of quasiparticles. We furthermore'_ 
show that all these expansions converge uniformly in the physical

region of energy end momentum transfer.

I, INTRODUCTION
This paper 1s concerned with the application of functional
analysis to the problem of scattering of a single non-rélativistic

particle by a fixed interattion V. Our purpose when we began this work ;

was to provide a rigorous justification for the "quasiparticle method"

1,2

presented by one of us in previous papers. The sticky point was that

the scattering kernel [W = Ho]-l V 1s not even bounded in the physical

scattering region W 2 O; though it is L2 for all other W. We overcome

this problem here by using a new "symmetrized” kemaeﬁ3
v/ fw gt VM2,

which is 12 for all W. [Sec. IT and ]

Wy,

Heving solved our originel problem in this way, we were pleased

(1) Ve give an explicit lower:bouhﬁ on the redius of’conirergence~ :

of the ordinary Born series for all energles, This had previéusly been
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but we give speclal attention to the case of a local (not necessarily

~done for the bound-state PfOblém?_but;hbtrforrﬁhé écaﬁtéfing problem

[Sec. III] In fact, we give explicit upper bounds on the ath order

“terms of the Fredholm and Born series [Sec. V], which should be useful for

“practical calculations.

(2) We do the same for the Born series modified by the

introduction of a "quasiparticle", so that 1t is possible to be certain

that the modified Born series converges [Sec. IV].

.(3) We show that all these expansions [Fredholm,-quasi-Born,,

and, for wesk enough interactions, ordinary Born] converge unifprmlz

" 4n the physicel region of energy and momentum transfer.[Sec. V].

Most of our work is applicable to very general interactions,'”

central) potential v(z), subject to the conditions:

< o (1)

f ch V@ vl
Iz -z
- fd3r [v(x)] <o . N (1.2)

These hold if v(z) is O(r'e"'e) for t =0, and 0(r"3°€) .i;o;"r -0
Condition (1.1) is needed for‘tﬁe symmetrized kernel to be 12 for all
energy, while (1.2) guarantees that all state-vectors of interéét'have ‘
finite and uniformly bounded norm. ‘ |
It is probebly straightforward to epply these ideas to the
multiperticle scattering problem, Gy "symmetrizing” tﬁe fuil irreduéible,;

connected kerneiu rather than the Lippmann-Schwinger kernel. We hope to

" discuss multiparticle problems as well as the relativistic Bethe-Salpeter

problem in future articles.



| II. THE COMPLETELY CONTINUOUS SCATTERING KERNEL

‘Let us first recall the difficultiea encountered with the

usual opera.tor Lippmann=Schwinger equation'
T(W) =V +T(W) Go(W) V=V +VG,W) o(w) . (2.a)

" Here V is the interaction, ar;'d Go(w) is the free-particle Green's function

at energy W:
GoW) = W -B)™ . - | (2»-2){-}_

5

In position space

l (‘ = _..,__.l d3 e e & i ~ .

with k defined by
Wak"; Mmk>0 . (2,

We will be‘parficularly (but' not exclusively) interested 1n the case of

local V, with .

VD =P -0V .



The S-matrix at a physicel energy E > O is calculsted from the formula: -~

(2'1 5 gy = 83" - p) - 2r 1 8% - ') (g’ o(? + 1¢) [p) . (2.6)
The "1¢" in (2.6) is‘understood to mean ﬁhat,k in (2.3) 1s chosen as tﬁe

Limit of /32 + 1c 88 ¢ =0+, L.e.,

“.

Equations like (2.1) are perfectly tractable if the kernel is
~ completely continubus, and, in particular, if it is "L°". The kernel of
(2.1) 1s

K(W) =g, (W) v o (2.8)
and 1ts L? norm is

Tr {K(W) ' (w)} = Tr (G, "(w) (W) v V | - '(2-9) |

" or for local potentialé

| " a (—ZImk -
T k(W) K.*(W)}= L f dBrf e — lr 2 I) ! iz )l

167 Iz ~x ]

(2.10)

“grr [ O WP .
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If V(z) is square-integrable then this trace is finite for W negative
(the bound-state region) or W complex, but for W = E? + e, 1t blows uwp R

s ¢~* for ¢ -0, Since K(W) is not 12 1in the scattering region (in

- fact 1t 1s an unbounded operator), it was necessary in earlier work to

appeal to an imperfectly rigorous apalytic continuation from ccmplex.

to real W to Justify the treatment of K(R? + 1¢) as if 1t were completely
continuous. .Another difficuity with the usuel formulation of scattering
theory.is that the matrix element (p'| T [p) is taken bétween continuum
13-5’ eig'-r

states whose wave functions e ~ are not normalizable, and

hence not in Hilbert space.

Instead of K(W), let us define a new "symmetrized" kernel3

%) = v2 Gy (W) e o, .
For local potentials this gives in position space
. fo, o aje, el fp gt
(x'] K ) = - v VA o (1)

b !g - g'l

Either sign can be teken for VY/ 2(x"); the fact that vt/ %r) 18
imaginary where V(r) is negative will cause no trouble. |
It is easy to see that (2.1) has the formal solution

o) = /2 (1 - &)1 v L (2a3) S

(2.1;{) P

e o e




giving the S-matrix

®islp= o
U R 2 10)
S - meete? - p®) @l VP -G 41 ey

The reader may rest assured %hat the ugly operator Vl/2 will not appear
in actual calculations of the S-matrix. For instence, the series

expansibn of (2;13) in powers of K(W) is
(W) = V21 s R(w) .+ R + eo0 ] vl/?
=v+v%m)v+f%m)v%m)v+",

-and this is just the ordinary Born serles. We will see in Sec. IV and ¥
that the Fredholm and quasiparticle series for (2.13) are the same as they
vere before the symmetrization of the kernel; the general reason is that

K(W) -and (W) are related by a formal similarity transformation:

R V2 v 2wy . (2.16)

There are three great advantegea in using Bq. (2.14%) as the

L 2 v

starting point of scattering theory:
2

(a) The kernel K(W) is 12 for decent interactions. Its L~ norm

18

(2.15)

S e e




W) e /W) KT(W) = L
o | I (2.17)

e (v /2 Gy (W) yi/2 yi/et o (%) .
In contrast with (2.9), T(W) does gggigenerally divergé aé_W apprééches the

positive reel axis, since the dangerous denominators (W - Ho] and [W* HO]

are kept apart. For example, if V 1s a local potential, (2.17) gives:

G 3. VR V)| o2 e Iz - 2'1)
o ! :

W) = 5 (2.18)
16n lx - x'|
end for W = p2 + i€ this takes the W-independent value
. o V@) v -
7 =21 u/‘ a3r adpr — . (2.19)
16x |z = ')

This integral. i1s obviously finite for reasonable V(g), like the Yukaws
potential (but, unfortunately, not for the Coulomb potential). Specific
exsmples wlll be worked out in Sec., III.

~(B) In the bound-state region W < 0, both K(W) and K(W) may ve

I?, but K(W) always hes the smaller e norm. Hence the condition that

T(W) be finite 18 weaker then our previous condition that v(x) ve
aquare-integrabie. Also the condition ?(aB) > 1 gives a8 better upper hound
on the binding energy B of bound states than previously given in Eg. (132)
of Ref. 2. [Schwinger3 has shown that the number of bound states below

B 18 less than 7(-B).] | ’
| (v) The S-matrix is & matrix element of [l&% ﬁ(w)]‘l between
states that actually'lie in Hilbert space; since the ééate vector Vl/2 [R)

" appearing in (2.14) has norm



/2 I = (gl v/ 2 1y  (e0)
or for local potentials

2 2 . 1 i B :
V2 )l = f e V)] . (2.21)
(2n)° . ‘

This norm exists for aecent éhort range interactions like the Yukawa
potential, | ,
' o 2 A2 A
These two facts, that K(W) is L and Ip) is normalizeble,

allow us without further ado to apply the standard lore of functional
gnalysisG to thevoperator 1=« ﬁ(w)]“l and its matrix elements, In
particulaer, it follows immediately that the S-matrix for interaction A\ V
is a meromorphic function of the coupling constant A, for all real or

complex W. Its poles are at the \-values
. ' A = nv'l(w) : - | (2.22).
where the nv(w) are the elgenvalues of K(W):
R [7,00) = 0 (W) ¥ () | o ._ (2:23)

. or for loecal potentials

vlfa(r)

ik[r- IR S
f 3 'r :': Vlla(r‘) v(g'; W) = nv(W) $V(£5'W) .

(2.24)

V(W) =(z| T,(m) .
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" The eigenvector Wv(w)) is of course underétqod to lle in Hilbert space, i w

i.e., to have finite norm:
S AIIW,,(w')n?sf W, 0P edr<e . (225)

It may be noted that the nv(w) can also be described as the

eigenvalues of the original Kernel K(W), since (2.23) can be written
~ 1/2 '
7,0y = /2 1y () - (2.26)
KW [V, (W) = n () [y, (0) - (2.21)
‘However the normalizebility condition (2.25) now readsv
2, . -
I/ v, (M) < S (2.28)
or for local potentials
ar V()| v, (z M| < . (2.29)
It is eésy to see that ip'v(r; W) behaves like eikr as r - o} hénce for.
~real k the integrating factor |[V(r)| in (2.29) is indispenssble to obtain
a finite norm, |

The implications of (o) and (v) for the various series expansions -

of the S-matrix will be considered in Sec. IV and V.,



IIT, RADIUS oF CONVERGENCE
| We now turn to & calculation of the L2-norm r(w) , given by
(2.18), This is a matter of some practical importance, 'because alL'L

- elgenvalues qv(w) of K(W) are subject to the inequality
ln,(M"s<w) . o (3a)

The radius of convergence R(W) of the Born serles for an interaction_ AV
at energy W is equal to the smallest qu(w)l'l, so (3.1) provides a lowver

bound on the radius of convergence:

~el/? _ .
RO = M2 . | G
.This inequality is particularly useful because we shall i’ind'that in
practice T ¥-1/ 2(w) 1s only slightly less then the exact R(W). |
Instead of calculating (2.18) directly, it is easier to return

to (2.17), and write it in momentum space as

(3.4) |

where

w(g) = (2x)"3 f &3 [v(p)| }9E | ) S (35)



A e

e

The p-integral in (3.4) can be done by Feynman's method, ylelding -

O 2n2f ‘6'139,' ju(g) 12 arctan é-%n- ‘. /q
B We‘ see aéain that T(W) depends only on ImNW , and that for.w >0 :!.t
becames W-independent: A‘
For all .complex or.vnegative w v}e have
T s S (3.8)_,"'; -
so'-?":'-/'2 | SR

-~

is a J.ower bound on the radius of convergence i’or a.ll w.

We are assuming 'bhat (2..21) converges, 80 U(E) 18 finite for all
p. The integral (3.7) for T will then exist if, as Ip] ~w:

u(p) =0 (o] ™)

(any € > 0) (3.9)
~ end this will hold if, as |r| - O:
L “o4e, | . Cfaray
vig) =0 (Jz]™7°)  (eoy e>0) . (3.10)
The condition that (2.21) converges will be satisfied if V(r) 1s Pinite for
all finite r, satisfies (3.10), end if as |r| =«

NEORE
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T ) =0z (eye>0) . (301)
- We will considér two particular examples, the Yukawe poﬁential
AV(E) =ape™ (1) (3.12).
I o ‘ I
- and the exponential potentiel -

AV(E) =2 pa e Mt . , - (E) . ‘”. : (3.13)

In these cases (3.5) glves respectively

(p) = —p—ti ; . G :
U(R) 2ﬂ2(p2 R pe) | | (¥) - L .v(3 ) |

3 o
oY - m : K .
Wt ® 0 Gw)

so (3.7) 1is

a2
U
O

® G

A
f
Wi

® . Gan

| We conclude that the Born serles converges for'all W if



1

 5> ]f> “'X| s ffﬁ'u l.hlu:;fiii,;!'(Y5' '  :;;:;_;(3;18’. 

,

'x' & 43;2 3 ln225 " (E) ’ (3019) . '

' ,Thesé results mey be compared with the known7 exact radil of nonvergénce
(af W = 0, where they are smallest):

\

ECRIT )   __ (3.20)
’ 'b‘ o ,. i ..‘; | R(0) = 1.4U46  ‘   :_';v(E): é ;h”“~{ (5.2

In both cases 7:"1/ 2 is only about 15% smaller then the true radius of
convergence. ' '

~

2 48 8o cloge to R(0), it will be illuminating

To see why 7r'-l/

to consider another example, Let V be an Hermitian separable interaction

AV =) |a)(a]

| | (3.22)
{alay=1 . |

P | The symmetrized kernel is proportional to V:

R(W) = (a] Go(W) |a) la)(a] « 'jjj,',;'f (3.23)

Obviously (al Go(w) |2) is the greatest eigenvalue o K(W), and furthermore
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1/2

80 (w) is the exact radius of convergence for (3 22), ‘The close

. can therefore be traced to the fact that such potentials are effectively

separable at low energies,8 in the sense that one of the eilgenvalues

- nv(w) is much larger than,ali the others.,

For local central potentials the radius of convergence in the
J<th partial wave is greater than ?"lla(w), where ?}(w) is the f-wave e

norm:

T,00) =

el L7V lar [T v fort 1,00 5, M) Ga25)

kS

This gives an even better lower bound on the radius of convergence; since

F

each xﬂ(w) is less than 1(W); in fact

W) = Z(az 1) T, . o (3as)

(Note that ?é(w) depends on W even for W real,_though T(W) does not.)

. At zero energy (3.25) is

| t ' 2/""2 Z -
(o)amf | V) far fo |V(r) lart = St S

. 2 Loape 7 o S
m j; x | j; [V(r)[ ]V(xr)' r~dr v.,

SOV

EW) = (el oy ()P o gew T

—agreement between T /2 and R(O) for the Yukawa and exponential potentials

_("3.‘27)» o
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(22 +1)° Jo (1 +x)°

glves .
L (I
~ o 1l x2£+l , :
I , TZ(Q) = s  ax .(Y): .  *v (3.28)

3 1 x2ﬂ+2 .

hee2l PR g G

(24 + 1)° Jo (1 +x)* -

Fof S~waves this gives:

T5(0) =2 1n2 -1 ?6'?/2(0) =‘i,669v "(Y)U [:  (3.30)
?6(0) =1f2; 7 ‘1/2(0) = 1.h1h. . (E).; (3.31)- ,'

O . N . ~ “

The exact radii of convergence7 are respectively 1.680 and 1.446, just

a few percent above T '1/2(0). For p-waves (3.28) and (3.29) glve

0
o) =Bme-d; TMP0) =753 0 (3.32)
o) =S - Bma; §Mo0) -6y @) . G.3)

The value (3.32) compares favorsbly with the knowng,zero energy p-wave

'Iﬁkawa radiue of convergence, R(0) = 9.1,

e

For the Yukawa and exponential potentials [(3.12) and.(3,l3)], Eq. (3.27)v"'/gf»’f
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IV. THE QUASIPARTICLE METHOD
The quasiparticle methode nay be described for our present

purposes es the replacement of K(W) by e kernel KQ(W), vhich differs by

~ a term of finite rank:

k(W) = R(w) - Z V2 |gy5) v . (h1)

Here [e) and (E] are a finite set of state vectors (perhaps W-dependent)

that can be chosen as we Yike. It is easy to show that °

T(W) = T(W) + Z To(M) [8) A (W) ('] To(W) (k.2)
: 8,a!

(a7 (W) g0 = 8,0 = (8] TR(W) [8) (W3)

To (W) =v/2 -:KQ(W)]'J' yi/2 . o ()

The point 1s to choose the |s) and {&| so that (4.h) mey be calculated by

expansion in KQ(W):
To(W) = vl/2[1 + Ko (W) + KQ(W)2 ¥ oaee ] vi/2 | (4.5) -

vy %Gr) ve Y 61 vp o - e S

8
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This is always possible, because K(W) 1s completely continuous fof all
W, end hence mey always be approximated uniformly by a kernel of finite
rank; that 1s, it is possible for all W to»choose |s) and (8| so that |
~~”KQ(W)H is as small as we like, and in particular, so that “KQ(W)" <l. -
In the original work on the quasiparticle method K(W) was used instead
of K(W), and 1t was necessafy to resort to hand-waving to discuss real '>g_'
scattering energies, for whiéh K(W) is not completely continuous. (It
should perhops be emphasized that (4.1) ~ (4.6) are Just a re-written
versicn-of the original quasiparticle method, but the method 1s now
rigorously Jjustified.)

How should we choose the |s) and (8| 7 Our previous answer>

was that we should try to reduce all elgenvalues ns(w) with [ns(w)[ >1 00 :'N

to zero, and leave all the other qv(w) unchanged. For instance, if only f
one eigenvalue nl(w) lles outside the unit cirele, then the "ideal" “

cholee according to thils prescription would be
(1)« (D) 5 (D] « (g ()] B
with nofmalization and phase chosen so that
N RAIENCR o v"mm
We have already done some practical calculations,8 chooging"A
i

e v R s T = @R (o)

¢
3
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N Qhere In(W)) and (T(W)| were an'edﬁcated guess at [wl(w)) and (wi(w*)], -

with normalization

) | FW)| v |ew) =1 . | . (k.10)

(This would agree with (4.8) 1f |r') and (T| vere exact eigenfunctions.)

The results obtained in lowest order were excellent but we were then unsable

to say with mathematical certainty that we had succeeded in msking the

‘geries (4.5) converge,

- However, we can be certain that (%.5) converges,. 1f

1 (W) <1 | (h.n_);

. ' -y
where rQ(w) is the L° norm of KQ(W).

W) = Tr (K () Ko(w)')

= T(W) = 2 Re Z (5] vl/,a_vl/e* éo(w*) ‘Vl/z“~ V,'-V2 ls) ‘ (h.12)

. Yy g2 g2 |0 G R R
8,8' .

With a good guess at the form of |s) and (5], it should be easy to adjust

their normalization and phase so that (4.1l) is satisfied.
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'V, 'UNIFORM CONVERGENCE OF THE RESOLVENT EXPANSIONS

Since K(W) 1s an 12 kernel for all W, we are rigorously

Justified 1in evaluating the resolvent [1 - K(W) ]"1 by the modified

~ 7 Fredholm formulaeloz

[L-RWIh =1+ FWAW . (5a)
Ho = ) B0 S Ga
B(w) = y.ﬁn(w) ’ o - (5.3)

! , v : n=0
:

the operators ﬁn(W) and the functions ﬁ‘n(w) being given by the recursion

‘relations:

B () = - =5 e (W (0) - B (w) (W) BN CRY
N, 00 = (B ) +8, _ 0Ikw  (5.5)
By =15 N =k . (5.6

It 18 easy to see that the Fredholm numerator end denominator for K(W)
are related to the mumeratpr N(W) end denouinator D(W) for the original:

kernel K(W), by

_—
it

i
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'1‘\r‘(w)} w72 v—1/2 N(W) 5.1

D(W) = D(W) : " ,, _f ."(5;8)

80 that the T-cperator '(2.13) 1

T(W) =V +

vleif(w) vl/2 | YN . ey
+ D(W . ) (5 09)
Bw) z R
Hence symmetrization affords en easy and yet rigorous proof_ for the -
 applicebility of the usual Fredholm method.
But symmetrization does even more. It 1s well knowm that. the
Fredholm series for N(W) converges uniformJy in Hilbert space because the

_5

12 nom of the neth term is bounded by °
e (N (w) M (07) = 0 e T . (5.10)

It follows from (5.9), (5.10), and (2.21) that for local potentials the

n + l-th term in the numerator of the T-matrix 1s bounded by

11 2 80 V2 () 5 0o T 2203 ol i) L
| - (5.1)

Also, the n-th term of the denominator is bounded bylo

’5n(w)| < n-n/2[e ;(w)](nfl)/2 . | ‘v " (5.12)
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Using (3.8) let us vrite these 1£§qpa11tié§ $§, '
.'(R"‘ vH/2 N, (W) vl/a' 2] : é-n/e[e ;](§+1)/?(2ﬂ)-3 fﬁBr ,'-V.(z)l-.' <5.13) .
' B0 5 23 ?J(nﬂ)v/e (5.8

1

“ 8o we see that the Fredholm expansions converge uniformly in p', p, and

W. This resulf has been obtained before ,ll but by a tortuous method and
under strongly restrictive conditions on ﬁhe potential.

Uniform convergenée i1s not .restricted to the Fredholm expansions,
Let us suppose for examplé t;i;at the interaction 1s sufficiently week so

that

";:< l ° . (5015)

Then the ordinary Born series converges uniformly in Hilbert space,

because
‘ N - oo )
Iix - o™ - Y R@Ms ) RGP
. n=0 =N+1 :
) (5.16)
¢ ?{(N"'l)/a |
£ - .
| 4 X : (l - 7{172)

Using (2.21) again glves
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[(p'| T(W) lg)-— (p'| Vv +_V Go(w) V4 coe V(G;)(W) V)Nv lg)l

(5.7)

~(N+l)/2
s f e V)|

{

so (5.15) ensures that the 6rd1nary Born series converges uniformly in

B » Py 8nd W. [The series actually converges uniformly whenever it convergea 5.

even if 7 > 1.]
In the same way, the modified Born series (4.5) for TQ(W) will

converge uniformly in p, p' and in W as long as 'tQ(w) <1.
_ These uniformity properties are useful, both for practical
calculations, and for the study oi’ analyticity prope:r't::!.es:!‘2 of the

S~matrix.
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission”" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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