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Abstract

The Crusts of Mars, Tethys, and Mimas:

Geophysical Exploration of Historic Heat Flow

by

Szilárd Gyalay

The evolution of a planetary body often determines and is determined by its thermal

properties. In my first project, I explore the consequences of heating upon pore closure,

allowing me to estimate the heat flow through the Martian crust during the latest

significant pore generation event—likely large basin-forming impacts. We apply a pore

closure model developed for the Moon to Mars and take into account the geological

processes that may alter the depth of a transition between porous and competent crust.

If the 8–11 km deep discontinuity in seismic wave speed detected by the InSight lander

marks the base of the uppermost porous layer of the Martian crust, then the heat flux

at the time the porosity was created must exceed 60 mW m−2, indicating a time prior

to 4 Ga. Then, I explore how the global shape of an icy satellite allows us to infer

its heat budget and interior—including the presence or absence of a subsurface global

ocean. I apply this method in my second and third projects to Tethys and Mimas,

respectively. We assume spatial variations in tidal heating are responsible for thickness

or temperature variations in an isostatic ice shell, which manifests as surface topography.

For Saturn’s moon Tethys, our best-fit models require Pratt isostasy and obliquity tides,

with a normalized moment of inertia 0.340-0.345 and an average surface heat flux 1-

xii



2 mW m−2. Then, we find that to account for its hydrostaic shape, Mimas’ normalized

moment of inertia is 0.375, indicating a relatively undifferentiated world. Its remaining

topography is consistent with a ∼30 km thick conductive ice shell in Airy isostasy atop

a weakly convecting ∼30 km thick layer that itself mantles a ∼140 km radius ice-rock

interior. For neither satellite do we find an ocean. However, the total power and pattern

inferred to produce both satellites’ shapes from tidal heating indicate an ancient era of

high obliquity. The common thread of all three projects is the flow of heat, and how our

understanding of it can be revealed by or can reveal properties of the planetary bodies

we study.
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Chapter 1

Constraints on Thermal History of Mars

from Depth of Pore Closure Below

InSight

My attention was quickly riveted by a large red star close to the distant
horizon. As I gazed upon it I felt a spell of overpowering fascination—it was
Mars, the god of war, and for me, the fighting man, it had always held the
power of irresistible enchantment. As I gazed at it on that far-gone night it
seemed to call across the unthinkable void, to lure me to it, to draw me as
the lodestone attracts a particle of iron.

—A Princess of Mars, by Edgar Rice Burroughs

This chapter is a slightly modified reprint of work previously published as S.

Gyalay, F. Nimmo, A.-C. Plesa, and M.A. Wieczorek (2020). ”Constraints on Thermal

History of Mars From Depth of Pore Closure Below InSight.” Geophysical Research

Letters 47 (16), e2020GL088653. doi: 10.1029/2020GL088653
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Key Points

• The depth of porosity in Mars’ crust depends most on the maximum heat flux

after pore generation.

• A seismic discontinuity at a depth of 8-11 km, as suggested by InSight, could be

interpreted as the depth of porosity in the crust.

• If pores closed at 8-11 km depth, it indicates pores formed at least 4 billion years

ago when heat flow was at least 60 mW m−2.

Abstract

Planetary crusts undergo viscous closure of pores at depth; if the thickness

of this porous layer can be measured, constraints on crustal thermal evolution can be

derived. We apply a pore closure model developed for the Moon to Mars and take into

account the geological processes that may alter the depth of this transition region. If

the 8–11 km deep discontinuity in seismic wave speed detected by the InSight lander

marks the base of the porous layer, the heat flux at the time the porosity was created

must exceed 60 mW m−2, probably indicating a time prior to 4 Ga.

Plain Language Summary

On long timescales, and with enough heat or pressure, rocks in the crust of

a planet can flow. This viscous deformation allows the empty pore spaces in a rock

2



to close up. The history of the temperature at depth plays an important role in how

deep one may expect porosity to exist. One can use a computational model to calculate

the thickness of this porous layer as a function of the crust’s thermal history. If the

InSight Mars lander detects the thickness of such a porous layer, we can estimate the

necessary temperature structure of the Martian crust and when porosity in the crust was

generated. From a potential measurement of this porous layer at around 10 kilometers

thick, we predict the last significant pore formation event to have occurred at least 4

billion years ago.

1.1 Introduction

The porosity structure of the Martian crust is important for several reasons.

It controls the crustal water carrying capacity (e.g. Clifford, 1993) and affects its near-

surface thermal structure (Parmentier and Zuber, 2007). Furthermore, the porosity is

an indication of the geological processes that have affected the crust, such as impact

cratering, volcanism, and the emplacement of sediments. Less obviously, it contains a

record of the thermal evolution of Mars, modulated by the history of crustal growth.

Pores can close via plastic/viscous flow at a rate that is highly dependent on temperature

(Hanna and Phillips, 2005); accordingly, if the depth to the base of the porous region

can be established, the corresponding thermal structure may be deduced.

On the Moon, the presence of a porous layer roughly 40–85 km thick was

identified using the very high resolution gravity data provided by GRAIL (Wieczorek
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et al., 2013; Besserer et al., 2014). The depth to the base of this layer was found to be

consistent with models of viscous pore closure using simple lunar temperature structures

(Wieczorek et al., 2013). In regions where the total crustal thickness is less than the

depth of pore-closure, the uppermost mantle also likely maintains porosity (Wieczorek

et al., 2013). Thermally-driven pore closure has also been modeled on icy satellites (e.g.

Kossacki and Lorenz, 1996; Eluszkiewicz, 2004; Besserer et al., 2013) and on asteroids

(e.g. Neumann et al., 2015; Gail et al., 2015). On the Moon, production of deep porosity

was undoubtedly dominated by large impacts early in its history, and we will assume

that the same is true for Mars.

Some studies of Martian aquifers (Clifford, 1993; Clifford and Parker, 2001)

modeled porosity in Mars’ crust as an exponential decay, scaled from a relationship

hypothesized for the Moon, and observed in some geologic environments on Earth (e.g.

Schmoker and Gautier, 1988). These relations focused on an elastic closure of pore space.

At higher pressures or temperatures, rock deforms via ductile creep (Wong and Baud,

2012). On Earth, Manning and Ingebritsen (1999) interpret a drop in permeability at

∼12 km depth due to ductile creep closing pores. Because of the lower gravity (and

thus reduced elastic closure) on the Moon and Mars in conjunction with high heating

early in their history, it is the latter process which we focus on in this work.

On the Moon, an apparent decay in seismic scattering with depth has been

used to infer the depth to which fractured rocks extend (Gillet et al., 2017). In a similar

fashion, the recent emplacement of the InSight seismometer on the Martian surface

provides the possibility of measuring the thickness of the porous layer. In this work, we
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carry out simple models of viscous pore closure for the Martian crust and show how the

thickness of the porous layer can be related to the peak heat flux experienced. In Section

1.2, we review the mathematics of viscous pore closure. In section 1.3, we investigate the

potential confounding effects of geological processes of Mars’ crust. In Section 1.4 we use

a detected seismic discontinuity beneath InSight to quantify the thermal environment

at the landing site when pore formation stopped, and thus determine when it stopped.

We conclude with Section 1.5.

1.2 Viscous Closure of Pores on Mars

We approach the problem in a similar fashion toWieczorek et al. (2013) and ref-

erences within (i.e. Fowler, 1985; Nimmo et al., 2003; Eluszkiewicz, 2004). How quickly

the porosity φ closes over time t depends on the dynamic viscosity of the materials η

and the overburden pressure P :

∂φ

∂t
= −φ

P

η
. (1.1)

Pressure P=ρgz where ρ is crustal density, g is gravitational acceleration, and z is depth

in the crust.

Under high pressures, viscosity does not depend on grain size but does depend

on stress σ, rheological constants A and n, an activation energy Q, and the gas constant

R:

η =
σ1−n

A
exp

(
Q

RT

)
. (1.2)

We take this stress to be equal to the overburden pressure, σ = P . In reality there is a
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constant of proportionality of order unity in Equation 1.1 depending on the relationship

of overburden pressure to the deviatoric stress, and the ratio of initial to current poros-

ity (e.g. Eluszkiewicz, 2004). However, since the heat flux necessary for pore closure

ultimately depends on the logarithm of P (Section 1.2.3), neglecting this constant does

not introduce significant errors. For instance, substituting σ = 0.1P instead of σ = P

in Equation 1.1 depresses the depth of pore closure by ∼2 km.

1.2.1 Constant Heat Flux Case

For the case of constant temperature, we solve Equation 1.1 to find φ relative

to some initial porosity φ0 after some elapsed time t as

φ = φ0 exp

(
−Pt

η

)
. (1.3)

For an initially porous crust, we can use this equation to calculate how much the porosity

at each depth has changed as a function of time. We assume pores have effectively

closed when they reach a critical porosity that is a factor of e2 less than the initial.

The depth of the porous layer after some time is then limited by where porosity is still

present; because of the strong temperature-dependence of viscosity, the transition to

pore-free material is typically abrupt (less than a few km; Figure 1.1a). Because this

transition is abrupt, the exact pore-closure criterion matters very little: one can take

the characteristic criterion to be a factor of e or 10 and achieve nearly identical results.

For our nominal model, we use a gravitational acceleration of 3.7 m s−2, an

upper crustal density of 2800 kg m−3, a rock thermal conductivity of 3.0 W m−1 K−1,
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no crustal heat production, and a constant surface temperature of 250 K. In this investi-

gation we model Mars with both wet and dry diabase (as used in previous investigations

of Mars, see e.g. Hanna and Phillips, 2005). For wet diabase, Q =276±14 kJ Mol−1,

n =3.05±0.15, and A =6.12±3.06 10−2 MPa−n s−1 (Caristan, 1980). Caristan (1980)

did not include exact uncertainties, but noted that uncertainty in Q and n would not

exceed 5%, and A could vary by a factor of 2. For dry diabase, Q =485±30 kJ Mol−1,

n =4.7±0.6, and A =1.9±1.1 102 MPa−n s−1 (Mackwell et al., 1998). Some other

parameter values are uncertain; in particular, thermal conductivity has a strong depen-

dence on porosity as well as the contents of its pore space. We discuss the effect of these

uncertainties further below and in A.

For the purpose of illustration, we assume a single rheology (wet diabase) and

plot how the depth of pore closure changes through time for a range of constant heat

fluxes in Figure 1.1b. Most pore closure happens in a short timespan. The depth

of pore-closure over the age of the solar system, as shown in Figure 1.1b, is highly

dependent on the assumed heat flux, ranging from depths of more than 50 km for low

heat fluxes of about 20 mW m−2 to about 10 km for heat fluxes in excess of 120 mW

m−2. Present-day heat fluxes on Mars are expected to be roughly 20 mW m−2 (see

below), but would have been higher at earlier times. It is thus important to take into

account the time-evolution of heat flux.
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Figure 1.1: Panel a: Porosity structure after 10 Myr, 1 Gyr, and 4.5 Gyr for an assumed
heat flux of 120 mW m−2. Temperature structure at depth is calculated from Fourier’s
law of thermal conduction for a surface temperature of 250 K, a thermal conductivity
of 3 W m−1 K−1, and no crustal heat production. We use the rock rheology of wet
diabase from Caristan (1980) without consideration for uncertainty. Porosity decreases
from its initial value to 0 over a sharp interval of about 2 km. Panel b: Depth of pore
closure (where the porosity is reduced by a factor e2 with respect to the initial value)
as a function of heat flux. The dashed line illustrates the heat flux used for (a).

1.2.2 Decreasing Heat Flux Case

To investigate the effect of a changing heat flux, we make use of a suite of

thermal evolution models developed by Plesa et al. (2018). The model uses a fully 3-D

geometry to model the thermal evolution and interior dynamics of Mars. We focus on

their case 110, as it represents an upper bound in terms of heat flux through time.

Similar to most other cases of Plesa et al. (2018), case 110 uses a crustal thermal con-

ductivity of 3 W m−1 K−1, latitudinal variations of the surface temperature leading

to a surface temperature of 235 K at InSight location (Ohring and Mariano, 1968; Ki-

effer, 2013), and spatial variations of crustal thickness. The average crustal thickness

of this model is 45 km and the crustal heat production rate is 20% higher than the
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value suggested by GRS (Hahn et al., 2011). The crustal heat production for case 110

decreases exponentially from an initial value of 331.1 pW kg−1. We note that this case

matches available geophysical, geological, and petrological constraints (cf. supplemen-

tary material of Plesa et al., 2018). We use Equation 1.1 to evolve the porosity forward

in time, taking into account the effect of the changing crustal temperature structure on

the viscosity via Equation 1.2. Figure 1.2a shows the model surface heat flux through

Martian history.

We begin the porosity evolution calculation at different points in Mars’s his-

tory. In this model, porosity is assumed to be present in the crust at some time t0, and

then we compute the depth of pore closure. For each starting time point, we evolved

Equation 1.1 forward in time over either 10 Myr or 1 Gyr, showing that the results are

not sensitive to the total elapsed time after initation of pore closure (Figure 1.2b). Pore

closure reaches shallower depths in cases when closure started earlier (when tempera-

tures were higher). Because of the continuing decrease in heat flux, the pore closure

depth is much more sensitive to the heat flux at the start of pore-closure than on the

total duration of closure. In effect, the present-day depth of pore closure is a “fossil”

signature of an ancient heat flux. We accordingly are justified in using an analytical

approach in which the initial, maximum heat flux is calculated from the present-day

depth of pore closure.
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Figure 1.2: Panel a: Surface heat flux at InSight’s landing site, modeled through Martian
history. This particular model is case 110 from Plesa et al. (2018), and uses a thermal
conductivity k=3 W m−1 K−1. The surface temperature in this Plesa et al. (2018)
model was 235 K at the InSight landing site. Crustal heat production was initially
331.1 pW kg−1 and decreased exponentially to 59 pW kg−1. Panel b: To account for
how a changing heat flux affects pore closure, we can no longer use Equation 1.3 over
the total elapsed time. However, we may still employ this equation over short and
successive time steps (we use 100 kyr). For example, if we begin pore closure at 4 Ga,
we first assume the heat flux indicated in panel (a) for 4 Ga (∼ 60 mW m−2) and find
porosity as a function of depth with Equations 1.2 and 1.3 after 100 kyr have elapsed.
For the next time step, we use the heat flux 100 kyr after our start time and repeat the
process. After the necessary number of time steps, we calculate the depth of the porous
layer after 10 Myr and 1 Gyr of evolution from the corresponding start time. Due to the
uncertainty in when pore-generation may have ended we allow the beginning of pore-
closure to vary from 1.0-4.5 Ga. So as a function of this start time, we plot the depth of
the porous layer after 10 Myr (blue line) and 1 Gyr (orange line) of heat flux evolution.
We use the rock rheology of wet diabase from Caristan (1980). While porosity could
continue into the upper mantle (cf. Wieczorek et al., 2013), we are primarily concerned
with pore closure in the crust, as InSight has potentially detected pore closure at only
∼10 km depth (Lognonné et al., 2020). As such, we truncate results at depths greater
than a generous crustal thickness of 50 km.
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1.2.3 Necessary/Maximum Heat Flux as a Function of Pore-Closure

Depth

Assume that pores close at a critical porosity φC . Rearranging Equation 1.3,

the critical temperature TC to close pores at some depth z = (P/ρg) (we account for

uncertainty in the density due to porosity in A) after some time t is:

TC =
Q/R

ln
(

tPnA
ln(φ0/φC)

) . (1.4)

This expression shows that the closure temperature is strongly dependent on the acti-

vation energy Q and weakly dependent on the overburden pressure P and elapsed time

t.

The temperature at depth is related to heat flux by Fourier’s law of thermal

conduction. We can thus determine the surface heat flux necessary to close pores at a

certain depth:

FC =
k

z

[
Q/R

ln
(

tPnA
ln(φ0/φC)

) − TS +
ρHz2

2k

]
, (1.5)

where TS is the surface temperature, and H is the crustal heat production rate per unit

mass. Because a decreasing heat flux results in little change in the depth of pore closure

over time (assuming that no additional porosity is being generated, see Figure 1.2b),

we can use a small elapsed time such as t=10 Myr and be confident that this results in

the maximum heat flux a region can have experienced in its history.
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1.3 Effects of Geology

Until now, we have made several simplifying assumptions in this analysis. We

assumed pores close only viscously and neglected other ways of closing porosity such

as cementation or volcanism. We also assume that the entire crust is initially porous,

and that no new porosity is generated. Nonetheless, any subsurface region in which

porosity is maintained can never have exceeded a given temperature since the most

recent generation of porosity, placing an upper bound on the heat flux. For the Moon,

it is thought that early bombardment was the main source of porosity and that the

decline in impacts greatly reduced subsequent pore generation (Wieczorek et al., 2013;

Wahl et al., 2020). On Mars, the last events to generate significant porosity were likely

the impacts that formed the Borealis Basin (>4.47 Ga) or Hellas, Isidis, and Argyre

basins (∼3.8–4.1 Ga) (Bottke and Andrews-Hanna, 2017).

In this section, we explore the regional geology near InSight and how it may

affect our analysis. InSight landed in Elysium Planitia near the boundary of Mars’

crustal dichotomy. From orbital data, InSight appears to have landed on a plain of

early-Amazonian or late-Hesperian (∼3.0 Ga) lava flows 200-300 m thick, which overlie

sedimentary rocks of Noachian age (∼3.7-4.1 Ga) (Pan et al., 2020). The sediments

themselves may overlie altered basaltic rocks that are compacted at depth (Smrekar

et al., 2019). The surface geology at the landing site was well-predicted by the orbital

data (Golombek et al., 2020). Initial analyses of the InSight seismic data using a seis-

mic receiver function analysis shows that there is a seismic discontinuity at 8-11 km
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depth (Lognonné et al., 2020). This discontinuity occurs within the crust of Mars, and

potentially indicates the presence of altered/fractured rocks to that depth (Lognonné

et al., 2020).

We consider four geological phenomena that may affect the depth of pore-

closure beneath the InSight landing site: sediment accumulation, emplacement of lava

flows, erosion, and the presence of groundwater. If sedimentation occurred after maxi-

mum heating, the extra overburden pressure it applies at depth would not cause addi-

tional compaction but may effectively increase the depth to pore-closure by the thickness

of the additional sediment. In addition, the sediments themselves would be expected to

form with significant porosity (see Lewis et al., 2019). Lava flows would greatly increase

the surface temperature, but the thermal anomaly will only propagate downwards to

a depth comparable to the flow thickness, which is likely much less than the porous

layer depth. Like sediment layers, this layer of lava would also increase the depth to

pore-closure by the thickness of the deposit, and the lava flows would likely also contain

some porosity (e.g. Rust et al., 1999, and references within). Erosion would remove at

least some of the upper portion of the porous layer. However, there is little evidence for

large scale erosive events in this region of Mars.

The presence of pore water will change the deviatoric stress. However, because

of the large density contrast between water and rock, and the logarithmic dependence

on P (Equation 1.5), this effect is negligible. Groundwater can also aqueously alter the

mineralogy via diagenesis (see Section 1.4 below). Most importantly for our study, an

aquifer can affect the temperature structure of the crust and thus the depth to which
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pores close. The presence of liquid water in the pore space of Martian rock can lower the

effective thermal conductivity of the rock (e.g. Hanna and Phillips, 2005)—increasing

the thermal gradient and thus reducing the thickness of the porous layer. The thermal

conductivity of the Martian crust may be somewhere between 2 and 3 W m−1 K−1 (e.g.

Clauser and Huenges, 1995; Seipold, 1998) while water’s thermal conductivity is 0.57 W

m−1 K−1 (Demming, 2002). A similar reduction in conductivity will arise if the pores

are empty rather than water-filled. Uncertainty in the thermal conductivity has the

largest effect on the uncertainty in the calculated maximum heat flux (see Appendix

A).

Another possibility to consider is if water in the pore-space of the Martian crust

is undergoing convection. This is important because convection decreases the thermal

gradient—making the required heat flux to close pores at a given depth under the

assumption of conduction (Equation 1.5) an underestimate. We can calculate whether

the fluid would convect using the Rayleigh number for a fluid in a porous medium:

Ra =
ρwαwΔTgKl

φηwκw
, (1.6)

where ρw is the density of water, αw is the thermal expansivity of water, ΔT is the

temperature difference across the change in depth, K is the permeability of the Martian

regolith, l is the lengthscale, φ is the porosity of the regolith, ηw is the viscosity of the

water, and κw is the thermal diffusivity of water (Hewitt et al., 2014).

Although most of these variables are approximately known, the permeability

and porosity of the crust are very uncertain. Hanna and Phillips (2005) estimated the
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vertical extent of potential Noachian aquifers by modeling the closure of pores in a

manner resembling our approach. We approximate from their results, which derived

a porosity that varied from 0.16 at the surface to 0.04 at a depth of ∼10 km. They

predicted the permeability of Martian regolith to vary from 10−11 m2 at the surface to

10−15 m2 at depths of 5 km or more.

Taking an order of magnitude approach, we take ρw = 103 kg m−3, αw = 10−4

K−1, g = 4 m s−2, ηw = 10−3 Pa s, and κw = 10−7 m2 s−1. If we take a lengthscale of 10

km, then let us take K = 10−14 m2 as a rough geometric mean of permeability (weighted

more towards 10−15 m2 as half the depth has that permeability). Similarly, let us assume

a mean porosity of 0.1. If the surface of Mars is near the freezing temperature, then we

may take ΔT = 100 K as an upper bound. The Rayleigh number is then ∼400. We do

not expect any flow below a Rayleigh number of 4π2, and then some transition range

above that (Hewitt et al., 2014). Depending on alterations in our order-of-magnitude

assumptions, our simplified aquifer may be transitioning into convection. Since the effect

of any such convection is to reduce the temperature gradient, our conductive solutions

for the heat flux required to produce a particular porous layer depth (see below) will, if

anything, be underestimates.

1.4 Application to InSight’s Landing Site

InSight has detected a discontinuity in seismic wave velocity 8-11 km below

the surface, which may indicate the presence of altered or fractured rocks to that depth
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(Lognonné et al., 2020). We treat this as the transition from porous to compacted crust,

but as a deeper probing of the Martian crust requires higher magnitude marsquakes, we

cannot yet be sure if porosity actually continues to greater depths. Mineralogical changes

can also cause seismic discontinuities, but the two transitions need not be independent:

fluids fluxing through the permeable crust may cause diagenesis (Sun et al., 2019, e.g.)

and a corresponding reduction in seismic velocities, while leaving the impermeable crust

unchanged. In effect, the porous/compacted rock boundary can become a mineralogical

boundary that is detectable by InSight. In any event, if a different depth of pore closure

is ultimately detected, we can deduce the maximum heat flux experienced at the InSight

landing site after pore generation.

In making our prediction for maximum heat flux experienced at the InSight

landing site, we account for the uncertainty of each term in Equation 1.5 (see Appendix

A). To account for a wide range of estimates of thermal conductivity of the Martian

crust (with or without groundwater), we use separate thermal conductivities of k = 1.5,

2.0, and 3.0 W m−1 K−1. We use an average present-day temperature of 235 K at the

InSight landing site (Plesa et al., 2018). Solar luminosity in the early solar system was

as little as 70% of its present value (Ribas, 2010). To account for this range, we use

a surface temperature TS = 220 ± 30 K. We use a crustal density ρ = 2950 ± 250 kg

m−3, and the rheological constants as listed in Section 1.2.1. For each rheology and

thermal conductivity, we calculate the necessary heat flux (and its uncertainty) for pore

closure as a function of pore-closure depth. We assume two extremes of crustal heat

production: that of the present day (47±3 pW kg−1) and what one might expect of
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Mars in its earliest days (290±40 pW kg−1) (Hahn et al., 2011; Plesa et al., 2018).

Results are displayed in Figure 1.3.

As expected, higher heat fluxes, lower thermal conductivities or weaker rheolo-

gies result in thinner porous layers. For the same given temperature required to close

pores at some depth, a higher crustal heat production will result in a higher surface

heat flux. In turn, this heat flux can be related to a particular time in Martian history.

For example, to close pores at a depth of 8-11 km requires heat fluxes in excess of

60 mW m−2 for a wet diabase rheology. For dry diabase, the heat fluxes are larger. A

larger crustal heat production (as one would expect early in Mars’ history) will result

in a higher surface heat flux when pores closed, but the effect is not significant when

closing pores at shallower depths. Based on the surface heat flux through time resulting

from the thermal evolution model of Plesa et al. (2018) plotted in Figure 1.2a, we con-

clude that pore closure must have occurred before 4 Ga and that pore production must

have been even earlier. This conclusion is robust to uncertainties in thermal conduc-

tivity, rheology, and crustal heat production (at least to close pores at ∼10 km depth).

Because the employed thermal evolution model of Plesa et al. (2018) is an upper bound

on likely heat fluxes, this age estimate is conservative and robust to uncertainties in

Mars’ initial conditions: other cases cool to a heat flux of 60 mW m−2 earlier in Mars’

history.

Our constraint can be compared with thermal models and other measurements.

For instance, Hauck and Phillips (2002)’s thermal model predicts a surface heat flux of

up to ∼65 mW m−2 before 4 Ga, albeit for an average crustal thickness of 62 km. By
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Figure 1.3: For each rheology and crustal heat production (H) combination, we vary
the thermal conductivity to find the necessary surface heat flux needed to close pores
viscously as a function of depth (Equation 1.5), assuming 10 Myr have elapsed to close
pores. The secondary y-axis relates the necessary heat flux to the time that heat flux
occurred at the InSight landing site according to case 110 of the Plesa et al. (2018)
Mars thermal evolution model. The colored shaded regions highlight the corresponding
uncertainty for each assumed thermal conductivity. Examining multiple thermal con-
ductivities allows us to ascertain its effect on the maximum heat flux without needing to
factor it into the calculation of uncertainty. The vertical grey shaded region highlights
the 8-11 km depth at which InSight detects a discontinuity in seismic wave speed.
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examining the viscous relaxation of craters, Karimi et al. (2016) were able to construct

a map of Mars’ surface heat flux during the Noachian, finding a heat flux ∼70 mW

m−2 near where InSight landed. Both Hauck and Phillips (2002)’s thermal model and

Karimi et al. (2016)’s inversion are consistent with heat fluxes exceeding 60 mW m−2

before 4 Ga. Another independent estimate of paleo heat fluxes may be derived from

measurements of elastic thickness. For instance, McGovern et al. (2004) find heat fluxes

in excess of 35, 43, 48 and 50 mW m−2 for four Noachian terrains. Likewise, Broquet

and Wieczorek (2019) generally obtain heat fluxes greater than 50 mW m−2 for ancient,

eroded volcanoes. Although uncertain, all these estimates are very consistent with our

constraint.

1.5 Conclusion

This analysis assumes that the porous-to-non-porous transition is the cause of

the seismic wave speed discontinuity detected by InSight (Lognonné et al., 2020). From

that transition depth we conclude that pores formed prior to 4 Ga and in the presence

of a heat flux exceeding 60 mW m−2. If the seismic discontinuity instead marks a

different transition of rock composition and porosity continues to a greater depth, this

may indicate a delayed onset of pore-closure until later in Mars’ history when it had

cooled down. Alternatively, a Mars that had started off colder would also ensure a

smaller heat flux, resulting in a deeper porous-to-compacted transition. Finally, if the

crust has cooled significantly, additional layers of sediments or lavas could depress the
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transition from porous-to-compacted crust without further closing pores due to the extra

overburden pressure.

In the future, further seismic events will allow improved estimation of the depth

at which pores close. When such a new measurement is made, the approach we present

in this paper can be used to further clarify the thermal state of the ancient Martian

crust.
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Chapter 2

Estimates for Tethys’ Moment of

Inertia, Heat Flux Distribution, and

Interior Structure from its

Long-Wavelength Topography

Tethys, she was called, great nurse of the world’s waters, born like her
husband at the dawn of ages from Mother Earth herself. Her robes puddled
blue at her feet, and around her neck was wrapped a water-serpent like a
scarf. Before her was a golden loom that held her weaving. Her face was old
but not withered. Countless daughters and sons had been birthed from her
flowing womb, and their descendants were still brought to her for blessing.
I myself had knelt to her once. She had touched my forehead with the tips
of her soft fingers. Welcome, child.

—Circe, by Madeline Miller

This chapter is a slightly modified reprint of work previously published as S. Gyalay and

F. Nimmo (2023). ”Estimates for Tethys’ Moment of Inertia, Heat Flux Distribution,

and Interior Structure from its Long-Wavelength Topography.” Journal of Geophysical
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Key Points

• We can infer patterns of tidal heating from the long wavelength topography of an

icy satellite.

• The tidal heating pattern can indicate a moon’s internal structure.

• Tethys has no sub-surface ocean, but could have had a larger obliquity in the past.

Abstract

We examine if Saturn’s moon Tethys may be an ocean world by assuming

spatial variations in tidal heating are responsible for thickness or temperature variations

in an isostatic ice shell, which manifests as surface topography. Because patterns of

tidal heating depend on average ice shell thickness and whether the shell overlies a

rigid or liquid layer, we can use Tethys’ long-wavelength topography to infer its interior

structure. We test a wide range of assumed parameters to hone in on the characteristics

of Tethys that produce self-consistent and physically plausible interior models. To verify

our technique, we apply it to Enceladus and recover the signature of a sub-surface global

ocean with an appropriately thick ice shell and moment of inertia. Our best-fit Tethys

models require Pratt isostasy and obliquity tides, with a normalized moment of inertia

0.340-0.345 and an average surface heat flux 1-2 mW m−2. The best-fit basal heat flux
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distribution indicates that Tethys does not have an ocean. The total power inferred (4-

8 GW) to produce Tethys’ shape from tidal heating indicates either a highly dissipative

interior or an obliquity higher than previously estimated. The topography may also be

a relic of a warmer past when the obliquity was higher.

Plain Language Summary

Oceans have been discovered beneath the surfaces of many icy moons, the

most famous among them Europa and Enceladus. We examine if Tethys, a moon of

Saturn’s, may also have a sub-surface ocean. We cannot answer this question using

the techniques employed at other worlds, as those required close flybys of spacecraft.

However, the movement of Tethys within Saturn’s gravity field causes tidal heating in

Tethys’ interior. The exact spatial distribution of tidal heating can then indicate if

there is a liquid or rigid layer beneath Tethys’ ice shell, as well as how thick this ice

shell is. This tidal heating can be inferred from the large scale topography (essentially,

the shape) of Tethys. We iterate through assumed values for a series of parameters to

find a scenario that best explains Tethys’ interior, finding it does not have an interior

ocean. However, the amount of tidal heating we infer indicates that Tethys should have

a higher tilt relative to its orbit than is currently predicted. Given how long heat takes

to conduct through ice, we may be seeing the effect of a high tilt from a billion years

ago.
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2.1 Introduction

The presence of a global ocean underneath an icy moon’s shell has profound

geophysical and astrobiological implications. Discoveries of these oceans have typically

relied on close flybys, using libration, gravity data, or magnetic induction (Nimmo and

Pappalardo, 2016). We focus on one of Saturn’s moons without the luxury of these data:

Tethys. We argue that not only does the long-wavelength topography of this moon imply

moderate tidal heating, but that it can be used to infer Tethys’ moment of inertia, heat

flux distribution, and internal structure (namely the presence or lack of an ocean).

After a brief background (Section 2.2), we outline the general methodology by which we

probe the interior of Tethys without gravity data (Section 2.3). We then walk through

an example of the methodology (Section 2.4) before presenting our full set of results

(Section 3.3) and discussing them (Section 2.6). The supplementary material details our

methodology and its limitations. Additionally, the supplement presents an application

to Enceladus, benchmarking the method on a satellite with a better-constrained interior.

2.2 Background

Tethys is one of Saturn’s mid-sized icy satellites and has a low bulk density of

984 kg m−3 (Roatsch et al., 2009), very close to that of water ice—implying a very low

amount of radionuclide-bearing rocks within Tethys as a potential heat source. However,

the satellite features terrain that hints at a more active past such as Ithaca Chasma, a

1000 km long flexural crack (Smith et al., 1981; Giese et al., 2007). Another striking
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feature is Odysseus crater, one of the largest craters in proportion to its body’s surface

area (Moore et al., 2004).

In this paper, we seek to assess the present thermal state and tidal heating

distribution of Tethys from its shape. Over the course of the Cassini orbiter mission at

Saturn, the long-wavelength topography of Tethys was characterized using limb profiles

(Thomas, 2010; Nimmo et al., 2011). Because these moons are nearly spheres, we use

the language of spherical harmonics to perform calculations and derive results. We can

express some function f (e.g. topography or heat flux) that varies across a sphere’s

colatitude θ and longitude λ as the sum of weighted spherical harmonics of degree l and

order m:

f(θ, λ) =
∞∑
l=2

l∑
m=0

(Cl,m cosmλ+ Sl,m sinmλ)Pl,m(cos θ), (2.1)

where Pl,m(cos θ) is an associated Legendre function (Blakely, 1995). Cl,m and Sl,m

are coefficients determined by integration. We also refer to normalized coefficients C̄l,m

that are related by Cl,m = C̄l,m

√
(2− δm0 )(2l + 1)(l −m)!/(l +m)!, where δm0 is the

Kronecker delta.

When comparing the relative power of topography per degree l of Tethys

(Nimmo et al., 2011), we find that while degree 2 dominates Tethys’ shape, degree

4 has much more power than degree 3 (Figure 2.1). Much of the degree 2 shape arises

from the rotational flattening and the tidal stretching of the moon (Beuthe et al., 2016).

However, the degree 4 shape may be indicative of strong tidal heating at Tethys. The

spatial variations of tidal heating act at degrees 2 and 4 (Beuthe, 2013), and can give

rise to topographic variation (e.g. Nimmo et al., 2007). Topography in higher degrees,
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meanwhile, may be due to the large amount of cratering upon Tethys. The largest

crater, Odysseus, is clearly visible in the spherical harmonic topography at degree 7

(Nimmo et al., 2011) but does not contribute significantly at degree 4 (Figure 2.1).

More uncertain is the source of topography in odd orders of degree 4, which dominate

the degree 4 signal but would not be caused by variations in tidal heating. Fortunately,

the results we obtained are quite insensitive to the degree 4 values used (see Section 2.4

below).

At Enceladus, strong tidal heating can sustain a sub-surface water ocean, so

we examine if Tethys might also possess such an ocean. Unlike Enceladus, Tethys has

not been privileged with gravitational flybys to characterize the interior structure, so

we developed a new method to infer the interior as described below. Tethys remains

a compelling world to search for an ocean, given their increasing ubiquity underneath

the shells of the outer planets’ icy moons, and for the aforementioned evidence of past

activity.

2.3 Methodology

With our model, we ultimately infer the tidal heating distribution of a moon

from its topography based on an assumption of isostasy. This pattern in turn indicates

whether there is a solid or liquid boundary beneath the ice shell. In deriving the tidal

heating pattern, we test multiple moments of inertia, ice shell thicknesses, and different

forms of isostasy and tides to see which combination fits best.
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Figure 2.1: For each spherical harmonic degree l, we calculate the relative power of ob-
served topography. This is the sum of the squares of the spherical harmonic coefficients
(Nimmo et al., 2011) of each order m within that degree (note that Nimmo et al. (2011)
imposed an a priori constraint when deriving the harmonic coefficients). To normalize
power for the number of orders per degree, we divide by 2l+1. We decompose the power
from even and odd orders m as dashed and dotted lines, respectively. As Nimmo et al.
(2011) computed the spherical harmonic coefficients of topography from limb profiles,
we compare the power spectrum using topography coefficients calculated with and with-
out profiles that pass over Tethys’ largest crater, Odysseus, in an inset plot, to show
how little it varies with Odysseus. In addition, we plot the power of observed topogra-
phy less topography due to tidal and rotational stretching of a hydrostatic body with
a normalized moment of inertia 0.34±0.01. We include propagation of individual coef-
ficient uncertainties in both cases. In the case subtracting the hydrostatic shape, error
in degree 2 is dominated by error of observed topography and is simply exaggerated by
the log scale.
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Figure 2.2: Simplified flowchart of the methodology that we apply, highlighting some of
the key parameters we assume and vary in each model.

Figure 2.2 displays a flow chart of the methodology we employ in inferring the

interior structure of a moon from its topography. We begin by calculating the shape

of the moon due to tidal and rotational forces, which often accounts for a significant

portion of the world’s long-wavelength topography (Section 2.3.1). After we remove

this contribution, we are left with a residual topography that we assume is primarily

due to variations in tidal heating at these long wavelengths, causing variations in either

shell thickness or density (Section 2.3.2). Finally, we infer tidal heating patterns from

the residual topography, and thus the moon’s internal structure—including whether or

not it possesses a subsurface global ocean (Section 2.3.3). We verify a posteriori that

our model is physically plausible by building a density profile from its inferred structure

and moment of inertia.

As spatial variations of tidal heating depend only on cosine terms of even

degrees l ≤ 4 and positive even orders m (Beuthe, 2013), we focus on topography

h(θ, λ) spherical harmonic coefficients Ch
l,m for even l ≤ 4, 0 ≤ even m ≤ l. We utilize

the long-wavelength topographies of Saturnian satellites in Nimmo et al. (2011).

28



2.3.1 Effect of tidal and rotational potential on shape

In addition to tidal heating, the degree 2 topography of icy satellites is likely

dominated by contributions from tidal and rotational forces. Thus to determine spatial

variations in tidal heating from topography we must first remove these other contri-

butions. The tidal contribution we remove is the time-averaged physical distortion of

the moon by Saturn along the Saturn-moon axis (not to be confused with the resultant

tidal heating), while the rotational contribution is a result of the flattening that occurs

when a sphere spins. For a sufficiently distant satellite these contributions are only in

degree l = 2. In addition to the angular rotation rate ω, the bulk density of the body

ρ̄ and its Love number h2 are needed to ascertain the tidal and rotational contribution

to its shape. Assuming the body is hydrostatic, we use the Darwin-Radau relationship

(e.g. Munk and MacDonald, 1960) to find the Love number h2 from the body’s mean

moment of inertia C:

h2 =
5

1 +
[
5
2

(
1− 3

2
C

MR2
0

)]2 , (2.2)

where M is the mass of the body, and R0 its average radius. For a synchronous satellite

the contribution of tidal and rotational forces to a body’s topography is

Ctr
2,0 = −5

6
h2R0q

(
1 +

76

105
h2q

)
(2.3)

Ctr
2,2 =

1

4
h2R0q

(
1 +

44

21
h2q

)
, (2.4)

where q =
ω2R3

0
GM , as according to Beuthe et al. (2016). These equations include second-

order corrections for rapidly rotating satellites. There should likewise be small degree-4

contributions to the satellite’s shape from tidal and rotational terms, but as the degree-4
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terms are small to begin with, deriving these contributions is outside the scope of the

paper.

As Tethys’ moment of inertia is unknown, we must vary its assumed value

in fitting for Tethys’ heating distribution. A limiting case is that for a homogeneous

body of incompressible material, C = 0.4MR2
0. If a body undergoes differentiation, its

moment of inertia is lower as denser material sinks to the center. Using Voyager data on

Tethys’ shape, Thomas and Dermott (1991) concluded that Tethys’ normalized moment

of inertia was between 0.17 and 0.35. Repeating their methodology (detailed in the

supporting information, Appendix B) with updated parameters from Cassini (Nimmo

et al., 2011), we find Tethys’ normalized moment of inertia must lie between 0.34 and

0.37. However, Thomas and Dermott (1991)’s method used first-order relations to solve

for the expected moment of inertia while we use second-order theory of figures to account

for the moment of inertia in our model. Furthermore, Thomas and Dermott (1991) did

not investigate the effect that tidal heating variations might have on the degree-2 shape

of Tethys, which is the focus of our work. For these reasons, we constrain the normalized

moment of inertia C
MR2

0
to vary 0.3 ≤ C

MR2
0
≤ 0.4.

2.3.2 Inferring Tidal Heating from Topography

Once the contribution of tidal/rotational forces to topography is removed,

we are left with residual topography. Tethys has strong topography in degrees l=2,

4 (Figure 2.1). As tidal heating only varies in those degrees, we can assume that

a significant portion of the residual topography is the result of spatial variations in
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tidal heating. Lateral differences in heating would manifest as variations in either shell

thickness or density. Assuming isostasy, the mass or pressure at depth will be constant

in spite of variations in either quantity. The assumption of isostasy is likely to hold

because even at low temperatures, the viscosity of ice is small compared to that of rock

(e.g. ∼ 3× 1017 Pa s at 200 K), and thus the timescale for the shell to relax to isostasy

(e.g. Melosh, 1989) is much faster than the other timescales of interest. Below we give

an overview of our approach. First, however, we discuss two potential complicating

factors: craters and lithospheric flexure.

Tethys’ largest crater, Odysseus, is 400 km rim-to-rim (Moore et al., 2004) or

12% of Tethys’ circumference. This is not insignificant when compared to the lengthscale

of degree 4 features and thus has the potential to make a major impression on the degree

4 spherical harmonic coefficients of topography. To examine if Odysseus crater may

have a significant impact upon our result, we compare the power spectrum of spherical

harmonic coefficients of topography derived from all limb profiles of Tethys used in

Nimmo et al. (2011), as well as derived from all limb profiles excluding those that pass

through Odysseus (Figure 2.1). We find no significant differences between these two

approaches.

In the rest of this manuscript we assume the bulk of residual long-wavelength

topography is due to isostasy, but a potentially complicating factor is the role of any

elastic lithosphere. Because of Tethys’ small radius, even a thin intact lithosphere can

have important effects. Assuming the elastic thickness of Tethys’ upper crust from

Giese et al. (2007), Tethys is not expected to be fully compensated even at l = 2,
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using the equations of Turcotte et al. (1981). If, however, the lithosphere is fractured

(as is certainly the case around Ithaca Chasma), then spherical membrane stresses

will not be available to support topography and a higher degree of compensation is

expected. Furthermore, since we envisage variations in shell thickness as producing

bottom loads, any elastic strength will reduce the surface topography for a given shell

thickness contrast. As a result, the heat fluxes we estimate below would be lower bounds

in the case that elastic strength was important. With these caveats in mind, we now

proceed with our isostatic analysis.

Once we are satisfied that there are no other major contributions to even

orders of degree 2 and 4 topography, we may begin to use the residual topography to

infer spatial variations in tidal heating. The strongest tidal heating is at the base of

the ice shell because either tidal dissipation is strongest for warm, low-viscosity ice at

the base of a shell overlying an ocean or because of shear heating due to the no-slip

boundary with the more rigid, rocky interior beneath. In either case, we approximate

tidal heating as a basal heat flux beneath the moon’s ice shell. Endogenic radionuclide

heating can also add a constant background heat flux. Although we assume for our

analysis that the residual shape is due to present-day tidal heating, it is important to

consider the conduction timescale of ice. The thermal conduction timescale goes as d2/κ,

where d is the ice shell thickness and κ the thermal diffusivity. Depending on the ice

shell thickness, this timescale could vary from tens of Myr to a Gyr. This timescale will

determine how long lateral temperature variations or lateral shell thickness variations

can persist, unless the latter are first removed by viscous flow. It is thus important
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to remember that the present-day shape we use in our analysis may have arisen from

conditions occurring hundreds of Myr ago. We return to this issue in Section 2.6 below.

We invoke isostasy to infer tidal heating from residual topography. Histori-

cally, isostasy has assumed that there is a constant mass at the base of equal columns

penetrating a planetary body. This is adequate for worlds with thin crusts, as one can

approximate such a crust as a plane locally. For thicker crusts, the spherical geometry

may become important. Some solve this by assuming that the pressure at depth is con-

stant (Hemingway and Masuyama, 2017), while others argue that one must minimize

deviatoric elastic stresses within the ice shell itself (Beuthe, 2021). Minimum-stress

isostasy can be approximated by equal-weight isostasy, which will fall between the re-

sults expected for equal-pressure and equal-mass isostasy. To cover the full breadth of

possibilities, we test for both equal-mass and equal-pressure isostasies as endmember

cases. Additionally, we need to assume whether Tethys’ ice shell is acting under Airy

or Pratt isostasy (Figure 2.3). The important difference is that these two processes

depend in an opposite way on heat flux variations: in Airy isostasy the shell thins be-

neath higher heat-flux areas, so high heat flux correlates with low topography; while if

the shell thickness remains relatively constant under Pratt isostasy, higher heat fluxes

result in a warmer, less dense ice shell and thus higher topography. Either of these

two processes can operate, depending on the tendency of lateral flow to even out shell

thickness variations. Airy isostasy presumes the existence of a subsurface ocean, while

Pratt isostasy does not require one.

In both cases, we determine variations in basal heat flux from changes in shell
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Figure 2.3: Schematic highlighting the differences between Airy and Pratt isostasy. In
both cases, columns penetrating the moon must maintain a constant pressure or mass
at depth, despite a topographic variation h about the average radius R of the moon.
In Airy isostasy, the constant-density ice shell thickness d varies and is compensated by
an isothermal ocean below. In Pratt isostasy, the ice-shell varies in thickness due to a
change in the density of the ice from thermal expansion and contraction. Thus for the
same topographic variation h, the two cases imply opposing basal heat flux variations
(marked by more or less orange arrows) assuming all other conditions are equal.
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thickness under a spherical geometry. Changes in shell thickness are relative to the

average shell thickness, which is calculated from a spherical-geometry form of Fourier’s

law and assumes an average surface temperature and average basal heat flux. We use

a temperature-dependent thermal conductivity of solid ice from Klinger (1980), and

the thermal conductivity of porous ice is calculated according to Shoshany et al. (2002).

From the residual topography and surface temperatures calculated according to Nadeau

and McGehee (2017) assuming satellite albedoes of Howett et al. (2010), we can then

calculate the variations in basal heat flux required to explain the observed topography.

2.3.2.1 Fourier’s Law

Fourier’s law relates a heat flux and temperature gradient across a material

interface to the material’s thermal conductivity k. This thermal conductivity depends

on the temperature of the ice T as k = k0/T (Klinger, 1980). Then one can determine

the heat flux Fb at the base of an ice shell with thickness d on a moon with average

radius R0, surface temperature TS , and basal temperature TB as

Fb =
−k0 lnTS/TB

d(1− d
R0

)
. (2.5)

We derive this formula in the supporting material (Appendix B). In the limit of a thin

shell (d � R0) and constant thermal conductivity, Equation 2.5 reduces to the flat-plane

approximation, Fb = −k(TS − TB)/d.

To account for the possibility of surface porosity, we imagine a two layer system

with an upper porous ice shell and a lower solid ice shell, separated by some annealing

temperature TA under the assumption that porosity only persists at temperatures less
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than a particular value, here taken to be 140 K (Besserer et al., 2013). While lateral

variations in porosity may occur (cf. Besserer et al., 2013), we make the simplifying as-

sumption that the upper layer has a constant porosity and thickness to assess its impact

upon our Tethys models in an order of magnitude sense. To account for lateral varia-

tions in porosity in our models would require solution of the time-dependent evolution

of temperature and thermal conductivity—increasing the computational complexity—

and is thus outside the scope of this paper. Furthermore, a laterally-varying porous

layer thickness would yield the same behavior as shell thickness variations, and is thus

approximately described by our Airy isostasy analysis (see below).

Porous ice has a temperature-dependent thermal conductivity kp calculated

according to Shoshany et al. (2002) as a function of porosity φ. We define a constant

k0,p = kpT such that the thermal conductivity of porous ice kp depends on temperature

as the thermal conductivity of solid ice did. As derived in the supporting material

(Appendix B), Fourier’s law for a two-layer spherical shell (where the upper layer is

porous) of temperature- and porosity-dependent thermal conductivity is then

Fb =
−k0 ln(TA/TB)− k0,p ln(TS/TA)

(R0 − d)(1− R0−d
R0

)
, (2.6)

where d is still the total ice shell thickness. Equation 2.6 reduces to Equation 2.5 when

porosity φ = 0.

2.3.2.2 Airy Isostasy

Under Airy isostasy, changes in topography are due to the thinning or thick-

ening of the ice shell (Fig. 3). A low in topography is caused by a thinner ice shell

36



which is compensated below by a subsurface ocean. Assuming an isothermal ocean, a

thinner ice shell necessitates higher basal heat flux (again, a proxy for tidal heating)

under Fourier’s law (Equation 2.6).

Assuming equal-pressure isostasy for an ice shell with crustal density ρC (a

volume-weighted average in the case of a porous upper layer and solid lower layer) that

is Δρ less than the density of the ocean, we find a basal topography hb as a function

of the corresponding surface topography h (measured as the difference from an average

radius R0; e.g. (Hemingway and Masuyama, 2017)):

hb = −h
ρC
Δρ

( gS
gB

)
, (2.7)

where gS is the surface gravity and gB gravity at the base of the ice shell. gS
gB

can be

calculated

gS
gB

=

(
R−d0
R

)2
1 +
[(

R0−d0
R0

)3 − 1
]
ρC
ρ̄

. (2.8)

As the change in ice shell thickness under Airy isostasy from average thickness d0 is

Δd = h − hb, and hb is proportional to topography h (equation 2.7), we can directly

find Δd as a function of h:

Δd = h

(
1 +

ρC
Δρ

gS
gB

)
. (2.9)

Under equal-mass isostasy, we need only account for the difference in volume due to a

change in topography:

Δd = h

[
1 +

ρC
Δρ

(
R0

R0 − d0

)2
]
. (2.10)

Finally, using Equation 2.6 we can find the local heat flux variation ΔF from the

background value F0 given the variation in shell thickness Δd (itself directly related to
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the variation in residual topography) and surface temperature. That is,

ΔF =
−k0 ln(TA/TB)− k0,p ln(TS/TA)

[R0 − (d0 +Δd)]
[
1− R0−(d0+Δd)

R0

] − F0. (2.11)

2.3.2.3 Pratt Isostasy

Under Pratt isostasy, changes in topography are due to the thermal expan-

sion and contraction of the ice shell, using a thermal expansivity of ice from Röttger

et al. (1994). So in contrast to Airy isostasy, lower basal heat fluxes are necessary for

topographic lows. We expect that if there is a sub-surface ocean, Airy isostasy will dom-

inate. Thus, if we find Tethys experiences Pratt isostasy, it is less likely there will be a

sub-surface ocean. We do, however, assume both an ocean-bearing and an ocean-absent

case in the consistency checks for our results.

Assuming an average shell thickness d0 determined with Equation 2.6, the

change in crustal density δρ from ρC that is responsible for a topography h when oper-

ating under equal-pressure isostasy is

δρ � −ρCh
gB
gS

(R0 − d0)−R0 +
2πG
gS

ρC [R2
0 − (R0 − d0)2]

(2.12)

(derived in the supporting material, Appendix B). In the limit of a thin shell this

expression simplifies to δρ = −ρC
h
d0
, the usual Cartesian case.

Once we have the change in density for a given topography, we can relate this to the

change in volume due to thermal expansivity:

ΔV

V
=

−δρ

ρC + δρ
= α0ΔT̄ (2.13)
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where α0 is the thermal expansivity of water ice for the reference average temperature

of the ice shell T̄0, ΔT̄ = T̄0 − T̄ , and T̄ = 1
2(TS + TB). In equal-mass isostasy, we can

skip calculating the change in density, as the change in volume of some equal mass is

purely due to the additional topography. That is,

ΔV

V
=

(R0 + h)3 −R3
0

R3
0 − (R0 − d0)

3 (2.14)

Following from Fourier’s law (Equation 2.5) and again neglecting internal heat sources,

TB = TSe
Fd(1−d/R)/k0 . (2.15)

Then for a situation in which the conductivity is temperature-dependent the mean

temperature variation ΔT̄ is given by

ΔT̄ =
1

2

{
ΔTS + TB,0

[
TS

TS,0
eΔFd(1−d/R)/k0 − 1

]}
(2.16)

where ΔTS is the variation in surface temperature TS from the reference value TS,0 and

ΔF is the variation in basal heat flux F from the reference value F0. This equation

makes it clear that the variation in mean temperature can arise either from variations

in basal heat flux (second term on right hand side) or surface temperature variations

(both terms). We let d stay constant at the average ice shell thickness d0 for ease of

derivation.

By combining thermal expansivity (Equation 2.16) with Fourier’s law (Equa-

tion 2.5) we may derive (in detail in the supporting material, Appendix B) the change

in basal heat flux implied by topography due to Pratt isostasy as:

ΔF =
k0

d0(1− d0/R0)
ln

(
TS,0

TS

{
1 +

1

TB,0

[
2

α0

(−δρ)

ρC + δρ
−ΔTS

]})
, (2.17)
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where δρ is calculated in Equation 2.12 when assuming equal-pressure isostasy. Under

equal-mass isotasy, we substitute −δρ
ρC+δρ in Equation 2.17 with ΔV

V , calculated using

equation 2.14. We account for a porous layer with modifications to this formula in the

supporting material (Appendix B).

2.3.3 Interior Structure from Tidal Heating

Beuthe (2013) demonstrated that one could compose tidal heating patterns

as the linear combination of three angular basis functions A, B, and C. These basis

functions are themselves linear combinations of spherical harmonic functions of even

degrees l ≤ 4. The basis set of angular functions ψJ are:

ψA = ψ0 + ψ2 + ψ4 (2.18)

ψB = ψ0 +
1

2
ψ2 − 2

3
ψ4 (2.19)

ψC = ψ0 − ψ2 +
1

6
ψ4, (2.20)

where

ψl =

l∑
m=0

Pl,m(cos θ)al,m cosmλ. (2.21)

Note that ψ0 = a0,0. Then given a spatially-averaged heat flux due to tidal heating

F0,T , we find the heat flux due to tidal dissipation FT :

FT (θ, λ) =
F0,T

ψ0
(χAψA + χBψB + χCψC), (2.22)

where χJ are weights of each basis angular function. Each weight ranges from 0 to 1,

and the sum of all three is 1. al,m for each harmonic function vary depending on the

type of tide as shown in Table 2.1, and affects the pattern functions.
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Table 2.1: Tidal dissipation harmonic function coefficients for eccentricity e and obliq-
uity θ0

a0,0 a2,0 a2,2 a4,0 a4,2 a4,4
Eccentricity tides (×e2) 21/5 -33/7 9/14 387/140 -27/140 -3/160
Obliquity tides (× sin2 θ0) 3/5 3/7 3/14 -36/35 3/35 0

Note: Values from Beuthe (2013).

As the tidal heating is a linear combination of these basis functions, we perform

a multilinear regression on the spherical harmonic coefficients of heat flux CF
l,m to solve

for the A, B, and C function weights. (Recall that the heat flux coefficients are in turn

inferred from the measured topography via equation 2.11 or 2.17). A high B function

weight generally indicates a rigid interior, while a high C function weight generally

indicates a subsurface global ocean or a homogenous body (Figure 2.4). Exact A, B,

and C function weights can also be used to infer the thickness of the ice shell for

comparison with the assumed ice shell thickness.

For this multi-linear regression (explained in detail in the supporting material,

Appendix B), we calculate a goodness-of-fit value known as the coefficient of determi-

nation R2. The closer R2 is to the maximum of 1, the more accurately the basis heating

pattern weights fit the inferred basal heat flux distribution. Thus, a high R2 implies

our inferred heating pattern is indeed due to tidal heating.

Another goodness-of-fit metric that we employ is the Root Mean Square (RMS)

difference of observed and forward-modeled topography (more detail in the support-

ing material, Appendix B). We calculate the forward modeled topography hfwd for

each 0.1◦ × 0.1◦ latitude-longitude bin. For each bin i we have its angular area Ωi =

sin (θi)ΔθΔφ, the forward modeled topography hfwd,i, and the observed topography
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Figure 2.4: We use the solid body tidal heating code of Roberts and Nimmo (2008) to
model tidal heating within Tethys. In the upper plots, solid lines indicate a two-layer
Tethys consisting of an ice shell over a liquid (left) or rigid (right) interior. We assume
a solid ice density of 940 kg m−3, and calculate interior density from Tethys’ remaining
mass. We vary the radius of the interior Rint relative to the total radius of Tethys
R, and calculate the proportion of each tidal heating weight (solid lines). These are
indistinguishable from Beuthe (2013)’s results for a satellite of uniform density. Thick
dotted lines assume an upper ice shell with porosity φ = 0.3, with lower rigidity and
higher viscosity than solid ice. Porous layer thickness assumed porosity closed at 140
K and the base of the solid ice shell was 270 K. On the lower left plot, we zoom in on
the rigid interior case and overlay where the best-fit heating pattern weights from our
example of the methodology (Section 2.4) intersect these patterns as a function of the
interior’s radius (dotted lines). After eliminating the uniform heating term suspected
from radiogenic heating in the ice-rock core, the core radius for each heating term
would barely changes. However, the removal of suspected interior core heating allows
the radius to converge (dashed lines). This is repeated for models that include an upper
porous shell in the lower right.

42



hobs,i. The weighted RMS is then:

RMS =

√∑
iΩi(hfwd,i − hobs,i)2∑

iΩi
. (2.23)

We can thus explore the parameter space of moment of inertia, ice shell thickness,

upper ice shell porosity, isostasy type, and tide type. After we confirm a given model is

physically possible (e.g. constraints of ice shell thickness and moment of inertia imply an

ice density that is similar to what we expect; see the supporting material, Appendix B),

the models with the highest R2 and lowest RMS are most likely to accurately describe

the circumstances necessary for Tethys’ shape.

One must be careful however, to discern between patterns of heat generated by

tidal heating or by other sources. For instance, we expect that radiogenic heat within

the interior of Tethys would produce a uniform heating pattern (χA = 0.2, χB = 0.4,

χC = 0.4). We can compose some function of the total heat flux as a sum of the uniform,

endogenic heat flux FD and the spatially-varying tidal heat flux FT :

F (θ, λ) = FD(θ, λ) + FT (θ, λ). (2.24)

Each flux term in Equation 2.24 can be written in the form of Equation 2.22, or

F0

ψ0

⎡
⎢⎢⎢⎢⎢⎢⎣

χA

χB

χC

⎤
⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎣

ψA

ψB

ψC

⎤
⎥⎥⎥⎥⎥⎥⎦
=

F0,D

ψ0

⎡
⎢⎢⎢⎢⎢⎢⎣

0.2

0.4

0.4

⎤
⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎣

ψA

ψB

ψC

⎤
⎥⎥⎥⎥⎥⎥⎦
+

F0,T

ψ0

⎡
⎢⎢⎢⎢⎢⎢⎣

χA,T

χB,T

χC,T

⎤
⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎣

ψA

ψB

ψC

⎤
⎥⎥⎥⎥⎥⎥⎦
, (2.25)

where the χA−C,T denote the heating pattern weights specifically for tidal heating.
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Let the averages of each component be

F0,T = χTF0 (2.26)

F0,D = χDF0, (2.27)

where χT +χD = 1 and represent fractions of the basal flux that are the tidal and direct,

uniform components, respectively. After performing the appropriate substitutions and

dropping like-terms in Equation 2.25, we find,⎡
⎢⎢⎢⎢⎢⎢⎣

χA

χB

χC

⎤
⎥⎥⎥⎥⎥⎥⎦
= χD

⎡
⎢⎢⎢⎢⎢⎢⎣

0.2

0.4

0.4

⎤
⎥⎥⎥⎥⎥⎥⎦
+ χT

⎡
⎢⎢⎢⎢⎢⎢⎣

χA,T

χB,T

χC,T

⎤
⎥⎥⎥⎥⎥⎥⎦
. (2.28)

For some given endogenic heating as a fraction of total heating χD and recalling that

χD+χT = 1, we can remove the uniform heating component from the total tidal heating

to find only the tidal heating pattern weights:⎡
⎢⎢⎢⎢⎢⎢⎣

χA,T

χB,T

χC,T

⎤
⎥⎥⎥⎥⎥⎥⎦
=

1

χT

⎡
⎢⎢⎢⎢⎢⎢⎣

χA

χB

χC

⎤
⎥⎥⎥⎥⎥⎥⎦
− χD

χT

⎡
⎢⎢⎢⎢⎢⎢⎣

0.2

0.4

0.4

⎤
⎥⎥⎥⎥⎥⎥⎦
. (2.29)

To make use of this equation, we must estimate the radiogenic fraction. From moment

of inertia and ice shell thickness and densities, we may solve for the mass of rock

within our moon’s interior. Assuming a rock density of 2710 kg m−3 (e.g. Roberts,

2015) and applying a chondritic rock radioactivity of ∼3.5×10−12 W kg−1 (e.g. Turcotte

and Schubert, 2014), we solve for the endogenic heat production—which we may then

directly compare to the total heat production of our model (determined from ice shell

thickness, upper shell porosity, and basal temperature).
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Table 2.2: Assumed parameters for Tethys and its orbit.

Parameter Value

Radius R0 531.1 km (Roatsch et al., 2009)
Angular Rotation Rate ω 3.85×10−5 rad s−1

(JPL 2020 Satellite Ephemerides)
Bulk Density ρ̄ 984 kg m−3 (Roatsch et al., 2009)
Average Surface Temperature* TS,0 68.25 K
Bolometric Bond Albedo ABB 0.67 (Howett et al., 2010)
Solar Luminosity LSun 3.828×1026 W

(IAU Working Group, 2015)
Solar Distance a 1.429×1012 m
Saturn Obliquity i 0.466 rad
Solid Ice Density ρice 940 kg m−3

Thermal Conductivity Constant k0 567 W m−1 (Klinger, 1980)
Annealing Temperature TA 140 K (Besserer et al., 2013)
Tethys Eccentricity e 0.0001 (JPL 2020 Satellite Ephemerides)
Tethys Obliquity θ0 0.039◦ (theoretical value; Chen et al., 2014)

*Calculated from other values in this table.

2.4 Example of Methodology

Before presenting our full results, we walk through the procedure for a specific

(well-fitting) model of Tethys. We assume the values listed in Table 2.2 as needed. The

parameters assumed for this specific model are listed in Table 2.3. From Nimmo et al.

(2011) we have the spherical harmonic coefficients of topography in Table 2.4. Using

Equations 2.3 and 2.4, we find the spherical harmonic coefficients for topography due

to tidal stretching and rotational flattening assuming a normalized moment of inertia

of 0.34, also presented in Table 2.4. We assume spherical harmonic coefficients for

topography with all the limb profiles used in Nimmo et al. (2011), without excluding

those that pass through Odysseus.

From the bolometric bond albedo, solar luminosity, and average distance to
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Table 2.3: Assumed parameters for our example of the methodology.

Parameter Value

Upper Shell Porosity φ 0.2
Average Ice Shell Thickness d0 250 km
Average Basal Temperature TB,0 250 K
Moment of Inertia C 0.340 MR2

0

Isostasy Type Equal-pressure Pratt Isostasy
Tide Type Obliquity Tides

Table 2.4: Spherical harmonic coefficients for observed and modeled properties in our
example

l m Ch,obs
l,m (km) Ch,TR

l,m (km) Ch,res
l,m (km) CTS

l,m (K) CF
l,m (mW m−2)

2 0 -4.76 -4.81 0.042 -8.00 0.685
2 1.67 1.46 0.21 0.0 0.337

4 0 -0.021 -0.021 -1.18 0.0152
2 -0.013 -0.013 0.0 -0.0213
4 0.0014 0.0014 0.0 0.00152

6 0 -0.160

Ch,obs
l,m : Observed topography of Tethys from Nimmo et al. (2011). These values are

not normalized as they are in Nimmo et al. (2011).

Ch,TR
l,m : Topography as a result of tidal stretching and rotational flattening for the

example model of Tethys with MoI=0.335 MR2
0, calculated as in Section 3.1

Ch,res
2,0 : Residual topography after removing the contribution from tidal stretching

and rotational flattening in our example model of Tethys.

CTS
l,m: Surface temperature variation, calculated as according to

Nadeau and McGehee (2017).
CF
l,m: Calculated spherical harmonic coefficients of basal heat flux for the

example model of Tethys (Sec. 3.2).
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the sun (using Saturn’s semi-major axis), we find the average surface temperature to be

68.26 K. We further find the spatial variation of average surface temperature from the

orbital inclination (taken as Saturn’s tilt) using Nadeau and McGehee (2017) (detailed

in the supporting material, Appendix B).

With the choice of Pratt isostasy, we must calculate the average basal heat

flux and variations in that basal heat flux required from the observed topography. For

our assumed total shell thickness d0=250 km, upper layer porosity φ =0.2, and a basal

ice shell temperature TB =250 K, we use Equation 2.6 to find that the average basal

heat flux F0 =4.65 mW m−2 (implying a total power of 4.6 GW generated by Tethys).

We also find the average thickness of the porous region of the ice shell L0 = 156 km. We

use d0 and L0 to calculate a bulk ice-shell density of 797 kg m−3, from which we may

in turn calculate the ratio of basal gravity to surface gravity gB
gS

=1.01 (where surface

gravity gS=0.146 m s−2). The change in crustal density as a function of topography h

is then found with Equation 2.12 and yields a value of δρ =3.26×10−3 kg m−4 h.

We calculate an average thermal expansivity of ice α0 to use in our model,

assuming an average shell temperature of T̄0 =
1
2(TS,0+TB,0) = 159 K. Then according

to Röttger et al. (1994), our volumetric expansivity of solid ice is 8.674×10−5 K−1.

Using the change in crustal density δρ, average shell thickness d0, thermal

expansivity α0, and change in surface temperature ΔTS , we find the change in basal

heat flux via Equation 2.17. We take care to make the appropriate substitutions to

account for a porous layer (detailed in the supporting information, Appendix B): we

use a new bulk expansivity of α′
0 =7.36×10−5 K−1, and instead of d0

k0
(1 − d0

R0
) we use
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a new value that encompasses the porous layer: 289 m2 W−1. This yields spherical

harmonic coefficients of basal heat flux in Table 2.4. We expect the ratio
CF

2,0

CF
2,2

= 2 for

obliquity tidal heating, and find 2.04. Further, we expect
CF

4,0

CF
4,2

= −12, and find -0.71.

As we assumed obliquity tides, we also expect CF
4,4 = 0. We find a non-zero amount,

but still smaller than any of the other values. As the degree-4 terms affect our results

far less than the degree-2 terms, we regard any deviation from what is expected of the

degree-4 terms as of secondary importance.

Performing the multilinear regression without assuming radioactivity, we find

the spatial heating pattern weights χA = 0.250, χB = 0.470, and χC = 0.280, with

a coefficient of determination R2 = 0.991. The high R2 of nearly 1 tells us this is

a very good fit, indicating it is very likely this heat flux distribution is due to tidal

heating. The RMS misfit of forward modeled topography to observed topography is low

at 56.8 m, also indicating a very good fit. The high B weight tells us the interior is

very likely rigid, supporting our original assumption of Pratt rather than Airy isostasy.

This fit is dominated by the degree-2 terms as seen in Table 2.4. As the multilinear

regression essentially fits for a plane between the origin, degree-2 coefficients, and degree-

4 coefficients, we must still assume degree-4 coefficient values in order to make the fits,

despite their small value or large relative uncertainty. Even setting all degree-4 terms

to zero, the inferred heating pattern weights only change by as much as 0.03.

By assuming a simplified model of Tethys as 3 concentric, homogeneous layers

of a porous ice shell, solid ice shell, and a core, we can derive the internal structure

as follows (detailed in the supporting material, Appendix B). Assuming there exists a
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porous layer with density (1−φ)∗ρice and a thickness L0 derived from the temperature

structure, the remaining unknowns are the core density and total ice shell thickness

d3−layer (assumed to have a density ρice). Given our two constraints, the moment of

inertia and bulk density, we can solve for d3−layer and the core density. We find this

thickness to be 236 km, in agreement with our original assumption of 250 km.

This means the core density is 1903 kg m−3, which would be a mix of ice

and rock with a 54% rock-fraction by volume. If we calculate the mass of rock in the

interior and assume chondritic radioactivity, we find radioactive heat of 0.4 GW, or 8%

of the total power generated in Tethys, 4.6 GW. In the Discussion (Section 2.6) we use

Equation 2.29 to remove this uniform component by estimating χD = 0.08.

2.5 Results

While this paper is focused on the inversion of Tethys’ thermal state and

interior structure from its long-wavelength topography, we tested our methodology on

a world for which we already know the moments of inertia and interior structures:

Enceladus. Best-fit results for Enceladus (detailed further in the supporting information,

Appendix B) have heating weights that indicate a combination of tidal heating in an

ice shell above a subsurface ocean and uniform heating, with moments of inertia and

ice shell thicknesses that are broadly consistent with the findings of Iess et al. (2014)

and Beuthe et al. (2016). The fraction of heating that is due to uniform heating is more

than one would expect from Enceladus’ radionuclides but is feasible if about 70% of
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Enceladus’ total heating occurred in its core and was then redistributed uniformly by

the overlying ocean. Having validated our technique, we return to Tethys.

For Tethys we explore a large parameter space, detailed in Table 2.5, assuming

the constants in Table 2.2 as needed. While the basal temperature could be lower than

200 K without any tidal heating, we did not attain better-fitting results at lower tem-

peratures and thus did not spend more computational time at lower basal temperatures.

For each case we followed our outlined methodology (Section 2.3, with an example in

Section 2.4) to calculate the average basal heat flux (Equation 2.6), and the heating pat-

tern weights and coefficient of determination R2 as outlined in the supporting material

(Appendix B).

From the derived heat flux distribution, we calculate the ratio of spherical har-

monic coefficients for the heat flux distribution, CF
2,0/C

F
2,2. This serves as a consistency

check because if the heating distribution is in fact due to tidal heating, then this ratio

will be near 2 for obliquity tides or near -22/3 for eccentricity tides (Table 2.1).

As an additional consistency check we also use a forward model (detailed in the

supporting information, Appendix B) to calculate the RMS difference between modeled

and observed topography (Equation 2.23) and the RMS difference between the spherical

harmonic coefficients of the observed and modeled topography.

As in Section 2.4 (and detailed further in the supporting information, Appendix

B), we may generate a density profile of Tethys from the assumed moment of inertia, ice

shell thickness, and upper ice shell porosity. We can also do such a physical consistency

check if we assume an ocean, where we assume the densities of the porous ice layer, the
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Table 2.5: Parameter space of values for Tethys explored in this investigation.

Parameter Value ranges Resolution

Porosity φ 0.0-0.3 0.1
Ice Shell Thickness d 10-250 km 10 km
Average Basal Temperature TB,0 200-270 K 10 K
Moment of Inertia C 0.3-0.4 MR2

0 0.005 MR2
0

Isostasy Type Equal-Mass or Equal-Pressure,
Pratt or Airy

Tide Type Obliquity or Eccentricity

solid ice layer, and the ocean, as well as the thicknesses of the both ice layers. This

leaves the core density and the ocean thickness as the only two unknowns.

After we infer the heating pattern and goodnesses of fit for each set of param-

eters, we can begin to eliminate models with inferred structures that are not physically

feasible or not consistent with their assumed parameters. We limit ourselves to results

in which the degree 2 spherical harmonic coefficients of our forward modeled topogra-

phy are within 3× the uncertainty of the observed topography (Nimmo et al., 2011).

We further narrow down our results to those where the total ice shell thickness from a

three layer model d3 layer is greater than the porous ice shell thickness L and less than a

maximum ice shell thickness dmax imposed by the requirement that the bottom of the

shell not melt. If we assume an ocean, we instead limit ourselves to cases where the

ocean thickness is greater than 0, and less than the remaining radius of Tethys without

either ice layer. We also constrain which results to accept by checking for resulting core

densities that are greater than the density of ice. Finally, we limit our results to those

where the ratio of degree 2 spherical harmonic coefficients of inferred heat flux CF
2,0/C

F
2,2

is 2±0.3 for obliquity tides, or -7.33±1.33 for eccentricity tides. While some constraints
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can be applied before we even infer the heating pattern, we cannot calculate CF
2,0/C

F
2,2

or the spherical harmonic coefficients of forward-modeled topography until afterward,

and as such apply these constraints after exploring the parameter space.

The constraints listed above greatly reduce the number of viable results (Figure

2.5), and vary little between equal-pressure or equal-mass isostasy. No model results

using a combination of Pratt isostasy and eccentricity tides were found to be physically

self-consistent. Any results that use Airy isostasy have a lower R2 compared to results

for Pratt isostasy, because the inferred heating pattern does not match the expected

tidal heating as well (Table 2.6). We are more-inclined to believe the Pratt isostasy

results due to their better R2 and RMS goodnesses of fit. However, for the sake of

thoroughness, we still examine the viability of the Airy isostasy results. These heating

pattern weights using Airy isostasy appear slightly perturbed from a uniform heating

pattern. In obliquity tide cases, this might be due to a combination of a uniform

background heating flux, the heating pattern of core heating, and the heating pattern

of an ice shell atop a rigid interior, as the B-weight is increased compared to the 0.4 one

expects from a uniform pattern. In Airy isostasy and eccentricity tide cases, the higher

C weight could potentially be indicative of an ocean or homogenous interior. However,

in these cases higher R2 are correlated with higher RMS, whereas we seek the cases

where R2 is high and RMS is low. As the R2 was lower than the Pratt isostasy cases to

begin with, we ignore the Airy isostasy and eccentricity tide cases for the remainder of

this paper. While we had calculated our constraints with either an ocean or no ocean to

not exclude the possibility that Airy could operate with warm ice instead of an ocean,
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or that Pratt could still occur with an ocean; the dominance of heating pattern B in

all remaining physically-consistent cases is indicative of a rigid interior, so we focus on

those results that do not assume an ocean. Within Pratt isostasy and obliquity tides

cases, there are 34 successful results for φ =0.2 under equal-mass isostasy, and 28 results

for equal-pressure isostasy (Table 2.6). For a porosity φ = 0.3, there are 47 successful

results for equal-mass Pratt isostasy and 54 for equal-pressure. For Airy isostasy and

obliquity tides, there are 12 viable cases spanning upper shell porosities from 0.1 to

0.3, across both equal-pressure and equal-mass cases. However, Airy isostasy is hard

to reconcile with the rigid interior deduced from the B-weights, while Airy cases show

worse goodness-of-fit values than Pratt cases (see above).

For an idea of Tethys’ structure in models that satisfy the physical constraints,

we examine the thickness of each layer of the ice shell as well as the average density

interior to the ice shell (Figure 2.6). Broadly speaking, in viable equal-mass Pratt

isostasy cases (we address the Airy isostasy cases in the discussion, Section 2.6), the

porous portion of the ice shell is assumed to vary from >130 to <190 km thick, while the

pore-free portion of the ice shell predicted by moment of inertia varies from 0 to 100 km

thick (where the thickest porous shells are accompanied by the thinnest pore-free shells

and vice-versa). The bulk density of Tethys interior to the ice shell varies from 1600-

2000 kg m−3, where the denser cores are accompanied by thicker ice shells. All viable

models also result in very low RMS values (Figure 2.6). An ice porosity of 0.2 cannot

persist above 25-35 MPa (Durham et al., 2005), which for Tethys would translate to a

porous region thickness from ∼ 170− 210 km. Greater thicknesses are possible if there
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Figure 2.5: For each isostasy and tide type combination, we vary the parameters of
upper layer porosity, total ice shell thickness, average temperature at the base of the
ice shell, and Tethys’ moment of inertia (Table 2.5). All varied parameters but the
moment of inertia are captured in the average heat flux. These are the root mean
square (RMS) goodness of fit values for all results with 20% upper layer porosity φ for
a Tethys undergoing obliquity tides. Results that satisfy the constraints assuming no
ocean as outlined in the text (Section 3.3) are circled in pink. Results with lower RMS
values have been plotted over results of higher RMS values to better highlight which
heat fluxes and moments of inertia result in the best fits to observed topography.
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was a porosity gradient with an average porosity of 0.2 and lower porosities at depth.

After incorporating the criteria listed above to identify the most physically

plausible scenarios, we can quantify the tidal heating patterns of our remaining models

in Table 2.6. Full results are hosted in a dryad repository (Gyalay and Nimmo, 2023).

2.6 Discussion

The fact that obliquity tides produced better fits than eccentricity tides is

consistent with and even expected from Tethys’ very small eccentricity e ∼ 10−4. A

high B heating pattern weight indicates a rigid layer underneath the ice shell (Table

2.6, Figure 2.6), consistent with Pratt isostasy.

We inferred that to satisfy the moment of inertia in Pratt isostasy cases, Tethys

must have an ice-rock-mixture core with a radius of about 280-340 km (compared to

Tethys’ total radius of 531 km), overlain by solid ice, and then a final 130-180 km

thick porous ice layer. The interior being an undifferentiated ice-rock mixture is consis-

tent with accretional heating, which yields a heating profile strongest near the surface

(Squyres et al., 1988).

In our viable results for equal-mass Airy isostasy, the “core” region is expected

to be much larger, with a radius of about 440-490 km. If there is a porous layer, it is

not expected to be thicker than 70 km. Due to the lower bulk density in the interior

region (< 1100 kg m−3) and the higher amount of power required by the topography

(∼20 GW) as compared to the Pratt case, the fraction of power derived from radiogenic
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Figure 2.6: These viable results for a Tethys under an equal-mass Pratt isostasy with
an outer shell density of φ = 0.2 demonstrate that the tidal heating distribution of
Tethys is dominated by heating pattern B, and that this tidal heating distribution fits
well. It illustrates also the structure of Tethys. We plot several parameters for each
thickness of the porous ice shell L and solid ice shell d3 layer − L. We plot only results
for cases with an upper layer porosity of φ =0.2 that satisfy all constraints described
in Section 3.3. In these models, the basal temperature varies from 200 to 270 K. All
results have a surface heat flux of ∼1-2 mW m−2 as seen in Figure 2.5. From bottom-
left to top-right of each subplot, Tethys’ assumed moment of inertia falls from 0.345 to
0.340 MR2

0.Tethys assumed moment of inertia is 0.335 MR2
0 for all these models. The

parameters plotted are: χA−C : The respective weights for heating patterns A, B, and
C. Each weight can range from 0 to 1. R2: The coefficient of determination, a measure
of how well the multilinearly-regressed heating pattern weights fit the inferred heating
pattern, and thus a measure of how well the inferred heating pattern corresponds to
tidal heating. R2 ranges from 0 to 1, with 1 being the best fit. RMS: The root mean
square, described Section 2.3.3. A smaller RMS means that there is less misfit between
the forward-modeled topography and the observed topography. ρC : The bulk density
of the “core,” everything interior to the ice shell. This gives an idea of the internal
structure of Tethys.
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Table 2.6: Heating pattern weight statistics for results that fulfill constraints outlined
in Section 3.3

Isostasy Tide φ Oc? n χA χB χC R2

Pratt (mass) Obl 0.2 F 34 0.31(3) 0.54(4) 0.15(7) 0.97(1)
Pratt (mass) Obl 0.2 T 25 0.30(3) 0.54(4) 0.16(7) 0.97(1)
Pratt (pres) Obl 0.2 F 28 0.28(2) 0.51(3) 0.21(5) 0.979(6)
Pratt (pres) Obl 0.2 T 45 0.27(3) 0.50(4) 0.22(7) 0.98(1)

Pratt (mass) Obl 0.3 F 47 0.30(3) 0.54(4) 0.16(6) 0.97(1)
Pratt (mass) Obl 0.3 T 11 0.31(3) 0.55(3) 0.14(6) 0.96(1)
Pratt (pres) Obl 0.3 F 54 0.28(3) 0.51(4) 0.22(7) 0.98(1)
Pratt (pres) Obl 0.3 T 13 0.29(3) 0.52(3) 0.19(6) 0.970(9)

Airy (mass) Obl 0.1 F 4 0.2034(3) 0.4058(4) 0.3908(7) 0.649(9)
Airy (pres) Obl 0.1 F 1 0.2018 0.4032 0.395 0.345

Airy (mass) Obl 0.2 F 2 0.2035(2) 0.4056(3) 0.3909(6) 0.665(8)
Airy (pres) Obl 0.2 F 3 0.2032(5) 0.4050(6) 0.382(1) 0.64(2)

Airy (mass) Obl 0.3 F 1 0.2016 0.4026 0.3958 0.3587
Airy (pres) Obl 0.3 F 1 0.2011 0.4019 0.397 0.3084

Airy (mass) Ecc 0.2 T 6 0.198(4) 0.387(3) 0.415(7) 0.5(2)

Airy (mass) Ecc 0.3 F 1 0.2359 0.4153 0.3487 0.6438
Airy (mass) Ecc 0.3 T 53 0.191(6) 0.382(4) 0.43(1) 0.9(1)
Airy (pres) Ecc 0.3 T 7 0.20(1) 0.391(8) 0.41(2) 0.6(2)
Note: n is the number of remaining results for each isostasy type, tide type, and
upper layer porosity φ combination. We indicate in parentheses whether we use
pressure- or mass-based isostasy. The ocean (Oc?) column indicates whether the
constraint on the density structure of the moon assumed an ocean layer or not.
All other combinations yield 0 results after the constraint. For each heating
pattern weight χA−C and coefficient of determination R2 we list the average
and the standard deviation, where the standard deviation is in parentheses
following the digit it applies to. e.g. 0.2470(9)=0.2470±0.0009. Isostasy, tide,
and porosity combinations with only 1 constrained result have a standard
deviation of 0 by definition.
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heating is <1%. Although radiogenic heating provides a uniform heating pattern, if the

radiogenic contribution is so small then we cannot say that the similarity of the derived

heating pattern weights for Airy isostasy to a uniform heating pattern is because of

significant radiogenic heating. If we assume ∼60% of the heating pattern is instead

due to tidal heating of a homogeneous body (χA=0.13, χB=0.31, χC=0.56), then we

can back out a tidal heating pattern that is consistent with a rigid interior below a

∼ 50-80 km ice shell. However, this simultaneously requires an interior that is warm

enough to flex tidally and flow to compensate thinner regions of the ice shell, but rigid

enough to generate the correct heating pattern weights in the shell. As the interior

would only have a maximum rock volume-fraction of 0.09, its rheological properties

would be nearly identical to that of just ice (e.g. Roberts, 2015). Simultaneous core and

shell heating may be more feasible in a system like Enceladus, where the two regions

can independently have the low rigidity and viscosity necessary for tidal heating while

separated by an ocean.

Another line of evidence that favors our Pratt isostasy results is its moment

of inertia. In Section 2.3.1, we argued that with the method of Thomas and Dermott

(1991), we expect Tethys’ normalized moment of inertia to lie between 0.34 and 0.37.

This is more consistent with the moments of inertia of our best-fit Pratt isostasy cases

(0.340-0.345) than with our Airy isostasy cases (nearly homogeneous at 0.380-0.385).

And again, our Airy results had a lower R2 and higher RMS and are thus less likely

than our Pratt results in the first place.

One puzzle in our Pratt isostasy results is that the B weights we derive (Table
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2.6) are larger than one would expect from a roughly homogeneous body with an ice

shell ∼32-47% of the total radius. Despite a high R2 and a low RMS, the individual

heating pattern weights do not produce a consistent value of a rigid core radius. Taking

our lowest RMS case for equal-mass Pratt isostasy, we assumed an ice shell thickness

of 250 km (assuming a basal temperature of 250 K) which is the equivalent of a ratio

of interior radius to total radius Rint/R of 0.53. However, the best-fit heating pattern

weights are χA=0.25, χB=0.47, and χC=0.28; which would be predicted by a Rint/R

of 0.78, 0.68, and 0.51, respectively, for a uniform density sphere with a rigid interior

(Figure 2.4). These values neither agree with one another, nor with the assumed ice shell

thickness. However, if we calculate the predicted radioactivity from the amount of rock

in the interior necessary for our derived core density, then we estimate this radiogenic

heating is 8% of the total heating predicted by our model. Assuming our inferred heating

patterns are a linear combination of a uniform pattern and a tidal heating pattern, we

can remove the fraction of the pattern that is uniform by setting χD=0.08 in Equation

2.29 to find updated heating pattern weights of χA=0.254, χB=0.476, and χC=0.270.

These scarcely change the predicted Rint/R for each heating pattern weight. However,

if we assume an additional 32% of our inferred heating pattern is due to a homogenous

interior that is also tidally flexing, then resulting pattern due only to tidal heating in the

ice shell is χA=0.32, χB=0.56, and χC=0.11. All three of these weights each predict that

Rint/R=0.73 for a uniform density case. This is not equal to our original assumption

of 0.53, but closer to the ratio of the interior to the radius of the interior plus the solid

portion of the ice shell. If we numerically calculate the expected tidal heating for a
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stratified Tethys that includes a less-rigid but more-viscous porous ice layer, then these

weights are what one expects for Rint/R=0.55. This suggests that the porous portion

of the ice shell can be ”ignored” in terms of its effects on tidal heating when the interior

is rigid (Figure 2.4).

The removal of the expected radiogenic component and an assumed interior

tidal heating component from our heating pattern can thus result in a self-consistent

thickness of the solid ice shell. However, the proper heating weights for our ice shell

thickness can also be attained by assuming 58% of the inferred heating pattern is a

uniform background heating flux. Here, there are other ways of constructing a spatially-

constant heat flow from the core without appealing to radioactivity. One is to invoke

the sensible heat from cooling of the core from an earlier, hotter state. This pattern

might also be modified by porous flow of any liquid water generated (cf. Choblet et al.,

2017). If we appeal to tidal heating in the core (cf. Roberts, 2015), which produces

a heating pattern equivalent to a body of Rint/R = 0 in Figure 2.4 (and has heating

pattern weights similar to those of a uniform heating distribution), it may seen hard to

reconcile with a rigid interior as discussed above. However, in our Pratt isostasy best-fit

results, the core has a rock fraction of ∼ 54% by volume, rather than the paltry 10%

in our Airy isostasy cases. Additionally, because we do not need the ice-rock mixture

to flow as in the Airy isostasy case, it is more feasible for this ice-rock mixture to

tidally flex while maintaining a greater rigidity and viscosity than the solid ice. The

bulk viscosity and rigidity of an ice-rock mixture is not well constrained, but using the

solid-body tidal heating numerical code of Roberts and Nimmo (2008) we find we can

60



create a combination of a tidally-heated ice shell and a tidally-heated interior using an

interior viscosity of 7× 1013 Pa s (compared to our input ice viscosity of 1× 1013 Pa s),

and a rigidity ranging anywhere from 4-40 GPa (compared to our input ice rigidity of

3.3 GPa). This produces a tidal heating pattern of χA=0.23, χB=0.50, and χC=0.27;

remarkably similar to our inferred tidal heating pattern.

This combination of shell heating and core heating is only possible because of

the strikingly low density of Tethys’ core at 1600-2000 kg m−3, which necessitates a

high ice fraction. This is similar to that inferred for Enceladus (≈ 2400 kg m−3). In the

case of Enceladus the core is assumed to be porous rock potentially filled with ocean.

In the case of Tethys, it implies the satellite only ever partially differentiated.

2.6.1 Causes and Consequences of Tethys’ Heat Flow

Our inferred ice shell thickness suggests Tethys’ surface heat flux is 1.0-1.6 mWm−2.

Evidence of relaxed craters implying high heat fluxes (∼50 mW m−2) (White et al.,

2017) is not obviously consistent with our arguments in favor of low heat fluxes and a

thick porous layer. The most likely resolution of this apparent paradox is that these

craters record an ancient period of more intense heating, while our analysis is sensitive

to the temperature and heat flux distribution in the recent past. The existence of un-

relaxed craters on Tethys like Penelope suggests heat fluxes <3 mW m−2 (White et al.,

2017) which is roughly consistent with our findings and supports the idea of a heat

flux declining with time. One consequence of an early high heat flux episode is that it

would have removed porosity by viscous flow (Kossacki and Lorenz, 1996; Eluszkiewicz,
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2004; Besserer et al., 2013; Wieczorek et al., 2013; Gyalay et al., 2020) even at shal-

low depths. Our results would thus require porosity to have been regenerated later,

presumably either by subsequent impacts or by tidal-tectonic processes.

This inferred surface heat flux of 1-2 mW/m2 is an order of magnitude smaller

than that inferred for Ithaca Chasma, a flexural feature formed ∼ 4 Ga (Giese et al.,

2007). Our values are lower presumably because they represent the heat flux closer to

the modern day, although it may also be the case that Ithaca Chasma represented a

local heat flux maximum. Some hypothesize that Ithaca Chasma formed in response

to Tethys entering a resonance with Dione (Chen and Nimmo, 2008; Hussmann et al.,

2019). As this would excite Tethys’ eccentricity, Ithaca Chasma would have formed

in response to eccentricity tides rather than our predicted obliquity tides. Given that

Ithaca Chasma is an ancient feature, it seems likely that it formed in response to early

eccentricity tides, while more recently the eccentricity damped and Tethys has been

dominated by obliquity tides (inclination damps more slowly than eccentricity). As

Odysseus crater is younger than Ithaca Chasma (Giese et al., 2007), it may even be

that the Odysseus impactor excited Tethys’ inclination (and obliquity along with it)

and/or broke an earlier eccentricity-type resonance (Zhang and Nimmo, 2012).

Integrating average heat flux of 1-2 mW/m2 across the entire surface, we find

Tethys emits a total power of Ė=3.5-7.1 GW, of which up to around 10% may be from

radiogenic heating. According to Chen et al. (2014) and references therein, the rate of
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solid body dissipation is given by

Ė =
3

2

k2
Q

(ωR)5

G
(7e2 + sin2 θ0), (2.30)

for a tidal Love number k2, tidal quality factor Q, angular rotational frequency ω, radius

R, gravitational constant G, eccentricity e, and obliquity θ0.

Taking the inferred heat flow and assuming Tethys parameters in Table 2.2,

we find k2
Q=0.08-0.17. For reference, k2

Q ∼ 0.01 for Enceladus (Nimmo et al., 2018)

and Io (Lainey et al., 2009), where a higher value is more dissipative. It is hard to

imagine present-day Tethys this dissipative without other obvious evidence such as

recent resurfacing or active plumes.

Instead of requiring such a dissipative structure, we can appeal to the obliq-

uity. The obliquity in Table 2.2 of 0.039◦ is a theoretical Cassini state value calculated

from the hydrostatic shape of Tethys (Equation 68 of Chen et al., 2014), and not an

observation. This obliquity varies little with assumed moment of inertia or even using

the spherical harmonic coefficients of topography converted to gravity (using k2 instead

of h2 in Equations 2.3 and 2.4). Increasing the obliquity to a value of 0.12-0.17◦, the

required k2/Q then drops to < 0.01.

Using the solid-body tidal heating numerical model of Roberts and Nimmo

(2008), we can calculate the k2/Q and power produced for a given spherically-symmetric

material profile of Tethys. As a proof-of-concept we assumed a 250 km thick ice shell

(47% of Tethys’ radius), the upper 156 km of which is porous. To begin, we assume

the interior has the rigidity and viscosity of pure rock as a point of comparison. We
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assumed the rigidities of solid ice, porous ice, and rock were 3.3×109 Pa, 3.3×108 Pa,

and 1011 Pa, respectively; while their viscosities were taken to be 1013 Pa s, 1018 Pa s,

and 1020 Pa s, respectively. This structure requires an obliquity of 0.17◦ to produce

4.2 GW of tidal heating, and has a k2/Q of 0.006. While the viscosity of ice is expected

to vary exponentially with respect to temperature, we kept it constant for simplicity.

Including this dependence, one would expect to need an even higher obliquity to generate

the same amount of heating. As we demonstrated earlier, the interior of Tethys may

itself be tidally flexing. Replacing the rock rigidity and viscosity with 4×1010 Pa and

7×1013 Pa s, respectively, we now need only an obliquity of 0.14◦ to produce 4.2 GW

of tidal power, and calculate a k2/Q of 0.009.

The calculations described above suggest that Tethys requires an obliquity

that is a minimum of 0.08-0.15◦ greater than the value derived assuming it occupies a

Cassini state. As obliquity and inclination are intricately linked, we briefly investigate

the change in Tethys’ inclination from an impact. We find that to change Tethys’

inclination by 0.1-0.3◦ (using Equation 11 in Canup (2004), modified for an impact at

some angle from the orbital axis), we calculate a 2000 kg m−3 density object impacting

at 0.4-1 km s−1 would have a diameter of about ∼180 km and leave a crater with a

similar diameter to Odysseus (following Barnouin-Jha et al., 2007; Zhang and Nimmo,

2012). Such a slow impactor implies it would have been a near-neighbor of Tethys prior

to the collision.

As we expect a high obliquity to damp over time, we consider two possibilities:

either Tethys has a high obliquity at present (discussed above), or Tethys had a high
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obliquity. As discussed earlier, the conduction timescale of a 100 km ice shell is hundreds

of millions of years. An ice shell up to 250 km as we are inferring can easily push this

timescale to a billion years. Then higher tidal heating from a high past obliquity could

still be expressed in the present-day surface topography, even though the heat produc-

tion is no longer operating, because lateral temperature contrasts have not yet diffused

away. Further, given the sensitivity of the porous layer thickness to the maximum his-

toric heat flow, the average thickness of the porous layer when Tethys was hotter could

have been locked in as the ice will not easily regenerate porosity at depth. Thus, the

present-day topography may be a window into a warmer past. Because Tethys’ topog-

raphy may betray its heating state from a billion years ago, this may suggest Tethys did

not coalesce out of Saturn’s ring system 100 Myr ago as suggested by Ćuk et al. (2016).

However, this potential billion-year minimum lifetime does not discriminate between

Lainey et al. (2020)’s rough estimates for Tethys’ lifetime between a constant Saturn

Q case (∼ 1.5 Gyr) or a resonance-locking case (∼ 4 Gyr). Of note, the estimated age

of Odysseus crater ranges from between 0.2–1.9 Gyr to ∼3.9 Gyr (Giese et al., 2007),

1.06–3.76 Gyr (Dones et al., 2009), 0.4–1.0 Gyr (Kirchoff and Schenk, 2010), or on the

order of 3.5 Gyr (Kirchoff et al., 2018). If Tethys’ current long-wavelength topography is

due to a tidal heating state 1 Gyr ago, this coincides with some estimates for Odysseus’

age and thus perhaps with when the Odysseus impactor increased Tethys’ obliquity.

However, crater counting is an inexact science that still grapples with how different

impactor populations at Saturn affect crater production functions (e.g. Zahnle et al.,

2003; Ferguson et al., 2022). The mechanism by which the obliquity could have been
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excited to generate our inferred tidal heating remains unclear but would be interesting

to study in future work. Another potential avenue to explore in future is the role of

lateral variations in the thickness of the porous layer (cf. Besserer et al., 2013).

2.7 Conclusion

We have assumed that Tethys’ long-wavelength shape is influenced by tidal

heating, and have derived the heat fluxes required to match the observations. Our best-

fit models require Pratt isostasy (suggesting the absence of an ocean) and obliquity tides,

consistent with Tethys’ extremely small eccentricity. The resulting inferred structure

consists of an outer porous ice layer, a solid ice layer and then an ice/rock core with a

density similar to that of Enceladus’s.

The heat fluxes required to explain the topography are modest, 1−2 mW m−2,

but exceed the likely present-day heat production for reasonable values of k2/Q for

Tethys. We suggest that this inferred heat flux is a signature of higher heating rates in

Tethys’ relatively recent past, perhaps due to a period of higher obliquity.
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Chapter 3

Effects of Transient Obliquity Tides

Within Mimas’ Warm, Icy Interior

Preserved as a Frozen Fossil Figure

HERCULES: What’s this? The baleful Giants are taking arms. Tityos
has escaped the shades and, with breast all torn and empty, has almost
reached the sky. Cithaeron is tottering, lofty Pellene quakes, and Tempe’s
beauty fades. Here one Giant has seized Pindus’ peak, there one has seized
Oete, while horribly Mimas rages.

—Hercules Furens, by Seneca, translated by Frank Justus Miller

A slightly modified version of this chapter will be submitted to the Journal of Geophys-

ical Research: Planets as an article by S. Gyalay, F. Nimmo, and B. G. Downey.

Key Points

• We infer spatial variations in tidal heating and ice-shell thickness from Mimas’

non-hydrostatic shape.
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• Our inferred Mimas interior has no sub-surface ocean but requires high obliquity

tides in Mimas’ past.

• Mimas’ past obliquity may have been excited by gravitational interaction with an

inward-migrating debris disk that formed Saturn’s rings.

Abstract

Mimas has a high eccentricity and an anomalously high physical libration like

its neighbor, Enceladus, but does not appear to have a geologically active surface. We

investigate Mimas’ interior with a technique that infers spatial variations in tidal heating

from its global shape. To account for its hydrostaic shape, we find Mimas’ normalized

moment of inertia is 0.375, indicating a relatively undifferentiated world. Its remaining

topography is consistent with a ∼30 km thick conductive ice shell in Airy isostasy

atop a weakly convecting ∼30 km thick layer that itself mantles a ∼140 km radius

ice-rock interior. The convective shell’s density must be closer to the interior density

to satisfy our moment of inertia and provide a denser compensating layer for Airy

isostasy. This ice-rock interior is elongated on the Mimas-Saturn axis, which can match

Mimas’ observed physical libration without appealing to an ocean. The inferred ice shell

thickness variations indicate a high obliquity (≈ 1.7◦). We suggest this was a transiently

high obliquity that damped rapidly, after which topography froze in when internal heat

was conducted out of Mimas quicker than isostatic ice shell thickness variations could

relax. We speculate on several possibilities for this transient high obliquity, including

69



excitement by ring-forming material following the recent tidal disruption of an eccentric

satellite. We cannot rule out a young Mimatean ocean, but our inferred moment of

inertia favors a Mimas that was solid when Saturn’s rings formed, did not significantly

melt during a recent resonance with Enceladus, and is solid today.

Plain Language Summary

While Saturn’s moon Mimas appears to have an ancient surface covered in

craters, it also has a highly elliptical orbit and a wobble in its rotation that is higher

than expected. This wobble could indicate Mimas has either an ocean or an elongated

core. To investigate the possibility of an ocean, we examine differences from sphericity

in Mimas’ shape, which we also refer to as topography. Some of this is from Mimas’

tidal bulge and rotational flattening. Assuming the rest is due to differences in heat

that arise due to tidal forces, we can relate Mimas’ topography to its tidal heating

pattern. Because a moon’s tidal heating pattern is influenced by its interior structure,

we can then make inferences on Mimas’ interior. What we find indicates that the tidal

heating conditions that produced Mimas’ shape indicate its spin pole was once tilted

much higher than one would expect at present day. This could have occurred long ago,

after which the topography froze in when Mimas rapidly cooled. The tidal heating

pattern we infer also indicates that Mimas did not have an ocean at the time of this

strong tidal heating, and likely remains solid to this day.
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3.1 Motivation: the Mimas-Enceladus Paradox

It is a truth universally acknowledged, that an icy satellite in possession of

significant eccentricity, must be in want of a subsurface ocean. Like his more-famous

brother, Enceladus, the icy satellite Mimas has an elliptical orbit around Saturn; with ec-

centricities 0.0047 and 0.0196, respectively. Each satellite is tidally stretched in response

to the difference in gravity it experiences from Saturn at either end of the satellite. As

such, a synchronous satellite (where its orbital period is equal to its spin period) would

experience frictional heating as its tidal bulge stretches and shifts in response to oscilla-

tions in the magnitude and direction of Saturn’s gravity. Further, the two moons have

similar diameters and semi-major axes. However, because Mimas is closer to Saturn

with a more eccentric orbit, then a Mimas with the ability to dissipate heat comparable

to that of Enceladus should have > 50× the average surface heat flow of Enceladus

due to tidal heating—yet while Enceladus experiences cryovolcanism and resurfacing,

Mimas appears geologically inert despite the circumstances.

This has been dubbed by some as the “Mimas-Enceladus Paradox,” and the

paradox has only deepened in recent years with the measurement of Mimas’ anomalously

high libration (Tajeddine et al., 2014), which, like Enceladus’ anomalously high libration

(Thomas et al., 2016; Nadezhdina et al., 2016), indicates the satellite is wobbling in

response to gravitational torques from Saturn on the satellite’s tidal bulge more than

one would expect for a fully solid, hydrostatic satellite. For Enceladus, this indicates its

ice shell is decoupled from its interior by a subsurface ocean in agreement with results
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from gravity data (Iess et al., 2014; Beuthe et al., 2016; Hemingway and Mittal, 2019).

For Mimas, this could likewise indicate a subsurface ocean but may alternatively indicate

an elongated, non-hydrostatic core (Tajeddine et al., 2014), rather than a subsurface

ocean being required.

Recently, Rhoden and Walker (2022) have demonstrated that tidal heating

within Mimas may be capable of maintaining a global, sub-surface ocean without relax-

ing craters on its surface. Further, the impact that created Mimas’ largest crater, Her-

schel, could have occurred without cracking through Mimas’ ice shell and may even be

necessary to explain Herschel’s geomorphology (Denton and Rhoden, 2022). However,

another paradoxical aspect of Mimas’ orbit is that if its eccentricity did incur enough

tidal heating to maintain such an ocean, it would quickly dissipate Mimas’ eccentricity

and circularize its orbit in a timescale on the order of 50-60 Myr (e.g., Meyer and Wis-

dom, 2008; Noyelles et al., 2019). This is problematic because Mimas’ eccentricity is

not currently being excited in an eccentricity-type resonance (as opposed to its current

inclination-type resonance; cf. e.g., Sinclair, 1983; Vienne et al., 1996; Champenois

and Vienne, 1999), although it may have passed through such resonances with other

moons in the past (e.g. Meyer and Wisdom, 2008). Further, a gap between Saturn’s A

and B rings known as the Cassini Division may have been cleared by a resonance with

Mimas (Baillié et al., 2019) after Mimas was itself caught in a prior eccentricity-type

resonance with Tethys or Enceladus and migrated inward (Noyelles et al., 2019). Unless

the Saturnian satellites were young (cf., Ćuk et al., 2016), it would be a coincidence

for humanity to observe a recently-formed, Mimatean, sub-surface ocean; but Saturn’s
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ring system may also have formed recently (Goldreich and Tremaine, 1982; Zhang et al.,

2017; Iess et al., 2019), perhaps from the tidal disruption of an unstable satellite within

the last ∼100 Myr (Wisdom et al., 2022). Hyodo and Charnoz (2017) also considered

the possibility that a head-on collision of two of Saturn’s satellites could generate the

debris to form Saturn’s rings recently, but found it was more likely that such a collision

would result in a young satellite system with little-to-no rings. However, more recent

work by Kegerreis et al. (2023) demonstrates that such a collision may have formed

both Saturn’s satellite system and rings recently. Moreover, a glancing impact between

two of Saturn’s satellites could have formed Saturn’s ring with a debris cascade that

did not destroy the satellite system that existed at the time (Kegerreis et al., 2023).

Returning to the Cassini division, if its formation was due to a past high eccentricity

and migration of Mimas, then Mimas may have gained its present eccentricity recently,

within the rings’ lifetime (a few 100 Myr). Even if the rings were primordial, the sta-

bility of the Cassini Division is on the order of 40-50 Myr and may only have formed

4-11 Myr (Baillié et al., 2019), implying an even more recent resonance in Mimas’

past. If this eccentricity-type resonance was with Tethys, Mimas would have melted

significantly; while if it was with Enceladus, Enceladus instead would have melted (and

differentiated) while Mimas stayed relatively cool (Noyelles et al., 2019).

With evidence for a Mimatean ocean still circumstantial at best, only a look

inside Mimas can truly answer this question. Unfortunately, there is no gravity data for

Mimas. In recently work by Gyalay and Nimmo (2023) (Chapter 2), however, we argue

that spatial variations in tidal heating within icy satellites such as Mimas may manifest
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in the satellite’s global shape. As the tidal heat distribution is sensitive to the satellite’s

interior structure (e.g. Segatz et al., 1988; Beuthe, 2013), we can infer Mimas’ interior

structure from its external shape. We begin with a summary of Gyalay and Nimmo

(2023)’s mathematical methods in Section 3.2, analyze our results for Mimas in Section

3.3, and finally cover its implications for the history of the Saturn system in Section 3.4

before we recapitulate and conclude in Section 3.5.

3.2 Mathematical Methodology

This paper uses the same mathematical methods as Gyalay and Nimmo (2023)

(Chapter 2), which inferred the interior structure of Tethys from its long-wavelength

topography. We highlight the most important equations as a quick reference, but readers

seeking a detailed treatment of the mathematics are encouraged to read that paper and

its supplement (Appendix B), the latter of which includes a test on Enceladus that

found its ocean.

3.2.1 Shape and spherical harmonics

For a massive enough icy satellite, its self-gravity should ensure that the satel-

lite adopts a practically spherical shape in hydrostatic equilibrium. Of course, spinning

bodies will become oblate due to rotational flattening. Further, a satellite is not in a

(metaphorical) vacuum: because it orbits a planet, the planet will raise a tidal bulge

upon the satellite. When a satellite is in a synchronous orbit, there is an average,

“permanent,” bulge along the axis that points from the satellite to its host planet.
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The shape H (θ, λ) of nearly-spherical bodies such as icy satellites can be de-

scribed as function of the distance between the satellite’s surface from its center of mass

as a function of colatitude θ (π2 subtracted by the latitude, where Northern latitudes

are positive) and longitude λ (where East is positive). As a surface defined in spherical

coordinates, one may then describe the shape using spherical harmonics. Here, some

function f (θ, λ) is the sum of spherical harmonics with coefficients Cl,m and Sl,m for

each degree l and order m,

f(θ, λ) =

∞∑
l=0

l∑
m=0

(Cl,m cosmλ+ Sl,m sinmλ)Pl,m (cos θ) , (3.1)

where Pl,m (cos θ) is an associated Legendre function (e.g., Blakely, 1995). The spherical

harmonic degree l indicates the length-scale (or wavelength) over which some value

oscillates across a sphere. This wavelength is (approximately) the sphere’s circumference

divided by the degree l.

Due to the axial symmetry of both rotational flattening and the tidal bulge,

we need only the cosine terms of Equation 3.1 in even orders of degree-2. In this paper,

we will refer to the spherical harmonic coefficients of shape as Hl,m. The second-order

approximation of a satellite’s hydrostatic shape from the theory of figures that accounts

for rapid rotation (i.e., a spin period of less than a few days, as derived by Beuthe et al.,

2016) are defined as a function of the fluid Love number hF2 (of order unity), such that

Hhyd
2,0 = −5

6
hF2 R0q

(
1 +

76

105
hF2 q

)
,

Hhyd
2,2 =

1

4
hF2 R0q

(
1 +

44

21
hF2 q

)
,

where q is the ratio of rotational and gravitational forces, q =
ω2R3

0
GM (cf. Zharkov and
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Gudkova, 2010; Tricarico, 2014). These equations are identical in function to Equations

2.3 and 2.4, except we use updated notation as follows: we use Hhyd
l,m in place of Ctr

l,m

and hF2 in place of h2. By dropping the higher order term within the parentheses,

the ratio −Hhyd
2,0 /Hhyd

2,2 can readily be calculated as its first order approximation, 10/3.

Because the term Hhyd
2,2 has a greater second-order increase compared respectively to

the second-order increase of Hhyd
2,0 , the actual ratio −Hhyd

2,0 /Hhyd
2,2 will shrink from 10/3.

For a hydrostatic body, the fluid Love number hF2 is related to the body’s mean

moment of inertia C (a measure of mass distribution) by the Darwin-Radau relation

(e.g. Munk and MacDonald, 1960) (Equation 2.2), where the moment of inertia has been

normalized by the satellite’s mass M and mean radius R0 squared. The normalized

moment of inertia for a sphere of uniform density is 0.4 MR2
0, and lower if more mass

is concentrated in the core.

The observed tri-axial shapes of some icy satellites deviate from what one

would calculate under the assumption of hydrostatic equilibrium even when accounting

for rapid rotation. For instance, the ratio −H2,0/H2,2 is observed to be lower than

expected from the hydrostatic assumption for Rhea or Tethys, but higher for Dione,

Enceladus, or Mimas (e.g. Thomas, 2010; Nimmo et al., 2011). Focusing on Mimas,

this implies some strong non-hydrostatic contribution to its degree-2 topography. If one

assumes an icy satellite’s shell is thermally conductive and in a steady state, spatial

variations in tidal heat at the base of the ice shell (where ice is warmest and tends to be

most dissipative at the orbital frequencies of icy satellites, e.g. Hemingway and Mittal,

2019) would ostensibly manifest as variations in ice shell thickness or ice shell density
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(via thermal expansion) at those same wavelengths. With the assumption of isostasy

(see, e.g., Hemingway and Masuyama, 2017; Beuthe, 2021, for thorough discussions on

different methods of assuming isostasy and their respective merits), these would then

translate to observable topography at the long wavelengths and thus contributes to the

satellite’s observable global shape (Chapter 2, Gyalay and Nimmo, 2023).

In addition to even orders of degree-2, tidal heating varies spatially in even

orders of spherical harmonic degree-4 (Beuthe, 2013). Mimas degree-4 shape is also

strongly dominated by its even-order terms as is its degree-2 shape (Nimmo et al., 2011),

indicating some strong contribution to shape in those same spherical harmonics. Thus,

in this paper, we assume the remainder of global shape (after removal of the hydrostatic

shape) in even orders of degree 2 and 4 is due to isostatic topography variations in

response to the spatial variations in steady state tidal heating.

3.2.2 Spherical harmonics of tidal heating

How tidal heating varies spatially across a satellite depends greatly on the

depth or thickness of the tidal-heat-producing region (e.g., the ice shell), whether the

tidal-heat-producing region overlies a more rigid (e.g., rocky mantle/core) or a more

fluid (e.g., ocean) layer, and whether the tides are caused by the satellite’s eccentricity

(orbit’s ellipticity) or obliquity (tilt of the satellite’s spin axis relative to the normal of

its orbital plane). Beuthe (2013) demonstrated that this distribution of tidal heat raised

within a satellite could be constructed as the linear combination of three basis heating

patterns, A, B, and C. These basis functions are themselves linear combinations of
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spherical harmonic functions of even degrees l ≤ 4 and even orders m. The basis set of

angular functions ψJ (J = A, B, or C) are reproduced from Beuthe (2013) in Equations

2.18 to 2.21. Coefficients al,m are constants that depend only on if tidal heating is due

to the satellite’s eccentricity or obliquity; values may be found in Table 2.1 (following

Beuthe, 2013). Note that ψ0 = a0,0. Then given a spatially-averaged heat flux due to

tidal heating F0, we find the variations in heat flux F in Equation 2.22 where χJ are

weights of each basis angular function (Beuthe, 2013). Each weight ranges from 0 to 1,

and the sum of all three is 1.

In the limit of a thin shell undergoing tidal heating atop an ocean, (χA, χB, χC) =

1
11 (2, 0, 9), while that same thin shell atop a rigid interior is completely dominated by

χB ∼ 1 (Beuthe, 2013). In the opposite limit where the entire satellite produces tidal

heat, the heating pattern is (χA, χB, χC) = (0.13, 0.31, 0.56) (Beuthe, 2013). One

can infer the thickness of a satellite’s ice shell, and whether it overlies a fluid layer,

from the nonlinear dependence of a satellite’s heating pattern weights on its ice shell

thickness relative to its total radius (Figure 2.4; Chapter 2, Gyalay and Nimmo, 2023).

Often, the total heat flux distribution F (and thus its basis heating functions

ψJ) include contributions from a uniform background heat flux (e.g., in cases of radio-

genic heating in the core) or, if the satellite is mostly composed of ice, tidal heating

within the satellite’s core (Gyalay and Nimmo, 2023). The heating pattern weights of a

uniform heat flux are (χA, χB, χC) = (0.2, 0.4, 0.4), while the heating pattern weights

of tidal heating in a homogeneous interior are (χA, χB, χC) = (0.13, 0.31, 0.56) (iden-

tical to the heating pattern of satellite experiencing full-body tidal heating; Beuthe,
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2013).

Following some mathematical finesse with the preceding five equations that

take advantage of the orthogonality of spherical harmonics (see Appendix B, the sup-

porting information of Chapter 2 or Gyalay and Nimmo, 2023), one can calculate the

spherical harmonic coefficients of heat flux Fl,m for even orders m of degrees l = 2, 4 as

it deviates from the mean flux F0 of a tidal heating distribution as a system of equations:

a0,0
al,m

Fl,m

F0
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
χA + 1

2χB − χC , if l = 2,

χA − 2
3χB + 1

6χC , if l = 4.

(3.2)

Given spherical harmonic coefficients of heat flux for an inferred heating pattern at the

base of Mimas’ ice shell, we may then use this system of equations (Equation 3.2) to

perform a multi-linear regression and calculate its best-fit tidal heating pattern weights.

As a linear regression, we can also calculate the coefficient of determination R2 which

here essentially measures how well some inferred heat pattern can be approximated by

a tidal heating pattern. In general, the magnitude of the degree 4 spherical harmonic

coefficients of heat flux are lower than the degree 2 terms and have less of an effect upon

the resulting best-fit heating pattern weights compared to the degree terms. However,

we still require these terms to avoid a degenerate fit (this is discussed in more depth in

2, Gyalay and Nimmo, 2023).

3.2.3 Inferring a heating pattern from topography

To determine the tidal heating pattern weights of Mimas’ interior, we must

first infer the heat flux distribution at the base of Mimas’ ice shell. As mentioned
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previously, we can relate the basal heat flux to Mimas’ topography by assuming its

ice shell is in isostatic equilibrium. There are two endmember methods of maintaining

isostatic equilibrium in spite of topographic variation: compensation beneath regions

of thinner shell in Airy isostasy, or variation in shell density in Pratt isostasy. In both

scenarios, the ice shell thickness varies about some mean shell thickness d = d0 that we

can define using Fourier’s law of heat conduction assuming the thermal conductivity k

of ice is temperature dependent k = k0/T (e.g. Klinger, 1980) along with average values

of the surface temperature TS , temperature at the base of the ice shell TB, and heat

flux at the base of the ice shell Fb;

Fb =
−k0 ln

TS
TB

d
(
1− d

R0

) . (3.3)

We detail adjustments for assuming porosity in the upper portion of the ice shell in

Gyalay and Nimmo (2023) (Chapter 2).

3.2.3.1 Airy isostasy

In the case of Airy isostasy, the ice shell thickness variations Δd can be related

to variation in the surface topography h. When assuming equal-pressure isostasy, this

is also a function of the ratio between gravity at the surface of the satellite gS and

gravity at the base of the ice shell gB. This results in Equation 2.9, where ρC is shell

density and Δρ is the density contrast between the ice shell and the underlying material

(Hemingway and Masuyama, 2017). In the limit of a thin shell d � R0, gB = gS and

Equation 2.9 reduces to the classic equal-mass solution. If the ice shell is thick, however,
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a consideration equal-mass isostasy needs to account for difference in volume due to a

change in topography using Equation 2.10.

One can then directly calculate the basal heat flux Fb of a given location

using Equation 3.3 with the appropriate adjustment of d = d0 + Δd, where Δd is

calculated from topography with Equation 2.9 when assuming equal-pressure isostasy or

Equation 2.10 when assuming equal-mass isostasy. One could also consider minimum-

stress isostasy (Beuthe, 2021), which can be approximated by equal-weight isostasy.

Results using equal-weight isostasy will fall between the results expected for equal-

pressure and equal-mass isostasy, and thus we continue with a consideration of equal-

mass and equal-pressure isostasy as endmembers.

3.2.3.2 Pratt isostasy

In Pratt isostasy, we must vary the ice shell’s density to maintain mass or

pressure at depth despite surface topography. In our consideration of Pratt isostasy,

we made the simplifying assumption that changes in density were due to the thermal

expansion or contraction of the ice shell in response to changes in basal heat flux, as

done by Gyalay and Nimmo (2023) (Chapter 2). Lateral variations in upper ice shell

porosity may exist in response to viscous pore closure during some past epoch of high

heat flux (e.g. Besserer et al., 2013), but would require a consideration of the global

thermal evolution of Mimas that is outside the scope of this paper.

By relating the basal ice shell temperature TB to the basal heat flux FB in

Equation 3.3, Gyalay and Nimmo (2023) (Chapter 2) derive that the change in basal

81



heat flux implied by topography due to Pratt isostasy in Equation 2.17, where α0 is the

thermal expansivity at the average ice shell temperature T̄ = 1
2 (TB + TS). The change

in average ice shell temperature ΔT̄ from the reference T̄0 = 1
2 (TB,0 + TS,0) is related

to the change in density of the ice shell as derived from the surface topography. This

formulation depends on whether we assume equal-mass or equal-pressure Pratt isostasy

(Hemingway and Masuyama, 2017; Gyalay and Nimmo, 2023). Treatment of Pratt

isostasy in the consideration of upper shell porosity is detailed in supporting material

(Appendix B) of Gyalay and Nimmo (2023) (Chapter 2).

3.2.4 Summary of Methodology

To infer the interior of Mimas, we repeat the methodology of Gyalay and

Nimmo (2023) (Chapter 2). We begin with the observed topography from Nimmo

et al. (2011) from which we subtract the contribution from its hydrostatic shape as

calculated using Equations 2.3 and 2.4 for some assumed moment of inertia C/(MR2
0).

From the remnant topography, we calculate spatial variations in basal heat flux using

Equation 3.3 when assuming Airy isostasy or 2.17 when assuming Pratt isostasy; both

of which require some assumptions about the average ice shell thickness d0, upper ice

shell porosity φ, and average basal ice shell temperature TB. Latitudinal variation in

surface temperature is calculated following Nadeau and McGehee (2017) using Mimas’

bolometric bond albedo ABB (Appendix B of Chapter 2, Gyalay and Nimmo, 2023).

In either case of Pratt or Airy isostasy, we must also assume an equal-mass or equal-

pressure treatment of isostasy. We may then perform a multi-linear regression upon

82



the spherical harmonic coefficients of heat flux Fl,m in the System of Equations 3.2 to

calculate the heating pattern weights χJ , with the assumption of either eccentricity or

obliquity tides. These weights then can be used to determine the tidal heating state

and thus interior structure of Mimas.

3.3 Results and Discussion

The parameters we used in our Mimas model are presented in Table 3.1, held

constant or varied as specified in order to explore our wide parameter space. For each

model, we computed the heating pattern weights χJ and their coefficient of determina-

tion R2 as a goodness of fit. Another goodness of fit measurement we undertook was

the root mean square (RMS) difference between observed topography and topography

forward modeled from our best fit heating pattern weights χJ . We further check for

self-consistency of each model, such as whether the thickness and density of interior lay-

ers is compatible with the assumed moment of inertia. For more detail on calculating

RMS and our other self-consistency checks, see Gyalay and Nimmo (2023) (Chapter 2).

Scouring through our results (which can be found in an online repository,

Gyalay et al., 2023), we find no successful models that assumed Pratt isostasy. This

leaves Airy isostasy models, implying Mimas’ ice shell lies atop a denser, more-fluid

layer. The assumptions of equal-mass isostasy and equal-pressure isostasy returned

similar results. Further, any models that assumed eccentricity tides had a high misfit

between Mimas’ observed topography and topography forward-modeled from the mod-
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Table 3.1: Assumed and varied parameters for Mimas

Parameter Value Note

Radius R0 198.2 km (Roatsch et al., 2009)
Ang. Rotation Rate ω 7.72×10−5 rad s−1

(JPL 2020 Satellite Ephemerides)
Bulk Density ρ̄ 1148 kg m−3 (Roatsch et al., 2009)
Bolometric Bond Albedo ABB 0.54

(avg. of Howett et al., 2010, 2011)
Avg. Surface Temp. TS,0 74 K Calculated from ABB

Thermal Cond. Constant k0 567 W m−1 (Klinger, 1980)
Annealing Temp.* TA 140 K (Besserer et al., 2013)
Solid Ice Density ρice 940 kg m−3

Porosity φ 0.0-0.3 0.1 steps
Avg. Ice Shell Thickness d0 2-76 km 2 km steps
Avg. Basal Temp. TB,0 200-270 K 10 K steps
Moment of Inertia C 0.3-0.4 MR2

0 0.005 MR2
0 steps

Isostasy Type Equal-Mass or Equal-,
Pressure, Pratt or Airy

Tide Type Obliquity or Eccentricity

*Temperature at which we assume the ice shell transitions from porous to solid.

els’ respective best-fit heating patterns. This leaves obliquity tides, indicating that the

tidal heating that formed Mimas’ shape was due to a high tilt but little-to-no eccentric-

ity.

Focusing on Mimas models that assumed equal-pressure Airy isostasy and

obliquity tides, we display the misfits of models with upper ice shell porosity of φ = 0.2

in Figure 3.1. Of these results, 36 of the models fulfilled all of our self-consistency checks.

All these best-fit models assumed a moment of inertia of 0.375 MR2
0 with an assumed

average ice shell thickness of about ∼30 km (where the upper ∼30% is porous). This

thickness of an ice shell requires an average surface heat flow of ∼20 mWm−2 (for a total

power of 10 GW, comparable to the tidal power expected for present-day Enceladus,
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Table 3.2: Spherical Harmonic Coefficients of a particularly well-fitting and self-
consistent model of Mimas where d0 = 28 km, φ = 0.2, C = 0.375 MR2

0, TB = 270 K,
and the ice shell is undergoing equal-pressure Airy isostasy and obliquity tides.

Degree l 2 4
Order m 0 2 0 2 4

Observed Shapea Hobs
l,m (km) -7.74 1.83 0.290 0.0172 0.00163

Hydrostatic Shapeb Hhyd
l,m (km) -7.20 2.28

Residual Topographyc Hres
l,m (km) -0.54 -0.45 0.290 0.0172 0.00163

Shell Thicknessd dl,m (km) -3.64 -3.05 1.95 0.116 0.00110
Basal Topographye Hbas

l,m (km) 3.10 2.60 -1.66 -0.0986 -0.00934

Surface Temperaturef Tl,m (K) -8.69 -1.29
Basal Heat Fluxg F b

l,m (mW m−2) 4.04 2.20 -0.655 -0.0155 0.00253
aUnnormalized from Nimmo et al. (2011)
bCalculated with Equations 2.3 and 2.4
cHres

l,m = Hobs
l,m −Hhyd

l,m
dCalculated with a form of Equation 2.9 that accounts for shell porosity
(Chapter 2 Gyalay and Nimmo, 2023)
eHbas

l,m = Hres
l,m − dl,m

fCalculated using Nadeau and McGehee (2017). T6,0 = 0.174 K

gMultiply by
(
R0−d0
R0

)2
for surface heat flow

Hemingway and Mittal, 2019). We include the spherical harmonic coefficients of various

parameters for a particularly successful model in Table 3.2.

In the standard visco-elastic model (e.g., Peale and Cassen, 1978; Wisdom,

2004), the total power dissipated by tides Ė in a synchronous satellite is related to

that satellite’s obliquity θ and orbital eccentricity e by Equation 2.30, for a satellite’s

tidal Love number k2, tidal quality factor Q, angular rotational frequency ω, radius

R0, and Newton’s gravitational constant G. By convention, obliquities are measured

relative to a precessing reference frame where, for a positive inclination, satellites in

the first Cassini State (see Section 3.4.2) have negative obliquities (e.g., Peale, 1969).

For Mimas’ current eccentricity e = 0.02 then, the obliquity θ would need to be -3◦
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Figure 3.1: For each isostasy and tide type combination, we varied the parameters of
upper layer porosity, average total conductive ice shell thickness, average temperature
at the base of the ice shell, and Mimas’ moment of inertia (Table 3.1), where each
combination of parameters is represented by a colored dot. Here, we present results for
models that assumed equal-pressure Airy isostasy, obliquity tides, and an upper shell
porosity of φ = 0.2. All varied parameters except the moment of inertia are captured in
the average heat flux. The color/brightness of the dot indicates the root mean square
(RMS) goodness of fit, where the lower RMS (darker purple hues) are better fits. Results
with lower RMS values have been plotted over results of higher RMS values to better
highlight which heat fluxes and moments of inertia result in the best fits to observed
topography. Results that satisfy the self-consistency constraints (Chapter 2, Gyalay
and Nimmo, 2023) are circled in pink, and are thus our best-fit models of Mimas. We
can then conclude that Mimas needs a normalized moment of inertia 0.375 MR2

0 and
a surface heat flux of 20 mW m−2 for a tidal heating pattern to be responsible for ice
shell thickness variations.
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for the power of obliquity tides to be equivalent to the power of eccentricity tides,

or −θ > 9◦ for obliquity tides to overpower eccentricity tides by at least a factor of

10. Mimas’ obliquity has not been measured (the only icy satellite with a measured

obliquity is Titan, see Stiles et al., 2008), but even −3◦ is far greater in magnitude than

the value of θ = −0.04◦ estimated by Chen et al. (2014) under the assumption that

Mimas is in a Cassini State (defined in subsection 3.4.2). This may imply that the tidal

heating pattern we infer from topography may have been from before Mimas gained its

eccentricity, perhaps during some period of high obliquity after which the resulting ice

shell thickness variations froze in. We discuss this issue further below and in the next

section.

How well a satellite dissipates its heat tidally is captured in the ratio k2/Q in

Equation 2.30. We would need to know this ratio’s value in order to better estimate

the obliquity required to dissipate a given tidal power. As this has not been measured

for Mimas, we begin with a value k2/Q = 0.01 as an upper bound estimate (assuming

Mimas is as dissipative as Io or Enceladus; Lainey et al., 2009; Nimmo et al., 2018,

respectively, as references for Io and Enceladus’s k2/Q) to find that a tidal dissipation

Ė ≈ 10 GW within Mimas requires a minimum obliquity −θ > 0.42◦ when assuming

no eccentricity tides.

Curiously, the tidal heating pattern of our best-fit Mimas does not immediately

appear to agree with our assumed parameters—namely, the assumption of a ∼30 km

thick ice shell operating under Airy isostasy. Across the 36 self-consistent best-fit re-

sults in Figure 3.1, we found that the inferred heating pattern weights (χA, χB, χC)
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(0.269± 0.009, 0.463± 0.007, 0.267± 0.016). This does not immediately indicate an

ocean world with weights
(

2
11 , 0, 9

11

)
as one would expect from the fact that our best-

fits assumed Airy isostasy. In fact, each individual heating pattern weight would seem

to indicate a different radius of Mimas’ interior (everything beneath the ice shell) rela-

tive to its total radius regardless of whether we assume a rigid or fluid interior (Figure

2.4). Instead, it appears that in addition to some fraction of the total heating due to

tidal heat produced within the ice shell χT , the inferred heating pattern includes some

fraction of the total heating that is due to a uniform background heat flux χU with

pattern (0.2, 0.4, 0.4) and/or some fraction of the total heating due to tidal heating of

the core χH with heating pattern (0.13, 0.31, 0.56). Writing this as an equation,⎡
⎢⎢⎢⎢⎢⎢⎣

0.269

0.463

0.267

⎤
⎥⎥⎥⎥⎥⎥⎦
= χT

⎡
⎢⎢⎢⎢⎢⎢⎣

χA,T

χB,T

χC,T

⎤
⎥⎥⎥⎥⎥⎥⎦
+ χU

⎡
⎢⎢⎢⎢⎢⎢⎣

0.2

0.4

0.4

⎤
⎥⎥⎥⎥⎥⎥⎦
+ χH

⎡
⎢⎢⎢⎢⎢⎢⎣

0.13

0.31

0.56

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.4)

where χT + χU + χH = 1. We subtract the heating patterns due to a uniform pattern

or due to core heating with increasing factors χU and χH , respectively, until the three

heating pattern weights due only to tidal heating in the shell converge on a single

interior radius (as seen in Figure 2.4). We find the remaining heating pattern weights

are (0.338, 0.533, 0.127); which is indicative of tidal heating within an ice shell atop a

rigid interior for an shell thickness of 28.5% the satellite’s total radius, or 56 km thick

for Mimas. There is no solution if we assume the ice shell is atop a fluid layer. The

tidal heating pattern we infer from Mimas’ topography suggests that 49.1 − 67.4% of

Mimas’ total heat is produced by tidal heating within its ice shell, where the remainder
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is some combination of up to 50.9% from a uniform background heat flux and up to

32.6% from the tidal heat produced within Mimas’ core. The fractions of the pattern

due to a uniform background heat flux or tidal heating in the core can trade off linearly

such that χH = 0.326− 0.638χU for χU ≤ 0.509.

The low bulk density of Mimas combined with our assumed moment of inertia

imply the interior of Mimas beneath its ∼30 km ice shell has a density of ∼1300 kg m−3.

With such a low density, it is unlikely Mimas has enough rock for radioactivity to

produce a significant background heat flux. This makes it more likely that the portion

of the inferred heat distribution not due to tidal heating within the shell is due to tidal

heating within the core. With a density of 1300 kg m−3, the core is ∼ 80% ice by volume

and can easily provide the appropriate fraction of tidal heating while still being colder

(and importantly, more rigid) than the ice shell (e.g., Roberts, 2015).

The seemingly larger issue is the apparent mismatch between an assumed ice

shell thickness of ∼30 km operating under Airy isostasy over a layer which is implicitly

more fluid and an inferred ice shell thickness of 56 km atop a rigid interior implied by

the inferred tidal heating pattern weights. In order to satisfy both constraints we posit

that during the epoch of tidal heating that produced Mimas’ present ice shell thickness

variations, Mimas’ ice shell was split into an upper, conductive layer with ∼ 30 km

thickness and a deeper, convective layer that brings the total ice shell thickness to

56 km. The warmer, convective ice layer fulfills three purposes: it acts as the “fluid”

layer that enables the conductive ice shell thickness to vary according to Airy isostasy, its

contribution to tidal heating would lead to the tidal heating distribution of a thicker ice
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shell as predicted by the inferred tidal heating pattern weights, and, finally, it transports

tidal heat produced in Mimas’ core to the conductive ice shell. While Mimas’ core

produces 33 − 51% of the total tidal heating, it does not need to be as warm (or have

as low a viscosity) as the ice shell to produce this amount of tidal heating. Further, the

inclusion of rock within the core will raise its rigidity, explaining why the tidal heating

pattern indicates a rigid interior. A weakly-convecting layer can also explain why a

significant factor of Mimas total heating pattern could be due to a uniform heating

pattern, as it could partially redistribute the tidal heating signature of core heating into

a uniform heating pattern.

For a convective ice shell layer to be feasible within this ancient Mimas, it

would have to be far more efficient at transporting heat out of Mimas than simple

conduction. To examine this, we use the Rayleigh number Ra, which is the ratio of

the timescale for conductive heat flow to the timescale for advective heat flow. Thus,

the higher this ratio, the more likely a given regime is to be convective. The Rayleigh

number can be calculated,

Ra =
α0gSρCΔTd30

ηκ
, (3.5)

where α0 is the volumetric thermal expansivity, gS is the surface gravity, ρC is the shell

density, ΔT is the temperature contrast at the top and bottom of the ice shell, η is the

dynamic viscosity at the base of the ice shell, and κ is the ice shell’s thermal diffusivity.

Taking an order of magnitude approach, we can calculate the Rayleigh number of the

ice shell using α0 ≈ 10−4 K−1 (e.g., Röttger et al., 1994), gS ≈ 6 × 10−2 m s−2, ρC ≈

9× 102 kg m−3, ΔT ≈ 2× 102 K, d0 ≈ 6× 104 m, η ≈ 1013 Pa s, and κ ≈ 10−6 m2 s−1;
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to find Ra≈ 2 × 107. Because the ice shell’s viscosity depends exponentially upon

temperature, we must compare the Rayleigh number calculated in Equation 3.5 for

some constant viscosity to the critical Rayleigh number,

RaC = 21 (γΔT )4 (3.6)

where γ is the reciprocal of the rheological temperature scale (Solomatov, 1995). For

ice, γ ≈ 10−1 K−1, so then RaC ≈ 3 × 106. As the Rayleigh number we calculated is

greater than this value by about a factor of 10, convection is possible but not vigorous.

Our interpretation of a thick stagnant lid is consistent with this picture.

We found we could use Roberts and Nimmo (2008)’s numerical solid body

tidal heating code (modified to include obliquity tides in Gyalay and Nimmo, 2023) to

replicate our inferred tidal heating pattern for a Mimas modeled with a rigid ice-rock

core and an ice shell with a lower convective and upper conductive layers, where the

upper portion of the conductive layer is porous. We provide the rigidity, viscosity, and

density parameters of each layer in Gyalay et al. (2023). Importantly, this interior

structure of Mimas is fully solid and thus would not have an ocean. The Roberts

and Nimmo (2008) model will also numerically calculate Mimas’ dissipativity k2/Q for

a given interior structure. In our case, we find k2/Q ∼ 6 × 10−4, as opposed to our

previous upper bound of 10−2. Then, to attain Ė = 10 GW, we now require an obliquity

of θ = −1.7◦.

In our models, the convective ice layer is approximated as a mixture of ice

and rock, similar to that of the core. This is both to satisfy Mimas’ high moment
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of inertia and the requirement of Airy isostasy that the compensating layer be denser

than the conductive ice shell. In reality, the fraction of rock within the ice shell might

increase as a gradient from near the surface to a uniform density core composed of

ice and rock. This would be consistent with a weakly differentiated Mimas (cf. a

weakly differentiated Callisto, Nagel et al., 2004), which would be inconsistent with a

Mimatean ocean. Further, if the convective ice shell has an average density closer to

that of the ice-rock core rather than the icy conductive shell, then the basal topography

of the conductive ice shell would appear to be the shape of the ice-rock core including

a convective ice-rock layer. We find that by removing the hydrostatic shape due to a

Mimas with C = 0.375 MR2
0, Mimas has residual topography coefficients of Hres

2,0 that

under equal-pressure Airy isostasy imply a basal topography of ∼ 6 km along the axis

pointing towards Saturn and ∼ −12 km pointing along Mimas’ orbit (Table 3.2). This

would then create an approximately 18 km difference in radius along the two axes. Thus

the topography of this convective (now frozen) layer beneath the conductive ice shell

could fulfill the “non-hydrostatic core” librational constraint of Tajeddine et al. (2014).

This constraint predicts that if Mimas does not have an ocean, it may instead have an

elongated core; where the core is 20 km longer in radius on the axis pointing towards

Saturn than on the axis pointing forward along Mimas’ orbit.
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3.4 Implications for Saturn System History

We found that the non-hydrostatic shape of Mimas in even orders of spherical

harmonic degrees 2 and 4 may be the product of shell thickness variations in response

to obliquity tides. Specifically, a conductive ice shell is in Airy isostasy atop a soft

convective shell that is composed of an ice-rock mixture. The convective ice-rock shell

is itself tidally heating atop a rigid, interior—where this core is also tidally heating.

This requires Mimas to have a rather high obliquity and little-to-no eccentricity in its

orbit, which is in contrast to the high eccentricity presently observed for Mimas’ orbit.

We reason, then, that Mimas’ current ice shell thickness variations (as inferred from its

global shape) may have formed in response to spatial variations in tidal heating that

arose during a period of abnormally high obliquity. We provide potential origins for

a temporarily high obliquity later in this section. Once the obliquity was no longer

excited, it would damp rapidly, allowing Mimas to cool so quickly that its ice-shell

thickness variations would have frozen in. Only later might Mimas have gained its

current high eccentricity. Does this scenario fit within the dynamical history of the

Saturnian system?

3.4.1 A transiently high obliquity

We assume that Mimas is in a Cassini state and would tend towards a given

obliquity that depends on Mimas’ other orbital parameters (elaborated upon further in

the next subsection, Section 3.4.2). Chen et al. (2014), for instance, calculated Mimas’
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obliquity should be ∼ −0.04◦, while we infer that Mimas’ global shape froze in following

tides due to an obliquity −θ > 1.7◦. If that high obliquity was only temporary and not

due to a Cassini state, it would quickly damp to the value predicted by the Cassini state

(e.g., Ward, 1975). The damping timescale of obliquity τobl (e.g., Bills and Nimmo, 2011;

Chen and Nimmo, 2011) can be estimated from the timescale of damping a wobbling

rotator to principal axis rotation (Gladman et al., 1996), or,

τobl =
4πGρ̄

(
C

MR2
0

)
ω3
(
k2
Q

) . (3.7)

Using our predicted values of k2/Q = 6 × 10−4 and C/
(
MR2

)
= 0.375 for Mimas,

this timescale τobl ∼ 40 yrs—absurdly short in the history of the solar system. Thus,

if a high obliquity is not maintained by some external forcing, it will fall to the value

predicted by a Cassini state nigh instantaneously.

Freezing in the shell thickness variations then, would require that the timescale

of relaxing shell thickness variations be long compared to the timescale of freezing

Mimas. Following Nimmo (2004), the timescale to reduce shell thickness variations by

a factor of e at a given spherical harmonic degree l is

τrelax =
ηB

ΔρgSδ3

(
R0

l

)2

, (3.8)

where ηB is viscosity at the base of the conductive ice shell and gS is the surface gravity.

δ is some lengthscale defined,

δ =
RGTBd0

QA ln
(
TB
TS

) , (3.9)

where RG is the universal gas constant RG = 8.31 J mol−1 K−1, and QA is the activation

94



energy of ice QA=60 kJ mol−1. In general, the temperature-dependent viscosity η is

η (T ) = ηM exp

[
QA (TM − T )

RGT 2
M

]
(3.10)

where TM is the melting temperature of ice. If Mimas’ spatial variations in heat flow are

no longer maintained this relaxation timescale can be rapid when TB ∼ TM . However,

as Mimas’ ice shell continues to transport heat out of its interior, the temperature at the

base of the conductive ice shell will drop along with the temperature throughout Mimas’

core. By inspection of the preceeding three equations, the dependence of the relaxation

timescale of isostatic variations τrelax on the temperature at the base of the conductive

ice shell TB is dominated by the term exp
[
QA (TM − TB) /

(
RGT

2
M

)]
. Meanwhile, the

timescale of cooling Mimas’ interior is inversely proportional to the conducted heat flux,

which scales roughly linearly with the temperature difference across the conductive ice

shell TB − TS . Thus as Mimas cools, the relaxation timescale grows exponentially as

compared to the conduction timescale–allowing the ice shell thickness variations to freeze

in. The timescale to settle into isostatic ice shell thickness variations in the first place,

meanwhile, is much faster than the timescale to relax away from those same thickness

variations (cf., Equation 20 of McKenzie et al., 2000).

While we have shown that we can freeze in Mimas’ topographic variations after

a period of high obliquity during which ice shell thickness variations rapidly arose, is

it reasonable to expect Mimas’ obliquity to have ever reached a magnitude ge1.7◦? To

answer that, we examine Mimas’ orbital dynamics under the assumption of a Cassini

state.
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3.4.2 Mimas in a Cassini state

In a Cassini state (an appropriate assumption for dissipative systems; e.g.,

Peale, 1969; Ward, 1975), there is a direct relation between a satellite’s obliquity θ and

its inclination i that depends on the satellite’s orbital frequency ω and gravitational

torques upon the satellite:

3

2

ω

Ω̇
[(J2 + C2,2) cos θ + C2,2] sin θ =

C

MR2
0

sin (i− θ), (3.11)

where Ω̇ is the precession of the longitude of the ascending node (more concisely: nodal

precession), which is a sum of all the gravitational perturbations to the satellite’s orbit.

Were the shell to be decoupled from the interior by an ocean, C/
(
MR2

0

)
would instead

be closer to the normalized moment of inertia of the ice shell. As we inferred a fully-

solid Mimas, we continue with our best fit C = 0.375 MR2
0. J2 and C2,2, meanwhile,

are the spherical harmonic coefficients of the satellite’s degree-2 gravity field (where by

convention, zonal harmonics of gravity are labeled Jl = −Cl,0). In addition to spherical

harmonic coefficients of shape in Equations 2.3 and 2.4, Beuthe et al. (2016) defines the

gravity coefficients of a rapidly-rotating hydrostatic body as a function of another fluid

Love number kF2 = hF2 − 1 as,

Jhyd
2 =

5

6
kF2 q

(
1 +

16

21
hF2 q

)
, (3.12)

Chyd
2,2 =

1

4
kF2 q

(
1 +

64

21
hF2 q

)
. (3.13)

By dropping the higher order term within the parentheses, the ratio Jhyd
2 /Chyd

2,2 can

also be readily calculated as its first order approximation, 10/3. While Mimas’ gravity
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field has not been measured, isostatically-compensated topography variations are not

expected to have a significant effect on the satellite’s gravity variations. We make the

simplifying assumption then that Mimas’ degree-2 gravity is that of a rapidly-rotating,

hydrostatic satellite.

Mimas’ nodal precession Ω̇, meanwhile, depends on the torques on Mimas from

Saturn’s oblateness as measured by Saturn’s gravity coefficient J2,Sat, as well as from

other moons orbiting Saturn. The term that depends only on Saturn’s oblateness is

Ω̇Sat = −3

2
ωJ2,Sat

(
RSat

a

)2

, (3.14)

where RSat is Saturn’s radius (e.g., Murray and Dermott, 1999). Calculating this at

Mimas’ semi-major axis a, ω/Ω̇Sat ≈ −410, compared to the total observed value ω/Ω̇ =

−382, demonstrating that the contribution of Saturn’s oblateness dominates Mimas’

nodal precession.

The contribution to Mimas’ nodal precession from another moon orbiting Sat-

urn Ω̇m at a semi-major axis am with mass Mm depends on whether that satellite’s

orbit is interior or exterior to Mimas’ a:

Ω̇moon =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
−1

4ω
am
a

Mm
MSat

b
(1)
3/2

(
am
a

)
, for am < a,

−1
4ω
(
am
a

)2 Mm
MSat

b
(1)
3/2

(
a
am

)
, for am > a,

(3.15)

where bjs (x) is a Laplace coefficient as a function of a value 0 < x < 1 (Murray and

Dermott, 1999). As a note, the small contribution from the Sun may be calculated for

Mm = MSun and am is Saturn’s semi-major axis.

Taking advantage of the fact that both θ and i are expected to be small angles,
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we may rearrange and simplify Equation 3.11 to find,

sin θ ≈ sin i

cos i+ 3
2
ω
Ω̇

(J2+2C2,2)

C/(MR2
0)

. (3.16)

This avoids having to solve a transcendental equation with four sets of solutions. For

Mimas’ currently measured i = 1.574◦ (higher than many icy satellites due to an

inclination-type resonance with Tethys, e.g., Sinclair, 1983; Vienne et al., 1996; Cham-

penois and Vienne, 1999) and ω/Ω̇ = −382, we find its obliquity θ should be about

−0.03◦ using J2 and C2,2 calculated with Equations 3.12 and 3.13, respectively, using

our inferred moment of inertia 0.375 MR2
0. To increase Mimas’ obliquity to the high

value of −θ ≥ 1.7◦ for the tidal heating pattern we infer shaped Mimas’ present to-

pography, we find by inspecting Equation 3.16 that we must either increase Mimas’

inclination i, decrease its semi-major axis a, or increase its nodal precession rate Ω̇.

For instance, Gyalay and Nimmo (2023) suggested that an epoch of obliq-

uity tidal heating may have occurred in Tethys’ past when a large, slow impactor

struck Tethys and momentarily increased its inclination while forming its largest crater,

Odysseus (cf., Zhang and Nimmo, 2012). In that case, inclination only needed to be

increased by ∼ 3◦ (to a total of ∼ 4◦), which is quite achievable by such an impact.

However, we find that if all else is held constant in Equation 3.16, the inclination can

never be high enough to achieve the requisite −1.7◦ obliquity. Even an inclination of

90◦ only achieves an obliquity of -1.1◦. Thus, despite the potential for impacts and pre-

vious resonances, it is impossible for an elevated inclination alone to explain an elevated

obliquity.
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While not explicitly included, the semi-major axis a is an innate part of mul-

tiple values in Equation 3.16. As we elaborate upon in Appendix C, however, even the

lower obliquity needed to generate 10 GW of power at Saturn’s Roche limit (where a

satellite would be tidally disrupted) would require an inclination that is impossible to

achieve with an impact or inclination-type resonance.

Unsatisfied with the likelihood of increasing Mimas’ inclination with an impact

(even when its orbit had a smaller semi-major axis), we turn to the last of our three

options for momentarily increasing Mimas’ obliquity: increasing the precession of the

longitude of ascending node. Importantly, this relies on the use of Equation 3.15 to

calculate an external perturber’s effect on Mimas’ orbit. We calculate this perturba-

tion and its consequential effect on Mimas’ obliquity (assuming its inclination is held

constant) as a function of this perturber’s mass and its semi-major axis orbiting Saturn

in Figure 3.2. This figure demonstrates that even a 1018 kg object (∼ 1
10× Mimas’

mass) can increase Mimas’ nodal precession rate by more than an order of magnitude,

increasing its obliquity to our requisite −1.7◦, when its semi-major axis is similar to

that of Mimas.

The object in Figure 3.2 need not simply be one object, but could be multi-

ple objects with similar semi-major axes whose masses combine to a total of Mm (see

Equation 3.15). This is important, because if Saturn’s rings formed recently from the

tidal disruption of an eccentric satellite (e.g., Wisdom et al., 2022), there may have

been at least 1021 kg of errant mass orbiting Saturn following the disruption at similar

semi-major axes along highly eccentric orbits (already assuming ≥ 90% of the disrupted
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Figure 3.2: (Top) For a given object with mass Mm orbiting Saturn with a semi-major
axis am, we plot the contribution of this object’s perturbation [Brynna]ofto Mimas’
[Brynna]nodal precession [Brynna]of longitude of ascending node Ω̇ calculated with
Equation 3.15. Depending on the perturber’s mass, it can increase Mimas’ Ω̇ by orders
of magnitude when its semi-major axis approaches Mimas’ semi-major axis of 3.18 RSat.
(Bottom) As Mimas’ Ω̇ increases in the presence of this perturber, so too does Mimas’
obliquity θ.
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satellite’s mass was ejected from the Saturn system; e.g., Hyodo et al., 2017a). For

instance, Hyodo et al. (2017a) modeled the evolution of the debris disc following tidal

disruption; in one of their models they assumed 1,000 1018 kg chunks orbiting Saturn,

each with an eccentricity of 0.98 and an initial semi-major axis of 5×109 m (∼86 RSat).

An alternate source of debris that could form Saturn’s rings is the collision of two satel-

lites, which would deliver a Mimas-mass worth of material to a similar orbit as Mimas

(without necessarily destroying Mimas in the case of a glancing collision, Kegerreis et al.,

2023) (cf., Hyodo and Charnoz, 2017). In either case, as the debris disk evolved further,

these chunks would collide and break apart, losing energy and decreasing both the semi-

major axes and eccentricities of the remaining debris. Some of these (increasingly small)

chunks would collide with the Saturnian satellites, while the rest would congregate into

small circular orbits as part of Saturn’s ring system. It stands to reason then, that there

may have been a period of time where enough of this mass had a similar semi-major

axis to Mimas (albeit at higher eccentricities and/or inclinations, avoiding impacts) to

perturb Mimas’ orbital precession. Then, it is only natural that Mimas’ obliquity would

increase in response to this greater orbital precession (Equations 3.16 and 3.15; Figure

3.2).

A full characterization of how long would-be ring particles took to migrate into

the present-day orbits of Saturn’s rings would require a dynamical evolution simulation

outside the scope of this paper. However, it can be shown that the collisional timescale

of chunks following the disruption of a satellite is on the order of 105 to 107 years (Dones,

1991; Hyodo et al., 2017a), perhaps as low as 102 or 103 years at Mimas’ semi-major
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axis (Hyodo et al., 2017a). Thus, whatever migrating ring-forming chunks that shared

a semi-major axis with Mimas may stay in their orbits for centuries, non-withstanding

replenishment by ring-forming chunks that took longer to migrate that far inward. This

timescale aligns well with that required to increase Mimas’ obliquity when its nodal

precession has increased in response to these ring-forming chunks. That timescale can

be approximated by the same timescale for damping from an arbitrary obliquity to the

Cassini state obliquity in Equation 3.7, as in both situations Mimas’ obliquity trends

towards that required by the Cassini state.

3.4.3 In the context of the present-day Saturn system

This recent era of debris disk evolution into Saturn’s rings may also explain a

similar epoch of transient obliquity tidal heating Gyalay and Nimmo (2023) (Chapter

2) inferred for Tethys. Both moons’ obliquities (via orbital precession) may have been

excited by the same ring particles to-be as they migrated inwards towards Saturn.

Impacts from this debris disc could have formed the large impact basins on both Mimas

and Tethys—which may explain their lack of relaxation were these impacts as recent as

the formation of Saturn’s young rings. Smaller impacts from this debris disc may also

have formed the population of small elliptical craters found concentrated on Saturn’s

moons (e.g., Zahnle et al., 2003; Ferguson et al., 2022), though these may also be the

result of unrelated sesquinary impacts. The lack of a similar signature of obliquity tides

on Enceladus (whose orbit is between those of Mimas and Tethys) can be dismissed as

easily-erased by its significant eccentricity tides.
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Mimas’ recent eccentricity, meanwhile, could be explained by either the impact

that formed Herschel crater (cf. Zhang and Nimmo, 2012) or past mean motion reso-

nances (e.g., Meyer and Wisdom, 2008; Noyelles et al., 2019). If the impact that formed

Herschel crater was recent, any eccentricity excited by it may not yet have damped. Like-

wise, if the Cassini Division within Saturn’s rings formed when Mimas and Enceladus

entered a mean-motion resonance and migrated inward (Baillié et al., 2019; Noyelles

et al., 2019), then this could only have happened within the rings’ lifetime–also imply-

ing Mimas gained its eccentricity recently. Given the dynamic stability of the Cassini

division, it may need to have formed within the last 4-11 Myrs (Baillié et al., 2019),

placing an even more-recent constraint on Mimas’ eccentricity gain. Either scenario

may then explain why Mimas’ orbit has not circularized despite the lack of a current

resonance to maintain its eccentricity.

If Mimas’ eccentricity is enough to maintain a subsurface ocean (e.g., Rhoden

and Walker, 2022), why would Mimas’ topography (due to ice shell thickness variations

in Airy isostasy) not match what one expects for eccentricity tides in an ice shell atop an

ocean as observed for Enceladus (cf., Beuthe et al., 2016; Hemingway and Mittal, 2019;

Gyalay and Nimmo, 2023)? The answer may lie in the timescale of thermal conduction

through Mimas’ ice shell. If we take an order of magnitude approach, the timescale for

heat to conduct through an ice shell is τcond = d20/κ, where κ is the thermal diffusivity.

For ice, κ ∼ 10−6 m2 s−1. For a 24-31 km thick ice shell atop an ocean as implied by

Mimas’ libration (Tajeddine et al., 2014), this timescale is approximately 18-30 Myr.

Herschel crater’s morphology too may be consistent with an impact into an ice shell
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atop an ocean, where the ice shell has been thinning over the last 10 (or more) Myr

(Denton and Rhoden, 2022). Thus, it is possible that the ice shell thickness and ocean

needed to match the libration constraint of Tajeddine et al. (2014) has formed rather

recently but has not yet had enough time to overwrite the ice shell thickness variations

and topography of the past epoch of high obliquity tides within a solid Mimas as we

infer in this paper. A recently gained eccentricity may also explain why it has not

yet damped: if Mimas were dissipative enough to generate a subsurface sea, we expect

eccentricity to damp on a 50-60 Myr timescale.

However, an ocean is not necessary to explain Mimas’ anomalous libration. We

demonstrated earlier that the basal topography of the conductive ice shell would imply

the denser ice-rock layers beneath it could act as the elongated, non-hydrostatic “core”

Tajeddine et al. (2014) predicted as an alternate explanation for Mimas’ libration.

Finally, Noyelles et al. (2019) presented two models for how an Enceladus-

Mimas resonance may have allowed the satellites to migrate inward and form the Cassini

division: one in which Enceladus grew extremely hot, potentially melting, and one in

which Mimas instead was extremely hot. Enceladus’ required eccentricity in the hot-

Enceladus model would threaten the stability of Tethys, but having almost melted would

certainly allow Enceladus to have differentiated (Noyelles et al., 2019) as its moment

of inertia would imply (Iess et al., 2014). The comparatively-high moment of inertia,

0.375 MR2
0, we infer for the hydrostatic component of Mimas shape, however, would

necessarily imply that Mimas is not significantly differentiated—making the hot-Mimas

scenario far less likely.
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3.5 Conclusions

In this chapter, we demonstrated that the observed long-wavelength topogra-

phy of Mimas is consistent with a ∼ 30 km thick conductive ice shell with Airy-isostatic

variations in shell thickness due to the spatial variations in heat flow one would expect

of high obliquity tides within a solid Mimas. Below the conductive ice shell was a layer

of a weakly convecting ice-rock mixture. As Mimas’ obliquity is not currently expected

to be high, we infer that this was merely a transient era of high obliquity. Once the

obliquity damped, Mimas’ ice shell would lose heat faster than its isostatic thickness

variations could relax, freezing in this topography. This period of momentarily high

obliquity is consistent with an increased precession of Mimas’ longitude of ascending

node, and may very well have been due to the debris disc of a satellite that was tidally

disrupted by Saturn (Wisdom et al., 2022) migrating inward to form Saturn’s rings

(Hyodo et al., 2017a). While it is strange to infer high obliquity tides when Mimas

instead has a high eccentricity, it is likely that Mimas’ eccentricity is a more-recent phe-

nomenon due to passage through a mean-motion resonance with another moon (Meyer

and Wisdom, 2008), and would have to be recent if Mimas’ influence created the Cassini

division (Baillié et al., 2019; Noyelles et al., 2019) in Saturn’s young rings (Goldreich

and Tremaine, 1982; Zhang et al., 2017; Iess et al., 2019; Wisdom et al., 2022). This

recently excited eccentricity may have begun melting of a young sub-surface ocean (Rho-

den and Walker, 2022) that is consistent with Mimas’ libration (Tajeddine et al., 2014)

and the morphology of Mimas’ largest crater (Denton and Rhoden, 2022). However, the
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shape we infer for the ice-rock interior beneath Mimas’ conductive ice shell resembles an

elongated core that is also consistent with the libration measurement (Tajeddine et al.,

2014). Our internal structure results are consistent with a solid Mimas both now and

in the past, although the timescale of conduction through the ice shell could allow for

the existence of an extremely young (less than 10 or so Myr old) ocean. Only a mission

to the Saturn system that collects gravity data on Mimas may truly answer if there is a

present, recently-formed ocean; but based on our findings of a relatively undifferentiated

Mimas and an elongated core, we conclude that an ocean in Mimas is unlikely.

106



Appendix A

Appendix for Chapter 1

Equation 1.5 allows us to determine the maximum heat flux a region experi-

enced as a function of the depth to pore closure in the crust. However, it also relies

on assumptions of the rock types that make up the crust, the rheological constants for

each rock type, surface temperature, rock density, thermal conductivity of the rock, and

heat production within the rock.

One can find the uncertainty in maximum heat flux as a function of the un-

certainties of each variable:

δF 2
C =

(
∂FC

∂k

)2

δk2 +

(
∂FC

∂TS

)2

δT 2
S +

(
∂FC

∂Q

)2

δQ2 +

(
∂FC

∂H

)2

δH2

+

(
∂FC

∂A

)2

δA2 +

(
∂FC

∂ρ

)2

δρ2 +

(
∂FC

∂n

)2

δn2. (A.1)
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Taking each partial derivative of Equation 1.5 and inserting it into Equation

A.1, we find the uncertainty to be:

δF 2
C = F 2

C

(
δk

k

)2

+

(
k

z

)2

δT 2
S +

(
FC +

kTS

z

)2(δQ
Q

)2

+

(
ρz

2

)2

δH2

+

(
FC + kTS

z − ρHz
2

)2
ln
(

tPnA
ln(φ0/φC)

)2
[(

δA

A

)2

+

(
n

ρ
+

Hz

2

)2

δρ2 + ln(P )2δn2

]
. (A.2)

By inspecting Equation A.2, one can see that the variables whose individual uncertain-

ties have the largest effect upon the total uncertainty are the thermal conductivity k,

the surface temperature TS , and the activation energy Q.
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Appendix B

Supporting Information for Chapter 2

B.1 Introduction

This supporting information serves to detail the math behind the equations we

use in the models within our paper. In addition, we detail our results for Enceladus, a

moon that is not the focus of our paper but serves to show the efficacy of our model in a

situation for which we already know the answer. To begin, we repeat the methodology

from Thomas and Dermott (1991) with updated data for a comparison to our results.

B.2 Thomas & Dermott (1991)’s Method

Using Voyager data, Thomas and Dermott (1991) made conclusions about

Tethys’ internal structure from its shape. Namely, they estimated Tethys had a MoI

between 0.17-0.35 MR2 and a mantle with a bulk density less than that of water ice.

We present the formulae they used, such that we may use updated data to make better
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conclusions that we can compare to our model’s results.

The primary aspect of Tethys’ shape used is the difference between the longest and short-

est radii of Tethys (assuming a triaxial ellipsoid), a−c. In 1991, this was estimated to be

9.8±1.9 km, but is now constrained to 12.2±0.4 km (Nimmo et al., 2011). Tethys’ bulk

density ρ was assumed to be 1000 kg m−3 while we use 984±3 kg m−3. Tethys’ radius

R0 was then known to be 529.8±0.8 km but has been updated to 531.1±0.6 km. Along

with the orbital frequency ω, we can calculate the ratio m of rotational to gravitational

forces:

m =
4ω2

4πGρ
. (B.1)

This can then be used to calculate H, a factor that depends on the internal distribution

of Tethys’ density and is of order unity for a homogenous satellite:

H =
a− c

5mR0
. (B.2)

Finally, we can find a probable range of normalized MoI C/MR2 that depends on H to

be

2

3

(
1− 2

5H

)
<

C

MR2
<

2

3

(
1− 2

5

√
2

H
− 1

)
, (B.3)

where the lower bound assumes a point-core of infinite density, and the upper bound is

the Darwin-Radau relation.

For updated values Tethys’ parameters, we find H to be 0.85±0.03. Using the most

extreme values of H = 0.82 and 0.88, we find an updated expected MoI range of 0.34-

0.37 MR2 from Thomas and Dermott (1991)’s methodology.
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B.3 Surface temperature and Fourier’s law for icy satel-

lites

After removing the effects of rotation and tidal stretching from a satellite’s

topography, we can focus on the last two sources of topography we are considering:

surface temperature and basal heat flux. We assume topography is due to present-day

tidal heating and approximate tidal heating as heat flux through the base of the ice

shell.

Given the bolometric Bond albedo ABB of a planetary body, as well as its

average distance from the sun a, we can compute the average surface temperature of

that body:

TS,0 =

[
(1−ABB)LSun

16πσSBa2

]1/4
, (B.4)

where LSun is the solar luminosity, and σSB is the Stefan-Boltzmann constant. This

assumes the planetary body is a black body of emissivity ε ∼ 1.

Per Nadeau and McGehee (2017), the solar insolation upon a body whose host

planet has an obliquity i varies as a 6th-degree polynomial σ6 across a surface, and thus

the surface temperature TS varies accordingly:

TS = TS,0σ
1/4
6 . (B.5)

For latitude Θ = π
2 − θ:

σ6(Θ, i) = 1− 5

8
p2(cos i)p2(sinΘ)− 9

64
p4(cos i)p4(sinΘ)− 65

1024
p6(cos i)p6(sinΘ), (B.6)
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where pk are ordinary Legendre polynomials.

From surface temperature, one can determine basal heat flux given an average basal

temperature and ice shell thickness using Fourier’s law. The small radius of Tethys

necessitates a formulation of Fourier’s law that accounts for the spherical geometry of

these bodies. We wished also to account for a temperature-dependent thermal conduc-

tivity k = k0
T (Klinger, 1980). It is essential to use a proper version of Fourier’s law

as we use it not only to determine average basal heat flux, but also in determining the

basal heat flux distribution in Airy isostasy.

We begin from a differential form of Fourier’s law for a total power H input

into a slab of cross-sectional area A that varies as a function of distance from the center

of a sphere r:

H = −k(T )A(r)
dT

dr
. (B.7)

For a simple slab of constant A and k, H = AF where F is the heat flux. Then Equation

B.7 readily yields the classic form of Fourier’s equation:

F = −k
(TS − TB)

d
. (B.8)

For a temperature-dependent k = k0/T and spherical layer cross sectionA(r) =

4πr2:

H

4πr2
dr = −ko

T
dT. (B.9)

We integrate on both sides, knowing that H = F04π(R− d)2 for an average basal heat

flux F0. This yields our calculation of flux:

F =
−k0 ln

TS
TB

d(1− d
R)

. (B.10)
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In addition to using a spherical geometry, it is also useful to account for an

outer porous-ice layer. Ice of porosity φ has a lower thermal conductivity kp than that

of solid ice (Shoshany et al., 2002):

k0,p(φ) = k0(1− φ

0.7
)4.1φ+0.22, (B.11)

which increases the required heat flux to maintain the same temperature difference

across the same ice shell thickness. The porosity of the outer layer and thickness of

both layers are constrained by the range in possible moments of inertia of the satellite.

To account for the porous layer, we again reformulate Fourier’s law. Let there

be a boundary between the porous layer and solid layer where the temperature reaches

that where porous ice anneals, TA. The derivation of Fourier’s law for either spherical

shell layer follows as the previous derivation for a single layer. For a lower boundary 1

and upper boundary 2, the power conducted by the moon can be described:

H

4π

( 1

R1
− 1

R2

)
= −k0 ln

T2

T1
. (B.12)

We then arrive at two equations describing Fourier’s Law for each layer, and

one equation for Fourier’s law across both layers:

F0(R0 − d)2 =
−k0,p ln(TS/TA)

1
R0−L − 1

R0

(Upper porous layer) (B.13)

F0(R0 − d)2 =
−k0 ln(TA/TB)

1
R0−d − 1

R0−L

(Lower solid layer) (B.14)

F0(R0 − d)2 =
− ln(TS/TB)

1
k0,p

( 1
R0−L − 1

R0
) + 1

k0
( 1
R0−d − 1

R0−L)
(Both layers together)(B.15)

where here L is the thickness of the porous layer. Equations B.13 and B.14 can be

rearranged and combined to also yield equation B.15. For a porosity of φ = 0, equation
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B.15 reduces to the previously derived Fourier’s law for a single-layered ice shell, equa-

tion B.10.

To solve for F given d, we can rearrange Equation B.13 as:

1

R0 − L
=

1

R0
− k0,p ln(TS/TA)

F (R0 − d)2
(B.16)

which we substitute into Equation B.14. We proceed to solve for F :

F (R0 − d)2 =
−k0 ln(TA/TB)

1
R0−d − 1

R0
+

k0,p ln(TS/TA)
F (R0−d)2

(B.17)

F (R0 − d)2
[ 1

R0 − d
− 1

R0

]
+ k0,p ln(TS/TA) = −k0 ln(TA/TB), (B.18)

before finally simplifying to:

F =
−k0 ln(TA/TB)− k0,p ln(TS/TA)

(R0 − d)
[
1− R0−d

R0

] . (B.19)

Now that we know the flux at the base of an ice shell with thickness d and

upper layer porosity φ, we can also solve for the thickness of just that porous region, L.

We simply begin from Equation B.16 and rearrange to find:

L = R0 − 1
1
R0

− k0,p ln(TS/TA)
F (R0−d)2

. (B.20)

B.4 Isostasy in icy satellites

Isostasy is the principle that the pressure at depth is constant (Hemingway

and Masuyama, 2017). Using Airy isostasy the ice shell thins and is compensated from

below by an ocean. The following equation from our paper calculates the change in ice
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shell thickness required to yield a given topography h under Airy isostasy:

Δd = h
(
1 +

ρC
Δρ

gS
gB

)
. (B.21)

In contrast to Airy isostasy, Pratt isostasy relies on changes in the crustal

density to generate topography. If the crustal density changes by δρ, the topography

changes by h. Beginning as Hemingway and Masuyama (2017) did, we hold the pressure

at depth constant:

ρC

∫ R0

R0−d
g(r)dr = (ρC + δρ)

∫ R0+h

R0−d
g(r)dr, (B.22)

which can be rearranged to

δρ

∫ R0+h

R0−d
g(r)dr = −ρC

∫ R0+h

R0

g(r)dr. (B.23)

For topography h that is � R, the gravity is nearly constant at gS from R to

R + h, so the right hand side of the equation becomes � −ρCgSh. We apply the same

approximation to the upper portion of the left hand side to find

−(ρC + δρ)gSh � δρ

∫ R0

R0−d
g(r)dr. (B.24)

Then we use

g(r) =
4πG

r2

∫ r

0
r′2ρ(r′)dr′, (B.25)

and assume that density varies in a stepwise manner:

ρ(r′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ρcore, if r′ < R0 − d,

ρC , if R0 − d < r′ < R0,

(B.26)
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where core density ρcore can be found from bulk density ρ̄ and crustal density ρC . This

follows the assumption that topography h � d, and thus R0 + h ∼ R0, ρC + δρ ∼ ρC ,

and d ∼ d0. Then

−(ρC + δρ)gSh � δρ

∫ R

R0−d0

4πG

r2

∫ r

0
r′2ρ(r′)dr′dr (B.27)

= δρ4πG

∫ R

R0−d0

[∫ R0−d0

0
r′2ρcoredr′ +

∫ r

R0−d0

r′2ρCdr′
]
dr

r2
(B.28)

= δρ4πG

∫ R0

R0−d0

[
(R0 − d0)

3

3
ρcore +

r3 − (R0 − d0)
3

3
ρC

]
dr

r2
(B.29)

= δρ
4πG

3

[∫ R

R0−d0

(R0 − d0)
3

r2
ρcoredr +

∫ R0

R0−d0

rρCdr

−
∫ R0

R0−d0

(R0 − d0)
3

r2
ρCdr

]
(B.30)

= δρ
4πG

3

[
−(R0 − d0)

3ρcore
r

+
r2ρC
2

+
(R0 − d0)

3ρC
r

]∣∣∣∣∣
R0

R0−d0

(B.31)

= δρ
4πG

3

[
(ρC − ρcore)(R0 − d0)

3

(
1

R0
− 1

R0 − d0

)

+
ρC
2

(
R2

0 − (R0 − d0)
2

)]
. (B.32)
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In the limit of d0 � R0 this equation simplifies to 4
3πGρmR0d0 δρ as required.

Distributing terms and remembering that gB = 4π
3 ρcore(R0 − d0)G

−(ρC + δρ)gSh � δρ

{
4πG

3
(R0 − d0)

2ρcore

+
4πG

3
(R0 − d0)

3
(ρC
R0

− ρcore
R0

− ρC
R0 − d0

)

+ρC
2πG

3

[
R2

0 − (R0 − d0)
2
]}

(B.33)

= δρ

{
gB(R0 − d0) +

4πG

3
(R0 − d0)

3
(ρC
R0

− ρcore
R0

− ρC
R0 − d0

)

+ρC
2πG

3

[
R2

0 − (R0 − d0)
2
]}

. (B.34)

Recalling gS = 4πG
3R2 {(R0 − d0)

3ρcore + [R3
0 − (R0 − d0)

3]ρC}, we add and then

subtract 4πG
3R0

R3
0ρCδρ from the right hand side to find

−(ρC + δρ)gBh � δρ

{
gS(R0 − d0)− gSR0 − 4πG

3
ρC(R0 − d0)

2 +
4πG

3
ρCR

2
0

+ρC
2πG

3

[
R2

0 − (R0 − d0)
2
]}

, (B.35)

which finally reduces to

−(ρC + δρ)gSh � δρ{gB(R0 − d0)− gSR0 + 2πGρC [(R0)
2 − (R0 − d0)

2]}. (B.36)

We can then rearrange our equation and find the change in crustal density

required to generate the topography:

δρ � −ρCh
gB
gS

(R0 − d0)−R0 +
2πG
gS

ρC [R2
0 − (R0 − d0)2]

. (B.37)
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B.5 Tidal heating from topography

We approximate tidal heating within a moon as the basal heat flux at the

bottom of the moon’s ice shell. As such, we may use Fourier’s law and the principles of

isostasy in order to infer the basal heat flux distribution.

As topography is the direct result of the ice shell thinning and thickening

in Airy isostasy, we may use Fourier’s law to calculate the change in basal heat flux.

We begin with an average ice shell thickness and average basal temperature. We use

Equation 2.9 to find the change in shell thickness from topography, and use the following

equation from our paper to find the basal heat flux distribution:

F =
−k0 ln(TA/TB)− k0,p ln(TS/TA)

(R0 − d)(1− R0−d
R0

)
. (B.38)

Under Pratt isostasy, the topography is the result thermal expansion and con-

traction. Let there be an average ice shell temperature in a region, T̄ = TS+TB
2 . Then

using a temperature-dependent thermal expansivity of water ice α(T ) (Röttger et al.,

1994), the change in volume ΔV of a region from average is

ΔV

V
= α0ΔT̄ , (B.39)

where α0 is the thermal expansivity of water ice for the reference average temperature

of the ice shell T̄0, ΔT̄ = T̄0 − T̄ , and T̄ = 1
2(TS + TB).

For a given location, the change in ice shell volume is related to the change in

shell density δρ from average crustal density ρC :

ΔV

V
=

−δρ

ρC + δρ
, (B.40)
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where δρ is a function of topography h (Equation B.37).

From Equation B.10 for a single-layer, solid ice shell,

TB = TSe
F (d−d2/R)/k0 . (B.41)

Let d′ = d0 − d20
R0

, then

ΔT̄ =
1

2
[ΔTS + (TSe

Fd′/k0 − TS,0e
F0d′/k0)] (B.42)

=
1

2
[ΔTS + (TSe

Fod′/k0eΔFd′/k0 − TS,0e
F0d′/k0)] (B.43)

=
1

2
[ΔTS + eF0d′/k0(TSe

ΔFd′/k0 − TS,0)], (B.44)

where ΔTS is the variation in surface temperature TS from the reference value TS,0 and

ΔF is the variation in basal heat flux F from the reference value F0. Then,

substituting ΔT̄ into equation B.39, we rearrange to find the change in basal flux ΔF

required to yield the inferred density change δρ:

ΔF =
k0
d′

ln
( 1

TS

{
TS,0 + e−F0d′/k0

[ 2

α0

(−δρ)

ρC + δρ
−ΔTS

]})
. (B.45)

For an ice shell with an upper porous layer, we assume an expansivity that is

a volume-weighted average of the expansivities for the porous and solid ice layers. We

assume the pore-spaces do not expand with the ice and thus substitute α0 with α′
0

α′
0 = α0

[
V0,p

V0
(1− φ) +

V0,s

V0

]
, (B.46)

where V0,p, V0,s, and V0 are volumes of the porous ice shell, solid ice shell, and total ice

shell, respectively. We also substitute d′
k0

with ( d
′

k0
)′ appropriate for a two layer system:

(
d′

k0
)′ = (R0 − d0)

2
[ 1

k0,p

( 1

R0 − L0
− 1

R0

)
+

1

k0

( 1

R0 − d0
− 1

R0 − L0

)]
. (B.47)
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The final formula for change in heat flux from topography using Pratt isostasy

with an upper porous layer is thus

ΔF =
1

( d
′

k0
)′
ln
( 1

TS

{
TS,0 + e−F0(d′/k0)′

[ 2

α′
0

(−δρ)

ρC + δρ
−ΔTS

]})
. (B.48)

This equation reduces to Equation B.45 for φ = 0.

B.6 Multi-linear Regression

As tidal heating can be decomposed into the linear combination of basis heat-

ing patterns, we can perform a multilinear regression upon the heating pattern inferred

from topography. We begin by arranging the heat flux distribtuiont FT (Equation 2.22),

FT (θ, λ) =
F0,T

ψ0
(χAψA + χBψB + χCψC),

to be in terms of harmonic functions ψl rather than angular functions ψJ . We find

F (θ, λ)

F0
a0,0 =

(
χA+χB+χC

)
ψ0+

(
χA+

1

2
χB−χC

)
ψ2+

(
χA− 2

3
χB+

1

6
χC

)
ψ4. (B.49)

Composing F (θ, λ) as a series of spherical harmonics, we can derive heat flux coefficients

CF
l,m from F (θ, λ). Then, because spherical harmonic functions are orthogonal, we can

drop the associated Legendre functions and cosines within F (θ, λ) and ψl in equation

B.49 to retrieve

a0,0
al,m

CF
l,m

F0
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
χA + 1

2χB − χC , if l = 2,

χA − 2
3χB + 1

6χC , if l = 4,

(B.50)
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where al,m come from Table 1 in the main text, and depend if we assume eccentricity

or obliquity tides. Recall that χA + χB + χC = 1. We reformulate this set of equations

in matrices to solve with linear algebra:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
a0,0
a2,0

CF
2,0

F0
− 1)

(
a0,0
a2,2

CF
2,2

F0
− 1)

(
a0,0
a4,0

CF
4,0

F0
− 1)

(
a0,0
a4,2

CF
4,2

F0
− 1)

(
a0,0
a4,4

CF
4,4

F0
− 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2 −2

−1
2 −2

−5
3 −5

6

−5
3 −5

6

−5
3 −5

6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
χB

χC

⎤
⎥⎥⎥⎦ . (B.51)

Note that in the case of obliquity tides, a4,4 = 0. As the final row on the left hand side

would then be undefined, we remove the final row of both 5x2 matrices in the case of

obliquity tides.

For a matrix equation of the form Y = XB, where underlined variables are

vectors and bold variables are 2-dimensional matrices, we can estimate coefficientsB (i.e.

heating pattern weights χB and χC) with regressed coefficients b = (XTX)−1(XTY )

where T signifies a transposed matrix. For this multi-linear function, we calculate a

goodness-of-fit value known as the coefficient of determination R2:

R2 =
Σn
i=1(ŷi − ȳ)2

Σn
i=1(yi − ȳ)2

, (B.52)

where yi are components of Y , ŷi are components of the matrix product Xb, and ȳ is

the mean of the components of Y .
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B.7 Verification

B.7.1 Forward model

We also forward model the topography given our derived tidal heating pattern

weights, moment of inertia, and average basal heat flux. Using the following equation

from our paper, we find the basal heat flux distribution as a function of the tidal heating

pattern weights.

F (θ, λ)

F0
= χD +

χT

ψ0
(χAψA + χBψB + χCψC). (B.53)

For Pratt isostasy, we use Equation B.42 to find the change in average shell

temperature for a given basal heat flux. Then, combining Equations B.39 and B.40 we

find

−δρ

ρC + δρ
= α′(T̄0)ΔT̄ (B.54)

⇒ δρ =
−ρCα

′(T̄0)ΔT̄

1 + α′(T̄0)ΔT̄
. (B.55)

Rearranging Equation B.37, we can then use the change in crustal density to

solve for the topography due to tidal heating:

h =
−δρ

ρC

{gB
gS

(R0 − d0)−R0 +
2πG

gS

[
R2

0 − (R0 − d0)
2
]}

. (B.56)

We can then integrate to find the spherical harmonic weights of topography

due to tidal heating, and add those due to tidal and rotational stretching for a total

modeled topography spherical harmonic weights. This can then directly be compared

with the observations and their uncertainties.
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For Airy isostasy, we still use Equation B.53 to find the basal heat flux distri-

bution as a function of tidal heating pattern weights. We then have to invert Equation

B.38 to find d as a function of F . First, we rearrange equation B.13 to

R0 − d =

√
−k0,p
F

ln(TS/TA)

( 1
R0−L − 1

R0
)
. (B.57)

For ease of derivation, let κ1 be a constant such that

κ1 =
−k0,p
F

ln
(TS

TA

)
. (B.58)

Then,

R0 − d =

√
κ1

( 1
R0−L − 1

R0
)
. (B.59)

We can then substitute R0 − d from equation B.59 into equation B.14, and

solve for R0 − L, which we can then substitute back into equation B.59 to solve for

R0 − d. This way we solve for both d and L.

First, equation B.59 into B.14:

F
κ1

1
R0−L − 1

R0

=
−k0 ln(TA/TB)√

1
R0−L

− 1
R0

κ1
− 1

R0−L

(B.60)

⇒
√

1
R0−L − 1

R0

κ1
− 1

R0 − L
=

−k0 ln(TA/TB)

F0κ1

( 1

R0 − L
− 1

R0

)
. (B.61)

Let there be another constant κ2 defined

κ2 =
−k0 ln(TA/TB)

Fκ1
=

k0 ln(TA/TB)

k0,p ln(TS/TA)
. (B.62)
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Then,

√
1

R0−L − 1
R0

κ1
− 1

R0 − L
= κ2

( 1

R0 − L
− 1

R0

)
(B.63)

⇒
√

1
R0−L − 1

R0

κ1

2

=
( κ2 + 1

R0 − L
− κ2

R0

)2
. (B.64)

After squaring both sides, we can follow some simple arithmetic to rearrange and collect

like terms until we find a second-order polynomial expression of R0 − L:

(R0 − L)2
(κ1κ22

R2
0

+
1

R0

)
+ (R0 − L)

[−2κ1κ2
R0

(κ2 + 1)− 1
]
+ κ1(κ2 + 1)2 = 0, (B.65)

which can then be solved for with the quadratic equation. Let

a =
κ1κ

2
2

R2
0

+
1

R0
(B.66)

b =
−2κ1κ2

R0
(κ2 + 1)− 1 (B.67)

c = κ1(κ2 + 1)2. (B.68)

Then

R0 − L =
−b±√

b2 − 4ac

2a
, (B.69)

which yields L. Substituting equation B.69 into equation B.59 also yields d. The ± is

+ when d < 0.5R0, and − when d > 0.5R0. We know the average shell thickness d0 a

priori because this is a forward model where d0 is an input, but we do not always know

if d is less or greater than 0.5R0, and thus tend to avoid models where the shell is too

close to half the radius.
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The full expressions for L and d are

L = R0 −
1− 2k0

R0F
ln
(
TA
TB

)[
k0
k0,p

ln(TA/TB)
ln(TS/TA) + 1

]
2
R0

{
1− [k0 ln(TA/TB)]2

Fk0,p ln(TS/TA)

}

±

√
1− 4k0,p

R0F
ln
(

TS
TA

){
2
[

k0
k0,p

ln(TA/TB)
ln(TS/TA)

]2
+ 3 k0

k0,p

ln(TA/TB)
ln(TS/TA) + 1

}
2
R0

{
1− [k0 ln(TA/TB)]2

Fk0,p ln(TS/TA)

} (B.70)

d = R0 −
√√√√ −k0,p

F ln(TS/TA)

( 1
R0−L − 1

R0
)

. (B.71)

Once we find the difference in shell thickness from average Δd, we use Equation

2.9 to solve for topography and find spherical harmonic coefficients as earlier.

B.7.2 Consistency Checks

One way to check that a model is physically consistent is to construct a density

profile. For instance, it does not make sense if the solid ice layer needs to have a negative

thickness to satisfy bulk density and moment of inertia constraints.

Let our spherical model of Tethys with radius R, mass M , and bulk density

ρ̄ have three concentric layers from surface to center: a porous ice shell of thickness L

and uniform density ρP = ρice(1 − φ), a solid ice shell of thickness d − L and uniform

density ρS = ρice, and an interior “core” with density ρcore.

If we know the bulk density of our planetary body ρ̄ = 3M
4πR2

0
and the density

of ice ρice then

ρ̄R3
0 = ρP [R

3 − (R− L)3] + ρS [(R− L)3 − (R− d)3] + ρcore(R− d)3. (B.72)
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For a sphere of radial density profile ρ(r), the normalized moment of inertia is

found

C

MR2
=

1

MR2

8π

3

∫ R

0
ρ(r)r4dr. (B.73)

Assuming our piece-wise density profile

ρ(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρcore, for 0 ≤ r ≤ R− d,

ρS , for R− d < r ≤ R− L

ρP , for R− L < r ≤ R.

(B.74)

then equation B.73 becomes

15MR2

8π

C

MR2
= ρP [R

5 − (R− L)5] + ρP [(R− L)5 − (R− d)5] + ρcore(R− d)5. (B.75)

We rearrange both Equations B.72 and B.75 to isolate ρcore and some factor

of R− d:

ρcore(R− d)3 = ρ̄R3 − ρP [R
3 − (R− L)3]− ρS(R− L)3 (B.76)

ρcore(R− d)5 =
15MR2

8π

C

MR2
− ρP [R

5 − (R− L)5]− ρS(R− L)5. (B.77)

We divide Equation B.77 by Equation B.76 to find (R− d)2. Rearranging, we

then find the total shell thickness d as a result of this three-layer model:

d3 layer = R−
√

15MR2

8π
C

MR2 − ρP [R5 − (R− L)5]− ρS(R− L)5

ρ̄R3 − ρP [R3 − (R− L)3]− ρS(R− L)3
. (B.78)

Then to find the bulk density of the interior, we simply plug d3 layer from Equa-

tion B.78 into either Equation B.76 or B.77 and solve for ρcore.

For this density profile to be physically feasible under the constraints of the
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moment of inertia and bulk density, we want d3 layer to be the same as the d we input.

There can be some leeway in the model, as it is unclear how hot ice must be to viscously

flow, so we place some broad constraints. First, we expect d3 layer > L, else we have a

solid ice layer of negative thickness. Secondly, we want d3 layer to not be so deep that its

basal temperature would exceed the melting point of water. We define a maximum ice

shell thickness dmax such that the basal temperature is 270 K (if the originally specified

basal temperature TB was not already 270 K), that we constrain d3 layer not to exceed.

From the same process for which we formulated Fourier’s law for an upper

porous layer (Equation B.13) and a lower solid layer (Equation B.14) of the ice shell,

we can define Fourier’s law for a layer below that extending to a maximum basal tem-

perature Tmax at a total shell thickness dmax:

F (R− d)2 =
−k0 ln(TB/Tmax)

1
R0−dmax

− 1
R0−d

, (B.79)

which we rearrange to solve for dmax:

dmax = R0 −
[ 1

R0 − d
− k0 ln(TB/Tmax)

F0(R0 − d)2

]−1
. (B.80)

If TB = Tmax, dmax = d.

B.7.3 Uncertainty

With any model, it is important to ascertain how accurate it may be given

any uncertainty in input parameters. In many aspects, we seek to minimize the error of

any given inversion by testing over a wide parameter space. i.e. by inferring the heat

flux distribution for a many combinations of input shell thicknesses, moments of inertia,
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and upper ice shell porosities; we ascertain how changing each of those may affect our

results. This leaves one last uncertainty to worry about: uncertainty in the observed

spherical harmonic weights of topography (from Nimmo et al., 2011).

If we propagate the error in topography to the inferred basal heat flux, the

spherical harmonic weights of that heat flux will have a fractional uncertainty on the

order of the fractional uncertainty in spherical harmonic weights of topography. How-

ever, our multilinear regression more-so asks “can this inferred heat distribution be

represented by tidal heating?” That would be information given by the coefficient of

determination R2. High R2 close to 1 informs us when the patterns of tidal heating fit

well to our heat flux distribution—which we expect after already accounting for other

major contributors to the degree 2 and 4 topography.

Another measure of the how well our inferred tidal heating pattern weights fit

is the aforementioned forward model. We can directly compare the spherical harmonic

weights of forward modeled topography to the spherical harmonic weights of the ob-

served topography, and we do so in the paper. We also compute the root-mean-squared

(RMS) misfit of the observed and forward-modeled topographies. To get a sense of how

this compares to uncertainty in observed spherical harmonic coefficients, we composed

100 sets of randomly generated spherical harmonic coefficients of topography, where

each coefficient was randomly generated using a normal distribution using the mean

and uncertainties provided by Nimmo et al. (2011). We calculated the RMS misfit of

each randomly-generated topography compared to the mean observed topography, and

find an average RMS misfit of 78±36 m.
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As uncertainty in tidal heating pattern weights does not necessarily correspond

with how well the tidal heating pattern weights fit the inferred basal heat flux distri-

bution, it is important to utilize these other methods of checking consistency between

the topography and tidal heating. Then by isolating for the best R2, RMS, and only

those that fulfill other constraints, we settle upon the range of models that best seem

to explain Tethys.

B.8 Enceladus

Before inferring Tethys’ interior, we tested our methodology on a world for

which we already knew the moment of inertia and interior structure: Enceladus. As

with Tethys, we use long-wavelength topography from Nimmo et al. (2011). As initial

conditions, we varied the shell thickness from 2–76 km in 2 km increments, and the

normalized MoI in increments of 0.005 MR2. We tested both Airy and Pratt isostasy,

as well as both eccentricity and obliquity tides. We varied the porosity of the upper ice

shell (≤ 140 K) from 0 to 0.3 in increments of 0.1. We assume Enceladus’ mean radius

of 252.1 km and bulk density of 1609 kg m−3 (Roatsch et al., 2009), and follow Chen

et al. (2014) in assuming an angular rotation rate of 5.31×10−5 rad s−1. As in our main

manuscript, we assume solid water ice has a density of 940 kg m−3. We found there

were no good fits for tidal heating patterns if we assumed Pratt isostasy or obliquity

tides, while Airy isostasy and eccentricity tides had high R2 and low RMS values, with

high heating pattern C weights (Figure B.1). This is consistent with observations of
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Enceladus’ eccentric orbit and subsurface ocean. Our goodness of fit measurements,

the multilinear regression’s coefficient of determination R2 and the forward model’s

RMS misfit from the observed topography improved when we assumed higher porosities

(up to 0.3) in the upper ice shell, which is consistent with other models such as that

of Besserer et al. (2013). Further, the best fits for tidal heating patterns occurred

for moments of inertia and ice-shell thicknesses that are roughly consistent with those

inferred gravitationally (Iess et al., 2014; Beuthe et al., 2016). That is, our models

with the highest R2 and lowest RMS assumed have a moment of inertia 0.30-0.32, an

ice shell thickness of 30-40 km, an ocean thickness of 25-50 km, and a core density of

1700-2300 kg m−3.

In these best fit models, we find heating pattern weights χA ∼ 0.16, χB ∼ 0.31,

χC ∼ 0.53 with deviations up to 0.03. Beyond the C weight being highest, these do not

necessarily align with what we expect for a thin ice-shell overlaying an ocean (Figure 4

from the main text). The expected fraction of Enceladus’ heating to be radiogenic is less

than 1%, so we do not expect a large uniform heat flux component from radioactivity.

These weights also closely resemble but do not quite match heating in a homogenous

core (χA=0.13, χB=0.31, χC=0.56). Linear mixtures of the interior heating weights

and heating weights for an ice shell 15% of Enceladus’ radius cannot reproduce our

inferred heating pattern weights for Enceladus. However, mixtures of a uniform heat

flux pattern (χA=0.2, χB=0.4, χC=0.4) with the heating pattern weights of an ice

shell 15% of Enceladus’ radius can get quite close when 30% of the heating pattern

is due to shell heating, and 70% of the heating pattern is uniform. There is no exact
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match, but because the R2 is not a perfect 1.0, the inferred heating pattern weights are

likely muddled by other factors, such as the south polar terrain. While Enceladus is

low in radionuclides, a large proportion of the inferred heating pattern being uniform

can be due to heating in Enceladus’ core, the heating pattern of which is then well-

mixed into a uniform background flux by Enceladus’ ocean. Given that Enceladus’

large heat production is hard to produce tidally in its ice shell, core heating is a very

likely explanation (Roberts, 2015; Choblet et al., 2017; Hemingway and Mittal, 2019)
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Figure B.1: Assuming an isothermal basal ice shell temperature of 270K, for an ice shell
with 30% porosity at ≤140 K, under Airy isostasy and eccentricity tides assuming equal-
pressure isostasy, we varied the ice shell thickness and moment of inertia parameters
before inferring the heat flux distribution at the base of the ice shell. We then fit
for the spatial patterns of tidal heating weights (χA−C) from Beuthe (2013). We plot
only models where the ocean thickness from the moment of inertia is neither negative
nor larger than possible. Of particular interest is the region with moment of inertia
<0.34 MR2 for a basal heat flux between 10 and 30 mW m−2, where the coefficient
of determination R2 is high and the RMS misfit is low. Specifically, the pink circles
mark where R2 is >90th percentile and RMS is <10th percentile. These two indications
of goodness of fit narrow down this region as when parameters best find tidal heating
patterns from topography. d is the ice shell thickness assumed, from which the average
surface heat flux FS is calculated.
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Appendix C

Appendix for Chapter 3

In Section 3.4.2, we state that the semi-major axis a of a satellite is embedded

within many of the parameters of Equation 3.16. First, a synchronous satellite in a

Keplerian orbit will have an orbital frequency ω =
√

GMSat/a3, where MSat is Saturn’s

mass. A decrease in a and thus increase in ω alone will reduce the inclination i necessary

for a given obliquity θ. The gravity coefficients J2 and C2,2 also increase with ω2 (via q

in Equations 3.12 and 3.13) and compound this reduction. Mimas’ Ω̇ is also dominated

by a term that depends on Saturn’s oblateness (Equation 3.14). This precession rate

increases with lower a, but its contribution to sin θ/ sin i is outweighed by those from

ω and the gravity coefficients. Propagating these dependencies, the obliquity θ one

expects from a satellite in a Cassini state orbiting at semi-major axis a with a given

inclination i is

sin θ =
sin i

cos i− 1
J2,SatR

2
Sat

kF2
MSat
3ρ̄a

(
4 + 136

21 h
F
2

MSat
ρ̄a3

) , (C.1)
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where we assumed the entirety of nodal precession rate is dominated by Saturn’s oblate-

ness using Equation 3.14. Finally, through Equation 2.30, the obliquity needed for our

inferred dissipated power Ė of 10 GW decreases the smaller a (and thus larger ω) is.

Inverting Equation 2.30, we find that the exact dependence of the obliquity θ required

for a body of a given k2/Q to dissipate Ė at a semi-major axis a is

sin θ =

(
2

3

Ė

k2/Q

)1/2(
1

G3MSat

)1/4 a15/4

R
5/2
0

. (C.2)

By requiring a lower obliquity for our inferred tidal heating state, inclination need not be

as high. However, this would still require Mimas to be quite close to Saturn. This would

indicate that the impact necessary to temporarily increase Mimas’ inclination would be

quite ancient. However, the required semi-major axis at the time of this impact or

inclination-type resonance would require Mimas to be well within Saturn’s Roche limit

and at risk of tidal disruption: taking the extent of Saturn’s A rings (∼2.35 Saturn

radii) as a proxy for Saturn’s Roche limit, the required obliquity to generate 10 GW

of tidal heating is -0.54◦ (Equation C.2), but the inclination to reach that obliquity at

that semi-major axis is 51◦ (Equation C.1). Such a high inclination is unlikely to be

the result of an impact or past inclination-type resonance.
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H. Hussmann, A. Rodŕıguez, N. Callegari Jr., and D. Shoji. Early resonances of Tethys

and Dione: Implications for Ithaca Chasma. Icarus, 319:407–416, 2019. doi: 10.1016/

j.icarus.2018.09.025.

R. Hyodo and S. Charnoz. Dynamical evolution of the debris disk after a satellite

catastrophic disruption around Saturn. Astronomical Journal, 154(34), 2017. doi:

10.3847/1538-3881/aa74c9.

R. Hyodo, S. Charnoz, K. Ohtuski, and H. Genda. Ring formation around giant planets

by tidal disruption of a single passing large kuiper belt object. Icarus, 282:195–213,

2017a. doi: 10.1016/j.icarus.2016.09.012.

L. Iess, D. J. Stevenson, M. Parisi, D. Hemingway, R. A. Jacobson, J. Lunine, F. Nimmo,

J. W. Armstrong, S. W. Asmar, M. Ducci, and P. Tortora. The gravity field and

interior structure of Enceladus. Science, 344(6179):78–80, 2014. doi: 10.1126/science.

1250551.

L. Iess, B. Militzer, Y. Kaspi, P. Nicholson, D. Durante, P. Racioppa, A. Anabtawi,

E. Galanti, W. Hubbard, M. J. Mariani, P. Tortora, S. Wahl, and M. Zannoni. Mea-

surement and implications of Saturn’s gravity field and ring mass. Science, 364(6445),

2019. doi: 10.1126/science.aat2965.

S. Karimi, A. Dombard, D. Buczkowski, S. Robbins, and R. Williams. Using the vis-

142



coelastic relaxation of large impact craters to study the thermal history of Mars.

Icarus, 272:102 – 113, 2016. doi: 10.1016/j.icarus.2016.02.037.

J. Kegerreis, L. Teodoro, M. Ćuk, J. Cuzzi, V. Eke, P. Estrada, R. Massey, and

T. Sandnes. A recent impact origin of Saturn’s rings and mid-sized moons. In 54th

Lunar and Planetary Science Conference, number 2658, 2023.

H. Kieffer. Thermal model for analysis of Mars infrared mapping. Journal of Geophysical

Research: Planets, 118(3):451 – 470, 2013. doi: 10.1029/2012JE004164.

M. R. Kirchoff and P. Schenk. Impact cratering records of the mid-sized, icy saturnian

satellites. Icarus, 206(2):485–497, 2010. doi: 10.1016/j.icarus.2009.12.007.

M. R. Kirchoff, E. B. Bierhause, L. Dones, S. J. Robbins, K. N. Singer, R. J. Wagner,

and K. J. Zahnle. Enceladus and the Icy Moons of Saturn, chapter Cratering Histories

in the Saturnian system, pages 267–284. University of Arizona, Tuscon, 2018. doi:

10.2458/azu\ uapress\ 9780816537075-ch013.

J. Klinger. Influence of a phase transition of ice on the heat and mass balance of comets.

Science, 209(4453):271–272, 1980. doi: 10.1126/science.209.4453.271.

K. Kossacki and R. Lorenz. Hiding titan’s ocean: Densification and hydrocarbon storage

in an icy regolith. Planetary and Space Science, 44(9):1029, 1996.

V. Lainey, J. Arlot, O. Karatekin, and T. Van Hoolst. Strong tidal dissipation in Io

and Jupiter from astrometric observations. Nature, 459:957–959, 2009. doi: 10.1038/

nature08108.

143



V. Lainey, L. Gomez Casajus, J. Fuller, M. Zannoni, P. Tortora, N. Cooper, D. Murray,

C andModenini, R. S. Park, V. Robert, and Q. Zhang. Resonance locking in giant

planets indicated by the rapid orbital expansion of Titan. Nature Astronomy, 4:

1053–1058, 2020. doi: 10.1038/s41550-020-1120-5.

K. Lewis, S. Peters, K. Gonter, S. Morrison, N. Schmerr, A. Vasavada, and T. Gabriel. A

surface gravity traverse on mars indicates low bedrock density at gale crater. Science,

363(6426):535–537, 2019. doi: 10.1126/science.aat0738.

P. Lognonné, W. Banerdt, W. Pike, D. Giardini, U. Christensen, R. Garcia, T. Kawa-

mura, S. Kedar, B. Knapmeyer-Endrun, L. Margerin, F. Nimmo, M. Panning,

B. Tauzin, J.-R. Scholz, D. Antonangeli, S. Barkaoui, E. Beucler, F. Bissing,

N. Brinkman, M. Calvet, S. Ceylan, C. Charalambous, P. Davis, M. van Driel,

M. Drilleau, L. Fayon, R. Joshi, B. Kenda, A. Khan, M. Knapmeyer, V. Lekaic,

J. McClean, D. Mimoun, N. Murdoch, L. Pan, C. Perrin, B. Pinot, L. Pou,

S. Menina, S. Rodriguez, C. Schmelzbach, N. Schmerr, D. Sollberger, A. Spiga,

S. Stähler, A. Stott, E. Stutzmann, S. Tharimena, R. Widmer-Schnidrig, F. An-
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