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Common variants associated with plasma triglycerides and risk 
for coronary artery disease
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Abstract

Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiologic 

studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). 

However, it is unclear whether this association reflects causal processes. We used 185 common 

variants recently mapped for plasma lipids (P<5×10−8 for each) to examine the role of 

triglycerides on risk for CAD. First, we highlight loci associated with both low-density lipoprotein 

cholesterol (LDL-C) and triglycerides, and show that the direction and magnitude of both are 

factors in determining CAD risk. Second, we consider loci with only a strong magnitude of 

association with triglycerides and show that these loci are also associated with CAD. Finally, in a 

model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol, a 

polymorphism's strength of effect on triglycerides is correlated with the magnitude of its effect on 

CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for 

CAD.

Coronary artery disease (CAD) is one of the leading causes of death and infirmity 

worldwide1. Plasma lipids such as cholesterol and triglycerides are associated with risk for 

CAD. Cholesterol is mostly carried in either low-density lipoproteins (LDL) or high-density 

lipoproteins (HDL) whereas triglycerides are mostly transported in very low-density 

lipoproteins (VLDL), chylomicrons, and remnants of their metabolism.

In observational epidemiologic studies, plasma concentrations of increased triglycerides, 

increased LDL cholesterol (LDL-C), and decreased HDL cholesterol (HDL-C) are 

associated with increased risk for CAD2,3. However, it is difficult to establish causal 

inference from observational epidemiology4, especially given the correlations among 

triglycerides, LDL-C, and HDL-C3.

Single nucleotide polymorphisms (SNPs) can be used as instruments to test whether a 

biomarker causally relates to disease risk5,6. Because genotypes are randomly assigned at 

meiosis and fixed throughout lifetime, a genetic association may overcome some limitations 

of observational epidemiology such as confounding and reverse causation7,8. Using gene 

variants that exclusively affect a biomarker of interest (i.e., no pleiotropic effects on other 
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factors), investigators have confirmed LDL-C as a causal risk factor for CAD9 and have cast 

doubt on whether HDL-C directly influences risk for CAD10-15.

However, to date, it has been challenging to utilize a similar approach to define if plasma 

triglycerides reflect processes causal for CAD. In contrast to LDL-C and HDL-C, nearly all 

SNPs identified to date for plasma triglycerides have additional effects on either plasma 

LDL-C or HDL-C16-18, violating the “no pleiotropy” assumption of instrumental variable 

analysis8,19.

Here, we utilize common variants and develop a statistical framework to dissect causal 

influences among a set of correlated biomarkers. As this approach requires a large set of 

SNPs where precise measurements of effect on triglycerides, LDL-C, HDL-C, and CAD risk 

are simultaneously available, we leveraged: 1) 185 common SNPs all representing 

independent loci that are associated with at least one lipid trait at genome-wide levels of 

significance; 2) estimates of effect of each SNP on plasma triglycerides, LDL-C, and HDL-

C in a sample exceeding 180,000 individuals; and 3) estimates of effect of each SNP on 

CAD in a sample exceeding 86,000 individuals (22,233 cases and 64,762 controls).

We studied 185 SNPs at 157 one megabase pair intervals with association P<5×10−8 for 

triglycerides, LDL-C, or HDL-C in a meta-analysis involving 188,578 genotyped 

individuals (see companion manuscript20). For each SNP, we obtained effect estimates for 

triglycerides (βTRIGLYCERIDES), LDL-C (βLDL-C), and HDL-C (βHDL-C) (in standard 

deviation units and estimated using inverse normal transformed residuals of lipid levels after 

adjusting for covariates; see Supplementary Figure 1 for study design). We also estimated 

the effect of each SNP on CAD (βCAD) from a recently published genome-wide association 

study (GWAS) involving 86,995 individuals (the CARDIoGRAM study)21. For the 185 

SNPs, effect sizes (β) and P-values for triglycerides, LDL-C, HDL-C, and CAD are shown 

in Supplementary Table 1.

We considered several analytic approaches to investigate whether plasma triglycerides 

reflect processes causal for CAD. First, we evaluated the direction and magnitude of βLDL-C 

and βTRIGLYCERIDES in combination, and then compared these to βCAD (Figure 1 and 

Supplementary Figure 2). Second, to isolate the effect of triglycerides, from the 185 SNPs, 

we restricted analysis to loci that have moderate to strong effect on triglycerides (large 

βTRIGLYCERIDES) but minimal effect on LDL-C (small βLDL-C). Finally, across the 185 

SNPs, we formally developed and applied a statistical framework to test if the effect size of 

a SNP on triglycerides is linearly related to its effect size on CAD, before and after 

accounting for the same SNP's potential effect on plasma LDL-C and/or HDL-C.

For each of the 185 independent lipid SNPs, we evaluated joint patterns of associations for 

triglycerides and LDL-C by examining SNPs that have strong association to both 

triglycerides and LDL-C (P<5×10−8for each). Among these, we examined SNPs with the 

same direction and a similar magnitude of association for both lipid traits (within a factor of 

5). We observed 11 loci with this pattern of association. Five loci confer risk for CAD 

(P<0.05) and ten of the eleven loci show a direction of effect consistent between the lipid 

traits and CAD (Table 1). For example, the A allele at rs2954022 in the TRIB1 gene was 
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associated strongly with lower triglycerides (βTRIGLYCERIDES=−0.078, P=2×10−124) and 

lower LDL-C (βLDL-C=−0.055, P=4×10−51) and showed the expected association with lower 

CAD risk (βCAD=−0.056, P=6×10−5).

Next, we identified SNPs that had strong association with both triglycerides and LDL-C 

(P<5×10−8 for each) but had opposite directions for βTRIGLYCERIDES and βLDL-C (within a 

factor of 5, Table 2). Four SNPs displayed this pattern and none showed significant 

association with CAD (all P>0.05). For example, the A allele at rs2255141 in the GPAM 

gene was associated with lower triglycerides (βTRIGLYCERIDES=−0.021, P=1×10−8) and 

higher LDL-C (βLDL-C=0.030, P=7×10−14) but had no discernible effect on CAD risk (βCAD 

=−0.0076, P=0.63).

Secondly, we considered a subset of the 185 SNPs that have moderate to strong effects on 

triglycerides but minimal effect on LDL-C [n=44 SNPs, all SNPs have large 

βTRIGLYCERIDES (>0.01 or <−0.01) but small βLDL-C (between −0.01 and 0.01)]. In 

regression analysis, we confirmed that βLDL-C was not associated with βCAD for this set of 

SNPs (P=0.68; see Supplementary Table 2). However, we observed a significant association 

of βTRIGLYCERIDES and βCAD (P=3×10−5; see Supplementary Table 3). These observations 

suggest that the direction and magnitude of effect of a SNP on both triglycerides and LDL-C 

impact risk for CAD.

To formally investigate whether the strength of a SNP's association with triglycerides 

predicts CAD risk, we devised a statistical framework that controls for pleiotropic effects on 

secondary lipid traits. This approach is particularly important because SNP association 

signals with triglycerides, LDL-C, and/or HDL-C (βTRIGLYCERIDES, βLDL-C, and βHDL-C) 

are correlated (Supplementary Figure 3 and Supplementary Table 4).

We tested the role of triglycerides on CAD by first calculating residuals of βCAD after 

including as covariates βLDL-C and βHDL-C in our regression model (Supplementary Figure 

1). We then tested the association of βTRIGLYCERIDES with βCAD residuals. Similar models 

were created to assess the independent roles of LDL-C and HDL-C.

We observed that across the 185 SNPs, βLDL-C was strongly associated with βCAD, after 

adjusting for either βTRIGLYCERIDES individually, βHDL-C individually, or both 

βTRIGLYCERIDES and βHDL-C (all P < 1×10−18, Table 3). The pattern for βHDL-C was 

different. Across the 185 SNPs, βHDL-C was associated with βCAD, after adjusting for βLDL-C 

(P=0.005); however, this association was greatly attenuated after adjusting for 

βTRIGLYCERIDES individually (P=0.057) and rendered non-significant after accounting for 

both βTRIGLYCERIDES and βLDL-C (P=0.35, Table 3).

The results for triglycerides were similar to those observed for LDL-C. Across the 185 

SNPs, βTRIGLYCERIDES was strongly associated with βCAD, after adjusting for both βLDL-C 

and βHDL-C (P =1×10−9, Table 3).

As an alternative to this approach using residuals, we also tested a single model with the 

outcome variable of βCAD and predictor variables of βTRIGLYCERIDES, βLDL-C and βHDL-C 

considered jointly (Supplementary Table 5). Results were similar with βTRIGLYCERIDES and 
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βLDL-C showing association with βCAD (P=2×10−10 and P=1×10−22, respectively) but 

βHDL-C failing to show association (P=0.32).

In summary, we have demonstrated that: 1) SNPs with the same direction and a similar 

magnitude of association for both triglycerides and LDL-C tend to associate with CAD risk; 

2) loci that have an exclusive effect on triglycerides are also associated with CAD; and 3) 

the strength of a SNP's effect on triglycerides is correlated with the magnitude of its effect 

on CAD risk, even after accounting for the same SNP's effect on LDL-C and/or HDL-C.

Using an analytical approach that accounts for the potential pleiotropic effects of a SNP on 

triglycerides, LDL-C, and/or HDL-C, we provide evidence that plasma triglycerides likely 

reflects processes causal for CAD. This finding based on 185 common SNPs is in line with 

recent reports of specific genes predominantly related to triglycerides also affecting risk for 

CAD. A promoter SNP in the APOA5 gene22, a common SNP upstream of the TRIB1 

gene23, and a nonsense polymorphism at the APOC3 gene24 all predominantly associate 

with plasma triglycerides and each SNP has been convincingly related to clinical CAD11,25 

or subclinical atherosclerosis24.

Our results raise several questions. First, if plasma triglycerides reflect causal processes, 

what are the specific mechanistic direct links to atherosclerosis? Triglycerides are carried in 

plasma mostly in VLDL, chylomicrons and remnants of their metabolism and as such, 

triglycerides capture several physiologic processes that may promote atherosclerosis. One 

potential link is post-prandial cholesterol metabolism. Plasma triglycerides are highly 

correlated with the amount of cholesterol in remnant lipoproteins (i.e., VLDL and 

chylomicron particles after interaction with lipoprotein lipase) and a variety of evidence 

ranging from the human Mendelian disorder of Type III hyperlipoproteinemia to 

experimental evidence in cell culture and animal models suggests that cholesterol-rich 

remnant particles have pro-atherogenic properties similar to LDL (reviewed in 26). Another 

process reflected by plasma triglycerides is the activity of lipoprotein lipase, a key enzyme 

that hydrolyzes triglycerides within triglyceride-rich lipoproteins. Higher enzymatic activity 

of lipoprotein lipase in the circulation leads to lower plasma triglycerides; a gain-of-function 

nonsense polymorphism in the LPL gene has been shown to not only reduce plasma 

triglyceride levels but also lower risk for CAD27.

Second, why are plasma triglycerides not significantly associated with CAD in observational 

epidemiologic studies when multiple risk factors are considered jointly to predict risk for 

future CAD2? Multivariable models have known limitations for assessing the etiological 

relevance for a given exposure. For example, an exposure may be rendered non-significant 

after multivariable adjustment because of less precise measurement or greater biologic 

variability when compared with other factors. Plasma triglyceride measurements are more 

variable than other plasma lipids such as HDL-C26. Alternatively, downstream effects of an 

exposure may more completely capture the risk conferred. For example, body mass index 

does not predict CAD risk in the Framingham model after accounting for blood pressure and 

type 2 diabetes despite the accepted causal influence of weight on blood pressure and type 2 

diabetes28. Our approach using SNPs as proxies overcomes these limitations of 

observational epidemiology.
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Finally, what are the implications of these data for the development of drugs aimed at 

lowering plasma triglycerides with the hope of reducing CAD risk? Several recent 

randomized controlled trials have tested whether the lowering of plasma triglycerides with 

fish oils29 or with fibrates30-32 will decrease risk for CAD and in many cases, treatment did 

not reduce risk29,31,32. Possible explanations for failed trials are wrong study population, 

wrong mechanism of lowering triglycerides, insufficient degree of triglyceride-lowering, 

and limited statistical power.

Our study has several limitations. SNPs associated with triglycerides also relate to other 

lipid traits and thus, are not ideal instruments for Mendelian randomization analysis. Given 

that the plasma triglycerides measured in the blood is the end product of several metabolic 

processes, it is not surprising that triglyceride-related SNPs affect at least one other lipid 

trait. We have attempted to address this complexity through our statistical approach.

We are unable to distinguish if only specific mechanisms of altering triglycerides affect risk 

for CAD. Of note, there is strong evidence that at least three mechanisms that robustly 

influence triglycerides – loss of APOA5 function, loss of TRIB1 function, and gain of 

APOC3 function –increase risk for CAD.

In summary, we utilize common polymorphisms and employ a statistical framework to 

dissect causal influences among a set of correlated biomarkers. By applying this framework 

to a correlated set of plasma lipid measures and CAD risk, we suggest a causal role of 

triglyceride-rich lipoproteins in the development of CAD.

Online Methods

For the association of a given SNP with a plasma lipid trait, we obtained estimates of the 

effect size (βTRIGLYCERIDES, βLDL-C and βHDL-C) and strength of association (P-value) from 

a meta-analysis of association results from genome-wide and custom-array genotyping – the 

Global Lipids Genetics Consortium (GLGC) Metabochip study (described in companion 

manuscript, Willer et al.20). All effect sizes are in standard deviation units from inverse 

normal transformed residuals of lipids after adjusting for covariates. This analysis included 

up to 188,578 individuals from 60 studies. For the association of a given SNP with coronary 

artery disease (CAD), we obtained estimates of the effect size (βCAD) and strength of 

association (P-value) from a published GWAS study for CAD, the CARDIoGRAM study21. 

This study included 22,233 cases and 63,762 controls.

We selected independent SNPs associated with plasma lipids using the following criteria. 

First, we restricted to SNPs with association with at least one of the three lipid traits 

(triglycerides, LDL-C or HDL-C) at a genome-wide significance level of P<5×10−8. For 

each lipid locus – defined as a region of the genome that has a cluster of associated SNPs 

within one megabase from each other – we selected the strongest associated SNP (‘lead’ 

SNP). For loci with multiple associated SNPs, we calculated pairwise linkage disequilibrium 

(LD) estimates (r2) of these SNPs using whole genome sequencing data from 85 Utah 

residents with ancestryfrom northern and western Europe (CEU) samples from the 1000 

Genomes project33, and selected a second SNP if there was very low LD (r2<0.05) with the 

lead SNP. In total, we selected 185 SNPs that met these criteria. These criteria yield a 
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conservative estimate of the number of independent lipid SNPs. A list of effect sizes and P-

values for triglycerides, LDL-C, HDL-C and CAD for the 185 selected SNPs is shown in 

Supplementary Table 1.

To formally investigate whether the strength of a SNP's association with triglycerides 

predicts CAD risk, we performed linear regression on the effect sizes of each SNP for 

triglycerides (βTRIGLYCERIDES), LDL-C (βLDL-C), HDL-C (βHDL-C) as predictor variables, 

and the effect sizes of CAD (βCAD) as the outcome variable. To control for pleiotropic 

effects, we first calculated the residuals of βCAD after adjusting for covariates of 

βTRIGLYCERIDES, βLDL-C and/or βHDL-C. We then performed linear regression analysis in a 

second model on the effect size of the primary lipid trait (βTRIGLYCERIDES, βLDL-C or 

βHDL-C) with the residuals of βCAD. For example, to test for the role of LDL-C on CAD, we 

first calculated residuals of βCAD after including as covariates βTRIGLYCERIDES and βHDL-C 

in our regression model. In a second regression model, we then performed association of 

residual βCAD with βLDL-C. All possible combinations of linear regression analysis was 

performed between βTRIGLYCERIDES, βLDL-C or βHDL-C on βCAD (see Table 3).

As an alternative to this residuals approach, we also tested a single model where the 

outcome variable of βCAD was tested with the predictor variables of βTRIGLYCERIDES, 

βLDL-C and βHDL-C jointly considered (Supplementary Table 5). We also performed several 

sensitivity analyses to test for the effect of using different thresholds on βTRIGLYCERIDES 

and βLDL-C when highlighting loci with associations for both triglycerides and LDL-C 

(Supplementary Table 6, 7 and 8). We used thresholds that yielded the highest number of 

SNPs for each statistical analysis (factor threshold of 5 in Table 1 and Table 2, and β cutoff 

value of 0.01 in Supplementary Table 2 and 3). Furthermore, we assessed the effect of 

extreme influential outliers using Cook's D statistic34 (Supplementary Figure 4 and 

Supplementary Table 9) on our conditional regression models (Table 3). A list of the 

number of SNPs included in each of the different analyses are shown in Supplementary 

Table 10.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Authors 

Ron Do1,2,3,4, Cristen J. Willer5,6,7,8, Ellen M. Schmidt6, Sebanti Sengupta8, Chi 
Gao1,2,4, Gina M. Peloso2,4,9, Stefan Gustafsson10,11, Stavroula Kanoni12, Andrea 
Ganna10,11,13, Jin Chen8, Martin L. Buchkovich14, Samia Mora15,16, Jacques S. 
Beckmann17,18, Jennifer L. Bragg-Gresham8, Hsing-Yi Chang19, Ayşe Demirkan20, 
Heleen M. Den Hertog21, Louise A. Donnelly22, Georg B. Ehret23,24, Tõnu 
Esko4,25,26, Mary F. Feitosa27, Teresa Ferreira28, Krista Fischer25, Pierre 
Fontanillas4, Ross M. Fraser29, Daniel F. Freitag30, Deepti Gurdasani12,30, Kauko 
Heikkilä31, Elina Hyppönen32, Aaron Isaacs20,33, Anne U. Jackson8, Åsa 
Johansson34,35, Toby Johnson36,37, Marika Kaakinen38,39, Johannes Kettunen40,41, 
Marcus E. Kleber42,43, Xiaohui Li44, Jian'an Luan45, Leo-Pekka Lyytikäinen46,47, 

Do et al. Page 6

Nat Genet. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Patrik K.E. Magnusson13, Massimo Mangino48, Evelin Mihailov25,26, May E. 
Montasser49, Martina Müller-Nurasyid50,51,52, Ilja M. Nolte53, Jeffrey R. 
O'Connell49, Cameron D. Palmer4,54,55, Markus Perola25,40,41, Ann-Kristin 
Petersen50, Serena Sanna56, Richa Saxena2, Susan K. Service57, Sonia Shah58, 
Dmitry Shungin59,60,61, Carlo Sidore8,56,62, Ci Song10,11,13, Rona J. 
Strawbridge63,64, Ida Surakka40,41, Toshiko Tanaka65, Tanya M. Teslovich8, 
Gudmar Thorleifsson66, Evita G. Van den Herik21, Benjamin F. Voight67,68, Kelly A. 
Volcik69, Lindsay L. Waite70, Andrew Wong71, Ying Wu14, Weihua Zhang72,73, 
Devin Absher70, Gershim Asiki74, Inês Barroso12,75, Latonya F. Been76, Jennifer L. 
Bolton29, Lori L Bonnycastle77, Paolo Brambilla78, Mary S. Burnett79, Giancarlo 
Cesana80, Maria Dimitriou81, Alex S.F. Doney22, Angela Döring82,83, Paul 
Elliott39,72,84, Stephen E. Epstein79, Gudmundur Ingi Eyjolfsson85, Bruna Gigante86, 
Mark O. Goodarzi87, Harald Grallert88, Martha L. Gravito76, Christopher J. 
Groves89, Göran Hallmans90, Anna-Liisa Hartikainen91, Caroline Hayward92, Dena 
Hernandez93, Andrew A. Hicks94, Hilma Holm66, Yi-Jen Hung95, Thomas Illig88,96, 
Michelle R. Jones87, Pontiano Kaleebu74, John J.P. Kastelein97, Kay-Tee Khaw98, 
Eric Kim44, Norman Klopp88,96, Pirjo Komulainen99, Meena Kumari58, Claudia 
Langenberg45, Terho Lehtimäki46,47, Shih-Yi Lin100, Jaana Lindström101, Ruth J.F. 
Loos45,102,103,104, François Mach23, Wendy L McArdle105, Christa Meisinger82, 
Braxton D. Mitchell49, Gabrielle Müller106, Ramaiah Nagaraja107, Narisu Narisu77, 
Tuomo V.M. Nieminen108,109,110, Rebecca N. Nsubuga74, Isleifur Olafsson111, Ken 
K. Ong45,71, Aarno Palotie40,112,113, Theodore Papamarkou12,30,114, Cristina 
Pomilla12,30, Anneli Pouta91,115, Daniel J. Rader116,117, Muredach P. Reilly116,117, 
Paul M. Ridker15,16, Fernando Rivadeneira118,119,120, Igor Rudan29, Aimo 
Ruokonen121, Nilesh Samani122,123, Hubert Scharnagl124, Janet Seeley74,125, 
Kaisa Silander40,41, Alena Stančáková126, Kathleen Stirrups12, Amy J. Swift77, 
Laurence Tiret127, Andre G. Uitterlinden118,119,120, L. Joost van Pelt128,129, Sailaja 
Vedantam4,54,55, Nicholas Wainwright12,30, Cisca Wijmenga129,130, Sarah H. 
Wild29, Gonneke Willemsen131, Tom Wilsgaard132, James F. Wilson29, Elizabeth H. 
Young12,30, Jing Hua Zhao45, Linda S. Adair133, Dominique Arveiler134, 
Themistocles L. Assimes135, Stefania Bandinelli136, Franklyn Bennett137, Murielle 
Bochud138, Bernhard O. Boehm139,140, Dorret I. Boomsma131, Ingrid B. Borecki27, 
Stefan R. Bornstein141, Pascal Bovet138,142, Michel Burnier143, Harry Campbell29, 
Aravinda Chakravarti24, John C. Chambers72,73,144, Yii-Der Ida Chen145,146, 
Francis S. Collins77, Richard S. Cooper147, John Danesh30, George Dedoussis81, 
Ulf de Faire86, Alan B. Feranil148, Jean Ferrières149, Luigi Ferrucci65, Nelson B. 
Freimer57,150, Christian Gieger50, Leif C. Groop151,152, Vilmundur Gudnason153, Ulf 
Gyllensten34, Anders Hamsten63,64,154, Tamara B. Harris155, Aroon Hingorani58, 
Joel N. Hirschhorn4,54,55, Albert Hofman118,120, G. Kees Hovingh97, Chao Agnes 
Hsiung156, Steve E. Humphries157, Steven C. Hunt158, Kristian Hveem159, Carlos 
Iribarren160, Marjo-Riitta Järvelin38,39,72,84,115,161, Antti Jula162, Mika Kähönen163, 
Jaakko Kaprio31,40,164, Antero Kesäniemi165, Mika Kivimaki58, Jaspal S. 
Kooner73,144,166, Peter J. Koudstaal21, Ronald M. Krauss167, Diana Kuh71, Johanna 
Kuusisto168, Kirsten O. Kyvik169,170, Markku Laakso168, Timo A. Lakka99,171, Lars 
Lind172, Cecilia M. Lindgren28, Nicholas G. Martin173, Winfried März43,124,174, Mark 

Do et al. Page 7

Nat Genet. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



I. McCarthy28,89, Colin A. McKenzie175, Pierre Meneton176, Andres Metspalu25,26, 
Leena Moilanen177, Andrew D. Morris22, Patricia B. Munroe36,37, Inger Njølstad132, 
Nancy L. Pedersen13, Chris Power32, Peter P. Pramstaller94,178,179, Jackie F. 
Price29, Bruce M. Psaty180,181, Thomas Quertermous135, Rainer Rauramaa99,182, 
Danish Saleheen30,183,184, Veikko Salomaa185, Dharambir K. Sanghera76, Jouko 
Saramies186, Peter E.H. Schwarz141,187, Wayne H-H Sheu188, Alan R. 
Shuldiner49,189, Agneta Siegbahn10,35,172, Tim D. Spector48, Kari Stefansson66,190, 
David P. Strachan191, Bamidele O. Tayo147, Elena Tremoli192, Jaakko 
Tuomilehto101,193,194,195, Matti Uusitupa196,197, Cornelia M. van Duijn20,33, Peter 
Vollenweider198, Lars Wallentin35,172, Nicholas J. Wareham45, John B. Whitfield173, 
Bruce H.R. Wolffenbuttel129,199, David Altshuler2,3,4, Jose M. Ordovas200,201,202, 
Eric Boerwinkle69, Colin N.A. Palmer22, Unnur Thorsteinsdottir66,190, Daniel I. 
Chasman15,16, Jerome I. Rotter44, Paul W. Franks59,61,203, Samuli Ripatti12,40,41, L. 
Adrienne Cupples9,204, Manjinder S. Sandhu12,30, Stephen S. Rich205, Michael 
Boehnke8, Panos Deloukas12, Karen L. Mohlke14, Erik Ingelsson10,11,28, Goncalo 
R. Abecasis8, Mark J. Daly2,4,206,*,†, Benjamin M. Neale2,4,206,*,†, and Sekar 
Kathiresan1,2,3,4,*,†

Affiliations
1Cardiovascular Research Center, Massachusetts General Hospital, Boston, 
Massachusetts 02114, USA 2Center for Human Genetic Research, Massachusetts 
General Hospital, Boston, Massachusetts 02114, USA 3Department of Medicine, 
Harvard Medical School, Boston, Massachusetts 02115, USA 4Program in Medical 
and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 
02142, USA 5Department of Internal Medicine, Division of Cardiovascular Medicine, 
University of Michigan, Ann Arbor, Michigan 48109, USA 6Department of 
Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, 
Michigan 48109, USA 7Department of Human Genetics, University of Michigan, Ann 
Arbor, Michigan 48109, USA 8Center for Statistical Genetics, Department of 
Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA 9Department 
of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 
02118, USA 10Department of Medical Sciences, Molecular Epidemiology, Uppsala 
University, Uppsala, Sweden 11Science for Life Laboratory, Uppsala University, 
Uppsala, Sweden 12Wellcome Trust Sanger Institute, Wellcome Trust Genome 
Campus, CB10 1SA, Hinxton, United Kingdom 13Department of Medical 
Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden 
14Department of Genetics, University of North Carolina, Chapel Hill, NC 27599 USA 
15Division of Preventive Medicine, Brigham and Women's Hospital, 900 
Commonwealth Ave., Boston MA 02215, USA 16Harvard Medical School, Boston 
MA 02115, USA 17Service of Medical Genetics, Lausanne University Hospital, 
Lausanne, Switzerland 18Department of Medical Genetics, University of Lausanne, 
Lausanne, Switzerland 19Division of Preventive Medicine and Health Services 
Research, Institute of Population Health Sciences, National Health Research 
Institutes, Zhunan, Taiwan 20Genetic Epidemiology Unit, Department of 
Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands 

Do et al. Page 8

Nat Genet. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



21Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands 
22Medical Research Institute, University of Dundee, Ninewells Hospital and Medical 
School. Dundee, DD1 9SY, United Kingdom 23Cardiology, Department of 
Specialities of Medicine, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, 
1211 Geneva 14, Switzerland 24Center for Complex Disease Genomics, McKusick-
Nathans Institute of Genetic Medicine, Johns Hopkins University School of 
Medicine, Baltimore, MD 21205, USA 25Estonian Genome Center of the University 
of Tartu, Tartu, Estonia 26Institute of Molecular and Cell Biology, University of Tartu, 
Tartu, Estonia 27Department of Genetics, Washington University School of 
Medicine, USA 28Wellcome Trust Centre for Human Genetics, University of Oxford, 
Oxford, OX3 7BN, United Kingdom 29Centre for Population Health Sciences, 
University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland, United 
Kingdom 30Department of Public Health and Primary Care, University of Cambridge, 
Cambridge, United Kingdom 31Hjelt Institute, Department of Public Health, 
University of Helsinki, Finland 32Centre For Paediatric Epidemiology and 
Biostatistics/MRC Centre of Epidemiology for Child Health, University College of 
London Institute of Child Health, London, United Kingdom 33Centre for Medical 
Systems Biology, Leiden, the Netherlands 34Department of Immunology, Genetics 
and Pathology, Uppsala University, Uppsala, Sweden 35Uppsala Clinical Research 
Center, Uppsala University, Uppsala, Sweden 36Genome Centre, Barts and The 
London School of Medicine and Dentistry, Queen Mary University of London, 
London, UK 37Clinical Pharmacology, NIHR Cardiovascular Biomedical Research 
Unit, William Harvey Research Institute, Barts and The London School of Medicine 
and Dentistry Queen Mary University of London, London, UK 38Biocenter Oulu, 
University of Oulu, Oulu, Finland 39Institute of Health Sciences, University of Oulu, 
Finland 40Institute for Molecular Medicine Finland FIMM, University of Helsinki, 
Finland 41Public Health Genomics Unit, National Institute for Health and Welfare, 
Helsinki, Finland 42Department of Internal Medicine II – Cardiology, University of 
Ulm Medical Centre, Ulm, Germany 43Mannheim Institute of Public Health, Social 
and Preventive Medicine, Medical Faculty of Mannheim, University of Heidelberg, 
Ludolf-Krehl-Strasse 7-11, 68167 Mannheim, Germany 44Medical Genetics Institute, 
Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA 45MRC Epidemiology 
Unit, Institute of Metabolic Science, Box 285, Addenbrooke's Hospital, Hills Road, 
Cambridge, CB2 0QQ, United Kingdom 46Department of Clinical Chemistry, Fimlab 
Laboratories, Tampere 33520, Finland 47Department of Clinical Chemistry, 
University of Tampere School of Medicine, Tampere 33014, Finland 48Department 
of Twin Research and Genetic Epidemiology, King's College London, London, 
United Kingdom 49Division of Endocrinology, Diabetes, and Nutrition, Department of 
Medicine, University of Maryland, School of Medicine, Baltimore, Maryland 
50Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg 
85764, Germany 51Department of Medicine I, University Hospital Grosshadern, 
Ludwig-Maximilians University, Munich, Germany 52Institute of Medical Informatics, 
Biometry and Epidemiology, Ludwig-Maximilians-University of Munich, Munich, 
Germany 53Department of Epidemiology, University of Groningen, University 

Do et al. Page 9

Nat Genet. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Medical Center Groningen, The Netherlands 54Division of Endocrinology, Children's 
Hospital Boston, Boston, Massachusetts 02115, USA 55Division of Genetics, 
Program in Genomics, Children's Hospital Boston, Boston, Massachusetts 02115, 
USA 56Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, 
Monserrato, 09042, Italy 57Center for Neurobehavioral Genetics, The Semel 
Institute for Neuroscience and Human Behavior, University of California, Los 
Angeles, USA 58Genetic Epidemiology Group, Deparment of Epidemiology and 
Public Health, UCL, London WC1E 6BT, United Kingdom 59Department of Clinical 
Sciences, Genetic & Molecular Epidemiology Unit, Lund University Diabetes Center, 
Scania University Hosptial, Malmö, Sweden 60Department of Odontology, Umeå 
University, Umeå, Sweden 61Department of Public Health and Primary Care, Unit of 
Medicine, Umeå University, Umeå, Sweden 62Dipartimento di Scienze Biomediche, 
Universita di Sassari, 07100 SS, Italy 63Atherosclerosis Research Unit, Department 
of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, 
Sweden 64Center for Molecular Medicine, Karolinska University Hospital, 
Stockholm, Sweden 65Clinical Research Branch, National Institute Health, 
Baltimore, MD, USA 66deCODE Genetics/Amgen, 101 Reykjavik, Iceland 
67Department of Genetics, University of Pennsylvania - School of Medicine, 
Philadelphia PA, 19104, USA 68Department of Systems Pharmacology and 
Translational Therapeutics, University of Pennsylvania - School of Medicine, 
Philadelphia PA, 19104, USA 69Human Genetics Center, University of Texas Health 
Science Center - School of Public Health, Houston, TX 77030, USA 70HudsonAlpha 
Institute for Biotechnology, Huntsville, AL, USA 71MRC Unit for Lifelong Health and 
Ageing, 33 Bedford Place, London, WC1B 5JU, United Kingdom 72Department of 
Epidemiology and Biostatistics, School of Public Health, Imperial College London, 
London, United Kingdom 73Ealing Hospital, Southall, Middlesex UB1 3HW, United 
Kingdom 74MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda 
75University of Cambridge Metabolic Research Laboratories and NIHR Cambridge 
Biomedical Research Centre, Level 4, Institute of Metabolic Science Box 289 
Addenbrooke's Hospital Cambridge CB2 OQQ, UK 76Department of Pediatrics, 
University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 
77Genome Technology Branch, National Human Genome Research Institute, NIH, 
Bethesda, MD 20892, USA 78Department of Experimental Medicine, University of 
Milano Bicocca, Italy 79MedStar Health Research Institute, 6525 Belcrest Road, 
Suite 700, Hyattsville, MD 20782, USA 80Research Centre on Public Health, 
University of Milano Bicocca, Italy 81Department of Dietetics-Nutrition, Harokopio 
University, 70 El. Venizelou Str, Athens, Greece 82Institute of Epidemiology I, 
Helmholtz Zentrum München, Neuherberg 85764, Germany 83Institute of 
Epidemiology II, Helmholtz Zentrum München, Neuherberg 85764, Germany 84MRC 
Health Protection Agency (HPA) Centre for Environment and Health, School of 
Public Health, Imperial College London, UK 85The Laboratory in Mjodd, 108 
Reykjavik, Iceland 86Division of Cardiovascular Epidemiology, Institute of 
Environmental Medicine, Karolinska Institutet, Stockholm, Sweden 87Division of 
Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai 

Do et al. Page 10

Nat Genet. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Medical Center, Los Angeles, CA 90048, USA 88Research Unit of Molecular 
Epidemiology, Helmholtz Zentrum München, Neuherberg 85764, Germany 89Oxford 
Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, OX3 7LJ, 
United Kingdom 90Department of Public Health and Clinical Medicine, Nutritional 
research, Umeå University, Umeå, Sweden 91Department of Clinical Sciences/
Obstetrics and Gynecology, Oulu University Hospital, Oulu, Finland 92MRC Human 
Genetics Unit, Institute of Genetics and Molecular Medicine, Western General 
Hospital, Edinburgh, Scotland, United Kingdom 93Laboratory of Neurogenetics, 
National Institute on Aging, Bethesda, MD 20892, USA 94Center for Biomedicine, 
European Academy Bozen/Bolzano (EURAC), Bolzano, Italy - Affiliated Institute of 
the University of Lübeck, Lübeck, Germany 95Division of Endocrinology & 
Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, 
Taiwan 96Hannover Unified Biobank, Hannover Medical School, Hannover 30625, 
Germany 97Department of Vascular Medicine, Academic Medical Center, 
Amsterdam, The Netherlands 98Clinical Gerontology Unit, University of Cambridge, 
Cambridge, United Kingdom 99Kuopio Research Institute of Exercise Medicine, 
Kuopio, Finland 100Division of Endocrine and Metabolism, Department of Internal 
Medicine, Taichung Veterans General Hospital, School of Medicine, National Yang-
Ming University, Taipei, Taiwan 101Diabetes Prevention Unit, National Institute for 
Health and Welfare, 00271 Helsinki, Finland 102The Genetics of Obesity and 
Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai, 
New York, USA 103The Charles Bronfman Institute for Personalized Medicine, The 
Icahn School of Medicine at Mount Sinai, New York, USA 104The Mindich Child 
Health and Development Institute, The Icahn School of Medicine at Mount Sinai, 
New York 105School of Social and Community Medicine, University of Bristol, 
Oakfield House, Oakfield Grove, Bristol BS8 2BN, United Kingdom 106Institute for 
Medical Informatics and Biometrics, University of Dresden, Medical Faculty Carl 
Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany 107Laboratory of 
Genetics, National Institute on Aging, Baltimore, MD21224, USA 108Department of 
Clinical Pharmacology, University of Tampere School of Medicine, Tampere 33014, 
Finland 109Department of Internal Medicine, Päijät-Häme Central Hospital, Lahti, 
Finland 110Division of Cardiology, Helsinki University Central Hospital, Helsinki, 
Finland 111Department of Clinical Biochemistry, Landspitali University Hospital, 101 
Reykjavik, Iceland 112Department of Medical Genetics, Haartman Institute, 
University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland 
113Genetic Epidemiology Group, Wellcome Trust Sanger Institute, Hinxton, 
Cambridge, United Kingdom 114Department of Statistical Sciences, University 
College of London, London, United Kingdom 115National Institute for Health and 
Welfare, Oulu, Finland 116Cardiovascular Institute, Perelman School of Medicine at 
the University of Pennsylvania, 3400 Civic Center Blvd, Building 421, Translational 
Research Center, Philadelphia, PA 19104-5158, USA 117Division of Translational 
Medicine and Human Genetics, Perelman School of Medicine at the University of 
Pennsylvania, 3400 Civic Center Blvd, Building 421, Translational Research Center, 
Philadelphia, PA 19104-5158, USA 118Department of Epidemiology, Erasmus 

Do et al. Page 11

Nat Genet. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



University Medical Center, Rotterdam, the Netherlands 119Department of Internal 
Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands 
120Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for 
Healthy Aging (NCHA), Leiden, The Netherlands 121Department of Clinical 
Sciences/Clinical Chemistry, University of Oulu, Oulu, Finland 122National Institute 
for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield 
Hospital, Leicester LE3 9QP, UK 123Department of Cardiovascular Sciences, 
University of Leicester, Glenfield Hospital, Leicester, LE3 9QP, UK 124Clinical 
Institute of Medical and Chemical Laboratory Diagnostics, Medical University of 
Graz, Austria 125School of International Development, University of East Anglia, 
Norwich NR4 7TJ, United Kingdom 126University of Eastern Finland and Kuopio 
University Hospital, 70210 Kuopio, Finland 127INSERM UMRS 937, Pierre and 
Marie Curie University, Paris, France 128Department of Laboratory Medicine, 
University of Groningen, University Medical Center Groningen, The Netherlands 
129LifeLines Cohort Study, University of Groningen, University Medical Center 
Groningen, The Netherlands 130Department of Genetics, University of Groningen, 
University Medical Center Groningen, The Netherlands 131Department of Biological 
Psychology, VU Univ, Amsterdam, The Netherlands 132Department of Community 
Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway 
133Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA 
134Department of Epidemiology and Public Health, EA 3430, University of 
Strasbourg, Faculty of Medicine, Strasbourg, France 135Department of Medicine, 
Stanford University School of Medicine, Stanford, CA, USA 136Geriatric Unit, 
Azienda Sanitaria Firenze (ASF), Florence, Italy 137Chemical Pathology, 
Department of Pathology, University of the West Indies, Mona, Kingston 7, Jamaica 
138Institute of Social and Preventive Medicine (IUMSP), Lausanne University 
Hospital, Route de la Corniche 10, 1010 Lausanne, Switzerland 139Division of 
Endocrinology and Diabetes, Department of Internal Medicine, Ulm University 
Medical Centre, Ulm, Germany 140Lee Kong Chian School of Medicine, Nanyang 
Technological University, Singapore 141Department of Medicine III, University of 
Dresden, Medical Faculty Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, 
Germany 142Ministry of Health, Victoria, Republic of Seychelles 143Service of 
Nephrology, Lausanne University Hospital, Lausanne, Switzerland 144Imperial 
College Healthcare NHS Trust, London, United Kingdom 145Division of 
Reproductive Endocrinology, Department of Obstetrics and Gynecology, Cedars-
Sinai Medical Center, Los Angeles, California, USA 146Department of Medicine, 
University of California Los Angeles, Los Angeles, California, USA 147Department of 
Preventive Medicine and Epidemiology, Loyola University Medical School, 
Maywood, Illinois 60153, USA 148Office of Population Studies Foundation, 
University of San Carlos, Talamban, Cebu City, Philippines 149Department of 
Cardiology, Toulouse University School of Medicine, Rangueil Hospital, Toulouse, 
France 150Department of Psychiatry, University of California, Los Angeles, USA 
151Department of Clinical Sciences, Lund University, SE-20502, Malmö, Sweden 
152Department of Medicine, Helsinki University Hospital, FI-00029 Helsinki, Finland 

Do et al. Page 12

Nat Genet. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



153Icelandic Heart Association, Kopavogur, Iceland 154Department of Cardiology, 
Karolinska University Hospital, Stockholm, Sweden 155Laboratory of Epidemiology, 
Demography, and Biometry, National Institute on Ageing, Bethesda, MD, USA 
156Institute of Population Health Sciences, National Health Research Institutes, 
Zhunan, Taiwan 157Cardiovascular Genetics, BHF Laboratories, Institute 
Cardiovascular Science, University College London, London, United Kingdom 
158Cardiovascular Genetics, University of Utah School of Medicine, Salt Lake City, 
UT, USA 159HUNT Research Centre, Department of Public Health and General 
Practice, Norwegian University of Science and Technology, Levanger, Norway 
160Kaiser Permanente, Division of Research, Oakland, CA, USA 161Unit of Primary 
Care, Oulu University Hospital, Oulu, Finland 162Department of Chronic Disease 
Prevention, National Institute for Health and Welfare, Turku, Finland 163Department 
of Clinical Physiology, University of Tampere School of Medicine, Tampere 33014, 
Finland 164Department of Mental Health and Substance Abuse Services, National 
Institute for Health and Welfare, Helsinki, Finland 165Institute of Clinical Medicine, 
Department of Medicine, University of Oulu and Clinical Research Center, Oulu 
University Hospital, Oulu, Finland 166National Heart & Lung Institute, Imperial 
College London, Hammersmith Hospital, London, United Kingdom 167Children's 
Hospital Oakland Research Institute, 5700 Martin Luther King Junior Way, Oakland, 
CA 94609, USA 168Department of Medicine, University of Eastern Finland and 
Kuopio University Hospital, 70210 Kuopio, Finland 169Institute of Regional Health 
Services Research, University of Southern Denmark, Odense, Denmark 170Odense 
Patient data Explorative Network (OPEN), Odense University Hospital, Odense, 
Denmark 171Institute of Biomedicine/Physiology, University of Eastern Finland, 
Kuopio Campus, Finland 172Department of Medical Sciences, Uppsala University, 
Uppsala, Sweden 173Queensland Institute of Medical Research, Locked Bag 2000, 
Royal Brisbane Hospital, Queensland 4029, Australia 174Synlab Academy, Synlab 
Services GmbH, Gottlieb-Daimler-Straβe 25, 68165 Mannheim, Germany 
175Tropical Metabolism Research Unit, Tropical Medicine Research Institute, 
University of the West Indies, Mona, Kingston 7, Jamaica 176U872 Institut National 
de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, 
75006 Paris, France 177Department of Medicine, Kuopio University Hospital, 
Kuopio, Finland 178Department of Neurology, General Central Hospital, Bolzano, 
Italy 179Department of Neurology, University of Lübeck, Lübeck, Germany 
180Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, 
and Health Services, University of Washington, Seattle, WA, USA 181Group Health 
Research Institute, Group Health Cooperative, Seattle, WA, USA 182Department of 
Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, 
Finland 183Center for Non-Communicable Diseases, Karachi, Pakistan 
184Department of Medicine, University of Pennsylvania, USA 185Unit of Chronic 
Disease Epidemiology and Prevention, National Institute for Health and Welfare, 
Helsinki, Finland 186South Karelia Central Hospital, Lappeenranta, Finland 187Paul 
Langerhans Institute Dresden, German Center for Diabetes Research (DZD), 
Dresden, Germany 188Division of Endocrine and Metabolism, Department of Internal 

Do et al. Page 13

Nat Genet. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Medicine, Taichung Veterans General Hospital, Taichung, Taiwan 189Geriatric 
Research and Education Clinical Center, Veterans Administration Medical Center, 
Baltimore, Maryland 190Faculty of Medicine, University of Iceland, 101 Reykjavík, 
Iceland 191Division of Population Health Sciences and Education, St George's, 
University of London, Cranmer Terrace, London SW17 0RE, United Kingdom 
192Department of Pharmacological Sciences, University of Milan, Monzino 
Cardiology Center, IRCCS, Milan, Italy 193Centre for Vascular Prevention, Danube-
University Krems, 3500 Krems, Austria 194King Abdulaziz University, Faculty of 
Medicine, Jeddah 21589, Saudi Arabia 195Red RECAVA Grupo RD06/0014/0015, 
Hospital Universitario La Paz, 28046 196Institute of Public Health and Clinical 
Nutrition, University of Eastern Finland, Finland 197Research Unit, Kuopio University 
Hospital, Kuopio, Finland 198Department of Medicine, Lausanne University Hospital, 
Switzerland 199Department of Endocrinology, University of Groningen, University 
Medical Center Groningen, The Netherlands 200Department of Cardiovascular 
Epidemiology and Population Genetics, National Center for Cardiovascular 
Investigation, Madrid, Spain 201IMDEA-Alimentacion, Madrid, Spain 202Nutrition and 
Genomics Laboratory, Jean Mayer-USDA Human Nutrition Research Center on 
Aging at Tufts University, Boston, MA, USA 203Department of Nutrition, Harvard 
School of Public Health, Boston, MA, USA 204Framingham Heart Study, 
Framingham, MA, USA 205Center for Public Health Genomics, University of Virginia, 
Charlottesville, VA 22908, USA 206Analytic and Translational Genetics Unit, 
Massachusetts General Hospital, Boston, MA 02138, USA

Acknowledgments

We thank the Global Lipids Genetics Consortium for early access to the association results of the Metabochip 
study. S.Kathiresan is supported by a Research Scholar award from the Massachusetts General Hospital (MGH), the 
Howard Goodman Fellowship from MGH, the Donovan Family Foundation, R01HL107816, and a grant from 
Fondation Leducq. R.D. is supported by a Banting Fellowship from the Canadian Institutes of Health Research. 
G.P. is supported by Award Number T32HL007208 from the National Heart, Lung, and Blood Institute. The 
content is solely the responsibility of the authors and does not necessarily represent the official views of the 
National Heart, Lung, And Blood Institute or the National Institutes of Health.

References

1. Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: Global 
Burden of Disease Study. Lancet. 1997; 349:1436–42. [PubMed: 9164317] 

2. Di Angelantonio E, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009; 
302:1993–2000. [PubMed: 19903920] 

3. Sarwar N, et al. Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 
262,525 participants in 29 Western prospective studies. Circulation. 2007; 115:450–8. [PubMed: 
17190864] 

4. Sheehan NA, Didelez V, Burton PR, Tobin MD. Mendelian randomisation and causal inference in 
observational epidemiology. PLoS Med. 2008; 5:e177. [PubMed: 18752343] 

5. Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to 
understanding environmental determinants of disease? Int J Epidemiol. 2003; 32:1–22. [PubMed: 
12689998] 

6. Ebrahim S, Davey Smith G. Mendelian randomization: can genetic epidemiology help redress the 
failures of observational epidemiology? Hum Genet. 2008; 123:15–33. [PubMed: 18038153] 

Do et al. Page 14

Nat Genet. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7. Smith GD, et al. Clustered environments and randomized genes: a fundamental distinction between 
conventional and genetic epidemiology. PLoS Med. 2007; 4:e352. [PubMed: 18076282] 

8. Smith GD, Ebrahim S. Mendelian randomization: prospects, potentials, and limitations. Int J 
Epidemiol. 2004; 33:30–42. [PubMed: 15075143] 

9. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and 
protection against coronary heart disease. N Engl J Med. 2006; 354:1264–72. [PubMed: 16554528] 

10. Willer CJ, et al. Newly identified loci that influence lipid concentrations and risk of coronary 
artery disease. Nat Genet. 2008; 40:161–9. [PubMed: 18193043] 

11. Voight BF, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian 
randomisation study. Lancet. 2012

12. Haase CL, et al. LCAT, HDL cholesterol and ischemic cardiovascular disease: a Mendelian 
randomization study of HDL cholesterol in 54,500 individuals. J Clin Endocrinol Metab. 2012; 
97:E248–56. [PubMed: 22090275] 

13. Haase CL, Tybjaerg-Hansen A, Grande P, Frikke-Schmidt R. Genetically elevated apolipoprotein 
A-I, high-density lipoprotein cholesterol levels, and risk of ischemic heart disease. J Clin 
Endocrinol Metab. 2010; 95:E500–10. [PubMed: 20826588] 

14. Frikke-Schmidt R, et al. Association of loss-of-function mutations in the ABCA1 gene with high-
density lipoprotein cholesterol levels and risk of ischemic heart disease. JAMA. 2008; 299:2524–
32. [PubMed: 18523221] 

15. Johannsen TH, et al. Hepatic lipase, genetically elevated high-density lipoprotein, and risk of 
ischemic cardiovascular disease. J Clin Endocrinol Metab. 2009; 94:1264–73. [PubMed: 
19088157] 

16. Kathiresan S, et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet. 
2009; 41:56–65. [PubMed: 19060906] 

17. Teslovich TM, et al. Biological, clinical and population relevance of 95 loci for blood lipids. 
Nature. 2010; 466:707–13. [PubMed: 20686565] 

18. Sarwar N, et al. Triglyceride-mediated pathways and coronary disease: collaborative analysis of 
101 studies. Lancet. 2010; 375:1634–9. [PubMed: 20452521] 

19. Lewis SJ. Mendelian randomization as applied to coronary heart disease, including recent advances 
incorporating new technology. Circ Cardiovasc Genet. 2010; 3:109–17. [PubMed: 20160203] 

20. The Global Lipids Genetics Consortium. Discovery and Refinement of Loci Associated with Lipid 
Levels. Nature Genetics. In press. 

21. Schunkert H, et al. Large-scale association analysis identifies 13 new susceptibility loci for 
coronary artery disease. Nat Genet. 2011; 43:333–8. [PubMed: 21378990] 

22. Pennacchio LA, et al. An apolipoprotein influencing triglycerides in humans and mice revealed by 
comparative sequencing. Science. 2001; 294:169–73. [PubMed: 11588264] 

23. Kathiresan S, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-
density lipoprotein cholesterol or triglycerides in humans. Nat Genet. 2008; 40:189–97. [PubMed: 
18193044] 

24. Pollin TI, et al. A null mutation in human APOC3 confers a favorable plasma lipid profile and 
apparent cardioprotection. Science. 2008; 322:1702–5. [PubMed: 19074352] 

25. Deloukas P, et al. Large-scale association analysis identifies new risk loci for coronary artery 
disease. Nat Genet. 2013; 45:25–33. [PubMed: 23202125] 

26. Miller M, et al. Triglycerides and cardiovascular disease: a scientific statement from the American 
Heart Association. Circulation. 2011; 123:2292–333. [PubMed: 21502576] 

27. Varbo A, et al. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll 
Cardiol. 2013; 61:427–36. [PubMed: 23265341] 

28. Wilson PW, et al. Prediction of coronary heart disease using risk factor categories. Circulation. 
1998; 97:1837–47. [PubMed: 9603539] 

29. Bosch J, et al. n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N Engl J 
Med. 2012; 367:309–18. [PubMed: 22686415] 

30. Rubins HB, et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with 
low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein 

Do et al. Page 15

Nat Genet. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cholesterol Intervention Trial Study Group. N Engl J Med. 1999; 341:410–8. [PubMed: 
10438259] 

31. Keech A, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people 
with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005; 
366:1849–61. [PubMed: 16310551] 

32. Ginsberg HN, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 
2010; 362:1563–74. [PubMed: 20228404] 

33. 1000 Genomes Project Consortium. A map of human genome variation from population-scale 
sequencing. Nature. 2010; 467:1061–73. [PubMed: 20981092] 

34. Cook RD. Detection of Influential Observations in Linear Regression. Technometrics. 1977; 
19:15–18.

Sequence accession numbers

ANGPTL3 (NM_014495), APOB (NM_000384), GCKR (NM_001486), TIMD4 

(NM_138379), HLA-B (NM_005514), TRIB1 (NM_025195), ABCA1 (NM_005502), 

APOA1 (NM_000039), CETP (NM_000078), CILP2 (NM_153221), MIR148A 

(NR_029597), GPAM (NM_020918), FADS1-2-3 (NM_013402-NM_004265-NM_021727), 

APOE (NM_000041), APOA5 (NM_052968), APOC3 (NM_000040)

Disclosures

CHS

Bruce Psaty serves on the DSBM of a clinical trial funded by the manufacturer (Zoll), and 

he serves on the Steering Committee of the Yale Open-Data Project funded by the 

Medtronic.

CoLaus

Peter Vollenweider received an unrestricted grant from GSK to build the CoLaus study

deCODE

Authors affiliated with deCODE Genetics/Amgen, a biotechnology company, are employees 

of deCODE Genetics/Amgen

GLACIER

Inês Barroso and spouse own stock in GlaxoSmithKline and Incyte Ltd.

S. Kathiresan serves on scientific advisory boards for Merck, Celera, American Genomics 

and Catabasis. He has received unrestricted research grants from Merck and Pfizer.

Author Contributions

R.D. carried out primary data analyses and prepared the supplementary information. R.D. 

and C.G. prepared figures and tables. C.W., E.M.S., S.Sebanti, G.R.A. contributed meta-

analysis results. R.D., M.J.D, B.M.N., S.Kathiresan contributed to the design and conduct of 

the study. R.D., M.J.D, B.M.N., S.Kathiresan wrote the manuscript.

Do et al. Page 16

Nat Genet. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



All authors contributed to the research and reviewed the manuscript.

Design, management and coordination of contributing cohorts

(ADVANCE) T.L.A.; (AGES Reykjavik study) T.B.H., V.G.; (AIDHS/SDS) D.K.S.; 

(AMC-PAS) P.D., G.K.H.; (Amish GLGC) A.R.S.; (ARIC) E.B.; (B58C-WTCCC & B58C-

T1DGC) D.P.S.; (B58C-Metabochip) C.M.L., C.Power, M.I.M.; (BLSA) L.F.; (BRIGHT) 

P.B.M.; (CHS) B.M.P., J.I.R.; (CLHNS) A.B.F., K.L.M., L.S.A.; (CoLaus) P.V.; (deCODE) 

K.Stefansson, U.T.; (DIAGEN) P.E.S., S.R.B.; (DILGOM) S.R.; (DPS) M.U.; (DR's 

EXTRA) R.R.; (EAS) J.F.P.; (EGCUT (Estonian Genome Center of University of Tartu)) 

A.M.; (ELY) N.W.; (EPIC) N.W., K.K.; (EPIC_N_OBSET GWAS) E.H.Young; (ERF) 

C.M.V.; (ESS (Erasmus Stroke Study)) P.J.K.; (Family Heart Study FHS) I.B.B.; (FBPP) 

A.C., R.S.C., S.C.H.; (FENLAND) R.L., N.W.; (FIN-D2D 2007) A.K., L.M.; (FINCAVAS) 

M.Kähönen; (Framingham) L.A.C., S.Kathiresan, J.M.O.; (FRISCII) A.Siegbahn, L.W.; 

(FUSION GWAS) K.L.M., M.Boehnke; (FUSION stage 2) F.S.C., J.T., J.Saramies; 

(GenomEUTwin) J.B.W., N.G.M., K.O.K., V.S., J.Kaprio, A.Jula, D.I.B., N.P., T.D.S.; 

(GLACIER) P.W.F.; (Go-DARTS) A.D.M., C.N.P.; (GxE/Spanish Town) B.O.T., C.A.M., 

F.B., J.N.H., R.S.C.; (HUNT2) K.Hveem; (IMPROVE) U.D., A.Hamsten, E.T., S.E.H.; 

(InCHIANTI) S.B.; (KORAF4) C.Gieger;(LifeLines) B.H.W.; (LOLIPOP) J.S.K., J.C.C.; 

(LURIC) B.O.B.; W.M.; (MDC) L.C.G., D. Altshuler, S.Kathiresan; (METSIM) J.Kuusisto, 

M.L.; (MICROS) P.P.P.; (MORGAM) D.Arveiler, J.F.; (MRC/UVRI GPC GWAS) 

P.Kaleebu, G.A., J.Seeley, E.H.Y.; (MRC National Survey of Health & Development) D.K.; 

(NFBC1986) M-R.J.; (NSPHS) U.G.; (ORCADES) H.Campbell; (PARC) Y.I.C., R.M.K., 

J.I.R.; (PIVUS) E.I., L.Lind; (PROMIS) J.D., P.D., D.Saleheen; (Rotterdam Study) 

A.Hofman, A.G.U.; (SardiNIA) G.R.A.; (SCARFSHEEP) A.Hamsten, U.D.; 

(SEYCHELLES) M.Burnier, M.Bochud; P.Bovet; (SUVIMAX) P.M.; (Swedish Twin Reg.) 

E.I., N.L.P.; (TAICHI) T.L.A., Y.I.C., C.A.H., T.Q., J.I.R., W.H.S.; (THISEAS) G.D., P.D.; 

(Tromsø) I.N.; (TWINGENE) U.D., E.I.; (ULSAM) E.I.; (Whitehall II) A.Hingorani, 

M.Kivimaki

Genotyping of contributing cohorts

(ADVANCE) D.Absher; (AIDHS/SDS) L.F.B., M.L.G.; (AMC-PAS) P.D., G.K.H.; (B58C-

WTCCC & B58C-T1DGC) W.L.M.; (B58C-Metabochip) M.I.M.; (BLSA) D.H.; (BRIGHT) 

P.B.M.; (CHS) J.I.R.; (DIAGEN) N.N., G.M.; (DILGOM) A. Palotie; (DR's EXTRA) 

T.A.L.; (EAS) J.F.W.; (EGCUT (Estonian Genome Center of University of Tartu)) T.E.; 

(EPIC) P.D.; (EPIC_N_SUBCOH GWAS) I.B.; (ERF) C.M.V.; (ESS (Erasmus Stroke 

Study)) C.M.V.; (FBPP) A.C., G.B.E.; (FENLAND) M.S.S.; (FIN-D2D 2007) A.J.S.; 

(FINCAVAS) T.L.; (Framingham) J.M.O.; (FUSION stage 2) L.L.B.; (GLACIER) I.B.; 

(Go-DARTS) C.Groves, C.N.P., M.I.M.; (IMPROVE) A.Hamsten; (KORAF3) H.G., T.I.; 

(KORAF4) N.K.; (LifeLines) C.W.; (LOLIPOP) J.S.K., J.C.C.; (LURIC) M.E.K.; (MDC) 

B.F.V., R.D.; (MICROS) A.A.H.; (MORGAM) L.T., P.Brambilla; (MRC/UVRI GPC 

GWAS) M.S.S.; (MRC National Survey of Health & Development) A.W., D.K., K.K.O.; 

(NFBC1986) A-L.H., M.J, M.McCarthy, P.E., S.V.; (NSPHS and FRISCII) Å.J.; 

(ORCADES) H.Campbell; (PARC) M.O.G., M.R.J., J.I.R.; (PIVUS) E.I., L.Lind; 

(PROMIS) P.D., K.Stirrups; (Rotterdam Study) A.G.U., F.R.; (SardiNIA) R.N.; 

Do et al. Page 17

Nat Genet. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(SCARFSHEEP) B.G., R.J.S.; (SEYCHELLES) F.M., G.B.E.; (Swedish Twin Reg.) E.I., 

N.L.P.; (TAICHI) D.Absher, T.L.A., E.K., T.Q., L.L.W.; (THISEAS) P.D.; (TWINGENE) 

A.Hamsten, E.I.; (ULSAM) E.I.; (WGHS) D.I.C., P.M.R.; (Whitehall II) A.Hingorani, C.L., 

M.Kumari, M.Kivimaki

Phenotype definition of contributing cohorts

(ADVANCE) C.I.; (AGES Reykjavik study) T.B.H., V.G.; (AIDHS/SDS) L.F.B.; (AMC-

PAS) J.J.K.; (Amish GLGC) A.R.S., B.D.M.; (B58C-WTCCC & B58C-T1DGC) D.P.S.; 

(B58C-Metabochip) C.Power; E.H.; (BRIGHT) P.B.M.; (CHS) B.M.P.; (CoLaus) P.V.; 

(deCODE) G.I.E., H.H., I.O.; (DIAGEN) G.M.; (DILGOM) K.Silander; (DPS) J.Lindström; 

(DR's EXTRA) P.Komulainen; (EAS) J.L.Bolton; (EGCUT (Estonian Genome Center of 

University of Tartu)) A.M.; (EGCUT (Estonian Genome Center of University of Tartu)) 

K.F.; (ERF and Rotterdam Study) A.Hofman; (ERF) C.M.V; (ESS (Erasmus Stroke Study)) 

E.G.V., H.M.D., P.J.K.; (FBPP) A.C., R.S.C., S.C.H.; (FINCAVAS) T.V.N.; (Framingham) 

S.Kathiresan, J.M.O.; (GenomEUTwin: MZGWA) J.B.W.; (GenomEUTwin-FINRISK) 

V.S.; (GenomEUTwin-FINTWIN) J.Kaprio, K.Heikkilä; (GenomEUTwin-GENMETS) 

A.Jula; (GenomEUTwin-NLDTWIN) G.W.; (Go-DARTS) A.S.D., A.D.M., C.N.P., L.A.D.; 

(GxE/Spanish Town) C.A.M., F.B.; (IMPROVE) U.D.; A.Hamsten, E.T.; (KORAF3) C.M.; 

(KORAF4) A.Döring; (LifeLines) L.J.; (LOLIPOP) J.S.K., J.C.C.; (LURIC) H.S.; (MDC) 

L.C.G.; (METSIM) A.Stančáková; (MORGAM) G.C.; (MRC/UVRI GPC GWAS) R.N.N.; 

(MRC National Survey of Health & Development) D.K.; (NFBC1986) A.R., A-L.H., 

A.Pouta, M-R.J.; (NSPHS and FRISCII) Å.J.; (NSPHS) U.G.; (ORCADES) S.H.W.; 

(PARC) Y.I.C., R.M.K.; (PIVUS) E.I., L.Lind; (PROMIS) D.F.F.; (Rotterdam Study) 

A.Hofman; (SCARFSHEEP) U.D., B.G.; (SEYCHELLES) M.Burnier, M.Bochud, P.Bovet; 

(Swedish Twin Reg.) E.I., N.L.P.; (TAICHI) H.Chang, C.A.H., Y.H., E.K., S.L., W.H.S.; 

(THISEAS) G.D., M.D.; (Tromsø) T.W.; (TWINGENE) U.D., E.I.; (ULSAM) E.I.; 

(WGHS) P.M.R.; (Whitehall II) M.Kumari

Primary analysis from contributing cohorts

(ADVANCE) L.L.W.; (AIDHS/SDS) R.S.; (AMC-PAS) S.Kanoni; (Amish GLGC) J.R.O., 

M.E.M.; (ARIC) K.A.V.; (B58C-Metabochip) C.M.L., E.H., T.F.; (B58C-WTCCC & 

B58C-T1DGC) D.P.S.; (BLSA) T.T.; (BRIGHT) T.J.; (CLHNS) Y.W.; (CoLaus) J.S.B.; 

(deCODE) G.T.; (DIAGEN) A.U.J.; (DILGOM) M.P.; (EAS) R.M.F.; (DPS) A.U.J.; (DR'S 

EXTRA) A.U.J.; (EGCUT (Estonian Genome Center of University of Tartu)) E.M., K.F., 

T.E.; (ELY) D.G.; (EPIC) K.Stirrups, D.G.; (EPIC_N_OBSET GWAS) E.Y., C.L.; 

(EPIC_N_SUBCOH GWAS) N.W.; (ERF) A.I.; (ESS (Erasmus Stroke Study)) C.M.V., 

E.G.V.; (EUROSPAN) A.Demirkan; (Family Heart Study FHS) I.B.B., M.F.F.; (FBPP) 

A.C., G.B.E.; (FENLAND) T.P., C.Pomilla; (FENLAND GWAS) J.H.Z., J.Luan; (FIN-D2D 

2007) A.U.J.; (FINCAVAS) L.Lyytikäinen; (Framingham) L.A.C., G.M.P.; (FRISCII and 

NSPHS) Å.J.; (FUSION stage 2) T.M.T.; (GenomEUTwin-FINRISK) J.Kettunen; 

(GenomEUTwin-FINTWIN) K.Heikkilä; (GenomEUTwin-GENMETS) I.S.; 

(GenomEUTwin-SWETWIN) P.K.M.; (GenomEUTwin-UK-TWINS) M.Mangino; 

(GLACIER) D.Shungin; (GLACIER) P.W.F.; (Go-DARTS) C.N.P., L.A.D.; (GxE/Spanish 

Town) C.D.P.; (HUNT) A.U.J.; (IMPROVE) R.J.S.; (InCHIANTI) T.T.; (KORAF3) 

Do et al. Page 18

Nat Genet. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



M.Müller-Nurasyid; (KORAF4) A.Petersen; (LifeLines) I.M.N.; (LOLIPOP) W.Z.; 

(LURIC) M.E.K.; (MDC) B.F.V.; (MDC) P.F., R.D.; (METSIM) A.U.J.; (MRC/UVRI GPC 

GWAS) R.N.N.; (MRC National Survey of Health & Development) A.W., J.Luan; 

(NFBC1986) M.Kaakinen, I.S., S.K.S.; (NSPHS and FRISCII) Å.J.; (PARC) X.L.; (PIVUS) 

C.Song, E.I.; (PROMIS) J.D., D.F.F., K.Stirrups; (Rotterdam Study) A.I.; (SardiNIA) 

C.Sidore, J.L.Bragg-Gresham, S.Sanna; (SCARFSHEEP) R.J.S.; (SEYCHELLES) G.B.E., 

M.Bochud; (SUVIMAX) T.J.; (Swedish Twin Reg.) C.Song, E.I.; (TAICHI) D.Absher, 

T.L.A., H.Chang, M.G., C.A.H., T.Q., L.L.W; (THISEAS) S.Kanoni; (Tromsø) A.U.J.; 

(TWINGENE) A.G., E.I.; (ULSAM) C.Song, E.I., S.G.; (WGHS) D.I.C.; (Whitehall II) 

S.Shah

Do et al. Page 19

Nat Genet. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Effect of a single nucleotide polymorphism on triglycerides, low-density lipoprotein 
cholesterol, and risk for coronary artery disease
Black dots represent SNPs with CAD P<0.001; B. Red dots represent SNPs with 0.01 < 

CAD P <0.001; C. Grey dots represent CAD P>0.10). Loci strongly associated with CAD 

tend to have consistent directions for both triglycerides and LDL-C (bottom left and top 

right quadrants). In contrast to the grey points, the black and red points are concentrated in 

the bottom left and top right quadrants. Betas are in standard deviation units. SNPs with 

−0.10<βLDL-C<0.10 and −0.10<βTRIGLYCERIDES<0.10 are shown.
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