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Introduction
Multiple sclerosis (MS) is a chronic neuroinflamma-
tory disease commonly accompanied by neurological 
fatigue. Fatigue is a major “invisible” symptom in 
people with multiple sclerosis (PwMS) that can pre-
cede diagnosis and worsen quality of life. Current 
gold-standard measures of fatigue typically require 
retrospective review and self-reporting of previous 
fatigue over the past 4 weeks.1 In addition, “state” 
assessments of fatigue describe an individual’s state 
in the moment, but these may require repeated meas-
ures over time to more comprehensively measure an 

individual’s tendency to experience fatigue.2 
However, both of these types of assessment do not 
necessarily provide objective or ecologically mean-
ingful data on fatigue and function.

PwMS have commonly reported changes in speech 
and voice characteristics, and some studies have sug-
gested that changes to voice and speech may be 
related to fatigue.3–5 Recent work using automated 
speech analysis in MS and other neurologic dis-
eases6–9 has demonstrated the potential of this tech-
nology to serve as an objective, rapid, and unbiased 
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Background: Fatigue is a major “invisible” symptom in people with multiple sclerosis (PwMS), which 
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markers linked to functional outcomes.
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MFIS 27.6 (SD = 19.4), and 30% with MFIS > 38. MFIS moderately correlated with pitch (R = 0.32, 
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tool, collecting digital speech biomarkers that could 
quantify functional outcomes which are important to 
patients, like fatigue.

The goal of this study was to evaluate whether acous-
tic and linguistic features, extracted using automated 
analysis, are associated with self-reported MS fatigue. 
We further evaluated the performance of these fea-
tures across three brief speech tasks—both scripted 
and spontaneous. We hypothesized that automated 
speech analyses could identify features of speech that 
correlate with fatigue levels and could, therefore, act 
as digital biomarkers of fatigue. From the features 
available, features relating to jitter, pitch, formants, 
and pauses were hypothesized to be most sensitive to 
fatigue.

Methods

Participants
In an ongoing transdiagnostic digital phenotyping 
study, a convenience cohort of PwMS was recruited 
from the University of California, San Francisco 
(UCSF) Multiple Sclerosis and Neuroinflammation 
Center; data from the 84 individuals were analyzed 
as the training set and 30 individuals as the test set. 
Inclusion criteria were as follows: a diagnosis of MS 
by 2017 McDonald Criteria and Expanded Disability 
Status Scale (EDSS) ⩽ 6.5 because part of the 
broader digital phenotyping study involves a walk-
ing task on an automated gait analysis walkway. 
EDSS Functional System scores were not available. 
Exclusion criteria were as follows: inadequate visual, 
auditory, and motor capacity to operate tablet-based 
programs, other neurological or non-affective psy-
chiatric disorders.

Procedure
All study procedures were approved and in accord-
ance with the ethical standards of the Committee 
for Human Research at the University of California 
at San Francisco (institutional review board (IRB) 
No. 21-33227). Written informed consent was 
obtained from all participants. Participants com-
pleted speech tasks, cognitive assessments, and 
patient-reported outcomes (PROs) within one visit. 
All study assessments were administered by trained 
study staff.

Speech task
Speech was recorded during three tasks:

•• Scripted reading task (Grandfather Passage—a 
public domain text that is frequently used to 
generate speech samples);

•• Description task (Image Description—prompt: 
“You will see a picture. Please describe this 
picture in detail, as if you were talking to some-
one who does not see the picture”); and

•• Personal narrative task (Morning Routine—
prompt: “Please describe what you do in the 
morning to get ready for your day.”).

While some participants completed all three tasks, 
others (<10%) completed only one or two due to time 
constraints. The order of the tasks was always the 
same when multiple tasks were performed. The total 
duration of time in acquiring speech for these tasks 
was approximately 3 minutes.

Automated speech analysis
Speech was processed using a proprietary automated 
speech analysis pipeline (ki elements: SIGMA speech 
processing library)10–13 to transcribe speech and 
extract both acoustic and linguistic features.

•• Jitter relates to glottic pulses or vibrations of 
the glottal folds, with reduced control on vocal 
fold vibrations resulting in a higher percentage 
of jitter and a harsh, hoarse, and rough voice 
quality. Shimmer refers to the same perturba-
tion but relates to the amplitude of the sound 
wave.

•• Pitch, characterized as the spectral F0 peak, is 
the fundamental frequency at which vocal 
cords vibrate.

•• Formants are resonances above F0 and repre-
sent local spectral maximums resulting from an 
acoustic resonance of the human vocal tract. 
Variability of the first three formants across 
time strongly correlates with the range of 
motion of the jaw and tongue and overall mus-
cle tenseness. Formant bandwidths increase 
with the presence of a glottal chink, common in 
breathy voices.

•• Pause-related features reflect the duration, 
standard deviation (SD), and frequency of 
pauses, or silent spaces between speech utter-
ances (utterance duration is also measured).

PROs
Participants completed the Modified Fatigue Impact 
Scale (MFIS), a validated and gold-standard measure 
of self-reported fatigue in PwMS.1 The total score of 
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the MFIS ranges from 0 to 84, with physical, cogni-
tive, psychosocial subscores. Prior studies have used 
a total score of 38 as a cutoff to discriminate fatigued 
from non-fatigued individuals;14,15 this performs well 
as a cutoff for fatigue in most cases, but may underes-
timate fatigue in people with higher education, men 
<24 years, or women 65–74.16 In addition, partici-
pants completed the Hospital Anxiety and Depression 
Scale—Depression (HADS-D) to assess mood, and 
Symbol Digit Modalities Test (SDMT) to assess pro-
cessing speed as an aspect of cognition.

Statistical analysis
Descriptive statistics and t-tests were performed to 
describe demographic characteristics of the cohort. 
Correlations between speech features and MFIS were 
assessed with univariate regression and reported as 
Pearson’s correlations. For feature selection, LASSO 
(least absolute shrinkage and selection operator) 
regression with leave-one-out cross-validation was 
implemented. The LASSO method was employed to 
regularize and reduce the feature set, minimizing mul-
ticollinearity and optimizing model sparsity. Leave-
one-out cross-validation ensured that the selected 
features consistently improved model performance, 
enhancing generalizability and reducing overfitting. 
The most significant parameters were selected to gen-
erate a nominal logistic model for fatigue as a cate-
gorical measure. Models were created using speech 
features from individual speech tasks as well as com-
binations of speech tasks, and covariates were sequen-
tially added to the model to assess model stability. 
Finally, the model was applied to stratified popula-
tions: non-depressed individuals (HADS-D < 8), 
individuals with normal (SDMT ⩾ 50) and low 
(SDMT < 50) processing speed, and individuals with 
mild to moderate disability (EDSS < 4) to assess 
generalizability.

Results

Demographics
From the entire cohort, 84 participants were included 
in the training analyses and 30 subsequently enrolled 
participants were designated as the test set. 
Characteristics of the training set were as follows: 
mean age 49.8 (SD = 13.6), 71.4% female, mean MS 
disease duration 9.9 years (SD = 7.4), 85.7% relaps-
ing-onset MS, median EDSS 2.5 (range: 0–6.5), mean 
MFIS 27.6 (SD = 19.4), and 29.8% had MFIS > 38, 
that is, in “fatigue” range. Similar characteristics were 
seen in the test set. Table 1 summarizes their demo-
graphic and clinical characteristics.

Associations with speech features: individual 
tasks
Correlations between MFIS and speech features were 
evaluated for each speech task (Table 2) and visual-
ized as a heatmap (Figure 1). Notably, many of the 
features that correlated with MFIS also correlated 
with HADS-D and EDSS, and inversely correlated 
with SDMT. These covariates and their relationship to 
MFIS and speech features are discussed further below.

Pitch.  Features related to pitch had moderate correla-
tions with MFIS in all three speech tasks (Grandfather 
Passage: R = 0.26, p = 0.03; Image Description: 
R = 0.32, p = 0.005; and Morning Routine: R = 0.26, 
p = 0.03).

Pauses.  Features related to pauses, including pause 
duration mean (Grandfather Passage: R = 0.33, 
p = 0.01; Morning Routine: R = 0.30, p = 0.01) and 
pause duration SD (Grandfather Passage: R = 0.30, 
p = 0.02; Morning Routine: R = 0.32, p = 0.01), were 
moderately correlated with MFIS. Utterance duration 
was moderately correlated with MFIS for the Grand-
father Passage and Morning Routine tasks (mean—
Grandfather Passage: R = 0.30, p = 0.01, 
SD—Grandfather Passage: R = 0.31, p = 0.01; SD—
Morning Routine: R = 0.23, p = 0.05; signal to noise 
ratio—Image Description: R = 0.26, p = 0.03). Similar 
correlations were found between these speech metrics 
and the MFIS cognitive subscore.

Articulation and loudness.  In addition, features 
related to articulation (MFCCS1, MFCCS3, Ham-
marberg index) and loudness (loudness SD, rate loud-
ness peaks, alpha ratio mean and SD) were found to 
moderately correlate with MFIS.

MFIS regression models
Single tasks.  Next, we evaluated the ability of speech 
features to classify MFIS categorically, using a total 
score of 38 as a cutoff to discriminate fatigued from 
non-fatigued individuals.14–17 For feature selection, 
LASSO regression with leave-one-out cross-valida-
tion was implemented. Models using speech features 
from only one task explained moderate variance in 
MFIS score but could not be reproduced in the test set 
of participants, suggesting overfitting of the model 
(Supplemental Table 1).

Combined tasks.  Using speech features from more than 
one task improved model performance and separation 
in categorical models. Robust separation in fatigued 
versus non-fatigued categories was achieved using 
features from Grandfather Passage and Morning 
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Routine (area under the curve (AUC) = 0.95, R2 = 0.59, 
p < 0.0001) (Figure 2(a)) and similarly robustly clas-
sified MFIS categories in the test set (AUC = 0.93, 
R2 = 0.54, p = 0.022) (Figure 2(b)).

Key covariates were sequentially added to the model 
to evaluate their effects on the model’s outcomes and 
stability, including HADS-D (depression), EDSS 
(disability), and SDMT (processing speed) (Table 3). 
HADS-D emerged as a significant covariate in 
explaining variance (estimate = −2.34, p = 0.015, 95% 
confidence interval (CI) = (−4.81, −0.78); SDMT and 
EDSS did not reach statistical significance as covari-
ates. Then, a stratified analysis was performed limited 
to the non-depressed subsample (HADS-D < 8), and 
this did not change the accuracy of the model. In fur-
ther exploratory analyses, the association between 

speech features and fatigue remained similar when 
restricting analyses to individuals with SDMT > 50 
and separately EDSS < 4.

Discussion
Fatigue is a commonly reported “invisible” MS symp-
tom, that along with pain, depression, and cognitive 
impairment, greatly affects quality of life; further-
more, it is more predictive of self-reported health dis-
tress than visible symptoms like use of assistive 
devices.18 Speech, both in its acoustic and linguistic 
qualities, can provide subtle markers of well-being 
and can render fatigue more visible—or audible. The 
current analyses demonstrate that automated speech 
analysis of simple, low-burden, language tasks can 
approximate gold-standard subjective fatigue 

Table 1.  Clinical and demographic characteristics of the participants: a predominantly relapsing, low-disability group on 
disease-modifying therapy, representative of the clinic population, divided into a training and test/validation sets.

Training (n = 84) Validation (n = 30)

Sex—n (%)

  Female 60 (71.4) 23 (76.7)

  Male 24 (28.6) 7 (23.3)

Age at examination—mean (SD) 49.8 (13.6) 52.3 (12.4)

Race/Ethnicity—n (%)

  Asian/Pacific Islander/Native American 2 (2.38) 6 (20)

  Black 4 (4.8) 2 (6.7)

  Hispanic or Latino 13 (15.8) 0 (0)

  White Non-Hispanic 58 (69.1) 19 (63.3)

  Other/Declined/Unknown 7 (8.3) 3 (10)

MS type—n (%)

  Relapsing 72 (85.7) 20 (66.7)

  Progressive 12 (14.3) 8 (26.7)

  Not specified 0 (0) 2 (6.7)

MS disease duration—mean (SD) 9.9 (7.4) 12.1 (8.3)

EDSS—median (range) 2.5 (0–6.5) 3 (0–6.5)

Disease-modifying therapy—n (%)

  Anti-CD20 51 (64.6) 23 (79.3)

  First generation injectable 6 (7.6) 4 (13.8)

  Other monoclonal antibody 6 (7.6) 1 (3.5)

  Oral 16 (20.3) 1 (3.5)

MFIS—mean (SD) 27.6 (19.4) 27.5 (19.3)

MFIS—n (%) ⩾ 38 25 (29.8) 7 (23.3)

HADS-Depression—mean (SD) 3.7 (3.4) 3.4 (2.8)

HADS-Depression—n (%) ⩾ 8 12 (14.5) 2 (6.9)

SDMT—mean (SD) 48.2 (13.1) 45.0 (9.5)

SDMT—n (%) < 50 34 (54.9) 23 (79.3)

SD: standard deviation; MS: multiple sclerosis; MFIS: Modified Fatigue Impact Scale; SDMT: Symbol Digit Modalities Test; EDSS: 
Expanded Disability Status Scale.
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measures. Furthermore, they suggest that automatic 
speech analysis is viable as a tool to provide quantita-
tive assessments of typically invisible or subjective 
patient experiences, which may facilitate better detec-
tion and subsequent targeted treatment.

Changes in both acoustic and linguistic qualities of 
speech have been evaluated in other neurodegenera-
tive diseases. For example, in amyotrophic lateral 
sclerosis (ALS), speech is known to be slowed, with 
increased pauses and changes to voice quality, as well 
as having changes in language that may reflect cogni-
tive changes.19 Similarly, higher rates of pausing and 
changes in speech prosody have been described in 
people with Parkinson’s disease (PD).20 In addition to 
previous gold-standard methods of speech analysis, 
which have typically involved speech-language 
pathologists manually assessing and scoring audio 
recordings, automated speech analysis of acoustic and 
lexical speech changes has more recently been applied 
to people with mild cognitive impairment (MCI), 
Alzheimer’s disease (AD), frontotemporal dementia 

(FTD), and primary progressive aphasia (PPA), par-
ticularly with regard to changes in cognitive 
abilities.21–25

Although changes to speech and language are com-
mon in MS, changes in these domains have overall not 
been appreciated as a major measure of dysfunction 
and have been less frequently studied, perhaps in part 
because presentations of disability can be so heterog-
enous in MS.26,27 Comparisons of speech between 
PwMS and healthy controls have yielded consistent 
differences across multiple studies. In particular, 
acoustic features relating to articulation, frequency, jit-
ter, speech rate, and pauses have been consistently 
shown to differentiate between PwMS of varying 
degrees of severity and healthy controls.6,28–30 Notably, 
many of these speech features also appear to be rele-
vant to fatigue. In the current analyses, speech features 
from multiple types of speech tasks were found to be 
indicative of fatigue—in particular, features relating to 
pauses, pitch and formants, and articulation. This intu-
itively makes sense based on these prior clinical 

Table 2.  MFIS showed modest correlations with individual speech variables associated with pitch, formants, pauses, and 
measures of articulation and loudness in the three individual speech tasks.

Grandfather Passage variable R df (n − 2) p

GP loudness SD −0.25 64 0.0394

GP pause duration mean 0.33 64 0.0072

GP pause duration SD 0.30 64 0.0160

GP pitch linear regression slope 0.26 64 0.0330

GP rate loudness peaks −0.29 64 0.0186

GP utterance duration mean 0.30 64 0.0134

GP utterance duration SD 0.31 64 0.0111

Image Description variable R df (n − 2) p

ID average MFCCS3 −0.29 71 0.0127

ID pitch min 0.32 71 0.0054

ID signal-to-noise ratio 0.26 71 0.0281

ID linguistic number of consecutive repetitions 0.28 71 0.0174

ID linguistic number of deictic terms 0.24 71 0.0396

Morning Routine variable R df (n − 2) p

MR average MFCCS1 −0.25 71 0.0346

MR alpha ratio mean −0.26 71 0.0260

MR alpha ratio SD −0.31 71 0.0074

MR Hammarberg index SD −0.23 71 0.0458

MR pause duration mean 0.30 71 0.0104

MR pause duration SD 0.32 71 0.0066

MR pitch min 0.26 71 0.0295
MR utterance duration SD 0.23 71 0.0494

Univariate regression was performed to assess Pearson’s correlations between speech task variables and Modified Fatigue Impact 
Scale (MFIS) total score. SD: standard deviation.
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observations. Similarly, another group, using the same 
automated speech pipeline on a German-speaking pop-
ulation of PwMS, found speech features related to 
pauses and pitch were predictive of fatigue as assessed 
by the Fatigue Scale for Motor and Cognitive 

Functions (FSMC) in a machine learning model using 
only a free speech task.12 This cross-linguistic demon-
stration of the importance of these features in assess-
ing fatigue suggests there may be some underlying 
network or speech processing that is similar across 

Figure 1.  Speech features related to pauses, pitch, articulation, and loudness correlate with fatigue, as well as other patient-reported outcomes, 
in (a) Grandfather Passage, scripted reading speech task; (b) Image Description, description task; and (c) Morning Routine, personal routine task. 
Heat maps of Pearson’s correlations where red indicates positive correlation, and blue indicates negative correlation.

Figure 2.  Models using speech features from more than one task robustly classify fatigued versus non-fatigued people with MS in both the (a) 
training and (b) test sets of participants.
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language differences. This automated speech analysis 
pipeline may be scalable to other metrics and disease 
conditions as it has previously been validated in 
healthy controls and patients with PD, PSP, and ALS.13 
This work demonstrates that automated speech analy-
sis is capable of identifying the acoustic speech fea-
tures clinically relevant to fatigue in PwMS. However, 
given that only 30% of participants had MFIS scores 
in the “fatigued” range, which is lower than has been 
generally previously reported, this may limit the gen-
eralizability of the results. As patients with progres-
sive disease and high EDSS typically report higher 
fatigue levels, this more relapsing low-disability popu-
lation may not be fully representative.

Depression and fatigue are often highly correlated in 
PwMS. Consequently, depression may confound the 
assessment of fatigue, complicating the interpretation 
of fatigue levels.14,31 Notably, while depression was 
found to be significant covariate in this model, the 
model retained predictive validity in a stratified non-
depressed subset. This suggests that, while depression 
contributes significantly to the speech features related 
to fatigue, the model remains stable and generalizable 
to non-depressed populations, supporting the notion 
of central fatigue distinct from depression in PwMS.

There may also be differences in the number and types 
of words PwMS use with regard to personal conversa-
tional narratives, and objective naming impairment is 
known to be common in PwMS and tip-of-the-tongue 
phenomena.32,33 In addition, PwMS with cognitive 
impairment are noted to have changes in speech and 
articulation rate, as well as increased frequency and 
length of pauses.30,34 Three different speech tasks were 
used in this study: reading a scripted passage, describ-
ing a novel image, and generating a personal narra-
tive—each likely utilizing different brain networks. 
These varied tasks likely challenged particular speech 
networks that are more impaired for PwMS. 
Interestingly, using features from two speech tasks 
improved the model performance, suggesting that que-
rying speech by engaging multiple types of networks 
involved in language can increase sensitivity to detect-
ing subtle changes related to fatigue. In this study, cog-
nition as assessed by SDMT was not a significant 
covariate in the model. SDMT is a measure of process-
ing speed that is generally accepted as a measure of 
cognitive performance in PwMS, but may not be sensi-
tive to language-specific cognitive deficits—future 
work should investigate the interaction between these 
deficits and speech features in assessment of fatigue.

Changes in speech features have also been found to 
correlate with disability in other functional domains 

(particularly cerebellar dysfunction) and with quality 
of life measures in PwMS.7,35,36 While EDSS levels 
did not influence the associations identified in these 
analyses, including cerebellar and brainstem sub-
scores would be more sensitive in excluding the effect 
of dysarthria from the assessment of fatigue.

In future work, speech tasks and automated speech 
analysis could potentially be used as an objective 
output in assessing fatigability, that is, objectively 
demonstrated deterioration of physical or cogni-
tive function with activity, in addition to fatigue (a 
subjective feeling of lack of energy).37 For instance, 
some speech tasks generate a higher cognitive 
load, leading to more strain on an individual’s pro-
cessing capacities, particularly for an already-
fatigued patient. Thus, some speech tasks may be 
more sensitive to detecting fatigability. For exam-
ple, dual-task performance has been shown to be 
sensitive to MS-related fatigue in some studies and 
is diminished in PwMS who have cognitive impair-
ment.38,39 It has previously been suggested that 
speech tasks and the degree of the cognitive load 
have a greater effect on MS patients than on 
healthy controls.40 It is not known which speech 
tasks might prove most fatiguing or challenging to 
PwMS—prior work suggests that reading may 
have a reduced cognitive load compared with 
spontaneous speech, but it is not clear if this holds 
true in all PwMS, particularly those with cognitive 
impairment, and further research into this question 
is warranted.30,41

The current work substantially advances ongoing 
efforts to identify and promote objective measures of 
fatigue through three innovations. First, we used auto-
matic speech detection and analysis tools that improve 
scalability and reproducibility. This is in contrast to 
traditional surveys, which typically require a trained 
administrator and scorer to improve the accuracy and 
reliability of responses, even if they can be self-
administered. Second, the speech tasks, including 
spontaneous speech tasks (as opposed to only scripted 
reading tasks or repetitions of vowel sounds), increase 
the ecological validity by more closely resembling 
“real life” speech performance—and are brief and 
low-burden to patients, potentially increasing the 
likelihood of their participation and engagement. 
Finally, having an objective measure of subjective 
symptoms will help to reduce bias and improve repro-
ducibility across research studies seeking to reduce 
fatigue. The era of precision medicine and telehealth 
medicine necessitates that we have sensitive tools to 
track individual outcomes important to patients: novel 
tools and metrics such as those afforded by automated 
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speech analysis will increase opportunities to assess 
patient well-being simply, digitally, and remotely.

Limitations
Limitations to this study include that it was per-
formed at a single site, a quaternary referral center, 
albeit one with significant geographic, economic, and 
racial/ethnic diversity. Indeed, overall the population 
had relatively low disability and low fatigue and thus 
may not be generalizable to all PwMS. In addition, 
the order of the speech tasks was not counterbalanced, 
and therefore, it is possible that fatigability could 
have increased over the course of the tasks. While 
EDSS levels were analyzed in the model, brainstem/
cerebellar subscores were not available to be specifi-
cally interrogated. Finally, this data set is cross-sec-
tional, and further longitudinal work will be necessary 
to determine whether speech performance is stable 
over time, how to determine clinically meaningful 
differences in speech features, and demonstrate a 
more direct relationship between these features and 
changes in fatigue.

Conclusion
Fatigue is a commonly reported “invisible” MS symp-
tom that may be assessed using simple, low-burden, 
language tasks that correlate with gold-standard sub-
jective fatigue measures. Automated speech analysis 
has real-world applicability to provide quantitative 
assessments of typically invisible or subjective 
patient-reported experiences.
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