
UC Berkeley
UC Berkeley Previously Published Works

Title
Relative abundance data can misrepresent heritability of the microbiome

Permalink
https://escholarship.org/uc/item/0fz5p3qn

Journal
Microbiome, 11(1)

ISSN
2049-2618

Authors
Bruijning, Marjolein
Ayroles, Julien F
Henry, Lucas P
et al.

Publication Date
2023

DOI
10.1186/s40168-023-01669-w

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0fz5p3qn
https://escholarship.org/uc/item/0fz5p3qn#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Bruijning et al. Microbiome          (2023) 11:222  
https://doi.org/10.1186/s40168-023-01669-w

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Microbiome

Relative abundance data can misrepresent 
heritability of the microbiome
Marjolein Bruijning1,2*, Julien F. Ayroles2,3, Lucas P. Henry2,3,4, Britt Koskella5, Kyle M. Meyer5 and 
C. Jessica E. Metcalf2 

Abstract 

Background Host genetics can shape microbiome composition, but to what extent it does, remains unclear. Like any 
other complex trait, this important question can be addressed by estimating the heritability (h2) of the microbiome—
the proportion of variance in the abundance in each taxon that is attributable to host genetic variation. However, 
unlike most complex traits, microbiome heritability is typically based on relative abundance data, where taxon-spe-
cific abundances are expressed as the proportion of the total microbial abundance in a sample.

Results We derived an analytical approximation for the heritability that one obtains when using such relative, 
and not absolute, abundances, based on an underlying quantitative genetic model for absolute abundances. Based 
on this, we uncovered three problems that can arise when using relative abundances to estimate microbiome 
heritability: (1) the interdependency between taxa can lead to imprecise heritability estimates. This problem is most 
apparent for dominant taxa. (2) Large sample size leads to high false discovery rates. With enough statistical power, 
the result is a strong overestimation of the number of heritable taxa in a community. (3) Microbial co-abundances 
lead to biased heritability estimates.

Conclusions We discuss several potential solutions for advancing the field, focusing on technical and statistical 
developments, and conclude that caution must be taken when interpreting heritability estimates and comparing 
values across studies.

Keywords Absolute abundance, Compositional data, Genetic variance, Host-microbe associations, Microbiota, 
Phenotypic variance

Background
The number of host phenotypes known to be impacted 
by the microbiome is ever-growing, from metabolism 
to behavior, including its influence on a range of disease 
risk factors [1–3]. However, we are only beginning to 
understand the contribution of host genetics in shaping 
microbiome composition [4–8], with a growing body of 
research exploring such associations and their mecha-
nisms (direct, or indirect, e.g., mediated by genetic asso-
ciations with diet). This interest stems not only from our 
desire to understand how evolution and coevolution has 
shaped host-microbiome interactions over both shorter 
and longer (i.e., macroevolution) timescales [1, 9], but 
identifying a genetic basis of host-microbe associations 
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also has important applied health implications [10]. Criti-
cal to address these questions, is our ability to correctly 
measure the relative importance of hereditary and envi-
ronmental influences on microbiome composition.

Heritability is a central parameter in quantitative 
genetics that quantifies a key aspect of the genetic basis 
for resemblance between parents and offspring. The 
heritability of a phenotypic trait is a statistical property, 
defined as the proportion of the phenotypic variance 
in a population that is attributable to genetic variation 
[11]. When estimating microbiome heritability, the 
focal phenotypic trait is typically either a measure of 
community composition or the abundance of a given 
taxon [12]. While a consensus is emerging that the 
heritability of most microbiome members is relatively 
low, specific estimates of the importance of host genetic 
variation in shaping microbiome composition vary 
widely across studies (Table  1). For example, a recent 
study found that 97% of the gut microbes in baboons has 
a significant non-zero heritability [13], while a different 
study concluded that host genetic background only plays 
a minor role in shaping microbiome composition in 
humans [14]. How should we interpret such substantial 
differences among studies: do these really reflect 
biological differences?

The use of heritability as a metric is ubiquitous in 
genetics, yet what it really measures and how it is 
interpreted remains the source of much confusion. 
Heritability is by definition a population-specific 
estimate, and subject to the influence from the 
environment and the genetic structure of the population. 
Moreover, detection of a non-zero microbiome 
heritability does not tell us anything about the 
mechanisms that cause related individuals to have, on 
average, more similar microbiomes. Several mechanisms 
are possible. Microbes might be vertically transmitted 
from the parents (and typically the mother) to offspring, 
for example via transfer during vaginal delivery, or 
via breast milk [35, 36]; or horizontally transmitted 
from other family members, perhaps simply due to 
their proximity [37]. Both effects could result in tight 
connections between host and microbial genotypes, 
and thus inflate heritability. Alternatively, host genotype 
might directly influence the types of microbes that can 
establish, as shown in species of woodrats [38], and this 
mechanism will also yield high estimates of heritability. 
Conversely, if heritability is estimated to be zero this 
need not mean that there is no vertical transmission (or 
horizontal transmission from relatives), it might simply 
mean that the effects of the environment are much larger 
and overwhelm these transmission effects, as has been 
found in marine sponges [39].

A methodological complexity when estimating micro-
biome heritability, is that the absolute microbial abun-
dances are typically unknown. It is therefore common 
practice to calculate relative abundances by setting the 
sum in each sample to 1, generating so-called ‘composi-
tional data’. The inherent problems with compositional 
data have been acknowledged for some time, and they are 
known to lead to spurious correlations between variables, 
even when there exists no correlation at all [40]. This has 
more recently been discussed in the context of microbial 
data, for example when testing for differentially abundant 
microbes across treatment groups (e.g., host disease sta-
tus) [41–46]. The estimation of microbiome heritability is 
rooted in comparison of differential abundances among 
host genotypes, and could therefore be subject to simi-
lar issues. However to date, studies reporting microbe 
heritability estimates, have not explicitly considered the 
potential problems associated with the use of composi-
tional data.

We present an approximation of the taxon-specific her-
itability that one obtains when using relative abundances 
(we call this estimate ϕ2 ). We show that this metric differs 
from traditional h2 estimates: ϕ2 is not simply a function 
of host genetic and phenotypic variance, but also depends 
on various other properties of the focal microbe and the 
rest of the community. Based on this, we identify three 
main problems that can arise when using relative abun-
dance data to estimate taxon heritabilities. First, as rela-
tive abundances inherently covary, a heritable signal for 
some microbes can lead to spurious heritability estimates 
of non-heritable microbes or, vice versa, non-heritable 
microbes can mask a genetic signal in heritable microbes. 
This problem is most apparent for dominant taxa, and 
the impact of the issue diminishes for low abundance 
taxa, where the two heritability estimates (h2 and ϕ2 ) con-
verge. However, a related second problem remains: while 
the estimated heritability of a non-heritable microbe can 
become close to zero, it may never completely reach zero. 
When a large number of host are sampled, even such a 
very weak (spurious) heritable signal can be highly sig-
nificant, reflecting greater statistical power. When con-
sidering many microbial taxa in a community, the result 
is a considerable overestimation of the overall proportion 
of heritable microbes. Third, microbial taxa that covary 
in abundance (for instance caused by shared niches or 
microbial interactions), can result in large discrepan-
cies between h2 and ϕ2 , systematically biasing heritabil-
ity estimates. Depending on the nature and sign of the 
covariance, this can either mask or inflate true heritabil-
ity signals. After deriving our approximation for ϕ2 , we 
detail each of these problems. We show that our analyti-
cal results match results when we estimate heritability by 
fitting statistical models to simulated datasets. We then 
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Table 1 Summary of the studies estimating heritabilities of the abundance of microbial taxa, sorted by sample size. More details in 
Additional file 1: Appendix S4 on methodology per study

a Type of host genetic data to estimate heritability. Pedigree: take into account pedigree to estimate narrow-sense h2. SNPs: incorporate genetic relatedness matrix 
based on SNPs, to calculate SNP heritability. Lineage: genotype/lineage as random effect, estimates broad-sense H2. Twins: compare MZ with DZ twins, to estimate 
broad-sense H2

b No significance measures are provided. Average heritability is therefore calculated using all estimates
c Analyses are done for winter, summer and both seasons combined
d European and African ancestry
e Heritability estimates per taxon are not provided
f Two different breeds
g Three time points during host development
h 2010 and 2015 field study

Number Host system # Samples # Taxa # Heritable taxa Average 
non-zero 
heritability

Host genetic 
relatedness 
based  ona

Normalization/
transformation

Reference

1 Mice 32 43 NAb 0.47b Lineage Total sum scaling [15]

2 Chickens 56 23 0 NA Pedigree Log-transformation 
and scaling

[16]

3c Humans 93 116 14 0.35 SNPs Quantile normalization [17]

91 104 10 0.37

127 102 13 0.26

4 Humans 108 221 0 NA Twins Box-Cox transformation [5] data from [18]

5 Humans 126 2,933 0 NA Twins Box-Cox transformation [5] data from [19]

6d Humans 244 3 1 0.35 Twins Arcsine square root 
transformation

[20]

88 3 0 NA

7 Humans 250 109 11 NAe Twins Box-Cox transformation [21]

8 Humans 270 249 26 0.58 Pedigree Inverse normal 
transformation

[22]

9 Switchgrass 383 110 21 0.24 SNPs Total sum scaling [23]

10f Cows 650 512 39 NAe SNPs Quantile normalization [24]

200 512 3

11 Humans 485 91 42 0.34 Twins Log transformation 
and scaling

[25]

12 Humans 542 369 85 0.27 Twins Inverse normal 
transformation

[26]

13 Mice 592 43 NAb 0.51b SNPs Total sum scaling [27]

14 Sorghum 600 1189 443 0.22 Lineage Cumulative sum scaling [28]

15 Humans 655 85 52 0.24 Twins Inverse normal 
transformation

[29]

16 Humans 1068 21 6 0.40 SNPs Box-Cox transformation [30]

17 Humans 1081 909 10 0.29 Twins Box-Cox transformation [5]

18 Humans 1176 209 11 0.31 Twins Inverse rank-sum 
transformation

[31]

19 g Pigs 1205 1678 170 0.056 Lineage Total sum scaling [32]

1295 1678 261 0.078

1283 1678 366 0.099

20 h Maize 4866 792 143 0.17 Lineage Log transformation [33]

45 2557 5 0.45

21 Humans 3261 945 52 0.30 Twins Box-Cox transformation [6]

22 Humans 4745 242 31 0.20 Pedigree Centered log-ratio 
transformation

[34]

23 Baboons 16,234 283 273 0.068 Pedigree Total sum scaling [13]
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discuss empirical heritability estimates obtained from 
published studies in the light of our results. In the discus-
sion, we outline some solutions that may partly solve the 
here described issues. We conclude that caution must be 
taken when interpreting heritability estimates based on 
relative abundances and comparing values across stud-
ies, and that approximations of microbial absolute abun-
dances may help remedy this issue.

The heritability of a taxon’s abundance
When estimating the heritability of a taxon, one relies 
on a quantitative genetic model, considering a taxon’s 
abundance as a quantitative phenotypic trait of the host. 
The absolute abundance of taxon i in host j ( Pij ) can be 
written as

where αi is the average absolute abundance of microbe i, 
Gij is the breeding value or host genetic contribution (for 
simplicity, we assume no genetic dominance or epistasis), 
Eij is the environmental contribution (residual), and 
we assume no G × E interactions. Equation  1 can be 
extended by including additional factors that affect taxon 
abundance, such as host age, sex, or season.

Across host individuals, the absolute abundance of 
microbe i is assumed to follow a normal distribution 
with mean αi and variance VPi (non-normal data requires 
transformations or link functions, see e.g., [47], but this 
is beyond the scope of this manuscript). This variance 
can be decomposed into a genetic and environmental 
contribution (assuming no genotype-environment 
covariance):

Following the definition of the heritability, the 
heritability of taxon i is

When the absolute abundances are known, one can 
simply estimate the taxon heritability by quantifying 
the proportion of the total variance that is attributable 
to host genetic variation (e.g., by fitting a mixed effects 
model [48]). In case that all assumptions are met (e.g., 
normally distributed phenotypes, no GxE interactions), 
the heritability can be estimated (note that in this case, 
as we assume no dominance or epistasis, the broad-sense 
and narrow-sense heritability are identical). Both direct 
genetic effects and indirect genetic effects, e.g., through 
other microbes or behavior that is under genetic control, 
can results in a non-zero heritability.

(1)Pij = αi + Gij + Eij

(2)VPi = VGi + VEi

(3)h2i =
VGi

VPi

However, we typically do not know the absolute 
microbial abundances. Instead, most of the time we 
quantify how the relative abundance of taxon i varies 
across host individuals and estimate the heritability as 
the proportion of the variance in relative abundance 
that is attributable to genetic variation. Below we derive 
an equation for the obtained heritability when one uses 
relative, and not absolute abundances, based on the 
underlying model shown in Eqs. 1–2.

An approximation of the heritability based on relative 
abundances
As outlined above, the absolute abundance of microbe 
taxon i is distributed across host individuals as

The distribution of relative abundances not only 
depends on the focal microbe, but also on the absolute 
abundance of the entire community, consisting of M 
taxa. The community absolute abundance C (where 
C =

M
j Pj ) is also a normally distributed variable, 

where its mean equals the sum of the average abundances 
over all M taxa. The variance depends on the variance in 
each taxon, plus the sum of each phenotypic covariance 
between microbial pair, so that

The relative abundance of focal microbe i (which we call 
fraction fPi ) is calculated as the absolute abundance of focal 
taxon i, divided by the entire community abundance, and 
therefore is distributed as the ratio between Eq. 4 and Eq. 5:

We are interested in quantifying var(fPi) , as this gives 
us the total variance in the relative abundance, analogous 
to VPi . Similarly, we can obtain how relative abundances 
vary between host genotypes, by replacing VPi and VP , 
by VGi and VG , respectively, and considering genetic 
covariances  covG between each pair of microbes:

The proportion of the variance in relative abundance 
explained by host genetic variation (i.e., the heritability 
based on relative abundances or fractions, from now on 
called ϕ2 ) is then

(4)Pi ∼ Normal(αi,VPi)

(5)C ∼ Normal





M
�

j=1

αj ,

M
�

j=1

VPj + 2

M
�

1≤j<k≤M

covP
�

j, k
�





(6)fPi ∼
Normal(αi,VPi)

Normal(
∑

α,
∑

VP + 2
∑

covP(j, k))

(7)fGi ∼
Normal(αi,VGi)

Normal(
∑

α,
∑

VG + 2
∑

covG(j, k))
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In other words, Eq.  8 gives the heritability that 
one obtains when using relative, and not absolute, 
abundances. Ideally, if relative abundances are used as a 
proxy for absolute abundance, the heritability measure is 
the same when using absolute and relative abundances, 
i.e., one hopes that h2 = ϕ2.

An approximation of the heritability of taxon i that 
one obtains when using relative abundance data, and not 
absolute abundance data, is given by

(see Additional file 1: Appendix S1). Heritability ϕ2 is a 
function of properties of the focal taxon, with parameters 
VG and VP describing the genetic and phenotypic 
variance in absolute abundances, and α describing the 
average absolute abundance (to improve readability, we 
omit subscripts i). It follows from Eq.  9 that ϕ2 is also 
a function of the summed genetic and environmental 
covariances between focal taxon i and each of the other 
taxa in the community ( γ and ǫ , respectively). Finally, 
ϕ2 is a function of various properties of the background 
community (excluding the focal taxon): A is the average 
absolute abundance of the background community, ω 
and z  are the total host genetic and phenotypic variance 
in absolute abundances of the background community 
(i.e., the variances summed over all taxa), and κ and ν are 
the sums of the genetic and environmental covariances 
between each pair of background community members.

Notice the difference between Eq. 3 and Eq. 9: whereas 
h2 is (by definition) only a function of VG and VP , the 
heritability estimate that one obtains when using relative 
abundances, depends on various additional properties 
of the focal microbe ( α ), the entire community ( A , ω , 
z, κ , ν ) and interactions between the focal microbe and 
the community ( γ , ǫ ). Depending on the biology of the 
host-microbiome system as well as on properties of the 
data, we identified three problems that can arise as a 
consequence.

Problem 1: interdependency between taxa leads 
to imprecise heritability estimates
As relative abundances are not independent, heritable 
variation in some microbes can lead to spurious non-
zero heritabilities, in other microbes. Or vice versa, 
non-heritable microbes can mask a genetic signal in 
heritable microbes. Consider the extreme scenario with 
only two equally abundant microbes, where microbe A 

(8)ϕ2
=

var
(

fGi

)

var
(

fP i
)

(9)ϕ2
≈

A2VG + α2ω − 2α(Aγ − ακ)

A2VP + α2z − 2α(A(γ + ǫ)− α(ν + κ))

has a heritability of 1, and microbe B has a heritability 
of 0 (Fig. 1a). Because abundances are scaled to relative 
abundances, it would still seem that variation in microbe 
B abundance is shaped by host genetics (Fig. 1a). Moreo-
ver, expressing both abundances as relative abundances 
partly obscures the host genetic effect on microbe A. This 
results in a heritability estimate of 0.5 for both species, 
which is wrong in both cases, and leads to the incorrect 
conclusion that both microbes are heritable.

This can be formalized using Eq.  9, which, in the 
absence of genetic and environmental covariances, 
simplifies to

It follows that for a focal taxon with a very low average 
abundance (i.e., α ≪ A ), the estimated heritability 
approaches the same value as when based on absolute 
abundances (Eq. 3):

However, for a very dominant taxon ( α ≫ A ) it 
becomes more difficult to retrieve the true heritability h2 , 
approaching:

Remember that ω and z are the total genetic and 
phenotypic variance of the entire background community 
(summed over all microbes, excluding the focal microbe). 
Thus, for a highly dominant microbe, the estimated 
heritability approaches the heritability of the background 
community, and is not shaped at all by the genetic and 
phenotypic variance of the focal microbe.

This implies that depending on properties of both the 
focal microbe and the rest of the community, heritability 
estimates can be biased in different directions (Fig.  1b): 
we will underestimate the heritability of an abundant 
microbe when it is harbored by a non-heritable 
community (black line in Fig. 1b). On the other hand, an 
abundant microbe with no host genetic signal, will still 
appear heritable when it occurs in the background of a 
heritable community (grey line in Fig.  1b). As a result, 
the error in the heritability (i.e., the absolute difference 
between ϕ2 and h2), depends on both the heritability of 
the focal microbe, as well as on the heritability of the 
background community, and in general increases with 
an increasing abundance relative to the background 
community (Fig. 1c). When α

α+A < 0.05 (for instance, in 
the case of 20 equally abundant taxa in a community), 
the expected absolute error will be less than 10% for 

(10)ϕ2
≈

α2ω + A2VG

α2z + A2VP

(11)lim
α/A→0

ϕ2
≈

VG

VP
= h2

(12)lim
α/A→∞

ϕ2
≈

ω

z
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all conditions shown in Fig.  1c. Here, we note that the 
error not only depends on the total abundance of the 
background community (A) compared to the abundance 
of the focal microbe ( α ), but also on how variances z and 
VP scale with A and α , respectively (in Fig. 1c, VP is kept 
proportional to α).

Problem 2: large sample size leads to high false discovery 
rates
Microbes that are not heritable can still show a genetic 
signal when abundance measurements are relative, due 
to the interdependency of the relative abundances. Using 
Eq. 9 and in the absence of environmental covariances, it 
follows that the estimated heritability of a non-heritable 
microbe (by setting VG = 0 ) is

Unless the entire background community is not 
heritable (i.e., ω = 0 ), Eq.  13 will be larger than 0. 

(13)ϕ2
≈

α2ω

α2z + A2VP

Although ϕ2 approaches zero when α becomes small 
compared to A, it might never reach zero.

Even low ϕ2 values can appear significant with enough 
statistical power. We performed a power analysis using 
the R-package simr [49], based on a log likelihood ratio 
test comparing a model with and without host genet-
ics, to calculate the probability that the null hypothesis 
 (H0: ϕ2

= 0 ) is (wrongly) rejected (Additional file  1: 
Appendix S3 for details). Results again depend on both 
properties of the focal microbe and of the rest of the 
community (Fig. 2), but in general, larger sample sizes 
increase the chance that non-heritable microbes are 
considered heritable. With a large enough dataset, sta-
tistical power reaches 100% (Fig. 2).

As a consequence, the number of heritable microbes 
in a community can be strongly overestimated, 
especially with a high sample size (more details in 
results in Additional file  1: Appendix S2.4). It is 
important to note that the high false discovery rates 
are not a problem of, for instance, sampling error or 
confounding factors, and increasing data collection 

Fig. 1 As relative microbial abundances are interdependent, a heritable signal in one microbe can lead to a spurious heritable signal in a second 
microbe that is not heritable, or mask a genetic signal in a heritable microbe. A As an example we show three host (mouse) genotypes with two 
microbes, where one microbe is fully heritable (blue, h2 = 1), and one microbe is not heritable (red, h2 = 0). As a consequence, the average absolute 
abundance of microbe Blue differs among genotypes, while the average abundance of microbe Red is constant. Using the absolute abundances 
(and with enough host replicates), heritabilities can correctly be estimated. However, as relative abundances are not independent, a host genetic 
signal in the abundance of the heritable microbe, will also create a host genetic signal in the second microbe, creating variation in relative 
abundance among genotypes. This leads to an incorrect heritability estimate ϕ̂2 = 0.5 for both microbes. B When based on relative abundances, 
properties of both the focal microbe and of the entire community shape the heritability estimates. Here, we vary the average absolute abundance 
of the focal microbe ( α ) compared to the absolute abundance of the rest of the community (A) (x-axis shows α

α+A ). Black line: focal microbe 

has a heritability of 0.5; the background community is not heritable ( A = 1 ; z =
(

1
6

)2
 ; ω = 0 ; VP =

(

1
6

)2
 ; VG = 0.5

(

1
6

)2
 ). Grey line: focal microbe 

is not heritable, but the rest of the community has an average heritability of 0.5 ( A = 1 ; z =
(

1
6

)2
 ; ω = 0.5

(

1
6

)2
 ; VP =

(

1
6

)2
 ; VG = 0 ). C Difference 

in heritability estimates when based on absolute or relative abundances (y axis) when varying α compared to A (x axis). When the focal microbe 
has a low average absolute abundance compared to the total average abundance of the rest of the community (for instance, in the case of many 
microbial taxa), the difference between ϕ2 and h2 becomes smaller. h2 of the focal taxon i is 0.2, and colored lines show varying heritabilities 

of the background community ( h2community =
ω

z  ). A = 100 ; z = 100
(

1
6

)2
 ; VP = α

(

1
6

)2
 . Crosses show results when we estimate heritabilities 

by fitting a mixed effects model on simulated relative abundance data. To this end, we simulated a population of hosts (500 genotypes × 1000 
replicates within each genotype), with microbial communities consisting of 100 taxa (more details in Additional file 1: Appendix S2.1–2.3)



Page 7 of 14Bruijning et al. Microbiome          (2023) 11:222  

efforts or quality alone will not resolve these issues. 
Similarly, more advanced modeling approaches such as 
cross-validation, permutation analysis and correcting 
for multiple testing are unlikely to fully solve this. This 
is because the problem is inherent to the use of relative 
abundances: there really is a host genetic signal in the 
relative abundances of non-heritable microbes (i.e., it is 
not a type 1 error; as Eq.  13 shows, ϕ2 really is larger 
than 0).

Problem 3: microbial co-abundances lead to biased 
heritability estimates
Up to this point, we assumed that the covariance terms 
in Eq. 9 (i.e., γ , ǫ , ν and κ ) were zero. We will now show 
that relaxing this assumption leads to biased heritability 
estimates.

Non-zero covariance terms reflect the co-abundance of 
microbial taxa. In our framing, there are two processes 
that can cause microbial abundances to covary: host 
genetic correlations and environmental correlations. 
The first creates microbial co-abundances at the level 
of the host genotypes: e.g., a host genotype with an—
on average—higher abundance of microbe A, also has 
a higher abundance of microbe B. The second creates 
co-abundances at the individual host level, by creating 

correlated environmental (residual) terms. Note that, 
as is general practice in quantitative genetics, we use 
the term ‘environment’ to capture everything outside 
of genetics: it is essentially a residual term. In the case 
of the microbiome, it captures the effect of ecological 
environmental factors on microbial abundances, such 
as temperature or soil, where shared niches among 
microbes can result in environmental correlations. The 
residual term also captures effects of the environment 
inside and shaped by the host, the abundance of other 
microbes within a host, or simply unexplained noise. One 
biological process acting within hosts that would lead to 
the environmental terms being correlated, is microbial 
interactions. Strong mutualistic interactions, e.g., as a 
result of cross-feeding or public good production, result 
in positive environmental correlations. Antagonistic 
interactions, on the other hand, result in negative 
environmental correlations.

Non-zero covariances can change heritability estimates 
in different directions, depending on the nature of the 
covariance (i.e., genetic or environmental), and whether 
the covariance involves the focal taxon ( γ , ǫ ) and/or the 
background community ( ν , κ ). For the results presented 
here, we assume that each microbial pair (including focal 

Fig. 2 The probability that the heritability of a non-heritable microbe ( VG = 0 ) wrongly appears significant (α < 0.05) increases with sample size, 
based on a power analysis using the R-package simr (28). Results depend both on properties of the focal microbe, and on the rest 
of the community: colors show different abundances of the focal microbe (α) while keeping the background community abundance constant. Line 

type shows the heritability of the background community (solid lines: ωz = 0.1 ; dotted lines: ωz = 0.25 ). VP =

(

1
6

)2
 ; A = 100 ; z = 100 ·

(

1
6

)2
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and background community members) has the same 
genetic and environmental correlation.

In a community with positive genetic covariances, the 
heritabilities are generally biased downwards (Fig.  3c). 
This is because positive genetic covariances have a rela-
tively larger (negative) effect on the numerator than on 
the denominator (Eq. 9). To make this intuitive, consider 
the scenario where two equally-abundant microbes both 

have a heritability of 0.5, and also have a strong genetic 
correlation (rG = 0.99). Such a strong genetic correlation 
implies that the host genetic effects for the two microbes 
covary, so that two microbes show co-abundance at the 
host genotype level. As a consequence, the absolute abun-
dances vary across host genotypes for both microbes, but 
they vary in exactly the same way (Fig. 3a). When calcu-
lating relative abundances, variation in abundance across 

Fig. 3 The use of relative abundances leads to biased heritability estimates when there exists host genetic and/or environmental correlations 
between microbes. A Illustrates the effects of genetic correlations. As an example, we show three host genotypes and two microbes that are 
both partly heritable (h.2 = 0.5), and with a strong genetic correlation (rG = 0.99). This implies that host breeding values for the two microbes are 
strongly correlated. As a consequence, the average absolute abundance of both microbes varies in the same way across host genotypes. 
Heritabilities can accurately be estimated when using these absolute abundances (estimates for both microbes:̂h2 = 0.5 ). When calculating 
the relative abundances, however, any variation across host genotypes disappears. This leads to an incorrect heritability estimate ϕ̂2 = 0 
for both microbes, completely masking the host genetic signal. B Illustrates the effects of environmental correlations. We here show three host 
genotypes and two microbes that show a strong environmental correlation (rE = 0.99). As a result, this decreases the amount of variation 
within genotypes. Heritabilities can be accurately estimated when using the absolute abundances. However, because variation in relative 
abundance within each genotype is greatly reduced, one obtains a wrong heritability estimate ϕ̂2 = 1 for both species. C–E Comparison 
of heritability estimates when based on absolute and relative abundances, varying the environmental correlation (C), the genetic correlation (D) 

or both (E). α = 1; A = 100 ; VP =

(

1
6

)2
 ; z = 100 · VP ; ωz = 0.25 . Crosses show results when we estimate heritabilities by fitting a mixed effects 

model on simulated relative abundance data. To this end, we simulated a population of hosts (500 genotypes × 500 replicates within each 
genotype) (more details in Additional file 1: Appendix S2.5)
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genotypes completely disappears, which leads to the 
incorrect conclusion that none of the microbes show a 
heritable signal.

The exception is when the true heritability is close 
to zero: now, positive genetic covariances lead to an 
overestimation of the true heritability (Fig.  3c). This 
occurs when Aγ < aκ , causing the covariance term 
in Eq.  9 to become negative (thereby increasing the 
numerator). Since γ is the total genetic covariance 
between taxon i and each of the other microbes, it 
becomes small when VG is close to zero. As a result, 
Aγ < aκ , leading to an overestimated heritability.

Positive environmental covariances in a community 
(for instance, a highly mutualistic community) has largely 
opposite effects, by (negatively) affecting the denomina-
tor but not the numerator (Eq. 9). Whereas positive host 
genetic correlations between microbes tend to decrease 
variation in relative abundance between genotypes, posi-
tive environmental correlations tend to decrease the 
amount of variation within genotypes (Fig.  3b). When 
variation within each genotype is reduced, this creates 
more unique microbiomes to each genotype, suggestive 
of microbe heritability. As a result, positive environmen-
tal covariances lead to a general upward bias in the herit-
abilities (Fig. 3c). Only if Aǫ < aν , the true heritabilities 
are underestimated. This happens, for instance, if there 

is little environmental variance in the focal taxon (i.e., a 
high heritability), causing ǫ to be low.

Finally, when both positive genetic and environmental 
correlations exist in a community, the relationship 
between the two heritability measures can become highly 
non-linear, making it essentially impossible to predict h2 
based on ϕ2 (Fig. 3e).

Framing the current empirical range of estimates
Our results provide additional context in considering 
the range of estimates of heritabilities published to 
date. First, our results indicate that estimates of the 
taxon heritabilities can be precise if each focal taxon 
has low abundance compared to the total community 
abundance (and assuming no microbial co-abundances) 
(Fig.  1c). Our review of the literature indicates that 
the median number of taxa included in a study is 221 
(Table  1). Since most taxa therefore are likely to have 
low relative abundances, heritability estimates of most 
individual (low-abundance) taxa may be quite accurate. 
There is, however, also a wide range in the number of 
included taxa across studies (varying between 3 and 
2933 taxa), and furthermore, human microbiomes are 
often characterized by a few dominant taxa [50], and 
this may be the case for many host species. Our results 
indicate that for studies that only include a few taxa (for 
instance in low-diverse communities or in communities 
where most taxa are rare and thus excluded in the 

Fig. 4 Empirical estimates of the proportion of heritable taxa (A) and the average taxon heritability, including all significantly heritable microbes (B), 
plotted against sample size, i.e., number of hosts sampled (note the log scale on the x axis). Dots depict values given in Table 1, where the numbers 
in each dot correspond to the column ‘Number’ in Table 1). Teal lines show the mean prediction based on A a binomial regression (here the number 
of trials is the number of taxa), and B a linear regression. In B, dotted lines connect average heritabilities to the lowest and highest significant 
heritability found in each study, shown as open dots
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filtering steps), or where microbiome communities are 
characterized by a few highly dominant taxa, precise 
heritability estimates will be challenging to obtain.

We identified a second problem that is related to the 
number of sampled hosts: the proportion of heritable 
microbes can be considerably overestimated due to high 
false discovery rates. Empirical estimates of the propor-
tion of heritable microbes, show a positive association 
with the number of hosts sampled (Fig.  4a; binomial 
regression: p value < 0.0001). Of course, larger sample 
sizes always lead to more significant results, as higher 
sample sizes lead to more power to detect small effects. 
The challenge here is that without knowing more about 
the underlying community, we cannot establish how 
much of this inflation is ‘real’ and how much is due to 
false discovery. Every microbe may eventually appear sig-
nificantly heritable with enough statistical power (Fig. 2), 
even if its absolute abundance is not shaped at all by host 
genetics, and false discovery rate approaches (such as 
Benjamini-Hochberg) do not solve this issue (Additional 
file 1: Appendix S2.4). This is due to the interdependency 
microbiome members will have with other, truly herita-
ble, microbes; and a positive relationship between sample 
size and the proportion of heritable microbes will emerge 
even if the true proportion heritable is constant across 
populations (Additional file 1: Appendix S2.4).

Shifting the focus from the proportion of the taxa 
that is heritable to considering heritability of taxa, this 
quantity (including only taxa with a significant heritable 
signal) varies widely within as well as between studies 
(Fig.  4b), nearly covering the entire 0–1 range. Across 
studies, the lowest and highest reported significant 
heritabilities are 0.008 and 0.84, respectively. The average 
significant heritability in a community is 0.30, and ranges 
between 0.056 and 0.58 across studies. It is notable 
that empirical estimates suggest a negative correlation 
between sample size and the average heritability, 
where studies that include a higher number of host 
individuals report lower average heritabilities (Fig.  4b; 
linear regression: p value = 0.002). This could be due 
to publication bias in smaller studies, in favor of higher 
heritability estimates, which could suggest that the true 
microbiome heritabilities may be lower than sometimes 
reported. However, it could also be that studies with a 
larger sample size include an increased number of taxa 
with a low estimated heritability, that can either truly be 
heritable or reflect false positives, thereby decreasing the 
average heritability.

The included studies clearly differ in many aspects 
other than sample size, both biological (e.g., host system, 
population and tissue, taxonomic levels, any other 
covariates) and methodological (e.g., data collection, 
significance measure, statistical model). There is no 

reason to expect that the true proportion of heritable 
microbes or the average heritability is the same across 
studies—to the contrary. Further, there clearly is variation 
that is not explained by sample size, indicating that other 
factors (likely both biological as well as methodological) 
also play a role. Yet, variation in sample size alone 
explains considerable variation across studies in both the 
proportion of heritable microbes (pseudo-R2 = 37%) and 
in the average heritability (R2 = 39%).

Finally, our results indicate that bias in ϕ2 relative to h2 
depends on both the magnitude of h2 and the underlying 
pattern of genetic and environmental correlations 
(Fig.  3). Since little is known about the nature and 
strength of correlations (in absolute abundance) among 
microbes, it is hard to interpret the impact of this 
bias on published results to date. Yet, these results do 
underscore the importance of further efforts to estimate 
the co-abundance patterns.

Discussion
Despite the common usage of microbial relative abun-
dance data as a proxy for absolute abundance to estimate 
microbial heritabilities, few studies have considered the 
inherent problems that can result from statistical analy-
sis of relative abundances. By their nature, relative abun-
dance data are not independent, creating correlations 
between variables (microbial abundances) that do not 
exist in absolute terms. Here we argue that (1) this can 
lead to imprecise estimates of heritabilities, especially 
for microbiomes with fewer taxa and/or highly abundant 
taxa. (2) Large sample sizes can drive overestimates of 
the proportion of heritable microbes by increasing the 
false discovery rate. (3) Patterns of microbial co-abun-
dance, likely to be common in most biological systems, 
will further bias heritability estimates. Similar challenges 
have been demonstrated for microbial differential abun-
dance analysis, where it is challenging to control high 
false discovery rates [42, 46, 51–54]. Characterizing the 
mechanisms underlying these issues helps identify when 
they might occur, and the direction of bias expected 
given the number of microbial taxa and their abundance, 
the number of hosts, and patterns of co-abundance. It 
is important to note that heritabilities based on relative 
abundances are potentially misleading only if one wishes 
to make inferences on host genetic control over abso-
lute abundances, i.e., if relative abundances are used as a 
proxy for absolute abundances. If the metric of interest 
is, in fact, the heritability of relative abundance, the true 
value of ϕ2 is directly accessible using available relative 
abundance data. However, recent studies have proposed 
that absolute abundances may provide more biological 
information [55, 56], for instance showing an association 
between total bacterial load and Crohn’s disease [57]. 
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involves choosing an appropriate ‘reference’ value, i.e., 
deciding what the appropriate comparison is within 
each sample. The advantage of comparing the number of 
reads for each taxon to a set reference, is that it makes 
abundances less sensitive to the other taxa that are in 
the sample. In addition, it is recommended to express 
compositional data as log ratios. This transforms data 
from a simplex to real space, making it more suitable for 
standard statistical tests [64, 65].

The merit of different normalization and 
transformation methods critically depends on the 
chosen reference. If there are ‘reference’ taxa, known 
to have constant abundance across samples, one could 
divide each sample by the number of reads for these 
reference taxa, thus transforming the relative abundance 
in each sample into comparable abundances across 
samples (this is similar to using reference genes to 
normalize gene expression data), and calculate the log-
ratios (additive log-ratio transformation) [52, 65]. One 
could also calculate the log-ratio between each taxon 
and the geometric mean of all taxa (centered log-ratio 
transformation) [66]. Alternatively, if only a small number 
of microbial taxa is thought to be differentially abundant 
across samples, one could calculate a normalization 
factor based on some quantile (e.g., median) of each 
sample’s count distribution (cumulative-sum scaling) 
[67].

If there truly is a known reference taxon with a 
constant abundance, or if the average abundance truly is 
identical in all samples, one could successfully correct for 
sample coverage differences by applying the appropriate 
normalization/transformation, and retrieve the true 
heritabilities (Additional file  1: Appendix S5). However, 
while some studies on microbiome heritabilities 
apply data transformations (e.g., centered log-ratio 
transformation [13, 34], Box-Cox [5] or inverse normal 
transformation [29]), we lack a validation that such 
transformations are justified and remedy any existing 
issues. There is currently little empirical data to guide us 
in choosing appropriate normalization factors.

It could be more fruitful to focus on the actual 
heritability estimates, than to focus on the number 
of significantly heritable taxa. Focusing exclusively 
on p values, with some arbitrary threshold for 
results to be ‘significant’, has been criticized [68, 
69], and dichotomizing results into ‘significant’ and 
‘not significant’ may be particularly problematic for 
microbiome heritabilities. That is because relative 
abundances are interdependent: an increase in the 
abundance of one taxon will inevitably decrease the 
relative abundance of other taxa. This implies that host 
genetic variation for the absolute abundance in few 
microbes, might also lead to genetic variation for other, 

Also, as ϕ2 is a function of both properties of the focal 
microbe and of the entire community (Eq.  9), its bio-
logical interpretation is potentially challenging. Unfor-
tunately, there does not seem to be a simple solution to 
fully address the problems described here, but below we 
discuss several potential approaches for advancing the 
field.

One solution that would clearly solve the issue of 
interdependent relative abundance data, is quantifying 
taxon (or group) absolute abundances. In cases where 
specific microbial taxa are of interest, such taxa can be 
directly quantified using such targeted approaches to 
abundance estimates as quantitative PCR (qPCR), droplet 
digital PCR (ddPCR), or flow cytometry [43, 57–59]. 
Additionally, for microbes that are readily cultivable, 
counts of colony forming units (CFUs) from culturing 
serve as a method to estimate absolute abundance. 
However, these approaches remain challenging for 
microbiome-wide studies that are concerned with the 
hundreds to thousands of taxa that comprise a given 
microbiome. One possible solution is to integrate 
microbial relative abundance data with estimates of 
the total microbial load of the sample. For instance, if a 
given taxon represents 1% of the 16S rRNA gene reads 
in a sample, multiplying that 1% by the total number of 
16S rRNA gene amplicons (derived, e.g., from qPCR 
estimates using the same primers, ng of DNA, and 
PCR cycle numbers), can provide an estimate of that 
taxon’s absolute abundance. To further improve such an 
approach, researchers could target known single-copy 
genes, rather than the 16S rRNA gene, e.g., rpoB [60]. 
Studies that compare inferences when using absolute vs. 
relative abundances are beginning to emerge [43, 61], 
although we are not aware of any study that addresses 
this in the context of microbiome heritability.

In addition to laboratory techniques, new data 
analysis approaches could prove beneficial. There 
exists an extensive body of literature on how to analyze 
compositional data (pioneered by Aitchison [1982]), 
with relevance to microbiome studies (but also genomics 
(gene expression), geology (mineral composition) and 
chemistry (chemical composition)). It is beyond the 
scope of this paper to provide a comprehensive overview 
of all available methods, but we refer the interested reader 
to [41, 51, 62, 63] for studies applying such methods 
to microbial data. Here, we briefly explain the main 
intuition behind these approaches, and how these may 
help to improve the accuracy of heritability estimates.

Data normalization is a first solution for obtaining 
better proxies of the absolute abundances. Instead of 
dividing the number of reads per taxon by the total 
number of reads in a sample, one divides the total 
number of reads by some normalization factor. This 
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non-heritable, microbes. Therefore, the null hypothesis 
(i.e., that there is no host genetic signal in the relative 
abundances of microbiome members) might rarely be 
true. With a large enough sample size, this will lead to 
a statistically significant effect [69] (Fig.  2), even if the 
effects may be biologically meaningless.

By focusing on effect sizes, we can delineate the 
heritable taxa that are biologically most relevant. Our 
results indicate that, unless the focal microbe has a very 
high abundance compared to the rest of the community 
(Fig.  1) or microbial abundances covary (Fig.  3), 
taxon-specific heritability estimates based on relative 
abundances are unbiased. One could (a priori) set a 
threshold heritability, and only consider heritabilities 
exceeding this threshold to be biologically relevant. For 
instance, Goodrich et  al. (2016) only present results of 
taxa that have an estimated heritability > 0.2.

In addition to focusing on effect sizes, assessing the 
cumulative evidence for specific microbial taxa will 
help to identify microbes that are truly heritable and 
biologically relevant. Grieneisen et  al. (2021) found a 
correlation between their heritability estimates and 
estimates from previously reported studies (although 
their effect sizes are much lower). Also, Goodrich et  al. 
(2016) pinpointed various taxa with consistent non-zero 
heritabilities across studies and across hosts systems. 
Looking for such consistent results will indicate which 
taxa merit more detailed study, especially for microbes 
associated with host performance. Multiple studies 
have reported high heritabilities for members of the 
Christensenellaceae family, with estimates ranging 
between 30 and 60% [5, 6, 22, 29, 70]. Members of the 
Christensenellaceae have been linked to several host 
metabolic traits [70]; for example, a higher relative 
abundance has been associated with a lower body mass 
index [5].

In this study, we specifically focused on the 
consequences of using relative abundances, where the 
sum in each sample is set to 1, or 100%. The analysis of 
real-world microbiome datasets comes with additional 
challenges. First of all, variation across samples not 
only results in unknown absolute abundances, it also 
implies different levels of uncertainty. For example, 100 
counts of a given taxon in a sample with 10,000 reads, 
clearly allows for more robust statistical inference than 
1 count in a sample with 100 reads, even though the 
relative abundance in both cases is the same (1%). This 
information gets lost when converting data into relative 
abundances. One solution here is to use regression 
analysis that allow to model these counts directly [71].

Second, variation in sampling extent has other 
important implications. We do not know the extent 
to which we have sampled a host’s microbiome, 

i.e., what fraction of an individual microbiome was 
collected for sampling? Knowing the fraction of a 
microbiome that a sample comprises is crucial to 
extrapolate absolute abundances to the level of the 
microbiome [72]. In addition, we do not know how 
thoroughly a sample was assessed, i.e., was the number 
of sequences sufficient to reveal all of a sample’s taxa, 
or would additional sequencing reveal more taxa? 
Variation in sampling extent influences the expected 
number of sampled taxa, where more sequencing 
reads increases the expected observed microbial 
richness up to the point of complete assessment [73]. 
Solutions to address this include rarefying [74], but this 
is not without criticism [75]. An excess of zero counts 
results in zero-inflated data, violating the assumption 
of normally distributed residuals that underlies many 
parametric statistical tests. Some studies therefore 
perform log-based transformations to normalize data. 
However, as we know from community ecology, log 
transforming count data leads to biased and imprecise 
estimates, and it involves choosing an arbitrary offset 
[76]. Further, log-based transformations can lead to 
incorrect microbiome community-level comparisons, 
for example resulting in poor estimates of Bray–Curtis 
dissimilarities [77].

Third, due to the cumulative effect of systematic errors 
in each experimental step (e.g., extraction, amplification, 
sequencing), the measured microbiome composition 
can be highly biased [78]. Finally, as with any model, a 
quantitative genetic model has a set of assumptions, and 
the accuracy of microbiome heritability estimates will 
depend on the extent these assumptions are met. For 
instance, an important assumption that is often made, 
is that the variance due to GxE interactions contributes 
little to the total variance and can therefore be ignored, 
even though GxE interactions vary in magnitude across 
populations [79].

How these additional complications further influence 
the robustness of our microbiome heritability 
estimates, on top of the issues we describe here, 
remains to be investigated. With this study, we hope 
to make researchers aware of the challenges associated 
with the estimation of microbiome heritabilities. 
We urge researchers to be careful in interpreting 
estimates of the heritability of individual taxa, as well 
as in interpreting the overall proportion of heritable 
microbes. A focus on consistent results across 
studies, as well as continued investment in both 
technical and statistical developments to obtain better 
approximations of absolute abundances, will likely 
improve our ability to study the microbiome members 
that are the most intimately associated with their hosts.
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