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Abstract of the Dissertation

Modeling Multistate Processes with Back Transitions: Statistical

Challenges and Applications

by

Hilary Jeanne Aralis

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2016

Professor Ronald S. Brookmeyer, Chair

Multistate models are widely used in health research to analyze life history processes in which

each individual is assumed to occupy one of a finite number of states at any given point in

time. Models allowing for back transitions are necessary when considering recurrent events

or disease states from which recovery is possible along with subsequent return to illness.

The objective of this dissertation is to consider current challenges in the statistical analyses

of multistate models arising in public health. Applications to the fields of HIV/AIDS and

dementia are considered.

To assess the effect of concurrent or overlapping partnership patterns on the trajectory

of the HIV epidemic in a population, it is necessary to estimate both the extent and the

magnitude of concurrency. Data are typically available in the form of retrospective sexual

history reports. We introduce a joint multistate and point process model in which states

are defined as the number of ongoing partnerships an individual is engaged in at a given

time. Sexual partnerships starting and ending on the same date are referred to as one-offs

and modeled as discrete events. The proposed method treats each individual’s continuation

in and transition through various numbers of ongoing partnerships as a separate stochastic

process and allows the occurrence of one-offs to impact subsequent rates of partnership

formation and dissolution. Among a sample of men having sex with men and seeking HIV

testing at a Los Angeles clinic, the estimated point prevalence of concurrency was higher
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among men later diagnosed HIV positive. One-offs were associated with increased rates of

subsequent partnership dissolution.

In constructing a disease progression multistate model, panel data consisting of the states

occupied by an individual at a series of discrete time points are often used to to estimate

transition intensities of the underlying continuous-time process. When transition intensities

depend on the time elapsed in the current state and back transitions between states are

possible, this intermittent observation process leads to intractability of the likelihood func-

tion. We present an iterative stochastic expectation-maximization (SEM) algorithm that

relies on a simulation-based approximation to the likelihood function and implement this

algorithm using rejection sampling. In a simulation study, we demonstrate the feasibility

and performance of the proposed procedure. We then demonstrate application of the algo-

rithm to a study of dementia, the Nun Study, consisting of intermittently-observed elderly

subjects in one of four possible states corresponding to intact cognition, impaired cognition,

dementia, and death. We show that the proposed SEM algorithm substantially reduces

bias in model parameter estimates compared to an alternative naive approach. We then

extend the utility of this disease progression model to settings in which healthy individuals

have a non-negligible probability of being misclassified into a disease state. The proposed

model accomplishes unbiased estimation of the semi-Markov model parameters associated

with transition rates and probabilities while simultaneously estimating the true underlying

misclassification rate without requiring information from a gold standard. In applying this

SEM algorithm addressing misclassification to the Nun Study, findings suggest that the rate

of misclassification may be relatively high among this sample and that true back transitions

from impaired to intact cognition are somewhat rare.

By describing and addressing statistical challenges in multistate modeling, we demon-

strate the utility of and reduce existing barriers to the implementation of such models across

a wide range of applications in the field of public health and in situations where imperfect

data are available.
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CHAPTER 1

Introduction

1.1 Importance of Multistate Models in Public Health Research

Multistate models are widely used to analyze life history processes in which each individual

is assumed to occupy one of a finite number of states at any given point in time. Recent

examples include applications to models of disease progression for diseases such as cirrhosis

[2], age-related macular degeneration [3], and bipolar disorder [4] and models of patient out-

comes following therapeutic cardiovascular intervention [5] and elective general surgery [6].

Multistate models are deemed the preferred analytical approach in many public health ap-

plications due to their assumed coherence with underlying biological mechanisms or disease

dynamics that posit categorical state occupancy as a function of time. Multistate models

can be used to elucidate pathways of association across multiple states which are not directly

apparent when modeling survival separately for each state or outcome. As noted by Eulen-

burg et al. in their recent study of breast cancer endpoints, multistate models allow for the

simultaneous analysis of transitions between states and adjustments for intermediate events,

making them preferable to traditional Cox proportional hazards models [7]. This point has

been further emphasized by Jazic et al. in their recent study promoting the use of multistate

illness-death models for cancer research in place of commonly used survival models which

rely on composite endpoints such as disease-free progression [8].

Although progressive multistate models in which a trajectory moves along a time axis

from an occupied state to a state never previously occupied have a wide range of applications

in public health, instances in which non-progressive models are preferable also abound. A

non-progressive model is one in which back transitions are possible, meaning that an individ-
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ual can return to a state previously occupied. Such models are necessary when considering

recurrent events leading to periods of hospitalization or infection, for instance, or disease

states from which recovery is possible along with subsequent return to illness. In some in-

stances, the formulation of a model that can enable identification of factors significantly

impacting rates and probabilities of transition from an unhealthy state back to a healthier

state is the primary research objective. For example, numerous studies have attempted to

identify protective factors associated with increased rates of disease remission, recovery of

functional ability, and return to intact cognition [9, 10, 11].

As an alternative to modeling progression through various states of disease and health,

multistate models in which individuals are assumed to occupy states corresponding to po-

tential disease risk factors may be useful in the field of public health research. Multistate

models with back transitions are particularly important when modeling episodic behavioral

patterns and prolonged periods of exposure that may put individuals at heightened dis-

ease risk. For example, multistate models may be used to model patterns of imprisonment,

cigarette smoking, or engagement in risky sexual behaviors for a sample of individuals across

an extended period of time. Parameter estimates from such models can be used to inform

researchers about differences in risk behaviors or exposures between different populations or

under different intervention conditions. Multistate model estimates can also be used as input

to disease simulation models designed to evaluate the trajectory and viability of a disease

within a population exhibiting certain risk patterns. Ultimately, information obtained from

these research initiatives can assist public health experts in designing effective interventions

to prevent disease and reduce morbidity at the population level.

In this dissertation, we will address three different methodological issues that were mo-

tivated by two applications in the field of public health. For each methodological issue, we

describe the formulation of a multistate model with the capacity to answer specific questions

of applied interest. We then address statistical challenges that arise in estimating the desired

metrics for each proposed model given the available data and discuss the effectiveness of the

adopted methodologies. In doing so, we hope to demonstrate utility and reduce existing

barriers to the implementation of multistate models across a wide range of applications in
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the field of public health and in situations where imperfect data are available.

The two public health applications motivating the work presented in this dissertation are

HIV/AIDS transmission and disease progression. The first application arises from the study

of sexual partnership patterns impacting transmission of HIV within a given community.

The applied objective is the accurate measurement of concurrency, defined as overlapping

dates of sexual partnership, using retrospective sexual history reports obtained from a cross-

sectional sample of individuals. The second applied objective is the modeling of disease

progression for diseases in which back transitions from illness to health are possible and data

are available in the form of intermittent observations of an individual’s disease status. In

this application there also exist concerns about misclassification arising from non-negligible

false positive rates. Out of these two applications grew three methodological research goals.

The first goal is described within Section 1.2, the second within Section 1.3, and the third

within Section 1.4.

1.2 Challenges in Modeling of Concurrent Sexual Partnerships

Sexual partnership dynamics known to impact HIV transmission include the number and

duration of partnerships, the frequency and type of sexual intercourse engaged in, and the

length of time between partnerships [12, 13, 14]. However, the question of whether or not

concurrency, defined as overlapping dates of sexual partnership, impacts HIV transmission

independent of these other factors remains unanswered [15, 16].

In identifying concurrency, a frequently used operational definition involves classifying

consecutive partnerships as having either a negative or a positive partnership gap [17]. For

example, assume an individual is sampled from the population of interest and asked to re-

port the number of days elapsed since the start and end of each previous partnership he or

she engaged in during some elapsed time interval. For each set of consecutive partnerships,

it is then possible to subtract the number of days corresponding to the beginning of the

more recent partnership from the number of days corresponding to the end of the previous

partnership. If the resulting difference is positive, we classify these partnerships as seri-
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ally monogamous. If the difference is negative, we classify these partnerships as occurring

concurrently. Thus, the question becomes whether or not concurrent partnership patterns

result in increased rates of HIV transmission relative to serially monogamous patterns, when

holding all other sexual partnership dynamics, such as number and duration of partnerships,

fixed.

A number of frequently cited studies have used mathematical models to demonstrate

that the risk of HIV transmission is theoretically greater when partnerships are concurrent

rather than serially monogamous [18, 19]. However, strong empirical evidence to support

the effect of concurrency on HIV transmission has been difficult to obtain resulting in an

ongoing debate among experts in the field of HIV transmission research [20, 21, 22].

The statistical analysis of sexual partnership dynamics, and concurrency in particular,

is complicated because data is frequently obtained from cross-sectional surveys in which

participants record sexual histories over a specified elapsed time interval. Furthermore,

sexual histories may include both partnerships that last over a prolonged period of time as

well as isolated sexual encounters that occur on a single day. It is important to incorporate

both ongoing and single day sexual partnerships when constructing a model for behavioral

patterns that can be used to answer questions regarding risk of transmission.

1.3 Challenges in Disease Progression Modeling: Panel Data

In their simplest form, disease progression models consider each individual to be in a state

of health, illness, or death at every point in time across a period of observation. In more

complex disease progression models, multiple disease states are considered representing either

various stages of disease or alternative disease outcomes. Multistate models for disease

progression can be estimated using a straightforward maximum likelihood approach when

knowledge of the sequence of states visited and the duration of time spent in each state is

available for all individuals in a random sample drawn from the population of interest. In

practice, however, complete longitudinal data on an individual’s duration in and transition

through a sequence of states corresponding to health and illness is seldom available. Instead,
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individuals are typically observed to be in a given state at a series of discrete points in time,

often corresponding to routinely scheduled medical visits or survey administration waves.

The data that arises from this intermittent observation process is often referred to as panel

data [23, 24]. Panel data are typically obtained from conduct of a longitudinal study and

may alternatively be referred to simply as longitudinal data.

When panel data are collected, the sequence of states an individual occupies across an

observation time interval, often referred to as the individual’s path, is typically unknown.

Due to the intermittent nature of the observation process, it cannot be assumed that every

state an individual occupies will be observed. If the structure of the assumed model is pro-

gressive, implying that an individual can occupy a state at most once, the possible sequence

of states for a given individual will be limited in number. For instance, the commonly used

three-state progressive illness-death model described by Joly et al. allows for at most two

different potential paths existing between consecutive observations [25]. However, as noted

previously, progressive models are not appropriate in all health research applications be-

cause they do not allow for transitions to the state previously occupied, referred to as back

transitions. Back transitions are an important phenomenon in many real world multistate

processes. Specific examples include recurrent infections or hospitalizations and progression

of diseases such as relapse-remitting multiple sclerosis or diabetic retinopathy [26, 27, 28, 29].

For such models, enumeration of all potential paths between consecutive observations is fre-

quently not possible. In fact, when assuming a continuous-time multistate process, there is

no limit to the number of back transitions that can occur between any two discrete points

in time and thus no limit to the number of potential paths that would need to be considered

when estimating the parameters of a multistate model.

1.4 Challenges in Disease Progression Modeling: Misclassification

Many commonly used diagnostic tools have non-negligible false positive rates resulting in the

misclassification of healthy individuals into a diseased state. This issue is especially relevant

when considering intermittently-observed disease state data. Methods for the estimation
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of multistate models with back transitions are highly sensitive to measurement error. Such

methods rely heavily on the accuracy of relatively minimal data obtained at discrete points in

time to effectively impute unobserved state transitions and durations required for parameter

estimation. In such instances, misclassification of a healthy individual into a diseased state

can substantially alter our perception of the disease trajectory for that individual. For

instance, an annually-observed individual who remains in a state of health over the course

of ten years but is incorrectly identified as having a disease at year five would contribute

misleading information to the likelihood function used in model estimation. The individual

would appear to have experienced at least one back transition potentially resulting in artificial

inflation of the rate of back transition and reduction of the expected sojourn time for the

healthy state.

In an ideal setting, we would correct for the bias arising from misclassification by either

directly identifying the observations that were misclassified or using an ancillary estimate

of the probability of misclassification given occupancy of a known state. Both approaches

typically rely on the availability of a gold standard diagnostic tool. Unfortunately, for many

diseases, a gold standard either doesn’t exist or is not feasible for use due to barriers such

as expense or patient burden [30]. Thus, the challenge in disease progression modeling with

misclassification is to accomplish unbiased estimation of the multistate model parameters

associated with transition rates and probabilities while simultaneously estimating the true

underlying misclassification rate without requiring information from a gold standard.

1.5 Dissertation Roadmap

In this dissertation, we begin by describing the broad overarching continuous-time multistate

process framework including the necessary background, definitions, and notation in addition

to some practical assumptions that enable modeling of such processes. In the subsequent

chapter, we address the first research objective by presenting a joint multistate and point

process model for retrospective sexual history data and describe how model parameters can

be used in the estimation of two critical measures of concurrency. We apply this joint
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modeling approach using epidemiological data collected from a sample of men having sex

with men and seeking HIV testing at a Los Angeles clinic.

To address the second research objective, we describe the statistical challenges in esti-

mating a semi-Markov model for disease progression with back transitions when data are

available in the form of intermittent observations. Following this description, we propose

a stochastic expectation-maximization (SEM) approach for estimation of such models and

compare the proposed approach to an alternative, naive approach using a simulation study.

In the following chapter, we apply the proposed SEM approach to dementia onset modeling

using the Nun Study data collected from a sample of elderly members of the School Sisters

of Notre Dame who received routine cognitive assessments as part of a longitudinal study on

aging and Alzheimer’s disease. We then consider an extension to the proposed SEM approach

for disease progression modeling that allows for misclassification of a healthy individual in

the diseased state and demonstrate the performance of the proposed extension using a sim-

ulation study. The SEM method with misclassification is then applied to the Nun Study

to estimate the probability of an elderly participant with intact cognition being incorrectly

classified as having impaired cognition when completing a routine cognitive assessment. We

conclude by reviewing the accomplishments of the research presented herein and discussing

promising areas for future research.
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CHAPTER 2

Background and Definitions

2.1 Defining a Continuous-Time Multistate Process

We begin by describing a general continuous-time multistate process and then sequentially

introduce a set of assumptions that enable the practical application of multistate models

to real world data. Multistate models are usually constructed by collecting an independent

sample of units (individuals) and assuming that each unit (individual) can be modeled as its

own continuous-time multistate process. A multistate process is one which can occupy any

one of a finite number of states at realizations occurring across time. At time t, let process

Y (t) take on values in state space S, S = {0, 1, . . . , s − 1}, for a process with s states.

The distribution of a multistate process can be fully defined by either H, a s× s transition

matrix with entries Hkl(t1, t2), or the set of transition intensities, λkl(t,F (t)), where for all

k, l ∈ {0, 1, . . . , s− 1},

Hkl(t1, t2) = P
(
Y (t2) = l

∣∣Y (t1) = k; F (t1)
)

for t1 < t2, and

λkl(t,F (t)) = lim
∆t→0

Hkl(t, t+ ∆t)

∆t
.

We define F (t) as the filtration representing all information about the process up until

time t. The filtration, F (t) can thus be summarized by
{
N(t), T1, . . . , TN(t), Y (0), Y (T1),

. . . , Y (TN(t))
}

where N(t) is the count of transitions occurring up until time t and Tm are the

observed times of transition for m = 1, . . . , N(t). Thus, Hkl(t1, t2) denotes the probability

of being in state l at time t2 given that the process was in state k at the earlier time t1 and

the history of the process up until time t1. Transition intensities, λkl(t,F (t)) denote the

hazard function associated with the rate of escape or exit from state k to state l for k 6= l,

while λkk(t,F (t)) is the hazard function associated with the duration of time the process
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spends in state k prior to a transition occurring, also known as the sojourn time. When

data are available from a sample of units, these transition intensities are typically treated as

population parameters that may either be assumed constant across units or expressed as a

function of explanatory variables.

2.2 Markov and Semi-Markov Properties

To make the multistate framework useful for modeling, simplifying assumptions usually

need to be made. The process described previously is general enough to accommodate non-

Markovian and time inhomogeneous process. In practice, Markovian assumptions are often

made such that the multistate process adheres to either the Markov or the semi-Markov

property. The Markov property stipulates that the future of the process at a given point in

time depends only on the current state of the process and therefore the history of the process

can be ignored. Under the Markov assumption, for all k, l ∈ {0, 1, . . . , s− 1},

Hkl(t1, t2) = P
(
Y (t2) = l

∣∣Y (t1) = k
)

for t1 < t2, and

λkl(t,F (t)) = λkl(t).

Another assumption that is often made is that the process is time homogeneous meaning that

transition intensities are stationary with respect to time such that for all k, l ∈ {0, 1, . . . , s−

1}, λkl(t) = λkl. The homogenous Markov model therefore implies exponentially distributed

sojourn times with constant hazards. A straightforward expression for the probability of

transitioning from state k to state l conditional upon being in state k at a given arbitrary

time, t, can be expressed as

Pkl = P (Y (Tm+1) = l|Y (Tm) = k) ∀ m = 1, . . .

=
λkl∑

m∈S,m6=k λkm
.

Thus, for a homogeneous Markov process the probability of transitioning from one state to

another is proportional to the associated transition intensity.

The semi-Markov property is less restrictive than the Markov property and stipulates

that the future of the process at a given point in time may depend on both the current state
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of the process and the time elapsed in the current state. Thus, the history of the process

prior to entrance into the current state can be ignored. Under the semi-Markov assumption,

for all k, l ∈ {0, 1, . . . , s− 1},

Hkl(t1, t2) = P
(
Y (t2) = l

∣∣Y (t1) = k, t1 − TN(t1)

)
for t1 < t2, and

λkl(t,F (t)) = λkl(t, t− TN(t)),

where t−TN(t) represents the time elapsed at time t since entry into the current state. Once

again, it is possible to make the assumption of time homogeneity implying λkl(t, t−TN(t)) =

λkl(t−TN(t)). The time homogenous semi-Markov process allows hazards of transition to vary

as a function of time elapsed in the current state which gives rise to non-exponentially dis-

tributed durations. We can demonstrate the impact of various combinations of assumptions

on our expression for the transition intensities using the following diagram.

Time Inhomogeneous Time Homogeneous

Non-Markov λkl(t,F (t)) λkl(F (t))

Semi-Markov λkl(t, t− TN(t)) λkl(t− TN(t))

Markov λkl(t) λkl

The semi-Markov process cannot be considered a continuous-time Markov process be-

cause it does not satisfy the Markov property continuously across time. It does, however,

satisfy the criteria for a discrete-time Markov process when only the instants of transition,

Tm, are considered. A discrete-time Markov process, sometimes referred to as a Markov

chain, differs from a continuous-time Markov process in that the process consists of the se-

quence of states only and does not include information about the duration of time spent in

each state. The Markovian property that the next state visited depends only on the current

state occupied is still retained. The discrete-time process associated with a continuous-time

semi-Markov process is often referred to as the embedded Markov chain. As we will see,

in application it is often preferable to express the transition intensities for a semi-Markov

process, λkl(t−TN(t)), as the product of two components: the first representing the transition

probabilities from the embedded discrete-time Markov chain, Pkl, and the second represent-
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ing the state-specific sojourn time distributions which are functions of t− TN(t).

2.3 Modeling Framework for Markov and Semi-Markov Processes

In developing a framework for modeling Markov and semi-Markov processes we focus on

expressing the transition intensities in such a way as to explain the observed heterogeneity

across the sample of observed processes. While retaining the concept that the entire history of

a Markov or semi-Markov process up until time t can be summarized by information observed

at time t, we can modify our assumptions to allow incorporation of explanatory variables

into the modeling of transition intensities. We define X(t) as a multivariate explanatory

process whose value is known right before time t. Sometimes referred to as a partial Markov

property [4], the condition allowing for incorporation of X(t) can be described as

Hkl(t1, t2) = P
(
Y (t2) = k

∣∣Y (t1) = l; F (t1)
)

= P
(
Y (t2) = k

∣∣Y (t1) = l,X(t1)
)

for t1 < t2,

where F (t1) is now the filtration of both Y and X up to time t1 [31]. Analogously, the

condition allowing for incorporation of X(t) assuming a partial semi-Markov property can

be described as

Hkl(t1, t2) = P
(
Y (t2) = k

∣∣Y (t1) = l; F (t1)
)

= P
(
Y (t2) = k

∣∣Y (t1) = l, t1 − TN(t1−),X(t1)
)

for t1 < t2.

By definition, X(t) can include durations, time-fixed explanatory variables, and time-

dependent variables allowing great flexibility to the set of potential partial Markov or par-

tial semi-Markov models. For simplicity, we will omit the t notation when referring to X(t)

throughout the remainder of this section as it is only relevant when time-varying explanatory

variables are included.

In constructing a partial Markov model, λkl may now depend on the process X for all

k, l ∈ {0, 1, . . . , s − 1}. A common approach to incorporating explanatory variables when

constructing a Markov model involves parametrizing the transition intensity functions using

the log linear expression

λkl(X) = exp(βTklX),
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where βkl denotes the vector of parameters to be estimated for all k, l ∈ {0, 1, . . . , s − 1}.

This modeling framework allows us to interpret the regression coefficients, βkl, in terms of

hazard ratios.

To construct a partial semi-Markov model, λkl must be expressed as a function of both X

and t− TN(t). As alluded to previously, the transition intensity functions for a semi-Markov

model are preferably expressed as the product of the embedded discrete-time Markov chain

transition probabilities, Pkl, and the state-specific sojourn time distribution functions, which

we denote fkl. For all k, l ∈ {0, 1, . . . , s− 1},

λkl(t− TN(t),X) = Pkl(X)fkl(t− TN(t),X).

In constructing a semi-Markov model, explanatory variables can be incorporated into either

or both of the two components. A typical parameterization for the embedded Markov chain

transition probabilities Pkl will involve a logit transformation such that

log

(
Pkl(X)

1− Pkl(X)

)
= exp(βTklX),

subject to the constraint that
∑s−1

l=0 Pkl = 1 for all k ∈ {0, 1, . . . , s − 1}. This modeling

framework is analogous to logistic regression and allows us to interpret regression coefficients,

βkl, in terms of odds ratios. We usually assume that the sojourn time distributions for a

semi-Markov model, fkl, belong to a parametric family such as the Weibull or Gamma. To

incorporate explanatory variables into the sojourn time distribution functions, it is typical

to express the hazard rate for fkl using a Cox proportional regression model [32]. The hazard

rate is defined by

αkl(t− TN(t),X) = αkl0(t− TN(t))exp(βTklX),

where αkl0(t − TN(t)) denotes the baseline hazard which equals the hazard associated with

the chosen parametric family. For example, for the Weibull distribution,

αkl0(t− TN(t)) =

(
νkl
σkl

)(
t− TN(t)

σkl

)(νkl−1)

for all k, l ∈ {0, 1, . . . , s− 1} and for scale parameters σkl > 0 and shape parameters νkl > 0.

This modeling framework allows us to interpret the regression coefficients, βkl, in terms
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of hazard ratios. For example, incorporating covariates at the level of fkl for the Weibull

distribution gives us

fkl(t− TN(t),X) = αkl(t− TN(t),X)Skl(t− TN(t),X)

=

(
νkl
σkl

)(
t− TN(t)

σkl

)(νkl−1)

exp
(
βTklX

)
exp

[
−
(
t− TN(t)

σkl

)]exp(βT
klX)

,

where Skl(t− TN(t),X) is the Weibull survival function associated with hazard rate αkl(t−

TN(t),X). The expression for fkl can be directly incorporated into the likelihood function to

facilitate parameter estimation.

Although we have presented process elements such as transition intensities, transition

probabilities, and state-specific sojourn time distribution functions using specific notation

within this chapter, the notation associated with these terms will vary in the chapters to

come as is necessary to accommodate the different modeling frameworks and applications.

The terms used to refer to each element in subsequent chapters will inform their relation to

the materials presented in this chapter.
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CHAPTER 3

A Joint Model for Concurrent Sexual Partnerships

3.1 Challenges in Measuring Concurrency

Many of the challenges in establishing empirical evidence supporting the impact of con-

current, or overlapping, sexual partnerships on HIV transmission can be traced back to

difficulties in measurement. To assess the effect of concurrent partnership patterns on the

trajectory of the HIV epidemic in a population, it is necessary to estimate both the extent and

the magnitude of concurrency. Specifically, interest lies in estimating the point prevalence of

concurrency, referred to more generally as the concurrent partnership distribution, and the

mean duration of concurrency, referred to here as the mean concurrent partnership sojourn

time during which a person has k ongoing partnerships. We assume both these metrics can

be estimated using sexual history data obtained by independently sampling individuals from

a population existing in a stationary state with respect to its partnership patterns. Thus,

the concurrent partnership distribution and the mean concurrent partnership sojourn times

are estimated for a population at steady state and are not expressed as a function of time.

• Concurrent partnership distribution πk is the probability that an individual member of

a population is engaged in k ongoing partnerships at any given point in calendar time

for k ∈ {0, 1, 2, . . .}.

• Mean concurrent partnership sojourn time ρk for an individual engaged in k ongoing

partnerships is the the mean duration of time the individual will remain in k ongoing

partnerships before experiencing the next partnership formation or dissolution for k ∈

{0, 1, 2, . . .}.
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Estimation of these two population concurrency metrics enables researchers to draw infer-

ences about specific populations from which data were collected and to ultimately compare

patterns of concurrency across different populations or subpopulations. Further, empirical

estimates of these population concurrency metrics could be used as input when construct-

ing infectious disease mathematical models, such as agent-based and social network models,

which would allow researchers to examine the viability and trajectory of the HIV epidemic

over time and under variable conditions [33, 34, 35, 36].

An optimal study design for estimating these population concurrency metrics would in-

volve recruitment of a cohort of individuals prior to sexual debut followed by ongoing col-

lection of partnership information from each participant throughout the duration of his or

her life. Unfortunately, such designs are prohibitively expensive and typically infeasible due

to implementation obstacles. Instead, partnership data is typically collected retrospectively

in the form of sexual history information obtained using an approach known as the calen-

dar method [37]. Following this approach, researchers administer a cross-sectional survey

to a sample of individuals from the target population asking respondents to identify each

sexual partnership, either ongoing or concluded, that occurred in part or in full during the

previous year or other pre-specified elapsed interval of time. For each identified partnership,

respondents are then asked to provide the first and last dates of sexual intercourse.

A drawback of the calendar method is that careful consideration needs to be taken when

attempting to appropriately analyze data obtained using this technique. Traditionally, at-

tempts to analyze retrospective sexual history data have used the partnership as the unit

of observation and have thus ignored heterogeneity across individuals and time. For ex-

ample, the mean partnership duration is usually calculated by averaging across partnership

durations reported by all individuals across all time points, assuming partnerships to be inde-

pendent and identically distributed [38]. In some instances, these partnership-level analyses

have also inadequately addressed right censoring and length-biased sampling [3]. Another

shortcoming of current analytical approaches is the tendency to use only a snapshot of the

available information. For example, to obtain an estimate of the concurrent partnership

distribution, a specific time point is selected, such as one month prior to the survey date,
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and the observed distribution at that time is taken as the estimated distribution thereby

discarding a large portion of the available data [39, 40]. In 2010, a UNAIDS working group

developed guidelines for measuring concurrency and recommended that the point preva-

lence at six months prior to the interview be used as an indicator of concurrency within

a population [41]. Following the dissemination of these guidelines, numerous articles were

published questioning the validity of the proposed indicator citing issues of recall bias and

demonstrating the variability in point prevalence estimates across differing points in time

[40, 42].

Another concern rarely addressed when analyzing retrospective sexual history data is the

handling of individual partnerships reported as having the same first and last dates of sexual

intercourse. These partnerships are usually assumed to represent one-time sexual encounters

and will be referred to as one-offs. Here we distinguish one-offs from other partnerships

which we will refer to throughout this paper as ongoing partnerships. The high rate of one-

offs reported among many of the populations targeted for prevention and treatment efforts

necessitates the consideration of these events in the statistical analysis stage. Regardless

of the per-one-off transmission probabilities, the cumulative effect of relatively high rates of

one-offs on HIV transmission within a community may be substantial. Another advantage

of explicitly modeling these one-off events is to account for the potential impact of one-off

events engaged in by an individual on the likelihood of a subsequent partnership formation

or dissolution event.

Based on the challenges described above, we aim to develop a modeling framework that

meets four criteria. The proposed model should:

1. Treat individuals as the independent units of observation rather than partnerships

which may exhibit dependence when engaged in by the same individual at the same

or different points in time.

2. Allow estimation of population metrics of interest for measuring concurrency: the

concurrent partnership distribution and the mean concurrent partnership sojourn time

for an individual engaged in k ongoing partnerships.
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3. Be flexible enough to incorporate explanatory variables to identify and characterize

factors affecting concurrency.

4. Account for one-offs and allow the occurrence of one-offs to potentially impact the

subsequent formation and dissolution of ongoing partnerships.

3.2 A Joint Model for Retrospective Sexual History Data

To address the stated modeling objectives, a joint multistate and point process model is

proposed. As described previously, a multistate model is a model for a continuous-time

stochastic process which may, at any time, occupy one of a number of discrete states [43, 44].

Typically, multistate models are fit to longitudinal observations of a categorical variable. For

sexual history data, each individual’s continuation in and transition through differing states,

where state is defined as the number of ongoing partnerships an individual is engaged in

at a given point in time, can be modeled using a multistate modeling approach. In this

manner, each individual’s partnership patterns over time are treated as a single stochastic

process. Figure 3.1(a) depicts data for an individual who reported the first and last dates

of sexual intercourse for three partnerships occurring within the past year. Figure 3.1(b)

demonstrates the way in which the reported partnership information can be translated into

process data appropriate for use in fitting a multistate model. The depicted individual

begins the year interval in a state of zero ongoing partnerships. He then experiences three

partnership formation events followed by two dissolution events and ends the year in a state

of one ongoing partnership.

The multistate component of the joint model addresses one of our modeling objectives by

treating each individual’s sexual history as its own stochastic process. Partnerships engaged

in by the same individual at the same and different points in time are inherently linked by

the modeling of transition intensities associated with partnership formation and dissolution.

However, the point process component of the joint model is necessary to accommodate

one-offs. By proposing a joint model, the state occupied by the multistate process for an

individual at a given time can influence the rate of occurrence of one-offs. Additionally,
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Figure 3.1: Translation of retrospective sexual history data provided by a single respondent

into multistate modeling information

the joint nature of the model allows the occurrence of one-offs to affect the subsequent

intensity of transition from one state to another. Joint modeling of a multistate process

and a discrete event process has been recently demonstrated using medical record data with

random informative observation times [45].

Let Y (t) denote the number of ongoing partnerships an individual is engaged in at calen-

dar time t such that Y (t) takes values in {0, 1, 2, . . .} for all t where t corresponds to external

or calendar time. We let Y (t) represent the count of ongoing partnerships, which excludes

the occurrence of one-offs that are alternatively modeled by the count process component

of the joint model. Jumps in Y (t) thus correspond to partnership formation or dissolution

events. Assume multiple partnership formation or dissolution events cannot occur at the

exact same point in time such that Y (t) can only jump to adjacent states resulting in a

birth-death-type process. If we assume Y (t) is a time homogeneous continuous-time Markov

multistate process, Y (t) can be fully characterized by specification of either the transition

probabilities from state k to state l

pkl(∆t) = P (Y (t+ ∆t) = l|Y (t) = k)
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for all t ≥ 0 and k, l ∈ {0, 1, 2, . . .}, or by the transition intensities,

αkl = lim
∆t→0

pkl(∆t)

∆t

for k, l ∈ {0, 1, 2, . . .}, which represent the instantaneous probability of transition to state l

given occupation of state k. Under the Markov assumption, these transition intensities are

assumed constant with respect to time yielding exponentially distributed sojourn times. In

order for the occurrence of one-offs to influence the subsequent intensity of transition we

must relax this assumption by allowing transition intensities to vary within occupancy of

a state. We adopt a phase-type Markov model with intensities that fluctuate in response

to each one-off event that occurs during occupancy of a state [46]. To implement this, we

choose to parametrically model transition intensities by

αkl(t) = βkl0exp(βkl1N(t) + βTkl2X(t)), (3.1)

where N(t) represents the count of one-off events at calendar time t having occurred since the

last transition in Y (t) and X(t) denotes a vector of explanatory variables. For an individual

who enters a state of k ongoing partnerships, N(t) counts the occurrence of one-offs since

entry into the current state. Each time an ongoing partnership is formed or dissolved an

individual transitions to a new state and the counting process for one-offs, N(t), starts over

at zero. To make the definition of N(t) precise, let ν(t) represent the cumulative count of

one-offs having occurred at time t such that ν(t) represents a true counting process. Let

N(t) = ν(t)− ν(s(t)) where s(t) = max0≤x<t({x : Y (x) 6= Y (t)}, 0) such that s(t) represents

the calendar time at which the last partnership formation or dissolution occurred prior to

time t. N(t) takes values in {0, 1, 2, . . .} for all t. Assume no two one-offs can occur at the

exact same time such that N(t) is a counting process within each state occupied. In general,

the αkl transition intensities may depend on the history of the process, H, which includes

the trajectories associated with N(t) and X(t) over time ranging from 0 to t. Here we

consider the special case in which the history of the process can be ignored and αkl(t|H) can

be reduced to αkl(t) and expressed as a function of X(t) and N(t) observed at time t. Thus,

the intensity of transition at time t may depend log-linearly on the number of one-offs having

occurred, baseline characteristics of the individual, and time-dependent characteristics of the
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Figure 3.2: Sample sexual partnership pattern for a single respondent demonstrating both

components of the joint model: the multistate process for the number of ongoing partner-

ships, and the point process for the number of one-offs

individual or his ongoing partners. Time-dependent variables are restricted, however, in that

they are only allowed to vary along with the phase-type intensities which vary only at the

instant a partnership is formed or dissolved or a one-off occurs. For example, X(t) could

contain an indicator for engagement in a main partnership or occurrence of a one-off with a

commercial sex worker but could not contain information on an individual’s CD4 count as

measured at arbitrary time points.

We choose to model N(t) as a Markov-modulated Poisson process which allows varia-

tion in the rates of one-offs over time according to the number of ongoing partnerships an

individual is engaged in. Markov-modulated Poisson processes are doubly stochastic in that

the Poisson process rate varies according to a continuous-time Markov chain [47]. In our

proposed model, the continuous-time Markov chain regulating the rates of one-offs corre-

sponds to the multistate process Y (t) representing the number of ongoing partnerships an

individual is engaged in at time t. The interaction of both components of the proposed joint

model are visually depicted in Figure 3.2. At each day prior to the survey date corresponding
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to time t, an individual can be said to be in a state of Y (t) ongoing partnerships and to

have experienced N(t) one-offs which can be read from the left and right vertical axes of

Figure 3.2, respectively. The dashed line which increments along with each partnership or

one-off event depicts the times at which the transition intensities for partnership formation

or dissolution may vary. A Markov-modulated Poisson process can be fully characterized

through specification of the intensity function λ(t) which represents the infinitesimal rate

at which events are expected to occur around time t. Thus, in modeling N(t) it suffices

to model λ(t). We parametrically model intensity functions for individuals in a state of k

ongoing partnerships by

λk(t) = γk0exp(γTk1X(t)), (3.2)

where X(t) is a vector of potentially time-dependent explanatory variables with the same

restrictions as described previously. X(t) does not need to consist of the same explanatory

variables across the two components of the model and careful consideration of the joint nature

of the model should be taken prior to selecting covariates for inclusion in both components

of the model. In choosing to consider the two components of the joint model together as a

two-dimensional vector, (Y (t), N(t)), the overarching modeling framework can alternatively

be described as a bivariate continuous-time Markov process in which the Markov property

holds for states defined through specification of both Y (t) and N(t).

3.3 Estimation of Joint Model Parameters

We fit the joint model described in section 3.2 and specifically given by equations (3.1) and

(3.2) using maximum likelihood estimation. Let βkl = {βkl0, βkl1, βkl2} denote the vector of

regression parameters expressed in equation (3.1). In theory, transition intensity regression

parameters βkl can be estimated for each k, l ∈ {0, 1, 2, . . .}. In practice, we choose to specify

a limited number of unique transition intensities. For modeling of sexual history data, we will

estimate parameters βkl associated with transition from a state of k ongoing partnerships
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to a state of l ongoing partnerships for three distinct types of transitions:

Formation of a monogamous partnership (k = 0, l = 1)

Formation of a concurrent partnership (k > 0, l = k + 1)

Dissolution of any ongoing partnership (k > 0, l = k − 1).

To clarify use of the term monogamous, here we define a monogamous partnership as

any partnership that is the sole ongoing partnership that an individual has reported being

engaged in at a given point in time. Thus, engagement in a monogamous partnership does

not preclude the occurrence of one-offs or the formation of additional concurrent partnerships

at a future point in time. To simplify notation, let β0, β1, and β2 denote the parameters

to be estimated for the intensity of formation of a monogamous partnership, formation of

a concurrent partnership, and dissolution of a partnership, respectively. Additionally, we

choose to estimate γk = {γk0, γk1} from equation (3.2) separately for states of no ongoing

partnership (k = 0), one ongoing partnership (k = 1) and concurrent partnerships (k ≥ 2).

For simplicity, we will denote these parameters as γ0, γ1 and γ2, respectively. Therefore, the

full likelihood will be maximized to obtain parameter estimates θ̂ = {β̂0, β̂1, β̂2, γ̂0, γ̂1, γ̂2}.

In constructing the likelihood we must calculate the probability of survival across intervals

of time during which the transition probabilities remain constant. The term event will be

used to signify any one of the following: a partnership formation, a partnership dissolution,

or the occurrence of a one-off. We assume that multiple events cannot occur at the same

instant in time. Due to the Markov modeling approach, inter-event times are exponentially

distributed. For an individual in a state of k ongoing partnerships who experiences an event

at time t1, the probability of that individual remaining in state k until time t2 without

experiencing another event is

Sk(t1, t2) =

 exp(−{(α01(t1) + λ0(t1))(t2 − t1)}) if k = 0

exp(−{(αk,k+1(t1) + αk,k−1(t1) + λk(t1))(t2 − t1)}) if k 6= 0,

where α01, αk,k+1, and αk,k−1 denote the transition intensities associated with the formation

of a monogamous partnership, formation of a concurrent partnership, and dissolution of

any ongoing partnership, respectively. λk denotes the rate of one-offs for an individual in
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Figure 3.3: Demonstration of approach taken to calculate the likelihood contribution for an

individual i with mi = 4 transitions occurring during the year interval. Expressions for all

S and q shown beneath the plot are multiplied together to yield the total contribution for

individual i.
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a state of k ongoing partnerships. To construct the likelihood, we must also calculate the

instantaneous probability of an event occurring at time t. Given an individual in a state of k

ongoing partnerships experienced an event at time t1 and remained in state k until time t2,

the probability of a specific event occurring at time t2 > t1 is assumed constant and equal to

qkl(t1) =



α01(t1) if k = 0, l = 1

αk,k+1(t1) if k > 0, l = k + 1

αk,k−1(t1) if k > 0, l = k − 1

λk(t1) if k ≥ 0, l = k,

where qkk(t1) indicates no change in the number of ongoing partnerships and is used to

denote the occurrence of a one-off. Let i = 1, . . . , n index each respondent in an independent

sample of size n. For each individual i, let mi indicate the total number of events experienced,

either ongoing partnership events or one-off events, over the course of the year interval. Let

Ti = {ti0, ti1, . . . , timi
, ti(mi+1)} be the set of event times for individual i such that ti0 indicates

the time at which the year interval begins, ti1 the time when the first event occurs, timi
the

time when the last event occurs and ti(mi+1) the time at which the year interval ends. Event

times are ordered such that ti0 < ti1 < . . . < ti(mi+1). Similarly, let Yi = {yi0, yi1, . . . , yimi
}

be the sequence of states for individual i such that yi0 and yimi
indicate the numbers of

ongoing partnerships individual i is engaged in at the start and end of the year interval,

respectively. Importantly, adjacent elements of Yi need not differ, for example, yi2 would

equal yi3 in the instance that the third event experienced by individual i was a one-off. An

example demonstrating use of this notation for a single individual is depicted in Figure 3.3.

The likelihood can then be expressed as the product over all individuals and all events

L =
n∏
i=1

[ mi∏
j=0

Syij(tij, ti(j+1))
][mi−1∏

j=0

qyijyi(j+1)
(tij)

]
.

Following maximization of the log likelihood function using numerical optimization tech-

niques, the covariance matrix for the parameter estimates can be obtained by inverting the

negative Hessian. The square root of the diagonal elements of this covariance matrix are

asymptotically equal to the standard errors for the corresponding parameter estimates.
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3.4 Estimation of Concurrency Metrics

As a result of the bivariate Markov model specification, which implies constant event inten-

sities, the concurrency metric estimators can be expressed in terms of the model parameter

estimates. Let Ck be an integer valued random variable representing the number of one-offs

that occur from the moment an individual enters a state of k ongoing partnerships until the

individual leaves that state by either forming or dissolving an ongoing partnership. Let Hk be

the random variable indicating the concurrent partnership sojourn time, that is the duration

of time an individual remains in a state of k partnerships prior to an ongoing partnership

formation or dissolution event. For an individual in a state of k ongoing partnerships who

has experienced r one-offs since the last partnership formation or dissolution event, let µkr

denote the mean duration of time until the next event (partnership formation, dissolution,

or one-off). Thus, µkr is the mean inter-event time after entry into a state of k ongoing part-

nerships and after a total of r one-offs since entry into the current state. Inter-event times

are exponentially distributed because the event occurrence intensities are constant given k

and r. Therefore, for a fixed Ck = c, Hk will be equal to the amount of time spent in state k

with a cumulative total of exactly 0 one-offs, plus the amount of time spent in state k with a

cumulative total of exactly 1 one-off, summing all the way up to c one-offs. For an individual

in a state of k ongoing partnerships who has experienced r one-offs, let ∆kr represent the

probability that the next event (formation, dissolution, or one-off) that occurs is either a

partnership formation or dissolution event resulting in escape from the state of k ongoing

partnerships. Therefore, P (Ck = 0) = ∆k0 and P (Ck = 1) = ∆k1(1−∆k0) which is equal to

the probability of the first event being a one-off and the second event being the formation or

dissolution of an ongoing partnership. The mean concurrent partnership sojourn times for
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all k ∈ {0, 1, 2, . . .} can then be derived as follows using iterative expectation,

ρk = E(Hk)

= ECk
(E(Hk|Ck = c))

= ECk

( c∑
r=0

µkr

)
=
∞∑
c=0

(( c∑
r=0

µkr

)
P (Ck = c)

)

= µk0∆k0 +
∞∑
c=1

(( c∑
r=0

µkr

)
∆kc

c−1∏
s=0

(1−∆ks)

)

ρ̂k = µ̂k0∆̂k0 +
∞∑
c=1

(( c∑
r=0

µ̂kr

)
∆̂kc

c−1∏
l=0

(1− ∆̂kl)

)
. (3.3)

To calculate ρ̂k, we first define

α̂klr = E
[
α̂kl(t)|Y (t) = k,N(t) = r

]
= β̂kl0exp

(
β̂kl1r + β̂

T

kl2E
[
X(t)|Y (t) = k,N(t) = r

])
(3.4)

λ̂kr = E
[
λ̂k(t)|Y (t) = k,N(t) = r

]
= γ̂k0exp

(
γ̂Tk1E

[
X(t)|Y (t) = k,N(t) = r

])
. (3.5)

Depending on the variables comprising X(t), E
[
X(t)|Y (t) = k,N(t) = r

]
can usually be

estimated given the available data. For instance, if X(t) is an indicator for engagement in a

main partnership, E
[
X(t)|Y (t) = k,N(t) = r

]
would simply equal the probability of being

in at least one main partnership for an individual who experienced r one-offs since transition

into a state of k ongoing partnerships. As a result of the homogeneous Markov assumption

which implies independent and exponentially distributed inter-event times,

µ̂kr =
[
α̂k(k+1)r + α̂k(k−1)r + λ̂kr

]−1

∆̂kr =
α̂k(k+1)r + α̂k(k−1)r

α̂k(k+1)r + α̂k(k−1)r + λ̂kr

for all k ∈ {1, 2, . . .}. For k = 0, µ̂kr =
[
α̂01r + λ̂0r

]−1
and ∆̂kr =

[
α̂01r

][
α̂01r + λ̂0r

]−1
. For

practical purposes, in estimating the mean concurrent partnership sojourn times, infinite
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sums can typically be truncated such that the sum extends only until P (Ck = c) becomes

negligible.

Assuming stationarity of the bivariate continuous-time Markov process, an estimator for

the concurrent partnership distribution can be derived by solving the equilibrium equation

πQ = 0 for π where Q is the infinitesimal generator matrix for the two-dimensional process

[48]. We will assume maximal values for possible counts of ongoing partnerships and one-offs

to obtain a finite dimensionalQmatrix and to make the calculations tractable. The resulting

approximation is thus accurate up to arbitrary numerical error stemming from truncation of

the state space. Allowing a maximum of K ongoing partnerships and R one-offs, such that

π = {π00, π10, π20, .., πK0, π01, π11, . . . , πKR} where πkr denotes the probability that, at any

given point in time, an individual is engaged in k ongoing partnerships after the occurrence

of r one-offs since the last formation or dissolution event. For r ∈ {0, 1, . . . , R}, let

Λr = diag
(
λ̂0r, λ̂1r, λ̂2r, . . . , λ̂Kr

)
,

Γr = diag
(
−α̂01r,−α̂10r − α̂12r,−α̂21r − α̂23r, . . . ,−α̂(K−1)(K−2)r − α̂(K−1)Kr,−α̂K(K−1)r

)
,

Ar =



0 α̂01r 0 0 · · · 0

α̂10r 0 α̂12r 0 · · · 0

0 α̂21r 0 α̂23r · · · 0

0 0 α̂32r 0 · · · 0
...

...
...

...
. . . 0

0 0 0 0 α̂K(K−1)r 0


,

where Λr, Γr, and Ar are (K+1)-dimensional square matrices. Then, Q is a (K+1)(R+1)-

dimensional square matrix that can be defined using the above notation and a series of block

matrices,
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Q =



A0 + Γ0 −Λ0 Λ0 0 0 · · ·

A1 Γ1 −Λ1 Λ1 0 · · · 0

A2 0 Γ2 −Λ2 Λ2 · · · 0
...

...
...

...
. . . 0

AR 0 0 0 0 ΓR


.

The structure of Q is such that the A0 + Γ0 − Λ0 block yields the transition rates

between states (k, 0) and (l, 0) and the first Λ0 block yields the transition rates between

states (k, 0) and (k, 1) [45, 49]. The rest of the generator matrix is structured similarly.

There is insufficient information to solve the set of balance equations resulting from πQ = 0

and we must therefore incorporate our knowledge that
∑K

i=0

∑R
j=0 πij = 1. After solving for

π, we obtain the concurrent partnership distribution by summing across numbers of one-offs

such that π̂k =
∑R

j=0 πkj for all k ∈ {0, 1, 2, . . . , K}.

Estimation of standard errors for all ρ̂k and π̂k can be completed using a nonparametric

bootstrap approach for multistate processes [50, 51]. For an observed sample of size n, the

approach entails sampling with replacement a total of n individuals and using all of each

sampled individual’s sexual history data to calculate ρ̂k and π̂k for k ∈ {0, 1, . . .} as described

above. This entails fitting the proposed model, obtaining the parameter estimates and then

using the formulas presented in this section to calculate the concurrency metrics of interest.

This resampling process is repeated until g bootstrap samples have been drawn and estimates

computed where g is usually large. The variances of ρ̂k and π̂k can then be estimated as the

empirical variances of the g replicates of ρ̂k and π̂k.

3.5 Application to the MetroMates Study

The retrospective sexual history data that motivated the development of the proposed model

came from a National Institute of Drug Abuse (NIDA)-funded research study officially titled

Transmission Behavior in Partnerships of Newly HIV Infected Southern Californians and

commonly referred to as the MetroMates study (PI: Dr. Pamina Gorbach). Between Febru-
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ary 2009 and May 2012, MSM seeking testing for HIV through the Sexual Health Program

at the Los Angeles LGBT Center were recruited to participate in the MetroMates study in-

volving a baseline interview, testing for HIV and other sexually transmitted infections, and a

year of follow-up interviews. Criteria for enrollment included: male, at least 18 years of age,

report of sex with a male partner in the past 12 months, and a new HIV test. Demographic,

behavioral, and other data were collected using Audio Computer-Assisted Self-Interview

(ACASI). Data were collected at the respondent level and respondents could elect to provide

information for up to six named partners with whom they reported having sexual intercourse

within the past year. Using the calendar method, respondents reported the lengths of time

since first and last intercourse in days, weeks, months, or years creating variation in preci-

sion. To distinguish between partnerships that were ongoing versus dissolved at the time of

the survey, responses to an item asking how likely it is that a respondent will have sex with

the partner again were used. Responses of ”extremely unlikely” and ”very unlikely” were

assumed to indicate a terminated partnership.

Data were collected for 326 participants in the MetroMates study. Among these partic-

ipants, 1,050 partnerships were reported. Invalid partnerships consisting of 64 partnerships

with missing first or last dates of intercourse, 39 partnerships with a last date of intercourse

preceding the first date of intercourse, and 47 partnerships with last dates of intercourse

prior to the year interval were excluded. Following these exclusions, data were available for

295 male participants with at least one valid partnership. Participants ranged in age from

19 to 62 years (mean = 30.03, standard deviation = 7.85). The MetroMates study protocol

called for oversampling of HIV positive men. Among the 295 respondents, 196 received a

positive HIV diagnosis and the remaining 99 were HIV negative at the time of the survey.

The MetroMates study also selectively enrolled men whose new HIV diagnosis suggested a

recent or acute infection. As described by Gorbach et al. [52], during the initial phase of

enrollment only men with a recent diagnosis were recruited. To complete enrollment, men

with any new diagnosis, including chronically infected men, were recruited. Of the 295 men

included in our sample, 74% reported one or more one-off during the year interval for a total

of 534 one-offs. Of the 896 partnerships reported, 60% were one-offs, 7% were of duration
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30 days or less, 24% were of duration 31-365 days, and 9% were reported as lasting longer

than 365 days.

The Markov nature of the proposed model assumes exponentially distributed sojourn

times conditional on the number of ongoing partnerships and the number of one-offs having

occurred since the last partnership event. To assess the appropriateness of this assumption

for the MetroMates sample, we performed graphical diagnostics [53]. Specifically, we plotted

the Nelson-Aalen estimated cumulative hazard rate versus time for each condition defined

by HIV status, the number of ongoing partnerships, and number of one-offs. For conditions

with a sufficient sample size, we assessed the linearity of the plotted curve. Across most

conditions, the assumption of exponentially distributed sojourn times appeared valid.

In applying the modeling approach described previously to the MetroMates data, we fit

a number of models including explanatory variables such as respondent age and HIV status.

In the model selection stage, explanatory variables were incorporated into either or both the

multistate and point process components of the model. The model we selected for presen-

tation included the number of one-offs and an indicator for HIV status as covariates in the

multistate portion of the model. One-off event rates were estimated separately for individu-

als in no ongoing partnerships, one ongoing partnership, and concurrent partnerships. The

log likelihood function was constructed using code written in R version 3.2.0 and available

in the supplementary materials. Minimization of the negative log likelihood function was

accomplished using the general-purpose optimization function optim available in the base R

stats package. The Nelder-Mead direct search method was specified and differing sets of ini-

tial values were used to verify the results obtained. To enable calculation of standard errors,

a numerical approximation to the Hessian matrix was generated using the R numDeriv pack-

age. Parameter estimates for the model fit to the MetroMates data are displayed in Table

3.1. Relative to HIV negative men, HIV positive men were estimated to have higher hazard

of forming a monogamous partnership, higher hazard of forming a concurrent partnership,

and lower hazard of partnership dissolution during the previous year, although these results

were not statistically significant.
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Table 3.1: Parameter estimates for the joint multistate and Poisson process model fit to the MetroMates data

Event Type Parameter Description Estimate Standard P Value Hazard Ratio

Error (95% CI)

Formations β0 Baseline Hazard 0.0019 0.0003

from State 0 β1 Count of One-offs -0.1812 0.1511 0.23 0.83 (0.62, 1.12)

β2 HIV Status 0.1520 0.1923 0.43 1.16 (0.80, 1.70)

Formations β0 Baseline Hazard 0.0026 0.0004

from State ≥ 0 β1 Count of One-offs -0.1529 0.2839 0.59 0.86 (0.49, 1.50)

β2 HIV Status 0.0704 0.1982 0.72 1.07 (0.73, 1.58)

Dissolutions β0 Baseline Hazard 0.0053 0.0006

β1 Count of One-offs 0.4457 0.1097 < 0.01 1.56 (1.26, 1.94)

β2 HIV Status -0.1615 0.1403 0.25 0.85 (0.65, 1.12)

One-off Events γ0 0 partnerships 0.0048 0.0003 < 0.01

γ1 1 partnership 0.0022 0.0003 < 0.01

γ2 ≥ 2 partnerships 0.0038 0.0006 < 0.01



The number of one-offs was significantly associated with rates of subsequent partnership

dissolution. Following the occurrence of each additional one-off, an individual was estimated

to experience a 56% increase in the hazard of dissolution of an ongoing partnership.

Using the analytic expressions derived previously and the parameter estimates in Table

3.1, the population concurrency metrics were estimated. The concurrent partnership dis-

tribution and the mean concurrent partnership sojourn times were estimated separately for

HIV positive and negative individuals in this sample (Table 3.2). Standard errors for the

concurrency metrics were calculated based on g = 1000 bootstrap samples. The concurrent

partnership distribution was calculated across states ranging from 0-7 ongoing partnerships

and 0-4 one-offs, as these ranges encompassed the majority of the observed data. States of

≥ 2 ongoing partnerships were combined for presentation in Table 3.2. At any given point

in time, approximately 18% of the HIV positive sample would be expected to be engaged in

concurrent partnerships as compared to 10% of the HIV negative sample. Sixteen percent

of the HIV negative sample was estimated to be engaged in a monogamous partnership at

any given point in time relative to 19% of the HIV positive sample.

The mean concurrent partnership sojourn times for states of 0, 1, and 2 or more ongoing

partnerships are displayed in Table 3.2. Regardless of HIV status, the mean length of time

an individual was expected to remain engaged in a state of 2 or more partnerships prior

to forming or dissolving a partnership was approximately 4 months. The mean duration of

time spent in a state of one ongoing partnership was also approximately 4 months and did

not appear to differ substantially according to HIV status. HIV negative individuals were

estimated to remain in a state of no ongoing partnerships for an average duration of 15.5

months, as compared to approximately 14.5 months among HIV positive individuals.

The mean numbers of one-offs per year for individuals engaged in no ongoing partnerships,

one ongoing partnership, or concurrent partnerships were obtained by taking the inverse

of each element of γ̂. Not surprisingly, individuals in a single monogamous partnership

had the lowest estimated rate of one-offs per year (0.81). On average, men engaged in

concurrent partnerships experienced an estimated 1.40 one-offs per year and men engaged

in no partnerships experienced 1.75 one-offs per year.
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Table 3.2: Population partnership metric estimates based on parameter estimates obtained

from the joint model fit to the MetroMates data

Number of Concurrent Mean Concurrent Mean Number

Ongoing Partnership Partnership of One-Offs

Partnerships Distribution Sojourn Time per Year

k π̂k SE ρ̂k SE Estimate SE

HIV - 0 0.7384 0.1237 466 days 80 days 1.75 0.10

1 0.1573 0.0524 119 days 18 days 0.81 0.10

≥ 2 0.1043 0.1168 114 days 18 days 1.40 0.20

HIV + 0 0.6325 0.0800 441 days 64 days 1.75 0.10

1 0.1880 0.0414 129 days 12 days 0.81 0.10

≥ 2 0.1795 0.0565 123 days 12 days 1.40 0.20
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3.6 Discussion

We have described a novel approach for the joint modeling of sexual partnership patterns

using retrospective sexual history data containing one-off sexual encounters. The proposed

model can be applied to answer pertinent questions in the field of HIV transmission research.

Implementation of this approach was demonstrated using epidemiological data collected from

a sample of MSM seeking HIV testing at a Los Angeles clinic. Despite the limitations

associated with retrospective sexual history survey data, we were able to estimate several

important population concurrency metrics using a technique that accounted for different

sources of variation and fully utilized the available data.

The joint multistate and point process model addresses all of the modeling objectives

outlined previously. The proposed method accounts for dependence among partnerships

engaged in by the same person at the same or different points in time by translating the

data collected at the partnership-level into individual-level trajectories and modeling these

trajectories as independent stochastic processes. Another advantage of the joint model is

the explicit modeling of rates of partnership formation and dissolution. Many of the agent-

based and other mathematical models constructed to examine the impact of concurrency

on HIV transmission have relied on simple empirical estimates of the mean partnership

duration or concurrent partnership distribution as input [36, 33, 54]. Our proposed method

provides improved estimates of these quantities but also provides formation and dissolution

rates that are perhaps more useful in creating a dynamic mathematical model involving

forward simulation of concurrent partnership patterns over time. As shown in Figure 3.4,

state transition intensities and one-off rates estimated based on the MetroMates data can

be easily used to generate simulated sexual partnership trajectories at the individual level.

Rates of partnership and one-off events that are dynamic with respect to time could be useful

in adapting current network models such that the probabilities of a partnership formation

or dissolution between two individuals in a network are variable and more accurately reflect

the sexual partnership patterns observed in a a population. The proposed joint model is also

flexible enough to allow for the incorporation of explanatory variables to further account for
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heterogeneity between individuals. Lastly, we have developed a joint model that includes

the random occurrence of one-offs. This important extension enables examination of the

relative importance of one-offs in driving the spread of HIV within a population and also

allows for one-offs to impact HIV transmission indirectly, by affecting rates of subsequent

partnership formation and dissolution. Among populations such as the MSM surveyed in

the MetroMates study, the high reported rate of one-offs makes this a valuable feature of

the proposed model. The joint modeling approach also distinguishes between one-offs and

short-term partnerships which may be important for determining factors impacting HIV

transmission. One-offs could potentially have a higher probability of transmission for a

given sexual encounter due to differences in the type of sex occurring during a one-off. For

example, one-offs may be more frequently associated with drug use leading to longer duration

of sex or more vigorous sex which could in turn enhance infectiousness. The proposed model

could enable identification of such differences in the risk of transmission.

Participants in this study do not represent a random sample of all MSM living within

Los Angeles nor do they represent all MSM living within the community served by the Los

Angeles LGBT Center. This sample was obtained by recruiting individuals who sought

HIV testing and the recent sexual activity they reported on would be expected to include

behaviors that influenced their decision to seek testing. Further, the study protocol called

for the oversampling of HIV positive individuals and, in particular, recently-infected HIV

positive individuals [55]. Thus, the generalizability of results presented in this study is

limited. We assume that the removal of invalid partnerships resulting in the exclusion

of 31 respondents did not significantly bias our results although we have limited means

of assessing this assumption. Sixty-one percent of the 31 excluded individuals were HIV

positive as compared to 66% of individuals included in the analyzed data. In removing

invalid partnerships, we further acknowledge that the partnership rate estimates presented

here could be biased downward if the removed partnerships represented actual partnerships

occurring during the year interval.

Several sources of uncertainty were present in our analysis of the MetroMates data.

Since respondents were only allowed to report on a maximum of six sexual partnerships
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Figure 3.4: Simulated trajectories displaying the number of ongoing partnerships and one-off

occurrences over 365 days for 9 individuals based on parameter estimates obtained from the

model fit to the MetroMates data. Individuals in the top two rows were assumed to be HIV

positive and those in the bottom row were assumed to be HIV negative.
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that occurred in part or in full during the previous year, individuals engaging in larger

numbers of partnerships across the year interval may have provided incomplete partnership

data that could potentially bias the estimates presented. Of the 295 participants included

in the final sample, 60 (20.3%) reported on 6 partnerships. Methods to address this issue in

future studies need further development but could include alternative questionnaire designs

or consideration of subject-specific time intervals of observation during the analysis stage.

Additionally, since respondents were allowed to choose the unit of measurement with which

they reported time since first and last dates of sexual intercourse, dates used in analyses were

often approximated. Future studies are required to explore the potential impact of this source

of uncertainty, especially in the context of multistate models with bidirectional transitions.

Similarly, this issue of coarseness in the reporting of dates introduces uncertainty surrounding

the distinction between one-offs and ongoing partnerships of short duration which is an area

for future work. Lastly, due to the questionnaire instructions, respondents were not asked to

report partnerships occurring prior to the year interval and therefore the number of one-offs

an individual had engaged in at the start of the year interval was unknown. In analyzing

the MetroMates data, we assumed zero one offs having occurred since the last formation or

dissolution event, which could potentially bias our results. Future studies may choose to

consider attempting to capture or impute this missing data.

In considering these results, it is important to recall the sampling approach with regard

to HIV status. The HIV positive sample received their positive diagnosis at the time of the

survey. Thus, the sexual behaviors these individuals were reporting on occurred prior to

their knowledge of their HIV status. The sexual patterns attributed to HIV positive men

within this sample should not be assumed to reflect the behaviors an HIV positive man

aware of his status would engage in. Additionally, some of the behaviors reported on by

recently infected HIV positive individuals within this sample may have occurred prior to the

individual’s acquisition of HIV. Although the retrospective reporting of the data relative to

the date of diagnosis limits some of the conclusions that can be drawn, the timing of calendar

method data collection may be advantageous when attempting to answer questions about

the association between concurrency and acquisition of HIV. If a significant association be-
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tween concurrency and subsequent diagnosis of acute HIV infection had been identified, it

would not directly support the hypothesis that concurrency impacts HIV transmission at

the population-level. In theory, an individual who engages in concurrent partnerships does

not put him or herself at greater risk than if he or she had engaged in the same numbers

and types of risky behaviors with the same individuals but in a serially monogamous setting.

Therefore, we would expect an increase in the rate of transmission among individuals en-

gaging in concurrent partnerships but not necessarily an increase in the rate of acquisition.

It is, however, reasonable to consider that individuals engaging in concurrent partnerships

are (1) also engaging in more total partnerships and engaging in risky behaviors at a greater

rate relative to individuals in monogamous partnerships, and (2) more likely to be engag-

ing in concurrent partnerships with individuals who themselves are engaging in concurrent

partnerships. Both of which could explain an association between increased point prevalence

of concurrency and subsequent diagnosis with HIV among samples reporting retrospective

sexual history data at the time of screening.

We have demonstrated implementation of this joint modeling approach using model speci-

fications that were selected to be appropriate for use with the MetroMates data and to reduce

complexity in this initial presentation of the proposed model. Future applications of this

model for analysis of sexual history data could select a different set of covariates, including

the addition of other time-varying explanatory variables such as partnership-level character-

istics. Although the assumption of stationarity is critical for calculation of the concurrency

metrics as described herein, inclusion of covariates such as respondent age or calendar date

at the time of interview is possible. In this instance, the concurrency metrics can be calcu-

lated for categorical age or date strata as done for HIV status in the present application, or

calculations can be completed after taking the expected value of these covariates as shown

in equations (3.4) and (3.5). Although the presented model for the MetroMates data did

not include any explanatory variables significantly associated with the rate of one-offs, the

parametric formulation of the point process rate function can easily accommodate inclusion

of these variables. A simple modification to the proposed model would allow for a different

definition of N(t). For instance, one might elect to let N(t) reflect the count of one-offs
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occurring only during some specific time interval prior to time t, for instance, one month,

such that the impact of one-offs on subsequent events is limited in duration. The proposed

model is also general enough to allow for selection of different counting processes in instances

when the assumptions surrounding the Poisson process are not valid. For instance, when it

is not acceptable to assume that the variance of the counts of one-offs over any given interval

of time equals the mean, an alternative counting process distribution, such as the negative

binomial, may be more appropriate. Another consideration is the use of zero-inflated count

models in instances in which time intervals during which no one-offs occur are observed in ex-

cess. The model specified herein also assumes a bivariate continuous-time Markov structure.

This framework requires that transition intensities are constant within subintervals of time

defined by the occurrence of one-offs, allowing transition intensities from one state to another

to differ across the interval of time spent in a given state. Advantages of this framework are

the flexibility to allow one-offs to affect subsequent intensities and ease of construction of the

likelihood. Alternative non-Markovian models that do not rely on the phase-type intensities

assumption are possible although the derived concurrency metric estimators would not be

directly applicable.

Future applications of the proposed model to sexual history data may use the general

joint multistate and point process framework presented here and alternatively adapt it to

meet their needs. Researchers investigating sexual partnership dynamics impacting HIV

transmission should consider analyzing sexual history data using a modeling approach such

as the one proposed here, that jointly models both ongoing and one-off sexual partnerships

and treats the individual, rather than the partnership, as the independent unit of observation.
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CHAPTER 4

A Semi-Markov Model for Disease Progression

4.1 Challenges in Estimating Semi-Markov Models with Back

Transitions

Methods for analyzing panel data under a Markov multistate model with time-homogenous

transition intensities have been developed and are widely used in application [23, 56]. These

methods rely on the simplifying assumption that a Markov model observed at pre-specified

time points forms a discrete-time Markov process. This result does not pertain, however,

to semi-Markov models for which the transition intensities depend on time elapsed in the

current state. In many applications, semi-Markov models are preferable or even necessary

to effectively model transition intensities over time. For example, in the study of human

papillomavirus (HPV), a semi-Markov assumption is needed to account for the strong as-

sociation between infection duration and progression to cervical abnormality [57]. The use

of a semi-Markov process to model functional status over time in aging research has also

been advocated by Cai et al. who cite the earlier finding that the likelihood of functional

improvement is higher when loss is more recent [58, 59].

The challenges and the importance of developing approaches for the estimation of

intermittently-observed semi-Markov multistate models with back transitions has not been

overlooked in the literature. In their recent numerical study examining the loss of informa-

tion due to intermittent observation, Lawless and Rad state that the effects of intermittent

observation on the efficiency of transition intensity and transition probability estimates are

much more severe for models allowing back transitions [26]. Wei and Kryscio modeled the

flow of elderly subjects from intact cognition to dementia with transient cognitive states and
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implemented a quasi-Monte Carlo method to enable the higher order integration required

to account for the uncertainty arising from unobserved transition instants [60]. In imple-

menting their method, however, Wei and Kryscio assumed no unobserved states such that

the entire sequence of states was available for each individual. Kang and Lagakos made an

important contribution by demonstrating that when the transition intensities from at least

one of the states in a model involving back transitions are assumed to be time homogenous,

a tractable expression for the likelihood function is possible [57]. The importance of allowing

for duration-dependent disease state sojourn distributions in panel data models with back

transitions was also emphasized by Lang and Minin who chose to assume an underlying latent

continuous-time Markov chain (CTMC) with multiple latent states mapping to each disease

state [61]. The latent CTMC framework results in a model that regains analytic tractability

when estimated using an iterative expectation-maximization (EM) algorithm. Although the

latent CTMC approach has several advantages, implementation requires specification of the

structure for the latent CTMC rate matrix and the dimension of the latent space making

model misspecification a significant concern. Additionally, for applications in which sojourn

times are assumed to follow a specific non-exponential distribution, such as the Weibull, it

is often preferable, for reasons of interpretability and comparability, to obtain estimates for

the distributional parameters, such as the Weibull shape and scale, as opposed to phase-type

functionals arising under the latent CTMC framework.

In this chapter we propose a method for estimating semi-Markov models for panel data

in the presence of back transitions. The proposed method accommodates intermittently-

observed data and requires minimal assumptions other than the parametric form of the

distribution from which the sojourn times arise.

4.2 Notation for a Semi-Markov Model with Back Transitions

A continuous-time multistate stochastic process is one which can take a finite number of

states at realizations occurring across time. Let random variable Y (t) denote the state a

process occupies at time t giving us a multistate process consisting of {Y (t), t ≥ 0} where
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t = 0 can be defined as the time of origin for the given process. At any time t, let Y (t) take

on values in the state space {1, 2, . . . , K} for a process with K states. Denote initial and

subsequent consecutive states occupied by the process as s0, s1, . . . and denote the time spent

in state sm−1 prior to any transition event as dm. We refer to dm as the sojourn time. Thus,

the process Y (t) can be expressed as {s0, d1, s1, d2, . . .}. If the sequence {s0, s1, . . .} forms

a simple Markov chain and the sojourn times, dm are independent random variables with

distributions depending only on the adjoining states, sm−1 and sm, the process is referred

to as semi-Markov [31]. Distinct from Markov processes, semi-Markov processes allow for

dependence of the transition intensity functions on duration in the current state. Letting d

denote time elapsed since entry into state i following the (m−1)th transition, a semi-Markov

process can be fully defined by the set of transition intensities

λij(d) = lim
∆d→0

P (dm < d+ ∆d, sm = j|dm ≥ d, sm−1 = i)

∆d

for i, j = 1, 2, . . . , K, and i 6= j. The preferred approach to specifying the transition intensi-

ties is to allow λij(d) = Pijfij(d) where

Pij = P (sm = j|sm−1 = i)

fij(d) = lim
∆d→0

P (dm < d+ ∆d|dm ≥ d, sm = j, sm−1 = i)

∆d
,

in which trajectories are modeled separately from the times of transitions [62]. In this speci-

fication, Pij represents the probability that the next transition experienced by a trajectory in

state i will be to state j, assuming the trajectory is followed forward an indefinite amount of

time without the possibility of censoring. The density function for the sojourn time in state

i before transitioning to state j is a function of time elapsed in the state i and is represented

by fij(d). The multistate model is specified such that 0 ≤ Pij ≤ 1 for all i, j = 1, 2, . . . , K

and i 6= j, and
∑

j 6=i Pij = 1 for all i = 1, 2, . . . , K. Additionally, assumed model structure

may dictate that Pij = 1 or Pij = 0 for transitions in which j is the only state that can

be progressed to directly from state i, or for transitions that cannot occur, such as from

death to a healthy state. One example of a model structure typical to disease progression

modeling is shown in Figure 4.1 with arrows representing directional transitions for which
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Figure 4.1: Structural diagram for the multistate model assumed in both the simulation

study and Nun Study data analysis

Pij 6= 0 and boxes representing states an individual can occupy. In this instance the dis-

ease for which progression is being modeled is dementia with cognitive impairment as an

intermediate disease state from which recovery is possible.

Although we assume an underlying continuous-time semi-Markov process, it is typically

not possible to collect complete data for such a process. For each unit of observation sampled,

complete data would consist of the chronological sequence of states the process occupies and

the associated sojourn times represented by {s0, d1, s1, d2, . . .}. Instead, we typically have

panel data consisting of a discrete series of states a process is intermittently observed to

occupy, {Y (tn), n = 1, 2, . . .}. When panel data are collected, information is not available

about the types of state transitions and the instants that these transitions occur for periods

of time between observations.

To demonstrate the issues arising from panel data collection, we will consider the following

simple multistate model consisting of two transient states.

1 � 2

Consider an individual observed at four time points, 0 < t1 < t2 < t3 < t4, where Y (t1) = 1,
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Y (t2) = 1, Y (t3) = 2, and Y (t4) = 1. We depict these observations chronologically using the

following diagram where circled numbers indicate observed states.

1 → 1 → 2 → 1 (4.1)

Throughout all materials presented herein, we assume a random observation process op-

erating independently from the underlying multistate process being modeled. The above

sequence of observations indicates that the individual visited state 1 at least twice, state

two at least once, and experienced at least one back transition, meaning that the above

sequence of observations is consistent with an ordered path equal to 1-2-1. However, this is

the simplest potential path that can be considered. The above set of observations are also

consistent with all of the following sequences of states where we let the presence and absence

of a circle around the state number indicate observed and non-observed states, respectively.

1 → 2 → 1 → 2 → 1

1 → 1 → 2 → 1 → 2 → 1

1 → 2 → 1 → 2 → 1 → 2 → 1

In fact, the above represents a small sample from an infinite number of possible paths

involving back transitions between states 1 and 2. As implied by the above diagram, the

extent to which panel data incorrectly represent the true underlying path depends on the

sparseness of the intermittent observation process that generated the data relative to the

true bi-directional transition rates of the multistate process. We will explore this dependence

using a simulation study.

When an independent sample of individuals are continuously observed such that complete

data are available for each individual, likelihood-based inference is straightforward. The

likelihood contribution for an individual who occupies a sequence of M + 1 states during the

period of observation is

L =
M∏
m=1

[
Ps(m−1)smfs(m−1)sm(dm)

]1−δi[ ∑
j 6=sm

PsmjSsmj(dm)

]δm
, (4.2)

where δm is an indicator variable equal to one when the duration in state sm is right censored

and zero otherwise. The likelihood function for the entire sample equals the product of all the
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individual likelihood contributions calculated using the above formula. Parameter estimates

with favorable properties can then be obtained by straightforward maximization of the log

likelihood function.

When the sequence of states occupied is not observed but is known to belong to one of a

limited number of potential sequences, the likelihood contribution for an individual can be

calculated by summing over the contributions associated with each potential path. However,

in estimating multistate models with back transitions, this approach results in an infinite

summation giving rise to an intractable likelihood function.

4.3 A Minimal Path Approach for Semi-Markov Models with

Back Transitions

A number of methods to circumvent the intractability of the likelihood function have been

proposed. As noted previously, Kang and Lagakos showed that when the sojourn time

distribution for at least one of the states of the process is exponential, the resulting joint

probability in the likelihood function becomes tractable [57]. Others have regained tractabil-

ity by assuming the underlying semi-Markov process can be approximated using phase-type

sojourn time distributions implied by a latent CTMC structure [63, 61]. By far the most

common approach is to assume that, for a given process, the sequence of states observed

across the set of discrete observation times are identical to the sequence of states occupied.

Following this approach, a sequence that we refer to as the minimal path is inferred from

the sequence of states observed under the assumption that no additional unobserved back

transitions occurred. By assuming the minimal path represents the true underlying path,

the likelihood function becomes tractable.

We define the minimal path as the shortest possible path given both the chronological

sequence of observations and the assumed underlying structure of the multistate model.

The model structure is of importance if two consecutive observations identify a process as

occupying two states that are not directly connected to one another according to the adopted

structure. In this case, the minimal path will include one or more intermediate states as
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specified by the structure, with preference given to the most direct path. There could exist

progressive model structures for which the most direct path is difficult to identify because

of equal path lengths among multiple potential state sequences. In this case, the minimal

path definition would need to be extended to include criteria for selecting from among the

potential sequences. We do not consider such models in the development that follows.

Although assuming the minimal path allows us to regain tractability of the likelihood

function, the unobserved transition times translate to uncertainty regarding the sojourn

times associated with each state occupied. This form of uncertainty is inherent to all mul-

tistate models fit to panel data, regardless of the potential for back transitions. Since the

sequence of states occupied is assumed known, this uncertainty can be addressed using meth-

ods developed for interval censored time-to-event data since sojourn times are not exactly

observed but are known to fall within a bounded interval [64].

In the previous example, we assumed a sequence of states corresponding to {s0, s1, s2} =

{1, 2, 1}, which we will refer to as the minimal path associated with the observation process

depicted in (4.1). Under this assumption, we can address the sojourn time uncertainty by

integrating with respect to the transition times. Thus, the likelihood contribution for this

individual becomes

L =

∫ t3

t2

∫ t4

t3

f12(u2)f21(u1 − u2)S12(t4 − u1)du1du2.

Likelihood contributions from longer paths and more complicated state spaces can be calcu-

lated following a similar approach with the order of integration increasing for each additional

transition assumed to have occurred. Although this example demonstrates the necessary ap-

proach for dealing with the uncertainty surrounding transition instants, the computational

burden associated with calculating higher order integrals can quickly become prohibitive.

Noting this issue, Wei and Kryscio implemented a quasi-Monte Carlo method to compute

the higher order integrals required for likelihood-based estimation of a semi-Markov model

[60]. Even when the computational burden imposed by these high order integrals can be

overcome, the potential bias resulting from assuming a minimal sequence of states is a seri-

ous concern. Adopting the minimal path is only appropriate when transitions between states

46



can be assumed to occur sufficiently infrequently relative to the rate of the observation pro-

cess. Unfortunately, with only panel data available, this assumption is often untestable and

investigators must instead rely on ancillary knowledge of the mechanism giving rise to the

process to verify assumptions. The impact of assuming the minimal path is the true under-

lying path on semi-Markov model estimates under varying observation process rates remains

to be examined.

4.4 An SEM Algorithm for Intermittently Observed Multistate

Processes

In this section, we outline the stochastic EM (SEM) algorithm we propose for use with

intermittently observed semi-Markov models with back transitions. In approaching the es-

timation problems detailed above, we choose to rely on the missing information principle

which regards the values of the missing data as random variables within the framework of

a model for the data [65]. Since its introduction by Dempster et al., the EM algorithm has

become a widely used approach for estimating model parameters in the presence of incom-

plete data [66]. The EM algorithm has proven most useful for models in which maximum

likelihood methods provide a straightforward and efficient estimation approach when the

complete data are available. As outlined in Section 4.2, the semi-Markov model likelihood

function can be easily constructed and maximized when complete data, consisting of the

entire state sequence and all sojourn times (censored and uncensored), are readily available.

Thus, in addressing the issue of incomplete data arising from the panel observation process,

the EM algorithm is a natural consideration.

The EM algorithm uses successive expectation and maximization steps to account for

the uncertainty introduced by the incompletely observed data. Let x denote the observed

data and z the unobserved data such that (x, z) refers to the complete data. Let g(x, z|θ)

be the joint distribution of the complete data conditional on the parameter vector, θ. In

accordance with the missing information principle, our objective is to estimate θ by finding

θ̂ that maximizes the marginal likelihood
∫
g(x, z|θ)dz obtained from integrating out the
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unobserved data. The EM algorithm accomplishes this through iterative E- and M-steps.

At the rth iteration, the E-step computes

Q(θ|θ(r−1)) = E

[
log g(x, z|θ)

]
=

∫
log
[
g(x, z|θ)

]
h(z|x,θ(r−1))dz,

where h(z|x,θ(r−1)) is the conditional distribution of the unobserved data given the observed

data and the current parameter estimate vector, θ(r−1). In the subsequent M-step, the Q-

function above is maximized to find the updated estimate, θr that satisifies

Q(θr|θ(r−1)) ≥ Q(θ|θ(r−1))

for all θ in the parameter space.

In applying the EM algorithm to intermittently observed semi-Markov models with back

transitions, we let g(x, z|θ) equal the likelihood function for the entire sample obtained by

taking the product of all the individual likelihood contributions calculated using formula

(4.2). In this setting, x corresponds to the panel observations {Y (tn), n = 1, 2, . . .} and z

corresponds to the unobserved sequence of states and transition times. As demonstrated in

Section 4.3, accounting for uncertainty by integrating g(x, z|θ) with respect to z, results in

analytical intractability. As a result, the expectation that must be taken when calculating

the Q-function is not available in closed form and the Q-function is intractable. Even under

the simplifying assumption that the path is known to belong to a limited set of potential

paths, the computational intensity typically necessitates use of an alternative method for

completing the E-step described above. To address these complications, Wei and Tanner

proposed an algorithm that stochastically approximates the expectation in the Q-function

by taking the Monte Carlo average

Q̄mr(θ|θ(r−1)) =
1

mr

mr∑
k=l

log g(x, zk|θ),

where z1, . . . , zmr are sampled from h(z|x,θ(r−1)) and mr represents the iteration-specific

Monte Carlo sample size [67]. Repeatedly sampling z from the conditional distribution

effectively eliminates the need to integrate g(x, z|θ) with respect to z when calculating the

expectation in the Q-function. A Monte Carlo approximation is used in place of the true Q-

function. This stochastic implementation of the EM algorithm has been used to overcome the
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burden associated with intractable or high-dimensional integrals in a variety of applications

[68, 69].

Under mild regularity conditions, this stochastic EM algorithm (SEM) has been shown

to converge to the maximum likelihood estimate when the Monte Carlo sample size, mr, is

increased across successive iterations [70, 71]. The initial sample size and rate of increase

differ across implementations of the algorithm but should be selected to balance out the

between-iteration variance attributable to the algorithm stepping toward the true value, and

the variance attributable to Monte Carlo error. In general, a low sample size is recommended

at early iterations to save simulation resources when the step sizes are large relative to the

Monte Carlo error. A higher sample size is required at later iterations so that the Monte

Carlo error does not overwhelm the directional movement of the algorithm. Care must

also be taken when determining how many iterations of the stochastic EM algorithm are

necessary to obtain convergence. The deterministic EM algorithm is usually stopped once

the relative change in parameter estimates between two successive iterations is smaller than

some pre-specified threshold, but applying this stopping rule to the SEM algorithm may be

problematic due to the stochastic variation that persists across all iterations. To reduce the

chance of prematurely stopping the SEM algorithm, Booth and Hobert recommend applying

the deterministic EM stopping rule that relies on relative change in parameter estimates

and mandating the rule be satisfied for several successive iterations [72]. After the stopping

criteria has been met, final parameter estimates are also typically taken as the average over

estimates obtained at the last several iterations to further reduce the impact of variance

attributable to Monte Carlo error. There is a rich literature providing guidance on how to

select the appropriate Monte Carlo sample size and stopping criterion for various versions of

the SEM algorithm.

4.5 Rejection Sampling of Multistate Processes

When implementing the SEM algorithm, there are also a number of different options for

sampling from the target distribution, g(z|x,θ(r−1)), including rejection sampling, impor-
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tance sampling, and Markov Chain Monte Carlo (MCMC) [73]. Performance of importance

sampling has been shown to depend heavily on choice of the importance distribution and

MCMC sampling yields dependent samples thereby requiring an arbitrary number of initial

simulations to be discarded. For the purpose of estimating a multistate model with inter-

mittent observations, we propose a rejection sampling approach that generates independent,

identically distributed samples by thinning out samples taken from a candidate distribution

through rejection of those that are not appropriate. In this proposed application, we define

the term not appropriate to mean inconsistent with the entirety of the observed intermittent

data, as described in more detail below. Rejection sampling can encounter difficulties when

a good candidate distribution is hard to obtain and when the acceptance rate is low. Fortu-

nately, the settings in which estimation of semi-Markov model parameters using the minimal

path method is most likely to result in bias are the same sparse observation settings in which

a rejection sampling approach is likely to work well. When the panel observation process

is relatively sparse, implying a high proportion of incomplete data, it is computationally

feasible to use rejection criteria stipulating that the sampled path is entirely congruent with

the observed data. Such a criterion ensures that each sampled trajectory retains all the

information available in the observed data, x, while sampling at the rth iteration from a

broad candidate distribution that exactly matches the multistate model specified by θ(r−1).

Figure 4.2 depicts implementation of the proposed rejection sampling procedure for a

single trajectory. The individual in Figure 4.2 is observed at 5 time points with the first

two observations occurring while the individual is in state 1, the next two observations

occurring while the individual is in state 2, and the final observation occurring when the

individual is in absorbing state 3. Let A indicate the first trajectory sampled from the

candidate distribution. In comparing A to the observation process, we reject A because

of two discrepancies. Sampled trajectory A placed the individual in state 2 at the time of

both the second observation (observed to be in state 1) and the fifth observation (observed

to be in state 3). After rejecting A, we proceed to sample trajectory B which is rejected

due to one discrepancy at the fifth observation (observed to be in state 3). The third

sampled trajectory, C, is accepted because it is in no way discrepant with the series of
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Figure 4.2: The SEM algorithm’s rejection sampling scheme applied to a single individual.

Trajectories A and B would be rejected after comparison to the observation process at the

top and trajectory C would be accepted.

real observations. Generation and comparison of sampled trajectories can be easily and

quickly accomplished in most circumstances in which the state space is relatively small and

the observation process is somewhat sparse such that the sampling acceptance rate is not

prohibitively low.

4.6 A Simulation Study: Design

Simulated data sets were generated to compare three different estimation approaches: esti-

mation with continuously observed paths (Section 4.2), minimal path estimation with inter-

mittently observed paths (Section 4.3), and SEM estimation with intermittently observed

paths (Section 4.4). One hundred data sets consisting of 200 individual trajectories spanning
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a time interval of 300 days were simulated. The model structure shown in Figure 4.1 con-

sisting of two transient states (1 and 2) and two absorbing states (3 and 4), with the option

for back transitions between states 1 and 2 was assumed. Sojourn times for all transitions

were simulated from a Weibull distribution such that

fij(t) =

(
νij
σij

)(
t

σij

)(νij−1)

exp

(
−
(
t

σij

)νij)
(4.3)

for i = 1, 2, j = 1, 2, 3, 4, i 6= j, σij > 0, and νij > 0. The assumed Weibull distribution also

gives us the corresponding survival distribution

Sij(t) = exp

(
−
(
t

σij

)νij)
for i = 1, 2, j = 1, 2, 3, 4, i 6= j, σij > 0, and νij > 0. Adopting this formulation, νij and

σij are referred to as the shape and scale parameters, respectively, with νij = 1 reducing

to a Markov process with exponentially distributed sojourn times. Weibull shape and scale

parameter and transition probability values used in these simulations are displayed in Table

4.1 and were selected to represent probabilities that might be observed among an elderly

population transitioning between states of health, mild illness and severe illness with death

as a competing risk. Each simulated trajectory began the 300-day interval in state 1 and

ended after having either entered one of the absorbing states, or by being censored in one of

the transient states at the end of the interval.

For each data set, complete data maximum likelihood estimation was implemented by

calculating the product of all the individual likelihood contributions in (4.2) and maximizing

the log likelihood using the R constrOptim function for linearly constrained optimization.

Linear constraints were used to ensure the following:

νij > 0, σij > 0 for (i, j) ∈ {(1, 2), (1, 4), (2, 1), (2, 3), (2, 4)}

0 ≤ Pij ≤ 1 for (i, j) ∈ {(1, 2), (2, 1), (2, 3)}

0 ≤ P21 + P23 ≤ 1.

Estimates of P14 and P24 could be obtained given the other estimated transition probabilities.

To implement the other two estimation approaches, an observation process was generated

for each trajectory in each of the simulated data sets. In generating the observation pro-

cesses, inter-observation times were assumed to be exponentially distributed with a 50-day
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expected inter-observation time. Once generated, the series of observations for each indi-

vidual trajectory were applied to the corresponding simulated complete data trajectory to

obtain new panel data sets. To demonstrate the impact that sparseness of the panel obser-

vation process has on the performance of parameter estimates obtained after assuming the

minimal path, we also simulated exponential observation processes with a 100-day expected

inter-observation time. These more sparse observation processes were applied to the same

simulated complete data trajectories to obtain a second set of 100 panel data sets.

Panel data maximum likelihood estimation assuming the minimal path proceeded by the

same constrained optimization approach as described above, however, calculation of each

individual’s likelihood contribution was first completed following the approach detailed in

Section 4.3. Specifically, the uncertainty arising due to the unobserved transition instants

was addressed using integration. This approach often resulted in high order integrals and

substantial computational burden, as addressed by Wei and Kryscio [60]. Both the more

sparse (50-day expected inter-observation time) and the less sparse (100-day expected inter-

observation time) panel data sets were fit using this minimal path estimation approach and

the results compared.

The same 50-day expected inter-observation time panel data sets used when implement-

ing the minimal path estimation approach were then used when implementing the SEM

estimation approach. The rejection sampling procedure was chosen to be stringent in the

sense that it mandated complete coherence with the observed data resulting in a relatively

low acceptance rate. Thus, we found that the Monte Carlo sample size, mr, did not need

to be large to demonstrate reasonable convergence. We chose to set m1 = 1 and to incre-

ment mr by 1 at each successive iteration. The stopping rule we adopted required that the

following hold for three consecutive iterations

max
i

(
|θ(r)
i − θ

(r−1)
i |

|θ(r−1)
i |+ δ1

)
< δ2, (4.4)

where δ1 = 0.001 and δ2 = 0.05 for the purpose of this simulation study [72]. After satis-

faction of the stopping rule, the final estimates were taken as the average of the estimates

obtained during the last 5 iterations of the algorithm. This was done to minimize the impact
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of Monte Carlo error on the final parameter estimates. A stricter stopping rule or a greater

number of iterations to average over could have been selected but for the purpose of demon-

strating the accuracy achieved with a relatively small number of iterations and reasonable

computational time, the above rules were used for all simulated data sets.

To examine sensitivity of the proposed SEM algorithm to initial starting values, we fit

the model to the same 100 data sets (with a 50-day expected inter-observation time) using

a different, more extreme set of starting values. Since estimation under the minimal path

assumption was extremely computationally difficult (with run times frequently exceeding 250

hours), time did not permit the estimation of more than 100 data sets for comparison across

all three estimation approaches. The SEM algorithm was less computationally burdensome

to implement and we therefore chose to simulate and fit an additional 100 data sets using just

the SEM approach for the purpose of demonstrating the algorithm’s performance across a

larger sample. The additional panel data sets were simulated using the same true parameter

values as displayed in Table 4.1 and a 50-day expected inter-observation time.

To efficiently conduct the rejection sampling and iteration required for the SEM algo-

rithm, we used the R package Rcpp which integrates R and C++ to improve performance.

To perform the maximization step of the SEM algorithm we once again used the R con-

strOptim function to execute linearly constrained optimization with the same constraints

as noted above. All components of this simulation study used computational and storage

services associated with the Hoffman2 Shared Cluster provided by the UCLA Institute for

Digital Research and Education’s Research Technology Group.

4.7 A Simulation Study: Results

The impact of sparseness of the observation process used to generate the panel data on pa-

rameter estimates obtained when using the minimal path estimation approach are displayed

in Table 4.1. An expected inter-observation time of 0 days corresponds to continuously

observed paths and, as anticipated, resulting parameter estimates appear to be unbiased

on average with little difference between the parameter estimate means and medians taken
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across simulated data sets. When increasing the expected inter-observation time to 50 days

and thereby increasing sparseness, parameter estimates appear to exhibit moderate bias.

Specifically, the median estimated probability of transitioning backwards from state 2 to

state 1, given occupancy of state 1, is 0.13 as compared to the true value of 0.30. This result

suggests that a portion of the back transitions occurring in the complete simulated data

are not identified when the panel observation process is exponential with a 50-day expected

inter-observation time. Other parameters impacted by the minimal path assumption include

the probability of transition from state 2 to state 3 (median = 0.68, true value = 0.55), the

shape parameter for transition from state 2 to state 1 (median = 2.05, true value = 1.25),

the shape parameter for transition from state 2 to state 4 (median = 2.47, true value =

1.75), the scale parameter for transition from state 1 to state 2 (median = 74, true value =

60), and the scale parameter for transition from state 2 to state 1 (median = 108, true value

= 70).

Increasing the sparseness by increasing the expected inter-observation time to 100 days

further increased the bias in parameter estimates. Under this more extreme sparseness,

the median estimated probability of transition backwards from state 2 to state 1 is 0.09,

as compared to 0.13 for the less sparse observation process, and 0.30 when using the com-

plete data (true value = 0.30). The other parameters previously noted as being impacted

by the less sparse observation process were impacted to an even greater extent under the

more sparse observation process with the difference between the true value and the median

estimate being in the same direction and even larger in magnitude. There also appears to be

greater skew in the distribution of parameter estimates across simulated data sets when the

observation process is more sparse with the mean estimate greatly exceeding the median in

some instances. For instance, in the more sparse setting, the mean estimates for the shape

parameters for transitions from state 2 to 1 and state 2 to 4 are 28.4 and 25.9 while the

corresponding median values are only 2.6 and 3.8, respectively. This is particularly true

for several of the shape parameters that experienced occasional instability during estimation

among data sets for which the observation process resulted in a relatively small or anomalous

sample of transitions on which estimation was based.
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Table 4.1: Mean and median minimal path parameter estimates across different expected

inter-observation times for 100 simulated data sets generated using the parameter values

displayed in the True Value column.

Expected Inter-

Observation Time: 0 Days 50 Days 100 Days

True Estimate Estimate Estimate

Parameter Value Mean Median Mean Median Mean Median

P12 0.90 0.90 0.90 0.87 0.87 0.85 0.86

P21 0.30 0.30 0.30 0.14 0.13 0.10 0.09

P23 0.55 0.55 0.56 0.69 0.68 0.76 0.75

ν12 0.75 0.76 0.76 0.80 0.80 0.76 0.75

ν14 1.50 1.70 1.67 1.87 1.77 1.98 1.74

ν21 1.25 1.25 1.23 6.24 2.05 28.39 2.57

ν23 2.00 2.02 2.01 1.86 1.88 1.80 1.70

ν24 1.75 1.93 1.88 2.88 2.47 25.91 3.81

σ12 60 60 60 75 74 77 77

σ14 150 156 155 156 145 161 148

σ21 70 72 72 121 108 140 118

σ23 80 81 80 88 85 97 93

σ24 200 197 196 218 221 199 196
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Table 4.2: Comparison of bias and accuracy of parameter estimates across different estimation approaches as applied to 100

simulated data sets generated using the parameter values displayed in the True Value column.

Complete Data Minimal Path SEM

True Mean SD % MSE Mean SD % MSE Mean SD % MSE

Value Bias ×102 Bias ×102 Bias ×102

P12 0.90 0.90 0.02 0.1 0.0 0.87 0.03 3.2 2.6 0.90 0.03 0.2 0.0

P21 0.30 0.30 0.03 0.9 0.0 0.14 0.04 52.9 58.2 0.31 0.06 1.7 0.0

P23 0.55 0.55 0.04 0.8 0.1 0.69 0.05 24.7 38.1 0.55 0.05 0.2 0.0

ν12 0.75 0.76 0.04 1.6 0.4 0.80 0.07 6.4 3.1 0.78 0.08 3.5 0.9

ν14 1.50 1.70 0.40 13.6 10.5 1.87 0.64 24.5 21.1 2.07 1.12 37.7 28.6

ν21 1.25 1.25 0.16 0.0 0.0 6.24 39.57 398.9 62.8 1.44 0.67 15.5 5.6

ν23 2.00 2.02 0.14 0.9 0.2 1.86 0.32 7.2 6.6 2.05 0.33 2.6 0.8

ν24 1.75 1.93 0.46 10.3 7.1 2.88 1.70 64.6 75.3 2.39 1.54 36.8 26.9

σ12 60 60 6 0.6 2.4 75 9 24.8 2497.4 60 8 0.7 2.2

σ14 150 156 36 4.1 106.0 156 42 4.3 98.0 155 42 3.6 70.7

σ21 70 72 10 3.4 54.5 121 49 72.8 5271.7 76 24 7.9 126.7

σ23 80 81 4 0.6 7.0 88 10 9.6 579.5 80 6 0.3 1.1

σ24 200 197 28 1.4 26.6 218 51 8.8 600.8 194 44 3.1 89.2



A comparison of the three different estimation approaches appears in Table 4.2. The

complete data estimates presented in Table 4.2 are equivalent to the 0 day expected inter-

observation time estimates displayed in Table 4.1. As indicated in Table 4.1, maximum

likelihood estimation using the complete data typically resulted in unbiased parameter esti-

mates. Among these estimates, the largest observed percent bias occurred for the Weibull

shape parameters for transitions from state 1 to state 4 and from state 2 to state 4 (13.6%

and 10.3%, respectively). This finding likely highlights the sensitivity of shape parameters

to the small number of transitions to state 4 that occur in the data. This bias could also be

attributable to the limited length of the interval of observation (300 days) since each individ-

ual trajectory began in state 1 and may not have had the burn-in time necessary to obtain

time-homogeneity, especially for some low probability terminal events such as transition to

state 4. In applying the minimal path estimation approach, we identify substantially in-

creased bias across almost all parameters (Table 4.2). As mentioned previously, the minimal

path approach drastically underestimates the probability of a back transition from state 2

to state 1 occurring. The minimal path approach also substantially overestimates the shape

and scale parameters associated with back transition from state 2 to state 1, and the shape

parameter associated with transition from state 2 to state 4 (greater than 60% bias).

In implementing the SEM algorithm, the specified stopping rule resulted in an average

of 28.0 iterations across all 200 simulated data sets with a minimum of 11 and maximum of

52 iterations. The absolute percent change in parameter estimates from one iteration to the

next was calculated and the mean percent change across all simulated data sets is displayed

in Figure 4.3. As the iterations increase, the displayed means are taken over a smaller

number of data sets since data sets required a differing number of iterations before satisfying

the stopping criterion. Within the first 5-10 iterations the SEM algorithm demonstrated

rapid movement toward the true underlying value for all of the parameters. During later

iterations, parameter estimates are shown to stabilize and random variations appear to be

primarily attributable to Monte Carlo error, suggesting convergence. Figure 4.4 depicts the

distribution of stopping times represented by both number of iterations and mean hours of

run time. For the majority of the simulated data sets, the SEM algorithm stopped at between
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Figure 4.3: Convergence of the SEM algorithm based on 200 simulated data sets. Plots

display the mean percent change in parameter estimates from one iteration to the next

among the 200 data sets. The upper plot displays a line for each of the 13 parameters and

the lower plot displays a single line representing the median across all 13 parameters.
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Figure 4.4: Computational requirements of the SEM algorithm among 200 simulated data

sets. Vertical bars depict the distribution of the number of iterations required before the

stopping criterion was satisfied and the dots connected by a line depict the mean number of

hours required for each categorical range of iterations.

20-34 iterations. Among these 121 data sets, the mean run time was 15.6 hours, representing

a dramatic improvement over the run time required for minimal path estimation.

As shown in Table 4.2, the SEM parameter estimates demonstrated greatly reduced bias

relative to the minimal path estimates and, in many instances, closely approximated the

performance of the estimates obtained using the complete data. Transition probabilities,

including the probability of back transition, were accurately estimated using the SEM al-

gorithm with standard deviation across data sets only slightly larger when using the SEM

estimation approach relative to the complete data estimation approach. Low mean percent

bias was also observed for each of the scale parameters (less than 8%) along with moderate

increases in standard deviation relative to the complete data estimates. The only parameters

for which the mean percent bias remained noticeably high were the shape parameters for
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Table 4.3: Statistics describing the distribution of parameter estimates across 200 simulated

data sets generated using the parameter values displayed in the True Value column and fit

using the SEM approach with rejection sampling

True 90th

Parameter Value Mean SD Median Percentile Min Max

P12 0.90 0.90 0.03 0.90 0.94 0.78 0.97

P21 0.30 0.31 0.06 0.30 0.38 0.13 0.47

P23 0.55 0.55 0.05 0.55 0.61 0.43 0.72

ν12 0.75 0.77 0.09 0.76 0.88 0.59 1.02

ν14 1.50 2.08 1.41 1.80 3.14 0.74 15.69

ν21 1.25 1.42 0.63 1.33 2.23 0.46 5.12

ν23 2.00 2.05 0.38 2.03 2.53 1.19 3.25

ν24 1.75 2.52 2.24 1.94 3.77 0.53 19.35

σ12 60 60 8 60 69 42 94

σ14 150 157 48 147 207 71 346

σ21 70 74 25 69 108 27 177

σ23 80 80 8 79 89 63 125

σ24 200 190 46 188 250 87 368

transitions from state 1 to state 4 and from state 2 to state 4. As mentioned when discussing

the complete data results, the bias observed in these estimates may signify the sensitivity of

these shape parameters to small transition sample sizes and the limited length of the interval

of observation relative to the necessary burn-in time.

To further investigate the source of the mean bias presented in Table 4.2, for the larger

sample of 200 data sets fit using the SEM estimation approach we calculated descriptive

statistics for the parameter estimates (Table 4.3). For the majority of the parameters, the

mean and median taken across the simulated data sets did not differ substantially and the

other distributional statistics did not seem to suggest major skew. However, for the two
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parameters we identified as exhibiting noticeable bias in Table 4.2 (ν14 and ν24), the mean

and median across the 200 data sets suggested a skewed distribution. In fact, for the shape

parameter for transition from state 1 to 4, the mean estimate equals 2.08 and the associated

median is only 1.80, much closer to the true value of 1.50. A similar result holds for the shape

parameter for transition from state 2 to 4. When examining the 90th percentile relative to

the maximum parameter estimate across the 200 data sets, it is clear that the bias observed

in Table 4.2 is in part attributable to a small number of extreme shape parameter estimates.

After further examination, we determined that these extreme estimates were obtained for a

handful of data sets that appear to have had relatively few transitions to state 4 based on the

observation series and assuming the minimal path. In general, when applying the minimal

path assumption to our panel data sets, if the count of transitions to state 4 was less than

20, the probability of obtaining biased estimates of the associated shape parameters when

using the SEM approach was noticeably increased. Since the shape parameter estimates

are bounded below by zero, the impact of these extremely high parameter estimates on the

mean taken across data sets is not easily mitigated by increasing the number of data sets or

samples.

The impact of implementing the SEM algorithm using different starting values was min-

imal. Final estimates obtained when conducting this sensitivity analysis did not appear to

differ from the estimates presented in Table 4.2. The impact of the more extreme starting

values was typically completely mitigated by the 3rd or 4th iteration.

4.8 A Simulation Study: Discussion

In this chapter we have presented a simulation-based iterative algorithm that can be used

to estimate intermittently-observed semi-Markov multistate models with back transitions.

The algorithm provides an attractive alternative to minimal path estimation, which is a

commonly-used naive approach that assumes no unobserved back transitions. The minimal

path approach produces biased parameter estimates and can easily become prohibitively com-

putationally intense. In contrast, our SEM procedure that replaces the intractable likelihood

62



function with a simulated approximation and updates parameter values at each successive

iteration, produces unbiased results after relatively few iterations. The rejection sampling

scheme used to sample from the target conditional distribution allowed for incorporation of

a high proportion of the observed data which enabled the algorithm to efficiently step from

one iteration to the next in the direction of the true parameter values. The method presented

here differs from recently proposed alternatives in that it does not require abandonment of

the assumed underlying semi-Markov distribution in favor of a Markov or phase-type sojourn

distribution.

Importantly, our proposed SEM procedure demonstrated unbiased estimation of the prob-

ability of back transition as opposed to the naive approach that drastically underestimated

this transition probability parameter. Being able to accurately model back transitions is of

importance for researchers interested in identifying protective factors for return from illness

to health or risk factors for disease relapse.

Across all three estimation approaches compared in this paper, estimates of the Weibulll

scale parameters associated with transitions to death exhibited some amount of bias. Several

possible explanations have been given previously. Wei and Kryscio used simulation studies

to determine that semi-Markov model parameter estimates were sensitive to the sample size

due to the likelihood of observing few transitions [60]. The persistent bias of the Weibull

parameter estimates associated with transitions to death in the simulation study results

presented herein could be attributed to the low number of transitions observed.

As demonstrated, the proposed algorithm enables accurate estimation of the rate of back

transitions through recovery of unobserved transitions. As is the case when implementing

all missing data methods, the ability to recover unobserved transitions is still limited by

the extent of the incompleteness of the data. Consider a disease process with high rates of

both forward and backward transition between healthy and diseased states. If this process

were combined with a very infrequent observation process for all individuals sampled, the

proposed algorithm would inevitably underestimate the rates of transition in both directions.

This is a limitation inherent to the minimal amount of information available and would

thus be shared by any alternative algorithm attempting to capture unobserved transitions.
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The SEM algorithm allows us to borrow information across the entire sample to effectively

impute the complete trajectory for each individual based on a limited set of observations.

The imputed trajectories are expected to increasingly reflect the true underlying process

with each successive iteration of the algorithm until convergence is reached. An advantage

of the approach presented herein is that it utilizes the available data in its entirety, thereby

incorporating the maximum amount of information when estimating model parameters.

In this chapter, we presented an iterative estimation algorithm that makes use of a

simulation-based approximation to overcome the intractability of the likelihood function. We

have also described implementation of this algorithm using a rejection sampling method that

has the benefit of incorporating the full information at each iteration. In a simulation study,

we demonstrated the feasibility and performance of the proposed procedure relative to a naive

approach. We determined that in estimating intermittently-observed semi-Markov models,

the proposed approach allows for accurate estimation of model parameters and recovery of

unobserved back transitions. The proposed method allows researchers interested in modeling

recovery from illness and identifying factors impacting the rate and probability of recovery

to construct and estimate a semi-Markov model. This result is important because, in many

applications, semi-Markov models are more appropriate when considering the underlying

disease process, relative to Markov or other alternative models.

We conclude that the proposed estimation approach which relies on the SEM algorithm

with rejection sampling is a useful statistical method for obtaining unbiased parameter esti-

mates for semi-Markov disease progression models with back transitions. In the next chapter,

we will demonstrate implementation of the proposed estimation approach by fitting a model

for dementia onset using cognitive data collected as part of a prospective research study on

aging and Alzheimer’s disease.
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CHAPTER 5

Application to the Semi-Markov Modeling of Dementia

Onset

5.1 The Nun Study: Background and Model Specification

Beginning in 1991, the Nun Study began enrolling members of the School Sisters of Notre

Dame who were born prior to 1917 and resided in retirement communities in the midwest-

ern, eastern, and southern United States. Data were available for 672 participants who were

recruited in phases and received annual cognitive assessments [74, 75, 76]. The study was

motivated by scientific interest in examining the onset of dementia in relation to measur-

able risk factors. For the purpose of this application, cognitive assessment results for each

participant were categorized into one of three states: intact cognition, impaired cognition,

and dementia. At each visit, dementia was assessed using formal diagnostic criteria. Among

participants not meeting the formal criteria for dementia, those who failed one or more of

a battery of cognitive and Activities of Daily Living tests (including the Mini-Mental State

Exam (MMSE), Boston Naming, Verbal Fluency, and Constructional Praxis tests) were clas-

sified as having impaired cognition. Participants who passed all cognitive and Activities of

Daily Living tests were classified as having intact cognition. Information regarding date of

death was also available for participants who experienced death during the the observation

period.

Our analysis is restricted to the 544 participants who did not meet eligibility for dementia

at the time of enrollment (165 with intact cognition and 379 with impaired cognition at the

time of enrollment). Age in years at the time of enrollment ranged from 75.4 to 90.3 (mean

= 79.9) for those participants with intact cognition and ranged from 75.4 to 99.4 (mean =
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83.3) for those with impaired cognition. The structure of the multistate model applied to

this data is displayed in Figure 4.1. Intact cognition and impaired cognition are considered

transient states with back transitions from impaired cognition to intact cognition possible.

Dementia and death are considered absorbing states with death functioning as a competing

risk to dementia. The model structure does not allow for transitions directly from intact

cognition to dementia without passage through the intermediate state of impaired cognition.

When considering all 544 participant paths, at last follow-up we find that 6% ended in a state

of intact cognition, 9% ended in a state of impaired cognition, 30% ended in dementia, and

55% ended in death. When using the observed panel data to construct the minimal path for

each participant, at least one back transition from impaired to intact cognition was observed

for 27% of participants. Among these minimal paths, 69% consisted of one back transition,

26% consisted of two back transitions, and 5% consisted of 3 back transitions. Exact times

of transitions were not available for transitions between states of intact cognition, impaired

cognition, and dementia but the exact time of death was observed. Although annual visits

were proposed in the study protocol, actual visits were not evenly spaced and varied across

participants. An average of 5.8 observations were available for each participant with a range

of 2 to 12 and the mean and median time between observations was 1.4 years. All transitions

between the states of intact cognition, impaired cognition, dementia, and death were modeled

assuming Weibull-distributed sojourn times based on the parametrization indicated in (4.3).

One obstacle that has been the focus of much attention in the semi-Markov modeling

literature is left censoring of the sojourn times associated with the first state occupied by each

individual in the sample. At the time of entry into the Nun Study, each participant’s age and

current state were recorded but no information regarding the amount of time having already

elapsed in the current state was collected. When sojourn times are exponentially distributed,

implying a Markov model, the time elapsed is irrelevant. However, when constructing a semi-

Markov model, one of a variety of approaches for assigning a value to the unknown elapsed

length of time is necessary. These sojourn times are left censored because they are known

to lie below a value equal to the individual’s age at entry into the study. In constructing

a semi-Markov model for stroke onset, Kapetanakis et al. selected 40 as the age in years
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at which all subjects were healthy and then used an EM-inspired algorithm to impute the

instant of transition from health to illness among those individuals who had experienced a

stoke prior to baseline [46]. In modeling functional status transitions over time, a related

approach was taken by Cai et al. who used an analogue to the SEM algorithm to simulate

a cohort of 55-year-old subjects from which imputed values of the elapsed sojourn times at

entry into the study were drawn [58]. We choose to use a similar approach which is easily

implemented within the broader SEM estimation framework proposed. Since no member of

the Nun Study sample enrolled at younger than 75 years of age, we assume all participants

were in a state of intact cognition at age 70. We also assume that these participants entered

into the state that we are referring to as intact cognition at exactly age 70 which implies

that the intact cognition and impaired cognition states are defined for the purpose of this

study only among those individuals 70 years of age or older. This is the same approach as

used by Kryscio et al. and is not without limitations when applied to a model with back

transitions [77]. The age of 70 was chosen to balance the risk associated with assuming an

individual with impaired cognition at age 70 was cognitively intact, with the negative impact

that extrapolating outside the range of observed data could have on the resulting estimates.

In applying the SEM estimation approach to the Nun Study, the proposed rejection

sampling method was adapted to accommodate the known date of death among study par-

ticipants. It would have been prohibitively time consuming to continue sampling continuous

trajectories until obtaining one which includes a death occurring on the exact date a death

was recorded. Thus, we selected a two month acceptance window centered around the date

of death within which the simulated death event was allowed to have occurred without re-

jection of the sampled trajectory. In applying the SEM algorithm to the Nun Study data

we decided to implement the stopping criterion expressed in formula (4.4) with δ1 = 0.001

and δ2 = 0.05. The SEM algorithm was halted after (4.4) was satisfied for 5 consecutive

iterations and the final estimates were taken as the average over the estimates generated

during the last 5 iterations.

Estimation of standard errors used to calculate 95% confidence intervals was completed

using a nonparametric bootstrap approach for multistate processes [50, 51]. The approach
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required sampling with replacement a total of 544 individuals from the Nun Study sample

and using all of each sampled individual’s data to generate parameter estimates using the

SEM method. This resampling process was completed until 200 bootstrap samples had been

drawn and estimates computed. The variance for each parameter was then calculated as the

empirical variance of the 200 replicates.

5.2 The Nun Study: Results

The stopping criterion was met after the 11th iteration. Parameter estimates obtained using

the SEM approach are displayed in Table 5.1. For an elderly individual in a state of intact

cognition, there is an estimated 0.94 probability that the next state visited will be impaired

cognition and only a 0.06 probability that the individual will transition directly to death. For

an elderly individual in a state of impaired cognition, there is an estimated 0.58 probability

that the next transition that occurs will be back to intact cognition, 0.16 probability that

the next transition will be forward to dementia, and a 0.26 probability that the individual

will transition directly to death without experiencing a back transition or entering a state

of dementia.

Estimated Weibull sojourn time probability distributions for each of the 5 possible tran-

sitions are plotted in Figure 5.1. For an elderly individual in a state of intact cognition, the

median time to transition from intact cognition to impaired cognition is 3.62 years. The

shape parameter estimate of 1.35 for this transition indicates that, given an individual’s

next transition will be a back transition to impaired cognition, the hazard of transition is

increasing as a function of time spent in a state of intact cognition. The shape parameter

estimate of 0.99 for the transition from intact cognition directly to death indicates that the

hazard of transition directly to death remains fairly constant as a function of time spent in

a state of intact cognition. The median time to transition from intact cognition to death is

6.15 years.
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Table 5.1: Parameter estimates and 95% bootstrapped confidence intervals for the Nun

Study model fit using the proposed SEM approach with rejection sampling

Parameter Estimate 95% CI

P12 0.94 (0.93, 0.96)

P21 0.58 (0.53, 0.64)

P23 0.16 (0.13, 0.19)

ν12 1.35 (1.23, 1.47)

ν14 0.99 (0.75, 1.24)

ν21 1.44 (1.24, 1.64)

ν23 1.68 (1.36, 1.99)

ν24 1.34 (1.11, 1.56)

σ12 4.74 (3.92, 5.57)

σ14 8.89 (5.31, 12.47)

σ21 2.47 (2.11, 2.82)

σ23 9.98 (8.72, 11.23)

σ24 9.79 (8.45, 11.13)
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Figure 5.1: Sojourn time probability density functions based on the Weibull parameter estimates obtained from the Nun Study

model fit using the proposed SEM approach with rejection sampling



When back transitions occur (from impaired to intact cognition) among this elderly

population, they occur relatively quickly (median time: 1.91 years). The shape parameter

associated with these back transitions indicates moderately increasing hazard as a function of

time spent in the state of impaired cognition. The sojourn time distributions for transitions

from impaired cognition to dementia and from impaired cognition to death were similar

with median times to transition of 8.02 and 7.44 years, respectively. Shape parameters for

these transitions from impaired cognition to dementia and impaired cognition to death both

indicated an increasing hazard with increased time elapsed in a state of impaired cognition.

5.3 The Nun Study: Discussion

Our analysis of the Nun Study showed a high probability of back transition from impaired

to intact cognition with a 1.9-year median time to recovery of intact cognition. Rates of

transition from impaired cognition to dementia and death were shown to increase as a func-

tion of time spent in a state of impaired cognition. Previous studies have claimed that the

likelihood of transition from impaired back to intact cognition is highest during the time

immediately following transition to an impaired state. Our analysis of the Nun Study deter-

mined that although the majority of back transitions that occur do so within the first couple

years following the transition to an impaired state, the rate of back transition is actually

increasing with duration in a state of impaired cognition. Although rates of transition from

impaired cognition to dementia and death were also increasing a function of duration, the

median length of time until transition to these absorbing states was within the range of 7-9

years.

It is important to emphasize that the Nun Study represents a very specific population

comprised of members of the School Sisters of Notre Dame, and thus may not be representa-

tive of the general population of elderly persons. The limitations and issues of generalizability

of the Nun Study have been previously discussed in a number of publications [60, 75].

There are a number of extensions that could be considered. In our Nun Study example, it

would be useful and important to incorporate covariates such as age and genetic markers to
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assess the impact of such characteristics on transition rates and probabilities in modeling of

dementia onset [60, 76]. The present model also does not consider misclassification of states.

As in the Nun Study, when subjects are observed to frequently transition back and forth

between states such as intact and impaired cognition, misclassification should be considered.

If we consider an extreme example, in which the neurodegeneration giving rise to impaired

cognition is irreversible meaning that true back transitions are not biologically feasible, the

model presented herein would alternatively provide a framework for identifying diagnostic

misclassification. Kang and Lagakos demonstrate an approach that can be implemented to

account for misclassification when the error probabilities are assumed to satisfy a conditional

independence assumption [57]. Building off of this approach, we implement an extension to

the present SEM methodology that addresses misclassification in the Chapter 6.

Although we have assumed independence of the random observation process and the un-

derlying multistate process in the materials presented in this paper, there are many instances

in which this assumption may be violated. For example, in models of disease progression

an individual experiencing symptoms associated with a more severe disease state might seek

care at a hospital or clinic resulting in an observation, whereas a healthy individual may

be observed only at routine scheduled doctor’s appointments. The importance of model-

ing these disease-driven observations has been recently addressed by Lange et al. and an

analog of their proposed joint modeling approach could potentially be incorporated into the

estimation procedure described in this paper [45].

As noted by Kryscio and Abner, use of cognitive panel data to model the flow of elderly

patients from intact cognition through dementia presents several challenges [78]. As with

other cognitive panel studies, the Nun Study enrolled a sample of elderly volunteers which

may give rise to missing data or selection bias issues. Since seriously impaired individuals

were not likely to participate in the Nun Study, a healthy cohort effect must be considered.

Another limitation of the Nun Study results presented herein are that the fitted model

does not take age into account. The present model incorporates aging only through the

modeling of time-varying hazard rates within a given state. Although the Nun Study data

consists largely of observations from individuals of extremely advanced age, it may still be
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inappropriate, for instance, to assume the rate of transition for an 80-year-old with intact

cognition equals that of an 85-year-old with intact cognition. An alternative model could

use age at entry into each state as a time-independent covariate in formulating a model for

the transition probabilities or sojourn time distributions.

As noted in Section 6.1, there are several options available for imputing the left censored

sojourn times for each participant at entry into the study. The option we have chosen

is simple to implement but relies on several assumptions that may reduce our ability to

generalize the results of our final model. Alternative methods for addressing left censoring

have been proposed and should be considered in future applications of the proposed model

[58, 46, 79].
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CHAPTER 6

A Semi-Markov Model for Disease Progression with

Misclassification

6.1 Challenges in Estimating Semi-Markov Models with Misclas-

sification

As discussed in the previous chapter, construction of multistate models that allow for back

transitions and rates of transition that vary depending on time elapsed in the current state

are of great utility in the field of disease progression research. Methods for the estimation

of such models using intermittent observations of the disease process were also presented

previously. In practice, continuous observation of the disease process is exceedingly rare

and intermittent observations corresponding to patient visits or survey administration waves

are far more common. The stochastic method we presented enables estimation of these

highly flexible and informative multistate models across a wide range of disease progression

applications in which panel data are readily available.

The strengths of this method are apparent, but the potential limitations of such an

approach that uses relatively minimal information to estimate the dynamics of a complex

process allowing for back transitions need to be carefully considered. Of particular concern,

the proposed method relies heavily on the accuracy of the intermittent observations occurring

at discrete points in time. In the material presented previously, we made the assumption

of no measurement error in the classification of individuals in states of health or illness.

The rate of misclassification of individuals in certain states corresponding to severe illness

or death may be negligible and can justifiably be ignored when fitting a multistate model.
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However, the rate of misclassification is known to be non-negligible in many instances of

disease progression modeling. In fact, estimating and evaluating the impact of misclassifica-

tion rates, often referred to as false positive and false negative rates, continues to be a topic

of great interest to epidemiologists and other health scientists. Typically, a false positive

refers to the instance in which a healthy individual is assessed and determined to be in a

state of illness. Alternatively, a false negative refers to the instance in which an individual

in a state of illness is misclassified as being in a healthy state. Accurate estimation of these

rates is important in that they are often used to inform health policy decision-making and

develop effective screening and treatment guidelines for health practitioners. False positive

and negative rates for disease classification instruments are preferably estimated by compar-

ison to a gold standard instrument that can definitively discriminate between the presence

and absence of disease. Unfortunately, for many diseases a gold standard either doesn’t exist

or is not practical for use due to barriers such as expense or patient burden [30].

When the assumed model structure is progressive, such that no state can be transitioned

to more than once, misclassification has been dealt with by assuming that each observation

implying a back transition is either misclassified or that a misclassification event occurred at

a previous observation in such a way as to eliminate the apparent back transition [80, 81].

However, when the assumed model allows for back transitions, non-negligible misclassifi-

cation rates associated with the transient states can result in a series of observations that

imply an artificially higher or lower number of back transitions relative to the true under-

lying process. For instance, if an individual remains in a state of health across a ten year

period and is observed approximately once a year, a single misclassification event occurring

at the fifth observation would imply an artificial back transition and would drastically re-

duce our estimate of the sojourn time spent in a state of health for this individual. When

fitting a semi-Markov model to a sample of individuals observed intermittently, even rare

misclassification events can impact our perception of the underlying process dramatically.

As a first step in examining the limitations of the previously proposed SEM algorithm, we

aim to describe the bias in parameter estimates that is introduced when such a method is

implemented using data with a non-negligible misclassification rate. Following this descrip-
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tion, we aim to propose an extension to the SEM algorithm adopted in the previous chapter

that mitigates the bias introduced by potential misclassification.

To address possible misclassification of observed states in multistate modeling, hidden

Markov models have been successfully used in instances when the Markov assumption of

exponentially distributed sojourn times is appropriate [82, 83, 84]. A hidden Markov model

is used to model an underlying, unobserved Markov process given the availability of a series

of observations that relate probabilistically to the true states occupied by the hidden process.

Far less frequently, hidden semi-Markov models have been attempted in which the Markov

assumption is relaxed to allow for alternative sojourn time distributions. Difficulties with

estimation, including identifiability concerns, have hindered the wide-spread use of hidden

semi-Markov models. Hidden semi-Markov models have not been extensively implemented

in the health research setting and have experienced only limited application in fields such

as speech recognition and predictive maintenance for engineering systems [85, 86]. Use of

hidden semi-Markov models in areas such as manufacturing and operations research may be

enabled by the availability of complete sojourn data arising from continuous observation of

sampled items such as engineering system components. Since intermittent observations are

far more common when studying disease progression among human subjects, methods for

fitting hidden semi-Markov models that can accommodate panel data need to be developed

before such models can be considered useful in the health research setting and applied to

problems of misclassification.

An optimal method for disease progression modeling in the presence of back transitions

and misclassification would allow for simultaneous unbiased estimation of the semi-Markov

model parameters associated with transition rates and probabilities, and estimation of the

true underlying misclassification rate without requiring information from a gold standard.

In the remaining sections of this chapter, we will present an extension to the SEM algorithm

described in a previous chapter that can be used to address misclassification. We will describe

implementation of the proposed method and conduct a simulation to study to evaluate

performance of the proposed method relative to a method that ignores misclassification.

Next, we will apply the extended version of the SEM algorithm to the Nun Study described
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previously to estimate the rate at which elderly participants with intact cognition were

misclassified into a state of impaired cognition, also referred to as the impaired cognition

false positive rate. We conclude by describing the strengths and limitations of the proposed

extension and outline continuing areas of research.

6.2 Notation for a Semi-Markov Model with Misclassification

Let Y = {Y (t), t ≥ 0} denote a continuous-time semi-Markov process with S states denoted

1, . . . , S. Let s0, s1, s2, . . . denote initial and subsequent consecutive states occupied by

process Y Let dn denote the sojourn time in the (n− 1)th state prior to transitioning to the

nth state. Thus, Y = {s0, d1, s1, d2, . . . , dn, sn, . . . }. For a process in which sn = i,

λij(d) = lim
∆d→0

P (dn+1 < d+ ∆d, sn+1 = j|dn+1 ≥ d, sn = i)

∆d
,

where d denotes time elapsed since entrance into state i for i, j = 1, . . . , S and i 6= j. The

preferred approach for specifying these transition intensities is to set λij(d) = Pijfij(d) where

Pij = P (sn = j|sn−1 = j)

fij = lim
∆d→0

P (dn < d+ ∆d|dn ≥ d, sn = j, sn−1 = i)

∆d
,

such that the trajectories are modeled separately from the times of transition. Pij represents

the probability that the next transition experienced by a process occupying state i will be to

state j, assuming the process can be followed forward an indefinite amount of time without

the possibility of censoring. The density function for the sojourn time in state i prior to

transitioning to state j is represented by fij(d) which allows for dependence on time elapsed

in state i in accordance with the semi-Markov property. Model specification requires that

0 ≤ Pij ≤ 1 for all i, j = 1, 2, . . . , S and i 6= j and
∑

i 6=j Pij = 1 for i, j,= 1, 2, . . . , S.

Additionally, the assumed model structure may dictate that Pij = 1 when j is the only state

that can be transitioned to from state i, or that Pij = 0 if transition from state i to j is not

possible. We refer to i as a transient state if Pij 6= 0 for at least one j ∈ {1, 2, . . . , S} and as

an absorbing state otherwise.

Consider an intermittently-observed process with M observations at times 0 = t0 <

77



t1 < t2 < · · · < tM . Let Y = (Y0, Y1, . . . , YM) where Ym = Y (tm) such that

Ym ∈ {1, 2, . . . , S}. When we allow for misclassification, rather than observing Y , we

observe X = {X0, X1, X2, . . . , XM} where Xm ∈ {1, 2, . . . , S}. Assume conditional on

the entire continuous-time process Y , the distribution of Xm depends only on Ym for all

m ∈ {1, 2, . . . ,M} such that

P (X|Y ) = P (X|Y )

=
M∏
m=0

P (Xm|Ym).

We denote the misclassification probabilities

αij = P (Xm = j|Ym = i).

The likelihood for an individual observed at M visits can then be expressed

L =
∑
Y

P (X|Y )P (Y )

=
∑
Y

P (X0|Y0)P (X1|Y1) . . . P (XM |YM)P (Y )

=
∑
Y

(
M∏
m=0

αYm,Xm

)
P (Y ), (6.1)

where Xm, Ym ∈ {1, 2, . . . , S} and the summation across Y is the summation over all possible

paths. In instances in which the set of possible paths can be enumerated, computation of the

likelihood above is straightforward. When observations are intermittent and back transitions

are possible, there is no limit to the number of potential paths that must be considered

resulting in an infinite sum in (1) and an intractable likelihood function.

6.3 An SEM Algorithm for Multistate Processes with Misclassi-

fication

Use of the stochastic expectation-maximization algorithm (SEM) to estimate parameters of

an intermittently-observed semi-Markov process with back transitions in application to de-

mentia onset modeling has been discussed in previous Chapters. We will briefly introduce the
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important notation here. The intermittent observation process combined with the assumed

model structure that allows for back transitions results in an intractable likelihood function.

Intractability arises because summation across all possible paths cannot be completed when

the observation process is such that any number of back transitions could hypothetically

have occurred between each set of consecutive observations. The SEM algorithm allows us

to circumvent this intractability by using a stochastic approximation while iteratively up-

dating parameter estimates. Thus, the SEM algorithm can be viewed as a modified version

of the widely-used deterministic expectation-maximization algorithm (EM) which uses suc-

cessive expectation and maximization steps to account for the uncertainty introduced by

incompletely observed data.

Let X = {X0, X1, X2, . . . , XM} denote the observed data and Y = {Y (t), 0 ≤ t ≤ tM}

denote the unobserved data such that (X, Y ) refers to the complete data. Thus, g(X, Y |θ)

represents the joint distribution of the complete data conditional on parameter vector, θ.

The rth iteration of the EM algorithm consists of an E-step that involves computing

Q(θ|θ(r−1)) = E

[
log g(X, Y |θ)

]
=

∫
log
[
g(X, Y |θ)

]
h(Y |X,θ(r−1))dY,

where h(Y |X,θ(r−1)) is the conditional distribution of the unobserved data given the ob-

served data and the vector of current parameter estimates, θ(r−1). Subsequently, the M-step

is completed by maximizing the Q-function to obtain the updated estimate θr that satisfies

Q(θr|θ(r−1)) ≥ Q(θ|θ(r−1))

for all θ in the parameter space.

The E-step involves integrating with respect to Y to account for the uncertainty inherent

in the incomplete data. Since this uncertainty arises in part from the infinite number of

potential paths, the E-step encounters analytical intractability. To address this issue, Wei

and Tanner (1990) proposed an algorithm that stochastically approximates the integral in

the E-step by taking the Monte Carlo average

Q̄Kr(θ|θ(r−1)) =
1

Kr

Kr∑
k=1

log g(X, Ẏ k|θ), (6.2)
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where Ẏ 1, . . . , Ẏ Kr are continuous paths sampled from h(Y |X,θ(r−1)) and Kr represents the

Monte Carlo sample size that is typically increased across successive iterations [67]. Note that

here we introduce the dot notation to distinguish sampled elements, such as Ẏ , from their

true counterparts, Y . Adopting the approach proposed by Wei and Tanner, a Monte Carlo

approximation is used in place of the true Q-function. Under mild regularity conditions,

the SEM algorithm has been shown to converge with increasing Kr. The SEM algorithm is

usually stopped after the criterion that the relative change in parameter estimates between

two successive iterations is smaller than some pre-specified threshold is satisfied for several

consecutive iterations.

6.4 Rejection Sampling of Multistate Processes with Misclassifi-

cation

In implementing the SEM algorithm described previously, an approach must be specified

for sampling from the conditional distribution, h(Y |X,θr). Rejection sampling from a tar-

get distribution has been effectively implemented in a previous study. Specifically, rejection

sampling can be accomplished by drawing samples from a broad proposal distribution and

thinning out these samples by rejecting those that are inconsistent with the observed data.

Using this approach, independent, identically distributed samples from the target distribu-

tion can be generated. To sample from h(Y |X,θr), we would like to draw samples, Ẏ k with

probability proportional to P (Y |X,θr) which can be expressed as follows

P (Y |X,θr) =
P (Y,X|θr)
P (X|θr)

=
P (X|Y,θr)P (Y |θr)

P (X|θr)

∝ P (X|,θr)P (Y |θr).

Expressing P (Y |X,θr) as a function proportional to P (X|Y,θr)P (Y |θr) provides justi-

fication for the following proposed rejection sampling algorithm.

1. Sample continuous path Ẏ = {Ẏ (t), 0 ≤ t ≤ tM} from distribution Y |θr.
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2. For each t1, t2, . . . , tM , sample Ẋm = Ẋ(tm) from the distribution X(tm)|Ẏ (tm),θr.

3. If Ẋm = Xm ∀ m ∈ {1, 2, . . . ,M} accept Ẏ , otherwise reject Ẏ and repeat steps (1)-(3).

In executing the above rejection sampling algorithm we are using P (X|Y,θr)P (Y |θr) to

define our proposal distribution and thinning out samples by applying knowledge available

from the set of observations X. An accepted Ẏ can be used to augment the observed data

resulting in pseudocomplete data and can be used in calculation of (2). The kth accepted

Ẏ in the rth iteration yields pseudocomplete data (X, Ẏ k). After Kr trajectories have been

accepted, the Monte Carlo average is calculated and the SEM algorithm proceeds to the

subsequent M-step.

In practice, step 1 can be completed by alternating between sampling transitions from

the categorical distribution with probabilities equal to Pij for j ∈ {1, 2, . . . , S} and sampling

state durations from fij where j represents the state previously sampled from the categorical

distribution. These two sampling approaches are repeated until a continuous-time trajectory

extending from time t = 0 to time t > tM has been obtained. Censoring is then assumed

to have occurred at t = tM . Step 2 can be completed for each m = 1, 2, . . . ,M by sampling

from the categorical distribution with probabilities equal to αr
Ẏm,j

where j ∈ {1, 2, . . . , S}

and Ẏm = Ẏ (tm).

With the availability of the sampled continuous time process, Ẏ k, calculation of

g(X, Ẏ k|θ) is straightforward. Let Ẏ
k

= {Ẏ k
0 , Ẏ

k
1 , . . . , Ẏ

k
M} be the vector of states occu-

pied by sampled process Ẏ k at times t0, t1, . . . , tM such that Ẏ k
m = Ẏ k(tm). For a sampled

continuous time process, Ẏ k that occupies a sequence of N+1 states during the period of ob-

servation, let ṡk0, ṡ
k
1, . . . , ṡ

k
N denote the initial and subsequent states occupied and ḋkn denote

the time spent in state ṡkn−1 prior to transition or censoring. Calculation can be completed
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using the following expression

g(X, Ẏ k|θ) = P (X|Ẏ k,θ)P (Ẏ k|θ)

= P (X|Ẏ k
,θ)P (Ẏ k|θ)

=

[ M∏
m=0

P (Xm|Ẏ k
m,θ)

]
P (Ẏ k|θ)

=

[ M∏
m=0

αẎ k
m,Xm

] N∏
n=1

[
Pṡk

(n−1)
,ṡkn
fṡk

(n−1)
,ṡkn

(ḋkn)
]1−δkn[∑

j 6=ṡkn

Pṡkn,jSṡkn,j(ḋ
k
n)
]δkn
, (6.3)

where δkn = 1 when the duration in state ṡkn is right censored and δkn = 0 otherwise.

6.5 Implementation of the SEM Algorithm for Dementia Onset

Modeling

In dementia onset modeling, we assume the model structure displayed in Figure 6.2 with

two transient states and two absorbing states. State 1 corresponds to the state of intact

cognition, from which an individual can transition to impaired cognition (State 2) or death

(State 4). From a state of impaired cognition, an individual can experience a back transition

to State 1, indicating recovery of intact cognition, or the individual can transition forward

to a state of either dementia (State 3) or death. Death is treated as a competing risk to

dementia and we do not estimate parameters associated with transition from dementia to

death. We assume a Weibull sojourn time distribution for each of the transitions such that

fij(d) =

(
νij
σij

)(
d

σij

)(νij−1)

exp

(
−
(
d

σij

)νij)
,

where σij > 0 and νij > 0 for i = 1, 2, j = 1, 2, 3, 4, and i 6= j. The assumed Weibull

distribution also gives us the corresponding survival distribution

Sij(d) = exp

(
−
(
d

σij

)νij)
,

where σij > 0 and νij > 0 for i = 1, 2, j = 1, 2, 3, 4, and i 6= j. Under this framework, νij

and σij are referred to as the shape and scale parameters, respectively. Note that νij = 1

would reduce the multistate process to a Markov process with exponentially distributed
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sojourn times corresponding to constant hazards of transition given occupancy of a known

state. In cognitive impairment multistate modeling, we consider misclassification that occurs

when an individual is in a state of intact cognition but is erroneously classified in a state

of impaired cognition at a given point in time, often referred to as a false positive. Thus,

while the notation presented previously is general enough to describe methodology relevant

to multiple types of misclassification, the only misclassification rate we choose to estimate

is α12 = P (Xm = 2|Ym = 1). We assume αij = 1 ∀ i = j and αij = 0 ∀ i 6= j and

(i, j) /∈ {(1, 2)}. If we model Pij using Pij = ρij for i = 1, 2, j = 1, 2, 3, 4, and i 6= j and

Pij = 0 otherwise, we can specify the vector of parameters we are interested in estimating as

θ = {ρ12, ρ21, ρ23, α12, ν12, ν14, ν21, ν23, ν24, σ12, σ14, σ21, σ23, σ24}.

To estimate θ, the SEM algorithm described previously can be implemented. When com-

pleting the E-step, Ẏ k are obtained by following the rejection sampling steps outlined above.

Since we are only considering one type of misclassification, sampling from Ẋ(tm)|Ẏ (tm),θr

in step 2 results in Ẋ(tm) = Ẏ (tm) for any Ẏ (tm) 6= 1. When Ẏ (tm) = 1, we complete a

Bernoulli trial and set Ẋ(tm) = 2 with probability equal to αr12. Using equations (6.2) and

(6.3), the E-step requires computation of

Q̄Kr(θ|θ(r−1)) =
1

Kr

Kr∑
k=1

log g(X, Ẏ k|θ)

=
1

Kr

Kr∑
k=1

log

[ M∏
m=0

αẎ k
m,Xm

] N∏
n=1

[
Pṡk

(n−1)
,ṡkn
fṡk

(n−1)
,ṡkn

(ḋkn)
]1−δkn[∑

j 6=ṡkn

Pṡkn,jSṡkn,j(ḋ
k
n)
]δkn
.

We note that the above equation can alternatively be expressed as follows

Q̄Kr(θ|θ(r−1)) =
1

Kr

Kr∑
k=1

log

[
g1(X, Ẏ

k|α12)g2(Ẏ k|θᾱ12)

]

=

[
1

Kr

Kr∑
k=1

log g1(X, Ẏ
k|α12)

][
1

Kr

Kr∑
k=1

log g2(Ẏ k|θᾱ12)

]
, (6.4)

where θᾱ12 denotes a vector obtained by removing element α12 from θ. In completing the

M-step, we can take advantage of the separability of the function Q̄Kr(θ|θ(r−1)) with respect

to θ and can complete the maximization by independently maximizing the two components
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of the product in (4). Define ηk1.m such that ηk1.m = 1 if (Ẏ k
m, Xm) = (1, 1) and ηk1.m = 0

otherwise. Define ηk2.m such that ηk2.m = 1 if (Ẏ k
m, Xm) = (1, 2) and ηk2.m = 0 otherwise. Let

C represent the first component of (4) above, such that

C =
1

Kr

Kr∑
k=1

log g1(X, Ẏ
k|α12)

=
1

Kr

Kr∑
k=1

log

[ M∏
m=0

αẎ k
m,Xm

]

=
1

Kr

Kr∑
k=1

log

[
α

(
∑M

m=0 η
k
2.m)

12 (1− α12)(
∑M

m=0 η
k
1.m)
]
.

Solving for the maximum with respect to α12,

dC

dα12

=
1

Kr

Kr∑
k=1

[∑M
m=0 η

k
2.m

α12

−
∑M

m=0 η
k
1.m

1− α12

]
=

1

Kr

[∑Kr

k=1

∑M
m=0 η

k
2.m

α12

−
∑Kr

k=1

∑M
m=0 η

k
1.m

1− α12

]
.

Setting dC
dα12

= 0 and solving for α12 gives us

α̂12 =

∑Kr

k=1

∑M
m=0 η

k
2.m∑Kr

k=1

∑M
m=0 η

k
2.m +

∑Kr

k=1

∑M
m=0 η

k
1.m

.

Therefore, we can obtain the maximum likelihood estimate of α12 in the rth iteration, αr12,

by calculating the proportion of Ẏ k
m = 1 for which Xm = 2 across all m = 0, . . . ,M and

k = 1, . . . , Kr−1.

The second component of the product in (6.4) represents the Monte Carlo average of a set

of complete data log likelihood functions for a process without misclassification, represented

by Ẏ k. As demonstrated in previous studies, the maximum likelihood estimate of θᾱ12 can

be obtained via numerical optimization. Following each iteration of the SEM algorithm, αr12

and θrᾱ12
are combined to give the updated parameter estimate, θr which is carried forward

to the next iteration.

6.6 A Simulation Study: Design

A simulation study was completed to evaluate performance of the proposed algorithm for use

with semi-Markov processes with back transitions, intermittently-observed data, and poten-
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tial misclassification of the healthy state as diseased. Simulated data sets were generated t?o

compare the performance of the proposed SEM algorithm that addresses misclassification

to the performance of the SEM algorithm described in Chapter 4 under the assumption of

no misclassification. To do so, we first simulated 100 data sets consisting of 200 individual

trajectories spanning a time interval of 600 days. Once again, the model structure shown in

Figure 4.1, consisting of two transient states (1 and 2) and two absorbing states (3 and 4)

with the option for back transitions from state 2 to state 1 was assumed. Sojourn times for

all transitions were simulated from a Weibull distribution with probability density function

fij(t) =

(
νij
σij

)(
t

σij

)(νij−1)

exp

(
−
(
t

σij

)νij)
for i = 1, 2, j = 1, 2, 3, 4, i 6= j, σij > 0, and νij > 0. The assumed Weibull distribution also

gives us the corresponding survival distribution

Sij(t) = exp

(
−
(
t

σij

)νij)
for i = 1, 2, j = 1, 2, 3, 4, i 6= j, σij > 0, and νij > 0. We refer to νij and σij as the shape

and scale parameters, respectively. In the instance that νij = 1 , the semi-Markov process

reduces to a Markov process with exponentially distributed sojourn times. Weibull shape and

scale parameters and transition probability parameters used to generate the simulated data

sets are displayed in Table 6.1 and are identical to those parameters used in the simulation

study described in Chapter 4. These parameter values were selected to reflect the values

that might be observed when modeling disease progression from health through mild and

severe illness with death as a competing risk among an elderly population. Each simulated

trajectory began the 600-day interval in state 1 and ended after having either entered one of

the two absorbing states or by being censored in one of the two transient states at the end

of the interval. To convert the complete continuous multistate data generated for each of

the 100 simulated data sets, we next generated independent observation processes for each

data set for each of the 200 trajectories. We assumed independent, exponentially distributed

inter-observation times with a 50-day expected inter-observation time. Once generated, the

series of observation times for each individual trajectory were applied to the corresponding

simulated complete data trajectory to obtain panel data sets.
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Using the simulated panel data, for each observation of a trajectory in state 1, a Bernoulli

trial was completed with probability of success equal to the assumed misclassification prob-

ability, α12, shown in Table 6.1. In the instance of a successful trial, the panel observation of

the trajectory was converted such that the process was observed to occupy state 2 instead of

state 1. No such conversion was enacted for instances in which the Bernoulli trial resulted

in a failure. Thus, the Bernoulli trial served to replicate the conduct of a diagnostic test

with false positive rate equal to α12. A misclassification rate of 0.20 was selected because

it corresponds to a specificity of 0.80 which is commonly observed in practice. While a

higher specificity, corresponding to a lower false positive rate would be preferable in most

clinical settings, we selected a specificity of 0.80 to examine the performance of the proposed

method in instances where the misclassification rate is likely to introduce substantial bias in

the estimation of transition rates and probabilities. In such instances, methods such as the

proposed method that address misclassification may find their greatest utility.

Figure 6.1 depicts implementation of the rejection sampling procedure in its entirety for a

single trajectory. The individual in Figure 6.1 is observed at 5 time points with the first two

observations occurring while the individual is in state 1, the next two observations occurring

while the individual is in state 2, and the final observation occurring when the individual

has reached absorbing state 3. Let A indicate the first continuous trajectory sampled from

the candidate distribution, Ẏ . Let the gray boxes beneath trajectory A indicate the results

of the second stage of sampling, Ẋm for m = 1, . . . , 5. We reject trajectory A because

Ẋ2 6= X2. We then proceed to sample continuous trajectory B and subsequently complete

the second stage of sampling using the Bernouli trial approach described above. Trajectory

B is accepted because Ẋm = Xm for all m = 1, . . . , 5 such that it is entirely congruent with

the observation process above.

For each simulated, misclassified, data set, the SEM algorithm was implemented, first,

under the assumption of no misclassification and, second, while addressing misclassification

using the approach described in the present Chapter. For both implementations, the M-

step of the SEM algorithm was carried out using the R constrOptim function for linearly
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Figure 6.1: The SEM algorithm with misclassification’s rejection sampling scheme applied

to a single individual. Following both stages of sampling, trajectory A would be rejected

after comparison to the observation process at the top and trajectory B would be accepted.
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constrained optimization. Linear constraints were used to ensure the following:

νij > 0, σij > 0 for (i, j) ∈ {(1, 2), (1, 4), (2, 1), (2, 3), (2, 4)}

0 ≤ Pij ≤ 1 for (i, j) ∈ {(1, 2), (2, 1), (2, 3)}

0 ≤ P21 + P23 ≤ 1

0 ≤ α12 ≤ 1.

Estimates of P14 and P24 could be obtained given the other estimated transition probabilities.

For both implementations, we determined that a modest Monte Carlo sample size, mr, would

suffice as a result of the stringent rejection sampling procedure employed which resulted in

a relatively low acceptance rate. We set m1 = 1 and incremented mr by 1 at each successive

iteration. We adopted the same stopping rule as outlined in Section 4.6 and required that

the following hold for three consecutive iterations

max
i

(
|θ(r)
i − θ

(r−1)
i |

|θ(r−1)
i |+ δ1

)
< δ2, (6.5)

where δ1 = 0.001 and δ2 = 0.05. To minimize the impact of Monte Carlo error on the final

parameter estimates, once the stopping rule was satisfied, the final estimates were taken as

the average of the estimates obtained during the last 5 iterations of the algorithm.

The two implementations of the SEM algorithm differ with respect to the execution of

the rejection sampling approach. As described in Chapter 4, the implementation of the

SEM algorithm ignoring misclassification relies on repeated sampling of continuous paths,

Ẏ , until Ẏ (tm) = Y (tm) for all m = 1, . . . ,M , in which case a sampled path is accepted and

retained for use in completing the next M-step. Alternatively, the implementation of the

SEM algorithm addressing misclassification relies on the series of steps outlined in Section 6.4.

Continuous sample paths, Ẏ , are sampled followed by a second stage of sampling in which

Ẋm are obtained by probabilistic application of the current estimate of the misclassification

rate.

To conduct the computationally intense rejection sampling and iterative maximization,

we used the R package Rcpp which integrates R and C++ to improve performance. All

components of this simulation study used computational and storage services associated
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with the Hoffman2 Shared Cluster provided by the UCLA Institute for Digital Research and

Education’s Research Technology Group.
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Table 6.1: Comparison of bias and accuracy of parameter estimates across different estimation approaches as applied to 100

simulated data sets generated using the parameter values displayed in the True Value column.

Complete SEM Ignoring SEM Addressing

Data Misclassification Misclassification

True Value Mean SD % Bias Median Mean SD % Bias Median Mean SD % Bias Median

P12 0.90 0.90 0.02 0.3 0.90 0.96 0.01 6.5 0.96 0.90 0.02 0.3 0.90

P21 0.30 0.30 0.03 1.6 0.29 0.65 0.05 117.5 0.66 0.27 0.06 11.0 0.26

P23 0.55 0.55 0.03 0.8 0.55 0.27 0.04 51.0 0.27 0.58 0.05 5.2 0.58

ν12 0.75 0.75 0.03 0.3 0.75 0.81 0.10 8.1 0.83 0.78 0.08 3.5 0.77

ν14 1.50 1.58 0.29 5.3 1.54 1.81 0.55 20.9 1.78 1.76 0.67 17.6 1.61

ν21 1.25 1.28 0.13 2.3 1.26 1.00 0.10 20.1 1.01 1.20 0.30 4.3 1.17

ν23 2.00 2.02 0.15 0.9 1.99 2.05 0.29 2.5 2.05 1.97 0.27 1.5 1.96

ν24 1.75 1.84 0.27 5.3 1.83 1.72 0.56 1.8 1.55 2.17 0.71 24.1 2.01

σ12 60 61 5 1.4 60 26 4 56.4 26 65 9 8.1 65

σ14 150 151 24 0.6 150 89 36 41.0 81 155 35 3.2 154

σ21 70 71 7 1.2 71 25 5 63.9 25 74 20 6.0 72

σ23 80 80 3 0.3 80 79 5 1.1 79 82 6 2.1 81

σ24 200 199 21 0.5 198 194 42 2.8 192 202 33 0.9 202

α12 0.20 - - - - - - - - 0.21 0.03 2.7 0.20



6.7 A Simulation Study: Results

Results from estimation of the complete simulated data including observation of all trajecto-

ries continuously over the entire 600-day interval, are displayed in Table 6.1 for comparison

purposes. These complete data results were obtained by applying the straightforward maxi-

mum likelihood estimation approach to each of the simulated data sets prior to application of

the simulated panel data observation process. As anticipated, the complete data parameter

estimates display minimal bias. Among these estimates, the largest observed bias occurred

for the Weibull shape parameters associated with transition from state 1 to state 4 and

from state 2 to state 4 (both 5.3% bias). As noted in previous chapters, these parameters

appear to be highly sensitive to the limited length of the window of observation as related

to the assumption of time-homogeneity. All other complete data parameter estimates were

effectively unbiased (≤ 2.3% bias).

The impact of ignoring misclassification when misclassification exists is displayed in Ta-

ble 6.1. Parameter estimates obtained from implementation of the SEM algorithm ignoring

misclassification exhibited considerable bias. Of specific interest, transition probability esti-

mates for the probability of transition from state 1 to state 2 and from state 2 back to state

1 were overestimated while the probability of transition from state 2 to state 3 was drasti-

cally underestimated. For a process in state 2, the SEM algorithm ignoring misclassification

estimated that the next transition would be a back transition to state 1 with probability

0.65, a transition to state 3 with probability 0.27, and a transition to state 4 with probability

0.08. Relative to the true underlying process, the estimated probability of back transition is

substantially higher (0.65 versus 0.30) when misclassification is ignored because erroneously

classifying an observation as being in state 2 between two adjacent observations in state

1 implies an additional back transition which would not be present for a process observed

without measurement error. Shape parameters that were estimated with substantial bias

when ignoring misclassification include the parameter for the transition from state 1 to state

4, which was overestimated, and the shape parameter for the transition from state 2 back to

state 1, which was underestimated. When ignoring misclassification, the scale parameters
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associated with transitions from state 1 to state 2, state 1 to state 4, and state 2 to state 1

were substantially underestimated. While the true value of the scale parameter for transition

from state 1 to state 2 was equal to 60, the SEM algorithm ignoring misclassification resulted

in a median estimate of only 26. This observed underestimation in the presence of ignored

misclassification can be explained by the introduction of artificial implied back transitions

in the data which likely shortened the apparent average sojourn time spent in state 1.

Performance of the proposed SEM algorithm which addresses misclassification is dis-

played in Table 6.1. In implementing the SEM algorithm addressing misclassification, the

specified stopping rule resulted in an average of 22.2 iterations across all 100 data sets with

a minimum of 14 and a maximum of 38 iterations. The parameter estimates obtained from

implementing the SEM algorithm while addressing misclassification demonstrated greatly re-

duced bias relative to the estimates that resulted when misclassification was ignored. In many

instances, estimates closely approximated the performance of the estimates obtained using

the complete data. Transition probabilities, including the probability of back transition,

were estimated with minimal bias when misclassification was addressed and the standard

deviations across data sets were only slightly larger than when implementing complete data

estimation. Remarkably, the SEM algorithm addressing misclassification was able to accu-

rately estimate the probability of misclassification, with the median across all 100 simulated

data sets equal to the true value of 0.20. In addressing misclassification, there was a ten-

dency towards slight underestimation of the probability of back transition (11.0% bias) and

corresponding overestimation of the probability of transition from state 2 to state 3 (5.2%

bias). Parameter estimates that demonstrated noticeable bias even after implementation of

the SEM algorithm addressing misclassification include the shape parameter for transition

from state 1 to state 4 (17.6% bias) and the shape parameter for transition from state 2

to state 4 (24.1% bias). As mentioned when discussing the complete data results, the bias

observed in these estimates may signify the heightened sensitivity of these shape parameters

to the limited length of the interval of observation required to establish time-homogeneity.
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6.8 The Nun Study: Design and Results

When applying the SEM algorithm with rejection sampling and misclassification to the Nun

Study described in section 5.1 we consider the possibility that there was a non-negligible

probability of misclassification. We consider misclassification of healthy individuals with

intact cognition into a state of cognitive impairment. The impact of false positive diagnoses

in the evaluation of cognitive impairment is an important issue in the field of dementia

and Alzheimer’s research [87, 88]. Experts have noted that there is substantial risk of

misclassifying mild cognitive impairment (MCI) in healthy older adults and the risk is even

greater when multiple cognitive measures are administered, as was the case with the Nun

Study. Brooks et al. attribute false positives to numerous factors such as long-standing

and static relative cognitive weaknesses, reversible causes of poor performance on memory

measures, and situational influences on performance [89]. Nevertheless, continued efforts

to accurately identify true positives are necessary in research and practice because there

exists a large body of consistent evidence that individuals with MCI are at increased risk of

subsequent progression to dementia and Alzheimer’s disease [90, 91, 92]. We therefore aim

to build upon the applied results presented in the previous chapter by adapting our model

to include the possibility of misclassification.

In this secondary analysis of the Nun Study, we use the exact same data and model spec-

ifications as outlined in Section 5.1. This includes the assumption that all 544 participants

entered into the state we refer to as intact cognition at exactly age 70 implying that the

intact and impaired cognition states are defined only among those individuals 70 years of

age or older. We chose to implement the same two month acceptance window around the

exact date of death and used the stopping criteria expressed in formula (4.4) with δ1 = 0.001

and δ2 = 0.08.

In implementing the SEM algorithm addressing misclassification to model the Nun Study

data, the stopping criterion was met after the 31st iteration. Parameter estimates obtained

using this modeling approach are displayed in Table 6.2. For comparison purposes, the

parameter estimates obtained in Chapter 5 using the SEM algorithm but ignoring mis-
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classification are also re-displayed in Table 6.2. The impact of addressing misclassification

on the transition probability and other parameter estimates was dramatic. The transition

probability parameter estimates obtained when fitting the SEM algorithm addressing mis-

classification to the Nun Study data are displayed in Figure 6.2. For an elderly individual in

a state of intact cognition, after accounting for misclassification, there is an estimated 0.75

probability that the next state visited will be impaired cognition and a 0.25 probability that

the individual will transition directly to death. In comparison, the model fit while ignoring

misclassification estimated a 0.94 probability that the next state visited will be impaired

cognition and only a 0.06 probability of transition directly to death. The model address-

ing misclassification resulted in an estimated probability of falsely classifying an individual

with intact cognition as having impaired cognition of 0.31. Correspondingly, the estimated

probability that the next transition experienced by an elderly individual in a state of im-

paired cognition would be a back transition to intact cognition was only 0.05 in the model

addressing misclassification. This compares to an estimated probability of 0.58 in the model

fit under the assumption of no misclassification.

Many of the Weibull shape and scale parameter estimates associated with the sojourn

time distributions were also greatly impacted by implementing the modeling approach that

addresses misclassification. The shape parameter estimates associated with transitions from

intact to impaired cognition, intact cognition to death, and impaired cognition to death were

all higher when estimated while accounting for misclassification. These higher estimates im-

ply that the hazard rates associated with these transitions are estimated to be increasing to

an even greater extent as a function of time elapsed in the current state when addressing

versus not addressing misclassification. Alternatively, the shape parameter estimate asso-

ciated with back transition from impaired to intact cognition was lower when addressing

misclassification, implying a more constant back transition hazard rate as a function of time

elapsed in a state of impaired cognition (ν21 = 1.10).

Weibull scale parameter estimates associated with transitions from intact to impaired

cognition and intact cognition to death were higher when estimated while accounting for

misclassification. These higher estimates imply longer average durations of time spent in
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Table 6.2: Parameter estimates for the Nun Study model fit using the proposed SEM ap-

proach with rejection sampling for the two cases in which misclassification is ignored and

addressed. (1 = Intact Cognition, 2 = Impaired Cognition, 3 = Dementia, 4 = Death)

SEM Ignoring SEM Addressing

Misclassification Misclassification

Parameter Estimate Estimate

P12 0.94 0.75

P21 0.58 0.06

P23 0.16 0.44

ν12 1.35 2.33

ν14 0.99 4.90

ν21 1.44 1.10

ν23 1.68 1.53

ν24 1.34 2.26

σ12 4.74 13.08

σ14 8.89 20.03

σ21 2.47 1.10

σ23 9.98 8.54

σ24 9.79 9.59

α12 - 0.31
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Figure 6.2: Structural diagram for the multistate model assumed in both the simulation

study and Nun Study data analysis with Nun Study transition probability estimates ob-

tained using the SEM approach addressing misclassification. The estimated probability of

misclassification of an individual with intact cognition in a state of impaired cognition is

0.31.
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intact cognition before progressing to either impaired cognition or death. As shown in

Figure 6.3, the median sojourn time for an elderly individual in a state of intact cognition

was estimated to be 11.18 years if their next transition was to a state of impaired cognition

or 18.59 years if their next transition was to death. The estimated sojourn time distributions

for these transitions from intact cognition are both fairly symmetrical with similar mean and

median values. In implementing the model addressing misclassification, the scale parameter

associated with back transition from impaired to intact cognition was estimated to be lower,

relative to the estimate obtained when ignoring misclassification. As depicted in Figure

6.3, in the model addressing misclassification, the vast majority of back transitions were

estimated to occur during the 2-3 years following entrance into a state of impaired cognition.

The median time to transition back from impaired to intact cognition was estimated to be

0.79 years with a very small proportion of sojourn times extending out beyond 5 years. Scale

parameter estimates associated with transitions from impaired cognition to dementia and

death did not differ substantially when comparing estimates obtained while ignoring and

accounting for misclassification (Table 6.2). The median sojourn time for transition from

impaired cognition to dementia was estimated to be 6.72 years and the median sojourn time

for transition from impaired cognition to death was estimated to be 8.16 years. The sojourn

time distribution for transition from impaired cognition to death demonstrated is relatively

symmetrical, while some right skew is noticeable for the sojourn time distribution for the

transition from impaired cognition to dementia (Figure 6.3).
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Figure 6.3: Sojourn time probability density functions based on the Weibull parameter estimates obtained from the Nun Study

model fit using the proposed SEM approach with rejection sampling after addressing misclassification



6.9 Discussion

In this chapter we proposed an approach to addressing misclassification when estimating

semi-Markov models with back transitions and intermittently-observed data. The proposed

method simultaneously accomplishes two tasks: mitigating the parameter bias introduced

when fitting semi-Markov models while ignoring misclassification, and producing unbiased

estimates of the misclassification rate. The method we proposed relies on the same SEM

algorithm described and implemented in Chapters 4 and 5 with an extension which enables

iterative estimation of one or more additional parameters representing misclassification rates.

Another distinguishing feature of the approach described in this chapter is the adaptation

of the rejection sampling strategy to include two stages of sampling corresponding to the

sampling of continuous multistate trajectories and the subsequent sampling of the misclassi-

fication mechanism at the discrete observation time points. Rejection of sampled trajectories

that are not coherent with the observed data now occurs after both stages of sampling have

been completed.

Using a simulation study, we demonstrated that estimating transition probabilities and

sojourn time distribution parameters while ignoring misclassification that truly exists can

introduce non-trivial bias. Preferably, misclassification arising from imperfect disease classi-

fication instruments would be estimated by comparison to a gold standard instrument that

can definitively discriminate between states of disease and health. As noted previously,

for many diseases a gold standard either doesn’t exist or is not practical for use. As an

alternative, we have shown that the misclassification rate can be estimated with no gold

standard information available. Instead of relying on a gold standard, the proposed esti-

mation method relies on the parametric modeling assumptions and the richness of the data

provided by the entire sample of trajectories to disentangle true from false positives. Ad-

ditionally, the misclassification rate can be estimated simultaneously, and under the same

general framework as implemented previously for estimation of a semi-Markov model with

back transitions and panel data. The estimation approach relying on the SEM algorithm

with rejection sampling is capable of accurately estimating the misclassification rate because
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the stochastic components of the procedure minimize potential identifiability issues while

enabling exploration of different misclassification rates and the coherence of those rates with

the observed multistate data. Results of the simulation study we completed suggest that

within each iteration the estimation approach was successfully able to identify observations

that were anomalous when considering the expected behavior of the underlying semi-Markov

model being concurrently estimated. Recognition of these anomalous observations and their

frequency within the observed data allowed the procedure to estimate a misclassification rate

within each iteration and led to convergence over the course of numerous iterations. The

method presented here accomplishes the same objective as targeted when fitting a hidden

semi-Markov model. Use of hidden semi-Markov models, however, has been historically lim-

ited by difficulties with estimation which are exacerbated when attempting to fit a hidden

semi-Markov model to panel data while allowing for back transitions. The method proposed

and implemented in this chapter may serve to extend the utility of such models in disease

progression research when misclassification is a real concern and gold standard information

is not readily available.

The impact of addressing misclassification on our interpretation of the progression of Nun

Study participants through various states of cognitive impairment was significant. Whereas

the model ignoring misclassification seemed to imply that back transitions from impaired

to intact cognition were relatively common and that elderly individuals remained in a state

of intact cognition for periods of less than 5 years on average, the model accounting for

misclassification suggests that back transitions are relatively infrequent and that the aver-

age elderly individual with intact cognition will remain in a state of intact cognition for

over 10 years. This dramatic shift in our perspective on the rate of back transition is at-

tributable to the estimated misclassification rate of 0.31, which suggests that a cognitively

intact elderly individual who shows up for an assessment at any given point in time has a

31% chance of being mistakenly classified as having impaired cognition. This is certainly a

non-negligible false positive rate but is not incongruent with previously published estimates.

A meta-analysis published in 2009 estimated a pooled proportion for specificity of 65.4%,

corresponding to a false positive rate of 34.6% when examining the accuracy of the MMSE in
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identifying subjects with MCI versus healthy subjects in a specialist setting (memory clinic

or Alzheimer’s disease center) [93]. Although the Nun Study was conducted outside of a

specialist setting, this finding is directly applicable because participants in the Nun Study

who failed the MMSE were classified in a state of cognitive impairment.

In addition to the limitations mentioned in the previous chapters, implementation of

the SEM algorithm with rejection sampling while addressing misclassification is subject to

several additional limitations that are worth mentioning. In addressing misclassification, we

chose only to consider misclassification for individuals in a state of intact cognition and did

not consider the potential for cognitively impaired individuals to be misclassified in a state of

intact cognition. Thus, in a general sense, our model allowed only for uni-directional move-

ment of an individual observed at a given point in time from a state of intact to impaired

cognition. While this did not appear to introduce bias in our simulation study results, the

impact of assuming only one type of misclassification event on the Nun Study estimates is

unknown. Furthermore, each misclassification rate considered is associated with at least one

additional parameter (more if the misclassification rate is expressed as a function of explana-

tory variables) that needs to be estimated using the iterative approach described. There is

real concern that the addition of parameters will result in identifiability or convergence issues,

especially when the additional parameters are associated with misclassification. Assuming

another misclassification event is possible increases the proportion of incompleteness of the

observed data and reduces our ability to recover accurate and meaningful estimates of other

important model parameters.

Implicit in the modeling framework adopted in the current Chapter was the assumption

that the misclassification mechanism operated independent of individual, external time, and

time elapsed in the current state. We also assumed that misclassifications occurred as inde-

pendent events. In practice, the probability of misclassification for an individual at a given

instant in time may vary across individuals and time. An important area for future work

may be attempting to explain this heterogeneity among individuals and over time using ex-

planatory variables and/or random effects. It is also reasonable to consider the probability

of misclassification being associated with the occurrence of previous misclassification events,
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in which case a more complicated structure for the misclassification rate would need to be

considered.

In future work, we plan to conduct further simulation studies to examine the sensitivity

of the proposed method to varying rates of misclassification and rates of back transition.

Intuitively, our ability to accurately estimate both the misclassification rate and semi-Markov

model parameters is increasingly compromised as the true underlying misclassification rate

is increased. One can imagine an extreme scenario in which the true false positive rate is

50%, such that a healthy individual has equal probability of being classified as healthy versus

diseased. For an individual in a state of health for 10 years and observed once annually, 5

of the 10 years could result in classification in a disease state and the estimation approach

described would have difficulty distinguishing between true and false positives. Identifying at

what point, and under what conditions the performance of the proposed estimation approach

is seriously compromised will improve our recommendations for use of the method across

different disease progression applications.
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CHAPTER 7

Discussion

7.1 Multistate Modeling Challenges and Applications Addressed

In this dissertation, I outlined several challenges of recent and continued importance in the

field of multistate modeling. I proposed, applied, and evaluated appropriate methodology

to address these challenges. The three methodological challenges addressed were motivated

by distinct applied research questions and the limitations of the data available for use in

answering these questions.

We were faced with the question of whether concurrent partnership patterns are asso-

ciated with increased rates of HIV transmission relative to serially monogamous patterns,

when holding all other sexual partnership dynamics, such as number and duration of part-

nerships, fixed. To address this question, it was necessary to develop a modeling approach

that would yield estimates of both the extent and the magnitude of concurrency within a

population. The available data consisted of retrospective sexual history reports provided

cross-sectionally by a sample of men having sex with men and seeking HIV testing at a Los

Angeles clinic. Among this sample, a high percentage (60%) of the partnerships reported

were one-offs, meaning that they were reported as having the same first and last date of

sexual intercourse. Previous attempts to analyze retrospective sexual history data for use

in measuring concurrency used the partnership as the unit of observation and thus ignored

heterogeneity across individuals and time. To improve upon the existing methodology, we

developed a multistate model that treated the individual as the independent unit of obser-

vation and inherently modeled the dependence among partnerships engaged in by the same

individual at the same or different times. The model we developed enabled straightforward
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estimation of the point prevalence of concurrency and the mean duration of concurrency

while being flexible enough to allow incorporation of explanatory variables. In formulating

the model, we also jointly fit a point process which accounted for one-off sexual encounters

and allowed the occurrence of one-offs to potentially impact the subsequent formation and

dissolution of ongoing partnerships. By describing this novel approach for the joint modeling

of sexual partnership patterns using retrospective sexual history data we have provided a

tool that can be used to answer pertinent questions in the field of HIV transmission research.

Model parameter estimates can be used to draw inferences about the population from which

the sample was drawn, compare partnership patterns across samples, or as input to dynamic

mathematical models with the capacity to answer questions about the impact of potential

interventions on rates of HIV transmission within a community.

A second motivating question regarded the modeling of disease progression for diseases in

which back transitions from illness to health are possible and data are available in the form

of intermittent observations of an individual’s disease status. In this instance, interest lied in

the accurate estimation of transition probabilities and sojourn time distribution parameters.

Unbiased estimation of such parameters would enable construction of models that could

be used to identify factors impacting rates and probabilities of transition between various

states of health and disease. Of specific interest was the transition back from a state of

disease to a state of health since this reverse transition is typically associated with patient

recovery and is the target of many public health interventions. Multistate models for disease

progression can be estimated using a straightforward maximum likelihood approach when

knowledge of the sequence of states visited and the duration of time spent in each state

is available for all individuals in a random sample drawn from the population of interest.

When panel data are collected, however, the sequence of states an individual occupies across

an observation time interval is typically unknown. When back transitions are possible,

consideration of all potential state sequences between two discrete observations leads to

an intractable likelihood function. Thus, the challenge we faced was the development of a

computationally feasible method for the unbiased estimation of semi-Markov models using

panel data in the presence of back transitions. In response, we developed a simulation-based

104



iterative algorithm involving rejection sampling of complete trajectories to complete the

traditional E-Step of the EM algorithm for incomplete data. We evaluated the performance

of the proposed algorithm by completing a simulation study in which we compared bias and

accuracy of parameter estimates obtained using the proposed SEM algorithm to estimates

obtained using a commonly-employed naive approach that assumed no unobserved states.

Whereas the naive approach resulted in biased parameter estimates and underestimation

of the rate of back transition, the SEM approach produced unbiased estimates through

recovery of unobserved back transitions after relatively few iterations. After demonstrating

the performance of the proposed SEM method in the simulation study, we applied the method

to dementia onset modeling using the Nun Study panel data collected from a sample of elderly

individuals participating in a longitudinal study on aging and Alzheimer’s disease. Results

of this application consisted of estimated transition probabilities and Weibull sojourn time

parameters for transitions occurring between the two transient states of intact and impaired

cognition, and transitions from either of these two states to either of the two absorbing states

of dementia or death.

To improve utility of the proposed SEM approach for disease progression modeling in

applications such as the Nun Study, we next considered an extension that allows for mis-

classification of a healthy individual in the diseased state. We developed this extended

estimation approach by modifying the rejection sampling strategy to include two stages and

formulating an expression for the iterative estimation of an additional parameter represent-

ing the misclassification rate. We demonstrated the performance of the proposed extension

using a simulation study in which we compared performance of the proposed method that

addresses misclassification to the SEM method presented previously which ignores misclas-

sification. Results demonstrated that estimating transition probabilities and sojourn time

distribution parameters while ignoring misclassification that truly exists can introduce non-

trivial bias. Importantly, the extended method was shown to simultaneously mitigate the

parameter bias introduced when ignoring misclassification and produce unbiased estimates

of the true misclassification rate. This method can be useful in a wide range of disease

progression applications in which panel data are collected and a non-negligible false positive
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rate is suspected with no gold standard diagnostic information available. We used this new

extended methodology to re-fit a multistate model to the Nun Study data while consid-

ering the potential for misclassification of individuals with intact cognition into a state of

impaired cognition. Findings from this re-analysis suggest that the rate of misclassification

may be relatively high among this sample and true back transitions from impaired to intact

cognition may be relatively rare. These results emphasize the importance of accounting for

misclassification in dementia onset modeling when considering cognitive impairment as an

intermediate disease state predictive of eventual progression to dementia and Alzheimer’s

disease.

7.2 Future Work

This dissertation lays the foundation from which to explore a number of other important

research questions in the area of multistate modeling with back transitions.

As mentioned previously, the most immediate priority for future work will entail addi-

tional simulation studies to examine the sensitivity of the proposed SEM method addressing

misclassification to varying rates of misclassification. Identifying the lower bound on the

true underlying misclassification rate, above which the performance of the proposed esti-

mation approach becomes significantly compromised would improve our recommendations

for use of the method across different disease progression applications. In a similar study,

we will examine the sensitivity of the proposed method which addresses misclassification to

varying rates of back transition. These results will help define settings in which the methods

presented in Chapter 6 are likely to perform optimally.

In addressing the three methodological questions, much of our effort was focused on de-

veloping flexible models capable of providing unbiased parameter estimates given the type

of data typically available to public health researchers. Having demonstrated the viability

of the modeling frameworks and estimation procedures developed herein, we believe there

remains several important opportunities to utilize these multistate models to answer spe-

cific applied research questions regarding the impact of hypothesized explanatory variables
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on the rates and probabilities of transition. In our Nun Study application, for example,

incorporation of covariates such as age and genetic markers would provide an important

contribution to the applied literature by allowing us to assess the impact of such character-

istics on transition rates and probabilities in modeling of dementia onset [60, 76]. In further

utilizing the joint model for sexual partnership patterns, we would like to consider the use

of additional covariates and perhaps sexual history data collected from different samples

to draw further inference about community or individual characteristics associated differ-

ences in concurrency. Identification of such differences could improve our understanding of

variations in HIV transmission observed across different populations and sexual networks.

A third area of interest for future work is related to state-dependent biased sampling of

multistate trajectories. In traditional survival models designed to model time to a single

event, methods to account for sampling bias in which only survival times occurring within a

certain interval are observed are well-established. In multistate modeling we often encounter

a related but distinct issue in which sampling bias is introduced because individuals are

observed only if their trajectories over a specified time interval meet certain criteria. For

instance, eligibility criteria for participation in the MetroMates study described in Chap-

ter 3 stipulated that an individual report at least one instance of sexual intercourse with

a male partner in the past year. This data collection strategy certainly necessitates the

careful interpretation of results as being only generalizable to a population of sexually active

individuals. Even so, the results obtained after excluding these individuals who reported no

sexual activity during the previous year could potentially provide a biased representation

of the sexually active population. If an independent sample of sexually active individuals

were recruited, enrolled, and followed prospectively for a year, a certain percentage of these

study participants would report no instances of sexual intercourse and this information is

important for incorporation into the likelihood function when estimating a multistate model.

Other biased sampling scenarios can be imagined, such as the exclusion of individuals who

do not enter a disease state at least once during a pre-specified time interval when model-

ing disease progression. In future work, we aim to extend the SEM modeling approach to

accommodate state-dependent biased sampling of trajectories. This work can be completed
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first by conducting a simulation study and then by application of the proposed method to

the modeling of sexual partnership patterns.

Another extension to the SEM modeling approach that we would like to pursue is to

develop methodology to effectively account for the left censoring of the sojourn times asso-

ciated with the first state occupied by each individual in the sample. In a recent paper, Cai

et al. used an analogue of the SEM algorithm to simulate a cohort of subjects from which

imputed values of the elapsed sojourn times at entry into the study were drawn [58]. The

SEM approach we developed herein can be extended to incorporate imputation of elapsed

sojourn times under a single unified framework relying on the stochastic approximation to

the expectation for the complete data including the left censored sojourn times.

7.3 Closing Thoughts

Both the sexual partnership joint modeling procedure and the SEM-based estimation ap-

proach for disease onset models are important in that they enable public health researchers to

answer crucial questions that had been previously addressed using inferior or naive methods.

Cox proportional hazards and other traditional survival models exploring time to event for

a single outcome are ubiquitous. As an alternative to constructing separate survival models

for each of a number of interrelated outcomes, multistate models have gained popularity

in recent years. Multistate models can be used to examine pathways of association across

multiple alternative or intermediate states which are not directly apparent when modeling

survival separately for each state or outcome. Applications of multistate models with back

transitions in the health sciences are many and varied, nevertheless, use of such models has

been hindered by insufficient methods for model formulation and estimation. The limited

availability of complete data consisting of all states occupied and times of transition between

states has likely further limited the use of such models in health research settings in which

intermittent observations are the norm.

We anticipate that the methods presented in this dissertation will enable greater utility

of multistate models with back transitions in public health research. With each passing year,
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as members of the statistical community, we notice a shift in the preference for stochastic

and computational methods that can be used to circumvent intractable problems. These

methods have been increasingly adopted in recent years to answer previously unanswerable

questions and to explain phenomena of historical uncertainty. It is our hope that the statisti-

cal challenges and applications described herein will encourage the use of multistate models

with back transitions in answering difficult questions of importance in the field of public

health research.
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