
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Strategic Air Traffic Planning Using Eulerian Route Based Modeling and Optimization

Permalink
https://escholarship.org/uc/item/0fz9h8gf

Author
Bombelli, Alessandro

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0fz9h8gf
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Strategic Air Traffic Planning Using Eulerian Route Based Modeling and Optimization

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Mechanical and Aerospace Engineering

by

Alessandro Bombelli

Dissertation Committee:
Professor Kenneth D. Mease, Chair

Professor Tryphon Georgiou
Professor Solmaz S. Kia

2017

c© 2017 Alessandro Bombelli

DEDICATION

To Elisa, my parents, my grandma Nonna Franca, and my extended family.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES viii

ACKNOWLEDGMENTS ix

CURRICULUM VITAE x

ABSTRACT OF THE DISSERTATION xii

1 Introduction 1

2 Aggregate Routes via Clustering 8
2.1 General Framework, Historical Dataset and Flight Categories for Route Clu-

stering . 10
2.2 Coarse Clustering . 14
2.3 Flight Track Undersampling, Fréchet Distance Computation and Outlier De-

tection . 22
2.3.1 Flight Track Undersampling . 23
2.3.2 Fréchet Distance Computation . 25
2.3.3 Outlier Detection . 31

2.4 Fine Clustering . 33
2.5 Aggregate Route Computation . 36
2.6 Airport Departure and Arrival Capacity Estimation 39
2.7 Application to the Six Western-most Centers of the NAS 41

3 Airborne Rerouting Design 46
3.1 Design of Operationally Feasible Rerouting Options 48

3.1.1 Conversion of an Aggregate Route using a Lambert Conformal Conic
Projection . 49

3.1.2 Definition of the Search Space . 51
3.1.3 Additional Nodes Computation . 53
3.1.4 Computation of the Adjacency Properties of the Augmented Graph . 56

3.2 Convective Weather Data . 58
3.2.1 Convective Weather Avoidance Model 59

iii

3.2.2 Modeling Assumptions . 61
3.3 Airborne Rerouting as a Shortest Path Problem 63

3.3.1 Edge Cost Computation . 63
3.3.2 Ground Holding vs. Airborne Rerouting Cost Analysis 65
3.3.3 Shortest Path Algorithm Structure 67
3.3.4 Shortest Path Algorithm Implementation 69

4 Aggregate Route Model as a Discrete Linear Time-Invariant System 75
4.1 Uncontrolled Traffic Flow Dynamics for a Network Component 76
4.2 Traffic Flow Controls for a Network Component 79

4.2.1 Network Component Example with Ground Holding and Pre-Departure
Rerouting . 82

4.2.2 Network Component Example with Ground Holding, Pre-Departure
Rerouting and Airborne Rerouting 85

4.3 Controlled Network Dynamics . 89

5 Strategic Air Traffic Planning as an Integer Programming Problem 91
5.1 Control Constraints and Capacity Constraints 92
5.2 Control Constraints . 93
5.3 Capacity Constraints . 98

5.3.1 Sector Capacity . 99
5.3.2 Departure and Arrival Capacity . 100
5.3.3 Cell Capacity Constraints . 112
5.3.4 Separation Constraints . 115
5.3.5 Weather-Related Constraints . 118

5.4 Cost Function . 119
5.5 Properties of the Solution . 123

6 Tests of the Strategic Planning Method 125
6.1 Test 1: ZLA Air Traffic Simulation and Management 126
6.2 Test 2: Managing Internal Flights in ZLA in Convective Weather 132
6.3 Test 3: Air Traffic Flow Optimization for the Six Western-Most Centers of

the NAS . 136

7 Conclusions 150

Bibliography 152

Appendices 159
A List of Acronyms . 159
B Ground Stop as Feasible Solution of the IP Problem 161
C Overlapping Index Algorithm . 163

iv

LIST OF FIGURES

Page

1.1 Lagrangian and Eulerian approach to track aircraft (particles). 2

2.1 Route clustering as a process. 11
2.2 Schematic of planning domain composed of sectors and examples of flights

from the four categories described in the text. 13
2.3 Flowchart describing the route clustering and aggregation process. 15
2.4 Example of a dendrogram applied to a distribution of points, using the Eu-

clidean distance. 17
2.5 Computation of the best number of coarse clusters for flights departing from

LAS and exiting the planning domain. 20
2.6 Average cruise speed for the LAX-SEA coarse cluster. 22
2.7 Graphical interpretation of the distance η1 between a latitude-longitude pair

and a great circle arc. 25
2.8 Two flight tracks from LAX to PHX, before and after undersampling. 26
2.9 Example of a free space diagram. A monotone path from the upper left corner

to the lower right corner within the gray region is identifiable. 27
2.10 Example of how the haversine distance along two great circle arcs is mapped

into the associated free space. 28
2.11 Flight tracks forming the LAX-SLC coarse cluster. In light gray are shown

the filtered tracks, while in dark gray are highlighted the outliers. 33
2.12 Flowchart describing the selection of the optimal number of fine clusters given

a coarse cluster. 35
2.13 Computation of the optimal number of fine clusters for the LAX-SEA coarse

cluster. 36
2.14 Computation of the aggregate routes for the LAX-SEA coarse cluster. 38
2.15 Gilbo envelope for PHX. 41
2.16 Internal, exiting, entering aggregate routes and Gilbo envelope with LAX as

reference airport. 44

3.1 Graphical representation of the airborne rerouting design process. 47
3.2 Aggregate route from LAX to DEN in spherical coordinates and in the Lam-

bert conformal conic projection coordinates. 51
3.3 Altitude profile for the aggregate route shown in Fig. 3.2. 52
3.4 Set of feasible directions from a node of the original aggregate route. 55

v

3.5 Geometry of the search area, and additional nodes that define the augmented
graph. The two conic constraints at cin and cfin can be identified. 56

3.6 Position-reachable nodes for a given node in the search area. 58
3.7 Example of two sequences of nodes, one that is not heading-reachable and one

that is heading-reachable. 59
3.8 Example of CWAM polygons for the three deviation thresholds 60, 70, 80%. 60
3.9 Mode of the flight level for the historical dataset of flights described in Chap. 2. 62
3.10 Original CWAM polygons and convex hull approximation. 62
3.11 Flowchart describing how the airborne rerouting design problem is addressed. 68
3.12 Temporal evolution of the airborne rerouting solution computed. 74

4.1 Example of network component with two aggregate routes. 78
4.2 Example of network component controlled with ground holding and pre-

departure rerouting. 83
4.3 Example of network component controlled with ground holding, pre-departure

rerouting and airborne rerouting. 85

5.1 Example of network component used as reference to describe control constraints. 93
5.2 Runway diagram for LAX. 102
5.3 Gilbo envelope for LAX. 103
5.4 Departures (07/01/2014) and arrivals (07/03/2014) per time-step (∆t = 5min)

for LAX. 104
5.5 Aggregate route (zoomed) with nodes (circles) and associated cells from LAX

to DEN. 113
5.6 Two recorded flight trajectories from LAX to SFO. 114
5.7 Examples of intersection between cells that is not labeled (left) and is labeled

(right) as critical. 117

6.1 Planning domain in Test 1. 126
6.2 LAS region of planning domain and ground tracks for trajectory data used to

build the ARM in Test 1. 128
6.3 Resulting aggregate routes in LAS region in Test 1. 129
6.4 Comparison between the ARM and FACET simulations in terms of average

sector counts in Test 1. 129
6.5 Comparing aircraft count in sector ZLA26 for the ARM simulation of the

scheduled flight plans and for the optimally planned flow in Test 1. 130
6.6 Aircraft count in ZLA26 using the ARM without and with optimization in

Test 1. 131
6.7 Planning domain, airports, and aggregate routes in Test 2. 134
6.8 Scheduled and optimized departures from BUR, LAX, LGB, SNA, and VNY

to LAS in Test 2. 136
6.9 Sparsity of matrix An in Test 3. 138
6.10 Initial state vector assignment example in Test 3. Airborne aircraft (stars)

are assigned to the closest node available (squares). 140
6.11 CWAM polygons for different time instances used in Test 3. 142

vi

6.12 Example of airborne rerouting path that avoids a convective weather front in
Test 3. 143

6.13 Sparsity of the inequality matrix in Test 3. 145
6.14 Comparison of scheduled and optimized departures (per time-step) for LAX

in Test 3. 146
6.15 Comparison of scheduled and optimized departures (cumulative) for LAX in

Test 3. 147
6.16 Gilbo envelope for LAS, and scheduled and optimized departures/arrivals for

the first hour in Test 3. 148
6.17 ZDV40 sector occupancy in Test 3. 149

vii

LIST OF TABLES

Page

1.1 Hierarchical structure of ATM. 1

2.1 Comparison between flight tracks before the outlier detection (IFT), after the
outlier detection (FT), and the resulting number of aggregate routes (AR) for
each airport within the planning domain. 45

3.1 Overall cost (e/min) for the three delay types TDWONE, TDWNE, SD,
divided into a ground and airborne component. (Data from [31]). 66

3.2 Evolution of the path cost (without the heuristic component h(u)) of the
example presented, for different departure times. 72

6.1 All trajectories considered in the 4-hour timespan divided by airport and route
category, and the final number of routes for the four different route categories
in Test 1. 128

6.2 Key strategic planning quantities in Test 1 131
6.3 Numbers of trajectories and aggregate routes for each origin airport in Test 2. 133
6.4 Key strategic planning quantities in Test 2. 134
6.5 Scheduled infeasible departures and revised departures from the strategic

planner in Test 2. 135
6.6 Number of routes Nr, number of nodes Nn, and number of controls Nc for

each network component in Test 3. 137
6.7 Elements of X0n and bn for the different network components in Test 3. . . . 141
6.8 Constraints and optimization variables in Test 3. 144
6.9 Key strategic planning quantities in Test 3. 144
6.10 Computational time for the different steps required to solve Test 3. 146
6.11 Scheduled departures, optimized departures, and average delay in Test 3. . . 148

viii

ACKNOWLEDGMENTS

Thank you Professor Mease for your patience during these years. Due to our lack of expertise
in Air Traffic Management, the learning curve has been very steep. As a consequence, you
tried to focus on a more general research aspect, i.e., the ability to always find the “why” of
research. This is something I still need to improve, but I really appreciated your academic
rigor and efforts to make me a better researcher.
Thanks to my committee members Professor Tryphon Georgiou and Professor Solmaz Kia,
for taking the time to go through my work and provide me with useful feedbacks.
Thank you to Lluis Soler Segura, who started the project and has been a good office mate
and fierce opponent when playing racquetball. Thanks to Adrià Segarra Torné and Arnau
Franćı Rodon, who worked on different parts of this work with me. The quality of the work
would have been worse without your ideas. The biggest thank you goes to Eric Trumbauer,
my unofficial advisor and a very funny labmate. Also, thanks to all the labmates who were
not directly involved in this work, for creating a fun working environment.
Thank you to University Affiliated Research Center for partially supporting this work under
Prime Contract Number NAS2-03144 awarded to the University of California, Santa Cruz,
University Affiliated Research Center by NASA. A big thank to all the people there, for
making me feel at home during my internships at NASA Ames. Esther, Angela and Debbie,
thank you for being such nice ladies. Thank you to everybody in the Aviation Systems
Division at NASA Ames for being an incredible source of expertise. In particular, thank you
Heather and Tony for being awesome mentors and such easygoing people as well. I hope our
paths will cross again in the future.
Thank you to all my friends from Società Sportiva Calcio San Morosini. You made me re-
discover the passion for played football (I never lost the passion for watched football).
Thank you to all my international friends from UCI. The friends from the Intramural teams,
for all the fun games we played together. Elisa’s labmates, who adopted me as a lab member.
I enjoyed our basketball games, even if we started playing right before I left. A special thank
to Omid for being a true friend and politely crashing our wedding.
Thank you to all my Italian friends from UCI. Marco, for introducing me to the life within
UCI. Michele, for being an amazing housemate with some issues with the toilet brush. Minno,
for being the most proactive and adventurous among us. Biasio, for living the American
dream like nobody else. Paolo, for being the cool office mate Marco has never been able to
be (judgement based only on the time spent in the office!). Enrico, for being my best friend
here, and for all the tough times we have been through together.
Thank you Anto for being an awesome friend since we were fourteen, and for visiting us in
the United States more often than anybody else.
Thank you to Caterina, Nino, Anna, Mauri, and the latest member of the family, Alice, for
being the best second family I could possibly ask for. For the same reason, thank you to the
Sicilian branch of the family as well.
Thank you mom, dad and nonna Franca for being constantly overconcerned although my
teenage years are way over, but for always being there for me when needed.
Thank you Elisa for having been my sweetheart and best friend all these years. We will keep
getting better together as time goes by, like a good red wine.

ix

CURRICULUM VITAE

Alessandro Bombelli

EDUCATION

Doctor of Philosophy in Aerospace Engineering 2017
University of California Irvine Irvine, CA

Master of Science in Space Engineering 2012
Polytechnic University of Turin Turin, Italy

Master of Science in Space Engineering 2012
Polytechnic University of Milan Milan, Italy

Bachelor of Science in Aerospace Engineering 2009
Polytechnic University of Milan Milan, Italy

RESEARCH EXPERIENCE

Graduate Research Assistant 2012–2017
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2013–2017
University of California, Irvine Irvine, California

x

REFEREED JOURNAL PUBLICATIONS

Strategic Air Traffic Planning with Fréchet Distance
Aggregation and Rerouting

2017

Journal of Guidance, Control, and Dynamics

REFEREED CONFERENCE PUBLICATIONS

Analysis of Convective Weather Impact on Pre-
Departure Routing of Flights from Fort Worth Center
to New York Center

2017

AIAA AVIATION Conference

Automated Route Clustering for Air Traffic Modeling 2017
AIAA SCITECH Conference

Strategic Air Traffic Planning with Fréchet Distance
Aggregation and Rerouting

2015

AIAA AVIATION Conference

Debris Removal Mechanism Based on Tethered Nets 2012
International Symposium on Artificial Intelligence, Robotics and Automation in Space
(iSAIRAS)

Optimal Design of a Net-Shaped Space Debris Removal
System

2012

5th International Conference on Astrodynamics Tools and Techniques (ICATT)

xi

ABSTRACT OF THE DISSERTATION

Strategic Air Traffic Planning Using Eulerian Route Based Modeling and Optimization

By

Alessandro Bombelli

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Irvine, 2017

Professor Kenneth D. Mease, Chair

Due to a soaring air travel growth in the last decades, air traffic management has become

increasingly challenging. As a consequence, planning tools are being devised to help hu-

man decision-makers achieve a better management of air traffic. Planning tools are divided

into two categories, strategic and tactical. Strategic planning generally addresses a larger

planning domain and is performed days to hours in advance. Tactical planning is more loca-

lized and is performed hours to minutes in advance. An aggregate route model for strategic

air traffic flow management is presented. It is an Eulerian model, describing the flow be-

tween cells of unidirectional point-to-point routes. Aggregate routes are created from flight

trajectory data based on similarity measures. Spatial similarity is determined using the

Fréchet distance. The aggregate routes approximate actual well-traveled traffic patterns.

By specifying the model resolution, an appropriate balance between model accuracy and

model dimension can be achieved. For a particular planning horizon, during which weather

is expected to restrict the flow, a procedure for designing airborne reroutes and augmenting

the traffic flow model is developed. The dynamics of the traffic flow on the resulting net-

work take the form of a discrete-time, linear time-invariant system. The traffic flow controls

are ground holding, pre-departure rerouting and airborne rerouting. Strategic planning -

determining how the controls should be used to modify the future traffic flow when local

capacity violations are anticipated - is posed as an integer programming problem of mini-

xii

mizing a weighted sum of flight delays subject to control and capacity constraints. Several

tests indicate the effectiveness of the modeling and strategic planning approach. In the final,

most challenging, test, strategic planning is demonstrated for the six western-most Centers

of the 22-Center national airspace. The planning time horizon is four hours long, and there

is weather predicted that causes significant delays to the scheduled flights. Airborne reroute

options are computed and added to the route model, and it is shown that the predicted de-

lays can be significantly reduced. The test results also indicate the computational feasibility

of the approach for a planning problem of this size.

xiii

Chapter 1

Introduction

With the growing number of aircraft in the National Airspace System (NAS), Air Traffic

Management (ATM) becomes increasingly challenging. Research over the past decade and

a half has been directed at devising support tools to assist human decision-makers. ATM

is typically separated hierarchically into strategic planning of traffic flow in the NAS with

a time horizon of 2-8 hours, and tactical control which is more local in both space and

time. There is also a third lower control authority, i.e., aircraft. The hierarchical structure

is described in Table 1.1, with a focus on the different decision makers, the spatial domain,

the time horizon and control variables of each layer.

Table 1.1: Hierarchical structure of ATM.

ATM Hierarchy Decision Maker Spatial Domain Time Horizon Control Variables

Strategic Committee: FAA, ATCs, Airlines NAS 2-8 h ahead departure schedule/routes; airborne reroutes

Tactical ATCs Sectors 1 h ahead holding patterns, speed, reroutes

Aircraft Pilot Local airspace minutes maneuvers

The role of strategic planning is to anticipate airspace demand exceeding the capacity of

airports and sectors of the NAS, and determine how the air traffic flow should be adjusted

nationally or regionally to mitigate the situation [8]. Two fundamentally distinct modeling

1

Figure 1.1: Lagrangian and Eulerian approach to track aircraft (particles).

approaches derived from fluid mechanics have been pursued for strategic Traffic Flow Mana-

gement (TFM): (i) the Lagrangian approach of tracking each aircraft (particle) in the flow

and (ii) the Eulerian approach of tracking the distribution of aircraft over spatially fixed

cells in the airspace. Figure 1.1 depicts how the two different approaches keep track of the

temporal spatial evolution of particles (aircraft in the ATM context).

In [8, 9], a Lagrangian model is presented that optimizes the traffic flow of a set of flights

in the NAS. The problem is formulated as a 0-1 Integer Programming (IP) problem, where

decision variables determine the sequence of sectors a flight transverses from origin to de-

stination. Sectors are local units that divide the NAS, where each sector is controlled by

an Air Traffic Controller (ATC) and can accommodate a limited amount of aircraft at the

same time. The objective of the Traffic Flow Management Problem (TFMP) is to decide

how long each flight is going to be held on the ground and in the air in order to minimize

the total delay cost. Capacity constraints are imposed on departures from and arrivals to

airports [34, 80], and on sector capacity. Since each flight is assigned a sequence of sectors

that are crossed from origin to destination, the granularity of the problem is directly con-

nected to the size of the different sectors. If the number of aircraft within each sector is less

than the upper bound, it is assumed that ATCs will be able to handle the air traffic flow.

2

Each flight is not characterized by a flight plan, but by a sequence of sectors, which might

be a too coarse approximation even in a strategic planning framework.

In [84], another Lagrangian model is presented that addresses the air traffic planning problem

from a graph-oriented perspective. In the graph G = (N , E), the set of nodes N is a set

of waypoints (latitude-longitude-altitude triplets) in the NAS, while the set of edges E is

a set of directed airways connecting waypoints. The graph-oriented framework is chosen

to address one of the issues identified in [8, 60, 80]. Those models only determine ground

delays or reroutes expresses as different sequences of sectors, rather than designing the entire

flight path. Modifications to flight plans to better utilize airspace resources are not explored

since the granularity of these models is bounded to the size of sectors, and does not account

for actual flight plans. In [84], a decentralized problem is solved that is based on a priority

queue where all the flights of interest are stored. Authors suggest a First-Come, First-Served

policy. Once the path planning problem for the current flight is solved, the sector capacity

of sectors occupied by the aircraft is decreased by one unit. If, for a certain time instance,

a sector reaches full capacity, that sector becomes a no-fly zone for all the remaining flights

in the queue for that time instance.

References [8, 9, 60, 80, 84] all identify complexity and scalability as issues. An increase in

the expected air traffic flow might turn the TFMP from tractable to intractable. In [9], a

very accurate analysis of the size of the formulation is provided. In particular, it is stated

that if the number of flights in the formulation doubles, the number of variables doubles and

the number of constraints nearly doubles.

Reduced model complexity and scalability has been one of the main drivers for the develop-

ment of Eulerian models, which focus on the computation of a graph-oriented structure that

defines the dynamics of aircraft. In Lagrangian models, each aircraft is tracked singularly.

In Eulerian models, the concept of single aircraft is lost, and the state of the model is the

number of aircraft in each node of the graph-oriented structure.

3

The Eulerian approach for traffic control was inspired by the Lighthill-Whitham-Richards

models [59] and the cell-transmission model [23] for ground transportation. In this work,

we develop an Eulerian model for strategic TFM called the Aggregate Route Model (ARM).

A challenge for Eulerian modeling is to determine the minimum level of resolution, i.e., the

size and location of the units of discretization, that allows effective strategic planning.

Eulerian modeling of air traffic began with the work in [56, 57, 70]. In [70], 23 air traffic

centers (one for international flights) are the basic units of discretization, resulting in a Linear

Time-Varying (LTV) flow model with 23 state variables. In [57], the airspace is covered with

a grid of 2D cells, each cell traversed by 8 paths; this results in a LTV model where the state

dimension is 8 times the number of cells. Rather than cover a 3D or even 2D airspace with

cells, several previously developed models [16, 53, 72] and the model developed in this work

account for aircraft in segments of one-way aggregate routes. Since aircraft follow similar

paths for portions of their flight, these paths may be aggregated together into a reduced

number of routes. Modeling flow along aggregate routes limits the airspace that has to be

considered and can reduce the model dimension without sacrificing accuracy.

The route aggregation method used in this work is distinctive relative to previous one-way

route type models [53, 72]. In [72], for each air sector modeled, a straight line aggregate link is

defined for common entry/exit paths connecting neighboring sectors. Thus, potential distinct

patterns from the same upstream sector to the same downstream sector cannot be detected

inside the current sector. In [53], both k-means and Density-Based Spatial Clustering of

Applications with Noise (DBSCAN) [52] algorithms are used to determine aggregate routes,

but a constant speed is assumed everywhere. Here, we use the Fréchet distance [4, 5, 18]

as the spatial similarity measure for aggregating routes. It is a distance that is particularly

appropriate when comparing flight trajectories. (i) It does not depend on the overall length

of the trajectories. This is in contrast to additive metrics that make it difficult to compare

trajectories with considerably different lengths. (ii) It does not allow backtracking, which is

4

a natural requirement when considering aircraft trajectories. To the best of our knowledge,

the Fréchet distance has been applied in the literature to planar cases [4, 5, 18], or convex

polyhedra [51] (i.e., intersections of planes). We adapt the Fréchet distance to compare great

circle arc sequences on a spherical surface; for our application these paths are projections of

the actual flight tracks.

We also have a strategy to guarantee trajectories belonging to the same cluster have similar

dynamical properties, and use the average ground speed as the driver. For our graph-oriented

approximation of the air traffic flow, we need to detect distinct spatial patterns, but also

distinct dynamical patterns (if any) within the same spatial pattern. Grouping together

trajectories that are spatially similar, but dynamically dissimilar would create an aggregate

route that is not representative of the modeled air traffic flow.

To construct an aggregate route model, we first identify well-traveled routes by clustering

historical flight data in a planning domain of interest. The planning domain is a connected

subset of the NAS. For each cluster, we then compute an aggregate route where aircraft

can move. This modeling strategy is primarily Eulerian, but captures some Lagrangian

features. In [72] the modeling accounts for air traffic in high sectors using aggregate routes

with constant speed inside each sector. In [53] the aggregate routes extend from origin to

destination with constant speed throughout. Although our aggregate routes are divided

into segments (cells) with constant transit time, the segment lengths can vary and thus the

speed in each segment can be different. Additionally, there may be multiple segments in a

sector. We also consider flight paths from take off to landing, which allows us to account

directly for ground holding and pre-departure rerouting as the strategic air traffic controls

that are naturally available once the Eulerian model is built, another distinction relative to

the modeling in [16, 53, 72]. Our extensions to the Eulerian approach have counterparts in

the Lagrangian model in [8]. Relative to the Lagrangian approach in [8], our approach has

the potential for resolving the flow more accurately with a lower order model.

5

The identification of well-traveled routes is the first part of a two-step process. The goal of

the first step is to define the basic structure of the network flow model, which characterizes

the planning domain regardless of the specific weather scenario. In the second part, when

bad weather is reducing capacity in the planning domain, additional routes are computed

that are specifically designed for the weather situation. Other Lagrangian [84] and Eulerian

models [53] also describe techniques to design reroutes when bad weather is affecting the

planning domain. At a more tactical level, research has been done [7, 43, 64] that addresses

the issue of designing efficient reroutes avoiding obstacles that might impend the planned

route. References [7, 43] and [74, 75, 76] emphasize the operational feasibility of reroutes

from different perspectives. In [7, 43], operational feasibility is addressed imposing dynamical

constraints on the turning radius of a rerouting maneuver. In [74, 75, 76], operational

feasibility is assessed by determining how often a certain connection between two waypoints

has been historically flown. The nature of our model makes operational feasibility, as stated

in [7, 43], a more natural fit, keeping in mind the strategic and thus coarser level of precision

we can guarantee.

In the second step of the two-step process, we (i) detect if some of the scheduled departures

are expected to experience significant ground delays because of severe weather, and (ii) design

airborne reroutes that avoid the weather fronts. These reroutes are needed for strategic

planning. The other alternative is to increase the dataset with well-traveled routes by adding

all possible weather situations, or possibly finding particular days that had similar weather

and building an ARM for the particular situation. The first option would increase the model

dimension more than what we are doing. The way we do it is more tailored to the specific

situation, including departure schedules.

Using the Eulerian model, the strategic planning problem is formulated as a constrained

optimization problem. A weighted sum of the flight delays is minimized subject to airport

and sector capacity constraints. The air traffic flow dynamics are discrete-time and linear

6

time-invariant, and the optimization problem is posed as an IP problem. The cost function

has the following features: the delays associated with the ground holding, pre-departure

rerouting and airborne rerouting control actions are included; the cost is zero if and only

if the scheduled flight plan does not violate capacity constraints; and the weighting factors

favor control actions later in the planning horizon when possible. The latter feature limits

early actions based on uncertain forecasts and buys time for replanning based on updated

information. Given the Eulerian framework of the model, the allocation of the flow directives

from the strategic planning to specific aircraft is left to other decision makers.

The constrained optimization problem is integer, since we controls are applied to aircraft and

not portions of aircraft. The solution of an IP problem is computationally more demanding

than the solution of the associated relaxed Linear Programming (LP) problem. Under some

specific circumstances, an IP problem can be solved with a LP solver, and the solution

is guaranteed to be integer. In particular, if the inequality matrix of the LP problem is

unimodular [81] and the simplex method is used, the solution is guaranteed to be integer.

Reference [9] shows that, although the inequality matrix is not guaranteed to be totally

unimodular, solutions obtained by solving LP relaxations of the original IP problem are

integral in most of the cases. In this work, the structure of the inequality matrix is such that

unimodularity cannot be guaranteed. We will demonstrate that solving the problem is still

tractable with IP techniques.

The work is organized as follows. Chapter 2 describes how a historical dataset of flown

trajectories is processed and translated into an Eulerian model of the air traffic flow. Chap-

ter 3 treats the airborne rerouting problem and shows how it fits in with the Eulerian model

previously introduced. Chapter 4 describes the dynamics of the uncontrolled model, intro-

duces controls and shows how they modify the dynamics, while Chap. 5 describes how the

IP problem is posed and solved. Chapter 6 shows how the ARM is tested on scenarios of

different sizes and complexity. Conclusions are stated in Chap. 7.

7

Chapter 2

Aggregate Routes via Clustering

To determine the aggregate routes that will comprise the base traffic flow model, we cluster

trajectory data for clear weather days to identify the well-traveled routes. This chapter

presents the work reported in [12, 13, 14] and extensions of that work. In the next chapter, we

describe how additional routes are added to accommodate convective weather for a particular

day.

For clear weather days, flight trajectories are generally characterized by smooth and well-

defined patterns. Tactical maneuvers such as holding patters and path stretches, can still

characterize a clear weather day, as a consequence of some operational constraints ATCs

must satisfy. It is important to have a systematic method of identifying and discarding

trajectories that are unusual in this sense; for this purpose an outlier detection approach is

presented.

Clustering techniques can be found in Refs. [12, 19, 53, 58, 63, 72]. In [72], routes are initially

divided into O-D (origin-destination) pairs. Then, routes that share the same sequence of

sectors are clustered. In each sector, portions of routes are approximated with a segment

connecting the two centroids associated with the entry and exit points from the specific

8

sector. This approach lacks flexibility, especially if airspace redesign [82] is taken into ac-

count. As [58] points out, air traffic patterns can be analyzed to suggest modifications of the

current sector partitioning scheme. A clustering algorithm that does not constrain patterns

according to sector sequences is invariant with respect to a re-sectorization.

In [53], flight tracks are clustered using Principal Component Analysis and DBSCAN [52].

The clustering technique adopted does not characterize routes according to speed. In fact,

in the resulting graph all aircraft move at a uniform constant speed. This feature might fail

to catch dynamical differences between routes.

In [58], trajectories are initially resampled to display the same number of features (i.e.,

latitude-longitude pairs), and then clustered using DBSCAN [52]. The aim of the work is

the identification of spatial patterns to assess airspace occupancy, and thus the inability to

detect speed properties due to the resampling is not a major issue. In a context where also

speed properties should be considered, this approach would not be applicable.

In [63], a weighted sum of the pairwise distances between flight tracks (intended as latitude-

longitude-altitude triplets) of two different flight routes is used as measure of dissimilarity.

The weight is the inverse of the number of the accumulated flight tracks, in order not to

penalize longer routes. Since the two routes can have different lengths, it is suggested to

begin with the last track, and then to go backwards to the first track of the shorter of the two

routes. Although this method seems applicable to scenarios where trajectories are similar in

length, it does not seem applicable to more general scenarios.

We address the limitations in the methods in [53, 58, 63, 72] to achieve a clustering algorithm

that (i) detects air traffic flow patterns without using the domain sectorization as input, (ii)

efficiently computes dissimilarity between routes with a different length, and (iii) provides a

physical interpretation of the clustering parameters. We use the Fréchet distance [4, 5, 18,

51] between two trajectories to quantify their spatial similarity and hierarchical clustering

9

to select the appropriate number of clusters. In comparison to the approach in [13], we

add the following features: (i) coarse clustering to avoid the unnecessary computation of

distances between tracks, (ii) flight track undersampling to reduce the computational time

of each distance computation without loss in accuracy, and (iii) outlier detection to remove

trajectories that are not representative of well-traveled routes. Additionally, we provide

bounds on the inflow/outflow that each airport can handle with a geometric data-driven

interpretation of the departure and arrival capacity inspired by [34].

The combination of the distance metric and the clustering method, the outlier detection

step, and the automation in the choice of clusters makes the routine applicable to scenarios

of different sizes and type, with little manual tuning.

The chapter is organized as follows. Section. 2.1 defines the general framework, describes

the dataset we process to cluster flight tracks and the different flight categories we consider,

and states some modeling assumptions. Section 2.2 introduces the concept of coarse clusters,

and describes how they are computed according to the specific flight category. Section 2.3

describes how outliers are identified and labeled. Section 2.4 highlights how fine clustering

determines the optimal number of fine clusters for each coarse cluster, while Sec. 2.5 shows

how a fine cluster of routes is translated into an aggregate route representative of the cluster.

Section 2.6 describes how departure and arrival capacity is estimated for each airport of

interest. Section 2.7 shows an application example.

2.1 General Framework, Historical Dataset and Flight

Categories for Route Clustering

The automated clustering algorithm we present is summarized by the block diagram shown

in Fig. 2.1. The input is a historical dataset of recorded aircraft trajectories inside the NAS.

10

INPUT:
Trajectory Dataset PROCESS: Automated

Route Clustering

 9 17 25 26 1 20 28 5 6 19 21 8 24 15 27 11 18 2 4 13 22 10 16 23 3 7 29 30 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Point ID

P
ru

n
in

g
 D

is
ta

n
c

e

0 0.5 1
0

0.5

1

OUTPUT: Aggre-
gate Route Model

Figure 2.1: Route clustering as a process.

The dataset is processed with the automated route clustering routine, and the output is a

set of aggregate routes, i.e., a graph-oriented approximation of the original dataset. In this

section, the input is described. The core of the chapter, i.e., Sec. 2.2, 2.3, 2.4 shows how the

input is processed. Section 2.5 focuses on the output instead.

Our historical dataset is a set of Future ATM Concept Evaluation Tool (FACET) Track

(TRX) files [10]. For each day (from 00:00 to 23:59 Coordinated Universal Time (UTC)), a

TRX file contains all information of aircraft flying inside the NAS, with a temporal resolution

of 1 minute. The TRX file is divided into 1,440 blocks, one for every minute in a day. Each

block starts with a time stamp, in unix time1, and then contains information of all aircraft

recorded inside the NAS at that time. For each aircraft, information is stored as follows

TRACK SCX135 B738 350313 1143050 249 36 283 ZLA ZLA06 160

FP_ROUTE KHRL./.DRK103025..KIFP

where the first line contains the aircraft identifier, the aircraft type, latitude, longitude,

ground speed, heading, altitude, Center, sector, and flight level2. The second line is the filed

flight plan.

1https://en.wikipedia.org/wiki/Unix_time
2https://en.wikipedia.org/wiki/Flight_level

11

https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Flight_level

The dataset is first rearranged into a structure that stores the full temporal history of each

flight. We address strategic planning for a portion of the NAS, referred to as the planning

domain D, and for a time period referred to as the planning horizon. The 3-dimensional

planning domain D is a subset of the NAS and is defined as follows. Let A be a connected

set on the Earth’s surface which may be parameterized by latitude and longitude. A will

be taken as the projection of a Center or a union of neighboring Centers onto the Earth’s

surface, i.e., their footprint. A natural selection could be the union of some of the 20 Centers

forming the continental portion of the NAS. The planning domain D is the airspace above

the set A from ground level up to some maximum altitude. Inside D, we only consider

airports belonging to the Aviation System Performance Metrics (ASPM)3 ASPM-77 list.

This is a list containing the airports that account for the majority of the overall air traffic

frow.

Flight trajectories are then divided into subsets, according to the flight category. We define

four flight categories. Refer to Fig. 2.2 for examples.

• Internal flights: Flights between two airports, with the airports and the entire flight

path in the domain. Examples are flight F3 from origin airport A1 to destination

airport A2 and F4 from A2 to A3, but not F6 because its flight path leaves and re-

enters the domain.

• Exiting flights: Flights with origin airport in the domain, destination airport outside

the domain, and no re-entry into the domain after the first exit. An example is flight

F2 from airport A1 to domain boundary point B2 to destination airport A6. From the

planning domain perspective B2 is considered the destination for F2.

• Entering flights: Flights with destination airport in the domain and origin airport

outside the domain. An example is flight F1 from origin airport A7 to boundary point

3http://aspmhelp.faa.gov/index.php/ASPM_Airports

12

http://aspmhelp.faa.gov/index.php/ASPM_Airports

B1 to destination airport A1. From the planning domain perspective, B1 is considered

the origin for F1. If a flight with destination and origin airports as stated enters the

domain more than once, the entry flight is defined from the last entry point and the

earlier domain segments are discarded.

• Overflights: Flight paths crossing the domain with origin and destination airports

outside the domain. An example is F5 with origin airport A10 and destination airport

A11; from the planning domain perspective the origin is B6 and the destination is B7.

If a flight with origin and destination outside the domain crosses the domain multiple

times, each interior segment is accounted for as an overflight.

Figure 2.2: Schematic of planning domain composed of sectors and examples of flights from
the four categories described in the text.

We also assume that we have a sufficient number of complete trajectories that partial tra-

jectories can be discarded. A partial trajectory is a trajectory in any of the four categories

that does not extend, within D, to its origin or destination points. For example, an internal

flight is partial if either it was already airborne at the start of the dataset timespan or did

not reach its destination by the end of the dataset timespan. Note that for internal flights,

13

origin and destination points are the origin and destination airports, respectively. For the

other flight categories, the origin and/or the destination point is identified as the boundary

crossing point on the boundary of D, i.e., for each subset, trajectory points outside D are

discarded.

We also discard flight trajectories with average cruise speeds less than 400 kts. This threshold

is chosen to filter out short-haul regional airliners whose cruise speeds are significantly smaller

than the cruise speeds of commercial airliners (such as the Boeing B737, the Airbus A320

and the McDonnell Douglas MD-80), and that minimally contribute to the overall air traffic

flow.

For each airport in the planning domain, there are potentially three subsets of the trajectory

dataset corresponding respectively to internal flights for which the airport is the origin,

exiting flights for which the airport is the origin, and entering flights for which the airport is

the destination. There is one additional subset for overflights. The overall number of subsets

is at most 3na + 1, where na is the number of airports inside D.

Note that the same flight trajectory might be categorized differently with a different planning

domain selection, i.e., the distribution of flights into these subsets is dependent on the size

of the planning domain. For example, some overflights for a smaller domain may become

internal, exiting, or entering if the planning domain is expanded.

2.2 Coarse Clustering

The processing of the trajectory dataset to produce the aggregate route model consists of

four main steps that are shown in a flowchart in Fig. 2.3. The clustering phase consists of

three sequential steps: coarse clustering, outlier identification, and fine clustering. Then,

the fourth step translates each fine cluster into an aggregate route. In this section, coarse

14

Filtered
Trajectory Dataset

Input

Coarse Clustering Outliers Removal

Compactness TestRoute Aggregation

Fine Clustering

Aggregate
Route Model

Output

Process

N

Y

Figure 2.3: Flowchart describing the route clustering and aggregation process.

clustering will be described. The remaining clustering steps are discussed in Sec. 2.3 and

Sec. 2.4 respectively.

The evaluation of distances between flight tracks (represented as sequences of latitude-

longitude coordinates projected onto a sphere) is the computationally most demanding oper-

ation of the clustering process. The most precise clustering is based on the Fréchet distance

between flight tracks, however computing the Fréchet distance is computationally costly.

By first performing lower resolution (coarse) clustering, we reduce the number of Fréchet

distances that need to be computed.

There are two steps in coarse clustering: (i) for internal flights, there is a coarse cluster

for each O-D pair, while for entering, exiting, and overflights, there are clusters based on

the planning domain boundary crossing points, and (ii) the clusters generated from (i) are

subdivided if there are two or more sufficient distinct ranges of average ground speed.

For internal flights, there is straightforward coarse clustering based on the destination airport.

With na airports in the domain, there are at most na − 1 destination airports and thus the

internal flights for each origin airport are separated into at most na − 1 coarse clusters.

For the other three flight categories, the origin and/or the destination airports are outside

15

the domain, thus an alternative approach is required. In such cases, we assess the spatial

similarity of the boundary crossing points. The coarse clusters for the exiting flights from

each airport are determined by clustering the boundary crossing points of all flights taking

off from the airport and exiting the planning domain. Coarse clustering for entering flights

is the same except that the entry boundary points are clustered for each destination airport.

For overflights, we cluster boundary crossing points associated with entry points first, and

then we cluster boundary crossing points associated with exit points of trajectories belonging

to the same cluster of entry points. When clustering boundary crossing points, two distinct

features are targeted. Clusters (i) should identify groups of boundary crossing points that are

compact (small intracluster distances) and well-separated (high intercluster distances), and

(ii) a cluster (even if compact and well-separated) should not have a maximum intracluster

distance too large with respect to the size of D. An example provided later will better clarify

this concept.

The boundary crossing point clustering process is as follows. Exit/entry points are projected

onto a sphere, and the haversine [79] distance is selected as the distance metric. We select

a sphere with a 35, 000 ft altitude above Earth’s surface, because it is the average cruise

altitude of most aircraft. We use the haversine distance, instead of the Euclidean distance,

to account for the curvature of D and be consistent with the distance metric used in Sec. 2.4.

Agglomerative hierarchical clustering is used to cluster points. In agglomerative hierarchical

clustering, each element is initialized as a single cluster. Then a tree structure called a

dendrogram is built, which links elements as the allowed intracluster distance is increased.

When comparing elements at the lowest level of the dendrogram, the distance between the

points is directly used. To assess the spatial similarity of two clusters, based on the set of

distances between pairs of points, one in each cluster, previous works have used one of three

intercluster distances [33]: complete-linkage, single-linkage, or average linkage. We use the

average-linkage, which is a trade-off between intercluster distance allowed and number of

clusters.

16

Given the same set of elements to be clustered, a different intercluster distance choice would

generally result in a different dendrogram. Once a dendrogram is created, the number of

clusters is obtained by pruning the dendrogram selecting a pruning distance. The pruning

distance is a horizontal line that cuts the dendrogram in as many points as the number of

clusters. For each cut, an isolated portion of the full dendrogram is obtained. All elements

of the set that belong to the isolated portion define the resulting cluster.

An example of a dendrogram for clustering points is shown in Fig. 2.4. Thirty points shown

in the top left corner of Fig. 2.4 are randomly generated inside a unit square in 2D Cartesian

space, and all pairwise Euclidean distances are computed. Then, using average-linkage dis-

tance, the resulting dendrogram is shown in Fig. 2.4. Analyzing Fig. 2.4, pruning distances

of 0.01, 0.5 or 0.8 will result in 30, 4 or 1 cluster respectively.

 9 17 25 26 1 20 28 5 6 19 21 8 24 15 27 11 18 2 4 13 22 10 16 23 3 7 29 30 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Point ID

P
ru

n
in

g
 D

is
ta

n
c

e

0 0.5 1
0

0.5

1

Figure 2.4: Example of a dendrogram applied to a distribution of points, using the Euclidean
distance.

Note that there is always a range of pruning distances that result in the same number of

clusters. As example, considering Fig. 2.4 again, any distance between 0.47 and 0.53 results

in 4 clusters.

We now address the following issues: (i) how we select a range of pruning distances (and,

17

as a consequence, of clusters), and (ii) given a range of clusters, how to choose the “best”

number of clusters Nc.

The range of interest for Nc is defined by setting a lower and upper bound on the pruning

distance. The upper bound sets the lowest number of clusters Nmin
c (since the dendrogram

is cut in fewer points), while the lower bound sets the highest number of clusters Nmax
c . Nc

will be searched within the interval defined by Nmin
c and Nmax

c . The lower bound and upper

bound pruning distances are, respectively, ηcldm and ηcudm. dm is the maximum pairwise

haversine distance of the set of exit/entry points, while ηcl = 0.1 and ηcl = 0.25. This

choice of parameters, for the data processed, has proven effective to (i) identify clusters of

boundary crossing points that are compact and well-separated, and (ii) sub-divide a cluster

of boundary crossing points with an excessive maximum intracluster distance.

To decide the number of clusters Nc, we use majority voting. The three voters are three

performance indices, which are each applied to all the feasible numbers of clusters. In general,

an efficient clustering process guarantees clusters that are compact and well-separated, but

different methods might provide different solutions for the same set of elements. With a

different strategy, our three voters all try to identify the number of clusters Nc that best

guarantees both requirements. How Nc is actually determined will be further clarified after

introducing the three indices.

• Average Silhouette Index [65]: The silhouette value expresses how similar a trajec-

tory is to its own cluster, compared to other clusters. The silhouette value ranges from

-1 to 1, where a high value indicates that the trajectory is well-matched to its own

cluster and poorly matched to neighboring clusters. Averaging the silhouette values of

all trajectories, the average silhouette index is obtained.

• Davies-Bouldin Index [25]: For each cluster, a specific ratio between an intracluster

distance and an intercluster distance (see [25] for details) is computed. Then, the

18

average among the different ratios is computed. An index value close to zero indicates

an efficient clustering process.

• Dunn Index [29]: This index is a ratio between the smallest intercluster distance

among all pairs of clusters and the highest intracluster distance. An index value con-

siderably greater than one indicates an efficient clustering process.

The three performance indices are computed for all the cluster configurations between Nmin
c

and Nmax
c . Then, local maxima of the average silhouette index and the Dunn index, and local

minima of the Davies-Bouldin index are identified. By selecting an odd number of voters, if

at least two indices identify (i.e., vote for) the same number of clusters, that value is selected.

Otherwise, for each index we compute the percentile loss in performance when considering

the optimal number of clusters suggested by both the other indices, and average the two

values. The number of clusters introducing the smallest loss in performance is selected as

Nc.

Coarse clustering is applied to all the exiting flights for the planning domain comprised of the

six western-most Centers of the NAS, for 14 consecutive days spanning from July 1st, 2014

to July 14th, 2014. The outflow from McCarran International airport (LAS) is analyzed.

Figure 3.6(a) shows all the flight tracks considered. In this case, dm = 2856.4 km, thus

the slice of the dendrogram between 285.6 km and 714.1 km is considered. Figure 3.6(b)

shows the dendrogram (for visual clarity, only the region of interest is shown), where the

two bounds are highlighted with dashed lines. Nmin
c is 3 and Nmax

c is 9. Figure 3.6(c) shows

the evolution of the three performance indices as the number of clusters is changed. The

selected number of clusters, indicated by a vertical dashed line, is determined to be 8. This

is a global maximum for the Dunn index and a global minimum for the Davies-Bouldin index

in the region of interest. For the average silhouette value, Nc = 4 was the suggested optimal

number of clusters. Note that, without distance limitations, all indices would identify the

optimal number of clusters to be 2. If Fig. 3.6(a) is analyzed, there are a few trajectories

19

−125 −120 −115 −110 −105 −100

30

35

40

45

50

Longitude [deg]

La
ti
it
u

d
e

 [
d

e
g

]

(a) All flight tracks.

 5 8 10 1 2 6 3 23 16 9 11 12 4 7 13 15 14 19 18 24 25 27 28 17 21 20 29 22 26 30

100

200

300

400

500

600

700

800

Cluster ID

P
ru

n
in

g
 D

is
ta

n
c

e
 [

k
m

]

Lower bound

Upper bound

(b) Dendrogram mapping distances between
boundary crossing points.

2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

P
e

rf
o

rm
a

n
c

e
 in

d
e

x

Average Silhouette

Davies−Bouldin Index

2 3 4 5 6 7 8 9 10
1

2

3

4

5

Number of clusters

P
e

rf
o

rm
a

n
c

e
 in

d
e

x

Dunn Index

(c) Performance indices.

−125 −120 −115 −110 −105 −100

30

35

40

45

50

1

2 3

4

5

6
7

8

Longitude [deg]

La
ti
it
u

d
e

 [
d

e
g

]

(d) Coarse clusters identified.

Figure 2.5: Computation of the best number of coarse clusters for flights departing from
LAS and exiting the planning domain.

headed West, while the majority of the exiting flow is towards East. Thus, from a clustering

perspective, the exit points of the two flows define two clusters that are compact and well-

separated. On the other hand, the maximum intradistance of the denser cluster would

require the computation of distances between tracks that should not be clustered together.

The imposition of the two distance thresholds avoids this undesired effect by splitting the

denser cluster. Figure 3.6(d) shows, in different shades of gray, the 8 clusters.

In the framework of the ARM, we are interested in approximating the aircraft traffic flow dy-

namics with a set of aggregate routes. Each aggregate route should represent a well-traveled

20

route also from a dynamical perspective. In fact, we do not want to aggregate trajectories

that are spatially similar, but that are characterized by significantly different speeds. Thus,

if in the same coarse cluster groups of trajectories with a considerably different ground speed

are present, we treat those groups as different coarse clusters. For each trajectory belonging

to a given coarse cluster, the average ground speed of the cruise phase is computed. The

average speed distribution is then analyzed to assess if the coarse cluster is dynamically

consistent. By dynamically consistent, we mean a coarse cluster where the average ground

speed roughly follows a normal distribution. In this case, the majority of trajectories is char-

acterized by a speed close to the mean µ of the distribution, while trajectories considerably

slower or faster are less frequent (i.e., the standard deviation σ is generally low).

To understand if a coarse cluster is characterized by different dynamical patterns or not,

the gap statistic [77] is used to compute the best number of clusters for the average ground

speed distribution. The gap statistic is used because it is one of the few clustering indices

that is defined for Nc = 1. The gap statistic is computed to determine the number of clusters

that best represents the distribution of the average ground speed. If the output is one, then

the coarse cluster is not further divided. Otherwise, the coarse cluster is split into as many

coarse clusters as the gap statistic suggested.

An example of average ground speed distribution is shown in Fig. 2.6, with the flight tracks

processed shown in the upper right corner. The average ground speed of recorded trajectories

from Los Angeles International airport (LAX) to Seattle-Tacoma International airport (SEA)

is plotted. The gap statistic suggests that the coarse cluster is dynamically consistent.

To have enough flight tracks to assess dynamic consistency of a coarse cluster, we discard

coarse clusters with fewer trajectories than a lower threshold Nmin
traj (in this work, Nmin

traj = 15).

A coarse cluster with less than Nmin
traj trajectories is considered a cluster with a very low-

frequency of flights, and is considered not representative enough of the aircraft traffic flow

inside D. Examples of low-frequency clusters are coarse clusters 5, 6, and 7 in Fig. 3.6(d).

21

420 440 460 480 500
Average cruise speed [kts]

0

5

10

15

20

25

30

35

N
um

be
r o

f t
ra

je
ct

or
ie

s

Average cruise speed distribution: µ=456.0, σ=16.4

−124.28 −117.91
Longitude [deg]

33.29

48.27

La
tit

ud
e

[d
eg

]
Figure 2.6: Average cruise speed for the LAX-SEA coarse cluster.

2.3 Flight Track Undersampling, Fréchet Distance Com-

putation and Outlier Detection

In this section, we present a second strategy to reduce the computational burden of the

algorithm. This time, the goal is to reduce the computational burden of each Fréchet distance

computation.

The clustering algorithm presented is not designed to be a real-time process. The ARM

is computed in advance by processing the historical dataset described in Sec. 2.1, while

online corrections are computed as Chap. 3 will describe. Even if the ARM assembly is an

offline procedure, using a large dataset implies the computation of hundreds of thousands

of distances, and a reduction of the overall computational burden can still be a desirable

achievement. We can use the properties of the Fréchet distance to identify, for each flight

track, a reduced sequence of latitude-longitude pairs that are representative of the trajectory.

The procedure to identify the sequence, which we refer to as flight track undersampling, is

22

described in Sec. 2.3.1.

Then, Sec. 2.3.2 describes how the Fréchet distance between two undersampled tracks is

computed. Once all pairwise distances are computed, in Sec. 2.3.3 we justify the necessity

to have some form of outlier detection and removal [3, 52] in order to improve the accuracy

of clustering processes, as well as to find more representative aggregate routes.

2.3.1 Flight Track Undersampling

For each coarse cluster, spatial similarity between flight tracks must be assessed. Distances

between tracks, rather than between points, need to be computed. For this purpose, we use

the Fréchet distance [4, 5, 18]. In this section, we describe the undersampling process that

is used to reduce the computational cost for the Fréchet distance without a significant loss

in accuracy.

The computational cost to determine each pairwise Fréchet distance increases quadratically

with the number of points of each track [4]. The Ramer-Douglas-Peucker (RDP) algo-

rithm [28, 62] is a means of reducing the number of discrete points representing each track,

referred to as undersampling, without compromising the accuracy of the Fréchet distance.

The accuracy is not compromised because data points that define significant changes in the

heading of the flight track, are the ones also needed for an accurate evaluation of the Fréchet

distance. Given a distance threshold η, the RDP algorithm undersamples portions of tracks

that are quasi-linear with respect to the threshold η, while it preserves original data points

in regions that are not quasi-linear.

In the planar case, the algorithm recursively splits the initial set of points in half. The

splitting point is the point with the maximum Euclidean distance from the line connecting

the endpoints of the segment considered. If all the intermediate points of a segment are

23

within a ±η corridor around the segment, only the endpoints are kept. We adapt this

algorithm to the spherical case, which requires distances between points and great circle

arcs to be computed. We consider latitude-longitude coordinates projected onto a sphere

with a 35, 000 ft altitude above Earth’s surface. We translate flight tracks (where each

latitude-longitude pair is characterized by a different altitude) into ground tracks (where

all latitude-longitude pairs share the same altitude, i.e., they have been projected onto a

sphere).

Let Pc be a latitude-longitude pair, and Pa and Pb the two endpoints of a great circle arc.

We define n̂a, n̂b and n̂c as the versors going from the center of the sphere to points Pa,

Pb and Pc, respectively. Then, we compute n̂g = n̂a × n̂b, that is the versor normal to the

plane containing the great circle arc, and n̂f = n̂c × n̂g. n̂f is the versor normal to a plane

that passes through Pc and that is perpendicular to the plane containing the great circle

arc. This plane cuts the great circle in two points (P1 and −P1). Computing n̂p1 = n̂f × n̂g,

we obtain the versor from the center of the sphere to one of those two points, while −n̂p1

defines the other point. The last step is to compute the haversine distances η1=h(Pc,P1)

and η2=h(Pc,−P1), where with h(·,·) we mean the haversine distance between two points

on a sphere. The smallest value between η1 and η2 is selected. Note that when the two

distances η1 and η2 are equivalent, the distance between the point and the great circle arc is

π/2 radians, which is the maximum distance that can be achieved on the sphere between a

point and a great circle arc. Figure 2.7 shows the geometrical interpretation of the problem.

In this case η1 is the distance between Pc and the great circle arc from Pa to Pb.

We use η = 7.8 · 10−5 rad, which corresponds to 500 m on a sphere with the radius defined

above. Figure 2.8 shows an example of the procedure applied to two ground tracks from

LAX to Phoenix Sky Harbor International airport (PHX). The number of data points for

track P is reduced from 61 to 23, while the number of data points for track Q is reduced

from 64 to 32. The Fréchet distance, computed using the routine described in Sec. 2.3.2, is

24

Figure 2.7: Graphical interpretation of the distance η1 between a latitude-longitude pair and
a great circle arc.

84.22 km and 84.35 km when using the original and the undersampled tracks, respectively.

The percentile error is 0.15%, with the computational time dropping from 4.2 s to 0.5 s.

2.3.2 Fréchet Distance Computation

Reference [4] describes into details how the Fréchet distance F between two polygonal curves

(i.e., piecewise-linear planar curves) is computed. A first polygonal curve P with p edges

(and p + 1 data points), and a second polygonal curve Q with q edges (and q + 1 data

points) are given. Then, a matrix with q rows of p horizontally stacked unitary squares is

created. The unitary square in position (i,j) maps distances (generally Euclidean in planar

applications) between the i-th normalized edge of Q and the j-th normalized edge of P .

Given a candidate distance Fε, for each unitary square the locus of points whose distance

is less or equal to Fε is computed. This locus is called free space [4], and is convex. The

process is repeated for all unitary squares, and the free space diagram characterizing the two

25

−118 −117 −116 −115 −114 −113 −112
31

31.5

32

32.5

33

33.5

34

34.5

35

35.5

36

36.5

Longitude [deg]

La
ti
it
u

d
e

 [
d

e
g

]

Flight track P

Flight track Q

(a) Initial flight tracks.

−118 −117 −116 −115 −114 −113 −112
31

31.5

32

32.5

33

33.5

34

34.5

35

35.5

36

36.5

Longitude [deg]

La
ti
it
u

d
e

 [
d

e
g

]

Flight track P (undersampled)

Flight track Q (undersampled)

(b) Undersampled flight tracks.

Figure 2.8: Two flight tracks from LAX to PHX, before and after undersampling.

polygonal curves is obtained. Note that, while each free space is convex, the union of all free

spaces is not necessarily convex. In the free space diagram, the computation of F is subject

to the solution of a decision process. A monotone path from the upper left corner (first data

point of both curves) to the lower right corner (last data point of both curves) is searched,

since curves need to be entirely spanned [4]. Due to a monotonicity requirement that arises

from a backtracking constraint, we are only interested in the intersections of each free space

with the four sides of the associated unitary square. They are defined LFi,j, L
F
i,j+1, BF

i,j, B
F
i+1,j

in [4]. The free space diagram can be interpreted as a directed graph. A different candidate

distance Fε will result in a different set of LFi,j, L
F
i,j+1, BF

i,j, B
F
i+1,j (1 ≤ i ≤ q, 1 ≤ j ≤ p), and

in different adjacency properties of the directed graph. The smallest distance such that a

monotone path compatible with these adjacency properties is found, is the Fréchet distance

F . Figure 2.9 shows an example of free space diagram with p = 33 and q = 18.

In most applications, the Fréchet distance is applied to polygonal curves. LFi,j, L
F
i,j+1, BF

i,j,

BF
i+1,j are computed as intersections of circles with lines, i.e., as solutions of a quadratic

equation. For the purpose of calculating the Fréchet distance in our application, flight track

points in a 3D position space are projected onto a sphere at a fixed altitude to define a ground

track; for each track, consecutive projected points are connected by a great circle arc to obtain

26

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Polygonal curve P

P
o

ly
g

o
n

a
l c

u
rv

e
 Q

Figure 2.9: Example of a free space diagram. A monotone path from the upper left corner
to the lower right corner within the gray region is identifiable.

a continuous curve. The different framework implies a different approach in the computation

of LFi,j, L
F
i,j+1, BF

i,j, B
F
i+1,j. Polygonal curves in the Cartesian formulation become great circle

arc sequences. Likewise, the Euclidean distance is replaced with the haversine distance. The

solution of the decision process follows the same procedure mentioned above instead.

Each edge of a free space, as the one shown in Fig. 2.9, maps the mutual distance between

a great circle arc of a track, and a latitude-longitude pair of the other track. For each

unitary square, determining the existence and extension of LFi,j, L
F
i,j+1, BF

i,j, B
F
i+1,j involves

two latitude-longitude pairs per track, and one great circle arc per track connecting the

latitude-longitude pairs.

LFi,j, L
F
i,j+1, BF

i,j, B
F
i+1,j are computed detecting a possible intersection between a circle cen-

tered in a latitude-longitude pair of curve P and a great circle arc of curve Q (or vice versa).

The radius of the circle is the candidate distance Fm. Because each square is unitary, each

intersection ranges between 0 and 1 (meaning respectively that the tail/head node of the

great circle arc is part of the intersection).

27

−115 −114.8 −114.6 −114.4 −114.2 −114 −113.8 −113.6

35.7

35.8

35.9

36

36.1

36.2

36.3

36.4

36.5

36.6

36.7

P
6

Q
4

Longitude [deg]

La
ti
it
u

d
e

 [
d

e
g

]

(a) Two great circle arcs, belonging to different
ground tracks.

6

4

Flight track P

F
lig

h
t

tr
a

c
k
 Q

(b) Associated unitary square with Fm =
30.5 km.

Figure 2.10: Example of how the haversine distance along two great circle arcs is mapped
into the associated free space.

Figure 2.10 shows a visual example of the four intersections LFi,j, L
F
i,j+1, BF

i,j, B
F
i+1,j. On

the left, the sixth great circle arc P6 of ground track P and the fourth great circle arc Q4

of ground track Q are highlighted in gray. On the right, the associated unitary square is

depicted. For the upper edge (BF
4,6), there is an intersection ranging from 0 to roughly 0.25.

Thus, a circle with radius Fm, centered in the left vertex of Q4, contains the first quarter

of P6. For the right edge (LF4,7), the intersection spans roughly from 0.25 to 0.75. Thus,

the same circle, centered in the right vertex of P6, contains the central part of Q4. No

intersection is identified for the lower edge.

In the spherical formulation, the intersection of circles with great circle arcs is computed

as solution of a trigonometric equation. Given a point on a sphere of radius rs defined

with the triplet latitude-longitude-radius, the equivalent position in Cartesian coordinates

is ~x = [x y z]′. The position of the center of the circle (i.e., a latitude-longitude pair of

one track) is defined by the vector ~xc. The position of the endpoints of a great circle arc

belonging to the other curve is defined by vectors ~x1 and ~x2 respectively. The length of the

great circle arc is d. The goal is to determine if the great circle containing the great circle

arc between ~x1 and ~x2 intersects the locus of points that (i) belong to the sphere and (ii)

28

have a haversine distance of Fm with respect to ~xc.

The great circle arc coordinates ~x are parametrized with f , such that ~x = ~x1 if f = 0 and

~x = ~x2 if f = 1. Using spherical trigonometry properties, we can write

~x =
sin((1− f)d)

sin(d)
~x1 +

sin(fd)

sin(d)
~x2 (2.1)

Requirements (i) and (ii) are translated into the following set of equations

x2 + y2 + z2 = r2
s (2.2a)

(x− xc)2 + (y − yc)2 + (z − zc)2 = 4r2
s sin2

(
Fm
2

)
(2.2b)

Substituting Eq. 2.2a into Eq. 2.2b, the following locus is obtained

xxc + yyc + zzc = r2
s

[
1− sin2

(
Fm
2

)]
(2.3)

and combined with Eq. 2.1. Expanding sin((1−f)d) using trigonometric identities, the final

trigonometric equation is written in compact form as

C1 cos(fd) + C2 sin(fd) = C3 (2.4)

29

where



C1 = x1xc + y1yc + z1zc

C2 =
x2xc + y2yc + z2zc − cos(d)(x1xc + y1yc + z1zc)

sin(d)

C3 = r2
s

[
1− sin2

(
Fm
2

)]

Equation 2.4 can be rewritten as

R cos(fd− γ) = C3, with R =
√
C2

1 + C2
2 , γ = tan−1

(
C2

C1

)
(2.5)

For a free space like the one shown in Fig. 2.9, the overall number of LFi,j to be computed is

(p+ 1)q. The overall number of BF
i,j is (q+ 1)p. Thus, Eq. 2.5 needs to be solved 2pq+ q+ p

times. The existence of feasible values for LFi,j and BF
i,j depends on cos−1

(
C3

R

)
as follows

1. cos−1

(
C3

R

)
> 1: the great circle containing the great circle arc from ~x1 to ~x2 does not

intersect the locus defined by Eq.2.3. No feasible interval for f is obtained.

2. cos−1

(
C3

R

)
= 1: the great circle containing the great circle arc from ~x1 to ~x2 is tangent

to the locus defined by Eq.2.3. A single solution f1 = f2 = f is obtained. If 0 ≤ f ≤ 1,

the solution is feasible, otherwise the point of tangency is external with respect to the

great circle arc.

3. cos−1

(
C3

R

)
< 1: the great circle containing the great circle arc from ~x1 to ~x2 intersects

the locus defined by Eq.2.3 in two distinct points. Two solutions f1 and f2 are obtained.

If

30

(a) 0 ≤ f1 ≤ 1 and 0 ≤ f2 ≤ 1: both solutions are feasible, and the interval of validity

for the parameter is f ∈ [min(f1, f2) max(f1, f2)].

(b) 0 ≤ f1 ≤ 1 and f2 > 1 or vice versa: one solution is feasible. Define f̄ =

min(f1, f2) and d1 and d2 the haversine distances between ~xc and ~x1, and ~xc and

~x2 respectively. If d1 < d, the interval of validity for the parameter f ∈ [0 f̄],

otherwise f ∈ [f̄ 1].

(c) f1 > 1 and f2 > 1: the great circle arc from ~x1 to ~x2 is either completely contained

in the locus, or totally external. If d1 > d and d2 > d, no interval of validity for

the parameter is obtained. If d1 < d and d2 < d, f ∈ [0 1].

The 2pq+ q+p intervals computed solving Eq. 2.5, as well as the monotonicity requirement,

determine the adjacency properties of the directed graph mapping the free space diagram. A

depth-first-search solver [22, 39] is then used to determine the smallest distance value such

that, in the associated free space diagram, a path between node 1 (upper left corner) and

node 3pq+ 2(p+ q) + 1 (lower right corner) exists. That value identifies the Fréchet distance

F .

2.3.3 Outlier Detection

For each coarse cluster, all pairwise Fréchet distances are computed as described in Sec. 2.3.2.

The set of distances is used as input for the outlier detection algorithm. To detect outliers,

two different methods are used: (i) DBSCAN [52] and (ii) the method described in [3]. Both

methods are characterized by two steps, namely, outlier detection and clustering. In this

context, the methods are used to detect outliers, while the clustering technique introduced

in Sec. 2.2 is used to cluster the remaining ground tracks.

DBSCAN is based on two parameters, MinPts and ε. Using these two parameters, a cluster

31

is defined to be a set of density-connected points which is maximal with respect to density-

reachability [52]. Each cluster is characterized by some core points, that define the denser

region of the cluster, and some border points. The set of points not belonging to any cluster

defines outliers.

The method presented in [3] is based on a similar concept. Outliers can be viewed as

elements or small groups of elements located in low-density zones, contrasting with the

denser intracluster structure. The detection of outliers is based on an iterative process

that computes, at each iteration, a radius that is a certain multiple of the average nearest-

neighbor distance. For each element of the dataset, the associated connectivity (i.e., how

many elements are within the selected radius) is computed, and the average connectivity c̄j is

also computed. Then, every element characterized by a connectivity less than βc̄j is labeled

as an outlier and discarded. The process is repeated until no more outliers are identified. In

the original paper, the authors propose β = 1/3.

When a coarse cluster is processed with the two methods, all the outliers identified by at

least one method are selected. As an example, Fig. 4.1 shows all the flight tracks from

LAX to Salt Lake City International airport (SLC). In light gray are the tracks not labeled

as outliers. In dark gray are the tracks labeled as outliers. Out of the 121 original flight

tracks, 3 are labeled as outliers. Some path stretches and an evident holding pattern can be

seen. This motivates the relevance of outlier detection also for clear weather days, to discard

tracks with significant tactical maneuvers such as path stretches and holding patterns. It is

also important to remark that, while we discard outliers when computing aggregate routes,

their analysis can still provide useful insights. Appendix C describes a procedure for outlier

categorization.

32

−121 −120 −119 −118 −117 −116 −115 −114 −113 −112 −111

34

35

36

37

38

39

40

41

Longitude [deg]

La
ti
it
u

d
e

 [
d

e
g

]

Figure 2.11: Flight tracks forming the LAX-SLC coarse cluster. In light gray are shown the
filtered tracks, while in dark gray are highlighted the outliers.

2.4 Fine Clustering

For each coarse cluster, after outlier removal, ground tracks undergo a fine clustering process.

The goal of this process is (i) to assess if a coarse cluster needs to be further divided into

fine clusters, and (ii) to compute the optimal number of fine clusters, if necessary.

To assess if a coarse cluster is compact enough (i.e., it does not need to be further divided),

we want to understand if Nc = 1 defines an optimal clustering configuration for the coarse

cluster. Since the three indices introduced in Sec. 2.2 are not defined for Nc = 1, the

optimality of the single cluster case must be assessed differently. We use the properties of

the dendrogram to assess the compactness of the coarse cluster. Given a dendrogram, the

pruning distance to move from a number of clusters to the next one is easily identifiable. We

are interested in d2→1, i.e., the pruning distance where the number of clusters changes from

two to one. We set a threshold ηlb = min(dmin, 0.05dOD) km, where dOD is the haversine

distance between the two airports (internal flight tracks), or the distance between the airport

33

and the centroid of the exit/entry points (exiting/entering flight tracks). dmin is set equal

to 40 km instead. The threshold represents the maximum allowed intracluster distance to

consider a coarse cluster as compact. It can be interpreted as a maximum allowed lateral

deviation with respect to the great circle arc connecting the origin and destination points. For

an O-D pair closer than 800 km, the maximum intracluster distance allowed is the constant

value ηlb = dmin, which is considered already significant to justify fine clustering. Otherwise,

ηlb = 0.05dOD. The threshold ηlb has been tested on coarse clusters of different sizes, and

has proven to be generally successful in assessing the compactness of coarse clusters.

For a non-compact coarse cluster, the optimal number of fine clusters is computed as de-

scribed in Sec. 2.2. Due to the different granularities required, the lower and upper bounds

for pruning the dendrogram are chosen differently. The lower bound is selected consistently

with the coarse cluster compactness measure ηlb, while the upper bound is ηub. In a similar

fashion, we set ηub = max(dmax, 0.15dOD) km, where dmax = 90 km. For O-D pairs closer

than 600 km, ηub = dmax, otherwise ηub = 0.15dOD. Given the possible number of clusters

within these bounds, the three performance indices are computed, and the optimal number

of clusters is selected. The process is summarized in the flowchart shown in Fig. 2.12.

Figure 2.13 shows an example of the process applied to the LAX - SEA O-D airport pair. The

coarse cluster comprised 185 flight tracks. The outlier detection algorithm identified outliers.

The 22 outliers and the remaining 163 tracks are shown in dark and light gray, respectively,

in Fig. 2.13(a). Figure 2.13(b) shows the dendrogram computed using the 13,203 pairwise

Fréchet distances. The compact coarse cluster case option is discarded. The upper bound

is set at 231 km, and intersects the dendrogram in one single point. Since the compactness

test identified the need to further divide the coarse cluster, the minimum allowed number

of clusters is 2. The lower bound cuts the dendrogram in 6 different points. The range for

Nc spans from 2 to 6. Figure 2.13(c) shows the evolution of the performance indices. Note

that Nc = 1 and Nc = 7 are used as auxiliary values to identify local maxima/minima for

34

Coarse cluster

d2→1 ≤ min(dmin,0.05dOD)
Nc = 1

fine cluster

Set lower bound
min(dmin,0.05dOD)
Set upper bound

max(dmax,0.15dOD)

Cut dendro-
gram and
determine

range for Nc

Nc > 1
fine clusters

Y

N

Figure 2.12: Flowchart describing the selection of the optimal number of fine clusters given
a coarse cluster.

35

Nc = 2 or Nc = 6. For Nc = 7 the indices are computed. For Nc = 1 arbitrary values

associated with a poor clustering outcome are assigned. All three indices indicate that the

optimal number of clusters is 2.

−124 −122 −120 −118 −116

34

36

38

40

42

44

46

48

Longitude [deg]

La
ti
it
u

d
e

 [
d

e
g

]

(a) Flight tracks, with outliers highlighted in
dark gray.

 8 30 6 18 28 1 2 17 19 5 24 14 27 11 20 29 13 25 22 23 9 26 7 10 15 12 3 21 4 16

20

40

60

80

100

120

140

160

Cluster ID

P
ru

n
in

g
 D

is
ta

n
c

e
 [

k
m

]

Lower bound

(b) Dendrogram mapping distances between
tracks.

1 2 3 4 5 6 7
0

0.5

1

1.5

P
e

rf
o

rm
a

n
c

e
 in

d
e

x

Average Silhouette

Davies−Bouldin Index

1 2 3 4 5 6 7
1

2

3

4

Number of clusters

P
e

rf
o

rm
a

n
c

e
 in

d
e

x

Dunn Index

(c) Performance indices.

−124 −122 −120 −118 −116

34

36

38

40

42

44

46

48

Longitude [deg]

La
ti
it
u

d
e

 [
d

e
g

]

(d) Fine clusters highlighted with different
shades of gray.

Figure 2.13: Computation of the optimal number of fine clusters for the LAX-SEA coarse
cluster.

2.5 Aggregate Route Computation

Keeping in mind that a graph-oriented representation of the air traffic flow is our goal, we

want to approximate each fine cluster with an aggregate route. Each fine cluster groups

36

flight tracks that are similar spatially and dynamically. Nonetheless, discrepancies in the

times of flight of the different tracks are present. We sort the times of flight of all tracks

belonging to the fine cluster, compute the quartiles and select the median as the time of flight

representative of the cluster. Similarly to what experienced in Sec. 2.2, with a large enough

dataset the times of flight will be normally distributed. We then discard tracks belonging

to the first and fourth quartiles, to eliminate tracks with a time of flight that is considered

too different with respect to the median of the fine cluster. Note that these flight tracks

still belong to the fine cluster, and should be considered for applications such as spatial

distribution analysis of tracks.

Second quartile tracks have fewer data points than the median. Sequences of data points

where the local average ground speed is the highest are resampled so that one artificial data

point is added. The procedure is iteratively repeated until consistency with the median

value. Third quartile tracks have more data points than the median. The same process is

applied, but sequences of data points where the local average ground speed is the lowest are

resampled so that one data point is dropped. Given requirements on spatial and dynamical

similarity, differences in times of flight (with respect to the median) no greater than 6 minutes

(for a route with a time of flight of 150 minutes) were identified for the processed dataset.

When tracks are resampled, for each time entry there is a number of data points equivalent to

the number of tracks belonging to the second and third quartiles combined. Quantities such

as latitude, longitude, altitude, ground speed are averaged. For quantities such as flight level,

Center and sector, the mode is selected. A node characterized by the averaged quantities is

created for every time entry. The time-ordered sequence of nodes is the aggregate route.

Figure 2.14 shows an example applied to flight tracks connecting the same airport pair

described in Sec. 2.4. Figure 2.14(a) and Fig.2.14(b) show the times of flight distribution for

the left and right fine clusters of Fig. 2.13(d). The left fine cluster has an aggregate time of

flight of 129 minutes, compared to the 123 minutes of the right fine cluster. For the left fine

37

cluster, flight tracks with a time of flight between 127 and 134 minutes are used to compute

the aggregate route (20 out of 33 tracks). For the right fine cluster, flight tracks with a time

of flight between 120 and 128 minutes are used to compute the aggregate route (90 out of 130

tracks). The two resulting aggregate routes are shown in Fig. 2.14(c). Figure 2.14(d) shows

the distribution of the latitude-longitude centroids (for visual clarity, one centroid every ten

is highlighted), and the resulting aggregate route, for the right fine cluster.

122 124 126 128 130 132 134 136 138 140 142
0

1

2

3

4

5

6

7

Time of flight [min]

N
u

m
b

e
r

o
f

fl
ig

h
t

tr
a

c
k
s

(a) Times of flight distribution for the left fine
cluster.

110 115 120 125 130 135 140 145 150
0

5

10

15

20

25

30

35

Time of flight [min]

N
u

m
b

e
r

o
f

fl
ig

h
t

tr
a

c
k
s

(b) Times of flight distribution for the right fine
cluster.

−124 −122 −120 −118 −116

34

36

38

40

42

44

46

48

Longitude [deg]

La
ti
it
u

d
e

 [
d

e
g

]

(c) Resulting aggregate routes.

−124 −122 −120 −118 −116

34

36

38

40

42

44

46

48

Longitude [deg]

La
ti
it
u

d
e

 [
d

e
g

]

(d) Latitude-Longitude centroids for the right
aggregate route.

Figure 2.14: Computation of the aggregate routes for the LAX-SEA coarse cluster.

38

2.6 Airport Departure and Arrival Capacity Estima-

tion

When in a graph, some nodes (sources) have only outflow, some nodes (sinks) have only

inflow, and edges have flow restrictions, the graph becomes a network [78]. Our graph-

oriented approximation of the air traffic flow is a network. (i) Airports inside D are both

sources and sinks, since they release new flights and absorb landing flights, while boundary

crossing nodes are either sources or sinks depending on the flight category. (ii) The state of

each node has an upper bound that accounts for flow limitations, as Chap. 5 describes. For

the na airports inside D, an estimation of the expected inflow and outflow can be computed

via analysis of the same historical dataset used to build the ARM. In this section, we will

describe how to compute such estimate.

The characterization of airport departure and arrival capacity has been introduced in [34],

where a method for estimating practical airport capacities under different operational condi-

tions is presented. This estimation is not an easy process, since airport capacity depends on

many factors, such as the runway configuration, weather, and the aircraft type. Geometri-

cally, the relationship between departures and arrivals can be described by a capacity curve

that is generally called a Gilbo envelope. More recent work can be found in [9, 38]. Refe-

rence [9] interprets the Gilbo envelope as the intersection of a set of inequality constraints

that define a feasible region for departures/arrivals allocation. The constants defining the dif-

ferent constraints are assumed to be known. Reference [38] shows a technique, based on [34],

to compute Gilbo envelopes. Average values for hourly departure and arrival capacity are

compared with the declared values.

In our approach, we look for a set of inequalities that bound departures and arrivals for each

airport of interest. The inequalities fit well with the graph-oriented interpretation of the

airflow because (i) from a network perspective, they bound the throughput along the network,

39

and (ii) they are used as constraints in the IP problem as shown in Chap. 5. We want a simple,

yet accurate description of the Gilbo envelope characterizing each airport. Our process has

the following steps: (i) process the historical dataset and store hourly departures/arrivals

pairs in a 2D Cartesian graph (x-axis for departures, y-axis for arrivals), (ii) eliminate outliers

using DBSCAN and the Manhattan distance as metric (being departures and arrivals integer-

valued), (iii) add the three auxiliary points [0 0], [0 maxa], [maxd 0] (where maxd and maxa

represent the maximum values for departures and arrivals, respectively) to the distribution

and compute the convex hull, (iv) identify all the pairs that do not lie on one of the two

axes, and compute the least-square line approximating those points (v) identify the Gilbo

envelope as the union of a horizontal line passing through [0 maxa], the line computed in

(iv), and a vertical line passing through [maxd 0].

The three lines defining the Gilbo envelope can be interpreted as follows. The horizontal

and vertical constraints define maximum operational capabilities of arrivals and departures

due to limitations associated with runway availability and ATCs capabilities (regardless

of the mutual interaction). This is also the reason why we discard outliers. An isolated

departures/arrivals pair with a departure or/and arrival value that is much higher than the

rest of the distribution, would lead to a capacity over-estimation. The sloped line identifies

a high-demand region for both departures and arrivals, where maximum capacities cannot

be reached simultaneously.

Figure 2.15 shows the procedure applied to PHX. Hourly departures/arrivals pairs are com-

puted. Outliers are removed, the convex hull is approximated with the three segments. For

this airport, x ≤ 42, y ≤ 44, y + 1.67x ≤ 89.53, being x and y hourly values for departures

and arrivals, respectively.

40

10 0 10 20 30 40 50

Departures [1/h]
10

0

10

20

30

40

50

60

Ar
riv

al
s

[1
/h

]

x≤ 42
y≤ 44
y≤ - 1.67x + 89.53

Processed Data Points
Outliers
Convex Hull
Gilbo Envelope

Figure 2.15: Gilbo envelope for PHX.

2.7 Application to the Six Western-most Centers of

the NAS

The clustering algorithm is used to develop an aggregate route model for a planning domain

that comprises the following 6 Centers: Los Angeles (ZLA), Albuquerque (ZAB), Seattle

(ZSE), Oakland (ZOA), Salt Lake City (ZLC), and Denver (ZDV). 21 airports inside the plan-

ning domain are considered. They are (i) ZLA: Burbank Bob Hope airport (BUR), McCarran

International airport (LAS), Los Angeles International airport (LAX), Long Beach airport

(LGB), Ontario International airport (ONT), Oxnard airport (OXR), Palm Springs Inter-

national airport (PSP), San Diego International airport (SAN), John Wayne airport (SNA),

Van Nuys airport (VNY), (ii) ZAB: Albuquerque International Sunport airport (ABQ),

Phoenix Sky Harbor International airport (PHX), Tucson International airport (TUS), (iii)

ZSE: Portland International airport (PDX), Seattle-Tacoma International airport (SEA),

(iv) ZOA: Oakland International airport (OAK), San Francisco International airport (SFO),

41

Norman Y. Mineta San José International airport (SJC), Sacramento International airport

(SMF), (v) ZLC: Salt Lake City International airport (SLC), (vi) ZDV: Denver International

airport (DEN).

For each of the 21 airports considered, internal, exiting, and entering flight tracks are pro-

cessed separately. The planning domain comprises the six western-most Centers of the con-

tinental NAS. As a consequence, overflights are scarce, and thus ignored. Flight trajectories

for 14 days, from July 1st, 2014 to July 14th, 2014 are processed.

Considering internal flight tracks, 21 airports define 420 different O-D airport pairs. Out of

the 420 different O-D airport pairs, 179 are not characterized by aircraft flow. This is due

to two different factors. (i) Proximity of some of the airports considered, which results in

absence of flight connections. This is particularly evident for the ZLA Center. Because of

its location, LAS has flight connections with most of the other airports within the Center,

while the other airports, apart from a couple of exceptions, have flight connections to LAS

only. (ii) Scarcity in the number of flights from/to an airport. This is the case of OXR,

where identified flight tracks were so scarce that no internal aggregate routes were identified.

For exiting and entering flight tracks, coarse clusters are first identified as described in

Sec. 2.2. Then, for each coarse cluster the optimal number of clusters is computed similarly

to internal flight tracks.

For internal flight tracks, 17,497 flight tracks are processed and, after outlier detection,

15,731 tracks are aggregated into 371 aggregate routes. For exiting flight tracks, 13,813

flight tracks are processed and, after outlier detection, 12,826 tracks are aggregated into 156

aggregate routes. For entering flight tracks, 15,897 flight tracks are processed and, after

outlier detection, 14,495 tracks are aggregated into 184 aggregate routes.

Table 2.1 highlights the number of flight tracks processed for each airport. For all Centers

apart from ZLA, the algorithm identified an internal, exiting and entering flow for each

42

airport. Inside ZLA, no aggregate routes were identified for OXR. For three other airports,

i.e., BUR, PSP, VNY, only internal aggregate routes were computed. BUR and PSP are

de facto regional airports. PSP is labeled international because of a few connections with

Canada, but the majority of the traffic flow is internal. On the other hand, VNY airport

is one of the busiest general aviation (i.e., all civil aviation operations other than scheduled

air services) airports in the world and mainly handles local business jet traffic. For VNY

airport, the processed flight tracks showed less predictable patterns (the relative percentage

of outliers identified was the highest among all airports), and only 2 internal aggregate routes

were identified.

For airports with exiting and entering aggregate routes, the flow is mainly West-to-East for

exiting aggregate routes, and East-to-West for entering aggregate routes. This is due to

the location of D. Covering the western-most portion of the NAS, the outflow is directed

towards airports in the remaining portion of the NAS, Europe, Africa, or the Middle East

(and vice-versa for the inflow). One exception is LAX, which also has a western outflow and

eastern inflow.

Figure 2.16 shows the internal, exiting, entering aggregate routes and the Gilbo envelope

for LAX. Focusing on the exiting flow (Fig. 2.16(b)), six aggregate routes headed West are

identified, and can be divided into two flows. The northern flow, with four routes, connects

LAX to major Asian destinations, such as Narita International airport, Haneda airport,

Hong Kong International airport, Beijing Capital International airport and Shanghai Pudong

International airport. The southern flow, with two exiting aggregate routes, connects LAX

to to Australia, with Sydney airport and Melbourne airport as main destinations. The same

considerations can be extended to entering aggregate routes (Fig. 2.16(c)). The southern

flow connects LAX to Mexican and South-American destinations. The eastern flow, that

accounts for the majority of aggregate routes, connects LAX to the ASPM-77 airports not

contained in D, and to major European, African and some Asian destinations.

43

Considering all the airports in D, the airflow is thus approximated with (i) a set of 711

aggregate routes, divided into 371 internal, 156 exiting, and 184 entering routes (ii) 20 Gilbo

envelopes that describe hourly departures/arrivals for each airport (OXR has been discarded

for lack of aggregate routes).

30°N

35°N

40°N

45°N

30°N

35°N

40°N

45°N

130°W 120°W 110°W 100°W

120°W 110°W 100°W

(a) Internal aggregate routes.

30°N

35°N

40°N

45°N

30°N

35°N

40°N

45°N

130°W 120°W 110°W 100°W

120°W 110°W 100°W

(b) Exiting aggregate routes.

30°N

35°N

40°N

45°N

30°N

35°N

40°N

45°N

130°W 120°W 110°W 100°W

120°W 110°W 100°W

(c) Entering aggregate routes.

10 0 10 20 30 40 50 60

Departures [1/h]
10

0

10

20

30

40

50

60

Ar
riv

al
s

[1
/h

]

x≤ 53
y≤ 54
y≤ - 1.22x + 96.78

Processed Data Points
Outliers
Convex Hull
Gilbo Envelope

(d) Gilbo envelope.

Figure 2.16: Internal, exiting, entering aggregate routes and Gilbo envelope with LAX as
reference airport.

44

Table 2.1: Comparison between flight tracks before the outlier detection (IFT), after the
outlier detection (FT), and the resulting number of aggregate routes (AR) for each airport
within the planning domain.

Internal Exiting Entering
IFT FT AR IFT FT AR IFT FT AR

BUR 423 376 11 38 12 × 38 14 ×
LAS 1613 1468 34 1695 1515 12 1763 1612 21
LAX 2083 1930 21 2782 2627 20 3375 3197 27
LGB 244 207 10 77 65 3 66 33 1
ONT 379 338 13 98 87 5 136 82 4
OXR 19 × × 35 17 × 2 × ×
PSP 118 97 10 10 × × 12 7 ×
SAN 1089 1005 20 640 595 10 809 661 14
SNA 601 516 19 240 202 8 319 236 8
VNY 78 18 2 34 12 × 41 29 ×
ABQ 318 252 12 365 343 5 391 364 4
PHX 1728 1549 27 1424 1305 15 1892 1757 9
TUS 187 135 8 137 121 5 166 139 4
PDX 1064 973 26 436 384 9 517 424 13
SEA 1728 1565 25 998 916 8 988 858 18
OAK 861 801 17 157 119 4 223 169 6
SFO 1490 1382 24 1507 1423 18 2258 2173 22
SJC 599 540 14 130 120 4 202 182 6
SMF 547 509 18 135 122 6 195 180 8
SLC 1186 1073 33 791 729 14 841 796 13
DEN 1142 997 27 2084 1956 10 1663 1582 6
Total 17497 15731 371 13813 12826 156 15897 14495 184

45

Chapter 3

Airborne Rerouting Design

In Chap. 2, a routine to translate a historical dataset into a network flow model that well

approximates the dataset has been presented. By populating the dataset with aircraft trajec-

tories flown on clear weather days and discarding outliers, the resulting network flow model

accounts for the well-traveled routes. For use on a day when convective weather is predicted,

additional routes may be required to plan the flow with the additional capacity constraints

imposed by the weather.

As example, consider that the clustering process identified a single aggregate route for a

specific O-D airport pair, as shown in Fig. 3.1. If such route is blocked by a convective

weather front, aircraft will be held on the ground as long as necessary to avoid the front.

For a static convective weather front, aircraft will be issued a ground stop, since no feasible

departure time exists (see Appendix B).

Our modeling approach has two parts: we start with a model for clear weather days and, for

a particular day with convective weather, we add routes as appropriate. In this chapter a

routine is presented that, given scheduled departures, identifies those scheduled departures

that might incur prolonged ground holding. The original routes for such departures are

46

−6 −4 −2 0 2 4

x 10
5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

5

Aggregate Route

Airborne Reroute

Weather Front

Horizontal position [m]

V
e

rt
ic

a
l p

o
si

ti
o

n
 [

m
]

Figure 3.1: Graphical representation of the airborne rerouting design process.

modified with airborne reroutes that avoid the reduced-capacity regions, thus providing

additional options for the strategic planning.

In the chapter, we show in Sec. 3.1 how an aggregate route is paired with a search space,

i.e., a set of additional nodes and edges that define operationally feasible rerouting options.

Then, in Sec. 3.2 we describe the weather data we process and use when designing airborne

reroutes. Last, in Sec. 3.3 we describe how a shortest path problem is solved that outputs

the best airborne rerouting option for those aggregate routes impeded by reduced-capacity

regions. That option will be added to the network flow model to increase its capabilities.

47

3.1 Design of Operationally Feasible Rerouting Op-

tions

For each aggregate route, a search space where rerouting options are searched needs to be

identified. This is a region around the original route (defined by some physical parameters

as shown in the following), where airborne reroutes will be designed and computed. One

driver, when designing an airborne rerouting path, is that it should not deviate too much

from the planned route. The choice of the physical parameters for the search space has been

designed accounting for this need. Otherwise, options such as pre-departure rerouting or

contingency routes from the Playbook1 might be preferred.

References [74, 75, 76] propose a method for generating operationally acceptable reroutes,

where the search area is an ellipse containing the allowable set of nodes and edges. The

semi-major axis is the great circle arc connecting the route deviation point (fix along the

original route where reroute can begin) and the route rejoin point (fix along the original

route where the reroute reconnects to the original route), plus two search buffers (one for

each point) to increase the search options. A similar reasoning is applied to select the semi-

minor axis [75]. Within this search area, optimal sequences of waypoints avoiding weather

fronts are determined by a k-shortest algorithm [30]. One driver in the selection of the

sequence of waypoints is the flow factor (i.e., how often the edge connecting two waypoints

has been historically used), to ensure reroutes are operationally acceptable.

In our case, we use a similar strategy, which is modified to be consistent with the aggregate

model for clear days presented in Chap. 2. In this section we show how the search space

is generated, and how nodes and edges within the search space are computed. The set of

original nodes and edges defining the original aggregate route, and the set of additional nodes

and edges within the search space define together an augmented graph. In the augmented

1https://www.fly.faa.gov/PLAYBOOK/pbindex.html

48

https://www.fly.faa.gov/PLAYBOOK/pbindex.html

graph, aircraft can leave and rejoin the initial route during the cruise phase via an airborne

rerouting maneuver. The adjacency properties of the augmented graph are first regulated by

a position-reachability requirement, that guarantees a motion towards the destination point

and is compatible with speed limitations. Then, another operational constraint addressing

heading is introduced.

In Sec. 3.1.1, the framework where the problem is treated for each aggregate route is pre-

sented. Then, Sec. 3.1.2 defines the search space. Section 3.1.3 describes how the set of

additional nodes and edges is generated. Finally, Sec. 3.1.4 defines how adjacency properties

between the nodes are computed.

3.1.1 Conversion of an Aggregate Route using a Lambert Confor-

mal Conic Projection

In our context, where we are looking for “local” deviations around a nominal path, we use

a framework based on the Lambert conformal conic projection. We project each aggregate

route onto a 2D plane (i) that contains the region where airborne rerouting is designed, and

(ii) where possible paths that avoid convective weather regions are searched. Note that,

when using the projection, we slightly lose accuracy in terms of distances and angles, but

we define an easier framework in which to pose our airborne rerouting problem.

Given a sequence of latitude-longitude pairs that define an aggregate route, we initially trans-

late that sequence into a sequence of horizontal and vertical positions (x and y respectively)

using the Lambert conformal conic projection transformation

49

x = ρ sin[n(λ− λ0)]

y = ρ0 − ρ cos[n(λ− λ0)]

(3.1)

where

n =
ln(cosφ1 secφ2)

ln[tan(1
4
π + 1

2
φ2) cot(1

4
π + 1

2
φ1)]

ρ = F cotn
(

1

4
π +

1

2
φ2

)
ρ0 = F cotn

(
1

4
π +

1

2
φ0

)
F =

cosφ1 tann(1
4
π + 1

2
φ1)

n

(3.2)

λ is the longitude, while φ is the latitude. The four parameters for the transformation are

λ0, φ0 (reference longitude and latitude), φ1 and φ2 (standard parallels). For λ0 we choose

the mean between the minimum and maximum longitude of the aggregate route, while for

φ0 we choose the mean between the minimum and maximum latitude of the aggregate route.

In this way, we roughly center the origin of the Lambert projection in the center of the

patch defined by the minimum and maximum longitudes and latitudes characterizing the

aggregate route. For the two standard parallels, we define an offset η = 0.5 deg and select

φ1 = min(φ)− η and φ2 = max(φ) + η.

Using Eq. 3.1 as provided, Lambert coordinates refer to a sphere with unitary radius. We

use a multiplying factor to project points onto a surface with an altitude of 35, 000 ft above

Earth’s surface. Figure 3.2 shows an aggregate route from LAX to DEN in the original

spherical coordinates, and in the Lambert conformal conic projection coordinates.

50

−118 −116 −114 −112 −110 −108 −106

32

33

34

35

36

37

38

39

40

41

42

Longitude [deg]

La
ti
tu

d
e

 [
d

e
g

]

(a) Spherical coordinates.

−6 −4 −2 0 2 4

x 10
5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

5

Horizontal position [m]

V
e

rt
ic

a
l
p

o
si

ti
o

n
 [

m
]

(b) Lambert conformal conic projection coordi-
nates.

Figure 3.2: Aggregate route from LAX to DEN in spherical coordinates and in the Lambert
conformal conic projection coordinates.

3.1.2 Definition of the Search Space

Similarly to [74, 75, 76], we define a search space where to restrict the design of the airborne

reroute. Our search space lies on the Lambert plane, and is identified by two geometrical

dimensions, namely a longitudinal extension and a lateral deviation. The longitudinal ex-

tension is the equivalent of the major axis in [74, 75, 76]. It identifies the first node of the

aggregate route where aircraft are allowed to leave the route, and the last node where aircraft

can rejoin the route. The lateral deviation is the equivalent of the minor axis in [74, 75, 76].

It identifies the lateral extension of the search space. As a consequence, it poses an upper

limit to the lateral deviation an aircraft is allowed when performing an airborne rerouting

maneuver.

To identify the longitudinal extension of the search space, we study the altitude profile of

the aggregate route and identify the cruise phase. We identify the cruise phase as the set of

nodes between the first node characterized by a percentile change in altitude (with respect to

the previous node) smaller than 15% and the last node with a percentile change in altitude

smaller than 15%. As [53] suggests, airborne rerouting is a maneuver that is mainly carried

51

out during the cruise phase of a flight, thus we want to remove take off and landing from

the search space. Reference [49] uses a similar strategy, designing reroutes around weather

polygons as horizontal maneuvers. For the same route shown in Fig. 3.2, the altitude profile

is shown in Fig. 3.3. The cruise phase is identified by the set of nodes within the dashed lines.

Note that the definition of cruise phase is not standardized. References [26, 54], as example,

define the cruise phase as the set of data points above 25,000 ft. The two definitions would

provide the same output, if applied to the altitude profile shown in Fig. 3.3, but the output

might be different in other circumstances.

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Time of flight [min]

A
lt
it
u

d
e

 [
ft

]

Figure 3.3: Altitude profile for the aggregate route shown in Fig. 3.2.

The longitudinal extension of the search space is the line between the first and last node of

the cruise phase (labeled respectively cin and cfin), whose distance is dc. For the transversal

extension of the search space, we consider the two half-planes above and below the longi-

tudinal line defined before. For each half plane, we identify the node in that half plane

with the maximum distance with respect to the longitudinal line, if such a node exists. We

also define an additional buffer εdc, with ε < 1 (we use ε = 0.1). In each half-plane, the

transversal extension of the search space is the summation of the buffer εdc and the maximum

52

distance previously computed. Naming dup and ddown the distances for the upper and lower

half-planes, respectively, the transversal extension of the search space is 2εdc + dup + ddown.

If the route completely belongs to one of the two half-planes only the associated distance

will appear in the previous expression. In this way, we have a transversal extension for the

search space that is not symmetrical with respect to the longitudinal line. If the route mainly

develops in one of the two half-planes, the search space will also mainly develop in that half-

plane. The search box is positioned onto the aggregate route as follows. Two transversal

segments are placed perpendicularly to segment dc, one passing through cin and one passing

through cfin. The extension of the segments in the upper and lower half-plane follows the

rationale mentioned above. Two longitudinal segments with a length of dc complete the box

(see Fig. 3.5 for an example of search space).

3.1.3 Additional Nodes Computation

We now describe how to generate a set of auxiliary nodes within the search space. For each

node of the aggregate route inside the search box, we define a set of directions the aircraft

might follow, instead of moving onto the next node of the original route. Given the heading

of the current node, a conic region is defined that encompasses a range of feasible heading

angles. This approach is consistent with the one described in [43] that is based on a similar

strategy. Given the current heading angle ψ and a maximum heading angle increase/decrease

∆ψ, the feasible range for the new heading angle will span from ψ − ∆ψ to ψ + ∆ψ. In

practice, the aircraft performs a banked turn to change its current heading, and then follows

the direction dictated by the new heading as long as it remains inside the search box.

In this work, the goal is not to design maneuvers such as a banked turn with precision. In

analogy to [67], our aim is to generate a coarse rerouting alternative that fits the strategic

planning framework. At the same time, as done in [43] and [7], we want to design reroutes

53

to be operationally acceptable. To pursue this goal, we first introduce the banked turn

equations that will be used to compute a reasonable range for ∆ψ

Rc =
V 2

g tan θ
(3.3)

ω =
g tan θ

V
(3.4)

n =
1

cos θ
(3.5)

where Rc is the curvature radius when performing the maneuver, V is the current ground

speed, θ is the bank angle, ω the angular velocity and n the load factor. In practice, we

want to limit n, which implies limiting the bank angle θ. Although in emergency scenarios,

maneuvers with θ ≥ 50 deg might be necessary, our goal is to design safe reroutes around

convective weather polygons. For commercial aircraft, 30 deg define a upper bound for a

banked turn, but we want to further limit the banked turn in this context. As a consequence,

we will tune our parameters to avoid scenarios where θ ≥ 10 deg.

Considering a time-step ∆t = 5 min for the model, a change in heading of ∆ψ = 45 deg

would imply an angular velocity of
π

4∆t
= 0.00262 rad/s. As example, with a speed of

380 kts = 195 m/s, the resulting bank angle (using Eq. 3.4) is θ = 3 deg, which is consistent

with our limitations. Considering ranges on speed and bank angle, a ∆ψ = 45 deg is chosen

in the design of the feasible directions.

Within the 2∆ψ heading angle range, a set of nd different branches can be specified. The

higher the number, the denser the resulting graph will be. More rerouting options will be

available, but at the expense of an increased computational cost. Along each selected branch,

new nodes are generated moving forward along the current direction using a spatial step of

Vm∆t, where Vm ∈ [VminVmax] with Vmin = ηminVc and Vmax = ηmaxVc. Vc is the average

54

speed of the cruise phase, while ηmin and ηmax are selected to be respectively 0.6 and 1. Each

new point is generated by randomly selecting a speed within the provided interval. Without

the same mathematical rigor, this approach mimics the core idea behind a Rapidly-exploring

Random Tree [44, 45, 46, 47]. The idea behind the choice of ηmin and ηmax is that, when

performing an airborne rerouting maneuver, the aircraft will either keep the planned cruise

speed or slow down. Figure 3.4 shows an example with ∆ψ = 30 deg and nd = 14.

−4.5 −4 −3.5 −3 −2.5 −2 −1.5

x 10
5

−2.5

−2

−1.5

−1

−0.5

x 10
5

Horizontal position [m]

V
e

rt
ic

a
l
p

o
si

ti
o

n
 [

m
]

Aggregate Route

Search Area

Figure 3.4: Set of feasible directions from a node of the original aggregate route.

For each node of the aggregate route inside the search box, a similar process to the one

shown in Fig. 3.4 is repeated. Figure 3.5 shows the full set of rerouting nodes for the same

aggregate route introduced before. When generating the rerouting nodes, an additional

conic constraint is posed. For the last node of the cruise phase (i.e., the last node where the

rerouting branch can rejoin the original aggregate route), the same conic constraint limiting

the range of feasible directions is imposed. This is highlighted by the lack of nodes in the

two right corners of the search box. In fact, in those regions rejoining the original aggregate

route would violate our heading-feasibility requirement. This conic constraint can also be

found in [43].

55

−6 −4 −2 0 2 4

x 10
5

−4

−3

−2

−1

0

1

2

3

4

x 10
5

Horizontal position [m]

V
e

rt
ic

a
l
p

o
si

ti
o

n
 [

m
]

Aggregate Route

Search Area

Additional Points

Figure 3.5: Geometry of the search area, and additional nodes that define the augmented
graph. The two conic constraints at cin and cfin can be identified.

3.1.4 Computation of the Adjacency Properties of the Augmented

Graph

Once the set of auxiliary nodes described in Sec. 3.1.3 is computed, the next step is to

characterize the adjacency properties of the augmented graph. I.e., we want to determine

which nodes are reachable from the each node of the augmented graph. One reachable node

is the downstream node along the original aggregate route (if the current node belongs to

the original route), or the downstream node along the branch the current node belongs to

(see Fig. 3.4). Generally, some other nodes will be reachable, as we describe in the following.

Consider an aggregate route with Nr nodes, and Na auxiliary nodes inside the search box, so

that we have a graph with Nr +Na nodes. In order to solve the rerouting problem, we need

to map the connections (i.e., the adjacency properties) between the Nr + Na nodes. In the

original aggregate route, the adjacency properties are such that each node is only reachable

from the previous node of the route. When introducing the auxiliary nodes, we want to

56

guarantee feasibility ensuring two requirements. For each node within the search box, the

set of nodes that are reachable from the current node satisfies (i) a position-reachability

requirement (ii) a heading-reachability requirement, similarly to [11, 43]. While requirement

(i) does not depend on the actual sequence of nodes of the modified path, requirement (ii)

does.

To satisfy requirement (i), for each node an annulus centered in the node is created. The

inner radius is Vmin∆t, and the outer radius is Vmax∆t. All the nodes that are inside such

annulus are position-reachable, since they are within the defined range of speeds and, as a

consequence, of distances. An example of such concept is shown in Fig 3.6(a). To discard

nodes that are position-reachable from the current node, but that define a path that is

operationally unlikely, the search space is divided into two planes, where the dividing line is

perpendicular to dc and passes through the current node. Among the nodes initially labeled

as position-reachable, only the ones belonging to the half-plane containing cfin are kept.

This procedure is motivated by the fact that backtracking is generally avoided when flying

(unless a holding pattern is carried out, which is not the goal of this routine). Figure 3.6(b)

shows how the initial position-reachable set of points of Fig. 3.6(a) is reduced to become the

actual position-reachable set. From a graph perspective, an edge will connect the current

node to each of the position-reachable nodes identified.

To satisfy requirement (ii), a more involved procedure is necessary. In fact, to ensure that a

position-reachable node is also heading-reachable from the current node, the incoming edge

to the current node must be known, i.e., heading-reachability depends on the path (intended

as sequence of nodes) the aircraft is following. In practice, given a sequence of three nodes

N1, N2, N3 along the path, the heading change between the edge connecting N1 and N2 and

the edge connecting N2 and N3 should be less or equal than the threshold ∆ψ. How this

condition is actually verified is described in Sec. 3.3.

In Fig. 3.7, the heading-reachability requirement is visually described. Node 448 is position-

57

−3 −2 −1 0 1 2

x 10
5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

5

Horizontal position [m]

V
e

rt
ic

a
l
p

o
si

ti
o

n
 [

m
]

(a) Before the half-plane constraint limitation.

−3 −2 −1 0 1 2

x 10
5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

5

Horizontal position [m]

V
e

rt
ic

a
l
p

o
si

ti
o

n
 [

m
]

(b) After the half-plane constraint limitation.

Figure 3.6: Position-reachable nodes for a given node in the search area.

reachable from both node 133 and node 192. while node 283 is position-reachable from node

448. The sequence of nodes 133-448-283 is also heading-reachable, since the heading change

between the two edges is less than the threshold ∆ψ. The sequence of nodes 192-448-283

is not heading-reachable, since the heading change between the two edges is more than the

threshold ∆ψ.

3.2 Convective Weather Data

Section 3.1 described a routine that, given an aggregate route, computes a set of auxiliary

nodes and edges that form an augmented graph. The overall goal is to move along the

augmented graph, from its origin node (first node of the aggregate route) to its destination

node (last node of the aggregate route) in the most efficient way. Two major aspects must be

addressed at this point, (i) how do the adjacency properties of the augmented graph change

due to weather-related constraints, and (ii) how “efficiency” is evaluated when moving along

the graph. In this section, we introduce the type of weather information which will be

processed and used, while how to “efficiently” move along the graph is described in Sec. 3.3.

58

−2 −1.5 −1 −0.5 0

x 10
5

−10

−5

0

5

x 10
4

448

133

192

283

Horizontal position [m]

V
e

rt
ic

a
l
p

o
si

ti
o

n
 [

m
]

Figure 3.7: Example of two sequences of nodes, one that is not heading-reachable and one
that is heading-reachable.

3.2.1 Convective Weather Avoidance Model

References [17, 26, 54] describe a model, called Convective Weather Avoidance Model (CWAM),

that quantifies the effect of convective weather on filed flight plans. CWAM is based on the

Corridor Integrated Weather System (CIWS) model [32, 40], which uses Vertically Integrated

Liquid (VIL) data [6] and echo top data [68]. VIL is an estimate of the total mass of precipi-

tation in the clouds, while an echo top is the radar indicated top of an area of precipitation.

CIWS combines the two inputs to compute a 2-hour NAS-wide convection forecast, updated

every 5 minutes and with a 5-minute forecast time-step.

CWAM processes CIWS, and outputs a set of non-convex polygons, with a look-ahead time

of 2 hours and 5-minute forecast time-step (compatible with CIWS). For each forecast,

polygons are provided for every flight level from 250 to 450, with a step of 10. Given a

forecast time and flight level, three sets of polygons are provided, referring to an avoidance

percentage of 60, 70, 80% respectively. For a polygon with a 60% percentage, 60% of the

59

pilots would avoid such convective weather polygon, if it impedes the filed trajectory.

Each convective weather cell generated by CIWS is surrounded by 3 distinct polygons, cor-

responding to the three thresholds. The 60% polygon contains the 70% polygon, which

contains the 80% polygon. Figure 3.8 shows an example of CWAM polygons for the three

thresholds. The CIWS weather forecast is not reproduced, because CIWS data were not

available for this research. Readers are referred to [55] for examples of CIWS polygons.

−89.5 −89 −88.5 −88 −87.5 −87 −86.5 −86 −85.5

38.5

39

39.5

40

40.5

41

41.5

Longitude [deg]

La
ti
tu

d
e

 [
d

e
g

]

60%

70%

80%

Figure 3.8: Example of CWAM polygons for the three deviation thresholds 60, 70, 80%.

Note that the forecast look-ahead time of 2 hours makes CWAM polygons makes this product

most useful for planning short haul flights. Using a planning horizon that exceeds this limit

(which is generally the case for strategic planning), would involve the selection of a weather

product more appropriate for strategic planning of long haul flights. At the same time, the

accuracy level of weather forecasts that go beyond two hours generally decays considerably.

Other weather data and models are available that cover a longer horizon, and that would fit

longer planning horizons. In practice, CWAM polygons are generally used to design airborne

reroutes (especially at a tactical level). In this work, we will use historical CWAM data that

60

span time horizons greater than 2 hours, acknowledging that, given the planning horizon

we target and the look-ahead time of CWAM files, the product is not compatible with our

needs. The method we propose can be applied to any weather forecast product described via

polygons. The choice of the most appropriate weather product to use is beyond the scope of

this work.

3.2.2 Modeling Assumptions

The first modeling assumption, when processing CWAM data, is that a specific flight level

will be considered. This simplification is justified by the fact that the vertical variability of

the polygons is small when considering a limited range of flight levels (flight levels associated

with the cruise phase, in this case). The flight level selected is FL380, being the most

common flight level as Fig. 3.9 shows. Note that, since flight levels are computed assuming

an International standard sea-level pressure, FL380 does not necessarily imply a local altitude

of 38,000 feet. Additionally, only 60% polygons will be considered, to allow an additional

safe-margin around convective weather regions.

The second modeling assumption, is that CWAM polygons are simplified by (i) clustering

polygons using a distance threshold, and (ii) approximating each cluster with its convex

hull [64, 66]. Although methods to compute non-convex hulls exist [2], in a strategic frame-

work, the design of a reroute that exploits the non-convex portions of CWAM polygons is

highly unlikely. This level of precision is left to tactical planning [55].

To approximate CWAM polygons, they are first converted into a x-y coordinate frame as

described in Sec. 3.1.1. Then, the centroid of each polygon is computed, distances be-

tween centroids are computed and hierarchical clustering as described in Chap. 2 is used.

A threshold value of 120 km has been selected as a trade-off between size reduction and

accurate approximation of the initial distribution of polygons. Figure 3.10 shows how the

61

250 300 350 400 450 500
0

1000

2000

3000

4000

5000

6000

Flight level [100*ft]

N
u

m
b

e
r

o
f

fl
ig

h
ts

Figure 3.9: Mode of the flight level for the historical dataset of flights described in Chap. 2.

procedure clusters and approximates an initial set of CWAM polygons.

−6 −5 −4 −3 −2 −1 0 1

x 10
5

1

1.5

2

2.5

3

3.5

4

x 10
5

Horizontal position [m]

V
e

rt
ic

a
l
p

o
si

ti
o

n
 [

m
]

(a) Original non-convex polygons.

−6 −5 −4 −3 −2 −1 0 1

x 10
5

1

1.5

2

2.5

3

3.5

4

x 10
5

Horizontal position [m]

V
e

rt
ic

a
l
p

o
si

ti
o

n
 [

m
]

(b) Clustered convex polygons.

Figure 3.10: Original CWAM polygons and convex hull approximation.

The process is repeated for any time instance of interest, according to the time-step of the

model and remembering that polygons are available with a forecast time of 5 minutes. Thus,

if the time-step selected for the model is ∆t = 5 min, a match between the discrete model

and weather forecast already exists, with no need to interpolate data.

62

3.3 Airborne Rerouting as a Shortest Path Problem

In this section, we will pose the problem of finding a path in the augmented graph that

avoids weather polygons as a shortest path problem.

3.3.1 Edge Cost Computation

In related works [67], the airborne rerouting problem is solved using a risk-hedged approach.

This means that the solution is a trade-off between the length of the path, and the risk that

characterizes the path itself. Generally, the best solution minimizes the total length of the

path and either avoids completely or barely enters convective weather polygons with a high

probability.

In our case, we use a slightly different approach due to the characteristics of our model and

the weather information we processed. Given the discrete nature of the ARM, rather than

the physical length of each edge, a natural cost for each edge is the time-step of the model

∆t. The main idea is to find a path that minimizes the overall time of flight (intended as a

multiple of ∆t), while satisfying a set of constraints. These constraints are imposed as soft

constraints in the algorithm. The constraints are (i) avoid convective weather polygons, (ii)

minimize the portion of path spent outside the original aggregate route, and (iii) impose a

path that satisfies the heading-reachability requirement.

The cost of each edge is defined as

C(ij, k) = ∆t(1 + η1 + η2) + ∆tη3 (3.6)

63

where C(ij, k) defines the cost of edge (i,j) at time tk. Note that we are solving a problem

where obstacles (i.e., convective weather fronts) are not static, i.e., time-variant. This is in

contrast with [67, 75], where weather fronts appear to be static.

In Eq. 3.6, η1, η2 and η3 are binary variables. η1 ∈ {0, 1000}, depending whether the edge is

intersected by a convective weather polygon or not. η2 ∈ {0, 5}, and it is 0 if both nodes i and

j belong to the original aggregate route, and 5 otherwise. η1 and η2 are computed before the

shortest path problem is solved, since they only depend on the geometry of the graph. On the

other hand, η3 cannot be assigned a priori, but its computation is embedded in the shortest

path algorithm. When moving from the current node to each of the position-reachable nodes,

the initial heading angle is known since the path to the current node is known. For each

position-reachable node, the heading from the current node to the position-reachable node

is compared to the initial heading. If the difference is less than ∆ψ, then η3 = 0, otherwise

η3 = 1000. If we consider Fig. 3.7 again, for edge (448,283), η3 = 0 if the node before 448

along the path is 133, η3 = 1000 if the node before 448 along the path is 192. Section 3.3.4

will describe more into details how η3 is computed within the algorithm.

Note that the condition is enforced only for edges that do not belong to the original aggregate

route. In fact, for edges of the original route, the condition is generally not met in proximity

to airports, where sudden changes in the heading are carried out for take off and landing

maneuvers. Without this relaxation, a departure along the original aggregate route that is

not affected by convective weather could erroneously be discarded.

Values for η1, η2 and η3 are not fixed, and can be modified according to some specific

requirements. As an example, η2 could even be removed from the cost, since in real scenarios

there is no actual penalization when leaving the planned route, if the maneuver is accepted

by an ATC. This also leads to an assumption of our model. When designing an airborne

rerouting maneuver, we imply such maneuver will be accepted by the ATC in charge. This

approach is also used by [67] and [55], where rerouting is not necessarily bounded to follow

64

a specific sequence of waypoints. References [74, 75, 76] are based on a different approach

that is waypoint-based and favors edges connecting waypoints characterized by a high traffic

volume according to historical data.

Considering η1 and η3, their values are considerably higher than η2 since, if activated, they

correspond to scenarios to be avoided. In practice, the activation of η1, which implies that

the path encounters a weather polygon somewhere, might still lead to a flyable route. In

fact, (i) we are using approximated polygons that only a percentage of pilots would avoid,

and (ii) the path might only slightly intersect the weather front, thus generating a scenario

that most pilots would still consider safe. This is a level of accuracy that our model is not

able to catch, while it is the main focus of purely tactical works such as [55].

3.3.2 Ground Holding vs. Airborne Rerouting Cost Analysis

A factor to consider when designing an airborne reroute, is how the delay it introduces com-

pares to an equivalent delay on the ground. In fact, there exists a threshold α (adimensional

number) such that if the ratio between the ground holding delay and the airborne delay is

smaller than the threshold, ground holding is preferred. Literature [8] agrees that α > 1,

which means that ground holding is preferred when the two options introduce the same de-

lay. How to estimate α is, by itself, a research topic of great interest, since it involves all the

direct and indirect costs associated with an aircraft.

For our work, we are looking for a reasonable estimate to justify if the design of an airborne

rerouting path is advisable. If convective weather fronts are moving such that a small ground

holding would still lead to a clear route, airborne rerouting might not even be necessary.

References [20, 21] provide an exhaustive study that maps costs on the ground and airborne

for a set of commercial aircraft under different scenarios. The work is further extended

65

in [31], where three types of delay are considered. They are

• Tactical Delay Without Network Effect (TDWONE), i.e., the delay introduced by a

maneuver without considering the reactionary delay caused by other aircraft.

• Tactical Delay With Network Effect (TDWNE), i.e., the delay introduced by a maneu-

ver considering the reactionary delay caused by other aircraft.

• Strategic Delay (SD), i.e., a buffer that is already allocated into nominal schedules in

anticipation of delays.

The three types of delay account for costs deriving from fuel, maintenance, crew, passenger

handling, airport charges etc. The same cost, computed for a different type of delay, is

generally characterized by similar values (expressed in e/min). As example, crew cost are

7.2, 8.6, 8.4 for TDWONE, TDWNE, SD respectively. Differences can be more evident when

the same cost, for the same type of delay, refers to a ground or airborne delay. Fuel costs,

as example, are 0.1/19.8, 0.2/19.8, 1.3/24 (ground/airborne) for TDWONE, TDWNE, SD

respectively. If the aircraft is held on the ground, the extra amount of fuel necessary is

very limited. On the other hand, an airborne delay generates a substantial fuel-related cost.

Maintenance costs double as well when considering an airborne delay instead of a ground

delay. Some costs do not change at all, like passenger compensation, while airport charges

apply only to ground delays. Table 3.1 summarizes the overall cost for the three different

delay types.

Table 3.1: Overall cost (e/min) for the three delay types TDWONE, TDWNE, SD, divided
into a ground and airborne component. (Data from [31]).

TDWONE TDWNE SD
Ground Airborne Ground Airborne Ground Airborne

Overall cost 53.2 72.9 90.8 110.5 16.7 51.0

66

The delay type we consider is TDWONE. In fact, our goal is to compare, for a given scheduled

departure that is blocked by weather, what is the control form (ground holding or airborne

rerouting) that is most efficient. Thus, we want to compare the two controls by weighting

the delay introduced by a maneuver without considering the reactionary delay caused by

other aircraft, i.e., we want to consider TDWONE as reference. As a consequence, a value

of α =
72.9

53.2
= 1.37 will be used.

3.3.3 Shortest Path Algorithm Structure

Given a departure from an aggregate route scheduled at tk, where k ∈ [1, 2, · · · , Nt] being Nt

the number of discrete time-steps in the planning horizon, our primary goal is to understand

if the effect of convective weather is such that the scheduled departure will be delayed

consistently. If so, an airborne rerouting maneuver is searched that (i) avoids the convective

weather that affects the original route, and (ii) introduces a smaller delay with respect to

the ground holding solution.

The process can be summarized with the flowchart depicted in Fig. 3.11. Given an aggregate

route with Nr nodes and a scheduled departure at tk, the shortest path algorithm is first

applied to the original route only. If the route is clear, the cost of the path is (Nr−1)∆t, i.e.,

the scheduled time of flight. Otherwise, the same problem is solved for some later departure

times tk+1, tk+2 etc, and the smallest departure time (if any) such that the cost is (Nr−1)∆t

is selected. A heuristic that can be applied is that, if there exists a departure time such

that (i) the associated ground holding is “small” enough, and (ii) the aggregate route is now

clear, then ground holding is still preferred to airborne rerouting. As example, considering

∆t = 5 min, a delay of 2∆t = 10 min that results in a clear route might be small enough to

avoid airborne rerouting. For scheduled departures with a prolonged ground holding (which

could even result in a ground stop), an airborne rerouting path is searched.

67

Load an aggregate route and
a scheduled departure at tk

Identify convective
weather polygons in-

side the search space and
compute edge cost along
original aggregate route

Is dGH small? STOP

Compute edge cost
for augmented graph

Is there a
solution

such that
αdAR ≤ dGH?

STOP

Add airborne re-
routing option

Y

N

N

Y

Figure 3.11: Flowchart describing how the airborne rerouting design problem is addressed.

68

This procedure has two main objectives. (i) Identify which aggregate routes (and scheduled

departures) are not affected by convective weather, and (ii) for aggregate routes that are

affected by convective weather, obtain an estimate of the ground holding that would result

in an unimpeded path. In particular, for objective (ii) there might not even be a solution

with a cost (Nr−1)∆t. This is the case if a static or quasi-static convective weather polygon

is impeding an aggregate route.

If an airborne rerouting deviation is recommended, the shortest path algorithm is run again,

this time applied to the augmented graph. The delay introduced is compared with the

ground holding delay that corresponds to an unimpeded path (if existing). Labeling dGH the

ground holding delay, and dAR the airborne rerouting delay, if the inequality αdAR ≤ dGH

is satisfied, then the airborne rerouting option is added to the network flow model. For the

airborne rerouting path, the delay introduced (as a multiple of ∆t) is easily determined as

the difference between the number of nodes of the airborne path and the number of nodes

of the original aggregate route.

3.3.4 Shortest Path Algorithm Implementation

For the computation of the shortest path, the A∗ algorithm [35, 83] is used. This is a variation

of the classic Dijkstra algorithm [27], where a heuristic cost is added to solve more efficiently

the shortest path problem. With respect to the original algorithm, that generally addresses

a time-invariant scenario, two main changes are applied. They account for (i) an edge cost

which is time-variant due to the spatial evolution of convective weather polygons, and (ii)

the heading-reachability requirement. Both changes are easily applicable given the nature

of the algorithm, which stores for each node the best path (and associated cost) from origin

to the current node. Given the current active node [27], the length of the path (intended as

number of nodes) is used to select the correct time instance for the edge cost computation

69

(i.e., the appropriate k in Eq. 3.6). For each node belonging to the position-reachable set,

the active node and the previous node belonging to the stored path are used to verify if the

heading condition is satisfied. Labeling ~N1, ~N2, ~N3 the node preceding the active node, the

active node and the current position-reachable node, the heading condition is satisfied if

cos−1

(
〈 ~N2 − ~N1, ~N3 − ~N2〉
| ~N2 − ~N1|| ~N3 − ~N2|

)
≤ ∆ψ (3.7)

Additionally, a proper heuristic function h(u) needs to be chosen when solving the problem

with the A∗ algorithm. A requirement of the heuristic function, is that it must satisfy the

triangular inequality [83]. Given a node u and a node v reachable from node u via the edge

(u,v), the triangular inequality

h(u) ≤ e(u, v) + h(v) (3.8)

where e(u, v) is the cost of the edge connecting nodes u and v, must hold. We show that a

proper heuristic function is

h(u) =
d(u, cfin)

V
(3.9)

where d(u, cfin) is the distance between the considered node and the last cruise phase node

of the original aggregate route, and V is the average cruise speed of the aggregate route.

Considering a generic node u, given the framework of the rerouting model, every position-

70

reachable node v (i) has a distance range from u in the interval [ηminV∆t, ηmaxV∆t], and

(ii) belongs to the half-plane containing u and cfin. We can use the law of cosines to express

d(v, cfin) as

d(v, cfin)2 = (ηV∆t)2 + d(u, cfin)2 − 2ηV∆td(u, cfin) cos θ (3.10)

where θ is the angle between d(u, cfin) and e(u, v). If inequality 3.8 is satisfied when the right

hand side reaches its minimum value possible, then it will hold for any position-reachable

node from node u. In Eq. 3.10, d(v, cfin)2 is minimized if θ = 0, so that d(v, cfin)2 =

(ηV∆t)2+d(u, cfin)2−2ηV∆td(u, cfin), which implies d(v, cfin) = d(u, cfin)−ηV∆t. d(v, cfin)

is further minimized if η = ηmax = 1, so that d(v, cfin) ≥ d(u, cfin) − V∆t. Practically,

d(v, cfin) is minimized if the aircraft moves along the line connecting u and cfin at the ma-

ximum speed allowed. At the same time, every edge in the graph has a cost which is no

smaller than the time-step of the model ∆t. Thus, e(u, v) ≥ ∆t.

Proof. Let u, v be two nodes of the graph s.t. v is position-reachable from u. So,

h(u) ≤ e(u, v) + h(v)

d(u, cfin)

V
≤ ∆t+

d(u, cfin)− V∆t

V
d(u, cfin)

V
≤ ∆t+

d(u, cfin)

V
−∆t

d(u, cfin)

V
≤ d(u, cfin)

V

Since the inequality holds when both e(u, v) and h(v) are minimized, the triangular inequality

holds for any position-reachable node v from node u, and h is a valid heuristic function for

the A∗ algorithm.

71

The goal of the algorithm is to find the shortest path (intended as the path with the minimum

cost) between nodes 1 and Nr (origin and destination of the original aggregate route), such

that convective weather polygons and heading changes exceeding a threshold are avoided.

We show the application of the procedure to the aggregate route from LAX to DEN that has

been used throughout the chapter, assuming a departure at 0:00 UTC on 07/07/2011. The

aggregate route and search space have already been introduced in Fig. 3.5. CWAM polygons

are approximated as described in Sec. 3.2.

The ground holding solution is solved first, and results in terms of cost are shown in Table 3.2.

Note that the cost we are considering does not account for the heuristic component h(u).

The aggregate route has 23 nodes from origin to destination, which means the cost of an

unimpeded flight is 22∆t = 6600 s, which is the estimated time of flight for the aggregate

route.

Table 3.2: Evolution of the path cost (without the heuristic component h(u)) of the example
presented, for different departure times.

Departure time [UTC] Cost [s]
0:00 606000
0:05 606000
0:10 306300
0:15 6600

For both the scheduled departure time 0:00 UTC and 0:05 UTC, two edges are impeded

along the path. For a departure at 0:10 UTC, one edge is impeded, while a departure at

0:15 UTC would find an unimpeded path. Thus, a ground holding delay of 15 minutes (i.e.,

3∆t), is enough not to intersect any convective weather polygon.

We now solve the same shortest path algorithm applied to the augmented graph. Given

a departure at time 0:00, we obtain a solution with a sequence of 24 nodes (of which 2

do not belong to the original route) and a cost of 10500. The cost is the summation of

72

21 unimpeded edges of the original aggregate route, and of 3 edges that do not belong to

the original route, i.e., 21∆t + 3η2∆t = 6300 + 4500 = 10500. We can design an airborne

rerouting maneuver without pushing back the scheduled departure time, and that introduces

an airborne rerouting delay of 5 minutes (i.e., ∆t). Considering Fig. 3.11, we need to verify

if αdAR ≤ dGH . In this case, 1.37∆t ≤ 3∆t is verified, thus the airborne rerouting option if

preferred. For the airborne rerouting solution, Fig. 3.12 shows for different time instances

the position of the aircraft and the CWAM polygons within the search space.

For all scheduled departures with CWAM polygons entering the associated search space,

the routine presented in this chapter is carried out. All airborne reroutes paths generated

and accepted following the rationale of Fig. 3.11 are added to the ARM baseline that was

described in Chap. 2.

73

−6 −4 −2 0 2 4 6

x 10
5

−3

−2

−1

0

1

2

3

x 10
5

Horizontal position [m]

V
e

rt
ic

a
l
p

o
si

ti
o

n
 [

m
]

(a) 0:15 UTC.

−6 −4 −2 0 2 4 6

x 10
5

−3

−2

−1

0

1

2

3

x 10
5

Horizontal position [m]

V
e

rt
ic

a
l
p

o
si

ti
o

n
 [

m
]

(b) 0:45 UTC.

−6 −4 −2 0 2 4 6

x 10
5

−3

−2

−1

0

1

2

3

x 10
5

Horizontal position [m]

V
e

rt
ic

a
l
p

o
si

ti
o

n
 [

m
]

(c) 1:00 UTC.

−6 −4 −2 0 2 4 6

x 10
5

−3

−2

−1

0

1

2

3

x 10
5

Horizontal position [m]

V
e

rt
ic

a
l
p

o
si

ti
o

n
 [

m
]

(d) 1:20 UTC.

−6 −4 −2 0 2 4 6

x 10
5

−3

−2

−1

0

1

2

3

x 10
5

Horizontal position [m]

V
e

rt
ic

a
l
p

o
si

ti
o

n
 [

m
]

(e) 1:30 UTC.

−6 −4 −2 0 2 4 6

x 10
5

−3

−2

−1

0

1

2

3

x 10
5

Horizontal position [m]

V
e

rt
ic

a
l
p

o
si

ti
o

n
 [

m
]

(f) 1:45 UTC.

Figure 3.12: Temporal evolution of the airborne rerouting solution computed.

74

Chapter 4

Aggregate Route Model as a Discrete

Linear Time-Invariant System

In Chap. 2 and Chap. 3, a procedure has been described to compute a network flow repre-

sentation of the air traffic flow. Each of the 3na + 1 network components is represented with

a directed graph Gnc = (Nnc, Enc) [78]. Overall, the graph-oriented approximation of the air

traffic flow is a network because of the presence of source and sink nodes, and because of flow

limitations. In Sec. 4.1, we describe the dynamics of an uncontrolled network component.

Then, in Sec. 4.2, we describe (i) the controls used to modify the scheduled air traffic flow,

i.e., ground holding. pre-departure rerouting, and airborne rerouting, and (ii) the matrix

form of the controlled dynamics of a network component. We also show the effect of controls

on the system with two simple examples. Finally, Sec. 4.3 shows how the dynamics of the

network components are assembled together.

75

4.1 Uncontrolled Traffic Flow Dynamics for a Network

Component

The dynamics for each network component are uncoupled from those of the other network

components. Because the formulation for the dynamics of each network component is similar,

here we only develop the dynamics for a single network component in detail, and then we

describe how the different blocks are assembled into the complete network dynamics in

Sec. 4.3.

Consider a network component with Nr aggregate routes and total number of nodes Nn =∑Nr

i=1 Ni, where N1, N2, · · · , NNr are the numbers of nodes on the individual routes. The

uncontrolled dynamics take the form of a discrete linear time-invariant system expressed as

X0 =X (t0) (4.1)

X (tk+1) =AX (tk) + Cb(tk+1), k = 0, 1, · · · , Nt − 1

where X (tk) = [x1(tk) x2(tk) · · · xNn(tk)]
T ∈ ZNn is the state at time tk. Each state variable

defines the number of aircraft in the associated node. Recalling that origins can be airports

inside the planning domain or entry points on the boundary of the domain, the scheduled

departures at tk+1 are represented by the vector b(tk+1) ∈ ZNr . Let C ∈ ZNn×Nr denote the

constant, integer-valued matrix that maps the scheduled departures at tk+1 into the state

vector at tk+1. That is, C places new departing airplanes at the first node (i.e., origin node)

of an aggregate route. A ∈ ZNn×Nn is the constant, block diagonal, integer-valued system

dynamics matrix. It propagates the aircraft, at each node, one node forward on the same

route each time-step. Because routes are unidirectional, each diagonal block consists of ones

76

on the subdiagonal and zeros elsewhere, namely

A =



A1 0 0 · · · 0

0 A2 0 · · · 0

...
...

...
...

...

0 0 0 · · · ANr


, where Ai =



0 0 0 · · · 0

1 0 0 · · · 0

...
...

...
...

...

0 0 · · · 1 0


(4.2)

is a Ni ×Ni matrix. , Each aggregate route is thus an acyclic rooted tree [1, 24, 42], where

(i) there is no aircraft exchange with other aggregate routes, (ii) aircraft cannot occupy the

same node more than one time-step, and (iii) aircraft move from the current node to the

next one. Given Nt time-steps and an initial state vector X0, using Eq. 4.1 recursively, the

component state vectors for times t1, t2, · · · , tNt can be expressed as



X (t1)

X (t2)

...

X (tNt−1)

X (tNt)


︸ ︷︷ ︸

Xnc

=



A · · · 0 0

0 · · · 0 0

...
. . .

...
...

0 · · · ANt−1 0

0 · · · 0 ANt


︸ ︷︷ ︸

Anc



X0

X0

...

X0

X0


︸ ︷︷ ︸
X0nc

+



C · · · 0 0

AC · · · 0 0

...
. . .

...
...

ANt−2C · · · C 0

ANt−1C · · · AC C


︸ ︷︷ ︸

Cnc



b(t1)

b(t2)

...

b(tNt−1)

b(tNt)


︸ ︷︷ ︸

bnc

(4.3)

Figure 4.1 shows an example of network component with Nr = 2 and Nn = 6. Route A is

characterized by the ordered sequence of nodes 1, 2 and 3. Route B is characterized by the

77

1 4

2 5

3 6

Figure 4.1: Example of network component with two aggregate routes.

ordered sequence of nodes 4, 5 and 6. For this network component, A and C are

A =



0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


, C =



1 0

0 0

0 0

0 1

0 0

0 0


(4.4)

A is block diagonal as expected, while the unitary elements (1, 1) and (4, 2) of C place

departures in the origin nodes of the respective aggregate routes.

78

4.2 Traffic Flow Controls for a Network Component

Section 4.1 provides a general formulation that describes how dynamics of the network are

modeled and propagated forward in time as a linear function of the initial state vector and

the scheduled departures vector. Here, we describe what controls are considered, and their

effect on the dynamics. Sections 4.2.1 and 4.2.2 then provide examples to show how the

matrices defined in Sec. 4.1 look like. Three controls are considered in our framework. They

are (i) ground holding, (ii) pre-departure rerouting, and (iii) airborne rerouting.

Each aggregate route is characterized by ground holding. In practice, some aircraft that are

scheduled to take off at a certain time-step, might be held on the ground until the following

time-step. From a graph perspective, ground holding introduces a cycle at the origin node

of each aggregate route. This also implies that, if we neglect the initial state vector, there

always exists a feasible solution to the IP problem, which is a ground stop for all scheduled

departures, as Appendix B shows.

If aircraft can be exchanged between two aggregate routes, pre-departure rerouting can be

exploited as a control. Unless differently specified, we will consider pre-departure rerouting as

bi-directional. From a graph perspective, pre-departure rerouting couples different aggregate

routes, which can now exchange aircraft.

Note that ground holding and pre-departure rerouting are defined once the ARM as described

in Chap. 2 is computed. All aggregate routes of internal or exiting network components can

be controlled with ground holding. For internal aggregate routes, if more than one aggregate

route exists connecting the same O-D airport pair, pre-departure rerouting can be exploited.

For exiting aggregate routes, the proximity of the boundary crossing nodes is used as a

driver to detect if pre-departure rerouting is applicable. For entering aggregate routes and

overflights aggregate routes, a control that is equivalent to ground holding, from a graph

perspective, can still be applied to origin nodes. In this case, origin nodes do not define

79

airports, but boundary crossing nodes with aircraft in enroute phase. The effect of this

control is thus to place aircraft on a holding pattern. Such controls should be weighted

differently, since they are applied to origin nodes that are formally airborne, as Chap. 5

describes.

If aircraft are allowed to leave the original aggregate route from a node that is not the origin

node and then rejoin the aggregate route, airborne rerouting is the control action applied.

From a graph perspective, the effect is similar to a pre-departure rerouting. Some aircraft

can be moved from the node of the original aggregate route to the first node of the airborne

branch at the current time. Airborne rerouting has three distinctive features. (i) It creates

additional nodes that were not part of the original network, thus increasing the size of the

network. (ii) It creates merging nodes in correspondence of nodes where a reroute branch

rejoins the original aggregate route. From a graph perspective, the adjacency matrix A will

now show non-zero elements out of the block diagonal structure (refer to Sec. 4.2.2 for an

example). (iii) Airborne rerouting is not bi-directional, as aircraft can leave the original

route and be moved on the reroute branch, but not vice-versa.

We introduce controls in Eq. 4.12 as follows

80



X (t1)

X (t2)

...

X (tNt)


︸ ︷︷ ︸

Xnc

=



A 0 · · · 0

0 A2 · · · 0

...
...

...
...

0 0 · · · ANt


︸ ︷︷ ︸

Anc



X0

X0

...

X0


︸ ︷︷ ︸
X0nc

+



C 0 · · · 0

AC C · · · 0

...
...

...
...

ANt−1C ANt−2C · · · C


︸ ︷︷ ︸

Cnc



b(t1)

b(t2)

...

b(tNt)


︸ ︷︷ ︸

bnc

+



D0 0 · · · 0 0

D1 D0 · · · · · · 0

...
...

...
...

...

DNt−2 DNt−3 · · · D0 0

DNt−1 DNt−2 · · · 0 D0


︸ ︷︷ ︸

Bnc



u(t1)

u(t2)

...

u(tNt)


︸ ︷︷ ︸

unc

(4.5)

where Bnc is a lower triangular block-matrix and each blockDi−j maps the effect of uj = u(tj)

(control vector with Nc elements at time tj) on the state at time ti with ti ≥ tj. Each control

variable is associated with a nominal path (i.e., the sequence of nodes an aircraft would

follow if the control were not active), and with an alternate path (i.e., the sequence of nodes

an aircraft would follow if the control is active). In the case of a ground holding, the route is

not changed, but the first node is visited twice before proceeding to the second node, which

in the network sense is a different path. The value of each element of uj is the number

of aircraft that should follow the alternate path instead of the nominal one. Consequently

every component of the control vector must be non-negative. Bnc is lower triangular because

controls cannot affect past states. Each block element Di−j ∈ ZNn×Nc is a sparse matrix,

with at most a ‘−1’ and a ‘+1’ in each column. The −1 location corresponds to the node

of the nominal path that can be reached in i − j steps from the node where the control is

applied. The +1 location corresponds to the node of the alternate path that can be reached

in i− j steps from the node where control is carried out.

81

An explicit formula to calculate D0, · · · ,DNt−1 may be given in terms of the result of control

actions on origin nodes. Define two matrices Da,Db ∈ ZNn×Nc . For both of these matrices,

rows that do not correspond to origin nodes of an aggregate route or an airborne rerouting

node are uniformly 0. For a row in Da that corresponds to an origin node or an airborne

rerouting node, the entries are +1 in columns that correspond to reroutes to that node, and

−1 in columns that correspond to reroutes from that node or to ground holding at that

node. For a row in Db that corresponds to an origin node, the only nonzero values are +1

in columns that correspond to ground holding at that node.

D0, · · · ,DNt−1 may be generated from Da,Db and the dynamics matrix A as D0 = Da,D1 =

ADa + Db, ...,DNt−1 = ANt−1Da + ANt−2Db. This means that Bnc may be expressed in a

form similar to that of Cnc above as follows

Bnc =



Da 0 · · · 0 0

ADa +Db Da · · · 0 0

...
...

...
...

...

ANt−2Da +ANt−3Db ANt−3Da +ANt−4Db · · · Da 0

ANt−1Da +ANt−2Db ANt−2Da +ANt−3Db · · · ADa +Db Da


(4.6)

4.2.1 Network Component Example with Ground Holding and

Pre-Departure Rerouting

A network component with two aggregate routes that can exchange aircraft is modeled. The

network component is shown in Fig. 4.2.

Route A is characterized by the ordered sequence of nodes 1, 2, and 3, while route B is

characterized by the ordered sequence of nodes 4, 5, and 6. For this network component

82

1 4

2 5

3 6

u1→1 u4→4

u1→4

u4→1

Figure 4.2: Example of network component controlled with ground holding and pre-departure
rerouting.

there are four controls per time-step, denoted u1→1, u4→4, u1→4 and u4→1, representing,

respectively, ground holding applied to route A, ground holding applied to route B, pre-

departure rerouting from route A to route B and pre-departure rerouting from route B to

route A. As example, if a flight from route A scheduled to depart at t1 is ground held, then

u1→1(t1) = 1. If a flight is rerouted from route A to route B, then u1→4(t1) = 1.

For this network component, matrices A and C are the same already shown for the equivalent

83

uncontrolled version in Eq. 4.4, and are not repeated here. Matrices Da and Db are

Da =



−1 0 −1 1

0 0 0 0

0 0 0 0

0 −1 1 −1

0 0 0 0

0 0 0 0


, Db =



1 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


(4.7)

Assuming a null initial state, the state for the two origin nodes x1 and x4 for time-steps t1

and t2 is

x1(t1) = b1(t1)− u1→1(t1)− u1→4(t1) + u4→1(t1)

x4(t1) = b4(t1)− u4→4(t1)− u4→1(t1) + u1→4(t1)

x1(t2) = b1(t2) + u1→1(t1)− u1→1(t2)− u1→4(t2) + u4→1(t2)

x4(t2) = b4(t2) + u4→4(t1)− u4→4(t2)− u4→1(t2) + u1→4(t2)

(4.8)

and identifies controlled departures from the origin nodes, as opposed to scheduled departures

b1(t1), b4(t1), b1(t2), b4(t2), respectively. The cumulative effect of ground holding is only

evident for controlled departures at time t2, where maximum aircraft available are now

b1(t2) + u1→1(t1) for route A, and b4(t2) + u4→4(t1) for route B.

84

4.2.2 Network Component Example with Ground Holding, Pre-

Departure Rerouting and Airborne Rerouting

A network component with two aggregate routes that can exchange aircraft is modeled.

In addition, one of the two routes offers an airborne rerouting alternative. The network

component is shown in Fig. 4.3.

1 5

2 6

3 7

4 8

9

10

11

u1→1 u5→5

u1→5

u5→1

u6→9

Figure 4.3: Example of network component controlled with ground holding, pre-departure
rerouting and airborne rerouting.

Route A is characterized by the order sequence of nodes 1, 2, 3 and 4. Route B is character-

ized by the ordered sequence of nodes 5, 6, 7, 8. In addition, airborne rerouting is possible

from node 6. From this node, aircraft can move from node 6 at tk to node 10 at tk+1. Node 9

is an auxiliary node, where aircraft rerouted from node 6 at tk are “instantaneously” moved.

The airborne rerouting route is thus characterized by the order sequence of nodes 9, 10, 11

85

and 8. Node 8 is now a merging node, that receives flow both from node 7 and node 11.

Network component matrices are slightly modified with respect to the case without airborne

rerouting presented in Sec. 4.2.1. For each newly introduced airborne branch, some additional

nodes are added to the original network, which will increase in size. Additionally, given the

presence of some merging nodes (i.e., nodes of the original network where airborne branches

reconnect to the original network), some elements of the adjacency matrix outside the block

diagonal blocks will not be zero any longer. For the network shown in Fig. 4.3, matrices A

and C are shown in Eq. 4.9. In A, the three diagonal blocks mapping the node sequences

1-2-3-4, 5-6-7-8, 9-10-11 are identifiable. In addition, element (8, 11) is now non-zero, since

the airborne branch and route B merge in node 8. In C, the only non-zero elements are

elements (1, 1) and (5, 2), that represent the two origin nodes.

Matrices Da and Db are also similar with respect to the ones introduced in Sec. 4.2.1, and

are shown in Eq. 4.10. Apart from the increment in the overall number of rows to account

for the extra nodes, the structure of the first four columns of Da is unchanged. This is

because the four controls u1→1, u5→5, u1→5 and u5→1 affect the network in the same way the

equivalent controls affected the network component shown in Sec. 4.2.1. In this case, a fifth

column is added to account for airborne rerouting from node 6 to node 9 u6→9. Note that

the structure of the control is identical to a pre-departure rerouting. Aircraft are exchanged

“instantaneously” between node 6 and node 9, which can be regarded as an artificial origin

node.

For this network component, we focus our attention on the state of nodes 6, 8 and 9 at

time-steps t1, t2, t3 and t4, as shown in Eq. 4.11. We also consider the presence of an initial

state vector. For node 6, the state is the algebraic summation of the state transmitted from

the origin node 5 and of the state of node 9, i.e., aircraft that are airborne rerouted. The

state of node 9 at time tk is simply u6→9(tk): this guarantees conservation of flow entering

and exiting node 6.

86

For node 8, i.e., the merging node, state at tk+1 is the summation of the states of nodes 7

and 11 at tk. At t1 and t2, controls do not affect the state. At t3, the potential effect of

airborne rerouting is evident due to the negative term −u6→9(t1). At t4, the aforementioned

negative term appears as positive (due to the different lengths of paths 6-7-8 and 9-10-11-8),

in addition to the new negative term −u6→9(t2). In addition, at t4 controls at origin nodes

have propagated until node 8, as controls u5→5(t1), u1→5(t1), u5→1(t1) in the expression of

x8(t4) confirm.

A =



0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0



, C =



1 0

0 0

0 0

0 0

0 1

0 0

0 0

0 0

0 0

0 0

0 0



(4.9)

87

Da =



−1 0 −1 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 −1 1 −1 0

0 0 0 0 −1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0



, Db =



1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



(4.10)

88

x6(t1) = x5(t0)− u6→9(t1)

x8(t1) = x7(t0) + x11(t0)

x9(t1) = u6→9(t1)

x6(t2) = b5(t1)− u5→5(t1) + u1→5(t1)− u5→1(t1)− u6→9(t2)

x8(t2) = x6(t0) + x10(t0)

x9(t2) = u6→9(t2)

x6(t3) = b5(t2) + u5→5(t1)− u5→5(t2) + u1→5(t2)− u5→1(t2)− u6→9(t3)

x8(t3) = x5(t0) + x9(t0)− u6→9(t1)

x9(t3) = u6→9(t3)

x6(t4) = b5(t3) + u5→5(t2)− u5→5(t3) + u1→5(t3)− u5→1(t3)− u6→9(t4)

x8(t4) = b5(t1)− u5→5(t1) + u1→5(t1)− u5→1(t1) + u6→9(t1)− u6→9(t2)

x9(t4) = u6→9(t4)

(4.11)

4.3 Controlled Network Dynamics

The extension of Eq. 4.5 to multiple network components is straightforward. Given the

assumptions of our model, the dynamics of different network components are uncoupled

(coupling will be present in some constraints, as described in Chap. 5). As a consequence,

full states Xnc of different network components can be stacked vertically. For the right hand

side of the matrix equation, vectors X0nc, bnc, unc will be stacked vertically as well, while

matrices Anc, Cnc, Bnc will be assembled in block diagonal fashion. The states of the overall

controlled network are described by Eq. 4.12

89



Xnc,1

Xnc,2
...

Xnc,3na+1


︸ ︷︷ ︸

Xn

=



Anc,1 · · · 0

0 · · · 0

...
...

...

0 · · · Anc,3na+1


︸ ︷︷ ︸

An



X0nc,1

X0nc,2

...

X0nc,3na+1


︸ ︷︷ ︸

X0n

+



Cnc,1 · · · 0

0 · · · 0

...
...

...

0 · · · Cnc,3na+1


︸ ︷︷ ︸

Cn



bnc,1

bnc,2
...

bnc,3na+1


︸ ︷︷ ︸

bn

+



Bnc,1 · · · 0

0 · · · 0

...
...

...

0 · · · Bnc,3na+1


︸ ︷︷ ︸

Bn



unc,1

unc,2
...

unc,3na+1


︸ ︷︷ ︸

un

(4.12)

or, in more compact form,

Xn = AnX0n + Cnbn + Bnun (4.13)

90

Chapter 5

Strategic Air Traffic Planning as an

Integer Programming Problem

In this chapter, strategic air traffic planning is posed as an IP problem, which is a variation

of the more common LP problem [50, 61, 69, 71]. Given the ARM and a set of scheduled

departures, we want to assess what modifications are necessary to generate an aircraft flow

that minimizes a weighted summation of delays and satisfies a set of constraints. The ARM

described in Chap. 2 and Chap. 3 is characterized by linear time-invariant dynamics that

are described in Chap. 4. With a proper manipulation of the dynamics, linear constraints

can be posed that guarantee (i) no more aircraft than available are controlled, and (ii) the

capacity constraints driven by operational limitations of ATCs and airports are satisfied.

This is described in Sec. 5.1, Sec. 5.2, and Sec. 5.3.

A cost function is also introduced in Sec. 5.4. It is a weighted linear combination of the

delay introduced by the control variables of the ARM, i.e., ground holding, pre-departure

rerouting, and airborne rerouting. The problem we treat is integer because control variables

are integer, since they are the number of aircraft controlled by a specific control. In Sec. 5.5,

91

the solution method and some properties of the solution are presented and discussed.

5.1 Control Constraints and Capacity Constraints

In the IP framework, two types of constraints are modeled. The first set of constraints is

labeled control constraints. For each aggregate route we need to guarantee that the number

of flights delayed or rerouted at each time is not larger than the number of flights available

to depart.

The second set of constraints is labeled capacity constraints. Goal of this set of constraints

is to guarantee that the aircraft traffic flow satisfies capacity limitations imposed by ATCs

and airports. As example, each sector in the NAS can accommodate a limited number of

aircraft simultaneously. At the same time, departures and arrivals from/to each airport are

constrained due to the limited number of runways and operational capabilities of ATCs.

As described in Chap. 4, dynamics of each network component are uncoupled. Control

constraints are imposed on single nodes in the network, and thus preserve uncoupling between

different network components. On the other hand, capacity constraints couple controls of

different network components. In fact, aggregate routes of different network component share

the same airspace and the same airports. Section 5.2 describes how control constraints are

imposed, while Sec. 5.3 describes how the different capacity constraints are formulated. In

both cases, we need to express constraints in the form Ax ≤ b, which is the format required

by the IP formulation.

92

5.2 Control Constraints

Control constraints are directly applied to every node characterized by a control. This means

that a constraint will be imposed on every origin node, and on every node where airborne

rerouting is allowed. Figure 5.1 shows the same example already introduced in Sec. 4.2.2, and

will be used here to describe how control constraints are formulated. Figure 5.1 represents

a network component with two aggregate routes that can exchange aircraft. In addition,

the second aggregate route is characterized by an airborne rerouting branch that can be

exploited. Overall, there are five controls per time-step, denoted u1→1, u5→5, u1→5, u5→1 and

u6→9 representing, respectively, ground holding applied to route A, ground holding applied

to route B, pre-departure rerouting from route A to route B, pre-departure rerouting from

route B to route A and airborne rerouting applied to route B.

1 5

2 6

3 7

4 8

9

10

11

u1→1 u5→5

u1→5

u5→1

u6→9

Figure 5.1: Example of network component used as reference to describe control constraints.

93

We will focus on origin nodes first. Considering Fig. 5.1 again, we can express the state in

origin nodes 1 and 5 for time-steps t1 and t2 as follows

x1(t1) = b1(t1)− u1→1(t1)− u1→4(t1) + u4→1(t1)

x5(t1) = b5(t1)− u5→5(t1)− u5→1(t1) + u1→5(t1)

x1(t2) = b1(t2) + u1→1(t1)− u1→1(t2)− u1→5(t2) + u5→1(t2)

x5(t2) = b5(t2) + u5→5(t1)− u5→5(t2)− u5→1(t2) + u1→5(t2)

(5.1)

which can be more generally extended using the following notation

x1(tk) =


b1(tk)− u1→1(tk)− u1→5(tk) + u5→1(tk) if k=1

b1(tk) + u1→1(tk−1)− u1→1(tk)− u1→5(tk) + u5→1(tk) otherwise

x5(tk) =


b5(tk)− u5→5(tk)− u5→1(tk) + u1→5(tk) if k=1

b5(tk) + u5→5(tk−1)− u5→5(tk)− u5→1(tk) + u1→5(tk) otherwise

For t1, scheduled departures in each origin node can be ground held or pre-departure rerouted

towards the other aggregate route. Each aggregate route can also receive a positive contri-

bution deriving from the pre-departure rerouting flow coming from the other route. For all

later time-steps, there is also the positive contribution of flights that were pushed back from

the previous time-step. From a graph perspective, this is due to the cycle we introduced in

the origin node.

94

To impose control constraints, we impose that the algebraic summation of scheduled de-

partures from the current origin node and controls affecting the same origin node must be

non-negative. For the two origin nodes mentioned above, control constraints are imposed as

follows


u1→1(tk) + u1→5(tk) ≤ b1(tk) if k=1

−u1→1(tk−1) + u1→1(tk) + u1→5(tk) ≤ b1(tk) otherwise


u5→5(tk) + u5→1(tk) ≤ b5(tk) if k=1

−u5→5(tk−1) + u5→5(tk) + u5→1(tk) ≤ b5(tk) otherwise

For each aggregate route we need to guarantee that the number of flights delayed or rerouted

at each time is not larger than the number of flights available to depart; this could be the

number of originally scheduled departures, or more if flights have been delayed at previous

times. For the origin node of each controllable aggregate route, the summation of the sche-

duled departures and the control actions modifying those departures must be non-negative.

Note that this approach is slightly different than requiring states in nodes 1 and 5 to be non-

negative. With our approach, scheduled departures only account for departures that were

originally scheduled to use the aggregate route the current origin node belongs to. The impo-

sition of the non-negativeness of states in origin nodes, would consider the additional positive

contribution of aircraft that are rerouted from other aggregate routes. As an example, for

node 1 this approach would translate into constraints u1→1(tk)+u1→5(tk)−u5→1(tk) ≤ b1(tk)

for k = 1, and −u1→1(tk−1)+u1→1(tk)+u1→5(tk)−u5→1(tk) ≤ b1(tk) otherwise. Our approach

is based on the assumption that, for each aggregate route, decisions on the number of aircraft

95

to control should be based on the available number of aircraft scheduled to depart along that

route. The addition of aircraft from other routes defines the overall controlled number of

departures per each time-step. As example, the state of node 1 at t2 defines the controlled

departures along the first aggregate route at that time-step, and also contains term u5→1(t2).

This term is not considered when imposing control constraints on node 1, but is accounted

for when considering capacity constraints (e.g., departure capacity constraints).

Note that our approach guarantees also the non-negativeness of states at origin nodes. In

fact, controls that are not explicitly accounted for, are all non-negative. Thus, they can only

increase a quantity that is constrained to be non-negative already.

We now focus on airborne rerouting control constraints. Unlike origin nodes, airborne re-

routing nodes are not characterized by a cycle. They only receive aircraft from a node of

the original aggregate route. Referring to Fig. 5.1 again, we can express the state of the air-

borne rerouting node on the original route x6 and the state of the first node of the airborne

rerouting branch x9 as follows

x6(t1) = x5(t0)− u6→9(t1)

x9(t1) = u6→9(t1)

x6(t2) = b5(t1)− u5→5(t1)− u5→1(t1) + u1→5(t1)− u6→9(t2)

x9(t2) = u6→9(t2)

(5.2)

For each airborne rerouting node there is an upper bound on the number of aircraft that can

be rerouted. The upper bound is the state of the upstream node at the previous time-step.

This translates into the imposition that the state in the airborne rerouting node on the

original aggregate route (x6 in our case) must be non-negative. Referring to Fig. 5.1

96

u6→9(t1) ≤ x5(t0)

u6→9(t2) ≤ b5(t1)− u5→5(t1)− u5→1(t1) + u1→5(t1)

(5.3)

For each network component, recalling Eq. 4.5, control constraints for origin nodes are

expressed in matrix form as

Mnc
co unc ≤ bnc (5.4)

where Mnc
co is a (NrNt, NcNt) matrix (being Nr the number of aggregate routes and Nc

the number of controls) that maps controls. For each origin node, columns associated with

controls from that node are characterized by a +1, the column associated with ground control

from the previous time-step is characterized by a -1. Note that the latter case is active only

from t2 on.

Control constraints for airborne rerouting nodes are written in matrix form, recalling again

Eq. 4.5, as

−Mnc
ca Bncunc ≤Mnc

ca (AncX0nc + Cncbnc) (5.5)

where Mnc
ca is a (NarNt, NcNt) matrix (being Nar the number of airborne rerouting nodes of

the network component). Each row of the matrix is filled with zeros, apart from a single

unitary element that corresponds to an airborne rerouting node at a specific time-step.

Eq. 5.5 satisfies the required format for the IP problem.

97

When extending Eq. 5.4 and Eq. 5.5 to the full network, matrices Mnc
co and Mnc

ca are stacked

in block diagonal fashion, while vectors bnc are vertically stacked. For the full network we

will have

Mn
co︸︷︷︸

Aco

un ≤ bn︸︷︷︸
bco

(5.6)

for origin nodes and

−Mn
caBn︸ ︷︷ ︸

Aca

un ≤Mn
ca(AnX0n + Cnbn)︸ ︷︷ ︸

bca

(5.7)

for airborne rerouting nodes.

5.3 Capacity Constraints

Capacity constraints are constraints that regulate the aircraft flow to avoid congestion both

in the enroute phase and for proximity operations (i.e., take off and landing). There are

constraints on the following:

1. Sector capacity: An upper bound on the number of aircraft within a sector.

2. Airport capacity: Due to the availability of runways, as well as control tower opera-

tional capabilities, departure and arrival rates for each airport have upper bounds.

3. Flow capacity: Due to the physical dimension of cells mapping the nodes of the ARM,

98

an upper bound on the state of nodes is posed. Also, in-plane separation between

aircraft (by definition, a non-linear constraint) can be treated in an approximated way

as a flow capacity constraint.

4. Convective weather blockage: An upper bound (possibly 0) on node capacity in regions

with convective weather.

These are all capacity constraints, possibly time-varying, on the number of aircraft within a

set of nodes that belong to a sector, airport, or portion of a route. They can be defined by

multiplying the system dynamics in Eq. 4.12 by a matrix that sums the state values for the

relevant nodes at each time-step, and then requiring that the resulting sums are less than or

equal to the bounds.

5.3.1 Sector Capacity

The NAS is subdivided into sectors, i.e., regions of the airspace characterized by a specific

boundary, each controlled by an ATC. Due to operational capabilities, each sector can handle

a maximum number of aircraft simultaneously. The NAS is divided into two types of sectors:

low and high. Low sectors are characterized by a lower maximum flight level, and define

regions of the NAS closer to airports, where departure and arrival maneuvers need to be

coordinated at a tactical level. High sectors are characterized by a higher maximum flight

level, and define the enroute phase of the aircraft flow. For strategic purposes, we will focus

on high sectors when assessing sector capacity constraints.

For each high sector in D and for each time-step of the planning horizon, the summation of

the state variables inside the sector must not exceed the maximum capacity of such sector.

Considering Ns high sectors, a (Ns, Nn) matrix ms is defined, where elements of the i-row are

1 if the corresponding node is inside the i-th sector, and zero otherwise. Basically, each row

99

maps the state into the sector count. We then build matrix Mnc
s by stacking Nt times matrix

ms in block diagonal fashion. Mnc
s of different network components are then horizontally

stacked to obtain the network sector capacity matrix Ms. Recalling Eq. 4.12, we can write

MsBn︸ ︷︷ ︸
An

s

un ≤ ηs −Ms(AnX0n + Cnbn)︸ ︷︷ ︸
bns

(5.8)

where ηs is a (NsNt, 1) vector containing the upper bounds for each sector at all time-steps.

5.3.2 Departure and Arrival Capacity

For each airport, departures and arrivals are subject to constraints that depend on the

number and geometry of the runways available. Generally, take off and landing operations

must follow standardized procedures that assign some specific runways to departures, and

some other runways to arrivals, unless ATCs authorize otherwise. As example, consider the

LAX airport runway configuration, as shown in Fig. 5.2. This airport is one of the few

airports in the world with four parallel runways, labeled 6L/24R, 6R/24L, 7L/25R, 7R/25R

going from North to South. For each runway, the number represents the heading divide by

ten (e.g., 6 means 60 deg, being 0 deg the North direction and 90 deg the East direction),

while the addition of a letter is necessary in case of parallel runways. As example, runways 6L

and 6R are parallel, with runway 6L being the left-most runway for an aircraft approaching

LAX from the West. Each runway is also characterized by the “complementary” label that

identifies an approach from the other direction. 180 deg are added to the heading, and left

and right are switched in case of parallel runways. Thus, runways 6L and 6R become 24R

and 24L, respectively, for an aircraft approaching from East. Also, note that although all

four runways are characterized by the same heading (i.e., 70 deg), the heading of the two

100

northern runways is fictitiously changed to 60 deg to avoid confusion. This is a common

procedure anytime more than three parallel runways are present.

According to [48], westerly operations is the normal traffic pattern used at LAX during the

daytime (6:30 AM to midnight) throughout the year. Aircraft approach the airport from

the East and depart the airport to the West due to the prevailing westerly wind. Two other

operational schemes, namely over-ocean and easterly operations, are implemented during

the more noise-sensitive night-time (midnight to 6:30 AM) and when weather conditions

(rainstorms or Santa Ana winds) require to reverse the traffic flow of the airport, respectively.

If westerly operations are implemented, departures are operated via inboard runways (6R and

7L), while arrivals are operated via outboard runways (6L and 7R). Reference [48] reports

that, in 2013, the runway utilization for the north complex (runways 6L and 6R) was 97%-3%

for inboard-outboard departures, and 8%-92% for inboard-outboard arrivals. The runway

utilization for the south complex (runways 7L and 7R) was 91%-9% for inboard-outboard

departures, and 6%-94% for inboard-outboard arrivals.

For the majority of the traffic flow, two runways allocate departures, and two allocate arrivals,

even though the reported percentages show that small variations are possible. Variations

depend on the operational scheme adopted, or on unpredicted contingencies affecting the

airport. As example, given a higher number of passenger gates and air cargo facilities on the

south complex, runways 7L and 7R generally experience a greater number of operations. This

also implies that, in high traffic conditions, some aircraft leaving from the south complex

gates might depart from the outboard runway 7R (generally used for arrivals), in order

to avoid the unnecessary crossing of active runways. Lastly, variations might depend on

aircraft-specific requirements. As example, both the Boeing 747-800 and the Airbus A380

are not allowed to take off from runway 7L due to insufficient spacing between the runway

and taxiway B due to an expanded wingspan. As a consequence, they are required to take

off from runway 7R, which is generally dedicated to arrivals.

101

CAUTION: BE ALERT TO RUNW AY CROSSING CLEARANCES.

READBACK OF ALL RUNW AY HOLDING INSTRUCTIONS IS REQUIRED.

A
IR

P
O

R
T

 D
IA

G
R

A
M

A
IR

P
O

R
T

 D
IA

G
R

A
M

L
O

S
 A

N
G

E
L

E
S

, C
A

L
IF

O
R

N
IA

L
O

S
 A

N
G

E
L

E
S

, C
A

L
IF

O
R

N
IA

A
L

-2
3
7
 (F

A
A

)

1
5

3
4

4

1
5

3
4

4

INSTRUCTED TO CONTACT GROUND CONTROL

ON TOW ER FREQUENCY UNTIL SPECIFICALLY

LANDING AIRCRAFT CAN EXPECT TO REMAIN

 PCN 75 R/A/W /T

RW Y 07R-25L

 PCN 70 R/A/W /T

RW YS 06L-24R, 06R-24L, 07L-25R

118°26’W 118°25’W 118°24’W 118°23’W

33°56’N

33°57’N 2
4
L

2
4
R

E7

V
V

E
8E

1
0

250.7°

250.7°

8926 X 150

10285 X 150Y

Y

E
1
3

A
A

A
ABB

B
B

E
1
7

6
R

6
L

113

ELEV

110

ELEV

070.7°

070.7°

E17

A
A

A
A

E
1
6

E
1
5

E
1
7

E

E
E

E

E

HS 1 113

ELEV

119

ELEV

HS 7

D
7

D
8D
9

D
1
0

D
D

D
D

S

S

E
1
2R

R

ADMINISTRATION

CONCRETE PAD

A
T
C
 N

O
N
-V
IS
IB
ILIT

Y
 A

R
E
A

A
T
C
 N

O
N
-V
IS
IB
ILIT

Y
 A

R
E
A

GUARD

COAST

STATION

FIRE

FARM

FUEL

A
T
C
 N

O
N
-V
IS
IB
ILIT

Y
 A

R
E
A

070.7°

070.7°

7
L

7
R

B
1
6

B

C

C
1
8

C
1
7

C
1
5

C
1
4

U

U

U
U

120

ELEV

122

ELEV
A

H

T
T

T
T

P
P

PS

B

C

TB
1
3

C
1
0

C
9

C
8

C
7

C
6

C
5

C
4

C
3

C
2

C
1

C
6C
7C
8C
9

C
1
0

B6
B5 B4

G

B
3 J

F

B
1

F

F

B
1

J

H1

H2

G
G

H
3H4

A
4 A
1

A
2A
3A
5A
6A7

H8
H6

H9

M

M
H

2
5
L

2
5
R

250.7°

250.7°

98

ELEV

94

ELEV

0.3% UP

0.3% UP

BB
C

H

A

A

B

B

C

A

H

B

C

H

A

ICC

12091 X 150

11095 X 200

HS 6
HS 5

AVIATION

ATLANTIC AVIATION

LANDMARK

FIELD
ELEV
128

HS 4

HS 2

PADS

SOUTH

GATES

REMOTE

W EST/

E

200 X 200

BLAST PAD

D
7

200 X 200

BLAST PAD

120 X 150

BLAST PAD

200

200 X

BLAST PAD

280

400 X

BLAST PAD

400 X 280

BLAST PAD

D
1
0

D
8D
9

C
1

C
1
2

C

B

C

B

E
1
1

D
E

L
O

S
 A

N
G

E
L

E
S

 IN
T

L
(L

A
X

)

L
O

S
 A

N
G

E
L

E
S

 IN
T

L
(L

A
X

)

R1

T

T1

120.35 327.0

CLNC DEL

S 121.75 327.0

N 121.65 327.0

W 121.4 327.0

GND CON

S 120.95 379.1

N 133.9 239.3

LOS ANGELES TOW ER

 DEP 135.65

ATIS ARR 133.8

389

TW R

V
A
R

1
2
.3
°

E

0.1°W

ANNUAL RATE OF CHANGE

JANUARY 2015

HS 3

Runway Status Lights in operation.

ASDE-X in use. Operate transponders

with altitude reporting mode and ADS-B

(if equipped) enabled on all twys and rwys.

Z

Z

W
W

N
N

N

D

SW-3, 10 DEC 2015 to 07 JAN 2016

SW-3, 10 DEC 2015 to 07 JAN 2016

Figure 5.2: Runway diagram for LAX.

The LAX example is particularly significant to understand the complexity of surface opera-

tions that encompass gate leaving, taxiing and actual take off [36, 37]. The same complexity

can be found in arrival procedures [15] to time landings and ensure safety. In our strategic

planning, we do not have the ambition to treat departures and arrivals with such a degree

of accuracy, but we acknowledge that limitations exist on departures and arrivals. As a

consequence, we use a data-driven approach to compute (i) upper bounds on departures and

arrivals per hour, and (ii) upper bounds on departures and arrivals per time-step.

Both constraints are relevant in a strategic framework. In fact, as already introduced in

Chap. 2, constraints (i) represent the Gilbo envelope [34] for a given airport, and define the

maximum hourly load the airport can handle in terms of departures and arrivals. In Fig. 5.3,

the Gilbo envelope for LAX is shown: the airport cannot handle more than 53 departures

102

per hour and 54 arrivals per hour. The two upper bounds cannot be reached simultaneously

due to the presence of the sloped constraint. At the same time, it is important to provide an

estimate of the capability of each airport per time-step. Otherwise, a solution might exists

that is contained in the Gilbo envelope, but that forces aircraft to take off and/or land at a

rate that the airport cannot sustain.

10 0 10 20 30 40 50 60

Departures [1/h]
10

0

10

20

30

40

50

60

Ar
riv

al
s

[1
/h

]

x≤ 53
y≤ 54
y≤ - 1.22x + 96.78

Processed Data Points
Outliers
Convex Hull
Gilbo Envelope

Figure 5.3: Gilbo envelope for LAX.

For constraints (ii), we process the historical dataset introduced in Chap. 2. For all the

airports of interest, departures and arrivals are grouped into bins whose time interval is the

time-step of the model ∆t. As example, if ∆t = 5 min, departures and arrivals for each

airports will be divided into time intervals as follows 0:00:00-0:04:59 UTC, 0:05:00-0:09:59

UTC etc. For both departures and arrivals, the maximum value among the different bins

will be selected as the upper bound. In general, the maximum number of departures and

arrivals per time-step is a time-dependent quantity. Airports will reach maximum operational

capabilities during peak hours, releasing and absorbing a higher number of aircraft. Thus,

this constraint could be easily turned into a time-dependent constrain. At the same time, we

are mostly interested in an upper bound that represents a maximum operational capability.

103

Even though the overall number of hourly departures and arrivals decreases consistently for

non-peak hours (see Fig. 5.3), we are interested in the maximum capability for each airport.

Figure 5.4 shows the approach applied to LAX.

0:00:00 12:00:00 23:55:00
0

1

2

3

4

5

6

Time [UTC]

D
e

p
a

rt
u

re
s

p
e

r
ti
m

e
−

st
e

p

(a) Departures.

0:00:00 12:00:00 23:55:00
0

1

2

3

4

5

6

7

Time [UTC]

A
rr

iv
a

ls
 p

e
r

ti
m

e
−

st
e

p
(b) Arrivals.

Figure 5.4: Departures (07/01/2014) and arrivals (07/03/2014) per time-step (∆t = 5 min)
for LAX.

In both Fig. 5.4(a) (departures for 07/01/2014) and Fig. 5.4(b) (arrivals for 07/03/2014),

operations drop significantly between 8:00:00 and 13:00:00 UTC, which correspond to night-

time in the pacific coast. The upper bound for both departures and arrivals is around

18:00:00 UTC, which corresponds to late morning in the pacific coast. The bounds are 6

departures/∆t and 7 arrivals/∆t. If the airport releases and absorbs aircraft at the maximum

capacity for a full hour, the Gilbo envelope constraints is not satisfied. Hence, the necessity

to impose both sets of constraints at the same time.

We now proceed to describe how constraints (i) and (ii) are posed in matrix form. We will

start with the constraint set (i), and then show how constraint set (ii) is a slight variation

of (i).

We start with the constraint on maximum departures. Given a planning horizon that en-

compasses Nh hours, we have Nh constraints for each network component characterized by

departures. We define Nn the number of nodes of the current network component, and N∆t

104

the number of time-steps contained in one hour (as example, if ∆t = 5 min, N∆t = 12).

We define a (1, NnN∆t) vector mnc
d . This vector is obtained by horizontally stacking N∆t

times a (1, Nn) vector with 1 in columns that map origin nodes, and 0 otherwise. We build

a (Nh, NnNt) matrix Md, which is a block diagonal matrix where vector mnc
d is repeated Nh

times. We also define a (Nh, 1) vector ηncd , where the maximum allowed hourly departure

value, as obtained from the Gilbo envelope, is repeated Nh times. Using the same strategy

shown in Eq. 5.8, we pre-multiply the state vector obtaining

Mnc
d (AncX0nc + Cncbnc + Bncunc) ≤ ηncd (5.9)

that is rewritten as

Mnc
d Bnc︸ ︷︷ ︸
Anc

d

unc ≤ ηncd −Mnc
d (AncX0nc + Cncbnc)︸ ︷︷ ︸

bnc
d

(5.10)

The structure of matrix Md does not change if we consider an internal or exiting network

component, while departure constraints are not defined for an entering network component.

For maximum arrivals, the structure of the matrix equation has the same structure as Eq. 5.9

for every entering network component, since the associated airport behaves as a sink from a

network perspective. mnc
d is replaced by mnc

a , with 1 in columns that map destination nodes,

105

and 0 otherwise. The block diagonal matrix Ma is then assembled, and Eq. 5.11

Mnc
a Bnc︸ ︷︷ ︸
Anc

a

unc ≤ ηncd −Mnc
a (AncX0nc + Cncbnc)︸ ︷︷ ︸

bnc
a

(5.11)

is obtained.

While exiting network components do not contribute to maximum arrivals constraints, the

structure of the matrix is more involved when considering internal network components. In

fact, since for each internal network component the airport is a source, there will be no

contribution to arrivals from the internal network component of that airport. On the other

hand, all the other internal network components will contribute to arrivals to the current

airport, as long as aggregate routes connecting the two airports are present. If we consider

the states of all internal network components Xint stacked vertically

Xint =



X 1
int

X 2
int

...

X na
int


(5.12)

106

we can map hourly arrivals to each airport using the following (na, na) block-matrix



0 Ma
1,2 Ma

1,3 · · · Ma
1,na

Ma
2,1 0 Ma

2,3 · · · Ma
2,na

Ma
3,1 Ma

3,2 0 · · · Ma
3,na

...
...

...
...

...

Ma
na,1 Ma

na,2 · · · · · · 0


︸ ︷︷ ︸

M int
a

(5.13)

where each block Ma
i,j is a (Nh, N

j
nNt) block diagonal matrix. In gray are highlighted blocks

that might contain non-zero entries. Diagonal blocks are identically zero, since each internal

network component behaves only as a source and does not contribute to its own arrivals,

as mentioned before. If we pre-multiply vector 5.12 by matrix 5.13, we obtain a (naNh, 1)

vector where hourly arrivals for each of the na airports are vertically stacked in sequence.

Each element of this vector should be less or equal to the maximum arrival capacity of the

associated airport stored in the (naNh, 1) vector ηa as follows

M int
a Xint ≤ ηa (5.14)

When considering all internal network components, the different Md defined in Eq. 5.9 will

107

have a matrix structure that is similar to Eq. 5.13



M1,1
d 0 0 · · · 0

0 M2,2
d 0 · · · 0

0 0 M3,3
d · · · 0

...
...

...
...

...

0 0 · · · · · · Mna,na

d


︸ ︷︷ ︸

M int
d

(5.15)

In this case, the only non-zero blocks are the diagonal blocks, and the equivalent form of

Eq. 5.14 is

M int
d Xint ≤ ηd (5.16)

where ηd is obtained vertically stacking the ηncd vectors that defines the maximum allowed

departures from the na airports inside D.

When considering the sloped constraint that couples departures and arrivals, we use both

M int
d and M int

a . Given na Gilbo envelopes as shown in Fig. 4.2, each airport is characterized

by a y-intercept qG and a slope mG. We define MG as a (naNh, naNh) diagonal matrix, where

diagonal elements (i − 1)Nh + 1, (i − 1)Nh + 2, (i − 1)Nh + 3, iNh are the mG of the i-th

airport considered. QG is a (naNh, 1) vector where elements (i − 1)Nh + 1, (i − 1)Nh + 2,

(i − 1)Nh + 3, iNh are the qG of the i-th airport considered. We then define the matrix

108

inequality

M int
a Xint −MGM

int
d Xint −QG ≤ 0 (5.17)

that defines a set of naNh constraints.

The extension of maximum departures, maximum arrivals, and sloped constraints to the full

dynamics is straightforward. The overall number of constraints does not change. The only

change is that matrices M int
d and M int

a need to be horizontally padded with similar matrices

that map origin nodes for exiting network components, and destination nodes for entering

network components. For exiting network components, M exit
d has the same block diagonal

structure as M int
d . The number of rows is unchanged, while the number of columns depends

on the size of all exiting network components. M ent
d is a zero matrix that is necessary for

matrix multiplication purposes. With a similar reasoning, M exit
a is identically zero. M ent

a

shows a different structure with respect to M int
a instead. In fact, now each airport behaves as

a sink for the associated entering network component. As a consequence, M ent
a has a block

diagonal structure. For both departures and arrivals, overflights have no contribution.

For departures, the full Md matrix has the following format



M1,1
d,int 0 · · · 0 M1,1

d,exit 0 · · · 0 0 0 0 0

0 M2,2
d,int · · · 0 0 M2,2

d,exit · · · 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

0 0 · · · Mna,na

d,int 0 0 · · · Mna,na

d,exit 0 0 0 0


(5.18)

109

where the only non-zero blocks are the internal and exiting ones. For arrivals, the full Ma

matrix has the following format



0 M1,2
a,int · · · M1,na

a,int 0 0 M1,1
a,ent 0 · · · 0 0 0

M2,1
a,int 0 · · · M2,na

a,int 0 0 0 M2,2
a,ent · · · 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

Mna,1
a,int Mna,2

a,int · · · 0 0 0 0 0 · · · Mna,na
a,ent 0 0


(5.19)

where the only non-zero blocks are the internal and entering ones.

Recalling Eq. 4.12, maximum departure capacity constraints can we written as

MdBn︸ ︷︷ ︸
An

d

un ≤ ηd −Md(AnX0n + Cnbn)︸ ︷︷ ︸
bnd

(5.20)

maximum arrival constraints can be written as

MaBn︸ ︷︷ ︸
An

a

un ≤ ηa −Ma(AnX0n + Cnbn)︸ ︷︷ ︸
bna

(5.21)

while the sloped constraint has the form

(MaBn −MGMdBn)︸ ︷︷ ︸
An

da

un ≤ QG −Ma(AnX0n + Cnbn) +MGMd(AnX0n + Cnbn)︸ ︷︷ ︸
bnda

(5.22)

110

Departure and arrival constraints of type (ii), i.e., per time-step and not referred to Gilbo

envelopes, have a similar structure with respect to Eq. 5.20 and Eq. 5.21. The only difference

is in the structure of each block of matrices Md and Ma. In fact, in Eq. 5.18 and Eq. 5.19

each matrix block has Nh rows and is characterized by a block diagonal structure where each

block diagonal element is the same vector mapping departure/arrival nodes horizontally

repeated N∆t times. When considering departures and arrivals per time-step instead, each

matrix block has an increased number of rows that is equal to N∆tNh = Nt, where each

block diagonal element is simply the vector mapping departure/arrival nodes. We can define

matrices Md∆t and Ma∆t, that are assembled as described above. They are “taller” than

Md and Ma since one constraint per time-step (and not per hour) must be imposed. The

structure of the inequality constraints remains unchanged. For maximum departures per

time-step we have

Md∆tBn︸ ︷︷ ︸
An

d∆t

un ≤ ηd∆t −Md∆t(AnX0n + Cnbn)︸ ︷︷ ︸
bnd∆t

(5.23)

while for maximum arrivals for time-step the inequality is

Ma∆tBn︸ ︷︷ ︸
An

a∆t

un ≤ ηa∆t −Ma∆t(AnX0n + Cnbn)︸ ︷︷ ︸
bna∆t

(5.24)

In Eq. 5.23 and Eq. 5.24, ηd∆t and ηa∆t are (Ntna, 1) vectors, where na vectors containing Nt

values of maximum departures and arrivals per time-step for the current airport are vertically

stacked.

111

5.3.3 Cell Capacity Constraints

Another capacity constraint is the maximum capacity of each cell associated to a node. As

described in Chap. 2, we compute a network flow model that is described with a graph

G = (N , E). The graph G is the mathematical abstraction we use to define the dynamics

of the ARM. The discrete linear time-invariant dynamics are a natural consequence of this

abstraction. Each node is a dimensionless element of the graph but, in reality, each node is

also associated with a 2D cell. This is the physical element where the state characterizing

the node, i.e., aircraft, is placed. We now proceed with the description of our geometric

interpretation of cells.

Each cell is centered in the associated node. The shape of a cell is defined by two parame-

ters, i.e., a transversal and a longitudinal extension. The transversal extension is chosen to

be 10 NM (5 NM for each side with respect to the node), which represents the lateral sep-

aration threshold according to Federal Aviation Administration (FAA) requirements. The

longitudinal extension is determined as follows. The midpoints between the current node

and the previous/following nodes are computed. In each point, a 10 NM long segment is

drawn perpendicularly to the edge, and from each of the two endpoints of the segment a line

parallel to the current edge is drawn. The left and right lines will intersect in two points

that, together with the four vertices of the two segments, define the geometry of the cell.

Each cell is thus a six sided polygon. When aggregate routes turn, our cells can describe the

heading change. For trajectories that have a quasi-constant heading, the six sided polygon

degenerates into a four sided polygon (rectangle). For origin and destination nodes, where

sudden changes in the heading are part of take off and landing procedures, this geometric

interpretation might fail to properly identify the six sided cell. We decide not to define cell

for such nodes. This modeling choice is also motivated by the fact that the two constraints

where cells are actually relevant (i.e., flow capacity and separation), are mainly imposed in

the enroute phase. Figure 5.5 shows nodes and associated cells for an aggregate route from

112

LAX to DEN.

−116 −115.5 −115 −114.5 −114 −113.5 −113

35.5

36

36.5

37

37.5

Longitude [deg]

La
ti
tu

d
e

 [
d

e
g

]

Figure 5.5: Aggregate route (zoomed) with nodes (circles) and associated cells from LAX to
DEN.

When assessing maximum capacity for a single cell, the flight level of each cell is fixed and

has been computed as shown in Chap. 2. As a consequence, only the in-plane spacing will be

considered. In Sec. 5.3.4 it will be shown how the out-of-plane spacing issue is tackled. When

it comes to longitudinal separation of aircraft flying the same route, a rule of thumb by FAA

suggests that a 10 minute separation between aircraft should be guaranteed. In practice,

this requirement is over-conservative and can be replaced with a longitudinal separation

of roughly 20 NM, if both aircraft are equipped with a distance measuring equipment1.

Figure 5.6 shows an example in this sense. Two recorded trajectories on 07/11/2014, from

LAX to SFO are highlighted. The simultaneous recorded position of the two aircraft at

21:46:25 UTC is highlighted. Both aircraft occupy FL300, and their distance at that time

is easily computable given the two latitude-longitude pairs, and is equal to 44.5 km, or 24

NM, which is consistent with the separation limit introduced above.

1http://tfmlearning.faa.gov/Publications/ATpubs/ATC/atc0604.html

113

−122.5 −122 −121.5 −121 −120.5 −120 −119.5 −119 −118.5

34

34.5

35

35.5

36

36.5

37

37.5

21:46:25 UTC

Longitude [deg]

La
ti
tu

d
e

 [
d

e
g

]
−119.8 −119.6 −119.4

34.2

34.4

34.6

Figure 5.6: Two recorded flight trajectories from LAX to SFO.

On average, cells in our model have a longitudinal extension of 70 km when ∆t = 5 min.

Considering some margin at the two longitudinal extremes of each cell, to account for spacing

of aircraft belonging to consecutive cells, a maximum cell capacity ηcc of 2 satisfies the

requirement. The state of any node in the graph, at any given time-step, cannot be greater

than ηcc.

To understand where this constraint is enforced, we switch back to the graph-oriented ap-

proximation of the traffic flow. Once aircraft are injected into the graph via origin nodes,

there is only a scenario where the state along an aggregate route can increase. That is, in

merging nodes. Hence, for each network component cell capacity constraints are posed for

each origin node and for merging nodes associated to airborne rerouting branches.

For each network component, a (Nr +Nar, Nn) matrix mnc
f is computed, where the i-th row

has a 1 in correspondence of the origin of an aggregate route or in correspondence of a merging

node. Then, matrix Mnc
f is built with Nt block diagonal elements mnc

f . Pre-multiplying the

dynamics of the network component by Mnc
f , a (Nr +Nar, 1) vector with states of all nodes

114

of interest is isolated. Each element of this vector should be less or equal to the maximum

allowed cell capacity ηcc. To extend the concept to all network components, we only need

to assemble matrix Mf , which is a block diagonal matrix where each block defines a specific

Mnc
f . Overall, cell capacity constraints can be written in matrix form as

MfBn︸ ︷︷ ︸
An

f

un ≤ ηcc −Mf (AnX0n + Cnbn)︸ ︷︷ ︸
bnf

(5.25)

5.3.4 Separation Constraints

In addition to in-plane separation among aircraft flying the same course, separation among

aircraft flying different routes in a fundamental issue in ATM. In general, the horizontal

separation between aircraft must be at least 5 NM, while vertical separation should be at

least 1,000 ft. Each aircraft is thus surrounded by a “hockey puck” with a 5 NM radius and

a 2,000 ft width at any given time. In our strategic planning framework, we do not have

the capabilities to enforce distance constraints with such a degree of precision. Distance is

a non-linear constraint, which cannot be treated explicitly in a linear framework like ours.

At the same time, we want to provide some reasonable bounds, so that separation between

aircraft can be handled with safety at a tactical level.

Our approach has two steps. First, (i) we divide cells according to their flight level, ranging

from FL300 to FL400 (which are the flight levels that mainly contribute to the enroute phase

of the traffic flow). In this way, only longitudinal separation needs to be accounted for. Then,

(ii) for each flight level, intersections between cells belonging to different aggregate routes

are identified. For each intersection, the convex hull is computed and converted into an area,

and an estimate for the admissible number of aircraft is obtained.

115

In our strategic framework, we are interested in avoiding scenarios with a high density of

aircraft in a small portion of the airspace, that would result in an operational burden for

ATCs. Thus, we use a simple approach that aims at limiting the number of aircraft in each

convex hull identified, using some basic assumptions. Consider a cell with a longitudinal

extension l1 of roughly 70 km (average size of cells for a ground speed of 450 kts and

∆t = 5 min) and a lateral extension l2 of 10 NM ∼ 20 km, which is the diameter of the

“hockey puck” that defines the safe zone of each aircraft. A reasonable estimate of the area

of such cell is Ac = l1l2 = 1400km2. The in-plane non-admissible area around each aircraft is

thus Ana = π102 = π100 km2. Considering that the maximum state of each node is ηcc = 2,

the fraction of the cell occupied by the 2 aircraft is
ηccAna
Ac

= 0.45. Let us label this ratio εa.

This is only an estimate which should help us avoiding scenarios with regions with a high

density of aircraft. Now, given the area Ach of a convex hull that encompasses nc cells, we

can estimate the number of aircraft nsep that can be allocated inside using Eq. 5.26

nsep =

⌊
Achεa
Ana

⌋
(5.26)

Now, if nsep < ηccnc, a constraint is posed that limits the summation of the states to be less

or equal to nsep.

By using the convex hull, for each group of cells the overall admissible area is overestimated.

As a consequence, the admissible number of aircraft within the region might be overestimated

as well. Although methods exist to compute the non-convex hull of a set of polygons [2], we

consider the convex hull approximation reasonable for our strategic approach for the following

reason. The scenario where the convex hull area over-estimation is maximized, is when we

have two cells that are perpendicular. This is also the case where the overlapping between

the different cells is minimal, thus reducing the chances of separation issues. Although this

116

is still a scenario that ATCs need to monitor, it is less severe than when different routes

intersect with a smaller intersection angle, as shown in [53] as well. This is also a case where

the convex hull provides a better approximation of the overall area.

−116.4 −116.2 −116 −115.8 −115.6 −115.4

40.4

40.5

40.6

40.7

40.8

40.9

41

41.1

Longitude [deg]

La
ti
tu

d
e

 [
d

e
g

]

(a) Not-critical intersection.

−114.6 −114.5 −114.4 −114.3 −114.2 −114.1 −114 −113.9

35.7

35.8

35.9

36

36.1

36.2

Longitude [deg]

La
ti
tu

d
e

 [
d

e
g

]
(b) Critical intersection.

Figure 5.7: Examples of intersection between cells that is not labeled (left) and is labeled
(right) as critical.

Figure 5.7 shows an example that sheds some light in this sense. In Fig. 5.7(a), the convex hull

over-estimates considerably the overall area, and nsep = 4, which means that the intersection

is not considered critical for separation issues. If we consider the intersection angle and

the resulting overlapping area, the non-criticality of the intersection seems reasonable. In

Fig. 5.7(b), the convex hull provides a better approximation of the overall area, and nsep = 3,

since the overlapping is now more consistent and results in a critical intersection.

In matrix form, this inequality constraint has the same structure that characterizes most

of the other constraints. We define a matrix Msep that has nsepNt rows, where nsep is the

overall number of critical intersections as described above. In each row, the only non-zero

elements are the elements mapping the states of nodes whose cells define the current critical

intersection at a specific time-step. We also define a (nsepNt, 1) vector ηsep, where each

element defines the maximum number of aircraft the associated critical intersection can

117

accommodate. We can thus write

MsepBn︸ ︷︷ ︸
An

sep

un ≤ ηsep −Msep(AnX0n + Cnbn)︸ ︷︷ ︸
bnsep

(5.27)

5.3.5 Weather-Related Constraints

All the capacity constraints presented so far, are generally time-invariant. They define a

baseline that well characterizes the capabilities of airports and sectors inside D. As described

in Chap. 2, our model is a benchmark that well describes routes between O-D pairs under

“nominal” conditions. In Chap. 3, we show how to modify aggregate routes in presence of

weather that would impend the nominal traffic flow. Here, we treat again weather in the IP

framework. More specifically, we use the same weather information used to design airborne

rerouting branches to generate a set of hard constraints in the form of no-fly zones.

No-fly zones are defined as zones of the airspace that cannot be entered. Some regions of the

airspace are military controlled, and thus commercial flights cannot enter such regions (i.e.,

time-invariant no-fly zones). Since the network we built is based on a historical dataset, it

is very unlikely that some of the resulting aggregate routes cross military no-fly zones. On

the other hand, some regions of the airspace can become no-fly zones because of convective

weather (i.e., time-variant no-fly zones). As shown in Chap. 3, convective weather fronts are

not necessarily no-fly zones. First of all, a proper definition of the geometrical shape and

severity of convective weather fronts is, by itself, a research topic in the ATM framework [54].

Then, human factors come into play. As [54] points out, the same weather front might be

considered safe or unsafe depending on the experience of the pilot, on the advisories received

by ATCs, and on many other factors. In our strategic framework, we assume that all

convective weather fronts as processed in Chap. 3 are no-fly zones in the IP formulation.

118

More refined solutions with a finer level of accuracy are left to tactical planners [55].

Unlike the other constraints, this constraint is time-dependent, and the overall number of

constraints cannot be determined with precision a priori. Let us assume that the current

network component has nncnfz no-fly zones constraints. nncnfz is obtained as the summation

over all time-steps of all nodes inside any of the detected no-fly zones. A (nncnfz, NnNt) matrix

Mnc
nfz is computed, where the i-th row has a 1 in correspondence of the state that needs to

be constrained, and 0 otherwise. Matrix Mnfz is obtained stacking in block diagonal fashion

the different Mnc
nfz. The full set of no-fly zones constraints is

MnfzBn︸ ︷︷ ︸
An

nfz

un ≤ ~0−Mnfz(AnX0n + Cnbn)︸ ︷︷ ︸
bnnfz

(5.28)

Note that, from a general perspective, Eq. 5.28 should be a set of equality constraints, since

we are imposing states in those nodes to be zero. At the same time, given that states are

constrained to be non-negative thanks to the combined effect of the other constraints, we

can still pose this set of constraints as a set of inequality constraints.

5.4 Cost Function

The cost function to be minimized is a weighted linear combination of control actions. The

weights are chosen such that every control action: i) has a positive cost, ii) is penalized

less if done later in the planning horizon, and iii) is penalized proportionally to the delay it

introduces relative to other control options. The first requirement is satisfied by having all

of the weights be positive, ensuring a lower bound of zero. This lower bound is attained if

and only if the proposed flight plan for the domain satisfies all of the problem constraints

119

without any control actions.

All the potential control actions are applied at origin nodes (airports, or boundary nodes of

D), or at airborne rerouting nodes. We address internal and exiting network components

first, and then address entering and overflight network components. For internal and exiting

network components, origin nodes correspond to airports. We describe in detail the weighting

factors for the controls associated with a particular aggregate route of a generic O-D pair;

the remaining weights are specified in the same manner. Denote the number of aggregate

routes for the O-D pair by Nr. If Nr = 1, there is a single control, ground holding; if Nr > 1,

there are multiple controls, ground holding plus Nr − 1 reroute options. Let di denote the

delay, given as the additional number of time-steps resulting from the control action ui,

where i indexes the controls for our particular route. The cost function weight for origin

node control ui (ground holding or pre-departure rerouting) at time tk is defined as

wi(tk) = di (1− ε(k − 1)) i = 1, 2, · · · , Nr k = 1, 2, · · · , Nt (5.29)

where di is the number of time-steps of delay caused by the i-th control action. For ground

holding one time-step, di = 1. For pre-departure rerouting, di is equal to the difference

between the numbers of time-steps of the alternate route and the scheduled route, unless

the alternate route is faster than the scheduled route. If the alternate route is faster, di is

set to unity to ensure that the control action has a positive cost, and thus only used when

necessary to ensure the constraints are satisfied.

The factor −ε(k − 1) penalizes control actions earlier in the planning horizon more, the

rationale being that there will be subsequent replanning with newer information, thus it is

prudent not to react sooner than necessary. ε can be tuned to achieve a desired decreasing

120

weight, for the same control action, as time increases. As example, if we want to weigh the

same control action at k = Nt with weight ηf instead of 1, we will set ε =
1− ηf
Nt − 1

.

This factor has the additional effect that if a sequence of ground holding controls and a

pre-departure reroute introduce the same delay, ground holding will be preferred. This is

because each ground hold delay is multiplied by a factor that decreases with time thanks to

ε.

For airborne rerouting, the cost function weight for airborne rerouting node control ui at

time tk is defined as

wi(tk) = αdi (1− ε(k − 1− p)) i = 1, 2, · · · , Nr k = 1, 2, · · · , Nt (5.30)

where α has been defined in Chap. 3 and p is the number of time-steps between the origin

node and the airborne rerouting node. We introduce p because an airborne rerouting control

at tk should be compared with a ground holding that starts at tk−p. In Eq. 5.30, we set equal

to zero values of (k − 1− p) that are negative.

One could argue that, if a pre-departure rerouting introduces a longer route, α should be

used in the associated weight as well, since the extra-time is spent while flying. We de-

cided not to apply this additional penalization for the following reason. While an airborne

rerouting control is a contingent action (and generally implies an extra fuel consumption),

a pre-departure control moves aircraft to another well-traveled route that has been flown

consistently according to our historical dataset. Thus, we associate the airborne reroute

penalization mainly to operational reasons.

For entering and overflight network components, all controls are formally airborne. Origin

121

nodes are crossing boundary points where new aircraft enter D. Controls here are modeled

as holding patterns. On the other hand, airborne rerouting controls are the same as the ones

introduced above. For both, the cost function weight for airborne rerouting node control ui

at time tk is defined as

wi(tk) = αd(i) (1− ε(k − 1)) i = 1, 2, · · · , Nr k = 1, 2, · · · , Nt (5.31)

where p has been dropped since here there’s no ground holding for comparison.

The weights for all the controls are arranged into a single vector w compatible with un so

that the cost function may be written as J = wTun

122

5.5 Properties of the Solution

The strategic traffic flow planning problem is stated as the following IP

min
un

J = wTun s.t.



Mn
coun ≤ bn

−Mn
caBnun ≤Mn

ca(AnX0n + Cnbn)

MsBnun ≤ ηs −Ms(AnX0n + Cnbn)

Mnc
d Bncunc ≤ ηncd −Mnc

d (AncX0nc + Cncbnc)

MaBnun ≤ ηa −Ma(AnX0n + Cnbn)

(MaBn −MGMdBn)un ≤ QG −Ma(AnX0n + Cnbn) +MGMd(AnX0n + Cnbn)

Md∆tBnun ≤ ηd∆t −Md∆t(AnX0n + Cnbn)

Ma∆tBnun ≤ ηa∆t −Ma∆t(AnX0n + Cnbn)

MfBnun ≤ ηcc −Mf (AnX0n + Cnbn)

MsepBnun ≤ ηsep −Msep(AnX0n + Cnbn)

MnfzBnun ≤ ~0−Mnfz(AnX0n + Cnbn)

un ≥ ~0

(5.32)

In general, a LP problem is guaranteed to have a minimizing solution when the constraints

define a feasible set bounded in the direction of the negative gradient of the cost function.

The inequality constraints and lower bounds on controls specify a convex polytope over

which the objective function is to be optimized. The solution set can be empty, have a single

vertex or multiple solutions corresponding to points on an entire edge of the polytope. As

Appendix B shows, with no airborne aircraft at t0 there always exists a trivial solution to

the optimization problem.

123

Since the controls are integer numbers of aircraft, we require an integer-valued solution to

the optimization problem. Some authors have used a LP solver, in particular the simplex

method. If the inequality matrix A is unimodular, the simplex method will produce an

integer-valued solution to this LP relaxation [73, 81]. Unimodularity can be achieved by

approximating routes in sectors as straight lines and by approximating sector boundaries

with convex polygons [73, 81]. In the interest of model resolution, we have not made these

approximations; thus unimodularity is not guaranteed for our model. We used an IP solver

for the tests presented in the next chapter. It guarantees an integer solution with a compu-

tational time that fits with the strategic framework. A branch-and-bound method is used

to tackle the IP framework, where each sub-problem is solved via simplex or dual-simplex

method.

Lastly, the optimal value of the cost function J will be zero if and only if the air traffic

flow is feasible with un = ~0. This fact suggests that the ARM and planner can be used

to evaluate proposed flight plans. If J = 0 then the proposed plans are accepted without

modification. Otherwise there is a positive minimum cost signifying a constraint violation

with the scheduled flight plans; and the optimal control vector defines a cost-minimizing

feasible solution.

We envision that the planning results would be used to inform human decision makers

and would lead to Traffic Management Initiatives (TMIs). Some current TMIs are Ground

Delay Programs, Miles-In-Trail, and Airspace Flow Programs. Our planning results could

be translated into these or a different set of TMIs. Given the aggregate nature of the model,

the strategic planner determines how many aircraft should be delayed on the ground and

how many should be rerouted, but does not specify which aircraft. This specification is left

to the airport controllers who will have more information about individual aircraft on which

to base decisions.

124

Chapter 6

Tests of the Strategic Planning

Method

The ARM is tested in three scenarios. The first two tests were also presented in [12], and

are thus based on a previous version of the clustering algorithm presented in Chap. 2. The

purpose of the first test is to assess the accuracy of the ARM with respect to the original hi-

storical dataset and introduce and justify the need for replanning. The second test is focused

on strategic planning in presence of convective weather with ground controls (i.e., ground

holding and pre-departure rerouting). The results motivate the adjustments to address

weather-related constraints. The third test addresses the scalability to a bigger planning

domain that comprises the six western-most Centers of the NAS. This test employs the

complete version of the ARM, where ground holding, pre-departure rerouting and airborne

rerouting are all exploited as control actions to optimize the air traffic flow.

125

30°N

35°N

40°N

30°N

35°N

40°N

45°N
130°W 120°W 110°W

120°W 110°W

Figure 6.1: Planning domain in Test 1.

6.1 Test 1: ZLA Air Traffic Simulation and Manage-

ment

In this test, an ARM is constructed and its accuracy in simulating traffic flow is assessed

by comparison with the FACET Simulation; then ARM-based strategic planning is used to

adjust the flow to eliminate sector capacity violations. The planning domain is the ZLA

Center, as shown in Fig. 6.1.

The eight commercial airports considered are Burbank Bob Hope (BUR), Las Vegas Mc-

Carran International (LAS), Los Angeles International (LAX), Long Beach (LGB), Ontario

International (ONT), San Diego International (SAN), Santa Barbara Municipal (SBA) and

Orange County John Wayne (SNA). Using flight trajectory data from October 15th, 2012,

from 0:00 to 4:00 UTC from FACET Playback Mode, an ARM with 2587 nodes is built using

126

the algorithm described in [12]. The 25 network components are generated independently

and then assembled to obtain the complete network. Table 6.1 shows the number of trajecto-

ries for each network component and the overall number of routes for each flight category. In

the clustering, a threshold distance of 30 km is used for internal flights (due to the proximity

of airports inside the domain) and 60 km is used otherwise. The speed difference threshold

is 20 kts. The number of aggregate routes representing internal flights and overflights is half

the number of original trajectories, and there is an 80% reduction for entering and exiting

flights. The dimension reduction due to aggregation depends on the resolution levels in the

clustering similarity measures and on how many trajectories in the dataset are similar. For

the present case, a small dataset for a short time period was used; there is not as much

opportunity for dimension reduction as there would be with a longer time period when a

greater number of similar trajectories would likely be present. To visualize aggregation, we

zoom in on the region of the planning domain around LAS and show the before and after

views. Figure 6.2 depicts the flight trajectory data; whereas Fig. 6.3 shows the resulting

aggregate routes after the trajectory data is processed.

With reference to Eq. 4.3, the smallest and largest network components are characterized

by matrices with the dimensions (using the notation (# rows, # columns)) Anc(720, 720),

Cnb(720, 60), Bnc(720, 60) and Anc(15300, 15300), Cnc(15300, 1080) and Bnc(15300, 1080) re-

spectively. The full network, according to Eq. 4.12, has dimensions An(155220, 155220),

Cn(155220, 15360) and Bn(155220, 5580).

The accuracy of the ARM for simulation is assessed by comparison with the FACET Sim-

ulation Mode. Both simulations are initialized with the same data from FACET for the

timespan stated in the previous paragraph. For the high sectors in ZLA, the sector counts

from each of the simulations are averaged over all the discrete times within the planning

horizon. Figure 6.4, comparing the average sector counts, indicates the accuracy of the

ARM. The average difference in aircraft count ranges from 0.1 to 0.8. Figure 6.5 shows the

127

Table 6.1: All trajectories considered in the 4-hour timespan divided by airport and route
category, and the final number of routes for the four different route categories in Test 1.

Airport Internal Exiting Entering Overflights

BUR 2 19 28 -
LAS 33 109 133 -
LAX 16 140 213 -
LGB 3 10 22 -
ONT 4 14 16 -
SAN 12 36 57 -
SBA 3 12 5 -
SNA 7 34 51 -

Total 80 374 525 134
Routes 35 87 110 60

Figure 6.2: LAS region of planning domain and ground tracks for trajectory data used to
build the ARM in Test 1.

128

Figure 6.3: Resulting aggregate routes in LAS region in Test 1.

Figure 6.4: Comparison between the ARM and FACET simulations in terms of average
sector counts in Test 1.

129

sector counts versus time for ZLA26 from the ARM and FACET simulations closely match.

Given that the simulated sector counts violate the capacity limits, we proceed to use the

ARM-based strategic planner to introduce ground holds and generate a plan that provides

a feasible solution minimizing the total delay. Table 6.2 provides the key values for the

test. The minimum overall delay for the ZLA center is 3684 min, for an average delay of

3.3 min per aircraft and a worst case delay of 12 min. The planning problem is set up in

Matlab R© and solved with Gurobi R© in 93 s using an Intel i5 processor with 8GB of RAM.

Examining sector ZLA26 more closely, Fig. 6.6 shows that the adjusted traffic flow avoids

exceeding the capacity limit of 15 aircraft.

Figure 6.5: Comparing aircraft count in sector ZLA26 for the ARM simulation of the sche-
duled flight plans and for the optimally planned flow in Test 1.

130

Figure 6.6: Aircraft count in ZLA26 using the ARM without and with optimization in Test
1.

Table 6.2: Key strategic planning quantities in Test 1

nodes of the ARM 2,587
aircraft 1,113

scheduled departures 378
airports 8

∆t 4 min
Planning Horizon 4 h
Aggregate Routes 292

Constraints in the IP 12,540
Controls in the IP 5,580

131

6.2 Test 2: Managing Internal Flights in ZLA in Con-

vective Weather

In this test, ground holding and pre-departure rerouting are used to manage air traffic when

convective weather is blocking portions of the airspace. Only internal flights are considered.

We use the same planning domain as in Test 1, but add the airports Van Nuys (VNY)

and Palm Springs (PSP) and drop SBA, for a total of 9 airports. The ARM is constructed

from the FACET dataset of recorded trajectories from July 1st to July 14th, 2014, each day

between 9 AM and 9 PM Central Time. The ARM-based strategic planner is then used

to manage the flow on July 15th, 2014, between 19:00 and 23:00 UTC using initialization

data from FACET. Because the planning horizon differs from the timespan for the ARM

construction, each departure is not already associated with an aggregate route. For the O-D

pair of a particular departure, if there is only a single route, the association is straightforward.

Otherwise, the trajectory will be associated with the closest aggregate route based on the

Fréchet distance. We note that when the planning horizon is in the future, the flight plan

associated with each scheduled departure would be used instead of a recorded trajectory.

Figure 6.7 shows the airports and aggregate routes in the planning domain. The distance

and the speed difference thresholds are 30 km and 20 kts, respectively. Table 6.3 gives,

for each origin airport, the number of flight trajectories clustered and the resulting num-

ber of aggregate routes, showing that the level of aggregation is substantial. With only

internal flights in the model, LAS has the most departure routes with at least one aggre-

gate route to each of the other airports. The other airports all have at least one aggregate

route to LAS, and in some cases, routes to additional destinations (e.g., LAX to PSP and

SAN). The smallest network component is for ONT (18 nodes), where Anc(1080, 1080),

Cnc(1080, 120) and Bnc(1080, 120). The largest network component is for LAS (272 nodes),

where Anc(32640, 32640), Cnc(32640, 1560) and Bnc(32640, 2760). For the overall network

132

(739 nodes) we have Anc(88680, 88680), Cnc(88680, 5160) and Bnc(88680, 15720).

Table 6.3: Numbers of trajectories and aggregate routes for each origin airport in Test 2.

Airport Trajectories Aggregate Routes
BUR 120 1
LAS 747 13
LAX 493 7
LGB 70 1
ONT 63 1
PSP 70 7
SAN 280 4
SNA 174 7
VNY 104 2
Total 2121 43

Figure 6.7 also shows two weather fronts that create no-fly zones. The first front blocks

air traffic from LAS to PSP and SAN from 19:00 to 22:10 UTC. In both cases, a longer

alternate route is available. The second front blocks air traffic from BUR, LAX, LGB, SNA

and VNY to LAS from 19:00 to 21:00 UTC. In order to demonstrate the airport capacity

constraints, we impose a departure/arrival rate of 1 aircraft per time-step for each airport

except LAS, for which we choose a value of 2. In addition, we impose for each time-step

an arrival rate of 1 aircraft per time-step for flights to LAS from BUR, LAX, LGB, SNA

and VNY. The constraint bounds were chosen by analyzing Fig. 6.7. All aggregate routes

connecting those airports with LAS merge near LAS; the arrival rate constraint avoids the

simultaneous arrival of two aircraft to the same fix.

The problem is set up in Matlab R© and solved with Gurobi R© in 22 s using an Intel i5

processor with 8GB of RAM. The key quantities for Test 2 are reported in Table 6.4. The

results are shown in Table 6.5 and Fig. 6.8. Table 6.5 illustrates how the 3 departures

from LAS to SAN are modified to accommodate the weather front. The first 2 departures,

scheduled at 20:28 and 21:18 UTC, are rerouted to the alternate route connecting LAS and

SAN since the delay caused by ground holding until the weather front disappears is greater

133

Figure 6.7: Planning domain, airports, and aggregate routes in Test 2.

than the extra 6 minutes required to fly the alternate route. On the other hand, the third

departure is scheduled for 21:56 UTC and by ground holding for 6 minutes, the aircraft can

follow the scheduled route without entering the weather front. As stated in Chap. 5, the

cost function favors the scheduled route unless an alternate route saves time.

Table 6.4: Key strategic planning quantities in Test 2.

nodes of the ARM 739
aircraft 58

scheduled departures 50
airports 9

∆t 2 min
Planning Horizon 4 h
Aggregate Routes 43

Constraints in the IP 12,300
Controls in the IP 15,720

Figure 6.8 shows how scheduled departures from BUR, LAX, LGB, SNA, and VNY to LAS

are modified to satisfy constraints mainly due to the second weather front and the arrival

rate in LAS. The location of the front blocks departures from LAX and SNA until 20:40

134

Table 6.5: Scheduled infeasible departures and revised departures from the strategic planner
in Test 2.

Scheduled departures Optimized departures
Nominal route Alternate route Nominal route Alternate route

20:28 1 0 0 1
21:18 1 0 0 1
21:56 1 0 0 0
22:02 0 0 1 0

UTC, and departures from BUR, LGB, and VNY until 20:42 UTC. Because the routes from

BUR, LGB, SNA, and VNY have the same time of flight, while the route from LAX is 2 time-

steps longer, no simultaneous departures from any of the first four airports can be scheduled.

Further, a departure from any of those 4 airports cannot be scheduled 2 time-steps after a

departure from LAX.

Figure 6.8 shows how all departures before 20:40 UTC are pushed back due to the weather

front. At some times, two departures are scheduled. One of those is always from LAX, since

it will land four minutes later than the other, without violating the arrival constraint. For

similar reasons, no departure from BUR, LGB, SNA, or VNY is scheduled two time-steps

after a departure from LAX. It is also interesting how coupling via the constraints can affect

departures that would not be rescheduled otherwise. As an example, the only departure

from BUR was originally scheduled at 20:56 UTC, which is a departure time not affected by

the weather front. However, to accommodate the arrival of delayed flights from LAX and

VNY at LAS, the departure of the BUR flight is delayed by 8 min to avoid exceeding the

arrival capacity at LAS.

The overall delay is 594 min, with an average delay of 11.9 min per aircraft and a worst

case delay of 90 min. Although a 90 min delay may seem high, the strategic planner has

considered the options that exist and determined the feasible solution that minimizes the

cost function, i.e., the weighted sum of delays.

135

Figure 6.8: Scheduled and optimized departures from BUR, LAX, LGB, SNA, and VNY to
LAS in Test 2.

6.3 Test 3: Air Traffic Flow Optimization for the Six

Western-Most Centers of the NAS

In this test, the strategic planning problem is formulated and solved for the six western-most

Centers of the NAS, i.e., ZLA, ZAB, ZSE, ZOA, ZLC, ZDV. The aggregate routes for this

planning domain have been presented in Chap. 2. We analyze the dimension of the model

and provide some insights regarding the sparsity of the dynamics matrices. We describe how

the initial state vector and the scheduled departures vector are assembled. Then, we describe

how the impact of severe weather is accounted for, and how rerouting paths are added to

avoid severe weather fronts that impede the scheduled routes. We conclude with a critical

analysis of the solution.

In Table 6.6, the number of aggregate routes, the number of nodes, and the number of

controls of each network component is shown. The values refer to the nominal scenario given

136

by the algorithm presented in Chap. 2, where no airborne rerouting has been considered yet.

Table 6.6: Number of routes Nr, number of nodes Nn, and number of controls Nc for each
network component in Test 3.

Internal Exiting Entering
Nr Nn Nc Nr Nn Nc Nr Nn Nc

BUR 11 117 15 × × × × × ×
LAS 34 406 72 12 234 20 21 458 21
LAX 21 337 37 20 393 36 27 664 27
LGB 10 160 14 3 76 3 1 25 1
ONT 13 192 19 5 109 7 4 90 4
OXR × × × × × × × × ×
PSP 10 114 20 × × × × × ×
SAN 20 359 38 10 235 10 14 350 14
SNA 19 238 55 8 195 12 8 200 8
VNY 2 20 2 × × × × × ×
ABQ 12 223 20 5 38 11 4 36 4
PHX 27 431 18 15 249 55 9 165 9
TUS 8 119 14 5 66 17 4 59 4
PDX 26 523 28 9 220 15 13 370 13
SEA 25 624 18 8 188 14 18 503 18
OAK 17 270 8 4 110 4 6 191 6
SFO 24 366 16 18 398 10 22 470 22
SJC 14 213 6 4 121 6 6 182 6
SMF 18 262 10 6 161 8 8 231 8
SLC 33 561 30 14 232 36 13 246 13
DEN 27 618 20 10 88 30 6 70 6

Originally, 21 airports inside D are considered (i.e., na = 21). Excluding overflights, a

total number of 3na = 63 network components defines the overall aggregate model. As

already introduced in Chap. 2, OXR is discarded because its contribution to the air traffic

flow is extremely scarce. In addition, BUR, PSP, and VNY only have an internal network

component. In total, 54 network components are present.

The aggregate route model is characterized by a time-step ∆t = 5 min, and the planning

horizon is 4 hours, which implies Nt = 48. Recalling Eq. 4.12, the dimensions of the different

matrices for the full dynamics are as follows. Xn = (654528, 1), An = (654528, 654528),

137

X0n = (654528, 1), Cn = (654528, 34128), bn = (34128, 1), Bn = (654528, 56496), un =

(56496, 1). Note that sparsity properties are fundamental in this context to avoid memory

usage issues. As example, for An there are 143547 non-zero entries out of an overall number

of entries that is 4.284111. The sparsity of An, defined as percentile ratio between number of

non-zero entries and overall entries, is 0.000034%. Storing the non-zero elements in a sparse

double-precision matrix, we still generate a 7.5 Mb matrix. Figure 6.9 shows the sparsity of

matrix An, where the block diagonal structure of the non-zero elements is evident.

0 1 2 3 4 5 6

x 10
5

0

1

2

3

4

5

6

x 10
5

nz = 143547

Figure 6.9: Sparsity of matrix An in Test 3.

We now describe how the initial state vector X0n and the scheduled departure vector bn are

populated. In a real application, X0n will contain the predicted position of all aircraft inside

D at t0, and bn will contain departures as scheduled by airports for internal and exiting

network components, and predicted position of flights entering D via boundary crossing

points for entering network components.

In this work, we use historical data to populate the vectors for the test presented. For a

given day in the historical dataset, we select an initial time t0 and a number of hours Nh,

138

and define the time interval [t0 t0 + Nh] as the planning horizon of interest. For this test,

we select the planning horizon [15 : 00 19 : 00] UTC (i.e., t0 = 15 : 00 and Nh = 4) on July

2nd, 2014. In the planning domain D, this planning horizon ranges from the late morning

to the early afternoon, which corresponds to a high inflow and outflow for the airports of

interest. Given a network component and the planning horizon, all flights compatible with

the network component such that

1. their first recorded time is less than t0, and their last recorded time is less than t0 +Nh

2. their first recorded time is ∈ (t0 t0 +Nh]

are stored. The first category collects all flights that are airborne at t0, and that will populate

the initial state vector X0nc. The second category collects all scheduled departures that will

populate the scheduled departure vector bnc.

For each flight of the first category, we initially identify the aggregate route it belongs to.

We compute the Fréchet distance between the recorded flight and all the potential aggregate

routes, and assign the flight to the aggregate route with the lowest distance. Then, we

identify the closest recorded time entry with respect to t0, and compute the haversine distance

between the latitude-longitude pair of that entry and all the nodes of the aggregate route.

The flight is assigned to the closest node of the aggregate route. For the network component

describing the air traffic flow from LAX and exiting the planning domain D, Fig. 6.10 shows

the initial state vector assignment procedure.

For each flight of the second category, the procedure is the same, i.e., the flight is assigned

to the aggregate route with the lowest Fréchet distance. The departure time is then assigned

to the closest discrete time of the model ti = t0 + i∆t, i = 1, 2, · · · , Nt. In this case, the

node assignment is trivial, since departures are assigned to origin nodes.

The overall number of flights in the initial state vector X0n and in the scheduled departure

139

−118 −116 −114 −112 −110 −108 −106 −104 −102 −100

28

30

32

34

36

38

40

42

Longitude [deg]

La
ti
it
u

d
e

 [
d

e
g

]

Nodes on aggregate routes

Recorded flights at t0

Figure 6.10: Initial state vector assignment example in Test 3. Airborne aircraft (stars) are
assigned to the closest node available (squares).

vector bn is shown in Table 6.7

Overall, 466 flights are airborne at t0, while 2,120 flights are potentially released into the

system as part of the scheduled departure vector bn.

For Test 3, we use real historical weather data to construct weather-related constraints. We

process CWAM data from July 7th, 2011, from 0:00 to 4:00 UTC, with a 5-minute time-

step. For each time instance, we use the available nowcast. As explained in Chap. 3, in a

real-time application with a 4-hour time window, there would be no CWAM availability for

the full planning horizon (each CWAM file spans a 2-hour interval from the nowcast, with

a 5-minute increment). This work, and this test in particular, assumes the availability of a

weather product to process for the planning horizon of interest.

The 60% polygons for FL380 are shown, for some time-steps within the planning horizon, in

Fig. 6.11. Severe weather mainly affects the eastern boundary of the planning domain D.

140

Table 6.7: Elements of X0n and bn for the different network components in Test 3.

X0n bn
Internal Exiting Entering Internal Exiting Entering

BUR 6 × × 11 × ×
LAS 8 11 19 68 90 77
LAX 14 31 39 66 123 102
LGB 3 0 2 3 10 7
ONT 4 3 0 5 12 7
OXR × × × × × ×
PSP 2 × × 5 × ×
SAN 9 18 3 42 45 45
SNA 5 3 2 8 45 16
VNY 0 × × 6 × ×
ABQ 3 1 0 5 16 16
PHX 12 8 21 53 102 66
TUS 0 4 0 8 5 10
PDX 16 12 1 29 28 29
SEA 31 17 10 52 66 65
OAK 3 4 1 28 25 20
SFO 11 13 32 46 71 82
SJC 4 3 1 23 18 18
SMF 4 4 0 23 8 22
SLC 8 9 13 38 72 37
DEN 19 9 10 45 119 72

141

−120 −115 −110 −105 −100

32

34

36

38

40

42

44

Longitude [deg]

La
ti
it
u

d
e

 [
d

e
g

]

CWAM polygons

(a) CWAM polygons at t1.

−120 −115 −110 −105 −100

32

34

36

38

40

42

44

Longitude [deg]

La
ti
it
u

d
e

 [
d

e
g

]

CWAM polygons

(b) CWAM polygons at t3.

−120 −115 −110 −105 −100

32

34

36

38

40

42

44

Longitude [deg]

La
ti
it
u

d
e

 [
d

e
g

]

CWAM polygons

(c) CWAM polygons at t5.

−120 −115 −110 −105 −100

32

34

36

38

40

42

44

Longitude [deg]

La
ti
it
u

d
e

 [
d

e
g

]

CWAM polygons

(d) CWAM polygons at t7.

Figure 6.11: CWAM polygons for different time instances used in Test 3.

With the routine presented in Chap. 3, it is checked if airborne flights at t0 (i.e., elements

of the initial state vector) and scheduled departures need to be airborne rerouted. Note

that this procedure is especially critical for elements of the initial state vector. In fact,

in the worst case scenario scheduled departures can be held on the ground indefinitely via

ground stop (see Appendix B). For 12 elements of the initial state vector and 27 scheduled

departures along aggregate routes, an airborne rerouting path is computed and added to the

associated network component. Weather-related constraints are also computed at this stage

by determining, for each time instance, the nodes of the aggregate model that lie inside any

of the CWAM polygons.

142

Overall, 163 new nodes are added to the aggregate model. 1,872 control constraints, 1,872

flow constraints and 2,943 weather-related constraints are added to the IP problem. Fig-

ure 6.12 shows an example of airborne reroute branch with 3 additional nodes.

−113 −112.5 −112 −111.5 −111 −110.5 −110 −109.5 −109 −108.5
31

31.5

32

32.5

33

33.5

34

Longitude [deg]

La
ti
it
u

d
e

 [
d

e
g

]

(a) Position of aircraft at t0.

−113 −112.5 −112 −111.5 −111 −110.5 −110 −109.5 −109 −108.5
31

31.5

32

32.5

33

33.5

34

Longitude [deg]

La
ti
it
u

d
e

 [
d

e
g

]
(b) Position of aircraft at t2.

−113 −112.5 −112 −111.5 −111 −110.5 −110 −109.5 −109 −108.5
31

31.5

32

32.5

33

33.5

34

Longitude [deg]

La
ti
it
u

d
e

 [
d

e
g

]

(c) Position of aircraft at t5.

Figure 6.12: Example of airborne rerouting path that avoids a convective weather front in
Test 3.

The IP problem is posed as described in Chap 5. In Table 6.8, the number of constraints

(divided by type) and optimization variables is summarized. Table 6.9 shows all the key

quantities for Test 3 instead. The sparsity of the inequality matrix is also shown in Fig. 6.13.

Constraints are vertically stacked with the same order they appear in Table 6.8. It is straight-

forward to identify constraints that do not couple different network components by their di-

agonally dominated sparsity (control constraints and flow constraints). On the other hand,

143

sector capacity, departure/arrival capacity, weather-related and separation constraints cou-

ple controls of different network components, as evident by the two denser regions of the

inequality matrix.

Table 6.8: Constraints and optimization variables in Test 3.

Constraints
Control 36,000
Sector capacity 5,760
Departure capacity (per hour) 80
Arrival capacity (per hour) 80
Departure/Arrival capacity (per hour) 80
Departure capacity (per time-step) 960
Arrival capacity (per time-step) 960
Flow capacity 36,000
Weather-related 2,943
Separation 6,504
Total 89,367

Variables
Total 58,368

Table 6.9: Key strategic planning quantities in Test 3.

nodes of the ARM 13,636
aircraft 2,586

scheduled departures 2,120
airports 20

∆t 5 min
Planning Horizon 4 h
Aggregate Routes 711

Constraints in the IP 89,367
Controls in the IP 58,368

The computation of airborne rerouting paths and the assembly of all the matrices required

for the IP problem is carried out in Matlab R©. The IP problem is solved with Gurobi R© via

Matlab R©interface. The IP problem is solved using using an Intel i5 processor with 8GB RAM.

Table 6.10 shows a breakdown of the computational time for the different steps required to

solve the problem.

144

Figure 6.13: Sparsity of the inequality matrix in Test 3.

The IP problem is solved using a branch and bound [41] method1, and is stopped when the

gap optimality is less than 0.3%. The integral solution is obtained using a combination of

different cutting planes, e.g., Gomory, MIR, Flow cover, Zero half.

A solution is obtained that minimizes the weighted summation of controls while satisfying

the constraints. Optimized departures can be easily retrieved plugging un in Eq. 4.12 and

isolating origin nodes for all aggregate routes. Figures 6.14 and 6.15 show optimized de-

partures from LAX compared to scheduled departures. Figure 6.14 compares departures

for each time-step ti i = 1, 2, · · · , 48, while Fig. 6.15 shows the cumulative summation of

departures until the current time-step.

1http://www.gurobi.com/resources/getting-started/mip-basics

145

Table 6.10: Computational time for the different steps required to solve Test 3.

Step Computational time [s]
Airborne rerouting paths computation 632
Assembly of matrices for IP problem 2
Solution of IP problem 963

2 5 10 15 20 25 30 35 40 45 48
1

2

3

4

5

6

7

8

Time−step

D
e
p
a
rt
u
re
s

Scheduled departures

Optimized departures

Figure 6.14: Comparison of scheduled and optimized departures (per time-step) for LAX in
Test 3.

Out of the 199 scheduled departures, 195 flights actually take off. The 4 ground stops all

refer to take offs scheduled for t48, which is the last time-step of the planning horizon. For the

remaining 195 departures, 92 flights experience no delay, 53 are delayed of 1 time-step unit

∆t (5 min), 40 of two units 2∆t (10 min), and 10 of three units 3∆t (15 min). Considering

only flights affected by a delay, the average delay per flight is 7.9 min. In Table 6.11, results

for all the airports in the planning domain are shown.

Figure 6.16 shows the Gilbo envelope for LAS. The black cross represents the departures/arrivals

count for the first hour, which does not satisfy the sloped constraint. The optimized solu-

tion, shown with a black cirlce, falls just below the slope, thus satisfying the constraint and

146

2 5 10 15 20 25 30 35 40 45 48
0

50

100

150

200

D
e
p
a
rt
u
re
s

2 5 10 15 20 25 30 35 40 45 48
0

50

100

150

200

Time−step

D
e
p
a
rt
u
re
s

Figure 6.15: Comparison of scheduled and optimized departures (cumulative) for LAX in
Test 3.

ensuring the summation of hourly departures and arrivals is maximized.

Figure 6.17 shows another constraint that the scheduled departures plan does not satisfy,

and that the optimized departures plan satisfies instead. Figure 6.17(a) shows the sector

count for sector ZDV40 as a function of the time-step ∆t. It can be appreciated how sector

capacity is violated multiple times by the scheduled air traffic flow, while the optimized

air traffic flow saturates without exceeding the upper bound. Figure 6.17(b) shows the

distribution of states inside ZDV40 for the first time instance (i.e., t5) when sector capacity

is violated for the uncontrolled case. Figure 6.17(c) shows the distribution of states for the

same time instance in the controlled case instead. Two aircraft are delayed in the optimized

schedule, so that the sector count reaches the upper bound without violating the constraint.

The position that the delayed aircraft would have occupied without control (Fig. 6.17(b)),

is shown with gray circles in Fig. 6.17(c).

147

Table 6.11: Scheduled departures, optimized departures, and average delay in Test 3.

Airport Scheduled dep. Optimized dep. Flights delayed Average delay [min]
BUR 11 11 3 15.0
LAS 158 139 66 10.2
LAX 199 195 107 7.9
LGB 13 13 2 15.0
ONT 17 17 3 6.7
PSP 5 5 3 10.0
SAN 87 82 22 5.6
SNA 53 53 17 5.3
VNY 6 6 3 8.3
ABQ 21 21 5 6.0
PHX 155 149 55 6.95
TUS 13 13 2 5.0
PDX 57 56 10 5.6
SEA 118 108 35 8.2
OAK 53 51 11 5.6
SFO 117 109 34 5.4
SJC 41 41 5 6.0
SMF 31 31 6 5.9
SLC 110 108 33 6.0
DEN 164 159 23 5.6

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

Departures [1/h]

A
rr

iv
a

ls
 [

1
/h

]

Scheduled Departures/Arrivals

Optimized Departures/Arrivals

Gilbo Envelope

Figure 6.16: Gilbo envelope for LAS, and scheduled and optimized departures/arrivals for
the first hour in Test 3.

148

0 10 20 30 40 50
5

10

15

20

25

30

Time−step

#
 a

ir
c

ra
ft

Scheduled

Optimized

(a) Sector occupancy during the whole planning
horizon.

−106.5 −106 −105.5 −105 −104.5 −104 −103.5 −103 −102.5
36.5

37

37.5

38

38.5

39

39.5

1

1

1

1

1

1

1

1
1

1
1

1

1

2

1
1

1
12

1

Longitude [deg]

La
ti
it
u

d
e

 [
d

e
g

]

(b) Scheduled air traffic flow at t5.

−106.5 −106 −105.5 −105 −104.5 −104 −103.5 −103 −102.5
36.5

37

37.5

38

38.5

39

39.5

1

1

1

1

1

1

1
1

1

1

1

2

1
1

1

12

1

Longitude [deg]

La
ti
it
u

d
e

 [
d

e
g

]

(c) Optimized air traffic flow at t5.

Figure 6.17: ZDV40 sector occupancy in Test 3.

149

Chapter 7

Conclusions

A strategic planning approach for air traffic flow management has been developed. The

approach is based on an Eulerian aggregate route model. The flow of aircraft is accounted

for by the evolution of number of aircraft in discrete cells along the aggregate routes. It

has been demonstrated that the model can accurately account for the number of aircraft in

sectors by comparison with a high-fidelity Lagrangian model that tracks individual aircraft.

With this model, whose dynamics are linear and time-invariant, strategic planning is posed as

a constrained integer programming problem, in which schedule delays are minimized subject

to capacity constraints. Strategic planning has been demonstrated for several scenarios to

illustrate the implementation and the results, and was shown to be effective.

There were several new contributions in the construction of the Eulerian aggregate route

model. For clustering historical flight data, the Fréchet distance between flight tracks was

used as the accurate measure of spatial similarity. To reduce the computational burden, an

initial coarse clustering step was introduced, grouping tracks with the same origin-destination

and the same flight category (internal, entering, exiting, overflights). The fine clustering step

includes the identification and elimination of outlier flight tracks. The base aggregate route

150

model only includes well-traveled routes for clear weather days. Prior to application to a

planning horizon with predicted delays due to weather, appropriate airborne reroute options

are added to the model. Both the clustering and airborne reroute features were demonstrated

to be effective.

The final, most challenging, strategic planning demonstration was for the six western-most

Centers of the 22-Center national airspace. The planning time horizon was four hours long,

and there was weather predicted that caused significant delays to the scheduled flights. Air-

borne reroute options were computed and added to the route model and it was demonstrated

that the predicted delays could be significantly reduced. The example also demonstrated

the computational feasibility of the approach. Assessing the viability of the approach for the

entire national airspace remains for future work.

151

Bibliography

[1] Addario-Berry, L., Havet, F., Sales, C. L., Reed, B., and Thomass, S.
Oriented Trees in Digraphs. Discrete Mathematics 313, 8 (2013), 967–974.

[2] Akkiraju, N., Edelsbrunner, H., and Facello, M. Alpha Shapes: Definition
and Software. In Proceedings of the 1st International Computational Geometry Software
Workshop (1995), pp. 63–66.

[3] Almeida, J., Barbosa, L., Pais, A., and Formosinho, S. Improving Hierarchical
Cluster Analysis: A New Method with Outlier Detection and Automatic Clustering.
Chemometrics and Intelligent Laboratory Systems 87 (2007), 208–217.

[4] Alt, H., and Godau, M. Computing the Fréchet Distance Between Two Polygonal
Curves. International Journal of Computational Geometry & Applications 5, 1–2 (1995),
75–91.

[5] Alt, H., Knauer, C., and Wenk, C. Matching Polygonal Curves with Respect to
the Fréchet Distance. In 18th Annual Symposium on Theoretical Aspects of Computer
Science (2001), STACS.

[6] Amburn, S. A., and Wolf, P. L. VIL Density as a Hail Indicator. Weather and
Forecasting 12 (1997), 473–478.

[7] Andersson Granberg, T., Polishchuk, T., Polishchuk, V., and Schmidt,
C. Automatic Design of Aircraft Arrival Routes with Limited Turning Angle. In 16th
Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems (2016), ATMOS.

[8] Bertsimas, D., Lulli, G., and Odoni, A. An Integer Optimization Approach to
Large-Scale Air Traffic Flow Management. Operations Research 59, 1 (2011), 211–227.

[9] Bertsimas, D., and Patterson, S. S. The Air Traffic Flow Management Problem
with Enroute Capacities. Operations Research 46 (1998), 406–422.

[10] Bilimoria, K., Shridar, B., Chatterij, G., Sheth, K., and Grabbe, S.
FACET: Future ATM Concepts Evaluation Tool. In 3rd USA/Europe Air Traffic Ma-
nagement R&D Seminar (2000).

152

[11] Bokadia, S., and Valasek, J. Severe Weather Avoidance using Informed Heuristic
Search. In AIAA Guidance, Navigation, and Control Conference and Exhibit (2001).

[12] Bombelli, A., Soler, L., Trumbauer, E., and Mease, K. D. Strategic Air
Traffic Planning with Fréchet Distance Aggregation and Rerouting. In AIAA Aviation
2015 Conference (2015).

[13] Bombelli, A., Soler, L., Trumbauer, E., and Mease, K. D. Strategic Air Traffic
Planning with Fréchet Distance Aggregation and Rerouting. Journal of Guidance,
Control, and Dynamics 40, 5 (2017), 1117–1129.

[14] Bombelli, A., Torné, A. S., Trumbauer, E., and Mease, K. D. Automated
Route Clustering for Air Traffic Modeling. In AIAA Aviation 2017 Conference (2017).

[15] Bosson, C. S., Xue, M., and Zelinski, S. J. Optimizing Integrated Termi-
nal Airspace Operations Under Uncertainty. In Digital Avionics Systems Conference
(DASC), 2014 IEEE/AIAA 33rd (2014), IEEE.

[16] Cao, Y., and Sun, D. Link Transmission Model for Air Traffic Flow Management.
Journal of Guidance, Control, and Dynamics 34, 5 (2011), 1342–1351.

[17] Chan, W. N., Refai, M., and DeLaura, R. An Approach to Verify a Model for
Translating Convective Weather Information to Air Traffic Management Impact. In
AIAA Aviation 2007 Conference (2007).

[18] Chen, D., Driemel, A., Guibas, L. J., Nguyen, A., and Wenk, C. Approxi-
mate Map Matching with Respect to the Fréchet Distance. In Proceedings of the 13th
Workshop on Algorithm Engineering & Experiments (2011), ALENEX11.

[19] Clemons, E., DeLaura, R., Glina, Y., Jordan, R., Proschitsky, A.,
Reynolds, T. G., Avery, J., Balakrishnan, H., Brooks, C., Murca, M.
C. R., et al. Multi-Scale Data Mining for Air Transportation System Diagnostics. In
AIAA Aviation 2016 Conference (2016).

[20] Cook, A., and Tanner, G. European Airline Delay Cost Reference Values. Tech.
rep., University of Westminster, 2015.

[21] Cook, A. J., Tanner, G., and Anderson, S. Evaluating the True Cost to Airlines
of One Minute of Airborne or Ground Delay. Tech. rep., Eurocontrol, 2004.

[22] Cormen, T., Leiserson, C. E., Rivest, R., and Stein, C. Introduction to
Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.

[23] Daganzo, C. F. The Cell Transmission Model: a Dynamic Representation of Highway
Traffic Consistent with the Hydrodynamic Theory. Transportation Research Part B:
Methodological 28, 4 (1994), 269–287.

[24] Dasgupta, S. Learning Polytrees. In Proceedings of the Fifteenth Conference on
Uncertainty in Artificial Intelligence (San Francisco, CA, USA, 1999), UAI’99, Morgan
Kaufmann Publishers Inc., pp. 134–141.

153

[25] Davies, D. L., and Donald, W. A Cluster Separation Measure. IEEE Transactions
on Pattern Analysis and Machine Intelligence 1 (1979), 224–227.

[26] Delaura, R., and Evans, J. An Exploratory Study of Modeling Enroute Pilot
Convective Storm Flight Deviation Behavior. In Proceedings of the 12th Conference on
Aviation, Range, and Aerospace Meteorology (2006).

[27] Dijkstra, E. W. A Note on Two Problems in Connexion with Graphs. Numer. Math.
1, 1 (Dec. 1959), 269–271.

[28] Douglas, D., and Peucker, T. Algorithms for the Reduction of the Number
of Points Required to Represent a Digitized Line or its Caricature. The Canadian
Cartographer 10 (1973), 112–122.

[29] Dunn, J. C. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting
Compact Well-Separated Clusters. Journal Of Cybernetics 3, 3 (1973).

[30] Eppstein, D. Finding the k Shortest Paths. SIAM Journal on Computing 28, 2 (1998),
652–673.

[31] EUROCONTROL. Standard Inputs for EUROCONTROL Cost-Benefit Analyses.
Tech. rep., EUROCONTROL, 2015.

[32] Evans, J. E., and Ducot, E. R. Corridor Integrated Weather System. Lincoln
Laboratory Journal 16, 1 (2006), 59–80.

[33] Ferreira, L., and Hitchcock, D. B. A Comparison of Hierarchical Methods for
Clustering Functional Data. Communications in Statistics-Simulation and Computation
38, 9 (2009), 1925–1949.

[34] Gilbo, E. P. Airport Capacity: Representation, Estimation, Optimization. IEEE
Transactions on Control Systems Technology 1, 3 (1993), 144–154.

[35] Hart, P. E., Nilsson, N. J., and Raphael, B. A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and
Cybernetics 4, 2 (July 1968), 100–107.

[36] Hayashi, M., Hoang, T., Jung, Y. C., Gupta, G., Malik, W. A., and Dulchi-
nos, V. L. Usability Evaluation of the Spot and Runway Departure Advisor (SARDA)
Concept in a Dallas/Fort Worth Airport Tower Simulation. In Tenth USA/Europe Air
Traffic Management Research and Development Seminar (ATM2013) (2013).

[37] Hoang, T., Jung, Y. C., Holbrook, J. B., and Malik, W. A. Tower Controllers
Assessment of the Spot and Runway Departure Advisor (SARDA) Concept. In Ninth
USA/Europe Air Traffic Management Research and Development Seminar (ATM2011)
(2011).

[38] Kellner, S. Airport Capacity Benchmarking by Density Plots. In German Aviation
Research Society (GARS) Seminar (2009).

154

[39] Kleinberg, J., and Tardos, E. Algorithm Design. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2005.

[40] Klingle-Wilson, D., and Evans, D. J. Description of the Corridor Integrated
Weather System (CIWS) Weather Products. Tech. rep., MIT Lincoln Laboratory, 2005.

[41] Klotz, E., and Newman, A. M. Practical Guidelines for Solving Difficult Mixed
Integer Linear Programs. Surveys in Operations Research and Management Science 18,
1 (2013), 18–32.

[42] Knuth, D. E. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical
Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997.

[43] Krozel, J., Lee, C., and Mitchell, J. S. B. Turn-Constrained Route Planning
for Avoiding Hazardous Weather. Air Traffic Control Quarterly 14, 2 (2006), 159–182.

[44] Kuffner, J. J., and LaValle, S. M. RRT-Connect: An Efficient Approach to
Single-Query Path Planning. In Robotics and Automation, 2000. Proceedings. ICRA’00.
IEEE International Conference on (2000), vol. 2, IEEE, pp. 995–1001.

[45] Lavalle, S. M. Rapidly-Exploring Random Trees: A New Tool for Path Planning.
Tech. rep., Iowa State University, 1998.

[46] LaValle, S. M. Planning Algorithms. Cambridge university press, 2006.

[47] LaValle, S. M., and Kuffner Jr, J. J. Rapidly-Exploring Random Trees: Progress
and Prospects, 2000.

[48] LAWA Los Angeles World Airports. Los Angeles International Airport - Pref-
erential Runway Use Policy. Tech. rep., Environmental Services Division Noise Mana-
gement Section, 2014.

[49] Love, J. F., Chan, W. N., and Lee, C. H. Analysis of Automated Aircraft Conflict
Resolution and Weather Avoidance. In AIAA Aviation 2009 Conference (2009).

[50] Luenberger, D. G., and Ye, Y. Linear and Nonlinear Programming. Springer
Publishing Company, Incorporated, 2015.

[51] Maheshwari, A., and Yi, J. On Computing Frèchet Distance of Two Paths on a
Convex Polyhedron. In Proceedings of the 21st European Workshop on Computational
Geometry (2005), EWCG.

[52] Martin, E., et al. A Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise. In 2nd International Conference on Knowledge Discovery
and Data Mining (1996), KDD-96.

[53] Marzuoli, A., Gariel, M., Vela, P. A., and Feron, E. Data-Based Modeling
and Optimization of En Route Traffic. Journal of Guidance, Control, and Dynamics
37, 6 (2014), 1930–1945.

155

[54] Matthews, M. P., and DeLaura, R. Assessment and Interpretation of En Route
Weather Avoidance Fields from the Convective Weather Avoidance Model. In AIAA
Aviation 2010 Conference (2010).

[55] McNally, D., Sheth, K., Gong, C., Love, J., Lee, C. H., Sahlman, S., and
Cheng, J. H. Dynamic Weather Routes: a Weather Avoidance System for Near-
Term Trajectory-Based Operations. In 28th International Congress of the Aeronautical
Sciences (2012).

[56] Menon, P. K., Sweriduk, G. D., and Bilimoria, K. D. New Approach for
Modeling, Analysis, and Control of Air Traffic Flow. Journal of Guidance, Control, and
Dynamics 27, 5 (2004), 737–744.

[57] Menon, P. K., Sweriduk, G. D., Lam, T., Cheng, V. H. L., and Bilimoria,
K. D. Air Traffic Flow Modeling, Analysis and Control. In AIAA Conference on
Guidance, Navigation, and Control (2003).

[58] Murca, M. C. R., DeLaura, R., Hansman, R., Jordan, R., Reynolds, T.,
and Balakrishnan, H. Trajectory Clustering and Classification for Characterization
of Air Traffic Flows. In AIAA Aviation 2016 Conference (2016).

[59] Newell, G. F. A Simplified Theory of Kinematic Waves in Highway Traffic, Part I:
General Theory. Transportation Research Part B: Methodological 27, 4 (1993), 281–287.

[60] Odoni, A. R. The Flow Management Problem in Air Traffic Control. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1987, pp. 269–288.

[61] Papadimitriou, C. H., and Steiglitz, K. Combinatorial Optimization: Algorithms
and Complexity. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1982.

[62] Ramer, U. An Iterative Procedure for the Polygonal Approximation of Plane Curves.
Computer Graphics and Image Processing 1 (1972), 244–256.

[63] Rehm, F. Clustering of Flight Tracks. In AIAA InfoTech @Aerospace (2010).

[64] Rios, J., Jehlen, R., and Shu, Z. A Spatial Database for Reroute Planning. In
31st Digital Avionics Systems Conference (2012), DASC.

[65] Rousseeuw, P. J. Silhouettes: a Graphical Aid to the Interpretation and Validation
of Cluster Analysis. Computational and Applied Mathematics 20 (2009), 53–65.

[66] Rubnich, M., and DeLaura, R. An Algorithm to Identify Robust Convective
Weather Avoidance Polygons in En Route Airspace. In AIAA Aviation 2010 Conference
(2010).

[67] Sadovsky, A. V., and Bilimoria, K. D. Risk-Hedged Approach for Re-routing Air
Traffic Under Weather Uncertainty. In AIAA Aviation 2016 Conference (2016).

156

[68] Saunders, P., and Ronne, F. A Comparison Between the Height of Cumulus Clouds
and the Height of Radar Echoes Received from Them. Journal of Applied Metereology
1 (1962), 296–302.

[69] Solow, D. Linear Programming; an Introduction to Finite Improvements Algorithms.
Dover Publications, Inc., Mineola, NY, USA, 2014.

[70] Sridhar, B., Soni, T., Sheth, K., and Chatterji, G. Aggregate Flow Model
for Air-Traffic Management. Journal of Guidance, Control, and Dynamics 29, 4 (2006),
992–997.

[71] Sultan, A. Linear Programming; an Introduction with Applications (Second Edition).
Department of Mathematics, Queens College of CUNY, Flushing, NY, USA, 2016.

[72] Sun, D., and Bayen, A. M. Multicommodity Eulerian-Lagrangian Large-Capacity
Cell Transmission Model for En Route Traffic. Journal of Guidance, Control, and
Dynamics 31, 3 (2008), 616–628.

[73] Sun, D., Clinet, A., and Bayen, A. M. A Dual Decomposition Method for Sector
Capacity Constrained Traffic Flow Optimization. Transportation Research Part B 45
(2011), 880–902.

[74] Taylor, C., and Wanke, C. Dynamic Generation of Operationally Acceptable
Reroutes. In AIAA Aviation 2009 Conference (2009).

[75] Taylor, C., and Wanke, C. Generating Operationally-Acceptable Reroutes Using
Simulated Annealing. In AIAA Aviation 2010 Conference (2010).

[76] Taylor, C., and Wanke, C. Dynamically Generating Operationally-Acceptable
Reroutes Using Simulated Annealing. Air Traffic Control Quarterly 20, 1 (2012), 97–
121.

[77] Tibshirani, R., Walther, G., and Hastie, T. Estimating the Number of Clusters
in a Data Set via the Gap Statistic. Journal of Royal Statistical Society 63, 3 (2001),
411–423.

[78] Trudeau, R. J. Introduction to Graph Theory. Dover Publications, Inc., 2013.

[79] Van Brummelen, G. Heavenly Mathematics: The Forgotten Art of Spherical
Trigonometry. Princeton University Press, 2012.

[80] Vranas, P., Bertsimas, D., and Odoni, A. R. The Multi-Airport Ground-Holding
Problem in Air Traffic Control. Operations Research 42 (1994), 249–261.

[81] Wei, P., Cao, Y., and Sun, D. Total Unimodularity and Decomposition Method
for Large-Scale Air Traffic Cell Transmission Model. Transportation Research Part B
53 (2013), 1–16.

[82] Xue, M. Airspace Sector Redesign Based on Voronoi Diagrams. Journal of Aerospace
Computing, Information, and Communication 6 (2009), 624–634.

157

[83] Zeng, W., and Church, R. L. Finding Shortest Paths on Real Road Networks: The
Case for A*. International Journal of Geographical Information Science 23, 4 (Apr.
2009), 531–543.

[84] Zhang, W., Kargampour, M., Sun, D., and Tomlin, C. J. A Hierarchical
Flight Planning Framework for Air Traffic Management. Proceedings of the IEEE 100,
1 (2011), 179–194.

158

Appendices

A List of Acronyms

Acronym Full Name

ARM Aggregate Route Model

ASPM Aviation System Performance Metric

ATC Air Traffic Controller

ATM Air Traffic Management

CIWS Corridor Integrated Weather System

CWAM Convective Weather Avoidance Model

DBSCAN Density-Based Spatial Clustering of Applications

with Noise

FAA Federal Aviation Administration

FACET Future ATM Concept Evaluation Tool

IP Integer Programming

LP Linear Programming

LTV Linear Time-Varying

NAS National Airspace System

O-D Origin-Destination

RDP Ramer-Douglas-Peucker

159

SD Strategic Delay

TDWNE Tactical Delay With Network Effect

TDWONE Tactical Delay Without Network Effect

TFM Traffic Flow Management

TFMP Traffic Flow Management Problem

TMI Traffic Management Initiative

TRX FACET Track File

UTC Coordinated Universal Time

VIL Vertically Integrated Liquid

Airport Full name

ABQ Albuquerque International Sunport airport

BUR Burbank Bob Hope airport

DEN Denver International airport

LAS Las Vegas McCarran International airport

LAX Los Angeles International airport

LGB Long Beach airport

OAK Oakland International airport

ONT Ontario International airport

OXR Oxnard airport

PDX Portland International airport

PHX Phoenix Sky Harbor International airport

PSP Palm Springs International airport

SAN San Diego International airport

SBA Santa Barbara Municipal airport

SEA Seattle-Tacoma International airport

SFO San Francisco International airport

SJC Norman Y. Mineta San José International airport

160

SLC Salt Lake City International airport

SMF Sacramento International airport

SNA John Wayne airport

TUS Tucson International airport

VNY Van Nuys airport

Center Full name

ZAB Albuquerque Center

ZDV Denver Center

ZLA Los Angeles Center

ZLC Salt Lake City Center

ZOA Oakland Center

ZSE Seattle Center

B Ground Stop as Feasible Solution of the IP Problem

In this appendix we show how, under the assumption of a zero initial state vector, the

IP problem is always solvable, with the worst case scenario solution being a ground stop

for all scheduled departures. We show the result for a single aggregate route of a network

component. The concept is easily applicable to all aggregate routes of the ARM.

Consider a planning domain with Nt time-steps t1, t2, · · · , tNt . Scheduled departures are

b1,b2, · · · ,bNt . Optimized departures along aggregate route k at time t1 are

bt1 − g(t1)−
Nr∑
j=1

pk→j(t1) (B.1)

161

while for every following time-step ti they are

bti + g(ti−1)− g(ti)−
Nr∑
j=1

pk→j(ti) (B.2)

Considering no departures, all pre-departure controls will be identically zero (i.e., pk→j =

0 ∀ j). Additionally, the control inequality constraints

g(t1) ≤ bt1

g(t2) ≤ bt2 + g(t1)

· · ·

g(tNt) ≤ btNt
+ g(tNt−1)

become equalities since departures are not allowed. If we sum all the left hand sides and

right hand sides we obtain

g(tNt) =
Nt∑
i=1

bi (B.3)

The cumulative summation of the optimized departures is b1 − g(t1) + b2 + g(t1)− g(t2) +

162

· · ·+ bNt + g(tNt−1)− g(tNt), or equivalently

Nt∑
i=1

bi − g(tNt) (B.4)

which is identically zero using Eq. B.3. Thus, neglecting the initial state vector, the system

can always react to the set of constraints by imposing a ground stop to all flights that exploits

cycles in origin nodes of the network. It is clearly a scenario which is not desirable from an

operational perspective, but analytically the problem is still solvable.

C Overlapping Index Algorithm

In this appendix we provide some insights on an index, defined overlapping index, that is

based on an application of the Fréchet distance. Instead of computing the Fréchet distance

between two great circle arc sequences P and Q, goal of the index is to identify common

regions between P and Q characterized by a “local” Fréchet distance that can be either (i) a

fraction of the Fréchet distance characterizing the two curves, or (ii) a fixed distance value.

For each of the two tracks, the associated overlapping index is the ratio between the length

of the track characterized by such “local” Fréchet distance, and the overall length of the

track (i.e., the overlapping index ranges between zero and one).

As example, given two flight tracks characterized by a crossing point, it could be interesting

to identify the common region where two aircraft, one on each track, can incur in loss of

separation (in this case, a fixed distance can be specified). Another application addresses

the categorization of outlier tracks computed as described in Sec. 2.3.3. By computing

the overlapping index between an outlier and its nearest neighbor (i.e., the track with the

163

smallest Fréchet distance F with respect to the outlier), some insights on why the outlier

was labeled as such can be extrapolated. This second application is what will be primarily

addressed here.

The first step in the computation of the overlapping index, is to detect for each outlier the

nearest-neighbor ground track. Then, a value for α (0 ≤ α ≤ 1) is chosen, and a free space

diagram is generated using αF as distance (as mentioned before, α can be chosen such that

either the desired distance is a certain percentage of F or a fixed distance, as long as the

distance is smaller than F). Figure C.1(a) shows P , one of the three outliers described

in Sec. 2.3.3, and the nearest-neighbor Q. They are characterized by a Fréchet distance

F = 76.7 km. Figure C.1(b) shows the free space computed using α = 0.4, i.e., using a

distance of 30.7 km.

−115 −114 −113 −112 −111 −110 −109 −108 −107 −106 −105 −104

34

35

36

37

38

39

40

41

42

P

Q

Longitude [deg]

La
ti
it
u

d
e

 [
d

e
g

]

(a) Two ground tracks P and Q.

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Flight track P

F
lig

h
t

tr
a

c
k
 Q

(b) Free space diagram computed using αF (α =
0.4) as distance.

Figure C.1: Example of how, given two ground tracks P and Q, their Fréchet distance F ,
and α, the free space diagram associated with αF is generated and overlapping regions are
identified.

Since a fraction of the Fréchet distance is used, a monotone path from the upper left corner

to the lower right corner does not exist in Fig. C.1(b). On the other hand, some regions

characterized by a monotone path exist. Each of these regions is characterized by a “local”

Fréchet distance αF . In Fig. C.1(b) the two regions where a monotone path exists are

164

highlighted with a gray box. The first region starts from the origin of both tracks, while the

second ends in correspondence to the endpoints of the two tracks. This is consistent with

the fact that the tracks share the same O-D airport pair.

The problem to be solved is dual with respect to the computation of the Fréchet distance.

For the Fréchet distance, the origin and destination nodes of the directed graph are fixed,

and the adjacency properties of the directed graph are modified according to the candidate

distance Fm. For the overlapping index, the adjacency properties of the directed graph are

fixed, since the distance αF is fixed. What needs to be determined is (i) the regions with a

monotone path, and (ii) the origin and destination for each region. Within each region (like

the two shown in Fig. C.1(b)), multiple monotone paths can be identified. The policy that is

adopted is, among the monotone paths identified, to select the one that maximizes the sum

of the paths along the two tracks. If a region spans more that one unitary square vertically

and/or horizontally, the great circle arcs associated with internal squares will be accounted

for completely. Instead, for the initial/final points on the two tracks, a more careful analysis

of the initial/final unitary square’s free space is necessary. The procedure can be summarized

as follows

1. Given F and α, compute the free space diagram using αF as distance. Identify if at

least a region with a monotone path exists.

2. For each region, determine all the nodes of the original directed graph that are possible

origins (no other nodes upstream) and destinations (no other nodes downstream). For

each O-D node combination, determine if a path exists.

3. For each path, compute the overall length along the two ground tracks. To deter-

mine the initial/final points along the two tracks, focus on the unitary square up-

stream/downstream. Define a gridded discretization, compute all the pairs of points

whose distance is less or equal to αF , and choose the pair that maximizes the sum of

165

the two great circle arcs (see Fig. C.2).

1 2 3 4 5 6 7 8 9 10 11 12 13 14

6

5

4

3

2

1

Flight track P
F
lig

h
t

tr
a

c
k
 Q

(a) Overlapping region, with origin and destina-
tion nodes highlighted with circles and crosses,
respectively.

14

7

f
P
=0.68

f
Q

=0.26

Flight track P

F
lig

h
t

tr
a

c
k
 Q

(b) Focus on the unitary square associated with
the 14th and 7th great circle arcs of P and Q,
respectively.

Figure C.2: Focus on the first overlapping region identified in the free space shown in Fig. C.1.

The application of the procedure is analyzed for the upper left region shown in Fig. C.1(b)).

Inside the region, a potential origin and three potential destinations are identified. They are

highlighted with a circle and a cross, respectively, in Fig. C.2(a) The first two destination

nodes are associated with the same final unitary square, since they are located on the top

and left edge of the same unitary square in position (4, 1). The third destination node is

located on the left side of the unitary square in position (7, 14), and it is the destination

node that maximizes the length of the overlapping region. The free space of the unitary

square is shown in Fig. C.2(b) in dark gray. The point that maximizes the sum of the two

great circle arcs fractions is highlighted. The overlapping region ranges from the origin to

the 26% of the 7th great circle arc of Q, and from the origin to the 68% of the 14th great

circle arc of P .

If the process is repeated for the second block shown in Fig. C.1(b), the overlapping index

suggests that the common region such that the local Fréchet distance is αF covers more

than 60% of both curves. This is evident if Fig. C.1(a) is analyzed. For most of the route,

the matching between P and Q is very accurate. Track P is labeled as outlier because it

166

performs a consistent path stretch before the landing procedure in DEN. P is not a different

route with regard to Q, but a tactical maneuver in proximity of the destination airport was

enough to turn P into an outlier from a clustering perspective.

Our main takeaway can be summarized as follows. For low values of the overlapping index,

the outlier is most likely a single track showing little similarity with respect to its nearest-

neighbor. For higher values of the overlapping index (like the 60% characterizing the example

presented), the outlier is most likely affected by a localized tactical maneuver. Although in

portions of the track the overlapping with the nearest-neighbor is high, the presence of the

tactical maneuver is enough to label the track as an outlier.

167

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Aggregate Routes via Clustering
	General Framework, Historical Dataset and Flight Categories for Route Clustering
	Coarse Clustering
	Flight Track Undersampling, Fréchet Distance Computation and Outlier Detection
	Flight Track Undersampling
	Fréchet Distance Computation
	Outlier Detection

	Fine Clustering
	Aggregate Route Computation
	Airport Departure and Arrival Capacity Estimation
	Application to the Six Western-most Centers of the NAS

	Airborne Rerouting Design
	Design of Operationally Feasible Rerouting Options
	Conversion of an Aggregate Route using a Lambert Conformal Conic Projection
	Definition of the Search Space
	Additional Nodes Computation
	Computation of the Adjacency Properties of the Augmented Graph

	Convective Weather Data
	Convective Weather Avoidance Model
	Modeling Assumptions

	Airborne Rerouting as a Shortest Path Problem
	Edge Cost Computation
	Ground Holding vs. Airborne Rerouting Cost Analysis
	Shortest Path Algorithm Structure
	Shortest Path Algorithm Implementation

	Aggregate Route Model as a Discrete Linear Time-Invariant System
	Uncontrolled Traffic Flow Dynamics for a Network Component
	Traffic Flow Controls for a Network Component
	Network Component Example with Ground Holding and Pre-Departure Rerouting
	Network Component Example with Ground Holding, Pre-Departure Rerouting and Airborne Rerouting

	Controlled Network Dynamics

	Strategic Air Traffic Planning as an Integer Programming Problem
	Control Constraints and Capacity Constraints
	Control Constraints
	Capacity Constraints
	Sector Capacity
	Departure and Arrival Capacity
	Cell Capacity Constraints
	Separation Constraints
	Weather-Related Constraints

	Cost Function
	Properties of the Solution

	Tests of the Strategic Planning Method
	Test 1: ZLA Air Traffic Simulation and Management
	Test 2: Managing Internal Flights in ZLA in Convective Weather
	Test 3: Air Traffic Flow Optimization for the Six Western-Most Centers of the NAS

	Conclusions
	Bibliography
	Appendices
	List of Acronyms
	Ground Stop as Feasible Solution of the IP Problem
	Overlapping Index Algorithm

