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FOREWORD

The National Resource for Computation in Chemistry (NRCC)
was established to make information on existing and developing
computational methodologies available to all segments of the
chemistry community, to make state-of-the-art computational fa-
cilities (hardware and software) accessible to the chemistry
community, and to foster research and development of new compu-
tational methods for application to chemical problems.

Workshops form an integral part of the NRCC's program. A
workshop in the titled area was judged timely by researchers in
the field and led to a planning meeting held February 23-24,
1979 at the University of Utah im Salt Lake City. The workshop
was organized in two parts. The first meeting was held June
25-27, 1979 at Argonne National Laboratory under the chairman-
ship of Professor John Light, University of Chicago, and Dr.
Lowell Thomas of the NRCC. Volume I of the present workshop
proceedings contains the papers presented at the first meeting.

The workshop reconvened October 26-27, 1979 at the NRCC to
compare the performance of algorithms on selected test problems
that were solved in the interim since the first meeting. We
are indebted to Dr. Lowell Thomas for his considerable effort
in developing the test problems and in organizing the data and
in summarizing the findings of these tests.

The National Resource for Computation in Chemistry is
funded jeintly by the Office of Basic Energy Sciences of the
U.S. Department of Energy under Contract No. W-7405-ENG-48 and
the National Science Foundation under Interagency Agreement No.
CHE-7721305.,

William A. Lester, Jr.
Director, NRCC
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Preface to Volume II

The goals of this workshop have been to identify which of
the existing computer codes for solving the coupled equations
of quantum molecular scattering theory perform beat on a range
of physical gtoblems, and to make tested versions of those
codes available to the chemistry community. Since the comple-
tion of Volume I of this workshop proceedings, these goals have
been fully met and even exceeded. Eleven different programs
have been tested on twenty-four different test problems and in
this volume we report the results and conclusions from those
tests.

A second meeting was held at Berkeley, October 26-27, 1979
at which the test results were discussed and analysed. One of
the chief results from that meeting was the development of a
new hybrid program which is roughly twice as fast as any other
program tested. Although these tests were far from exhaustive,
we believe that they are the most extensive test of the methods
which has been done to date and that the new hybrid program is
the current state of the art. We hope that these tested pro-
grams, now available from the NRCC, together with Volume I and
this volume will serve the scientific community as useful re-
search tools.

The delay in the completion of this volume has been due to
a number of causes. Sifting through the encrmous amount of
data generated by the tests proved to be a much more difficult
and lengthy task than anticipated. Also, the very success of
the workshop has been due to a great deal of dedicated hard
work by all of the participants - work which had to be done in
addition to normal research and administrative duties. As a
consequence, many of the individual tasks necessary to the com-
pletion of this volume simply had to await the completion of
higher priority commitments.

June 1980
John C. Light
Lowell D. Thomas



SECTION I
INTRODUCTION

Approximately one and a half years ago the NRCC began or-
ganizing a workshop on "Algorithms and Computer Codes for Atom-
ic and Molecular Quantum Scattering Theory" with Lowell Thomas
(NRCC) and John Light (University of Chicagc) as co-chairmen.
The workshop has proceeded through the five phases:

I. February 1970: Salt Lake City. Preliminary planning

meeting.
Attendeer: Johnson, Lester, Light, Parker, Thomas.
II. June 25-27, 1979: Argonne National Laboratory.

First meeting - presentation of methods, fimal
choice of rests, introduction to remote computing
at LBL.
Attendees: Alexander, Allison, Askar, Gordon,
Harvey, Johnson, Krogh, Lester, Light, Malik,
Parker, Rabitz, Redmon, Schmalz, Secrest, Shin,
Thomas, Truhlar, Walker, Yung.

II1. July-October, 1979: Participants set up their prozrams
and run tests remotely at LBL; preparation of Vol. I

of Proceedings.



IV. October 26-27, 1979: Lawrence Berkeley Laboratory.
Second meeting cof workshop for those who
participated in tests - presentation and evaluation
of results, recommendations to NRCC.

Attendees: Alexander, Johnson, McLenithan, Lester,
Light, Patker, Redmon, Schmalz, Thomas, Walker.

V. November 1979-February 1980: Final activities -
preparation of individuzl reports, construction and
testing of hybrid code, some additions to test
results, preparation of this final report.

The purpose of the workshop was to evaluate the algorithms
and computer codes currently in use for atomic and molecular
quantum scattering theory and to make the hest of them avail-
able to the chemistry community through the NRCC software li-
brary. The codes were to be evaluated, in a commom environmert
(CDC 7600) on a variety of test problems, qualitatively for
their case of use, portability, and reliability; and quantita-
tively for efficiency and accuracy.

The Proceedings of the first two phases of this workshop,
containing detailed descriptions of the various methods and the
test problems are available from tlie NRCC as Lawrence Berkeley
Laboratory report LBL-9501 (1979), hereafter referred to as
Vol. I. The presemnt volume reports the developments of Phases
1I1-V of the workshop.

Because of the considerable efforts of the participants
there is an enormous amount of information to report. In the

four-month interval between meetings eight individuals (or



groups), working remotely, brought their ccdes up on the LBL
computer and solved the test problems - a total of 24, consid-
ering all basis sets and energies - to produce selected transi-
tion probabilities to a specified accuracy.

Altogether 11 different programs were used to solve the
test problems. All of these programs are now available through
the NRCC software library. Thus, the original objectives of
the workshop have been fully met. Cwing to the enthusiasm and
dedication of the participants, however, the overall rasults of
the workshop have far exceeded the initial expectations and
several very important, unforeseen benefits to both the partic-
ipants and the user community have resulted.

The first meeting appears to have been the first time ex-
perts in stomic and molecular quantum scattering theory were
brought together to discuss computational algorithms and their
computer code implementation. A great deal of information was
exchanged 2ma a number of new ideas were presented with the re-
sult that many of the participants improved their codes signif-
icantly before tackling the test problems. These software
changes are described in Section IV of this volume. The com-
parison of the results from different codes, as discussed in
Section III, revealed that further significant improvements
could be made by producing a hybrid code which incorporated two
or more algorithms for use in different scattering regions.
This bhas been accompiished and the resulting hybrid code
(VIVAS), now available at the NRCC, is approxzimately twice as

fast as any of the codes previously tested and in some cases,
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300 times faster. Thus the workshop not only served to test
existing codes, but led directly to the creation of a signifi-
cantly superior code. In additiom, the workshop has developed
a minimal set of test problems with a large "dynamic range" for
testing scattering codes, a detailed comparative test for dif-
ferent codes within a given problem (timing histograms), and a
set of recommendations to the NRCC to aid in future development
and testing of scattering codes and to increase the accessibil-
ity of superior codes to both novices and experts in the field.
In Section II we present a brief description of the test
problems, computer environment, methods and codes tested. In
Section III we discuss and summarize the test results. In Sec-
tion IV the individual participants discuss their changes to
algorithms and programs made since the first report, specific
details of how they ran the test problems, any difficulties
they encountered, advantages and disadvantages of their methods
and speculations on how their programs might be improved. 1In
Section V we present a set of recommendations to the NRCC and

conclude with a summary of the workshop in Section V.



SECTION I1I
SUMMARY OF WORKSHOP CODES, MET::.ODS AND TEST PROLLEMS

Although the test problems and most methods were described
in some detail in Vol. I, we present here a very brief recapit-

ulation for the convenience of the reader.

METHODS AND CODES

All of the algorithms presented in Vol. I were not tested.
However, eleven computer codes were tested against at least
some of the test problems. All codes were writren entirely im
FORTRAN (no machine language), were coopiled with the same com~
piler (CDC extended, version 4.6G), and were ruvn on the CBC 7600
at LBL.

The codes can be divided into four groups:

1) General integration codes based om algoricims not devel-
oped originally for close coupling problems. These are a pre-
dictor-corrector method, the DeVogelare method, and the lumerov
method. All may be classed as approximate wavefunction methods
(see D. Secrest, Vol. I, pp. 1-12, for a more detailed classi-
fication);

2) Approximate wavefunction methods develeped for close
coupling problems. These are the log derivative method, cthe
Sams-Kouri integral =quation method, and an imtegral equatiom

method with constant reference potentials;



3) Approximate potential methods in which analytic approxi-
mations to the solutions are generated by some means over rela-
tively large intervals. These are the Airy function method de-
veloped originally by Gordon, the variable-interval variable-
step method, the perturbatively corrected R-matrfx propagaticn
mettiod, and the 12 R-matri;\propagation method:

4) A hybrid combination of the log derivative and variable-
interval, variable-step methed.

These are each described very briefly below, with the acro-
nyms given which will be used henceforth and with the name of
the person who solved the test problems.

Approximate Wavefunction Codes

PC: (L. D. Thomas). Predictor-corrector methods are common al-

though an improved code due to Shampine and Gordon was used for
these tests. See the articles by Krogh, Vol. I, and Thomas in
Section IV below, for more details and references.

DEVOG: (L. D. Thomas). The DeVozelare algorithm was tested in
a form coded by Thomas. It is described by Lester, Vol. I, and
Thomas, below in Section IV of this volume.

MNN: (L. D. Thomas). Although the Numerc’ method is not new,
the code tested (Minnesota Numerov, MNN) was the version pro-
vided by Brandt, Truhlar, Onda, and Thirumalai, and is de-
scribed by Truhlar, Harvey, Onda, and Brandt in Vol. I. Dis-
cussions of other improved variations of the Numerov algorithm
are given in Vo!. I by Allison and by Johnson, although codes

based on these algorithms were not tested at this workshop.



LOGD: (B. R. Johnson). The loz derivative method was developed,
coded, and applied to the test problems by Johmson. He de-
scribed the algoriihm in Vol. I. A variation using & multi-
channel WKL procedure for the long-range region was used on one
test and is described later by Johnson in Sectioa IV. It is a
hybrid computer code.

SAMS: (K. McLenithan and D. Secrest). The Sams-Kouri integral

equation method was coded for this workshop by McLenithan and
Secrest. They describe the method in Vol. I and give a de-
tailed description of its use for the test problems below in
Section IV.

INSCAT: (M. J. Redmon). This is a constant potential integral

equations method. The differential equations are converted to

Volterra integral equations (as with SAMS), but a constant po-

tential approximation is made (over a step) leading to analyti-
cal approximations to the quadratures for each step. Since the
approximate potential is not diagonalized, however, this method
is "intermediate" between the approximate wavefunction and po-

tential methods. It is described by Redmon in Vol. I and below
in Section IV.

Approximate Potential Codes

In these methods a basis in which the reference potential
is diagonal is used in each region, and transformations between
the different basis sets are required. Since this iaformation
is usually energy independent, it is stored during the first

energy calculation and re-used at following energies. Thus for



these methods both 1lst energy (El) and subseguent energy (E2)
times are given.
GORDON: (M. H. Alexander). The original approximate potential

method based on piecewise linear potentials developed and coded

by Gordon was modified by Alexander as described in Vol. I and

below in Section IV,

VIVS: (G. A. Parker). This new variakle-interval variable-step

method uses piecewise constant potentials and a f£fixed basis
within each interval. Analytic perturbation corrections to the
solutions are summed over the steps in an interval and the so-
lutions are carried in R-matrix form. The algorithm was devel-
oped by Parker, Schmalz, and Light, coded by Parker and
Schmalz, run by Parker, and is described in Vol. I and below in
Section IV.

RMAT: (T. G. Schmalz). The perturbatively corrected R-matrix

propagation method is an outgrowth of the R-matrix propagation
method of Walker and Light in which the analytic R-matrices are
perturbatively corrected in each sector, but propagated as in
the original method. It is described by Light, Schmalz, and
Lill in Vol. I, and further modifications are described hy
Schmalz below in Section IV,

L2RMAT: (R. B. Walker). This new L2 modification of the R-

matrix propagation method, developed by Walker and Schneider,

uses an L2 expansion of the wavefunction in the region cf
rapidly changing potential followed by the standard R-matrix
propagation. It is described in Vol. I and below in Section

1V, This is essentially a hybrid method.



Hybrid Methods
VIVAS: (G. A. Parker). This is a hybrid code consisting of

LOGD over the rapidly varying portica of the potential followed
by an improved version of VIVS. It was constructed by Parker
following the Berkeley meeting, and is described below in Sec-
tion 1IV.

For easy reference, the abbreviations for the different
methods and the participants that tested each method are listed
in Table 1. (Tables 1~11 begin on Page 22.)

TEST PROBLEMS

Table 2 provides a summary of the 24 test problems. Table
2 gives the number of channels, the S-matrix element for which
two significant figures of accuracy were required, the correct
magnitude squared of that S-matrix element and the values of

Tpin 80d T, for the integration range used to calculate

min ax
the S-matrix. The naming conventions for the tests follow.
Test 1. This is the problem of rotational and vibrational
excitation of H, by He impact. The total angular momentum
was fixed at J = 4 and four different basis sets were chosen to
yield 2, 8, 18 and 28 channel problems. These four basis sets
are designated as J4Bl, J4B2, J4B3, and J4B4 respectively. All
calculations were done at a relative collision energy of .0224
Hartree atomic units (27.21 eV.)
Test 2. This problem was chosen to test the codes on a
long range potential. The problem is rotational excitataion of

CO by Lit impact. Basis sets were chosen for two different

collision energies, 0.0000779 and 0.00195 Hartrees. The total
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angular momentum was chosen to keep the impact parameter low

(b = 4 Bohr). These choices were J = 5 and J = 25 for the low-
er and higher energies, respectively. Four different basis
sets were chosen for each J. These are designated J5B1, J5B2,
J5B3, and J5B4 for the low-energy case and J25B1, J25B2, J25B3,
and J25B4 for the high-energy case.

Test 3. This problem is identical to Test 2 in every re-
spect except that the integration was stopped at exactly r = 7.0
Bohr and ard the S-matrix computed Ly matching to spherical
Bessel functions,

Test 4. This problem is rotationmal excitation of N, by
electron impact. A local approximation to the exchange poten-
tial is used which is valid only for a collision energy of
1.1025 Hartree. Four different basis sets were chosen for to-
tal angular momentum J = 5. These are designated J5Bi, J5B2,

J5B3, and J5BS.
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SECTION III
PRESENTATION AND DISCUSSION OF THE TEST RESULTS

PRELIMINARY COMMENTS

Before presenting detailed comparisons of the methods some
preliminary comments are necessary. The test probliems were
chosen to be representative of research problems of current in-
terest, It was not posesible with these tests te cover all of
the important physical situations which arise in atom-molecule
collisjon studies. For example, there were no problems with
long range Coulomb potentials, no reactive scattering problems,
none with very high energy, none with multiple electronic sur-
face crossings and none with very large numbers of channels.
However, the numbers of channels di¢ vary from 2 to 32, the in-
tegration ranges needed for convergence varied from 16 to 1000
Bohr, the collision energies varied from 0.0000779 to 1.1025
Hartrees and the magnitudes of thz tramsition probabilities,
for which two significant figures of accuracy was requested,
varied over ten orders of magnitude. Hence, the tests, though
far from exhaustive, were demanding.

Except for Test 4/J5B2, none of the participants had prior
knowledge cof the correct answers or of the numerical difficul-
ties that might be encountered. Hence, each participant did
things slightly differently in setting up the calculations.

For example, a wide range of r . ~amd Toax the beginning
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and ending of the integration range, were chosen. If everyone
were to start over again, with hindsight we could make our cal-
culations much more uniform, providing a more precise compari-
son of the individual algorithms and computer programs. How-
ever, as it iz, another important comparison is possible. The
test problems were approached and solved as new and unsolved
research problems. The timings and accuracies and the individ-
ual comments in Section IV therefore provide a comparison of
the methods in an actual research situation - the mode in which
they will normally be used.

Also, it should be pointed out that Test 3 was designed to
compare the methods on the inner integration ramge. During
discussions at the second workshop meeting, however, we devel-
oped an histogramic approximation to ¢t/dr, the computer time
necessary for the method to integrate a unit distance, as a
function of r. This considerably lessens the need for Test 3.
ACCURACY

Considering all the basis sets, a total of 24 test problems
were solved and a total of 5494 S-matrix elements were gener-
ated by each code. Obviously, not every one of them can be
examined in detail. Therefore, we decided to look at one ine-
lastic S-matrix element for each case, and to try to achieve
two significant figures of accuracy in the transition probabil-
ity, |sijl2' Table 2 gives a list of the elements consid-
ered for each case. Two sBignificant figures of accuracy were
not always obtained, but the level of accuracy for all methods

is close enough for 2 meaningful comparison.
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Many of us in fact solved most of the test problems at
varying degrees of accuracy snd these results are interesting
because they show how the computer time varies with the accura-
cy on a given problem and how the accuracy varies with the num-
ber of integration steps. Appendix A contains the numbers of
steps, computer times and values of the selacted S-matrix ele-
ments for all of the runs saved ovn tape of all tests by all
participants. Complete S-matices for all of these runs are
available on microfiche.

Appendix B contains a complete listing of all the S-matrix
elements of all the tests. Only two significant figures of ac-
curacy for the specified Toin 80d Tpo. in the matrix ele-
ments of Table 2 are claimed. However, most elements are very
iikely accurate to more than two figures. For Tests 1, 3, and
4 the elements in Appendix B are from the predictor-corrector
program of L. D. Thomas, determined with a tolerance parzmeter
much smaller (overkill in many instances) than that used for
the results which are compared with the other methods. For
Test 2, they are from the log derivative program of B. R. John-
son, and again, often with a smaller stepsize than that used
for the timing comparisons.

COMPARISON OF THE METHODS

Before comparing times, it is necessary to consider the

used for the different pro-

widely varying t and

min ax

grams. The actual values used in each case are given in

Teble 3. An extreme example is the comparison of the PC and

MNN programs. Because r .. = 150.0 was used for PC and
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Thax = 1000.0 for MNN, the large difference in times (122 vs
706 sec) is meaningless. Also, one must realize that due to
the idiosyncracies of the computer's operating system, there
are 2 - 5% differences in the CPU times of exactly the same
computer job run at different times of the day. Nonetheless,
for the most part, the comparison of computer tines for the
different methods is meaningful and these are shown in Table 4.
The hybrid method, VIVAS, is discuss.d later and should for the
moment be left out of the comparisons.

One interesting feature is that no single method performs
best on all of the problems. It seems clear that the best
method is different for different physical problems. A strik-
ing example of this finding is the comparison between the LOGD
and SAMS programs. LOGD outperforms SAMS by a wide margin on
all tests except test 4 where SAMS is a factor of 2 faster.

One should note, however, that for Test 2 which required a very
large integration range, the LOGD method was combined with
Johnsen's multichannel WKB method and the latter was used for
the bulk of the integration range.

If one considers only the first energy calculations the
LOGD program seems to be the best all-round performer. How-
ever, if calculations are to be done at many energies the VIVS
program seems to be the onme to recommend. Again, one must be
cautioned to consider the physical problem before selecting a
method. On Test & SAMS is faster tham VIVS even at a second

energy.
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Also of interest is the number of potential evaluations
(usually also the number of integration steps taken) used by
each method. These are show in Table 5. The SAMS, PC, DEVOG,
and MNN methods, which fit the wavefunction or its derivatives
to a polynomial, take many more steps than the others. Since
the potential evaluation was a small part of the over-all com-
putation time (3 - 10%), this did not hurt them much. However,
if a problem had a potential which was very expensive to evalu-
ate, these methods would suffer relative to the others.

Finally, we compatre in Table 6 the squared magnitudes of
the selected S-matrix elements for all the methods and for all
the tests. Comparisons with other methods and other levels of
accuracy indicate, with a high degree of confidence, that ail
of the values for the LOGD program meet the requested accuracy
when rounded to two significant figures. It is quickly appar-
ent that not all methods achieved this accuracy on all tests.
The accuracy is however, good enough to permit a valid over-all
compar ison.

It is also necessary to comment on some apparent discrepan-
cies in Test 3. When one computes an S-matrix in the presence
of closed channels, strictly speaking, the asymptotic values of
the closed channels must be taken into account. However, for
large t, closed channel wavefunctions die out exponentially and
can be ignored. For Test 3 the S-matrix was computed at r = 7,0
where the closed channels are not negligible. Therefore differ-
ent results are obtained when the closed channels are ignored.

For Test 3 J25B4, J5B3, and J5B4, the answers of GORDON, VIVS,
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RMAT, and L2RMAT which ignore closed channels, are different
from those of LOGD, SAMS, PC and DEVOG which include closed
channels.

The results contained in Tables 3-6 allow a reasonable
overall comparison of the methods., Each is organized w'th the
different methods across the top and the different tests in
each row., The integration ranges, times (sec), numbers of po-
tential evaluations, and values of the selected transition
probabilities are given in Tables 3-6, respectively, As we
have tried to emphasize, although the quantitative comparisons
available from these tables are, in general, meaningful, the
optimal choice for a given problem will depend on the accuracy
desired, the difficulty of potential evaluation, the range of
the potential, the energy range, the numbers of energies, etc.
Thus, we feel it is very important that the individual comments
in Section IV be taken into account in making the choice.
TIMING HISTOGRAMS

Discussions at the second workshop meeting led to a means
of comparing the methods in a much more detailed way than had
previously been developed. By dividing the total time by the
total number of integration steps taken, we can determine the
average computer time per step. Then, by dividing the entire
integration range into smaller intervals and counting the num-
ber of steps taken in each interval, we can get an histogramic
approximation to dt/dr, the computer time cv integrate a unit

of distance i.e.,
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T
_ “tot N(r +A) - N(r)
dt/dr = pE ( A) (

tot
where N(r) is the number of steps required to integrate from

Tmin O T- Note that the inverse of this, dr/dt, is the
"velocity" with which the couwputer integrates over r.

After the second meeting, each participant either resolved
the problems or reexamined his output for the basis B3 of Tests
1,2, and 4 and compiled the histogram information. For each
method, the midpoints of the histogram bars were connected with
straight lines. These straight lines were then used to inter-
polate and find dt/dr for a common set of grid points for all
methods. This procedure also enables an integrated total time
to be determined for all methods with common values of Trin

and T The comparison of dt/dr among all the methods for

max’
Tests 1,2, and 4 is shown in Tables 7-10 and Figs. 1l-4.

With fourteen celumns to compare, it is not possible to
scrutinize Tables 7-10 at a glance. Figures 1-4 give a com-
plete graphical representation of the same data, but because of
the large number of lines, these figures also require some ef-
fort to study. For an easier, though incomplete, comparison,
Figs. 5-8 show the same data for the LOGD and VIVS methods
along with the best other first-energy method for each test.

Figures 1-4 zre log-log plots and are broken into two r-
ranges with different scales for each range. The computer-gen-
erated, spline curves are sometimes abnormal at discontinuities
in the data, but these abnormalities are few and not misleading

and in general the smooth curves are much easier to follow than
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straight line segments. Discontinuities occur in the SAMS and
LOGD data because step sizes are not continuously and automati-
cally chosen. They also occur in the PC data at points where
stabilizing transformations were made.

Figure 1 shows the comparison for Test 1/J4B3. Note dt/dr
is on a log scale, thus the times are dominated by the ranges
of r for which dt/dr (sec/Bohr) looks largest. It should ke
noted that because high absolute accuracy was required on this
test. 3AMS, a lower order method, is at a great disadvantage
compared with LOGD. It is also interesting to note that the
potential following methods (GORDON, RMAT, INSCAT, L2RMAT, and
VIVS) all follow a similar general shape, although with as much
as an eight-fold spread in dt/dr. LOGD is clearly the best
program in the inner r-range and VIVS, at the second energy is
clearly, the best in the outer r-range.

Figure 2 shows the comparison for Test 2/J25B3. This is a
very long range problem and the total times are dominated by
dv/dr at large values of r. GORDON, at the second energy, per-
forms best for small r and VIVS, at the second energy, performs
best for large r. The approximate wavefunction, methods--PC,
DEVOG, MNN, and SAMS—are impractical for this type of orob-
lem. Note that the LOGD program switches to a multichannel WKB
method at r = 20. Although this method was not discussed in
Voi. I, it is clearly competitive with the approximate potenti-

al methods.
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Figure 3 shows the comparison for Test 2/J5B3. This is the
same physical problem as that in Fig. 2, but with a lower col-
lision energy. The asymptotic wavelength in the first chanmel
is 5 Bohr compared to 1 Bohr for Test 2/J25B3. Hence, the ap-
proximate wavefunction methods do comparatively better on this
test. The LOGD program is best at small r and the WKB method
of the LOGD program is best at very large r. VIVS at the second
energy is best at intermediate r.

Figure 4 shows the comparison for Test 4/J}5K3. Although
the collision energy is much higher for this problem than for
the others, the asymptotic wavelength is still quite long -

4.2 Bohr — because of the small mass of the electron. Conse-
quently, the approximate wavefunction methods do much better
tuan one might at first glance expect. Also, in contrast to
the atom-molecule problems, the potential energy function is
fiiite at the origin. Therefore, in the non-classical region,
r 2 7 Bohr, the interaction is dominated by the centrifugal
terms. Ttz SAMS program excels on this problem because the
centrifugal terms are included exactly in the Green function.
LOGD and SAMS perform equally well for small r and are best in
that region. VIVS at the second energy is best for large r and
SAMS is best at intermediate r=.

Overall, one is struck by the widely varying performances
of individual programs on the different physical problems. For
example, INSCAT is the best long range (and overall) performer
at first energies on Test 1 and a factor of & faster than SAMS.

On Test 4, nearly the opposite is true. It is also quite clear
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that the best program would be a bhybrid which followed the low-
est dt/dr curve. Although no single method is best for all
tests in any r-range, the LOGD program is nearly always best‘
for small r and VIVS is nearly always best for large r. LOGD
and VIVS, therefore, seem the best choice of.partners for a hy-
brid program. This is not the ideal hybrid for all problems,
but such a hybrid is always better than any individual methcd.
This is indicated in Table 11.

Table 11 summarizes the integrated total times from Tables
7 — 10, with the methods arranged in ascending order on the
times. The entry labled HYBRID is not from am actual program.

t was hand calculated by integrating dt/dr from Tuin tO Tg

n
for LOGD and from Tg tO Toaw for VIVS. It can be secen that
the second energy HYBRID time is always smallest. For the
short range problems the HYBRID result is a factor of 1.5-2.0
times faster than either of the two methods individually. For
the long range problems of Test 2 the improvement is minimal
because the total time is dominated by the long-range region.
Following the second workshop meeting, a hybrid program,
VIVAS, was developed by G. Parker. This program includes sig-
nificant improvements to the original VIVS program as well as
the log derivative method. It can be seen in Table 4 that the
new VIVAS program is significantly better than any of the in-

dividual programs and as much as a factor of 300 faster in some

cases (compare VIVAS and MNN for Test 2/J25B3.)
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One fiual comment on Table 11 should be made. For any of
the individual programs it is fair to say that improvements in
speed by factors of 2 or 3 can often be made and probably could
be made by fine tuning the input parameters on each prob'em.
This means that the ordering of the methods in Table 11 should
not Bé taken too seriously. However, factors of 20-30 are seen
between the best and worst for each problem and this is signif-
icant. These differences could probably not be eliminated by
fine tuning the calculations.

SPECULATIONS ON FURTHER DEVELOPMENT

In quantum scattering theory there are computational as-
pects of close coupling calculations which have not really been
addressed here and which are important to the speed, accuracy,
and ease of the calculations. Among these are the choice of
basis sets (fixed or quasi-adiabatic), evaluation of potential
matrices, variation of the dimensionality of the equations by
dropping or picking up channels as needed, use of totally dif-
ferent algorithms (e.g., finite element methods), ete. By and
large, these problems need significant analysis and algorithms
development before overall scattering codes can be optimized.
These factors were excluded from the tests run by this workshop
so that we could focus on what has been the most time-consuming
portion of scattering calculations - the numerical integration
of coupled equations. We do rnot, however, want to leave the

impression that the entire field is now mature.
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TABLE 1. Definitions of the abbreviations used for the

different programs,

Participant Using
Name Method the Met| Vol.1® Vol.lI®
PC Verisble-order, L. D. Thomss 312 41
variable-step,
predictor~corrector
DEVOG DeVogelaste's method L. D. Thomss 105 41
MHN Numerov's method L. D. Thomas 86,111 41
LOGD Log derivative mathod B. R. Johnson 86 47
SAMS Sams-Kouri mechod K. McLenithan snd 199 53
D. Sectest
1NSCAT Integral aquations M. J. Redmon 290 67
with refetence
potentisls
GORDON  Gordon's method M. H. Alexsnder 13,75 7
vIvS Varisble-intervsl, G. A. Parker 172 81
variable-step method
RMAT R-matrix propagation T. G. Schaslz 116 93
L2RMAT L2 approach to R. B. Walker 376 97
R-matrix propagation
VIVAS Combination of LOGD €. A. Parker — 107

and an improved ver-
sion of VIVS

8page numbers where methods are described.
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TABLE 2. List of the transitions for which two significant
figures of accuracy were requested.d

Po.
Mo. opon ISiflz
{ fa § tn" 35" ¢ chan. chan. Tain Tmax

TEST 1

J4B1 1 200 41 0 4 2 2 9167E-10 2.5 45.0
J4B2 1 S0 0 41 0 & 8 8 .1681Z-8 2.5 45.0
J4B3 1 150 0 41 0 & 18 18 .1134E-8 2.5 45.0
Japs 1 200 0 41 0 4& 28 23 +1112E-8 2.5 45.0
TEST 2

Ja2sel 1 3 0 25 1 26 3 3 .3956 3.0 800.0
J2582 1 4 0 25 2 23 10 i0 .5523E-2 3.0 800.0
J25B3 1 4 0 25 2 23 22 22 .1715E-1 3.0 800.0
J2584 1 4 0 25 2 23 32 31 .3446E-1 3.0 00.
TEST 2

J581 1 3 0 5 1 6 3 3 .2308 3.0 1500.0
J5B2 1 4 0 5 2 3 6 6 .1415E-1 3.0 1500.0
J5B3 1 4 0 5 2 3 15 6 .7770E-2 3.0 1500.0
35 1 4 0o 5 2 3 27 6 .1608E-1 3.0 1500.0
TEST 3

J2581 1 3 ¢ 25 1 26 3 3 4727 3.0 7.0
J2582 1 4 0 25 2 23 10 10 .1710 3.0 7.0
J25B3 1 4 0 25 2 23 22 22 .6569E-1 3.0 7.0
J25B4 1 4 0 25 2 23 32 31 .6266E-2 3.0 7.0
TEST 3

J5B1 1 3 0 5 1 6 3 3 4185E-1 3.0 7.0
J5p2 1 4 0 5 2 3 6 6 .2056 3.0 7.0
J583 1 4 o 3 2 3 15 6 .1039E-2 3.0 7.0
J5B4 1 4 o S 2 3 27 6 .6097E-2 .r 7.0
TEST 4

J5B1 1 2 0 5 2 3 4 4 -4330E-2 .01 120.0
J5B2 1 2 0 5 2 3 15 15 .2912E-2 .01 120.0
J5B3 1 2 0 5 2 3 21 21 .2873E-2 .01 120.0
J584 1 2 0o 5 2 3 27 27 .2882E-2 .01 120.0

8 { is the initisl channel number and f is the final channel number.
n, and j, and ¢ are tde initial quantum numbers and n', j' and ¢ sre
the final quantum numbers. Thass are foilowed the number of total
and open channels and the corr2ct transition probability. The last
two colunns give the integration range used to calculate the
transition probability.
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TABLE 3. Starting and ending values of r (Bohr) used by each method.

PC DEVOG L 1060 SAMS INSCAT  GORDON  YIVS RMAT L2RMAT  YIVAS
TEST1 2.50 2.50 2.50 1.50 2.25 2.25 2.10 2.30 1.70 1.70 2.30
34 45,0 45.0 45.0 30.0 40.0 16.5 19.0 40.0 45.0 35.0 40.0
TESTZ 3.00 3.00 3.00 3.00 3.50 3.00 3.04 3.30 3.00 3.30 3.30
425 150, 1000 1000 800. 500. 500. 1000 »500E+04 .200E+04 700, +500E+04
TESTZ 3.00 3.00 3.00 3.00 3.50 3.00 2.80 3.30 3.00 3.30 -—
J5 150, 1000 1000 «150£+04 1000 500, 1000 700. +200E+04 700. _—
TESTS> 3.00 3.00 === 3.00 3.50 ———- 3.90 3.30 3.00 3.30 -—
J25 7.00 7.00 —— 7.00 7.00 — 7.00 7.00 7.00 7.00 —
TESTS 3 70 3.00 === 3.00 3.50 - 2.78 3.30 3.00 3.30
J5  7.00 7.00 -— 7.00 7.00 ———- 7.00 7.00 7.0 7.00

TEST4 .100E-0t .100E-01 .100E-05 .i00E-03 .SOOE-Di .200E-01 .3C0E-DV .150 -100 «500€-05 .150
J5 120, 120. 120. 50.0 5¢.2 75.0 70.0 160. 250. 50.0 160.
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TABLE 4. CPU seconds used for each test by each of the methods.3

PC 2=vOG MM  LOGD  SAMS INSCAT GORDON VIVS  AMAT L2RMAT VIVAS GORDON  VIVS  RMAT LZRMAT VIVAS
TIME El E1 El E? El E2 E2 E2 E2 E2
“EST1
J4B1 1.34 .80 39 .10 39 218 1,38 «50 «73 53 08 247 .09 .29 13 .03
WaB2 1531 7.14 2.9 +89  3.17 B4 7,13 1,29 4.4 6.9 33 1,53 .30 1.6 1.08 16
JaB3  75.64 45.%5 18,92 5.75 20.21 3.73 43.40 9.45 26.21 22.52 1.80 B.54 3.29 10.79 3.69 1.CQ3
J4p4  256.45 151.74 67.86 [8.79 56.64 11.71 104.18 31,67 71.64 ~—— 8.96 24.06 7.87 26.59 -— 4.08
TEST2
J2581  2.83 tA.11 17.87 54 2,63 -~ ———— <59 +87 67 30 - 09 .13 .18 .08
J25B2 22.2) 82,17 101.96 2.61 12.13 5.74 27.81 2.30 4.57 9.67 1.27 5.08 53 1,70 2,37 47
J25B3 121.63 541.30 705.55 18.08 77.08 31.62 43.16 14.82 36,51 63.33 7.34 .49 3.88 13,95 21.85 2.28
12584 603.10 --- - 47,29  --- === 278,73 ~-— 108,38 ~— 34,75 46.83 --—= 37,99 -~~~ 11,47
TEST2
J5B1 .98 3.B9 2.56 <47 — 5.07 W73 83 151  ~-- 1.31 <10 .28 .58
3582 3.3 7.37  5.49  1.03 .00 1,94 11,21 1.5 1.85 4.5% ~— 2.39 «29 66 1,59
583 31,95 45.09 74,45 6.96 54,17 —— 64,05 6,02 13.17 41.42 -— 13.47 1.55 4.86 14.14
J5B4  132.27 203.49 --- 29,87 214.36 --- 298,65 27.75 59.47 --- we~  65.83 7.32 22.13 --—- -
TESTS
J25B81 .28 <19 JA5  1.86 - +89 «30 22 32 - .24 04 .08 .02
J25B2 3.1 .92 .68 8.74 5.0 137 1,24 4,70 -— 1.04 .32 .46 .37
J2583 19.48 6.08 4,31 54,82 --~ 1424 7,33 9.27 23.5% ---= 2,50 1.9 3,50 5.B8
J2584 79.40 21.20 ~~- 11.70 147,73 === 50.08 19.85 34.62 =--- — 11.32 5.7C 12,14 —_ -
TEST3
J581 -29 .19 15 130 - 1.1 .32 +20 40 - .29 04 .07 -
4582 .77 36 .28  2.48 2,67 «55 35 T.41 - «59 -1 .20 -
4583 8.79  2.09 1.62 24.81 -— 11.67 3.13 4.46 14.04 —- 2.32 .79 1.63 —
JER4 37,53 9.56  --- 7.21 105.33 --- 26.60 12.93 18.34 -——- -— 5.66 3.37 6.83 ——
TEST4
J5B1 .79 <44 +38 «25 .07 36 1.67 34 «29 .82 «16 -45 .08 .1 -05
582 14,48 6.77 6.85 2.16 W92  4.42 11.50 3.96 3.95 6.60 1.49 2.29 1.00 .55 +63
J583  26.01 16.50 15.34 5.35 2.16 10.74 24.85 9.20 9.98 11.4% 3.70 4.83 2,24 3.82 1.50
J584  51.51 33.27 30.46 10.58 4.26 22.66 58.36 19.84 23.46 -—— 6.90 11,06 4.73 8.86 2.73
ap] designates a first-energy calculation and E2 a second-energy

calculation.
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TABLE 5. Number of potential evaluations used.

- PC DEVOG MNN  LOGD  SAMS INSCAT GORDON  VIVS  RMAT L2RMAT VIVAS
STEPS

TESTY

J4B1 2693 6791 1343 879 3051 38 493 1746 217 450 217
J482 2770 6791 1347 879 3051 248 519 950 241 466 217
J4B3 2996 6791 1347 879 3051 198 680 1000 277 217 217

Japa 3181 6791 1349 879 3051 197 570 1425 221 ——— 301
TEST2
J2581 3329 50171 31351 1347 7101 -—= -- 1025 185 359 339

J2582 3497 S0171 31370 1143 7101 999 1369 1125 209 593 367
J2583 3388 50171 31373 1143 7101 1008 424 1275 216 754 381

J2584 5881 -— == 1143 —— - 1102 - 217 -— 661
TEST2
J581 1168 10595 4353 1171 2901 --- 1207 1300 175 995 -

4582 1489 10595 4364 1171 2501 850 1221 1550 189 1064 et
J583 2238 10595 8171 1753 11576 ~== 1395 1300 206 1338 -

J584 2406 —— “~= 1753 11576 - 1767 1475 202 - -—
TEST3

J25B1 355 497 401 5001 _— 198 525 45 82 -
J2582 564 497 401 5000 —— 230 650 50 102 -
12583 595 497 401 5001 — 139 625 52 204 -
J2584 835 497 -— 401 5001 -— 186 650 - - -
TEST3

J5B1 357 477 401 3501 Eaad 273 550 41 215 -
1582 382 a77 401 3501 — 292 550 45 203 -
1583 641 a77 401 5001 -— 253 675 68 313 it
4584 7 a77 ——- 401 5001 - 158 675 —-— -— -
TEST4

$5B1 646 1591 557 1003 190 328 299 600 a4 280 185

J5B2 1022 1591 721 527 190 347 255 825 55 139 199
J583 857 1591 &§72 527 190 382 266 825 59 102 213
4524 933 1581 703 527 190 415 356 925 7% -—_ 213
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TABLE 6. Valuegaof the selected transition probabilities,
[S14

(2] DEVOG L 106D SAMS 1NSCAT GORDON vI¥s RMAT LZRMAT YIVAS
TESTI
J4B)  ,9167E~10 .9203E-10 .9640E~10 ,9144E-10 .9201E-10 ,9094E~10 .9443E-10 .9393E-10 .9081E-10 .SO71E-10 ,1016E-09
Ja32  L16L1£~08 .16B1E-08 .1683E-08 .16B1E-08 .1679E-08 .1699E-08 .1695E-08 .1607E-08 .!682E-08 ,16B3E-08 .1676E-08
J4B>  .1184E-08 .1183E-08 .11BJE-08 ,1185E-08 .1181E-08 .1149E-08 ,1276Y-08 . 1213E-08 ,1193E-08 .I1170E-08 .1164E-08
J4aB4 . 1112E-08 .1 111E-08 .1112E-08 ,1112E-08 .1110E-08 .3264E-06 .1177E-08 .1120E-08 .1158E-08 --— «1102E-08
TEST2
J2581 .4073 +3948 4026 «3954 +4003 ttd ———— 3953 3959 +3959 »3964E-02
J2582 .5899E-02 .5991E-02 .4931E-02 .5571E-02 .4372E-02 .5645E-02 ,4960E-02 .5583E-02 ,5541E-02 .5437E-02 .5377E-01
42583 .2036E-01 .1722E-01 .1666E-01 .1715E-01 .1752E-0% .2154E-0Y .1702E-01 .1732E-01 .1709E-01 .1718E-01 ,1710E-Ot
42584 (3755E-01 <ww-- —— «3446E<01  ween —— +3485E-08 -~ «J450E-01 -~—- +3446E-01
TEST2
Jssl ,2253 »2285 .2294 »2308 «2269 —— «2279 2291 2287 +230%
J582 ,1768E-01 ,1394E-01 .1397E-01 .1385E-01 .1412E-01 ,1755E-01 .1439E-01 .1423E-01 .USI3E-O01 .1410E-01
J583 . 1025E-01 .7885E-02 .73756-02 .7720E-02 .7574E~02 -7349E-02 .4139E-01 .7844E-02 .7975E-02
J584 L 1460E~01 ,1593E-071 =ww~ +160BE-01 .161BE-01 +1492E-01 .603SE-01 .1564E-01 -—-- —_—
TEST3
32581 .476% .4728 4727 <4735 4677 <4725 -AN7 A726 ———
42582 . 1708 1700 1710 LA715 1707 JA7U «1708 1707
J25B3 .6562E-01 .6594E-01 -6568E-01 .6572E~01 «6350E~0) .6565E-01 .6586E-05 ,6571E-01
J2584 .6269E-02 ,5973E-02 --—- +6277E-02 .6434E-02 -7148E~02 ,687T1E-02 --—- —— ————
TEST3
J581  .4205E-01 .4141E-01 ——mn +4186E-01 .4237E-Q) --—- +»4376E-01 ,4179E-0! 4191E-01 .4164E-01
4582 L2036 «2066 —— +20%6 +2062 — .2086 »2052 «2043 2062
J583 . 1039E-02 .93BIE-03 . 1043E-02 .1099E-02 -8706E-03 .B596E-03 .8556E-03 .8604E-01
J5B4  .6092E-02 ,6124E-02 -——- +6097E-02 .6344E-02 ~-—- +3014E~01 ,2903E~01 --—- -— ——
TEST4
JS5B!  ,4326E-02 .4334E-02 .4338E-02 .4329E-02 .4387E-02 ,4305E-02 .4403E-02 .4319E-02 .4325E-02 ,4303E-02 .4304E~02
J582 .2913E-02 .2914E-02 .2913E-02 .2907E-02 .2914E-02 .292BE-02 .2900E-02 .2904E-0) .2911E-02 .2892E-02 .2905E-02
4583 ,2864E-02 .2874E-02 .287AE-02 .2B5BE-02 .2B76E-02 .28B87E-02 .2860E-02 .2867c-02 .28856-02 .2865E-02 .2861E-02
J5B4 .2883E-02 .2883E-02 ,2884E-02 .2877€-02 .287CE-02 ,2872E-02 .2871E-02 .28B6E-02 .2BY90E-02 -—-- «2873E-02
dFor each test the values of i and f are defined in Table 1.
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TABLE 7. Test 1/J4B3. dt/dr (sec/Bohr), computer time for integrat-
ing a unit distance vs r.2
PC  DEYOG M LOGD SAMS  INSCAT GORDON YIvs RMAT L2RMAT GORDON vivs RMAT LZRMAT
r Et El El Er €2 E2 E2

2.8 4.241 020 .810 202 2,208 1.%00 10.396 2,130 5.01% 7,607 2.043 .542 1.920 520
2.9 3.540 912 »719 2202 2.21% 1.196 12,184 2.354 4.988 6.966 2.394 .600 1.908 .580
3.0 2.839 +805 +628 «202 2,213 1.105 13.330 2,579 4.957 6.325 2.620 «657 1.896 «640
3.1 2.138 2698 #537 202  2.213 1.040 14.202 3.000 4.927 5.684 2.792 764 1.884 «700
3.2 1.438 «591 »446 .202 2,213 »979 15.074 3.532 4.896 .043  2.964 -899 1.873 760
3.3 1.013 «560 23N 2202 2,213 2932 14,943 4,064 4.865 4.403 2.938 1.033 1.861 820
3.4 1.583 .635 412 202 2.213 882 13.810 4.515 4.835 3,762 2.714 1.1a47 1.849 «860
3.5 2.154 WJ10 +434 202 2,213 820 12,677 4,945 4.804 3,121 2,489 1.256 1.837 940
3.6 2,725 .786 »455 202 2,211 .758 11.647 4,845 4.589 2,480 2,286 1,231 1.755  1.000
3.7 3.295 «861 477 202 2.208 «725 11,029 4.595 4.375 2.354 2.166 1.169 1,673 950
3.8 3.787 919 492 <202 2,205 694 10.412 3.900 4.160 2.229 2.046 «993 1.591 +900
3.9 3,382 <940 +481 202 2.203 +661 9.794 3,133 3.945 2,103 1.926 798 +509 +850
4.0 2.978 961 470 <202 2,200 623 9.201 2.366  3.731 .978 1.811 .603 1.427 800
5.0 1.663 1.076 «439 »202 2,213 341 5,057 1.151 2.095 1,035 2999 293 +801 »420
6.0 1.75) 1.076 439 +202 1.776 .86 2.980 795 1.278 +580 »590 202 .489 233
7.0 1.751 1.076 <439 2202  1.325 L1700 1.760 +582 -869 -300 .350 .148 332 .120
8.0 1.751 1.076 +439 »202 1.325 050 1.580 368 715 +255 J14 .094 .274 .105
9.0 1.817 1.076 .439 #202  1.325 079  1.400 +155 2715 <210 278 039 274 090
10.0 2.531 1.176 »439 «202 +994 072 1.265 123 «673 <197 «25% 031 +258 +083
11,0 1.821 1.076 439 «202 «663 +067 1.174 JA17 »589 <183 .233 .030 225 077
12.0 1,552 1.076 <439 .202 <663 063 1.083 111 517 170 «215 .028 198 .070
13.0 1.628 1.076 439 +202 +663 »,059 1.006 «105 482 .162 +195 .027 + 184 <066
14.0 1.754 1.076 +439 »202 663 »055 934 -099 447 154 175 025 78 ~062
15.0 1.754 1.076 439 »202 «398 .052 .868 094 412 +146 .159 .024 158 .058
16.0 1.764 1.076 439 »202 2133 »051 «821 .088 .382 «138 .155 .022 . 146 .054
TIME 25.494 13.799 5.894 2,668 15,825 2,602 39.007 9.298 16.421 9.376 7.667 2.366 6.281 2.772

ag]l and E2 refer to first and second energy calculations,

respectively.

Time (at the bottom) is the integrated, total time

for integrating between the first and last values of r in column 1.
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TABLE 8. Test 2/J258B3. dt/dr (sec/Bohr), computetr time for
integrating a unit distance vs r.a
PC  DEVOG N LOGD SAMS  INSCAT GORDON vIvs RMAT LZRMAT GORDON vIvS RMAT LZRMAT
r E1l Et El 3] E2 &2 E2 E2

3.5 14,089 2,521 3,710 .979 2,136 5.592 4.470 3,209 3.396 16.800 «610 840 1,298 .790
3.6 12.262 2.157 3.143 2979 2,136 5.209 4,522 3,322 3.396 16.800 «633 «870 1.298 790
3.7 10,435 1.793 2,576 2979 2,136 4.844 4,500 3.434  3.396 15.0'9 «661 +900 1.298 1.029
3.8 8.867 1.496 2.160 2979  2.136 4.494 4.653 6.519 3.396 14.449 «690 1.709  1.298 1.268
3.9 7.614 1,325 1.940 ,979  2.136 4.160 4,718 9.033 3,396 !..348 719 2,368 1.298  1.506
4.0 6.360 1,154 1.719 979 2,136 3.840 4,783 8.812 3,396 12.198 £747 2,309 1.298  1.745
4.1 5.107 .983 1.499 .979 2,136 3.552 4.849 8.5%0 3,396 11.047 #7176 2.25% 1.298  1.984
4.2 3.853 +812 1.279 «979 2,136 3.235 4.914 4,727 5,336 9.896 -804 1.257 1.298 2.223
4.3 3.054 <708 1.147 <979  2.136 2.949 4.979 4.480 3.260 8.746 833 1.173 1.246  2.462
4.4 2.940 .786 1.209 .979 2.136 2.669 5.045 4.660 2,989 7.595 «861 1.221 1.142 2.701
4.5 2,826 «865 1.271 979 2.136 2,393 5.110 4.757 2,717  6.876 890 1.248 1.038 2.762
4.6 2,712 944 1,333 «979 2,136 2.113  4.895 3.835 2.445 6.588 .852  1.006 .93 2.647
4.7 2.59% 1.023 1.354 979 2,136 1.829 4.680 2.914 2.174 6.301 814 +763 831 2.531
4.8 2,508 1.089 1.444 ¥979 24136 1.506 4,465 2,015 1,970 6.013 776 527 W93 2.416
4.9  2.463 1.091 1.444 979 2.136  1.179  4.250 1.858 1.834 5.725 -738 -486 «701 2.300
5.0 2.418 1.093 1.444 979 2.136 1.069 4.035 1,702 1.698 5.437 »700 .445 649 2.184
6.0 2.248 976 1.444 979 2,136 1.565 2.960 .629 1.189 3.172 +510 +165 .454 1.276
7.0 1,667 804 1.082 979 1.897 1.314  2.620 «461 1.456  1.897 +454 -121 .556 765
8.0 1,401 «691 .722 979 1,658 1.046 2,020 »372 1.844 1.615 +354 .098 .704 651
9.0 1.107 624 <722 .538 1.418 -830 1.660 328 1.916 1.411 .28%9 .086 JI32 568
10.0 .954 +587 722 .38 1,179 <665 1,357 W285  1.673 1.515 234 .075 639 610
11.0 .937 .565 722 .538 «940 <537 1,223 254 1.430  1.619 212 067 547 652
i2.0 756 .553 722 .538 837 .435  1.090 «223  1.187 1.615 .190 .058 .454 .649
13.0 .784 2545 722 «538 »735 +351 .957 <192 .944 t.584 -168 .050 =361 636
14.0 »639 -541 722 538 632 .280 -823 .162 .701 1.540 . 146 .042 «268 619
15.0 .847 «538 <722 .430 .530 213 754 142 .458 1,486 #133 .037 175 .598
16.0 «550 £537 722 «430 2427 <170 705 134 440 1,444 .124 035 .168 <570
17.0 612 «535 .122 .430 .427 <130 +657 «125 A2 1.241 .15 .033 .161 «501
18.0 +651 535 722 .430 .427 141 608 117 402  1.068 <105 .031 «153 .432
19.0 .788 +535 722 +430 427 .64 +560 .109 .383 .895 <096 .028 146 .364
20.0 »707 535 .722 .430 «427 .174 «512 +100 364 +807 .087 .026 .139 .328
25.0 871 535 .722 .074 .427 .168 318 065 269 .476 .050 «017 . 103 +194
30.0 -649 .535 722 L061 .427 .149 «272 056 174 <257 043 .015 -067 »105
35.0 .555 535 722 .052 -427 131 «226 .048 079 .224 .036 012 -030 .091
40.0 716 .535 .722 .046 .248 A7 179 .039 075 <191 .029 .010 .029 .078
45,0 «658 +537 <722 .041 2126 +105 «133 «030 071 +158 021 .008 .027 .064
50.0 +658 .537 722 036 #1107 «095 .086 025 067 .125 .014 .007 .026 050
100. 4658 »537 «722 .018 .107 <048 020 013 .040 .059 .003 .003 .015 .023
150. «658 537 122 W02 A7 «052 013 -007 025 -046 003 002 010 019
TIME 110.176 81.001 108,733 15.137 3B.449 22.754 37.945 14,529 28,598 56.514 6.407 3.805 10.927 19.634

8E]l and E2 refer to first and second emergy calculations,

respectively.

Time (at the bottom) is the integrated, total time

for integrating between the first and last values of r in column 1.
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TABLE 9. Test 2/J5B3. dt/dr (sec/Bohr), computer time for
integrating a unit distance vs r.4

PC  DEVCG MNN LoGD SAMS  GORDON vivs RMAT LZRMAT GORDON vIvS RMAT LZRMAT
E1 E2

r ETl El El €2 E2 E2
3.5 7.212 «987  1.496 «269 936 2.818 1.620 2.998 7.450 +596 +410  1.106 -280
3.6 6.344 .844 1,267 «269 936 2.946 1.620 2.570 7,450 «623 «410 538 -280
3.7  5.476 «701 1,037 +269 936 3,075 1.620 2.141 7.450 .649 +410 790 -280
3.8 4.743 587 872 #2569 «936 32,203 1.603 1.876 7,155 «675 A6 «692 321
3.9  4.149 .519 776 #2269 «936 3,331 1.548 1773 6.566 702 #392 «654 .404
4,0 3,555 =451 <681 +269 <936 3.459 1.493 1.670 5.976 .726 .378 «616 »486
4.1 2.962 »383 +586 +269 <936 3,587 1.438 1,568 5,387 «755 364 «578 - 3568
4,2 2.368 .316 +491 +269 «936  3.715 1.384  1.465 4,798 -781 »350 541 651
4.3 1.963 .272 444 .269 .936 3,844 1.329 1.362 4.208 -B07 336 «503 733
4.4 1,767 »302 <473 «269 <936 3,972 1.274 1,259 3.619 834 322 «465 .815
4,5 1,572 331 +501 +269 «936  4.100 1.219 1,156 3.029 .860 +308 .427 .898
4.6 1.377 -360 «529 -26% 936 3.935 1.164 1.054 2.440 -B26 294 .389 .980
4.7 1.18) -390 «557 +269 936 3,770 1.109 2951 2,458 +792 .280 «351 .987
4.8 1,078 .415 .578 »269 .936 3.605 1.055 861  2.476 .758 +266 .318 .993
4.9  t.n2 .415 .57C «269 <936  3.440 1.000 784 2,494 724 «252 .289  1.000
S.0 .47 .414 .578 »269 936  3.275 «945 #2707 2,512 +690 «238 .261  1.007
6.0 1.094 «352 «564 «269 «936 2,495 «455 <578 2,642 «525 <113 «213 1,056
7.0 .882 -268 .289 .269 936  2.352 «407 .499  2.624 .494 -101 .184 1.051
8.0 746 .204 +289 «269 .936  1.981 360 =437 2.368 .42l .090 .161 +946
3.0 .555 .161 +263 «269 2936 1.626 313 .389 1,952 4346 .078 <144 «786
10.0 .444 .130 .144 .090 936 1,319 +2€6 354 1.637 .281 <066 131 <635
11.0 <437 <109 .144 .090 2936  1.153 <219 320 *.368 .247 +055 .18 <543
1.0 .328 .094 .144 +090 2936 «988 W72 «285 «199 2212 .043 »105 <477
13.0 -463 .083 »144 .090 .936 .823 -160 +250 1.030 177 .040 .092 -410

14.0 .288 .074 =074 +090 +936 «715 .155 15 .925 «154 .039 .079 <367
15.0 .163 .067 .072 .090 2936 <665 «150 <180 <82t .143 .038 066 2324
16.0 <191 -062 .072 .090 .936 615 .145 174 716 .132 .037 .064 .28%
17.0 757 «059 .072 .090 2936 «565 <139 .167 647 121 «035 2062 +253
18,0 199 .055 072 »090 +936 <515 .134 o161 «590 « 110 «034 »059 «231
19.0 o122 .053 <072 .090 -936 <465 129 <155 .534 -099 .033 .057 «209
20.0 <124 -051 072 .0%0 .936 «415 .124 .148 .477 .088 .03} »055 .187

25.0 095 046 «072 .090 -936 <326 .101 <117 325 067 <026 2047 .128
50.0 .065 .044 <072 <040 =936 «255 .089 -085 <241 .050 «023 <021 «095
35.0 «065 2043 .072 040 .936 .208 -078 <054 «157 =040 .020 .020 .062
40.0 <065 .043 072 -040 936 -183 -066 039 .098 ~036 <017 .018 -039

45.0 .065 .043 .072 .040 2936 «159 .055 <044 .092 .031 014 .016 +037
50.0 <065 .043 072 <040 .425 34 +050 .040 +086 .027 013 015 .034

100. 065 .043 »072 «002 .023 +060 «032 014 +030 .012 -008 .005 .010
150, 065 <043 072 .00t .023 049 026 .008 026 010 006 .003 .009

TIME 20.469 B.309 13.168 5.251 54.625 38.048 11.631 10.936 37.851 7.925 2.932 4.u55 13.116

8El and E2 refer to first and second energy calculations,
respectively. Time (at the bottom) is the integrated, total time
for integrating between the first and last values of r in column 1.
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TABLE 10. Test 4/35B3. dt/dr (sec/Bobr), computer time for
integrating a unit distance vs r.2

PC  DEVOG MNN LoD SAMS INSCAT GORDON vIvVS RMAT LZRMAT GORDON VIVS RMAT LZRMAT
El 3] El El E2

-

#2 13,599 3.601 7,160 «216 2229 4,254 14,943  1.560 2.677 5.910 2.900 «380 1.025 326
4 10,695 2.809 5.3M =216 «229 4.316  7.043 1.560 2.677 5.910 1.364 «380 1,025 358
& 6,313 1,662 2.921 «216 «229 2,868 6.088 2,086 2.590 5.910 1.179 .508 .991 «390
8 2.222 .555 +800 $216 «229 2,213  5.132 2,663 2.244 4.952 994 649 «859 .408
1.0 1.641 .853 -650 216 «229  1.776 4.443 3,373  1.898 3.994 +860 .822 - 726 -426
1.2 1.060 »351 -500 .215 2229 1.401 3,931 3.2480 1.552 3.036 761 .789 .594 .444
1.4 -832 275 .409 «213 #2229 1.224 3.419 2,262 1,205 2.078 662 <550 -461 +462
1.6 1,174 «240 385 .212 229 1,073 2,907 1.855 981 1,120 «563 .452 «375 .480
1.8 1,497 «205 «361 »210 +229 2951 2,395 1.449 878 1,013 .464 +353 «336 .431
2.0 1n.281 .18t 32t »208 «229 868 1.883 1.144 74 .907 364 »280 «296 .382
3.0 <199 .089 .178 102 229 .582 1.267 +764 .430 +552 .245 .186 <165 «222
4.0 103 .048 «169 «102 «223 .442 «942 +309 <344 +397 .162 124 132 . 156
5.0 +103 .081 <089 +102 -130 «352 739 .387 «258 «334 -142 .094 -099 <135
6.0 .875 .095 »089 «102 »023 «293 «657 +316 +258 <279 .127 .077 -099 .128
7.0 +330 .104 »089 «102 -023 «250 .574 .251 .258 -243 1M <061 .099 #153
8.0 <120 .108 -089 .102 .023 .221 .492 «228 172 <206 .096 +055 -066 +179
9.0 .273 Jan +089 «102 .023 .193 <410 .198 .172 «182 .080 -048 066 LN
10.0 .244 J14 089 .102 023 177 +390 17 <166 167 .076 .042 -064 +138
1.0 . 163 15 .089 .102 +023 «162 370 .144 «155 «153 Prat -035 059 104
12.0 o123 116 «089 «102 <023 .146 =350 .118 .43 .138 067 .029 .055 071
13.0 +123 W17 .089 .102 .023 «135 «330 <101 «131 127 -063 .025 .050 .051
14.0 .104 .18 <089 .102 <023 . 127 2310 .098 217 <120 -058 .524 .045 -048
15.0 .078 119 .089 «102 023 «119 .290 .094 .103 <113 .054 .023 .040 .045
16.0 .087 119 .089 .102 »023 -110 .270 =090 .089 «106 .050 .022 .034 .042
17.0 .089 .19 ~089 <102 023 «102 +250 «087 076 .099 .045 .02t -029 -039
18.0 .097 .120 +089 .102 .023 .097 «230 .083 .069 .092 a1 .020 .026 .037
19.0 .212 120 .089% <102 »023 .093 217 .079 069 .087 .039 .019 -026 .035
20.0 .096 .120 .089 .102 .023 .089 21 -076 .069 -084 .038 .018 »026 <033
25.0 2112 J21 .089 .102 023 .070 .182 «057 <063 -068 .033 -014 .022 .027
30.0 .151 122 0% «102 «023 4059 .153 -039 .052 .057 .028 .009 .020 .023
35.0 .120 -122 .089 -102 .023 .050 .124 .024 -040 .050 .023 .005 .015 .020
40.0 »134 122 .089 .102 <023 .044 =110 .023 .034 .043 .021 .005 <013 .017
45.0 .134 -122 .089 .102 +023 .038 -110 .021 .032 .04 .021 .005 .012 »016
50.0 <134 Jg22 .089 .102 .024 <035 .110 .020 231 <041 .021 .005 .012 .016

TIME 14,422 7,298 7.592 5.321 2,128 9.375 22,095 9.352 7,937 11.778 4.222 2.280 3.038 3.345

2g]1 and E2 refer to first and second energy calculations,
respectively. Time (at the bottom) is the integrated, total time
for integrating between the first and last values of r in column 1.



32

TABLE 11. Integrated total times from Tables 7-10 arranged in
ascended order on the time.a

TEST 1/3483 TEST 2/J2583 TEST 2/J5B3 TEST 4/J5B3

Time Time Time Time
Method Energy (sec) Method Energy (sec) MHethod Energy (sec) Method Energy (sec)

HYBRID 2nd 1.31 HYBRID 2nd 3.3 HYBRID 2nd 2.82 HYBRID 2nd 1.56
HYBRID 1lst 2.08 VIVS 2nd 3.8 VIVS 2nd 2.3 SAMS 2.13
VIVS 2nd 2.37 GORDON 2nd 6.4 RMAT 2nd 4.03 Vivs 2nd 2.28
INSCAT 2.60 HYBRID 1st 9.5 LOGD 5.25 RMAT 2nd 3.04
LOGD 2.67 RMAT 2nd 10.9 GORDON 2nd 7.92 LZRMAT 2nd 3.34
L2RMAT  2nd 2.78 VIVS 1st 14.5 DEVOG 8.31 GORPON 2nd 4.22
MNN 5.87 LOGD 15.1 HYBRID 1st 10.17 HYBRID 1st 4.43
RMAT 2nd 6.28 L2RMAT 2nd 19.6 RMAT 1st 10.94 LOGD 5.32
GORDON  2nd 7.67 1NSCAT 22.8 VIVS lst 11.63 DEVOG 7.30
VIVS lst 9.30 T 1st 28.6 LIHMAT 2nd 13.12 MNN 7.59
L2RMAT  1st 9.38 GORDON lst 37.9 MNN 13.16 RMAT lst 7.94
DEVOG 13.80 SAMS 38.4 PC 20.47 VIVS lst 9.35
SAMS 15.82 L2RMAT 1st 56.3 L2RMAT lst 37.85 INSCAT 9.37
RMAT 1st 16.42 DEVOG 81.0 GORDON 1st 38.05 L2RMAT lst 11.78
PC 25.49 MNN 108.7 5SaAMS 54.62 PC 14.42
GORDON  1st 39.01 PC 110.2 GORDON  1st 22.09

3The HYBRID times are the sum of the times for LOGD integrated from rpjn to tg and
for VIVS integrated ‘rom rg to rpax. rg is 8.0, 6.0, 4.8 and 4.0 for B 1/J583,
Test 2/325B3, Test 2/JSB3 and Test 4/J5B3, respectlvely.
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Fig. 1. Comparison of dt/dr for all methods for Test 1/J4B3.
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SECTION IV

INDIVIDUAL COMMENTS ON METHODS AND TEST RESULTS

Solution of the Test Problems Using the
Predictor-Corvector (PC), DeVogelaere (DEVOG),
and Numerov (MNN) Algorithms

Lowell D. Thomas

National Resource for Computation in Chemistry
Lawrence Berkeley Laboratory, University of California
Berkeley, California 94720
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Predictor-Corrector

Predictor-corrector methods for numerically solving differential equa-
tions are among the first ever developed and date back nearly 100 years.:l
Recent advances in the application of these methods have, however, improved
them considerably.z’3 These improved methods have been widely applied to the
calculation of classical trajectories, but have not, to my knowledge, been given
serious consideration for quantum mechanical calculations. It therefore seems
of interest to solve the test problems of this workshop with a predictor-
corrector method to see if the new methods which have been developed, in the
past 10 years or so, are in fact improvements over their predecessors.

The program of Shampine and Gordons was recently tested by me in the
calculation of classical trajectories on the Lt - o potential energy sur-
face used in Test 2, and found to be not only superior to the Gear and fixed-
order predictor-corrector methods previously used, but much easier and more
fool-proof to use. The classical trajectory program ABCRR4 was therefore
modified to solve the quantum mechanical differential equations of the test
problems.

The program of Shampine and Gordon solves arbitrury sets of first-order
differential equations. Krcogh2 also has programs for higher order methods
and has found that use of them is usually faster than the use of first-order
methods when the equations to be solved are of higher order. However, since
my intention was to make a simple modification to the existing ABCRR program,
no attempt was made to use a second-order method.

Instead the second-order quantum mechanical equacions were simply written

as twice as many first-order equations, i.e.,
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u o=v @

VI = Wu @)
where

u" = Wu )

is the original second-order equation to be solved.

Secrest has pointed c:rut:5 that stabilizing transformations are in many
cases necessary much less cften than previously supposed. The
following criterion was used to automatically decide when to do a stabilizing
transformation. Since the transformation is only necessary to maintain numer-
ical linear independence of the solutions, it suffices to check that the abso-
lute values of different channel wavefuimctions within a given column of wave-
finctions are not too widely separated. At each step a check was made on the

first colum of the wavefunction matrix. If the absolute value of,

ul/ui i=2,..., NCHAN

was larger than 100 for any i, a stabilizing transformation was done. In
addition, if

[uy |
became larger than 100, a transformation was also done. This criterion indeed
resulted in only 5-1C transformations over the entire integration range, for
most of the test problems.

The resulting program is quite simple (not cownting the Shampine-Gordon
program, treated here as a black box) and quite simple to use. The only user
input tc - program is the energy, r;;, and 1, which define the inte-
gration range, and one tolerance parameter which govemns the accuracy of the

solution. Some experimentation with the tolerance parameter is necessary
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but this can be done on the smaller basis sets and a safe, if not optimm
value, is easy to find.

To the credit of those people who have developed new methods in recent
years, the predictor-corrector method never performed best for amy test.
However, it was often not the worst. The method does best, as might be ex-
pected, at low energy where the wavelength is long. The method has to work
very hard in the non-classical region and the number of steps necessary seems
to be dependent not only on the problem and energy but on the mumber of chan-
nels as well.

The values of Thin and Toax actually used are given in Table 3.

One comment is, however, in order. The value of Tpax = 150.0 for Test 2 and
much to small, Based on the Bl basis sets, this value was judged sufficient
for one significant figure of accuracy, not two. For some of the larger
basis sets not even one was achieved.

The program has been run only on LBL's CDC 7600, but conversion to other

machines should not involve more than changing from single to double precision.

DeVogelaere's Method

The predictor-corrector program described above is quite modular, and
modifying it to integrate with DeVogelaere's method was a simple task. The
equations used were taken from Lester's paper.6 These were programmed so that
the formula for changing the stepsize is used at every step, even if the old
and new stepsizes are the same. This can be done with negligible loss of
efficiency. The stepsize is chosen so that the number of steps per local
wavelength [computed from the (1,1) element of the interaction matrix] is
within a certain range, given by the user. At each step the local wavelength
is computed and the number of steps within that wavelength is checkea to see
if it is within the specified range. If not, a new stepsize is computed such
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that the mmber of steps is in the middle of the range.

The DeVogelaere method consistently outperforms the predictor-corrector
method by a wide margin. The program is even simpler than the predictor-
corrector program and equally simple to use. The user need only supply the

energy, and Toax and the range for the number of steps per local

"min
wavelength. The wavelength is considered to be the full period of 27. Some
experimentation is necessary to find a suitable number but this can be done

on the smaller basis sets. Twenty-five steps per local wavelength was chosen
as optimumn for all tests except Test 1. Fifty steps were necessary for Test 1.
No difficulties were encountered with any of the tests. The program has been
run only on LBL's CDC 7600, but it is expected that only a change of precision

is necessary to run it on most other computers.

Mumerov's Method

A Numerov program written by M. A. Brandt, D. G. Truhlar, K. Onda and
D. Thirunalai7 (version 79-6 of this program, MNN) was donated to the work-
shop and I have used it to solve the test problems 1, 2 and 4. The program
is a completely general and modular close-coupling program and like all the
other programs used in this report, is now available from the NRCC software
library.

This program has automatic stepsize selection and performed without
mmerical difficulty on all of the test problems. The only difficulty en-
countered in using the program was that it does not stop the integration at
exactiy the specified Thax® The necessary changes to do this are probably
not difficult but no attempt to modify the program was made. Since the S-
matrices of Test 3 must be computed at exactly r = 7.0 in order to make a

meaningful! comparison, Test 3 was not done.
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The negative § option was used and a value of & = - .1E-6 was found to
be the largest value which resulted in two significant figures =l accuracy.
This value was used for all of the problems. Some further refinement is
possible through variation of the parameter HSTART, the initial stepsize.
This however, was not done and a value of .125E-3 was used on all of the

problems.
An assembly language linear equation solver is available for this pro-

gram which does improve its performance. This however, was not used for the
test problems. The comparison is nonetheless a fair one since none of the
other programs used any specialized assembly language programs either. This
program has been num only on COC computers and its portability to other
machines has not been tested.
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The Log Derivative Test Caleulations

The log derivative and renormalized Numerov algorithms were presented in volume
1 of this report. Because of time limitations, only one of these methods could be
evaluated on the NRCC tzc¢ problems. The log derivative method was choser because of
two ccnvenient features. The grid spacing can be easily changed with no restrietions on
the chanpge, whereas with the renormalized Numerov the spacing can only be
conveniently doubled or halved. In addition, the potential matrix function of test
problem 4 has a discontinous first derivative at R = 1.034. The log derivative method
can handle this essily, whereas special programming would be required with the
renormalized Numerov method to compensate for the increased trunction error that is

produced when integrating over this point.

A fortran program which utilizes the log derivative formulas given in volume 1 of
this report was written to solve the special test problems. The program was designed to
allow the integration range to be divided into & maximum of three partitions, with a
different grid spaeing in each partition. The number of partitions, the buindaries of the

partitions and the grid spacings are parameters that are sct by the user.

Since test problein 2 has an extremely long range potential, an additional option
was added to the program which allows the user to switch over to a very efficient WKB
caleulation in the far asymptotic region. This WKB method was deve iopeé several years
ago and is fully deseribed as *Method B" in the reference; B. R. Johnson, "A Generalized
JWKB Approximation for Multichannel Scattering,” Chem. Phys. 2, 381 (1973). The WKB
option was only used on problem 2. It could have also been used to decrease the
computation time »f problems 1 and 4, but was not, since we were primarily interested in

evaluating the iog derivative algorithm.
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Pollowing are the parameters that were used In each of the test problems
employirg the basis sets B3. (In most cases these same parameters were also used with
the other basis sets.)

Test 1 (J4B3). The integration range was from 1.5 to 30 with a grid spacing
h = 0,0325, This grid spacing is a nominal value set by the user. The progrem then re-
adjusts it sv that an even number of spacings wil fit into the integration range.

Test 2 (J5B3). The integration range was 3 to 1500. The log derivative method was
used from 3 to 100 and the WKB method from 100 to 1500. The log derivative range was
divided into 3 partitions; 3-10, 10-30 and 30-100 with grid spacings h = 0.015, 0.045, 0.1.
The log derivative part of the calculation required 6.49 sec, While the WKB part took
0.47 sec.

Test 2 (J25B3). The integration range was 3 to 800. The log derivative method was
used from 3 to 20 and the WKB method from 20 to 800. The log derivative range was
divided into 3 partitions; 3-8, 8~15 and 15~20 with grid spacings h = 0.011, 0.02, 0.02%.
The log derivative calculation required 11.25 sec, while the WKB calculation took 6.83

sec,

Tost 3 (J5B3 and J25B3). The integration range was 3 to 7 with a grid spacing

h =0.01.

Test 4. The integration range was 0.0001 to 50. This wes divided into 3 partitions;
0.0001-1.05+, 1.034-2.4 and 2.4-50 with grid spacings h = 0.05, 0,05, 0.1. The potential
matrix in this problem has a diseontinous first derivative at R = 1.034. Setting one of
the partition boundaries at this point is the easiest way to insure that the cusp in the

potential will not have an adverse effect on the truncation error.
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No major difficultiss were encountered in s0lving any of these test cases. It was
easy to obtain any desired accuracy by adjusting the grid spacing and range of
integration. The truncation error of the log derivative method varies as the fourth
power of the grid spacing. We believe that the basic strengths of the log derivative
method are its complete reliability and trouble free operation or any type of problem

and its great simplicity combined with a reasonable efficiency.

A significant improvement that could be made in the exiating program would be the
incorporation of a reliable algorithm to optimally and automatically adjust the grid
spacing as the calculation proceeds so that the user only has to supply a single truneation

error tolerance parameter.

The most time consuming calculation in the log derivative algorithm fs the
symmetric matrix inversions. Therefore any improvements in the matrix inversion
subroutine would be very useful. The second most time econsuming part of the
caleulation is the evaluation of the potential metrix. In fact, for a one or two channel
problem it is possible for this celeulation to dominate. Therefore, one should try to
make this calculation as efficient as reasonably possible.

The program is easily portable. The entire, self contained, fortran program to

compute the S-matrix (without the WKB option and exeluding the user supplied potential

subroutine) is a deck of cards less than 31 inches thick.
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Erratum
The Log Derivative and Renormalized Numerov Algorithms.

The third formulza in Eq. (7) which appears on page 88 of
Vol. 1is in erroz, The plus and minus signs should be interchanged.

The correct formula is

81 - 81 + (n2/6) Q(xn)]'l, n=1,3,...N-I
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Integral Equation Methods for Inelastic

Bcattering. II. Calculations.

A. Introduction

This article will deal with the computational features of the inte-
gral equation mathod widely known as the Sama ard Xouri method. For a
discussion of the mathematical details of this asthcd the rsader is refsr-
zed to Part I of this ssries. A detailed practical description is given of
how one parforms close coupling calculaticns by this method in general and
the test calculations of the Workshop in particular. Since it is important
to have a clear conception baforshand of the accuracy desired in quantum
mechanical scattering calculations, a hrief treatmant of accuracy criteria
has been inciuded. A number of changeshave been made in the computer
program since Part I was written six months ago. These modifications are
described in detail. Advantages and limitations of the method are digcussed
in the conclusion. A few comments are made for the benefit of the inexper-

ienced user which will aid in the effective use of this method.

B. _Philosophy and Practice of Close Coupling Calculations

The computer program in its present form requires the choice of a
number of parameters by experimentation. For a given energy (E), total
angular homentum (J) and basis set, these parameters (in the order in
which they are experimentally adjusted) are:

1. integration starting point (xo),

2. integration stopping point (xN),

3. trapezoid rule interval (step size, h),

4. (optlonal) new step sizes (h:l.) and at which points (xn } in

i
the integration they are used,
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5. nunber and location of stabilizing transformations,
6. the point after which energetically inaccessible closed channels
are to be eliminated.

Generally one chooses some starting h, x, and xN, and then adjusts x, by
moving more and more deeply into the nonclassical region. In this manner
e is rapidly found in just a few runs. MNext, one extends the integration
farther out into the asymptotic region in order to fix Xy This is some-
what more difficult than choosing X, (particularly for slowly-but-surely
changing long range potentials). Choice of #g can usually be accomplished
in about five runs. Next, one varies h until the desired accuracy is
obtained (cf. Section Z), and a few runs are sufficient. For a multichannel
problem it may be necessary to tentatively select a few stabilizations in
order to be able to complete these adjustments. Even in solution following
methods such as the present one. a smaller step size is required in
the interaction region than in the asymptotic region. It is therefore
profitable to take small steps in the interaction region and change to a
larger step size farther out. The number and location of step size changes
is heavily dependent on the amount of experimentation the investigator is
willing to do. This is by far the most time consuming phase of the

diddling process. Once xo, x,. and the (hi, xn ) have been determined, it is

i
a simple matter to add sufficient stabilizations (the criterion for this

N

being the symmetry of the reactance matrix or the unitarity of the scat-
tering matrix). Generally, less than half a dozen stabilizing transforma-
tions are necessary for potentials with moderate range. Asymptotically
closed channels, if they are present, can be dropped some distance away
from the classical turning point. Once they have been eliminated, stabil-

ization is no longer necessary. Generally one does all the diddling for
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a small basis set but this leads to difficulty for extremely anisotropic
potentials or when one wants extreme accuracy for transitions of low
probability. Accordingly, it is a good idea to perturb the parameters
optimized for a small basis set to ensure convergence for larger basis sets.
In most practical calculations, one is usually not worried about low acci-
racy in small scattering matrix elements, hence, single channel diddling is
sufficient for potentials of moderate range. Single channel convergence
tests on the long range Li+-co system (Test 2) give one or two figures in
the scattering matrix with *y “ 200 bohr whereas the multichannel problem
is not converged tc this accuracy until about Xy " 1500 bohr. The reason
for this is the very anisotropic interaction potential, the matrix elements
of which decay as R-q for diagonal elements, but as R-z for off-diaqonal
elements. Similarly, a single channel convergence test on the He—H2

system (Test 1) produces nearly three figure accuracy at Xy " 15 bohr,

but the v=0 to v'=l vibrationally inelastic transition probability
{j=j'=0), which is very small (ﬂdo—lo). is not converged to even one
significant figure for a basis set consisting of only these two channels.
This inelastic transition has converged to two figures by xy v 50 bohr, but
this much accuracy is not really necessary in a practical calculation since
the more probable transitions will dominate anyway. It is interesting to
note that larger bases will give higher accuracy for this transition for

Xy " 15 bohr. In a production run consisting of, say, 100 total J°'s, one
does the diddling only two or three times, the resulting parameters being
satisfactory for many J's. Indeed, the parameters which work for low J are
more than ample for high J. Diddling at high J is purely an economic

measure since these angular momenta correspond to grazing collisions and
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the low J integration parameters may be unduly strict. For example, one
can choose a larger x,, drop closed channels sooner, etc.

Diddling with parameters in this method is both an advantage and a
disadvantage. It is an advantage because the investigator, and not the
machine, is in full control of the quality of the calculation and it is
possible to carefully observe the effect of changes in the various parame-
ters. This is particularly useful in the case of potentials with unusual
features. The investigator can determine the optimum choice of the parame-
ters using his resourcefulness and ingenuity. There is no guarantee that
the more automatic methods will choose the parameters correctly and effi-
ciently and in applications whe : the execution time is enormous this is a
major concern. Obviously, diddling is tedious and some measure of experi-
ence is necessary in order to choose the parameters economically. A novice
working remotely on the LBL system may find diddling an experience tortuous
beyond description. Table 1 gives some typical integration parameters which
give two significant figure accuracy in the transition probabilities,
|Smn[2. These parameters produce execution times which are competitive
with all of the other methods investigated for the Workshop. Further
experiments would give even better execution times, but the present

parameters are sufficient to illustrate the efficacy of this method.

C. Accuracy Criteria

A large source of ambiguity in scattering calculations involves the
question of accuracy. The accuracy criteria used for a particular calcula-
tion depend on what observable quantity one is trying to calculate. For
example, if one is interested only in integral cross sections, an adequate

accuracy criterion might be the number of significant figures in the
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transition probabilities, or absolute squares of the Ecattering matrix
elements, |Sm|2. On the other hand, if ons is interested in the dif-
ferential cross gections, the phase of the scattering matrix is important
and a more strict accuracy criterion (because the magnitude converges be-
fore the phase) might ke the number of significant figures in the larger
of Ro(sm) and xm(sm). Hence, it is useful to decide in advance for
vhat purpose (integral or differentfial cross ssctions) the calculation is

to be performed in order to be as economical as possible,

D.__Recent Modifications of the Computer Program

There are two important changes which have been made to the original
code (cf. Part I). The first ias concerned with testing to ses what sort
of activity is to be performed on a given stsp, namely stabilization,
closed channel deletion and integration termination. The old code made
a separate test for each activity on every step of the integration. It
is more efficient to make one test per step (rather than three or more) to
determine if anything at all is to be done on that step. If so, the other
tests are made. This "next-most-important step” testing is also more
flexible for we can easily and efficiently provide other options without
significantly affecting the execution timw. The second change is concerned
with step size modification. It is well known that in the interaction region
a different step size is necessary than in the asymptotic region. Without the
option to change step size one must continue the integration into the asymp-
totic region with inappropriately tiny step sizes consequently taking an
enormous number of steps. Although the execution time per step is low, it is
possible to cut execution times by at least a factor of five by changing the

gtap g8ize a number of times in the integration. The “next-most-important step”
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algorithm made the implementation of the step size changes a nearly
trivial task, both from the point of view of programming and execution.

In changing the step size, one marely changes the quadrature weights

and increments. We are doing an integral numerically, thus,
b N N
Jtman = § fox,)v;
a i=0

where, for the trapezoid rule,

N % for im0 or i=N
v, =

h otherwise.
If we change step size from h to h at the point x_, then
b c c N-c Nec
{ £(x)dx = 120 !(xi)wi + jzo £(x:l,‘_c)w:l
It follows that,
b c=1 _N-c —N-c

N=-c
c c
{ £(x)ax on f(xi)wi + f(xc)wc + f(xc)wo + 121 f(xj+c)wj

c=1 c

N-c
- 120 £x )y + jzl f(xj_,_c)ﬁ?‘c + f(xc)‘;c.

where
~ l, .~
v, = E(h"’h) .
Hence, when the integration reaches x = Xy the quadrature weight is changed

from h t (h+h)/2 for one step. On the very next step, the quadrature weight

is changed to h. Caution: The integration variable is incremented by f not

(h+h)/2. That is,
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Extension to more step size changes is trivial. Introduction of the above
ideas into the integral equation formalism clearly shows on what step the
changes are to be made. In summary, if the current point is the one after
which a new step size is to be used, the computer will make two passes
through the quadrature weight changing algorithm, one for the current step

and another on the very next one.

E. Conclusion

The results show that with proper diddling the Sams and Xouri method
is competitive with all other single eunergy methods studied. It performs
extremely well for the electron scattering problem, rivaling the execution
time for the second energy by methods which are fast for more than one
energy. As expected, however, the method becomes time consuming for long
range potentials, as ir the Li+-CO system, and other methods are better
suited for these problems.

The principal drawback is the somewhat tedious experimental optimi-
zation of the numerical integration parameters. The program is extremely
simple. In fact, it was written by a graduate student having absolutely
no prior knowledge of FORTRAN as his very first exercise in close coupling
research. Investigators who are primarily concerned with applications
will find this program extremely useful as it readily gives the user an
intuitive idea for what is going on in a calculation and how it is ac-
complished. For unusual potential functions this method is the one of
choice since potential following methods may become too time consuming or
unreliable in some cases.

Due to its extreme simplicity, this program is readily portable.

Investigators eager to get results painlessly will find its simplicity a
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decisive factor. After some practice in choosing the mmerical integration
parameters, which is an educational experience in itself, most users will

be able to apply the method economically and with confidence.

Note Added in Proof. Some explanation for our early results should be made.

These early results are listed as the first entry for each of the tests (see
Appendix A: The Sams-Kouri Method). We intended these only as preliminary
results for the October Workshop meeting. They do not represent the optimal
choice of integration parameters and are typical of the kind of results that
would be obtained by a novice (indeed they actually were obtained by one).
In particular, the small basis Test 1 results are not converged with respect
to the (vjR) = (004) > (v'j'R') = (104) transition. It was originally re-
guested that two or three figure accuracy be attained in the S-matrix ele-
ments, consequently extreme accuracy was obtained in the S$-matrix absolute
squares (transition probabilities}, especially for Tests 3 and 4. The
latest results (given at the end of our article) are accurate to two (and
only two) figures in ISIZ. Test 3 was not rerun due to the lack of interest

expressed in it at the October meeting.

Table l: Typical Integration Parameters’

Horkshop Total Total Angular Integration Integration Initial Final Drop Closed
Test System Energy Momen tum Start Stop Step S5ize Step Size Channelsb
-2
1 He-H, 2,24x10 4 2.25 40 0.003 0.05 El
+ -5
2 L7 -co 7.79x10 5 3.5 1000 .01 1 1s0
+ -3
2 Lit-co 1.95x10 25 3.5 500 0.005 0.1 -
4 e, 1.1025 s 0.05 sa 0.05 0.5 .
(10 ev) ”

Sall quantities are expressed in atomic units.

Pror largest basis set used.
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P

J =

Basis 1:
Basis 2:
Basis 3:

Basis 4:

g
1]

-]
1]

1
1 9.201x10 1%
2 1.679x1072
-9
3 1.181x10
4 1.110x107°

aThiS.notation gives the

. NG Jnax
manifold, {jv=; ' Jv=l, .t

bs(v'j'£'+vj£).
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TEST i: He-H

4, even parity

2.24x10"2 hartree

{0,0}®> 2 channels
{2,2} 8 channels
{6,2} 18 channels
{8,4} 28 channels

|s(1,o,4<-o.o,4)|2b

Is(1,0,4¢1,0,4)}?

RESULTS:

1.000

9.551x10"%

9.551x10" %

9.547x10"%

t,sec

0.39

3.17

20.21

56.64

3050

3050

3050

3050

maximum rotor state carried in each vibrational



For basis 1,

For all others,

TEST 2:

[
[l

Basis 1:
Basis 2:
Basis 3:

Basis 4:

Basis P,
1
-1
1 2.269x10
2 1.412x1072
3 7.574x10">
-2
4 1.618x10

63

+
Ii -co

= 5, odd parity

5

7.79x10 ° hartree
(1® 3 channels
{2} 6 channels

)

]

{4} 15 channels

{6} 27 channels

b
Ist1,6+0,5) |2
|st1,6+1,6)}2

2
j812,3¢0,5) |

Is(z,3+2,3)|2

RESULTS :
Pe t,sec

-1
3.087x10 1.11
4.889x1072 2.09
4.053x10"} 54.17
1.167x10t 214.36

2900

2900

11575

11575

a, . . . . . - . .
This notation gives the maximum rotor stste carried in each vibrational

manifold {3020, jioy

bg ey .

o' Ju=1’

L
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TEST 2: Li‘-co

J = 25, odd parity

E = 1.95x10"> hartree

Basis 1: @ 3 channels
Basis 2: {3} 10 channels
Basis 3: {s} 22 channels

|s(1,26+0,25) |2

For basis 1, Pi =
2
e, = |s(1,25¢1,26) |
For all others, B, = IS(2,23¢0,25)]2
2
P, = Is(2,23¢2,23) |
RESULTS :
Basis Pi Pe t,sec N
~1 -1
1 4.003x10 4.886x10 2.63 7100
2 4.372x1073 2.238x10" % 12.13 7100
3 1.753x1072 3.778x10"} 75.83 7100

3This notation gives the maximum rotor state in each vibrational manifold

{ .max .max }
Iy=0’ Iy=1' *"°°"

bg(5101+5L).
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TEST 4: e -Hz

Jd = 5, odd parity

E = 30 eV = 1.1025 hartree

Basis 1: 2§ 4 channels
Basis 2: {6} 15 channels
Basis 3: {8} 21 channels
Basis 4: {10} 27 channels
b
B, = |s(2,3¢0,53 12

Is(z,3¢2,3)]2

m
1

Basis P. P t,sec N

3 1

1 4.387x10° 9.922x10° 0.07 189
2 2.914x1073 6.344x107} 0.92 189
3 2.876x103 5.53ax10 * 2.16 189
4 2.870x1073 5.178x10™L 4.26 189

a, . . : ; 5 . . .
This notation gives the maximum rotor state carried in each vibrational
max _.max }

b1’ it

manifold, {j\l=0' 3j

P (32132,
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Applications of Integral Equations With Reference Potentials
To the NRCC Close-Coupling Test Problems (INSCAT)

Michael J. Redmon
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There have been two major changes in the integral eguation code
INSCAT since its description in the proceedings of the NRCC workshop on
algorithms and computer codes held at Argonne in June, 1979. The first change
involved the addition of a Newton-Cotes closed integrator (trapezoid rule), and
the second involved replacing the original step size selection algorithm using
perturbation methods with one that is based on the gradient of the potential.
Both of these changes were made with the idea of improving the efficiency of
the code.

As of this writing, the revised code is still being tested, and an
accurate assessment of the effect of the modifications is difficult. Becuuse
one purpose of this workshop was to compare the efficiency of various algorithms,
the results reported here used only a very few steps with the Newton-Cotes
algorithm, with most of the integration carried out with the reference potential
integrator. Comparison of the timing histogram: for this code and the Sams-
Kouriintegrator will provide the user with sufficient information tc allow
optimal switching between algorithms.

The He—H2 problem, Test 1, proved difficult for this method,
particularly for the two channel basis, J4B1. The first few runs resulted
in inelastic probabilities varying over a range of several orders of magnitude
with small changes in integration parameters. The difficulty in converging
this very small probability led to the abandonment of the original step-size
o = T (@30 with this
selector the step sizes varied smoothly from step to step for this problem
and it was possible to converge the result. Initial and final values of "R"
were 2.25 and 16.5 bohrs, for all basis sets. Convergence of the larger basis

algorithm in favor of the simple expression H,

sets was considerably easier than the two channel basis.

The change in step size selector was detrimental for Test 2, as
previcus experience with the reference potential method has shown that much
larger steps can be taken for larger"R" than were allowed by the present
step size algorithm. It seems at this time that the previous algorithm
might lead to more efficient integration for long-range potentials and
relatively large transition probabilities. This will be tested in the near
future. The relevant information for Test 3 is contained in the timing
histograms for Test 2. Integration for Test 2 was started at R = 3ao and
carried out for 500 ag with the tolerance parameter Tset at 0.12.



69

Test 4 was relatively straightforward. The integration range was
0.02 to 75 bohrs, with an initial step size of 0.007. The tolerance parameter
"T" was set at 0.12.

The current version of the program is satisfactory for many applica-
tions, but it could be improved by using a more sophisticated method of
selecting the step size. It should be possible to use one selector at large "R"
and the present one at small "R".

The current program is highly portable, and has been run on CDC,
UNIVAC, IBM, AND VAX computer systems. Input is straightforward, and it is
relatively easy to change potentials. This method does not diagonalize the
interaction matrix, and is rather efficient at the first energy, although it
loses ground to other methods at subsequent energies. It should be most
attractive in applications to energy dependent potentials.
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Application of the Gordon Algorithm to Test Problems in
Ro-Vibrationally Inelastic Molecular Collisions (GORDON)
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As discussed in our contributionl to the proceedings of
the first NRCC Workslhop on Algorithms and Scattering Codes for
Atomic and Molecular Scattering Theory our intention

2-4 by elimination of

was the acceleration of the Gordon code
the determination of the first order perturbation corrections to
the linear reference potential. In the modified cnde, described
previously and denoted QCOL/MKZ,1 the step sizes were determined
from an anAiysis of the coupling potential matrix. For some of the
test problams, notably TEST4 and TEST1l, the step-size algorithm1
proved to be unreliable in that the accuracy of the S-matrix was
not a consistent function of the input tolerance parameters. More-
over, even for TEST2 and TEST3, where QCOL/MK2 appeared to work
best, the times were greater than or at best equal to those for
a subseguent code, denoted QCOL/NEWFLAT.

In the latter we decided to return anew to the original
algorithmz-3 which uses the first order perturbation corrections
to predict the step size for the next interval. However, in keeping
with our desire to minimize the time required for the initial energy
calculation, we modified the original Gordon code4 so that only the
off~diagonal perturbation corrections were computed. In our experi-
ence the largest off-diagonal corrections, which arise from terms line
ar in the expansion of the potential matrix about the midpoint of
each interval, are consistently larger than the largest diagonal
corrections, which arise only from the quartic and higher order
terms in this expansion.3 An additional gain in computer time was

achieved by determining the off-diagonal perturbation corrections
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using the simpier formulas for solutions based on a constant
reference potentiél(Subroutine FLAT‘). The error so introduéed

is unimportant, since in our modified code the perturbation cor-
rections are used only in the step size determination. 1In
particular these corrections are not added on to the zeroth order
solutions for the diagonalized potential. Thus the modified code
performs only zeroth-order calculations,3even at the initial energy.
The usage of this modified code, denoted QCOL/NEWFLAT, is described

in detail in the program documentation.

3

Since the NEWFLAT code is a 1ow¥order method,~ the global rate

of convergence of the S-matrix is expected to be proportional only
to a low power of the step size, or eguivalently, inversely propor-
tional to a low power of the number of steps. At the BASIS1 and
BASIS2 level we carried out for each test problem an investigation
of the convergence of the S-matrix as a function of the number of
steps, which can be varied by changing the input tolerance parameter
TOLHI.4 From this study we have found that *he relative accuracy
of the particular S-matrix elements which were the subject of the
workshop comparison between various scattering codes could be fit
reasonably well with the functional dependences listed in Table 1.
The low order of the present method is particularly apparent for
TEST2, TEST3, and TEST4 where large off-diagonal coupling exists
due to strong anisotropies in the potential.

By examining the output of each run, one can easily determine
the number of steps in a given integration range. This value can

be used to obtain discretized values of the "integrator velocity",
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dt/dr, which is the direct measure of the speed of the scattering
code as a function of the center-of-mass separation between the
collision partners. Specifically, we have

N, t

dae/dr l‘"i Nt:t K::

where Ni is the number of steps required to cover the range r, - Ari
to ry + Ari, and Ntot and ttot denote the total number of steps apd
the total time required for the scattering calculation. The values
of dt/dr so obtained are plotted in Fig. 1 for the four TEST problems
at the BASIS3 level. Aas one would expect for the present method, the
integration proceeds fastest at large distances where the potential
is slowly varying.

The comparison5 with other scattering codes performed at this
workshop indicates that although the present method reguires the
fewest evaluations of the potential matrix, it is by no means the
fastest. There are several factors which may contribute to this
relative slowness. First, the gain in time achieved by the simpli-
fication in the calculation of the perturbation corrections does
not compensate for the inaccuracy introduced by the neglect of these
corrections in the zeroth-order solution propagation. Secondly, all
of the matrix operations are performed using sophisticated algorithms,
chosen especially for their numerical stability.2'3 It may well be
that most typical problems ir molecular ceollisions are stable enough
that a large degree of computational overhead could be eliminated
by the use cf considerable faster and simpler, albeit less stable,
matrix algorit]';:as.6

In all fairness, the reader should recognize that in the
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original Gordon code‘ the first-order perturbation corrections
are computed fairly exactly using a linear reference potentia13
and are then added to the propogated zeroth-order sciutions. Thus,
in principle, the first criticism in the preceeding paragraph would
not apply to the original Gordon code. Unfortunately, we were unable
to integrate the test problems TEST1 and TEST2/3 with this code (TEST4
was not attempted). Typically, due probably to the hyperexponential
behavior of the Airy functions in the classically forbidden region,
one of the perturbation corrections would suddenly become abnormally
large. This would then result in a predicted step size so small that
the calculation would grind to a halt.

It is also worth stating that in our experience and as one might
2,3

expect from mathematical considerations the Gordon algorithm and

code is truly suited for high energy collisions dominated by long-
range forces where the de Broglie wavelengths are much shorter than the
range of the potential. This situation would arise, for example,

in ion-molecule and polar molecule collisions at hyperthermal
energies (0.5 - 2 eV).7'B For this type of problem typically

only ~ 20 integration steps are required to determine a reliable
S-matrix, Unfortunately, this collision regime was not explored

by the NRCC workshop test problems.

We close with some more general conclusions and observations.
Gordon's methodz'3 provides an innovative approach to the solution
of the close-coupling equations for inelastic collisions which is
bascd on approximation of the potential rather than the wavefunction.

Improvements to the method, both in terms of speed, stability, or
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accuracy can be achived in three possible ways:

:1) Development 6! the efficient generation of solutions
to quadratic reference potentials. (Weber Fun'ctions)9 and develop-
ment of new algorithms and codes for the stable computation of

10 and/or Weber

first-order perturbation corrections using Airy
functions.9 This approach will presumably result in an higher
degree of accuracy with a fewer number of integration steps.

2) Reduction in the computation time, albeit at the expense
of accuracy, by simplifying the determination of step sizes and
by ignoring all the perturbation corrections to the precpagated
solutions. This is the apprcach we have followed in the develop-
ment of the QCOL/HKZl and QCOL/NEWFLAT codes.

3) Achievement of higher-order convergence by computing zeroth-
and first-order solutions by accurate propagation using con~-
stant reference potentials over a relatively dense grid of steps.
The diagonalization of the potential matrix is carried out on a
coarser grid. This is the approach developed@ by Parker, Schmalz and
Lightll and is eguivalent to modification (1) above. How-
ever, the solution propagation and determination of perturbation
corrections is done using the simple and numerical stable formulas
appropriate to the constant reference potential solutions.

Although the workshop study has been restricted to only four
test problems and although the recent versions of approach (1)
were not tested, we have to conclude that approach (3) offers a

very attractive combination of simplicity, speed, and accuracy.
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Table 1. Convergence of S-matrix elements; QCCL/NEWFLAT.

S-matrix element

Problem I 5-8exact 171 Sexact I

v j 2 v' 3 e

TEST1/J4B2 0 4 4 1 4 4 1.15-20° n~2-34
TEST?2/325B1 0 25 124 946 N71*5
TEST3/J25B2 0 5 2 23 10.3 N 1-37
TEST3/J5B2 0 5 2 3 5.8 n"1-37
TEST4/35B2 0 5 2 3 5.0 N2+ 02

a) Variation with the number of steps of relative error in

indicated S-matrix element. The indicated proportionali-
ties apply over a range in relative errors of 0.005-0.5.
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A Variable Interval Variabie Step Methad for the Solution of
Linear Second Order Coupled Differential Equations (VIVS)
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Modifications and Discussion of Results

The only modifications to the variable interval variable step method
as given in the earlier NRCC workshop report are in the determination of the
interval and step sizes.

Since this method is = potential foliowing methcd the largest intervals
are taken where the putential is relatively flat, the coupling relatively
constant, and/or the energy is high. We have found that the best way of con-
trolling the interval size is to Took directly at the perturbation correc-
tions to the wavefunction and iis derivative. Since we want perturbation
theory to be vaiid it is necessary to keep the perturbative correction small
compared to the maximum magnitude of the unperturbed guantities. With the
choice of a constant reference potentcial within each step the largest pertur-
bative corrections are proportional to the cube of the interval length {had
we used Airy functiuns or Weber functions the off-diag corrections are
sti1l proportional to the cube of the interval length). Therefore we predict

the length of next interval ’?i—l using
4]

[
Lin =9 max[]ag /5, 1457351, 1Aq.771,1 84771 0 %

where the z&g's are the calculated perturbation corrections for interval i,
the bar above the zeroth order solutions indicates the maximum magnitude of
the solution over the interval and € 1is an input tolerance parameter con-
trolling the error in the solutions. Since we have included first order per-
turbation corrections and the second order perturbation corrections are
roughly proportional to the squara of these, our experience has shown that

the error in the final S-matrix elements is roughly proportional to ez.
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Step sizes are somewhat more difficult to determine since we want a
fixed interval size. An approach that we have used is to have a fixed number
of steps, NS, per interval and determine the step size within an interval

based on a geometric progression. The length of the first step within the

- c(,
interval is h { ! % 0(,;-‘#—'/

L./ xX; =1

and the length of step s is

hy=o; by = ho!
The optimum Kyt is one that would result in the same maximum perturbation
correction for each step. The errors for each step in interval i can thus be
used to predict o for interval i+1. We therefore determine the geometric
progression parameter O‘iﬂ from a 1inear least squares fit to the perturba-

tions corrections for interval i, i. e.,

L‘e, +,e,e,} Sn-1) N, >
l.‘fl A{‘ =/

where EO and 61 are coefficients of the constant and linear term, respec-
tively, for a best fit to the maximum perturbation errors for the steps. The

least squares fitting procedure gives

c_ EhEe) - w3 he
T ER =N A
5 K3

and

le
il
X
N

171
Ufh
|
m
oM
o
halll

wnere €. is the maximum magnitude of the perturbation corrections for step s

in interval i.
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For all the test problems we used the default input pzarameters and ad-
justed only tne =tarting and ending position of the integration ranges as
well as the initial interval size. This gave satisfactory accuracy for all
test cases except TEST 1 where it was necessary to reduce the input tolerance
paraneter & governing the interval sizes. The starting and ending positions
for each of the test cases are as follows: TEST 1 (RMIN = 2.3 a RMAX = 40
ao), TEST 2-J5 Basis sets (RMIN = 3.3 a,s RMAX = 705 ao). TEST 2-025 Basis
sets (RMIN = 3.3 a,» RMAX = 5000 aoj. TEST 3 (RMIN = 3.3 a . RMAX = 7.0 ao).
and TEST 4 (RMIN = 0.15 3., RMAX = 160 ao). The potential was evaluated much
nore often than necessary for ease of implementation of the test problems.
The current program obtains the answers reported herein and requires only 3/8
the numbcr of potential evaluations.

Although we are quite happy with our tria’ test times on subsequent
energies there were several inefficiencies in the computer program which have
now been eliminated. The incorporation of more efficient FORTRAN mathe-
matical routines for matrix multiplication, solution of linear systems of
equations and the evaluation of perturbation corrections have increased the
efficiency of the program. With these new routines the first and subsequent
energy timings can be multiplied by roughly a factor of .7. Currently the
evaluation of the perturbation integrals is probably still the most ineffi-
cient part of the code. However, as the number of coupled channels increase
the evaluation of these integrals becomes @ smaller fraction of the total com-
puter time used. However, even for the largest number of channels used in
the test problems {N = 32) the evaiuation of these perturbation integrals re-
quired a substantial fraction of the t:tal computation time {(~25% for subse-
quent energies). The method of ma;rix diagonalization that we are currently

using is also probably not optimal and a more efficient algorithm could help
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considerably. At the first energy the majority the computer time is used in
transforming the potential into the local basis (+30%) and in the diagonaliza-

tion of the potential energy matrix at the midpoint of the interval (~20%).

Speculations
Although our results demonstrate that this approach succeeds admirably

in increasing the accuracy while reducing the number of matrix operations re-
quired for scattering problems, we may speculate on the further improvements.
The present method has a large overhead at the first energy (primarily in
transforming the potential and derivative matrices at each step). In common
with aly other quasi-adiabatic basis methods it must also take small inter-
vals where the potential matrix is rapidly varying, even in the non-classical
regions.

This suggests two changes in the algorithm. To reduce the potential
transformation overhead at the first energy, it would proably be advantageous
to evaluate the Taylor series expansion of the potential at fewer points than
at every step. One requires that the potential matrix be accurately repre-
sented at each step but the current practice of evaluating and transforming
V(Ry), V'(RS), V"(Rg) at each step, requiring 4.5 N matrix multiplications
per step at the first energy may be overkill.

The second problem, small steps and intervals in (typically) the non-
classical repulsive region, might be overcome by the use of a different sort
of algorithm. 1In this region the potentials are typically varying more
rapidly than the wavefunctions, and a high order numerical (nonpropagation}
method would seem advantageous. Since the renormalized Numerov
derivative methods are high order, require only 3 matrix inversions (which
are symmetric matrices) per step and produce the log derivative matrix (R'l),

a hybrid using these two methcds would seem to be cptimal.
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Noting the success of Johnson log-derivative method we have incorpo-
rated this later modification into the program and succeeded in substantially
reducing the computational time for both the first energy and subsequent
energy calculations. Preliminary tests using this modification on the Lester-
Berstein 9-state rigid rotor problem indicate that the timing for the first
energy can be mul:iplied by a factor of ~.5 and subsequent energy times can
be multiplied by a factor of ~.7. These are in addftion to the savings men-
tioned before which implies that the current program is nearly 3 times as
fast for the first energy and 2 times as fast for subsequent energies as that

reported for the test results reported herein.

Portability and Use

The integrator portion of the program is quite easy to use and is high-
1y portable having basically 6 parameters (RMIN, NSTEPS, RSWTCH, RMAX, TOFF,
DRFRST) that are necessary for its efficient use. The second and third pa-
rameters are only necessary if both the Johnson log-derivative and variable
interval variable step methods are used simultaneously. Test runs have been
made on the CDC 7600, IBM 370, and YAX 11/780 requiring only minor modifica-
tions for its implementation on the VAX i1/780 (replacement of the input

namelist statements).
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TABLE I: Test 1 (J4B3)

¥ Igtz;:a'ls R oR Fla an
2.300 -  2.863 5 2.58 .563 1.64 417
2.863 - 3.209 5 3.04 .346 2.66 .678
3.209 ~» 3.430 5 3.32 .221  4.17 1.06
3.430 »  3.613 5 3.52 .183 5.04 1.28
3.613 -~ 3.815 5 3.71 .202 4.56 1.16
3.815 » 4.249 5 4,03 .434  2.12 .541
4.249 »  4.597 5 4.42 .348  2.64 .674
4.597 -+ 5.522 [ 5.06 .925 .996 .253
5.522 -+ 12.73 5 9.13 7.208 128 .0326
12.73 -+ 40.00 4 26.37 27.27 .0270 .00689

t. aN t, aN

a = =
2R where tl = 9,03 and tz 2.03 are the total

1 2
F, = 7——rand F, = +———
1 Nyor 4R Z Npor
times for the first energy and subsequent energies, respectively, and

NTOT = 49 is the total number of intervals.
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TABLE II: Test 2 (J583)

# l:t:;:als Ry o, Fla an
3.300 + 4,237 13 3.77 .937 1.62 .410
4,237 + 7.530 13 5.88 3.293 .460 .17
7.530 - 16.80 13 12.17 9.27 .164 .0414
16.80 -+ 31.53 13 24.17 14.73 .103 .0261
31.583 -+ 60.78 13 46.16 29.25 .0519 .0131
60.78 -~ 104.2 13 82.49 43.42 0349 .00884
104.2 -~ 160.4 13 132.3 56.2 .0270 .00683
160.4 + 225.9 13 193.2 65.5 .0232 .00588
225.9 - 301.6 13 263.8 75.7 .0200 .00507
301.6 -+ 381.7 13 341.7 80.1 .0189 .00479
381.7 - 475.7 13 428.7 94.0 .0161 .00408
475.7 + 680.4 13 528.1 104.7 .0145 .00367
580.4 -+ 700.0 13 640.2 119.6 0127 .00321'
3 = tl o and F, = tz a where t. = 19.72 and t, = 4.99 are the total
1 N &R 2" Ny R 1 2

times for the first and subsequent energies, respectively, and NTOT = 169

is the total number of intervals.
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TABLE 11I: Test 2 (J25B3)

# I:te;:a]s Ri ARi F1a an
3.30 » 3.578 3 3.44 278 3.14 .821
3.578 > 3.831 3 3.70 .253  3.44 .902
3.831 »  3.927 3 3.88 .096 9.08 2.38
3.927 >  4.029 3 3.98 .102  8.55 2.24
4.029 >  4.206 3 4.12 177 4.93 1.29
4.206 »  4.401 3 4.30 195 4.47 1.17
4.401 »  4.581 3 4.49 .180 4.84 1.27
4.581 >  5.013 3 4.80 432 2.02 .528
5.013 +  6.279 3 5.65 1.266  .688 .180
6.279 +  8.464 3 7.37 2.185  .399 .105
8.464 -+ 11.52 3 9.99 3.056  .285 .0747
11.52 » 17.49 3 14.51 5.97 .46 .0382
17.49 + 30.57 3 24.03 13.08  .0666 .0174
30.57 » 64 o 3 47.47 33.79  .0258 .00675
64.36 - 181.4 3 122.9 117.04  .00745  .00195
181.4 -+ 659.5 3 420.5 478.1 .00182  .000477
| 659.5 = T000.0 3 2829.8  4340.5 .000201  .00N0526
ap o M e s 2 et - 10.82 and t, = 3.88 are the total
I 2" W 1 2

times for the first energy and subsequent energies, respectively, and

NTOT = 51 is the total number of intervals.
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TABLE IV: Test 4 (J583)

¥ lgte;:a]s Ri AR, F1a an

15+ .6859 3 .418 .5359 1,56 .380

.6859 - .9874 3 .837 L3015 2.77 .675

.9874 -+ 1.211 3 1.10 .2236 3.74 911
1.211 +  1.580 3 1.40 .369 2.27 .552
1.580 -+ 2.293 3 1.94 .713 1.17 .286
2.293 = 3.322 3 2.76 1.029 .813 .198
3.322 =« 5.228 3 4.28 1.906 .439 .107
5.228 -~ 8.522 3 6.88 3.294 .254 .0618
8.522 -+ 16.59 3 12.56 8.068 .103 .0252
16.59 =+ 51.59 3 34.09 35.00 .023¢9 .00581
51.59 -+ 160.0 3 105.8 108.41 .00771 .00188

2 AN iF t2 AN
F, = =% an =
1 NTOT AR 2 NTOT AR
times for the first energy and subsequent energies, respectively, and

2 where t1 = 9,20 and t2 = 2.24 are the total

NTOT = 33 is the total number of intervals.



89

The R-matrix Propagation Metiod with
Continuous Perturbation Corrections (RMAT)

Thomas G. Schmalz
Department of Chemistry, Rice University
Houston, Texas 77001



All calculations were per-
formed using the R-matrix method
with all perturbation corrections
through the second derivative in-
cluded. The method was essentially
unchanged from that described by
John Light at the Argonne meeting.
Only continuous perturbation correc-
tions to the R-matrix were employed.

TEST1 was integrated from 1.7
bohr to 45 bohr. Quite & small
value of “.he step size parameter
(BETA = 0.1) was required to obtain
adequate convergence. Although no
difficulties were encountered in
handling the very small transition
probabilities of the problem, this
seemed Lo be a particularly difri-~
cult problem for the program, As
can be seen from the histograms,
this problem was not as completely
dominated by the hard wall part of
the potential as the others.

TEST2 was integrated from 3.0
bonr to 2000 bohr. (Some J5 rune
were begun at 3.2 bohr.,) The J25

results show almost four figure

agreement with the log derivative
results, so these are probably very
accurate. Moderate values of the
step size parameter (BETA = 0.6-0.7)
were required for convergence.

TEST3 was integrated from 3.0
bohr to 7.0 bohr. Only Bl and B3 of
each J were integrated to check con-
vergeuce. Times for B2 and B4 were
taken from the TEST2 runs.

TEST4 was integrated from 0.1
bohr to 250 bohr. This, somewhat
surprisingly, seemed to be the easi-
est problem for the method, requir-
ing a step size parameter of only
BETA = 0.8-1,0. From the histograms
it can be seen that almost all the
steps were spent at very small
interparticle separation.

The method did not seem to
suffer from irregular convergence,
as has sometimes been found for
other problems, but no detailed
studles of this question were per-
formed. Generally, the integration
parameters were optimized on the Bl
problems and used unchanged for the

others.



All times accompanyiag computed
S-matrices are first energy times.
However, a second energy calculation
is identical to one subsection of
the first eaergy calculation so that
second energy times could always be
obtained from the output of a first
energy calculation. They are gener-
ally 1/2 to 1/3 as great.

The times reported here are
certainly not optimum for the method.
The same can probably be said for
most of the other methods used for
these test problems, so that com-—
parisons between methods may not
change much, but the absolute times
required for these problems can
probably be reduced by a factor of
two at least. The program used here
had a FORTRAN dot product subroutine
rather than an assembly language
version and used the TRED2-TQL2
EISPACK diagonalization path, which
1s known not to be optimum. The
matrix inversion routine is also not

particularly efficient. Some time

also could be saved by morc effi-
ciént coding of the algebraically
complex perturbation formulas.

The obvious way to improve the
method is to palr it with an effi-
cient method for iategrating the
steeply repulsive part of the poten-
tial wall. Because of the compati-
bility of information required, a
likely choice would be the log de-
rivative method. This should result
in a significancly faster overall
method.

The program as it now stands
should be relatively transportable.
It was written originally for an IEBM
system and then moved to cthe LBL CDC
system. It should cherefore be
adaptable to most machines. When
used on an IBM machine it should,

however, be run in double precision.
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AN L2 APPRO#7H TO R-MATRTX PROPAGATION: FOLLOWUP REPORT

(L2RMAT)

Robert B. Walker
Theoretical Division
Log Alamos Scientific Laboratory
Los Alamos, New Mexico B7545

ABSTRACT
A hybridized R-matrix propagation program was used to solve the
four test problems presented by the NRCC workshop on close couplineg
methods. The hybrid method used both the L2 approach repcrted earlier
and the analytic (constant reference potential) method. This report

presents observations on the utility of the hybrid approach.
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1. INTRODUCTION

In order fo solve the test problems presented by the NRCC close
coupling workshop, a program was written which combined the L2 R-matrix
propagation method discussed earlierl with the “standard" (amalytic)
R-matrix propagation 1:ecl:1n:[c1ue.2 The L2 method is used to initiate the
integration in the hard wall region of the potential, because it is inde-
pendent of the potential variation within sn R-matrix sector. We then
switch over to the analytic method as the potential flattens out to
take advantage of the cheaper (first emergy) solution of tke coupled

equations in this region.

I1. DISCUSSION

Because of the hybrid nature of the method used, it 1s significant to
report in Table I the integration regions covered ty each method for each
of the test problems. The Lz method is used in the interval from Rl to Rz,
and the analytic method is used from R2 to R3. The number of L2 boxes is
NBOX’ and the sector width of each box is (Rz-Rl) /NBOX. The analytic R-matrix
propagation method is used from R2 to R3, and in this interval, NPROP steps
were taken. The L2 method requires diagonalizing a matrix of size N.D b:3 ND
once in each box at the first cnmergy whereas the analytic method requires
diagonalizing only a matrix of size NCHAN x NCHAN
first emergy. Because these diagonalizations are not done after the first

once each step at the

energy, the second energy timing is substantially faster than the first.
The extremely large matrix which must be diagonalized in the L2 region
effectively linmited the total number of coupled equations which could be
handled by this program in SCM on the CDC 7600. For this reason, only the

firs‘t‘ three basis sets for each test problem were solved. The number of
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translation functions associated with each coupled chammel can be figured out

from Table I as NTF HAN®

A more detailed amalysis of the timing for the hybrid method is pre-

= "D/"c

sented in Table II for the third basis set of test problems 1,2a (J=5),

2b (J=25), and 4. These tables show clearly that the principal effort

for this method is expended near the beginning of the integration regiop.
For this reason, it is essential to remember to optimize the starting point
(Rl in Table I) of the integration when using this method. In all the
problems ugsed here, R1 could have been made larger than it was, with a
significant decrease in execution times. For example, in the 1B8-channel
basis of test problem 1, fully 2~ne-third of the total execution time

would have been eliminated by setting Rl = 2.5 instead of R1 =1.7. With
Rl = 2.5, it is still possible to obtain between three and four signific- .t
figure accuracy in the S-matrix elements obtained. If I were to rerun all
the test problems, this is the integration parameter I would most carefully
optimize.

In the analytic R-matrix propagation portion of each problem, two
parameters governed the selection of step size. Une parameter is BSTEP,
which chooses step sizes according to the rate of change of the trace of
the coupling matr:lx,z and the other is CUPMAX, which limits step sizes by
the rate of change of the locally adiabatic 'basis.z Only ic the second
test problem was CUPMAX set to a value which affected any of the step
sizes. The effect can be seen in Table IIB in that more time was ex-
pended from 6ao to 7ao than on either side of this region. The step
size algorithm used a very small value of STPMIN and a large value of

STPMAX.
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My experience with the step size algorithm based on nsmz hag been
that it tends to take too small a step in the hard wall region of the
potential, when BSTEP is set so that proper step sizes are used in the long-
range region of the potential. Once again, if I were to rerun the test
problems, I would more carefully optimize (increase) the STPMIN parameter.

In conclusion, the test problems selected by the NRCC workshop on
close coupling methods have fulfilled the criterion of presenting potentials
which would be encountered in realistic research problems. The Lzlanalytic
hybrid method used here 18 not the optimal choice for these problems. The
L2 method needs further work to reduce, if possible, the effort expended
at the first scattering energy. The program used is limited to fairly small
systems of coupled equations because of computer core restrictions. The L2
method seems also to get comparatively worse as the number of coupled
channels increases.

A copy of the computer program used for these test problems is on file
with the National Resource for Computation in Chemistry. The program is
written entirely in FORTRAN: no special care was taken to znsure that only
standard FORTRAN usage was employad, although there should be no difficulties
using the program within a CDC environment. The primary source of difficulty
in moving this program is likely te be with its usage of input through
the NAMELIST format. Although NAMELIST iz a standard FORTRAN comstruct,
it frequently seems to be implemented in a nonstandard fashion. A set of

documentation appropriate for using this program will he filed with the NRCC.
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Table I. Integration Pegions for the Hybrid R-ma2trix Method.
Probles Jporr Foany My Npox opor Gla) Ry(a) KH(a)  T)(eec) T, (sac)
1 4 2 12 33 252 1.7 11.60 s 0.53 0.13
1 4 & 48 15 356 1.7 6.20 k} 6.96 1.08
1 4 18 108 S 182 1.7 3.20 35 22.52 3.69
2(3) 5 3 18 5 950(170) 3.3 4.80 700(7) 1.51(0.40) 0.18(0.02)
2(3) 5 6 36 5 1029(168) 3.3 4£.80 700(7)  4.51(1.41) 2.37(0.37)
2(3) 5 15 75 6 1296(271) 3.3 &.20 700(7) 41.42(14.04) 21.85(5.88)
2(3) 25 k] 18 10 284(12) 3.3 6.29 700(7) 0.67(0.32) 0.56(0.12)
2(3) 25 i0 60 544(53) 3. 5.05 700(?) 9.67(%.70) 1.59(0.30)
2(3) 25 22 110 3 733(183) 3.3 3.90 700(7) 63.33(23.55) 14.14(3.15)
&4 H 4 24 8 208 5.0(-6) 2.40 50 0.82 0.19
4 5 15 60 6 85 5.0(-6) 1.80 50 6.60 1.23
&4 5 19 76 4 96 5.0(-6) 1.20 50 13.33 3.03
*
Table IIA. Details of Timing for Test Problem 1
Rligzerva;(ao) Method NSTEPS Tog:tc§ime Tt::ﬁ?
right
1.7 3.2 12 5 14.77(0.47) 9.85(0.31)
3.2 4.0 analytic 47 1.98(0.80) 2.48(1.00)
4.0 5.0 analytic 32 1.35(0.55) 1.35(0.55)
5.0 6.0 analytic 17 0.72(0.29) 0.72(0.29)
6.0 8.0 analytic 14 0.59(0.24) 0.30(0.12)
8.0 10.0 analytic 10 0.42(0.17) 0.21¢0.09)
10.0 14.0 analytic 16 0.67(0.27) 0.17(0.07)
14.0 20.0 analytic 18 0.76(0.31) 0.13(3.05)
20.0 35.0 analytic 28 1.19(0.48) 0.08(0.03)

*Total L2 time was 14.77(0.47) sec; total analytic time was 7.67(3.11) sec;

18 channels.



98

*
Table IIB. Details of Timing for Test Problem 2a

Interval(ao) Method Nergps Total Time T:l.me/a°
Rlef. t Rright (sec) (sec)
3.3 4.2 L2 6 6.71(0.25) 7.45(0.28)
4.2 5.0 analytic 73 1.95(0.78) 2.44(0.98)
5.0 6.3 analytic 127 3.39(1.36) 2.63(1.05)
6.3 7.3 analytic 100 2.67(1.07) 2.67(1.07)
7.3 8.4 analytic 100 2.67(1.07) 2.43(0.97)
8.4 9.8 analytic 100 2.67(1.07) 1.91(0.77)
9.8 11.7 analytic 100 2.67(1.07) 1.41(0.56)
11.7 14.3 analytic 100 2.67(1.07) 1.03(0.41)
14.5 18.2 analytic 100 2.67(1.07) 0.69(0.27)
18.2 25.2 analytic 100 2.67(1.07) 0.38(0.15)
25,2 51.6 analytic 100 2.67(1.07) 0.10(0.04)
51.6 142.8 analytic 100 2.67(1.07) 0.03(0.01)
142.8 700 analytic 196 5.23(2.10) 0.003(0.001)

*Total L2 time was 6.71(0.25) sec; tctal analytic time was 34.60(13.87) sec;

15 channels.
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*
Table IIC. Details of Timing for Test Problem 2b

Interval(ao) Method NSTEPS Total Time Time/a
R1eft; Rright (sec) (see)
3.3 5.0 12 3 10.08(0.47) 16.80(0.79)
3.9 5.0 analytic 107 7.72(3.11) 7.02(2.82)
5.0 5.7 analytic 43 3.10(1.25) 4.43(1.78)
5.7 7.5 analytic 50 3.61(1.45) 2.01(0.81)
7.5 10.1 analytic 50 3.61(1.45) 1.39(0.56)
10.1 12.3 analytic 50 3.61(1.45) 1.64(0.66)
12.3 14.6 analytic 50 3.61(1.45) 1.57(0.63)
14.6 17.1 analytic 50 3.61(1.45) 1.44(0.58)
17.1 21.3 analytic 50 3.61(1.45) 0.86(0.35)
21.3 34.9 analytic 50 3.61(1.45) 0.27(0.11)
34.9 72.7 analytic 50 3.61(1.45) 0.10{0.04)
72.7 146.7 analytic 50 3.61(1.45) 0.05(0.02)
146.7 700 analytic 183 13.21(5.32) 0.02(0.01)

*Total L2 time was 10.080(0.47) sec; total analytic time was 52.91(21.29) sec;

22 channels.
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*
Table 1ID. Details of Timing for Test Problem 4

1:; :ervalli :i Z})Lt Method NSTEP Toz:tc';?ime Tiin;ee/c 1;0

0 1.2 1? 3 7.09(0.47) 5.91(0.39)
1.2 2.0 analytic 15 0.96(0.38) 1.12(0.48)
2.0 3.0 analytic 10 0.64(0.26) 0.64(0.26)
3.0 4.6 analytic 10 0.64(0.26) 0.41(0.16)
4.6 6.8 analytic 10 0.64(0.26) 0.29(0.12)
6.8 10.1 analytic H 0.64(0.26) 0.15{0.078)
10.1 15.0 analytic 10 0.64(0.26) 0.13(0.052)
15.0 22.2 analytic 10 0.64(0.26) 0.088(0.035)
22.2 32.9 analytic 10 0.64(0.26) 0.060(0.024)
32.9 50.0 analytic 1 0.70(0.28) 0.041(0.016)

*Total L2 time was 7.09(0.47) sec; total analytic time was 6.12(2.45) sec;

19 channels.
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At the second meeting of the workshop the advantages of the LOGD method
at short range aml of VIVS at long-range became obvious. As described earlier
by Jolmsonl >, the log-derivative method is essentially a stabilized wave-
function following metiod in which the linear second order Schrddinger differ-
ential equation is transformed to a non-linear first order equation (Ricatti

equation) for the matrix logrithmic derivative,

Y =3 @) V-

o ~ ~
The LOGD solution algorithm requires only 1.5 matrix inversions per step and
is just a two term recurrence relation. Thus it is extremely simple and fast
per step. The step size must be same fraction of the wavelength and the error
is fourth order in the step size. As shown by the test problems (dt/dr plots),
this method is effective in the non-classjcal iegion or wherever the potential
is rapidly varying or the wavelength large.

The variable-interval variable-steps method of Parker et al.,4’5 is a
notential following method which basically uses piecewise constant approxima-
tions to the potential, generates diagonal zeroth order solutions over a step
and corrects these solutions over the steps in an interval by perturbation
theory. Again, as shown by the test probiems, it is very effective whenever
the potentizl is slowly varying or the wavelength small. For small steps
VIVS is also a fourth order method.

Figures 1-4 (pp. 33-36), showing dt/dr for test problems 1, 2, and 4, indi-
cate that a hybrid code using LOGD at short distances and VIVS at large distances
should be significantly faster than either. Since the LOGD method produces the
log derivative matrix and VIVS propagates its inverse, the R-matrix, the Parker-
Joimson (P-J) hybrid method was easily obtained by integrating with LOGD to a2
switchover point, inverting the log derivative matrix, transforming it to‘ the
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local diagonal basis, and continuing the propagation of the R-matrix with
VIVS. It should be noted that both methods are rimerically stable.

Applications

The P-J hybrid code was checked out on the 9-state rigid rotor prcblem
of Lester and Bemstein6 and more detailed results will be published else-
where. We found, however, that there is a relatively broad minimm for total
computation time vs switchover point at a given level of accuracy.

Three of the test problems for this workshop were also run with the P-J
hybrid code shortly after the second meeting. As can be seen from Table 4 {p. 25),
the hybrid code at the second energy is significantly (approximately a factor
of 2) faster than any other code tested, including both LOGD and VIVS. (This,
however, is partially due to improvements in the VIVS code itself.) In these
tests the switchover point was given as imput, and only one step size was
used in the LOGD region. Even in this form, however, the code performed
extremely well.

There are two aspects of the current P-J hybrid code whick can probably
be improved. First, the LOGD portion could use a varisble step size provided
a simple algorithm can be determined to choose the largest step consistent
with a given level of accuracy. Second, the choice of switchover point could
probably be determined within the code, probably using the local wavelengths
and their spatial derivatives as a guide. As it stands now, however, the

hybrid code leaves these decisions in the hands of the user.
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SECTION V
WORKSHOP RECOMMENDATIONS TO THE NRCC

Discussions at the second meeting of the workshop vielded a mumber of
suggestions for the NRCC to consider for future activity in the area of
quantum mechanical scattering calculations. These fall into twr categories —
1) recommendations for implementation of the results of this workshop and
2) recommendations for longer term projects for the advancerent of the fieid.

In the first category we would recommend the following:

1) Adopt a combined Johnson(LOGD) - Parker (VIVS) progran (see VIVAS
test results) for documentation, further testing, optinizaticn anc distribu-
tion as a "support level A" NRCC software library code.

2) Incorporate this code into a more corplete s<attering progran such
as MOLSCAT.

3. Optimize this and perhaps other workshop codz2s for use at LBL with
assembly language routines.

In the second category we recommend that the NRCC urdertake severzl iow-
level, long-temm projects.

1) Testing and code development by the external scientific commmity

a. Starting from the current set of test problems, duselgp a

standard set of test problems with exact answers and performaice

tables for all available codes.
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b.
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Bncourage the scientific commmity to try any new or improved
metheds on this standard set of problems and to comntribute to
the NRCC documented versions of any codes with significant advan-
tages.

Invite the scientific commmity to contribute new and signif-
icantly different test problems to the NRCC in the appropriate
format and with appropriate documentation.

Service to the user commmity

a. Make available to the user commmity documented versioms of all

the codes used in this workshop.

Collect a library of potential prograas; for.example, a flexible

DIM package.

Collect and maintain a library of standard scattering modules

or '"'tools." A suggested list of such modules is:

1. Matching of wavefunctions to boundary conditions.

2. Interconversion ammg the log derivative, R-, K-, and
S-matrices

3. Clebsch-Gordan coefficients and 3-j, 6-j, and 9-j symbols

4., BRessel finctions for high a.ular momentum

5. Rotation matrices

6. Programs for specific problems such as atom-diatam collisions

7. Programs for expanding a 3-dimensional potential energy surface
in Legendre polynomials

8, venerators for lists of quantum mumbers for specific
problems

9, Geo~rators for potential matrix elements from a list of

quantun mumbers
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10. Optimized matrix algesra programs for symmetric,
diagonally-dominant matrices

11, Versatile differential and integral cross-section programs
for computing total, rotationally averaged and fully state-
selected (m - dependent) cross sections.

12. Trancfomiation of cross sections fram the center-of-mass

to the laboratory frame of reference
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SECTION VI

SUMMARY

This workshop has succeeded in bringing up 11 different coupled equation
codes on the MRCC computer, testing them against a set of 24 different test
problems and making them available to the usc: commmity. These codes span a
wide variety of methodologies, and factors of up to 300 were observed in the
spread of computer times on specific problems. A very effective method was
devised for examining the performance of the individual codes in the different
regions of the integration range. Many of the strengths and weaknesses of the
codes have been identified. Based on these observations, a hybrid code h:.
been developed which is significantly superior to any single code tested.
Thus, not only have the original goals been fully met, the workshop has
resulted directly in an advancement of the field.

All of the computer programs except VIVS are available upon request
from the NRCC. Since an improved version of VIVS is contaired in the hybrid
program, VIVAS, it was not made available for distribution. The individual
program LOGD is, however, available. The program names in the NRCC software
library are identical to those in Table 1 (p. 22). Each library program has
documentation on its use, a test input file and a listing of tks output gen-
erated by that input file.

In addition, programs which compute the potential energy matrices of the
test problems are also available. The software library names for Tests 1,

2 and 4 are HEH2, LICO, and EN2, respectively.



APPENDIX A
Selected S-matrix Information From All Tests and Methods

This appendix lists information from all of the S-matrices saved on
tape during the workshop. The column headings are:

COUNT - the mmber of potential evaluations.
TINE - the computer time in seconds.
(I, F) - the squared magnitude of the S-matrix element for

the initial (I) and final (F) states specified in
Table 2, page 23

RE(I, F) - real part of the above S-matrix element.

IM(I, F) - imaginary part of the above S-matrix element.

(I, O - squared magnitade of the elastic S-matrix element
in the Chamel I.

(F, B squared magnitude of the elastic S-matrix element

in the Chamnel F.

The results for the different tests are separated by the test name,
the mmerical values of I and F and the values of Toin and T, max used for the
Tun reported in Tables 3-6, pages 24-27.

Many of the Tuns reported in this appendix were experimental and all
of the input parameters for each run are not readily available. Some

specific comments, when appropriate, will precede the results for each method.



The Variable-Order, Varizble-Stepsize
Predictor-Corrector Method (PC)

L. D. Thomas



COUNT TIME

TEST1/J4B1
3116 1.57
2699 1.34

TEST?/JAB2
3954 22,53
3326  18.90
2771 15.31

TEST1/J4B3
4005 105.74
3544 92,07
2996 75.64

TEST1/J4B4
4180 350.56
3745 308.93
3181 256.45

TEST2/J2581
4895 4.30
4005 3.53
3329 2.83
2588 2.13
2113 1.68

TEST2/42582
6174 43.41
5140 34.62
4295 28,21
3497 22.21
2819 17.18

TEST2/J25B3
7007 276.47
5991 229.22
5025 187.48
4243 154,58
3388 121.63

TEST2/J25B4
5881 603.10

TEST2/J5R1
1653 1.44
1423 1.21
1168 .98

932 .76
702 .55

TEST2/J5B2
2112 5.18
1687 4.11

(1,F RE({,F)
(1,F=1, 2)
«9167E~10  .6690E~05
«9167€-10  .6690E-2%
(H,F)=C 1, 5)
.1681E-08  .2422E-04
.168"E-08  .2422E-04
.1681E-08  .2422E-C4
(1,F)=( 1,15)
.1184E-08 -,5391E-05
. 1184E-08 =-.5391E-05
«1184E-08 -.5393E-05
L,F=01,20)
«1112E-08 . 1245£-04
1112E-08  .1245E-04
<1112E-08 . 1244E-04
(,F)=¢ 1, 3)

+4073 «3670
+4073 +3682
+4G55 3723
<4058 + 1238
<5369 =.6513
(1L,F)=C 1, 4)
+5903E-02 -.6938E-01
«5904E-02 -.6939E-01
«5911E-02 -.6950E~01
.5899E-02 -.6971E-01
+5643E-C,. ~-.5375E-01
(1L,F)=C 1, 4}
«2036E-01  .8650E-01
«2036E-01  .8650E-01
«2036E-01 «8646E-01
«2033E-01 .8602E-01
.2024E-01  .8710E-01
(,F={1, 4)
.3755E-01  .26B0E-01
(,R=t 1, 3

«2253 -+« 1809E-01
«2253 =-.1792E-01
«2238 -.1619E-01
2199 -.,4977e-01
.6233 -.3276
U,R=1, 4
«1777E-01 -.5442E-02
«1777E-01 ~-.5449E-02

A-3

M1, F)

(RMIN,RMAX) =(

-.6849E-05
-.6849E-05

(RMIN,RMAX)=(

«3308E-04
.3308E-04
«3309E-04

(RMIN, RMAX)=(
«3398E-04
-3398E-04
«3398E-04

(RMIN,RMAX) =(
«3094E-04
«3094E-04
+3094E-04

(RMIN,RMAX)=(
«5221
«5212
+5166
«6249

=.3357

(RMIN,RMAX) =(
-.3301E-01
~«3299E-01
-.3287E-01
~+3224E-01
~+524B8E-01

(RMiN, RMAX)=(
-.1135
-. 1135
-.1135
-.1137
- 1125

(RMIN, RMAX)=(
.1919

(RMIN, RMAX)=(
L4743
.4743
.4728
4663
.7184

(RMIN,RMAX)={
-.1332
-.1332

(,n

2.500
1.000
1.000

2.500
4917
4917
«4917

2.500
+4699
.4699
.4699

2.500
«A4702
+4702
.4702

3.000
. 1404
« 1405
.1412
«1364
«1229

3.000
.7857
.7857
.7858
.7852
7709

3.000
.7293
#7293
«7293
.7293
«7295

3.000
.6775

3.000
+4949
«4950
+4950
.4868
.4235

3.000
.4344
.4343

(F,F)

45.00
1.000
1.000

45.00
«9551
.9551
9551

45.00
»9551
.9531
.9551

45.00
.9547
«9547
.9547

150.0
«4920
-4920
.4926
.4887
.4766

150.0
.2289
«2289
.2289
«2792
.2308

150.0
3775
3776
«3776
.3776
3775

150.0
+4769E-01

150.0
«3690
«3690
3691
«3654
3394

150.0
« 1948E-01
«1948E-01

)

)



COUNT TIME
1489 3.44
1147 2.59

913 1.99

TEST2/45B3
3068  45.82
2527 36.96
2298  31.95
1854  25.70
1560  20.60

TEST2/J5B4
3896 233.12
3270 189.49
2842 160.07
2406 132.27
2075 110.56

TEST3/J25B1

619 .52
526 .43
439 $35
355 +28
308 .23
TEST3/J2582
935 5.81
804 4.76
695 4.00
564 3.1t
481 2.57

TEST3/42583
1162 41.86
1022 36.32

827 28.70
740  24.90
595 19.48

TEST3/J2584

1169 116.33
968  94.67
835 79.40

TEST3/J5B1

604 «50
519 .43
434 <35
357 «29
286 «22
TEST3/4582
796 1.81
645 1.45
555 1.20

(i,F)

«1768E-01
«1734E-01
+2326E-01

(,F=C1,
«1025E-01
«1026E-01
- 1025E-01
«9661E~02
«1174€-01

(,F=C1,
«1465E-01
« 1465E~01
- 1466E-01
- 1460E-01
«1465E-01

O,F=¢ 1,
.4727
.4727
4732
4761
.4470

(,h=( 1,
L1710
L1710
.1709
.1708
.1728

(1,F=1,
+6569E-01
+6569E-01
»6569E-01
+6568E-01
«6562E~01

(,R=C1,
.6266E-02
.6268E-02
-6269E-02

(i,F=C1,
«4185E-01
«4184E-01
«4184E-01
«4205E-01
+3354E-01

(,F=C1,
+2056
.2056
+2059

RE(1,F) IM(L,F)
~.5777e02 -.1328
-.4524E-02 =-.1316

.2647€-01 -.1502
4) (RMIN,RMAX)=(

«9863E-01  .2296E-01

«9864E-01  ,2295E-01

.9862E-01  .2286E-01

.9500E-01  .2521E~01

<1036 »3173E-01
4) (RMIN, RMAX)=(

«1138 «4124E-01

1138 -4123e-01

«1138 «4120E-01

1136 «4108E-01

1118 «4621e~01
3) (RMIN,RMAX)=(
~.2816 ~.6272
-.2816 -,6273
-.2821 -.6274
-.2855 -.6281
=-.3333 -.5795
4) (RMIN, RMAX)=(
-.3951 1219
—~e3951 1219
-.3951 1220
-.3943 <1237
-.3921 1379
4) (RMIN, RMAX)=(
=.2300 ~-.1131
-.2300 =-.1131
~«2300 - 1131
-.2300 -.1131
-.2299 -.1129
4) (RMIN, RMAX)=(
-.8239-02  .7873E-01
-.82426-02  .7874€E-01
-.8251E-02  .7875E-01
3) (RMIN, RMAX)=(

+1186 » 1667

.1186 . 1667

.1187 » 1666

.1188 »1671

1113 1454
4) (RMIN,RMAX)=(
=-.2517 3772
-,2517 3772
-.2516 +3776

(1,1
4354
<4350
«4325

3.000
8300
.8300
.8300
.8306
.8270

3.000
.9231
.9251
«9251
.9251
«9252

3.000

14
-4193E-01

«4193E~01
«4189E-01
+4066E-01
«4326E~01

3.000
«3965
«3965
+3965
+3968
.4000

3.000
»3694
.3694
.3694
3694
«3695

3.000
.1283
«1283
»1283

3,000
.9099
.9100
.9101
+9102
.9258

3.000
.7005
<7005
.7001

(F,F)

. 1947E-01
«1947E-01
. 1955E-01

150.0
+2905
«2905
+2905
.2902
«2507

150.7
. 1366
.1366
+1366
.1366
1369

7,000
+3293
+3293
«3293
<3272
+3255

7.000

+2026E-01
»2026E-01
.2026E~-01
+2064E-01
-2363E-01

7.000
.3118
3118
.3118
3118
L2120

7.000

.2901E-01
.2901E~01
.2900E-01

7.000
9575
+9575
.9576
+9576
.9652

7.000
.7646
»7646
.7644

)

)



COUNT TIME
485 1.00
382 77

TEST3/4583

1068 15.43
879 12.49
767  10.80
641 8.79
551 7.15

TEST3/J4584

1221 71.05
1030  58.61
885 49,51
805 43.04
N7 37.53
TEST4/J58B1
1353 1.75
1078 1.38
858 1.09
646 .79
520 «59
TEST4/45B2
2114 30.25
1612 23.08
1291 18.44
1022 14.48
737 10.19
TESV4/1583
2358 74.33
1906 58.30
1362 42.36
1125 34,03
857 26,01
TEST4/J5B4
2584 147.73
1966 112.30
1595  90.82
1193 67.24
933 51.51

(1,F)
«2058
«2036

(,FA=C1,
«1039E-02
» 1039E-02
» 1040E-02
« 1039E-02
«9917€-03

,F=C1,
+6097E-02
-6097E-02
+6097E-02
.6095E-02
.6092E-02

(L,R=C1,
.4330E-02
«4330E-02
.4329E-02
.4326E-02
.4474E-02

(,h=C1,
.2912E-02
.2912E-02
.2912F 02
«2915E-02
.2904E-02

(,R=C1,
.2873E-02
.2873E-02
.2873E-02
.2872E-02
«2864E-02

(,R=C1,
. 2882E-02
.2882E-02
.2882E-02
.2882E-02
.2883E-02

RE(!,F)
-.2518
-.2522

4)

-.1703E-01
-.1703E-01
-.1704E-01
-.1699E-01
-« 1653E-01

4)
.6903E-01
«6903E-01
«6203E-01
«6902E-01
«6901E-01

2)

-.4844E-01
-.4842E-01
-.4840E-01
-.5015E-01
-.61395-01

2)

-.3937E-C1
-.3937€-01
-.3935E-01
-.3933E-01
-.4155E-01

2)

~-.4043E-01
-.4043E-01
-.4042E~01
-+4037E-01
-.4045E-01

2)

-.4162E-01
~+4162E-01
-.4162E-01
-.4158E-01
-.4176E-01

IM(1,F)
3774
«3742

(RMIN,RMAX)=(
~e2737E-01
=-.2737E-01
-+2738E-01
-.2740E-01
-.2680E-01

(RMIN,RMAX)=(
«3649E-01
«3649E-01
«3649E-01
«3649E-01
«3647E-01

(RMIN, RMAX)=(
«4453E-01
+4455E-01
«4457E-01
.4255E-01
«2654E-01

(RMIN,RMAX)=(
«3691E-01
«3691E-01
«3693E-01
«3696E-01
«34320-01

(RMIN,RMAX)=(
+3519E-01
«3519E-01
«3520E-01
«3526E-01
+3505E-01

(RMIN,RMAX)=(
«3390E-01
+3390E-01
«3391E-01
.3395E-01
«3375E-01

(1,1
«7006
+7036

3.000 »
«9207
.9207
-9207
+9204
9214

3.000 ’
.9784
.9784
.9784
+9784
9784

«i000E-01,
«9956
. 9956
+ 9955
+9956
.9957

.1000E-01,
.9963
+9963
.9963
«9963
.9963

.1000E-01,
«9962
.9962
«9962
9962
4362

.1000E-01,
+9961
.9961
.9961
.9961
«9961

(F,F)
.7646
«7652

7.000
.9497
.9497
-9497
.9497
.9498

7.000
.9856
.9856
.9855
«9856
.9856

120.0
.9923
.9923
.9923
.9923
.9924

120.0
.6412
6412
.6412
6411
.6414

120.0
.5766
5766
.5766
.5764
.5768

120.0
«3323
.5323
.5323
5323
<5317



DeVogelaere's Method (DEVOG)

L. D. Thomas
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COUNT TIME  (1,F) RE(1,F) M(1,F) a,n (F,F}
TEST1/44B1 (1,F=C1, 2) (RMIN,RMAX)=( 2.500 , 45.00 )
6791 .80  .9203E-10 .6700E-05 =-.6866E-05 1.000 1.000
TEST1/J4B2 (1,F=C 1, 5 (RMIN,RMAX)=( 2.500 , 45.00 )
6791  7.14 .1681E-08 .2425E-04  .3306E-04 .4917 .9551
TEST1/44B3 (1L,FY=( 1,15) (RMIN,RMAX)=( 2.500 , 45.00 )
6791 45.35 .1183E-08 =-.5367E-05 .3397E-04  .4699 9551
TEST1/44B4 (,F=( 1,20) (RMIN,RMAX)=( 2.500 , 45.00 )
6791 151.74 .1111E-08 .12476-04  .3092E-04  .4702 .9547
TEST2/J2581 (,R=01, 3) (RMIN,RMAX)=( 3.000 , 1000. )
50171  18.11  .3948 .4258 4621 .1781 .4998
TEST2/J25B2 (,F=( 1, 4) (RMIN,RMAX)=( 3.000 , 1000. )
50171 82.17  .5991E-02 -.7601E-01 -.1458E-01  .8356 .2255
TEST2/J2583 (t,F)=C 1, 4 (RMIN,RMAX)=( 3.000 , 1000. )
50171 541.30 .1722E-01 .6011E-01 =-.1166 .6892 .3755
TEST2/4581 (1,Fy=( 1, 3 (RMIN,RMAX)=( 3.000 , 1070, )
10595  3.89  .2285 -.8312E-01  .4707 L4613 3141
TEST2/J5B2 (,F=( 1, 4 (RMIN,RMAX)=( 3.000 , 1000. )
10595  7.37  .1394E-01 .7223E-02 -.1176 .3971 .4942E-01
TEST2/J583 (,F=C1, 4 (RMIN,RMAX)=( 3.000 , 1000. )
10595 45.09 .7885E-02 .8261E-01  .3258E-01 .9017 .4107
TEST2/4584 (L,F=C 1, ) (RMIN,RMAX)=( 3.000 , 1000. )
10595 203.49  ,1593E-01 .1196 (4043E-01  .9489 .1830
TEST3/J2581 (=1, 3 (RMIN,RMAX)=( 3,000 , 7.000 )
497 .19 .4728 -.2829 -.6268 LAYT3E-01 3292
TEST3/J2582 (,F=C 1, 4) (RMIN,RMAX)=( 3.000 , 7.000 )
497 .92 .1700 -.3922 1272 .3982 .2118E-01
TEST3/J2583 (,F=01, 4 (RMIN,RMAX)=( 3.000 , 7.000 )
497  6.08 .6594E-01 =-.2309 - 1124 2583 L3101
TEST3/J25B4 O,F=C1, 4 (RMIN,RMAX)=( 3.000 , 7.000 )
497 21.20 .3973E-02 -.5990E-02 .7705E-01 .1288 .2945E~01
TEST3/J581 (,F)=( 1, 3) (RMIN,RMAX)=( 3.000 , 7.000 )
477 .19 L4151E-01 L1184 .1658 .9107 .9579
TEST3/4582 G,h=C1, & (RMIN,RMAX)=( 3.000 , 7.000 )
477 .36 .2066 -.2509 3790 .6987 . 7640
TEST3/J583 (,F)=( 1, &) (RMIN,RMAX)=( 3.000 , 7.000 )

477 2.09  .9381E-03 -.1606E-01 -.2608E-01 .9229 .9500



COUNT TIME
TEST3/9584
477 2.56

TEST4/4581
1591 44

TEST4/J5B2
1591 6.77

TEST4/45B3
1591 16.50

TEST4/3584
1591 33.27

(1,F)

(,R=01,
»6124E-02

(,B)=C1,
«4334E-02

(,Fi=( 1,
+»2914E-02

(,F=C 1,
.2874E-02

(,F)=C01,
.2883E-02

A-9

RE(1,F)

4)
«6923E-01

2)
-.4826E-01

2)
~+3920E-01

2)
-.4028E-01

2)
~.4148E-01

M(1,F)

{RMIN,RMAX) =(
«3648E-01

(RMIN, FMAX)=(
+4477E-01

(RMIN,RMAX)=(
S3711E-01

(RMIN, RMAX)=(
«3538E-01

(RMIN, RMAX)=(
.3409E-01

(10

3.000 »
.9783
. 1000E-01,
.9956
« 1000E-01,
-9963
. 1000E-0Y,
.9962
»1000E-01,
.9961

(F,F)

7.000
.9854

120.0
«9923

120.0
6410

120.0
+5763

(20.0
.5317
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Numerov's Method (MNN)
L. D. Thomas

There are two runs for each test. The muns with the larger COUNT were
done with § = - .15E-8. The rms with the smaller COINT were done with
6 = - ,1B-6. HSTART = ,125E-3 for all rums.
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COUNT TIME  (I1,F) RE(1,F) IM(1,F) (1,1 (F,F)
TEST1/44B1 (=01, 2) (RMIN,RMAX)=( 2.500 , 45.00 )
2701 «75  J9169E-10 .6695E-05 -.6845E-05 1.000 1.000
1343 .39  .9648E-10  .6945E-05 =-.6946E-05 1.000 1.060
TEST1/344B2 (,m=01, 5) (RMIN,RMAX)=({ 2.500 , 45.00 )
2705 5,91 .16B81E-08 ,2420€-04  .3310E-04  .4917 »9551
1347 2.99 .1683E-08  .2393E-04  .3333E-04  .4917 »9551
TEST1/44B3 (1,F)=¢ 1,15) (RMIN,RMAX)=( 2.500 , 45.00 )
2705 37.02 .1184E-08 =-.5415E-05 .339BE-04  .4699 «9551
1347 18,92  .1181E-08 -.5700E-05  .3389E-us  .4699 .9551
TEST1/J4B4 (1,F)=( 1,20} (RMiN,RMAX)=( 2.500 , 45.00 )
2712 136.05 .1112E-08  .1242E-04  .3094E-04  .4702 «9547
i349 67.86 .11126-08 .1211E-04 . 3107€-04  .4702 <9547
TEST2/425B1 (,n=01, 3 (RMIN,RMAX)=( 3.000 , 1000. )
62693 37.05 .4024 «3525 5274 . 1649 4895
31351 17.87  .4026 «3307 «5415 .1645 .4538
TEST2/J2582 a,n=01, 4 (RMIN,RMAX)=( 3.000 , 1000, )
62731 205.76  .5025E-02 -.6597E-01 -.2594E-01 .8316 .2218
31370 101.96  .4931E-02 -.6420E-01 -.2845E-01  .8311 #2216
TEST2/42583 a,F=(1, & (RMIN,RMAX)=( 3.000 , 100.. )
62739 1411, 11 .1663E-01  ,7899E~01 -.1020 .6834 3735
31373 705.55 .1667E~01  .B350E-01 -.9843E-01  .6829 3735
TEST2/45B1 a,n=01, 3 (RMIN,RMAX)={ 3.000 , 1000, }
8702 5.46  .2295 -.6461E-01 .4746 .4586 .3858
4353 2.56  .2294 -.B8454E-01  .4714 .4587 .3856
TEST2/15B2 (1,P)=C1, 4) (RMIN,RMAX)=( 3.000 , 1000. )
8293 13.53  .1397E-01  .2263E-01 -.1160 «3891 «3817E-01
4364 5.49  .1397E-0%  .2630E-01 =-.1152 .3891 «3819E-01
TEST2/4583 (,F=C1, 4) (RMIN,RMAX)=( 3.0C0 » 1060. 3
8306 75.67 .7396E~02  .7424E-01  .4341E-01  .9047 .3918
B17t  74.45 .7375E-02  .7382E-01  .4388E-0! .v047 3919
TEST4/4581 (,F=C1, 2) (RMIN,RMAX)=( ,1000E-05, 120.0 )
1251 .84  ,4330E-02 -.4849E-01  .4449E-01  .9956 .9923
557 +38  .4338E-02 -.4942E-01 .4354E-01  .9956 .9923
TEST4/4582 (,h=01, 2 (RMIN,RMAX)=( ,1000E-05, 120.0 )
1523 13.89  .2913E-02 -.3941E-01 ,368BE-01  .9963 6411
721 6.85 .2913E-02 -.3991E-01 .3634E-01 ,9963 .6412
TEST4/J583 ,R=01, 2) (RMIN,RMAX)=( .1000E-05, 120.0 )
1635 34,86  .2873E-02 -.4046E-C1  .2Z515E-01 . 9962 5766
672 15,34  .2874E~02 -.4096£-01 .3458E-01  .9962 «5763
TEST4/45B4 (,R=C1, 2) (RMIN,RMAX)=( .1000E-05, 120.0 )
1746  74.60 .2882E-0Z ~.4166E-01  .3386E-01 .9961 «3321
703 30.46  .2884E-02 -.42i6E-01  .3326E-01 .9961 .5314
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The Log Derivative Method (LOGD)
B. R. Johnson

For Test 2, a multichannel WKB method was used for the long-range
potential region. In order to test the accuracy of this, some nms were done
using the log derivative method over the entire integration range. Those nns

with COUINT > 10,000 were done without the WKB method.



COUNT TIME
TEST1/J4B1
901 .10
379 .10
TEST1/J4B2
901 .89
879 -89
TEST1/44B3
901 5.70
879 5.76
TEST1/J4B4
901 19.26
879 18.79
TEST2/425B1
1347 .54
32297  11.34
53281 18.57
TEST2/J25B2
1143 2.61
53281 85.95
TEST2/J25B3
1143 18.08
TEST2/J25€E4
1143 47.29
TEST2/J5B1
1N W47
27643 9.78
TEST2/45B2
1"n 1.03
27643  1B.23
TEST2/J5B3
1N 4.68
27643 109.44
1687 6.72
1753 6.96
TEST2/J4584
1"n 19.65
1687  29.39
1752 29.87
TEST3/J25F
401 W15

(1,F) RE(1,F)
(,f=01, 2)
.1156E-09  .7507E-05
.9144E-10  .6822E-05
tL,F)=C 1, 5
1677E-08  .2485E-04
.1681E-08  .2351E-04
(1,F)=( 1,15)
.1143€-08 ~-.4772E-05
.1185E-08 -.51%1E-05
,F)=( 1,20)
.1096E-08 . 1306E-04
.1112E-08  .1178E-04
(,F)=C 1, 3)

»3954 «3484
+3957 +3310
»3956 .3463
(,R=C1, 4
.5571€-02 -.7027E-01
.5523£-02 -.6993E-01
(,F)=(1, 4)
«1715E-01 . 7783E-01
(=01, 4)
+3446E-01 . 1865E-01
(,B)=¢ 1, 3)

.2308 -.9903£-01
«2302 ~+9952E-01
(,h=(1, 4
«'385E-01 . 1137€-01
-14150-01  .1198E~01
,F)=c1, 4
.8819E-02  .9389E-01
.7770E-02  .B0O14E-01
.7810E-02  .8224E-01
.7720E-02  .8142E-01
a,0)=C1, 4
L1422E-01 L1192
.1613E-01  .1197
.1608E-01 1195
(L=, 3

4727 ~.2815

A-14

IM(1,F)

(RMIN, RMAX)=(

-.7697E-05
-.6701E-05

(RMIN,RMAX)=(

«3254E-04
.3358E-04

(RMIN,RMAX)=(

«3347E-04
.3387E-04

(RMIN, RMAX)=(
<304 1€-04
.3119E-04

(RMIN, RMAX)=(
«5234
+5349
+5251

(RMIN, RMAX)=(

-+2516E-01
~+2544E-01

(RM 13, MAX)=(

-.1053

(RMIN,RMAX)=(
.1847

(RMIN, RMAX)=(
«4701
+4694

(RMIN, RMAX)=(

- 1171
-.1184

(RMIN, RMAX)=(
-.1687€-02
«3670E-01
.3237E-01
.3302E-01

(RMIN,RMAX])=(
«4199E-03
.4233E-01
.4248E-01

(RMIN, RMAX)=(
-.6273

a,n

1.500 .
1.000
1.000

1.500 »
4917
.4918

1.500 ’

«4699
-4699

Te. v ,

.4701
.4702

3.000 ’
1772
.1764
-1764

3.000 ’
.8364
8353

3.000 »
.6891

3.000 »

6336

3.000 »
.4571
.4585

3.000 B
.3879
.3894

3.000 ’
.9115
«9044
.9034
.9046

3.000 »
+9566
.9469
.9492

3.000 B
«4193E-01

(F,F)

30.00
1.000
7.000

30.00
9551
»9551

30.00
#9551
»9551

30.00
.5547
.9547

800.0
.4997
+4991
4991

800.0
.2248
2248

800.0
3750

800.0
.4385E-01

1500.
.3130
3132

1500.
«5051E-01
+5014E-01

1500.
.3314
.4109
.3897
.4032

1500.
.1593
.1638
1739

7.000
23293

)

)

)

)



COUNT TIME
TEST3/425B2
401 .68
TEST3/42583
401 4.31
TEST3/J2584
401 11.70
TEST3/45B1
401 .15
20i .08
TEST3/4582
401 .28
TEST3/4583
401 1.62
TEST3/45B4
401 7.21
TEST4/45B1
1003 .25
503 .13
TEST4/4582
503 2.04
527 2.16
TEST4/45B3
503 5.14
527 5.35
TEST4/ 5B
503 10.07

527 10.58

(1,F) RE(t,F) ML F)
(1,F)=C 1, 4) (RMIN, RMAX)=(
.1710 -43952 .1217
(1,F)=C1, 4) (RMIN,RMAX)=(
.6568E-01 -.2299 -.1132
(,F)=C1, 4) (RMIN,RMAX)=(
.6277€E-02 ~.8315E-02  .7879E-0i
(1,F=01, 3) (RMIN, RMAX) =(
.4186E-01 .1186 . 1667
.4202E-01 .1187 «1671
o,A=01, 4) (RMIN,RMAX)=(
.2056 -.2517 <3771
,N=C1, 4 (RMIN, RMAX)=(
.1041E-02 ~-.1705E-01 -.2740E-01
(=1, 4 (RMIN, RMAX) = (
.6097E-02  .6903E-0t «3649E-01
(1,F=01, 2) (RMEN,RMAX) =(
.4329E-02 -.4847E-01 «44492-01
.4324E~-02 ~-.4B43E-01 +4448E-01
a,R=C1, 2) (RMIN, RMAX)=(
.2908R-02 ~.3938E-01 .3684E-01
.2907E-02 -.3935E-01 .3686E-01
(,h=01,2) (RMIN,RMAX)=(
.2866E-02 -.4046E-01 »3506E-01
.2868E-02 -.4041E-01 -3513E-01
,F=01, 2) (RMIN, RMAX)=(
.2873E-02 -.4167E-01 .3371E-01
.2877E-02 -.41G1E-O1 .3385E-01

A-15

o,n

3,000 »
.3964

3.000 ’
.3695

3.000 N
.1283

3.000 B
.9099
.9096

3.000 ,
.7005

3,000
.9207

3.000
.9784

. 1000E-03,
.9956
.9956

.1000E-03,
9963
.9963

. 1000E-03,
.9962
.9962

. 1000E-03,
L9961
L9961

(F,F)

7.000 )
»2025E-01

7.000 )
3120

7.000 )
.2898E-01

7.000 )
<9575
»9573

7.000 )
+7646

7.000 )
.9497

7.000 )
.9856

50.00 )
.9923
.9923

50.00 )
.6400
6411

50.00 )
.5739
5764

50.00 )
.5275
.5320



A-17

The Sams-Kouri Method (SAMS)
K. D. McLenithan and D. Secrest

The r . values here are correct only for the nuns reported in
Tables 3-6. For Test 1, all rums with COUNT = 451 had Toax = 10, For
Test 2, all runs with COUNT = 31501 had Yoy = 80U. For Test 4, all nums
with COUNT = 1050 had Toax = 100.



COUNT TIME

TEST1/4481
451 .06
3384 .44
3051 39
TEST1/44B2
451 <50
3384 3.6
3051 3.17
TEST1/J4B3
451 3.08
3384 22.85
3051 20.21
TEST1/44B4
451 8.00
3384 51.20
3051 56.64
TEST2/J2581
31501 11.62
7101 2.63
TEST2/425B2
31501 52.89
7101 12.13
TEST2/425B3
31501 337.85
71018 77.04
TESTZ,J5B1
31501 11.78
2901 Tl
TEST2/45B2
31501 22.15
2901 2.09
TEST2/J5B3
31501 58.10
11576  54.17
TEST2/J5B4
31501 169.24
11576 214.36

TEST3/425B1

A-18

(i,F RE(1,F) MC1,F)
(,P=C1, 2 (RMIN, RMAX)=(
.7848E-09  .1949E-04 -.2012E-04
.9235E-10  .6717E-05 -.6873E-05
.9201E-10  .6704E-05 -.6860E-05
(LF)=C 1, 5) (RMIN,RMAX)=(
.2100E-08  .3255E€-04  .3227E-04
.1678E-08  .2422E-04  .3Z04E-04
L1679E-08  .Z421£-04  .3305E-04
(LE3=( 1,15) (RMIN, RMAX)=(
.1113E-08  .1915E-05  .3331E-04
.1180E-08 -.5387E-05  .3393E-04
.1181E-08 =-.5397E-05  .3394E-04
(1,F)=( 1,20 (RMIN, RMAX)=(
L1182E-08  .1799E-04  .2953E-04
.1137E-08  .3083E-04  .1363E-04
J11i0E-08  .1243E-04  .3091E-04
(1,F)=0 1, 3 (RMIN, RMAX)=(
.3968 .3433 .5282
.4003 3411 .5329

(,F)=01, 4}

(RMIN,RMAX)=(

.5088E-02 -.6647E-01 -.2589E-01
\4372E-02 -.6103E-01 =-.2543E-01
(L,F)=( 1, 4) (RMIN, RMAX)=(
.1753E-01  .8258E-01 -.1035
.1752E-01  .8731E-01 -.9950E-01
(LR=01, 3) (RMIN,RMAX) = (
.2296 -.1027 .2680
.2269 -.1512 4517
(L,F)=C 1, 4) (RMIN, RMAX) = (
.1432E-01  .1452E-01 -.1188
.1412E-01  .3425E-01 -.1138
(,F=C 1, 4) (RMIN, RMAX)=(
J3323E-01  .1550 -.9599E-01
.7574E-02  .7802E-01  ,3856E~01
(L,E=01, 8 (RMIN, RMAX)=(
L1937E-01  .1144 -.7932E-01
1618E-01 1154 .5354E-01

(,Fr=c1, 3

(RMIN,RMAX)=(

(1,1

2.250
1.000
1.000
1.G00

2.250
.4914
4917
4917

2.250
4694
4599
.4699

2.250
<4697
.4702
.4702

3.500
.1734
. 1690

3.500
«8324
.8296

3.500
.6872
6771

3.500
.4608
.4656

3.500
.3914
.3749

3.500
.8116
.9017

3.500
.9383
.9506

3.500

(F,F)

40.00 )
1.000
1.000
1.000

40.00 )
.9551
.9551
.9551

40.00 )
«9551
+9551
.9551

40.00 )
.9547
.9551
.9547

500.0 )
.4964
.4886

500.0 )
.2244
42238

500.0 )
.3763
.3776

1000. )
.3139
.3087

1000. )
.4843E-C1
.4889E-01

1000. )
.3346
.4053

1000. )
«4605E-01
L1167

7.000 )



COUNT TIME
5001 1.86
TEST3/42582
5001 8.74
TEST3/J2583
5001 54,82
TEST3/J25B4
5001 147.73
TEST3/4581
3501 1.30
TEST3/45B2
3501 2.48
TEST3/J5B3
5001  24.81
TEST3/J5B4
5001 105.33
TEST4/J581
1050 .29
550 W17
190 .07
TEST4/45B2
1050 4.49
550 2.40
190 .92
TEST4/45B3
1050 10.92
550 5.94
190 2.16
TEST4/4584
1050 21.74
550 11.74

190 4.26

(1,F)
24735

U,R=(1, 4
.1715

,A=C1, 49)
«6572E-01

(I,FA)=(1, 4)
.6434E~02

(,F=¢c1, 3
.4237E-01

(L,FA)=C1, &)
. 2062

(1,RM=C1, 4
. 1099E-02

(,F=C1, 4)
-6344E-02

(1,RA=01, 2)
-4395E-02
+4389E-02
.4387E-02

(1,FA=C1, 2)
«2921E-02
+2916E-02
«2914E-02

U,Fy=( 1, 2
.2883E-02
.2879E-02
-2876E-02

(,F)=( 1, 2)
.2877E-02
.2873E-02
+2870E-02

RE(1,F)
-.2779

-.3970

—-42293

=« 1119e~01

.1188

-.2587

~«1752E-01

+7029t-01

-.4911E-01
~«4908E-01
-+4909E-01

-.3960E-01
-.3958E-01
-.3958E-01

-.4108E-01
-.4106E-01
-.4106E-01

-.4190E-01
-.418BE-01
-.4188E-01

A-19

1M(1,F)
~+6295

(RMIN, RMAX) =(
.1176

(RMIN, RMAX)=(
-.1147

(RMIN, RMAX)=(
«7943E-01

(RMIN,RMAX)=(
.1681

{RMIN, RMAX)=(
.3732

(RMIN, RMAX)=(
-.2814E-01

(RMIN, RMAX)=(
«3745E-01

(RMIN,RMAX)=(
.4452E-01
«4450E-01
«4446E-01

(RMIN,RMAX)=(
+3678E-01
«3675E-01
+3670E-01

(RMIN,RMAX)=(
«3458E-01
-3454E-01
«3450E-01

(RMIN, RMAX)=(
«3349E-01
«3343E-01
«3340E-01

i,
»4035E-01

3.500 ,
+3949

3.500 »
«3705

3.500 ’
.1267

3.500 ’
.9088

3.500 ,
6996

3.500 N
.9196

3.500 ’
.9789

+5000E-01,
.9956
9956
9956

«5000E-0t,
.9963
.9963
»9963

.5000E-01,
.9961
9961
.9961

«5000E-01,
.9960
»9960
.9960

(F,F)
.3288

7.000 )
+2002€-01

7.000 )
+3137

7.000 )
.2842E-01

7.000 )
.9570

7.000 )
«7627

7.000 )
.9495

7.000 )
.9857

50.00 )
.9922
.9922
9922

50.00 )
.6348
.6348
.6344

50.00 )
.5538
.5538
«5534

50.00 )
.5182
.5182
.5178



A-21

The Method of Integral Equations with
Reference Potentials (INSCAT)

M. J. Redmon



COUNT TIME

TEST1/44B1
318 .18

TEST1/44B2
248 .84

TEST1/J4B3
198 3.73

TEST1/44B4
197 11.71

TEST2/425B2
999 5.74

TEST2/J25B3
1008  31.62

TEST2/458B2
850 1.94

TEST4/45B1
328 +36

TEST4/J58B2
347 4.42

TEST4/45B3
382 10.74

TEST4/45B4
415 22.66

A-22

«,F) RE(I,F) MC1,F)
(1,F=( 1, 2) (RMIN, RMAX)=(
.9094E~10  .6661E-05 -.6824E-05
(,R=C1, 5 (RMIN, RMAX)=(
.1699E-08  .226BE-04  .3442E-04
(1,F)=C 1,15 (RMIN, RMAX)=(
.1149E-08 -.5244E-05  .3350E-04
(1,F)=( 1,20) (RMIN, RMAX)=(
.3264E-06  .5591E-03 —.1173E-03
(,F=( 1, 4 (RMIN, RMAX)=(
.5645E-02  .7312E-01  .1726E-01
(1,F=C 1, 4 (RMIN, RMAX) =(
.2154E-01  .130% .6789E-01
(,F=( 1, 4) (RMIN, RMAX) =
.1755E-01 1094 -.7468E-01
(,F=C1, 2 (RMIN, RMAX) = (
.4305E-02 -.4900E-01  .4363E-01
(,h=(1, 2) (RMIN, RMAX) =(
.2928E-02 -.3966E-01  .3681E-01
a,h=01, 2 (RMIN, RMAX)=(
.28BB7E-02 -.4076E-01  .3501E~01
(,F=(1, 2 (RMIN, RMAX)=(
.2872E-02 -.4181E-01  .3352E-01

i,

2.2%0
1.000
2.25%0
4946
2.250
.4747
2.250
.4753
3.000 ,
.5698
3.000
.6007
3.000
3564
.2000E-01,
.9957
.2000E-01,
.9963
.2000E-01,
.9961
.2000E-01,
.9960

(F,F)

16.00
1.000

16.00
+9552

16.00
.9553

16.00
+9948E-08

500.0
1751

500.0
+3906

500.0
.8362E-01

75.00
.9923

75.00
.6358

75.00
.5687

75.00
.5219

}

}



A-23

Gordon's Method (GORDON)
M. H. Alexander

The results are given in pairs, the second member of which has
COUNT = 0. These are for the second-energy rums which do no potential eval-

uations.



COUNT TIME
TEST1/44B1

233 .65

0 22

373 1.05

0 .36

493 1.38

0 -47

618 1.76

0 «59
TEST1/J4B2

246 3.36

0 .72

394 5.42

0 1.17

519 7.13

0 1.53

650 8.91

0 1.90

869 11.63

0 2.48

1125 15.13

0 3.20

1811 24,66

0 5.26
TEST1/44B3

258 16.27

0 3.06

401 25.97

0 5.04

524 33.92

0 6.61

680 43.40

0 8.54
TEST1/4484

272 49.62

0 11,19

432  78.95

0 18.14

570 104.18

0 24.06

716 130.13

0 30.20
TEST2/425B1

1098 4.93

0 1.31

1527 6.81

0 1.83
TEST2/425B2

A-24

(1,F) RE(I,F)
(,Fy=(1, 2)
.3757E-08 -.4240E-04
.3757€-08 -.4240E-04
.1338E-09  .8032E-05
.1338E-09  .BO32E-05
.9443E~-10  .6758E-05
«9443E-10  .6758E-05
«1096E-02  ,7287E-05
.1096E-09  .7287E-05
(,F)=¢1, 5)

. 1892E-08  .1755E-04
.1892E-08  ,1755E-04
.1734E-08  ,2098E-04
.1734E-08  .2098E-04
.1695E-08  .2176E-04
.1695E-08  .2176E-04
.1685E-08  .2253E-04
.1684E-08  .2253E-04
.1677E-08  .2308E-04
.1677E-08  .2308E-04
.1678E-08  .2363E-04
.1678E-08  ,2363E-04
.16776-08  .2404E-04
.1677E-08  .2404E-04
(1,F)=C 1,15}
.2076E-08 -.1396E-04
«2076E-08 -.1396E-04
. 1503E-08 -.9531E-05
«1503E-08 -.9531E~05
. 1352E-08 -.7859E-05
.1352E-08 -.7859E-05
«i278E~08 ~.6939E-05
.1278E-08 -.6939E-05
(1,Fy=( 1,20)
.1408E-08  .2414E-06
.1408E-08  .2414E-06
.1208E-08  .5950E-05
.1208E-08  .5950E-05
«1177E-08  .7311E-05
+1177E-08  .7511E-05
.1156E-08  .8331E-05
.1156E-08  .8331E-05
a,R=01, 3)
+2833E-05 =-.1196E-02
.2833E-05 ~.1196E-02
.1846E-05 -.9775E-03
.5611E-08  .4114E-04
(1,R=C1, 4

IM(1,F)

(RMIN, RMAX)=(
«4426E-04
«4426E-04

-.8324E-05
-.8324E-05
-.6983E-05
-.6983E-05
-+7517E-05
~-.7517E-05

(RMIN, RMAX)=(
.3981E-04
.3981E-04
.3597E-04
+3597E-04
.3495E-04
.3495E-04
.3431E-04
.3430E-04
+3383E-04
.3383E-04
.3345E-04
<3346E-04
.3316E-04
*.3316E-04

(RMIN, RMAX) =(
+4338E-04
«4338E-04
«3758E-04
«3758E-04
«3592E-04
«3592E-04
»3507E-04
+3507E-04

(RMIN, RMAX)=(
«3753E-04
+3753E-04
»3425E-04
«3425E-04
+3352E-04
3352E-04
«3297E-04
«3297E-04

(RMIN, RMAX)=(
-.1184E-02
-.1184E-02
~.9435E-05

.6260E-04

(RMIN, RMAX)=(

(1,1

2.100
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

2.100
.4898
.4898
»4905
»4905
+4908
.4908
.4910
.4910
.4912
4912
-4913
.4913
-4915
4915

2.100
.4688
.4688
+4692
+4692
.4694
»4694
4695
«4695

2.100
.4668
+4668
-4681
.4681
.4686
.4686
.4689
.4689

3.040
1.000
1.000
1.000
1.000

3.040

’

(F,F)

19.00
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

19.00
+9554
.9554
»9553
«9553
»9552
.9552
»9552
»9552
+9552
#9552
»9552
.9552
.9551
»9551

19.00
«9554
.9554
#9553
29553
.9552
.9952
.9552
.9552

19.00
»9550
»9550
.9549
.9549
»9549
.9549
.9549
.9549

1000.
.9948
.9948
«9950
1.000

1000.



COUNT TIME
899 18,34
0 3,36
1369  27.81
0 5.08
TEST2/425B3
424 43,16
0 7.49
597 61.22
0 10.8}
TEST2/425B4
937 232.75
1102 278.73
0 46.83
TE3T2/4581
1207 5.07
0 1.31
1484 6.46
4] 1.66
TEST2/45B2
1221 1.21
0 2.39
1562  14.21
0 3.02
TEST2/45B3
1622  74.90
0 15.99
1395  64.05
0 13.47
TEST2/)5B4
1767 298.65
0 65.83
TEST3/425B1
198 .89
0 .24
288 1.31
0 +35
462 1.93
4] «51
TEST3/J25B2
230 5.01
0 1.04
337 7.42
0 1.53
511 11.10
4] 2,27

TEST3/J2583

(1,F)

«4714E-02
«4714€-02
+4S60€E-02
-4960E-02

,n=01,
« 1702E-01
«1702e-01
«1714E-01
«1714E-01

(,F=C1,
«3490E-01
«3485E-01
»3485E-01

(1,F=C1,
#2279
.2279
.2282
.2282

,F=C1,
+1439E-01
«1439E-01
« 1435E-01
«1435€-01

a,k=C1,
«7470E-02
«7470E-02
«7349E-02
«7349E-02

(1,FA=C1,
«1492E~01
. 149ZE-01

(4L,FA=C1,
+4677
4677
-4694
.4694
-4705
«4705

(,F)=C1t,
1707
1707
.1708
«1708
.1709
-1709

,Ff=01,

A-25

RE(},F)
-.6401E-01
-.6401E-01
~+6581E~01
-.6581E-01

4)
«8531E-01
.8531E-01
«8288E-01
.8288E-01

4)
«3530E-02
«7997E-02
«7997E-02

3)

-.1208
-.1208
-.1162
-.1162

4)
«1801E-01
.1801E-01
. 1651E-01
«1651E-01

4)
.7538E-01
»7538E-01
.7352E-01
+7352E-01

4)
. 1046
.1046

3)

-.2897
-.2897
-.2870
-.2870
-.2854
-.2854

4)

-.3956
~«3956
-.3955
=.3955
-.3954
-.3954

4)

IM(,F)
-+2484E-01
-.2484E~01
-.2509E-01
-.2509E-01

(RMIN, RMAX) =(
-.9872€-01
-.9872€E-01
-.1014
-.1014

(RMIN, RMAX) =(
. 1868
«1865
. 1865

(RMIN, RRAX)=(
-4619
.4619
.4633
.4633

(RMIN, RMAX)=(
-.1186
-.1186
-.1186
-.1186

(RMIN, RMAX)=(
-4229E-01
«4229E-01
+4409E-01
-4409E-01

(RMIN, RMAX)=(
«6303E-01
«6303E-01

(RMIN, RMAX)=(
-.6195
-.6195
~.6221
-.6221
-.6237
-.6237

(RMIN,RMAX) =(
<1191
1191
1199
1199
. 1205
.1205

(RMIN, RMAX)=(

1,1
«8309
.8309
.8324
.8324

3.040
«6867
<6857
.6883
.6883

3.040
6425
«6393
«6393

2.800
»4641
«4641
+4635
.4635

2.800
«3836
.3836
+3855
»3855

2.800
.9023
.9023
.5026
.9026

2.800
.9525
+9525

3.000

.5116E-01
.5116E-01
.4798E-01
«4798E-01
»4608E-01
«4608E-01

3.000
»3948
.3948
.3953
.3953
+3956
.3956

3.000

’

(F,F)
«2277
2277
«2265
«2265

1000.
+3770
3770
«3756
3756

1000.

«4744E-01
«4643E-01
«4643E-01

1000.
«3250
.3250
.3227
«3227

1000.

+4386E-01
«4386€E-01
«4496E-01
«4496€-01

1000,
.4119
4119
.4129
4129

1000.
.1519
.1519

7.000
#3343
3343
.3325
#3325
#3315
<3315

7.000

- 1872E-01
« 1872E-01
- 1918E-01
«1918E-01
» 1949E-01
. 1949E-01

7.000

)

)

)

)

)

)



COUNT TIME

139 14.24

0 2.90

178 17.70

0 3.50

230  23.30

0 4.66

326 34.02

0 6.88

150  40.60

0 9.18
TEST3/J25B4

186 50.08

0 11.32

237  65.41

98 .45

0 .13
TEST3/J5B1

154 .66

0 .18

273 1.1

0 .29

128 1.13

0 «25
TEST3/4582

174 1.57

0 .34

292 2.67

0 .59

108 5.07

0 1.01
TEST3/45B3

155 7.21

0 1.45

253  11.67

0 2.32

110 18.33

0 3.79
TEST3/J5B4

158  26.60

0 5.66

258 43,61

0 8.98

124 .69

0 .19
TEST4/1581

299 1.67

0 .45

579 3.24

o .89

1,F)

.6350E-01
«6350E-01
»6400E-01
.6400E-01
«6444E-01
.6444€-01
«6484E-01
+6484E-01
«7221E-02
.7221E-02

(,Fy=C 1,
»7148E-02
. 7148E-02
+7073E-02
+3496E-01
«3496E-01

,R=C1,
«4523E-01
.4523E-01
«4378E-01
«4378E-01
+3922E~02
«3922E-02

(,F=01,
.2164
.2104
.2086
.2086
- 1750
. 1750

(1,F=(1,
«8900E-03
.8900E-03
.8706E-03
«8706E~03
.8187
.8187

,R=C1,
«3014E-01
«3014E-01
« 1253E-01
. 1252E-01
.9813E-05
- 1039e-04

,F=C1,
+4403E-02
«4403E-02
«4366E-02
.4366E-02

- A-26

RE(I,F)
-.2284
-.2284
-.2287
-.2287 .
-.2290
-.2290
-.2293
-.2293
-.1024E-01
-.1024E-01

4)

-+ 1036E-01

-.1036E-01

-.1047E-01
.1859
.1859

3
. 1221
. 1221
.1206
«1206
«5609E-01
«5609E~-01

4)

-.2567
-.2567
-.2548
-.2548
~.4060
-.4060

4)
-.1377€-01
-« 1377€-01
-.1352E-01
-.1352E-01
-.3261
-+3260

4)
. 1321
«1321
-«2192E-01
=.2194£-01
-.1050E-03
-.9841E-04

2)

-+.4993E-01
-.4993E-01
-.4920£-01
~.4920E-0!

IM(1,F)
-.1065
-+ 1065
-.1082
-.1082
-.1095
-.1095
-.1107
~-.1107

«8436E-01

«8436E-01

(RMIN, RMAX)=(
.8391E-01
+8391E-01
+8344E-01

-.2019e-01
-.2019€-01

(RMIN, RMAX)=(
. 1742
.1742
.1710
.1710

-.2785E-01
-»2785E~01

(RMIN, RMAX)=(

.3802
.3802
3791
<3791
«1002
.1009

(RMIN, RMAX)=(
-.2647E-01
-.2647E~01
-.2623E-01
-.2623E-01

.8440
.8440

(RMIN, RMAX)=(
1126
1126
.1098
1097
«3131E-02
+3221E-02

(RMIN, RMAX)=(
«4370E-01
.4370E-01
+4411E-01
44 11E-01

(,n
« 3632
#3632
3647
«3647
«3659
«3659
«3671
3671
<1271
1271

3.000
«1267
« 1267
« 1265
.8995
+8995

2,780
.9026
.9026
.9058
.9058
.6894
.6894

2.780
.6931
«6931
«6959
«6959
«7228
«7228

2.780
.9296
+9296
.9301
.9301
«2543E-01
+2543E-01

2.780
.9400
«9400
«7263
.7265
«9955
.9955

- 0300

29956
.9956
.9956
.9956

(F,F)
»3092
»3092
«3100
«3100
.3106
3106
3110
3110
«2970E-01
«2970£-01

7.000 )
«2947E-01
«2947€-01
«2938E-01
« 1048E-01
. 1048E-01

7.000 )
«9540
.9540
.9555
.9555
.9669
«9669

7.000 )
. 7602
.7602
.7619
.7619
. 1470
. 1470

7.000 )
«9553
.9553
.9545
.9545
«8326E-01
«8326E~-01

7.000 )
.9608
«9608
.5747
.5747
1.000
1.000

70.00 )
.9922
+9922
.9922
.9922



COUNT TIME

109 4.90

0 .96
TEST4/J582

255  11.50

0 2.29

494 22,62

0 4.71

1t 10.27

0 1.89
TEST4/J5B3

266 24.85

Q 4.83

511 48.73

0 9.96

149 23.7

0 4.02
TEST4/4284

356  58.36

0 11.06

680 113.68

t,F)
.2886E-02
«2887E-02

(LFR=0 8,
«2900E-02
+2900E-02
«2905E-02
«2905E-02
.2837E-02
«2837E-02

,Rn=C1,
«2860E-02
+2860E-02
»2865E~-02
.2865E-02
«2854E-02
+2854E-02

U,R=C 1,
«2871E-02
.2871E-02
.2876E-02

A-27

RE(!,F)
—3757E-01
~.3758E-01

2)

-.3859E-01
-+3859E-01
—-.3897E-01
-.3897E-01
-.3915e-01
-.3916E~01

2)

~+3989E-01
~-.3989E-01
~-+4014E-01
~.4014E-01
-.4027E-01
-+4028E-01

2)

-.4102E-01
-.4102E-01
-«4129E-01

M1, F)
+3840E-01
+3841E-01

(RMIN, RMAX)=(
«3755E-01
«3755E-01
«3724E-01
«3724E-01
«3611E-01
+3611E-01

(RMIN,RMAX)=(
«3561E-01
+3561E-01
«3541E-01
«3541E-01
.3511E-01
«3510E-01

(RMIN,RMAX)=(
«3447E-01
.3447E-01
.3421E-01

a,n

9957

»9957

.0300
«9962
-9962
.9963
.9963
+9958
.9958

.0300
.9961
«9961%
- 9962
.9962
.9958
.9958

.0300
»9960
.9960
+9961

(F,F)
«6466
.6466

70.00
.6443
6443
«6430
.6430
.5832
»5832

70.00
«5805
.5805
»5790
.5790
«5245
+5245

70.00
.5320
.5320
.5329



A-29

The Variable-Interval, Variable-Step Method (VIVS)
G. A. Parker

The rums are in pairs, the second member of which has COUNT = 0. These

were second-energy runs for which no potzutial evaluations were made.



COUNT TIME
TEST1/44B1
675 .24
0 .06
775 .24
0 .05
1525 .54
0 ]
1127 .34
0 .05
1460 .43
0 .07
1726 .50
0 .09
2178 .62
0 .11
TEST!,)4B2
775 1.05
[ 25
950 1.29
0 .30
2025 2.70
0 .01
TEST1/44B3
1000 9.45
0 3.29
1225 2.03
0 2.30
2450  23.32
0 8.09
1971 11.89
0 2.01
2904 16.73
0 2.44
TEST1/4484
1725  46.95
0 15.37
1425  31.67
0 7.87
3125 B85.39
0 27.86
TEST2/J258B1
1025 .59
0 .09
TESTZ2/42582
1125 2.30
0 .53

TEST2/J25B3

A-30

{,F RE(1,F)
U,F=01, 2)
«1408E-09  .8292E-D5
. 1408E-09  .8292E-05
. 1058E-09  .7187E-05
.1058E-09  .7187E-05
.8833E-10  .6567E~05
«B833E-1C  .B6567E-05
.7803E-10  .6172E-05
«7803E-10  .6172E-05
.2349E-05  .3343E-03
.2349E-06  .3343E-03
.9393E-10  .6772E-05
.9393E-10  .6772E-05
.9458E~-10  .6795E-05
.9458E-10  .6795E-05
(,FH=C1, 5

. 1549E-08  .218BE-04
« 1549E-08  .2188E-04
. 1607E-08  .2411E-04
.1607E-08  .2411E-04
.1679E-08  .2414E-04
. 1679E-08  .2414E-C4
(1,F)=C 1,15)
«1213E-08 -~.5796E-05
. 1215E-08 -.5796E-05
» 1206E-08 -.5470E-05
»1206E-08 =~.5470E-05
.1183E-08 -.5395E-05
. 1183E-08 -.5395E-05
. 1283E-08 -.5040E~05
. 1283E-08 ~.5040E-05
. 1208E-08 -.4122E-06
. 1208E-08 -.4122E-06
(1,F)=( 1,20)
+5483E-04 -.5190E-02
«5483E-04 -.5190E-02
. 1120E-08 «1217E-04
. 1120E-08  .1217E-04
.1110E-08  .1243E-04
L1110E-03  .1243E-04
(,R=C1, 3

.3953 «3501
.3953 <3501
(,F=01, 4)
.5583E-02 -.7055E-01
.55835-02 ~,7055€-01

(,FA=C1, 4)

M(1,F)

(RMIN,RMAX)=(
-.8491E-05
—+8491E-D5
-+ 7358E-05
~.7358E-05
~.6723E-05
-.67Z3E-05
-+6319E-05
-.6319E-05
-<3%09E~-03
-.3509€-03
-.6934E-05
-«6934E-05
-.6958E-05
-.6958E-05

(RMIN, RMAX)=(

.3272E-04
«3272E-04
.3203E-04
+3203E~04
J3211E-04
.3311E-04

(RMIN,RMAX)=(

.3434E-04
«3434E-04
.3430E-04
«3430E-04
«3396E-04
.3396E-04
«3547E-04
.3547E-04
.3476E-04
«3476E-04

(RMIN,RMAX)=(

~.5281E-02
-.5281E-02
«31185-04
+3118L-04
«3092E-C4
«3092E-04

(RMIN,RMAX)=(
«5222
5222

(RMIN, RMAX) =(
-.2461E-01
-.2461E~01

(RMIN, RMAX)=(

{a,n

2.300
1.000
1.000
1.000
1.000
1.060
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

2.300
.4917
4917
4917
4917
.4916
.4916

2.300
.4699
.4699
-4699
.4699
.469S%
.4699
.4698
.4698
.4698
.4698

2.300
.4592
.4692
.4702
.4702
.4702
.4702

3.300
1779
L1779

3.300
«8377
.8377

3.300

(F,F}

40.00
1 100
1.4300
1.000
1.000
1.06C
1.000
1.000
1.000
i.000
1.000
1.000
1.000
1.000
1.000

40.C0
.9551
«9551
+9551
.95
9551
.9551

40.00
.9551

.9551

.9551

.9551
L9551
.9551
.9551
.9551
.9549
.9549

490.00
.8559
.8559
.9547
.9547
.9547
-9547

5000.
.4989
.4989

5C20.
22251
.2251

5000.



COUNT TIME
1275 14.82
0 3.88
TEST2/4581
1300 73
0 .10
1650 .95
0 .14
TEST2/4582
1550 1,51
0 .29
TEST2/45B3
1300 6.02
0 1.55
TEST2/45B4
1475 27.75
0 7.32
TEST3/425B1
525 +30
0 .Ca
TEST3/125682
650 1.37
0 .32
TEST3/J2583
625 7.33
0 1.97
TEST3/425B4
650 19.85
0 5.30
850 25.84
0 6.85
1250  37.70
0 9.87
TEST3/J58B1
550 32
0 .04
TEST3/J582
550 +55
0 1
TEST3/J583
675 3.12
0 .79
TEST3/J5B4
675 12.93

,F)
. 1732E-01
«17326-01

(,Fh=(1,
.2291
«2291
2297
.2297

a,R=C1,
«1423E-01
« 1423E-01

CeF)=C 1,
«4139E-01
+4139E~01

o,B=01,
«6035E~02
.6035€-02

(,F=C1,
L4725
.4725

(,F=u 1,
711
711

(a,Rn=C1,
+G565E-01
+6565E-01

,R)=C 1,
.6872E~-02
.6872E-02
«6861E-02
.6B61E-02
.6871E-02
.6871E~02

(,RA)=C1,
«4179E-01
L4179E-01

a,R=C1,
.2052
«2052

(,FR=C1,
.8596€-03
.8596E-03

(,F=C1,
+2903E-01

A-31

RE(I,F)
. 7886E-01
.7886E-01

3)

~»9807E-01
~.9807E~01
-.9988E~01
-.9988E-01

4)
»1205E-01
«1205E-01

4)
-.1946
~-.1946

4)
«7690E-01
«7690E~01

3)
-.2820
-.2820

4)
-,3951
-.3951

4
-.2298
-.2298

4)

-+ 1040E-01
-. 1040E-01
-. 1040E-01
-. 1040E-01
-.1042E-01
-.1042E-01

3)
-1186
.1186

4)
-.2514
-.2514

4)
~. 1355E~-01
-.1355E-01

4)
.1270

1M1, F)
-.1053
~.1053

(RMIN, RMAX)=(
»4685
.4685
.4687
.4687

(RMEN, RMAX) =(
-.1187
-.1187

(RMIN,RMAX)=(
«5916E-01
«5916E-01

(RMIN,RMAX)=(
-.1097E-01
-+ 1097E-01

(RMIN, RMAX)=(
-.£269
~-.6269

(RMIN, RMAX)=(
. 1225
1225

(RMIN, RMAX)=(
-.1134
-+ 1134

(RMIN,RMAX)=(
+8224E-01
.8224E-01
«8217E-01
.8217E-01
«8223E-01
+8223E-01

(RMIN, RMAX)=(
. 1665
. 1665

{(RMIN,RMAX)=(
.3768
.3768

(RMIN, RMAX)=(
-+2600E-01
-.2600E-01

(RMIN,RMAX)=(
1136

(,n
.6867
-6867

3,300 ’
.4608
.4608
.4594
«4594

3.300 ,
«3897
.3897

3300 ,
«6996
«6996

3.300 .
«5525
+5525

3.300 .
»4221E-01
.4221E-01

3.300 B
.3963
+3963

3.300 ,
+3700
.3700

3.300 B
21257
. 1257
1259
1259
<1259
.1259

3.300 ,
.9101
.9101

3.300 ,
L7011
7011

3.300 ,
9325
.9325

3.300
L9463

(F,F
.3754
3754

700.0 )
<3125
3125
3124
.3124

700.0 )
«5138E-01
«5138E-01

700.0 )
«2900
«2900

700.0 )
«9704E-01
«9704E-01

7.000 )
.3294
-3294

7.000 )
«2053E-01
«20535E-01

7.000 )
3123
3123

7.000 )
»2891E-01
.2891€-01
«2903E-01
+2903E-01
«2898E~01
.2898E-01

7.000 )
.9576
.9576

7.000 )
+7649
.7649

7.000 )
.9537
.9537

7.000 )
.9480



COUNT TIME

0 3.37

850 16.36

0 4,25

1425 27.59

0 7.16
TEST4/J5B1

600 .34

0 .08
TEST4/45B2

825 3.96

[ 1.00
TEST4/4583

825 9.20

0 2.24
TEST4/J5B4

925 19.84

[ 4.73

(1,F)

+2903E-01
«2902E-01
«2902E-01
«2903E-01
«2903E-01

(,F=C1,
«4319E-02
-4319E-02

,F=C1,
«2904E-02
.2904E-02

(1,Fy=C 1,
+2867E-02
«2867E-02

a,h=01,
.2886E-02
.2B8B6E-02

A-32

RE(3,F)
<1270
.1270
«1270
«1270
1270

2)
-.4831E-01
-.4831E-01

2)
-.3812E-01
-.3912E-01

2)
~+4007E-01
-.4007E-01

2)
-.4118E-01
-.4118E-01

1M(1,F)
1136
1136
1136
1136
1136

(RMIN, RMAX)=(
«4455E-01
«4455E-01

(RMIN, RMAX)=(
.3706E~01
+3706E~01

(RMIN, RMAX)=(
.3551E-01
«IL51E-01

(RMIN, RMAX)=(
«3449E-01
«3449E-01

a,n
.9463
9463
.9463
.9463
9463

«1500
.9956
«9956

«1500
<9963
«9963

« 1500
-9962
«9962

»1500
-9961
9961

(F,F)
+9480
+9480
.9480
»9480
.9480

160.0
+9923
.9923

160.0
.6478
.6478

160.0
.5888
«5888

160.0
.5521
.5521



A-33

The R-matrix Propagator Method (RMAT)
T. G. Schmaiz

The S-matrices stored on tape by this program were only correct in the
first colum due to a program error. As a consequence, the values of I and
F are interchanged here, and the values in the (I,I) column should be
ignored. That error has been corrected in the version which is now available

from the NRCC software library.



COUNT TIME

TEST1/J4B1
217 .73

TEST1/44B2
241 4.04

TEST1/J44B3
277 28.21

TEST1/J4B4
221 71.64

TEST2/J25B1
185 .87

TEST2/J25B2
209 4,57

TEST2/42583
216 36.51

TEST2/J25B4
217 108.38

TEST2/J5B1
175 .83

TEST2/4582
189 1.85

TEST2/4583
206 13.17

TEST2/J5B4
202 59.47

TEST3/42581
45 .22

TEST3/125B82
50 1.24

TEST3/42583
52 9.27

TEST3/45B1
41 .20

TEST3/15B2
45 .55

TEST3/J5B3
68 4.46

,F)

,F=¢ 2,
.9041E-10

,Fr=C5,
.1682E-08

1,F=(15,
« 1193E-08

(I,F)=(20p
. 1158E-08

(,F=03,
.3959

(,H=C4,
.5541E-02

(,F)=( 4,
«1709e-01

(,Fh=C 4,
«3450€E-01

o,h=(3,
.2287

,hn=04,
+ 1513E-01

(,F=C 4,
.7844E-02

(1,F)=¢ 4,
. 1564E-01

(1,F)=3,
4717

(1,F)=C4,
.1708

(,Fy=( 4,
.6585€-01

,m=C 3,
4191E-01

(,F=¢a4,
2043

(,F)=( 4,
.8556E-03

A-34

FELF)

n
+6644E-05

D]
«2411E~04

N
-.5499E~05

1
. 1105E~04

N
«3500

1
-.7034€-01

n
.7817E~01

1
. 1858E~0+

n
-.1013

1
. 1294E-01

1
.8086E~01

]
1160

1))
-.2852

1
~.3943

1)
-.2308

3]
. 1189

1
-.2513

1
-, 1349E~01

M(1,F)

(RMIN, RMAX)=(
- .6B02E-05

(RMIN,RMAX)=(
«3318E-04

(RMIN, RMAX)=(
.3409E-04

(RMIN, - 1AX)=(
.32186-04

(RMIN, RMAX}=(
5229

(RMIN,RMAX) =(
-.24355E-01

(RMIN, RMAX)=(
-.1048

(RMIN, RMAX)=(
.1848

(RMIN,RMAX) =(
4673

(RMIN, RMAX )= (
-.1223

(RMIN,RMA.0)=(
.36 14E-01

(RMIN, RMAX) = {(
.4689E-01

(RMIN, RMAX) =(
-.6248

(RMIN, RMAX)=(
.1238

(RMIN, RMAX)=(
-2

(RMIN, RMAX)=(
. 1666

(RMIN, RMAX)=(
.3758

(RMIN, RMAX)=(
-.2595E-01

i,n
1.700 »
«3602E-03
1.700 »
. 1752E-08
1.700 ’
. 1813E-05
1.700 ,
«2093E-10
3.000 »
.3236E-09
3.000 B
3362
3.000 ’
« 1103
3.000 B
+3450€-01
3.000 ’
«3233E-09
3.000 ,
.27672-08
3.00Q ,
.3526E-17
3.000 f
. 1053E~37
3.000 ’
377.6
3.000 B
.4656
3.000 .
.2702E-02
3.000 B
544.9
3.000 B
452.7
3,000 ,
. JBRTIE-04

(F,F)

45.00
1.000

45.00
A7

45,00
.4699

45.00
.4702

2000.
. 1768

2000.
.8379

2000.
.6864

2000.
.6314

2000.
4612

2000.
L3936
2C0C.
.9044

2000.
.9498

7.000

.4374E-01

7.000
.3977

7.000
.3681

7.000
.9098

7.000
.7023

7.000
.9326

)



COUNT TIME
TEST4/J5B1
44 «29
TEST4/4582
55 3.95

TEST4/45B3
] 9.98

TES.14/4584
76 23.46

(1,F)

,F=C2,
.4325E-02
(,F=C 2,
«2911E-02
(,F=( 2,
»2885E-02
(,Fy=¢ 2,
+2890E-02

A-35

RE(!,F)

1)
-.4828E-01

n
=-.3v/4E-01

1)
-.4064€-01

1)
~-.4158E-01

IMC1,F)

(RMIN,RMAX)=(
«4465E-01

(RMIN,RMAX)=(
«3692E~-01

(RMIN, RMAX)=(
+35126~01

(RMIN, RMAX) =(
«3407€-01

(,1?

- 1000
«2354€~07

- 1000
»2279E-07

»1000
«2631E-07

«1000
«2401€E-07

»

(F,F)

250.0
«9956

250.0
+9963

250.0
-9962

961



A-37

The L2 Approach to R-matrix Propagation (L2RMAT)
R. B. Walker

The runs here are in pairs, the second member of which is for a second
energy. Note that COUNT is listed as the same for both runs even though the
second-energy run actually did no potential evaluations. Also, the S-matrix

elements for the second energy run are different because a different energy

was actually used.



COUNT TIME
TEST1/J4B1
450 .53
450 .13
TEST1/44B2
466 6.96
466 1.08
TEST1/J4B3
217 22.52
217 3.69
TEST2/42581
354 .67
354 .18
TEST2/J25B2
593 9.67
593 2.37
TEST2/J25B3
1003 82.16
1003 29.47
754  63.33
754  21.85
TEST2/J5B1
995 1.51
995 .58
TEST2/J5B2
1064 4,51
1064 1.59
1064 1.59
TEST2/15B3
1338 41.42
1338 14,14
TEST3/425B1
82 .32
82 .02
TEST3/325B2
102 4.70
102 .37
TEST3/J25B3
204 23.55
204 5.88
TEST3/J5B1

215 .40

(1,F)

(1,F)=¢ 1, 2)
.9071E-10
«2956E-09

(,F)=C 1, 5
.1683E-08
.5259E-08

(1,F)=( 1,15)
«1170E-08
«3402E-08

(1,F)=C1, 3)
+3959
+3249

(,RA=C1, 4)
.5437E-02
.3888E-01

(,F)=c1, 4)
. 1708E-01
.1707E-01
.1718E-01
. 1717E-01

(,mn=01, 3
.23501
.2:109

(,0)=C 1, 4
.1410E-01
.2326E-01
.1307E-01

u,F=C1, 4
.7975E-02
.7975E-02

,R=01, 3
.4726
.4676

(,F)=01, 4
.1707
L1937

(1,Fy=01, 4
.6571E-01
.6576E-01

(,F=C1, 3)
<4164E-01

RE(I,F)

«6655E-05
-.1719E-04

+2401E--04
.9544E-05

-.5173E-05
«4733E-04

«3540
3110

-.6972E-01
-8061E-01

+7840E-01
+7808E-01
.7896E-01
.7864E-01

-.9597E-01
3148

. 1112E-01
116
~-.1143

«8178E-01
«8179E-01

~-.2847
-.6795

~-.3944
-.3456E-01

~+2300
-.2302

.1185

A-38

IMCI,.

(RMIN,RMAX)=(
-.6814E-05
4171E-06

(RMIN,BMAX)=(
.3317E-04
-.7189E-04

(RMIN, RMAX)=(
+3381E-04
-.3408E-04

(RMIN, RMAX)=(
.5202
-.4777

(RMIN,RMAX)={
-+2402E-01
. 1800

(RMIN, RMAX) =(
-.1046
-.1048
-.1046
-.1048

(RMIN,RMAX)=(
.4700
~.3765

(RMIN,RMAX)=(
-.1182
. 1040

. 1988E-02

(RMIN,RMAX)=(
«3589E-01
«3585E-01

(RMIN, RMAX)=(
-.6257
«7693E-01

(RMIN, RMAX) = (
L1231
.4388

(RMIN,RMAX)=(
-.1132
-. 1131

(RMIN, RMAX) =(

. 1662

a,n

1.700 B
1.000
1.000

1.700 .

4917
4740

1.700 B

«4699
.4506

3.300 .

.1788
«3457

3.300 ’
«8381
.8948

3.300 ,
.6840
6840
.6834
.6835

3.300 ,

.4584
«4437

3.300 ,

3927
»3622
.3486

3.300 B
+9065
.9065

3.300 B
.4214E-01
.4631E-01

3.300 R
13972
.3472

3.300 ,
3698
3696

3.300 B
.9104

(F,F)

35.00
1.000
1.000

35.00
«9551
9217

35.00
.9551
.9218

700.0
.4984
«6317

~00.0
«2255
.1867

700.0
.3745
3744
.3756
3755

700.0
3194
+5653

700.0
+4787E-01
.1884
<4127

700.0
.4070
.4069

7.000
.3298
«3438

7.000
.2040E-01
+1480E-01

7.000
3122
3121

7.000
9577

)

)



COUNT TIME
215 .12
TEST3/45B2
203 1.41
203 30
203 29
TEST3/45B3
313 14.04
313 3.15
TEST4/45B1
280 .82
280 .19
TEST4/45B2
139 6.60
139 1.23
TEST4/J5B3
132 13.58
132 3.07
102 11.49

102 2.29

(1,R)
«5624E-01

(,F=( 1, &
.2062
.2965
3415

(L,F=C1, 4
.8604E-03
«8604E-03

,F=c1, 2)
.4303E~02
.6328E-02

(,Fy=C 1, 2)
«2892E-02
«4104E-02

(1,Fy=C1, 2)
«2856E-02
+2856E-02
.2865E-02
.2865E-02

RE(1,F)
2344

-.2516
.8766E-01
«4542

-.1354E-01
-.13556-01

~.4823E-01
-.6456E-01

-.3884E-01
~.5046E-01

-.3962E-01
~-+3962E-01
~«3967E-01
-.3967€-01

A-39

IM(1,F)
+3624£-01

(RMIN, RMAX)=(
.3780
.5374
3677

(RMIN,RMAX)=(
-.2602E-01
-.2602E-01

(RMIN,RMAX)=(
+4446E-01
+4647E-01

(RMIN, RMAX)=(
«3719€-01
+3947E-01

(RMIN, RMAX)=(
«3586E-01
«3586E-01
«3593E-01
.3593E~01

{a,n
.8832

3.300 B

.6997
4793
»3007

3.300 ’
9324
9324

«5000E-05,
+9957
+9936

«5000E-05,
.9964
.9947

.5000E-05,
.9963
«9963
.9963
.9963

(F,F)
29427

7.000
.7642
.6292
«5259

7.000
+9536
.9536

120.0
.9923
.9887

120.0
+6563
«5780

120.0
.6045
6045
6040
.6040



APPENDIX B

Full S-matrices For All Test Problems



B-2

TEST1/3801

EMERGY

A

UL
o= 1

ROY  REAL [ REAL G
[Tl -.7653 JESE0S  —.88490-05
2 .G650E-03 -.6849%E-03 7012 8601

VESTI/4882

EMERGY = ,22408-01
RN v 2,
DAX - 4500

REAL

avoununf

TATSE-0Y

. [40E -05
-.BO3SE-05
o122z -1 261€-01
- 1838 -.9708 JISDAE-Q1 L 1THE-02

eveunin- B

~.BSWE-OT  (B3SE-0! -,9520 - SSIBMEA1  LToAsE-D1
SISE-01  LI7I4E-07  ISIBAE-D1  SOB3E-O1 L1384 9796



TESTI/44B3

EMERGY «

N
X

= 2.5%0
« 43,00

1223607
2161€-03
-.8012E-04
LA19E03
2083€-05
JT291E-05

J54z8€-01

L

=, 1088E-01
2054603
~2015€-03
-12448-03
+178E-03
- 1103£-03

.
REAL
-3Mag-05
ASKER
1201E-04
=12243E~05
L 1246E-03
1119E-03
4520604
--3146E-02
1953E-04
+5218E-04
<1204E-03

g5

- 1306£-01

16

2240601

3576
3877
=401 TE-01
0

- 2
~liapgeaat
3398604
1960603
3193603

=.4531E-05

A
-.53396-01
-.2531

~,8787€-01
+2883E-01

~433250-03
705E-04
- 2167603

- 1676E-04
-2181E-03

g
-.6098E-02
- 2%t

21 ME-02
.2783E-01
NI
=.7807E-01
AS3OE-0S
+1185E-02
-.3263£-01

-.1%00

WG
3655603
L1781E-03
.18
2571E-03
8394504
670305

A326E-06
a0y
-4785£-03
-2371€-03

a

B4D3E-01
ANIZE-02

«.33176-03

REAL
~ABOIE-D1
~46265E-01
93¢

+36196-04
A526E-04
<6087E-04
«1203E-05

<3100E-03
~6061E-05

.6554:—03

-7395€-04
~44930€-05
~T639E-05
1120603
-3100E-03
<3359E-0;
=-1761E-1
+3149E-01
~.B896E-01
-~49320
+5186E-01

e

V483800
+3023E-0¢
+3307E-0¢
-~ 1326604

~-1313£-03
“2H3E-04
= H9SE-0L
8394E-08
-33076-04

B-3

RIAL
43T4E-01
3265

3625805

AL

S12ME-01
< TT90E -0t
JJRASE0T

259002
13381-02

L13TE-0)
1168

7873
<SE34E-04
LH193E-07
--?!\6{-0) SAVSE-02
~TBICE-02  .789%E-01
W3208E-01 L I34

L1265E-03  _1919€-03
935608 LAR4IE-03
234500
~.3107E-04  .18485-03

~11256-01

573307
~i3UGE0N  Le3TEE08
SI398E08 - IBI3E3
-2 1628E-04  =.65296-05

REAL
= 359IE-03  .33SBE-04
180804

1IDBE-0;
S12256-07  (MRTE-02  ,2761E-03
~.IS7BE-01  L2ISIE-Q1 L 19ME-0Z

370 JM3E-OL L 11ZIE-01
201 26E01

+T2806-0:
34536-03 ot BT
UBTE-O1 =, 1QI3E-03 . MME2

b

3038

"
REAL "G
= 3845E-01 352801
9840 SIATE-H
L1099E-03  ,3DWE-05
LJ2805E-04  BSIBE-03
TBIE-O4  ,330ZE-04
927E-08 3303 L1183 AZ39E-01

-~ 153E-08

REAL
L6191E-03
- 1176-03
-, 3625603
~,2123E-04
O2TE-05
~TRIE-0T
<1203E-05
-, 1628E-04
=4 163763
.16482-05
= 1103E-05




TESTI/ S4B
THERGY o 22400601
N e 2,500
A 43,00
oW g
1 -.5078
2 3800
3 ]
a 72
3 -.3921E-01
6 - 5256501
? - 7035E-01
8 L 1433E-D) -.8849€-01
2 - 4916E-01
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-.2887 <~ 1TAIE-D2 - 3BHE-O1
-.2607E-01  ,3OOZE-D) ~.ZBT2
264E-01 -, I565€-01 -_1143
~-3839E-01 L1853 <3627E-01
~4243E-01  JIOZIE-OT ~.SITSE-02
3557 22370 ~-1100E-01
1768 -1332
- 3384E-01

-0
-1o717 ]

116
JOSTEGH .zus(-ol
~-2881

-.1517
~o1838E-01
- ABIIE-01
-<1001

2

-, 7237E-01

S5790E-01
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286

st

-9y
+M38E-01
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-.172356-01

-.1238
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26791E-01
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1203-0¢
-, 1035€-01

26-01

"z
.1casE-0t

2 -.8788
316E-01  .29TIECT
VZ024EC! -, 2628601
REAL S
TOBE-GT - ,8398€-01
$13TE-01  3015E-01
43477601 -.27176-01
ST30E-CY L8B2TE-01
TITE-0! -.26926-01
L1801E-01 - 110y
JA248E-01 - [BE0T€-01
7059E-C1 -.828HE-0Z
-.261 ~.932CE-02
8731E-02 -,1420
IMTeE-p1  [827%E-01
S2399E-01 8727601
e
1236 3335601
.2188€-02 LSTRAE-O1 - 8040E-01
g 62976-01 -, 2271E-01
.71286-01 L1319E-07  -.£165E-01
5095601 ~.5T96E-01  ,9752E-02
~.5777E-01 2568601
L61B3E-01 63301
asie 15792601
L3381 -.1598
2323 3738E-01
1353 -.2387
et 3480 J2es5e-01
22036501 L3301 L2967 8270
S1Q9E-0T - AQ8AE-01  LZ8TIE-R1 -, 3BlEE-Q1



REAL
-.1755

L6680
--1003€-01

$1415€-01
~2788E.

- 3
ROM REAL [
31,8887 -.2461
TESTS/ %81
ENENGY » . 1ISDE-04
RHAIN = 3,000
BUX » 7.000
'
REAL G
1 .ams 8157
7 - L1519
3 .uss 1867
TESTI/I%82
ENERGY = . 7790E-04
R o
RHAX  * 7,000
oL
REAL e
1 -.6095 .
7 L6BSBE-02 ~.ITIE-02
3 L3NIE-01 -.2517E-00
4250 37
s .2m 987€-01
& -.1028 S ISIME-01

TEST3/4583

ENERGY = .T790E-04
RUN - 5.000

ROAX = 7,000
t
T REML
L4657
¢ L1807
3 -.99365-01
a4~ 1703E-01
5 -.10836-01
6 J56426-02
oo
Row  REAL
[
2 .82276-02
5 L3309l
4 2583601
3 -.3084E-03

9982

8401
-.8904€-01
-, 1683
~.2137E-01

1587E-01
- 4524E-02

1AG
-,4924€-07
- 3BE-01

JZ0UE-OL
- 1393602

L 1709E-02
(3270601

03
btser-01

8227607

WG
1319

7103
2326604

WG
=43171€-02
.81

- M38E-01

B-15

AEAL
1"
10035€-01
633
3
QgAML [y
5307601 -, 2517E-01
+.BE0EE-01 59
-4 5 -.8016
~-S3WE-0)  .37B4E-01

1746E-01 L I6I6E-01
5366-02 - 17200£-02

3
REAL MG

REAL
“.9936E-01  ~.1653 - 1703€-01

~45055€01 08E-01 . 1497
8721 ~.5363E-01

361E-01  L3995E-01 ~.9614
“ J049E-01 - 3MSE-02  .d476E-D1
S3J0GE-01  (ZDAME-O1  .2583E-01

EAL

R

-+ 1033E-01

L IS28E-01

-. T049E-01

A4T6E-OF
51

I3
- 30B4E-03

G
A987E-01
L11196-01
+1616€-01
151€-01

e

1567E-01
- 8361E-01
~.3769€-02
=4 1821E-01




B-16

TEST3/ 3584

EHRGY v, TI90E-06

29t WNSIE-02
-.3309€-01 ~-.5A%0€-03 -.8943E-04

- 2 832 so18
L16336-01  C1D1GE-0T S2591E02  LTatSE-02

REA [

-.1004E-01  .1653E-01
0I6E-0T - 5389F-01
-.3830€-03 -_8943£-04
4 216601 238802
5 L2991E-02  .Ja43€-02
8 o4 ~.3340£-0)

.8

ROW L
]
2

TEST4/u501

ENERGY « 1,103
PN s . IDOGE-D)
RUX = 120.0

WL
Rv REAL
19859 a7,

2 -ABSE-D1  L4A33€-0)  .6HIEE-O E
5 L26356-02 -,4701E-D7  .4260£-01 -.X¢ 5878
& 4 3687607 JOSTE-0Z -.1S40E-02 .ISTGE-02 - I9IBE-O3

A g

~.JASTE-03  _XO57E-07
IS1E-02 . 1376602
IS13E-03  -.12B1E-02
9989 4633E-01




TEST4/ 1961
ENERGY = 1.103
BRIk s L1000E-01
RUX = 120.0
L
ROW  REAL WG
19873 .1un
2 -.3937E-D1 3691601
3 L24BSE-02 -,44B9E-02
4 -2TE-D3 303607
5 ~.9797€-02 -,1177E-01
6 JITISEDT -,
7 - ISNE-02 ,1816E-03
8 .1898E-00  ,2696£-03
9 .1873E-05 -.[0Z3E-04
10 -.98%4E-03 -, 1148E-01
1
12 03
15 -.20976-04
M .2320E-05 ,3583E-03
15 J9T6E-08  L20736-06
REAL G
117356701 -, 2254602
7 .89 ~.8IKE-01
3 - Z3BOE-0)  L12236-0)
4 .63B3E-03 -.2134E-03
s L2103 1106
6 3401 6325
7 .2120801 -.2566601
8 ~.67286-03  .4H24E-03
9 JJOOSE-04 -.5713E-05
(0 ~-1968E-02 1891
12579 -z
12 ~.25156-0) 255301
13 .69536-03 -,6340£-03
18 ~.9I04E-05  .QBIAE-05
13 .BA4CE-OT -.08726-07
con "
ROw REAL g
1 -.B070E-02 -, 16956-02
2 a2 -.22806-01
3 .I0TBE-DI |, ISCAE-0S
4 -J30A%E-03 -, 4249E-04
5 -.1381 -.3065€-01
2529 -2
7 - IMSE-Dl 6797E-07
8 .3300E-05 -.B529E-04
9 «.4910E-05  ,BATIE-07
10 LI3E-01 -,1270
WL e
12 .223%66-01 -, 2218800
13 -, 4659E-03  ,31%62-03
W .S242E-05 - 204505
15 ~,42076-07 72790 08
VESTe/ 1303
ENERGY = 1,103
BN+ 100001
RUAX  * 120.0
'
G
L1469
339E-01
~.4391£-02
+$052€-02
1542601
5751601
JTA56E-02
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-, 1020E-0¢
8189E-02
. 3883E-02
L 1627603
~. 11T4E-0¢
ST7E-05

W 2120604
19 Ta0NE-0B
0 B296E-08
21 - S399E- 1 17E-08
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REAL
U L1873€-01
2 L
3 -IUS1E-01
4| T065E-03
50,1842
6 L5032 E
7 I2001E=D1 - 2368E-01
8 ~.7257TE03  .A302E-03
9 .1092E-04 - .4BOE-03
10 - e838E-01
n 147
12 - 2864£-01
135 ,7701€-05
14 - (004E04
15 . 9301E-07
16 -.1848
17 1796601
18 -.6776E-03
19 .9760E-05 -, I10TTE-04
20 -.T7EBE-07  .5930E-07
215202609 - 44B4E09
s
-.3863E-02
- ATEg1
2563601
1134E-03
1030
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2
REAL ~a
-.39376-01 L M9IE-C1
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-.2738 223
£3589

~128326-01

+9318E-03
-.1838E-04 223104

3ME-02
K avzz—o

472307
-4911E-08

REAL G
-.4003E-0)  3515E-01
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+3997E-01 -, 2976E-01
~.I3TE-02 L 1113E-02
-.2733
4978€-01
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el RifH
1
1987601 ~0;
--6935E-03 4E-03
S12526-04 -, B017E-08
. 1502€-06 E-

-.7602E-00
AEAL
- 1451602

~-2368€-01
Jast

. 1315E-02

-.343E:
-~.6228E-02
+461E-02
-.212)E-02
2363602
+6IBOE-03
+33936-07
2591602
-JGI74E-04
2217603
- 5209E-03
-2 1276E-06
<B967E-09

3892608
~.6079E-10

”
REAL "G

923BE-03 L 1627E03
J95TE-01 L A4SE-02
-.2218-07 -.873% -0
309604 2300604
075€-02 . 1179E-01
Rl

B-17

-, MI9E-02
= NNE-O1
a8

9307603

s
-.8873E-03

1563605
- 2232603

<6935E-03
-.2B88E-03
I311E-03
8171606

+3048E-04

=~-4B59E-03

1394603
—.m.s:—oa

1276500

04807 -, 1693E-03 i2vee-os

REAL G REAL

JZ54BE-02 - 4391E-02 =, 36ASE-03
-~ 1370E-02
+1921€-03
.5a89
-,20806-03
\TDESE-0:
~.5353E-04

E-
\7140E-08

SIZ19E-05 L 1129E-06
4030E-10 ~,2576E-08 = 3TO4E-07

2852604
-4008E-04

L26ME-02
9642E-03 TIE-0L

J9INE-0S 2703604
.'n;zu(-oa ASWE-05

. Sert 08
+1383E-03

2149E-04 8
LVMZE-07  L6128E-07 =.1327E-03
13 "

s REAL
- 3IGE-Q4 -, LITAE-04 7709606
—.6935E-03  (20ME-03  .12526-04

7701€-03 - 1001€-0¢

R

<12376-01
315

--3036-01
.71556-01
2683
.41 5'-05
~1%823¢

G
.ma-m
.ulz:-ol

+4813E-05

9814€-03

-61B1E-03
9643E-

ZIECE-03 ~963TE-02

G

+3052E-02
S1136-02
1281€-02
4517601

23338E-03
+3397E-04
4

+3741E-05
3852E-05

+1360E-03
SITI9E-08 - 17827€-09
10
G kAL
- 10Z8E-08 3300603
2142E- 3¢
~BEASE-0!

~-1319€-02
oBusE0y

.)74!:-05
a4l

32TZE-04 -,6TASE-0B . IBZ3E-Q7

~UISTSEQ4LZ500E-)1 - 2008E
15

G REAL

S370E-05  .GADGE-08 . 2071E-08

~o1OITE-04 -, 1502E-0F  -2222E-D0

-2 1680£-08
=L $043E-06

~-36ME-D)
+9301E-07

+6190E-08
L9216E-0%




1030
L1848
- 1090E=01
2676€-05

)
'
z
5
42177603
s
6
7
8
9 L4399E-03
3001
1

19
20 -.%0%E-07
2

3-18

2

AEAL [
SI9ME-02 -,2721E-02
= ATIVE-08  ,4008E-04
TE5E-06  ,T69FE-06
B56E-02 . 284TE-02
2803E-01 —.zose(—o
S39E-03 -, wsls—oz
1814E-0T

- 1675E-05
5263€-0¢
«TBA3E-03

29iE-0

-+ 935060,
- In’I!E—Ol
- 1412607

REAL [
12121608 ,5663£-05

=~,2733E-02
AS9E-04

1503E-03  12930E-03
~.61766-03  ,aJA1E-03
2217€-03

2591E-02
= 7920604 -4 1169603
1197608 2496608
=116l ]
6265E O3

“1015€-03
-2

loosaE0n - iAdaEof
*A2656-03  LIOVME-O8
e <1QZE-03  ~.65156-03
-.65156-03 L9983 4B51E-01

~ Z4ME-05 -, 13TE-0¢  .3637E-03
- 31I4E0D  LI9LE-0B -, 1609E-08 -.S233E-07 -.20ME-05
<22276-10 -, 2339E~10 L VI0GE-10  L3SI9E-09 . [TIE-08

15 -.2748E-08
14 2414806
5 1206600
1§ .2558E-09
17 -,2336€-10
1B I579E-00

=. 1630E-02
+2005E-10
+$126E-10
1779608

L5218E-02

-18s3E-08
~ 406 TE-03

3263E-06
1015E-03
=.32ME-04

«11BAE-O4

258204
2814606
1
REAL
01E-06
B4 1E-05
+2070E-06.
~42140E-06
=+ 2400E-05
+9760E-05
<TI3SE-03

1202604
-67426-07
--auE0e

.:mz-m
+3013E-03
= P3256-07 -.32E-06

UG
359307

nog
08 .14526-07
+95076-07  ~_9A1EE-0T
JSIEOE-CY L 12IFE-08
SN29E-06 L 1SBAE-IS
JZOOIE-OT  SMSEDT
=0

-9 .
—ATATE-06  .114TE-03



TEST4/ %84
BERey - 1,103
RN - 1000C-01
RAX  « 1200
'
0w g
R~ 4c8
2 - 8162E-D1  8390E-0
3 .26126-02 -.4309E-02
4 - 5068E-03 9€-
5 -.4631E-02
& 19901
7 - 15326-02
8 .2275(-04  ,27436-03
9 L IBI0E-05 -.1031E-08
10
1
12
13
11
15
16 LI20E01  4857e-02
17 -.7CME-03 -.4284-03
1B .240BE-04  .B3Z1E-05
19 -4782E-06 -,15276-06
W BI9EE-0B  .1477E-07
T~ AO5E-E L B6ILEDR
22 L6T61E-03  .45A2E-03
23 -,17246-06 =,11595-04
28 323306 .9809E-07
25 -.4293E-08 -.2643E-07
26 L12926-10 L 1552E-10
21 25208
T
ROY  REAL MG
U LI996E-01  .G98BE-03
2 a2
3 -.2595€-01
It
5 L1382
.0
1
8
9
0
N
7
1
16 663505
5 -. %3507
16 - 6961E-01
? 7196603
18 42730-03
191095008 - 1022600
20 -,B428E-D7  .98226-D7
21 .8713E-09
22 -l1601E-03
23 .SI6IE-0%
24 -.92%4E-09  .7009€-03
coL
RO REAL g
75 .79076-67 -.1019E-06
6 -.4433E-09  L63806-09
27 L26936-11 -.4215€-11
& n
AOM REAL G
-.1Z16L-a1 -.3425E-02
-.2667 --BE60E-01
(I5656-01  |45T3E-02

NEEEIRTE IR T Somur e

LEENUNY

2
H
a

- 7319605
<+ 8BE-01

-.39438-01
29383505

+3818E-09
- L 1956E-11

L
REAL
L121E-01
2463
- 517E-0)
£3927E-03
- 1298-01
2573
+15206-01
-, 3753E-03

L 5194E-07
L 375¢E-09
~.335E-04
2312633
--B285-05

-, 1742605
2353601
5691

- 1850¢-01
22020

- 1471605

-.6927E 00
24348-01
3498E-01

-.5730€-03
+58B2E-05

. 2675E-07
SomeE-1

-.2230-00
~eB16E-12

-4857E-02
+6B59E-01
-.56216-02
1884603
~.6611E=Dt
~.6961E-01
5790607
1660603
2559E 05

+1958€-03
2183¢E-03

. 1187607
LT3IBE-IC
LBYE-0Y

2460£-03

+BADE-06

REAL
~.81626-01

aise-or
- 1812602
1238

4157
~3ITIE0T
1014602
179908
-+ 2460€-01

1317604
~.1872£-06
2463

~.1571€-01

27301E-07
5395600
- - 109%E-11

REAL
«4 1937E-02
- 3171E-01

22

28

-.uzss-oz

-.2964E-03
«JTOAYE06
-.6084E-0B
- 1520E-0)
255602
L1961€-04
-1084€-0%
- 55086-03
~.6329E-10
93236-03
--I996E-08
2302606

?

REAL
L6539E-08

-.2376E-11
JRWE-17

-,2269€-02
3015601

m;z—o)
L3214E-07
6044

-.2091E-10
9765¢-13

1

REAL
-, 7084E-03
~.1571E-01

988E-03
~.2611E-08

J2IME-01
~,4269E-06

g
-35%0¢-01
6351

42879601

0556-02

o0z

- 3MUE-09
+3RO9E-1T

- usu:—on

B-19

ATNE-R
--191E-03
1233E-04
-la26re08
6908608
- 9536812
= 1647E1T

REAL
227500

~. 23N -08
=-.52186-03
SN33E-08
=.17626-08
+1230E-07
+1921E-08
~.1048L~10

e
L214BE-03

<3267E-04
- 1430
-.2720%-01

B
“.131ZE-02
-.37292£-05

~.41982-02
2657607
=.2393E-02
L2560E-D2
E221E-05
335307
5T9BE-0T
-.2203E-03
7285603
-.52376-05
- 1275E-08
~8983€-09
~5306E 03
~-1289E-08
3208805

[
L1294E-06
2267E-08
RITCTY

g
.2644€-03
+3T36E-02
2045€-03
2676E-0&
LINE-0
L2184E-01
L2595E-02
3670E-0¢
+8233E-06
L2BA1E-03
1850E-0t

- mm-u:

-B829E 00
~.5033E-12

=1 4244E~03
. 7508062

3973603
= 1477E-02

~.23436-06
+5816£-02
-3498€-01
. 1885E-02
4179605

6200
-21248T-08
-+ 5382€~02
vt
- 654408
~,2323E-05
=, 1789E-08
+5010E-11
~.5A42E-03
+3220€-02
-6079E-05

{28302
laze2e-03

.‘9)6:-05
- 641320

.uay:-o)
<SIBE-

1953606
3753E-03
<Z1T3E-08
1593£-05

REAL
ITE-06

T9E-0T
1094800

"’
~.3401E-04

SN7BE-05
23557608

8165E-03
2964E-03
1307€-03
+8037E-06
2465604
-.6511E-03
S1473E-03

1188E-04
- 5933E-07
+R402€-03
~.39112-01
- 1143E-03
3296504
1630506

- 1260807
-.2925E-10

1593605
-4000E-07
~.6192€-0¢

8565603
. 3328E-03
~o1145E-03
+1901€-08
9200E-08
-.3923E-03
11536-05

5305:-08
-3604€-0¢

- 13B5E-03
—21436-04
+S12(E-07
L 1513004
2337E-0%
L 4028E-05

g
L1348E-05
-.T129E-06

-, 142704

-12108£-08
6922607
~13515E-10

+8521£-03
1247E-03

-2 1169E-03
J249TE-05
-.4355E-04

485260
+5616E~03
. 1990E-05
1751€-08
~.1608E 08
176702
-2 1054502

RUL
~. 3684503
412602
194305
L IVZEE-03
+7496£-0;

2801
+1613€-01
5344E-05

E-04
1$1E-03
-04

3348E-03
-39E-01

2940809
«27B7E-09 --139%E-12

9
REAL oG
+1B1DE-08 -.1031E-0%

ADE-07
~L0HE-08

9300E-06
-+ 1327€-08

3023800
=, 1800E-07
1Z3B4E-07 -.1007E-03

2297€-05
~.1591E-08

°

EAL. 105 REAL oG
~.ATIE-07 - 186606  .3BSTE-G -.1231E-08
JI99IE-01 3276605 LA61E-11  .ESSIE-10
S3H-0Y - 0NBE-0T 9IME-1Z - IAE-1Y

"

REAL

+30036-06
JI317E04

.eszﬁs-os

&l
CHIGIE-05 14340606 -, 195IE-06 -.2BBIE-0%
- J0BLE-05 -.1206(-04  ,S424E-08  .10SSE-04
(3B10E08  .1303€-07 -.1081E-03 -.847SE-0%

I3
AEAL 95 REAL s
6595508 .1477E-07
+1015E-0p -.93726-07

s
303605 -1 IGIE06 ~.2M4EE04
~IMEQ6 -.ISGIE-04  .S300E-06 .3

=i 39TIE-06 533009 .10915-07

626905

~.9347E-03
S20E-04  LIS2E-07  .i E-08 -.)B2VE-02
~.ADIE-0)  +[1201E-04 3283603

661E-03 L 121BE-05
~.207BE-06 -.2323E-05
- H0TIE-08 [ ¥I6E-03

8 ~2163E-01
~.2930E-05  .30026-03
-.2B67E-07 -, 2000E-06
LA07TE-0B . 3N03E-06
606000 -,34€0E-04  .BOE-08  .137IE-06
“.2953E-04 MAOSE-2 -.BI7SE-07 ~.182EE-04




REAL
2 S8B7E-07
26 -,3202E<09

5 -
26 -,1355¢-08
27 .5503£-0%

RES-

1327010
Z 336309
3 -.256-12
a4 2285600
5 LI3ME-09
5
7
]

4 -.5405E-07

2

ROW  REAL
25 -.83926-05
™ 1

27 -.96045-07

GPRO sa&—ﬁno/'als

WG REAL

L2510E-08 -,4051E-08 . 2046E-07
= 3521E-10  MUZE-10 . 1296609
= AI18E-T1 -, I3766-12  .I830E-12

£
REAL
TEIE-03
7E-01
S

. 5
- ME2E-09 -, 1094E-01
JMBIE-11 L2307E-01
=4 12676-02

=2 33406-05

236106-08
=-.7383€-01
2

-.3884€-12
A(91E-06  .4Z31E-10  ,IIME-09

7
G REAL "G
-17386-08 - 7036608 -,7053€-07
3736E-02 -.9004E-0?  ,63T6E-08
637660 1.000 3001E-02

B-20

REAL

+1T08E05
= J74E-00

L4518E-11

--3391E-12

WG
<100RE-C4

170267
T801E-11

-1714E-08
- 3482E-12

REAL UG
2S04 -, 1605602

+3230€-06
~.S58ZE-09

- 29336-04
=481726-07
737608

<33736-05
7

La251E-10

371

.28
21
28

82E-03
95E-08

275-03
1CE-01
32E-03

[
-TaI%-03
~.1317E-02
9650804

~.2081E-0%
et )

< Z046E-07

1735803
-.0836-07





