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EPIGRAPH

When I was younger
it was plain to me

I must make something of myself.
Older now

I walk back streets
admiring the houses

of the very poor:
roof out of line with sides

the yards cluttered
with old chicken wire, ashes,

furniture gone wrong;
the fences and outhouses

built of barrel-staves
and parts of boxes, all,

if I am fortunate,
smeared a bluish green
that properly weathered

pleases me best
of all colors.

No one
will believe this

of vast import to the nation.

William Carlos Williams
“Pastoral”, ¡Al Que Quiere!
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ABSTRACT OF THE DISSERTATION

On the Dynamics of Hippocampal CA1 Interneurons During Associative Memory Processing

by

Pamela D. Rivière

Doctor of Philosophy in Cognitive Science

University of California San Diego, 2023

Professor Lara Rangel, Chair

Surviving and thriving requires minimizing energy expenditure while navigating (sometimes

harrowing) environments in search of nourishment, mates, and shelter from predators and the elements.

Associative learning is one of the tools available to organisms as they work to solve this problem,

allowing them to efficiently use scents, sounds, and visuospatial features to predict the likelihood and

location of rewards.

We combine in vivo electrophysiology, complex behavioral paradigms, and statistical modeling

techniques to explore the activity of the CA1 subregion of the hippocampus, which integrates a range of

converging inputs that are thought to provide the sensorimotor, visuospatial, and affective information

required to associate properties of the environment with inherently valuable stimuli.

xiii



To organize these streams of information, the CA1 subregion must attenuate activity irrelevant to

the organisms’ immediate goals, while simultaneously allowing select neuronal populations to respond to

the appropriate inputs. This thesis consequently characterizes the activity patterns of inhibitory

interneurons, in an effort to determine how they work cooperatively with constellations of inputs to

coordinate select subpopulations of pyramidal cells. In Chapter 2, I show that inhibitory interneurons

selectively modulate their firing rate responses to odorants and spatial locations during associative

memory processing, suggesting that interneurons can in fact be recruited by distinct, behaviorally relevant

inputs. Chapter 3 documents the development of a statistical modeling strategy for identifying rapid shifts

in interneuron spike timing relative to oscillatory synaptic currents. This tool facilitated the discovery of

interneurons whose spike timing reliably changes over the course of associative memory processing.

Lastly, Chapter 4 investigates interneuron spike timing in response to distinct combinations of olfactory

and visuospatial inputs. We apply the modeling approach described in Chapter 3 to characterize

spike-phase relationships with respect to theta (4-12 Hz), low gamma (35-55 Hz), and high gamma (65-90

Hz) local field potential (LFP) oscillations. We show that entrainment into higher frequencies is predicted

by theta phase relationships, and we find that interneuron spike-phase relationships can vary according to

distinct combinations of inputs. These findings demonstrate that interneurons flexibly orchestrate network

activity given a diverse array of inputs and changing behavioral demands.
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CHAPTER 1: INTRODUCTION

“But when many uniform instances appear, and the same object is always followed by the same event; we

then begin to entertain the notion of cause and connexion. We then feel a new sentiment or impression,

to wit, a customary connexion in the thought or imagination between one object and its usual attendant

....”

- David Hume, An Enquiry Concerning Human Understanding, p. 50 (bold emphasis mine)

1.1 Survival, Associative Memory, and Hippocampal Inhibition

Wild and designed spaces alike pose challenges to organisms’ survival. Desertscapes with meager

and concealed water supplies, dense forests teeming with predators and tantalizing but toxic plants, dark

city tunnels whose walls quake every so often with the roar of heavy machinery traveling at speed…these

are just some environments where organisms have managed to set up shop and make homes for

themselves. Environments such as these impose costly penalties on long, luxurious excursions in search

of the essentials for survival, such as food, water, shelter, and mates. Energy spent searching aimlessly for

water in a desert may spell dehydration and disaster, wandering into predators’ territories in the jungle

may ensure becoming someone else’s meal, and venturing out of a nook as the train barrels through the

darkness may result in fatal injuries. Dangerous worlds demand more than endurance—they call for

heuristics in the form of associations.

Associative memory allows organisms to leverage features of the environment—its sights, scents,

and sounds—to make inferences about what kinds of rewards or dangers to expect, and where to find or

avoid them. In the desert, a novice might respond impartially to a spiky cactus plant. To those who have

formed a productive association, however, the uninviting or banal features of the cactus might in fact

presage the extreme relief that accompanies breaking its skin and consuming the juicy water within. This

process involves linking what looks like an arbitrary sensory feature (the swollen and spiky visual profile

of the plant) to the inherent value obtained only after interacting with the object in a particular way (that

is, biting into it). By the same token, coming across the reek of a predator’s dung or urine should motivate

a wary animal to distance itself (quickly, if possible) from the marked region. Associations serve as cues

1



to action, and they can often only really be learned, as argued by David Hume nearly three or so centuries

ago: organisms do not come into the world intuiting all the affordances of objects in their environments.

Experience, and the ability to establish associations between an object’s sensory properties and the

object’s “usual attendants” or consequences are necessary preconditions for successfully inferring cause

and effect, and thriving in the world1.

The work in this dissertation is concerned with the neural mechanisms that might facilitate an

organisms’ ability to deploy learned associations as they seek rewards. I orient my efforts towards a

region of the brain, the hippocampus, that has been implicated in the formation of associations through a

long history of detailed human case studies2,3 and elegant experimental work with a variety of animal

models, the most enduring of which have been rodents4–7 and non-human primates8. Hippocampal

neuronal activity—as measured through the rate of action potential (spike) emissions—drastically

reorganizes in tandem with macaques’ accuracy as they perform a visuospatial associative learning

task9,10, and evidence has accrued through work with rodents to suggest that a portion of hippocampal

neurons exhibit exquisitely selective responses to combinations of visual and olfactory stimuli that predict

reward10–12. Notably, the spatial selectivity of hippocampal principal cell activity—the reason they have

been often referred to as “place cells”13,14—manifests contextually, and depends heavily on the

configuration of egocentric and allocentric visual cues15 as well as the affective value of occupied

locations (and future destinations) in the environment16–21. In this way, principal neuron spatial activity

patterns operate less like absolute Cartesian coordinates, and more like a combinatorial code that accounts

for multiple dimensions of experience.

Excitatory principal cells, however, are not the only hippocampal constituents. In fact, the CA1

subregion of the hippocampus is home to various classes of inhibitory interneurons, neurons whose

typical effect is to suppress the activity of their targets22–26. Classification schemes vary along several

dimensions: morphology22,27,28, postsynaptic target compartment (e.g. dendritic, somatic, axonal)22,24,

molecular and transcriptomic expression profiles22, membrane receptor and ion channel kinetics24,29,30, and

spike timing relationships to ongoing network activity25,31. To be sure, many of these features are
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correlated, and one of the field’s preoccupations from the late 1980s to the early 2000s involved mapping

the relationships across these dimensions. The goal of this enterprise was to identify systematic functional

roles for diverse interneuron classes, an outcome that would facilitate computational modeling of neural

circuits, yield further insights into the machinery underlying cognition and behavior, and offer

tractable—and increasingly precise—pharmacological targets for clinical interventions. Of particular

interest for the work presented in this dissertation is the attempt to classify interneurons functionally

during behavior, particularly with respect to the phase of oscillatory activity in the hippocampus.

Neural oscillations refer to systematic voltage fluctuations observable in the extracellularly

recorded local field potential (LFP), a signal that emerges from the summation of all subthreshold ionic

currents flowing in and out of cell membranes in the vicinity of the electrode32—with potential

contributions from “volume-conducted” currents passively drifting from regions far from the recording

electrode33. Oscillatory activity generated locally consequently reflects the collective and temporally

coordinated activity of neurons in a network, as well as organization in the pattern of synaptic inputs

provided by afferent fibers. Inhibition has been particularly implicated in the generation of sustained

oscillations in the hippocampus, and the reliable spike timing patterns of these neurons relative to the

hippocampal theta (4-12 Hz) oscillation observed in the 1970s earned them the name “theta cells”34.

Of the studies that then went on to perform inhibitory interneuron classifications on the basis of

spike timing relative to theta rhythms (and in the 2010s, relative to faster gamma25-90 Hz oscillations) during

behavior25,31, surprisingly little was or has been done to assess interneuron spike-phase relationships

during the variety of associative memory behaviors that the hippocampus contributes to. The work here,

motivated in detail through the remainder of this chapter, concerns itself with this apparent gap, and

explores hippocampal interneuron dynamics—measured through variations in spike rates and spike

timing—as they unfold during associative memory processing epochs. I will argue over the course of the

work presented here that inhibitory interneurons are remarkably flexible in their responses to stimuli

combinations associated with rewards, and that assessing these dynamics across the plurality of behaviors

that organisms present is essential to unraveling the mysteries of neuronal machinery.
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1.2 Inhibitory and Excitatory Neurons.

Neuronal tissues are diverse landscapes. At its broadest, variation across neurons manifests in the

diversity of effects that a neuron exerts on its postsynaptic targets. Excitation (or the tendency to

depolarize postsynaptic targets) and inhibition (precisely the opposite) are the main direct forms of

influence observed in neural systems. Large brain regions comprise multiple smaller microcircuit motifs

or templates. A common motif involves that of an inhibitory interneuron mutually interconnected with an

excitatory principal cell (Figure 1.1). While the latter, with notable exceptions, serve as the primary

outputs of the regions their cell bodies reside in, interneurons earned their moniker from their propensity

to restrict their axonal arbors within a much more narrowly circumscribed volume of tissue (e.g. within

the anatomically defined “boundaries” of a brain region).

Figure 1.1. Schematic of a basic microcircuit motif. A reduced inhibitory interneuron (blue) is mutually
interconnected with an excitatory pyramidal cell (grey).

Inhibitory interneurons exert substantial influence on neural networks’ excitatory outputs.

Although generally fewer in number relative to excitatory principal cells35–38, interneurons’ extremely

dense axonal arbors target large groups of principal cells22,39,40. Interneurons also often exhibit ion channel

and receptor distributions that result in relatively more depolarized resting membrane potentials41,42, a
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property that renders them more easily excitable on average than the principal neurons they innervate43.

All these features coalesce to place inhibitory interneurons in an ideal position to organize the activity of

principal cells.

1.3 Hippocampal CA1 and Network Architecture.

Microcircuits like the (simplified) one illustrated in Figure 1.1 abound in the hippocampal region,

a network of structures—the dentate gyrus (DG), the CA3, and the CA1—that each possess unique

microcircuit motifs and architectures and are connected serially and (mostly) unidirectionally, with the

CA1 as the final node in the so-called trisynaptic pathway44,45. The CA1 subregion, the primary focus of

this dissertation, boasts a wide variety of inhibitory cell types, each targeting distinct pyramidal cell

dendritic, somatic, and axonal compartments22, ensuring that various inhibitory sources regulate inputs

along all access points available to principal neurons (Figure 1.2).

The soma and dendrites of interneuron types (here defined according to the pyramidal cell

compartments they preferentially target) occupy distinct layers of the CA1 subregion (Figure 1.2). Oriens

lacunosum moleculare (OLM) cell soma occupy the stratum oriens CA1 layer, but their axons

preferentially innervate the apical dendritic tufts of pyramidal cells, located in the CA1 stratum

lacunosum moleculare and also the stratum radiatum22,46. Somatic-targeting “basket” and axonal-targeting

axo-axonic interneuron soma largely occupy the pyramidal layer along with pyramidal neuron cell

bodies22,46.

The laminar organization of different groups of interneuron cell bodies and dendrites determines

which afferent inputs each class predominantly receives, and the location of interneuron axons in turn

dictates which synaptic inputs they tend to regulate. This is a consequence of the exquisite laminar

organization of input fibers traveling from the CA3 subregion of the hippocampus, from the entorhinal

cortex, and from a profusion of neuromodulatory subcortical structures. In the following sections, I survey

the variety of known afferents that recruit inhibitory and excitatory CA1 neurons, in the context of the

kinds of sensory and affective information they are thought to provide.

5
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Figure 1.2. Simplified schematic of interneuron diversity across hippocampal CA1 lamina. Interneurons
vary in the pyramidal cell compartments their axons preferentially target.

1.4 Olfactory Information: Entorhinal Cortex

Afferent fibers from entorhinal cortex layers 2/3 make up the Perforant Path, a name that arose

from the way these fibers appear to “perforate” or impale hippocampal white matter tissues in early gross

anatomical studies47. Synaptic terminals from the lateral entorhinal area (LEA) impinge at the level of

CA1 stratum lacunosum moleculare, and consequently come into contact with the apical dendritic tufts of

pyramidal cells48. As a consequence of this localization, LEA-driven excitatory postsynaptic currents in

pyramidal cell dendrites are heavily regulated by OLM interneurons, whose axons lie in the vicinity of

these contacts30,46. Any information conveyed through these fibers is consequently subject to inhibitory

gating mechanisms.

But what is the nature of this “information”? In the rodent, the LEA receives direct inputs from

the olfactory bulb49, a region of the brain whose activity is indirectly shaped—as its name implies—by

odorants inhaled and capable of binding to olfactory receptor neurons located in the lining of the nasal
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cavity, the olfactory epithelium50. Each olfactory receptor neuron is characterized by the olfactory

receptors they express51, and odorants bind with different degrees of affinity to subsets of receptors,

resulting in unique spatiotemporal patterns of neuronal spike emissions52. Spatial organization of olfactory

receptor neurons in the olfactory epithelium is non-chemotopic; that is, the neurons do not cluster

spatially according to the olfactory receptors they express. Instead, olfactory receptor neurons of a

particular kind are scattered throughout the epithelium. Despite the (seeming) randomness, their

projections are funneled into spatially organized bundles of fibers termed glomeruli, which comprise

activity driven by a single olfactory receptor type. Olfactory bulb (OB) mitral cell dendrites constitute

another major component of a given glomerulus. Mitral cells then provide inputs to, among other regions,

the LEA53,54, which go on to express odor-selective activity patterns54,55 as well as conjunctive responses

for scented items in particular spatial locations56. This olfactory information may in turn influence CA1

microcircuits through the LEA’s direct contacts with pyramidal cell apical dendrites.

Although inhibitory interneurons targeting pyramidal cell apical dendrites are poised to block or

reduce LEA influence in the network, recent work demonstrates importantly nuanced LEA-driven

inhibitory recruitment. Bilash et al. (2023) find that LEA inputs not only work to recruit pyramidal cells

by eliciting dendritic spikes, they also simultaneously recruit a group of interneurons that inhibits

inhibitory activity in the layer57. The ability of LEA fibers to recruit disinhibitory microcircuits to

maximize their excitatory effects speaks to the diversity of hippocampal inhibitory dynamics, and the

complex mechanisms involved—in this case—in processing olfactory information in the CA1 subregion.

1.5 Visuospatial Information: Entorhinal Cortex

Although there exists a detailed anatomical case for an olfactory contribution, the rodent LEA

also receives projections from the posterior parietal cortex and secondary visual area58. The LEA’s activity

patterns have consequently been explored extensively in the context of spatial tasks. In this domain, LEA

neurons exhibit selectivity for objects, emitting action potentials at fixed distances away (or in the

vicinity of) specific objects regardless of their location in allocentric space59, or responding only in the

7
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locations that an object has previously occupied, often appearing to “follow” or “track” the object’s

variously occupied positions in space60. Lesioning the LEA additionally provokes deficits in a novel

object-context exploration task61, which presumably requires animals to have established familiarity with

previously encountered objects. More recent work has shown LEA neuron activity patterns whose

variance is explained by the rat’s egocentric orientation relative to a boundary or object, suggesting its

ability to convey visuospatial information relative to egocentric spatial reference frames62.

The medial entorhinal area (MEA) receives what may be an even larger share of posterior parietal

and visual associational innervation than the LEA63, and additionally projects Perforant Path fibers to

CA1 pyramidal cell distal dendrites64. This region has been extensively studied in the context of spatial

information processing. Its principal neurons often emit action potentials in spatially periodic patterns

resulting in, so to speak, environment-specific tessellated firing patterns65 when one observes the map of

action potentials accumulated as a rat traversed all coordinates in a space. These firing patterns—notably

also shaped by hippocampal feedback into deeper MEA layers66,67—can additionally be conjunctively

modulated by the rat’s head direction and velocity, providing a substrate for combinatorial expressions of

experience-dependent68,69 interoceptive and spatial variables in MEA projection neuron dynamics70,71.

Visuospatial patterns of activity also emerge in hippocampal principal cells, though the direction

of this information transfer has been called into question72, given that CA1 pyramidal cell place fields

persist in the absence of MEA neurons’ typical grid tuning73. Whatever the case may be, both of these

regions express spatially-anchored firing, with CA1 principal cells exhibiting multiple74,75 and single

tuning preferences for locations in space13,15.

Although CA1 inhibitory interneurons have traditionally been considered less spatially selective

than their excitatory counterparts in the network, interneurons may in fact inherit a large amount of spatial

information, perhaps partially through contacts with MEA en passant terminals76 and pyramidal cell

feedback projections76. Inhibitory interneurons are known for their very high average firing rates, which

appear indiscriminate over space as rats traverse environments. As it turns out, however, these high rates

of spike emissions vary systematically with space. Very early work first noted slight firing rate variations
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across the different arms of an 8-arm radial maze77, and Kubie, Muller, & Bostock (1990) systematically

explored interneuron spike rates across space and found a pronounced lack of uniformity in the spatial

distribution of action potentials of interneurons, despite their high firing rates throughout the

environment78. They can evince dramatic increases or drop-offs at narrowly circumscribed spatial

locations in the environment, at the same spatial resolution, in fact, as hippocampal principal cells exhibit

single place fields78–80.

1.9 Oscillatory Phase as a Coordinating Mechanism.

The CA1 local field potential (LFP) exhibits a diverse oscillatory spectrum, whose expression is

extremely behavior-dependent81. Originally termed “rhythmical slow activity,” the theta rhythm (4-12 Hz)

dominates the CA1 LFP during locomotive behaviors but yields to large irregular waves during immoble

states81,82. The LFP reorganizes yet again when considering associative memory processing epochs, during

which fast gamma oscillations emerge more prominently relative to their presence during

locomotion12,83–85.

Inhibitory interneuron activity in the CA1 is thought to contribute, along with various cortical and

subcortical afferents, to the emergence of each of these oscillations. Early reports of inhibitory

interneurons in the hippocampus documented systematic time-locking of these cells relative to theta

oscillations, which suggested—though did not demonstrate—a relationship between GABAergic currents

and theta oscillatory profiles34,86. In vitro bath application of a GABAA receptor antagonist abolished a

locally generated CA1 theta oscillator87, and later work in the same preparation leveraged optogenetic

silencing of parvalbumin-positive (PV+) interneurons to show this class of interneuron specifically

contributes to sustaining locally generated theta oscillations88. Similarly, GABAA antagonists block

hippocampal gamma oscillations centered around a ~40 Hz frequency89, with the frequency of the LFP

oscillation determined by the duration of GABAergic inhibitory postsynaptic potentials in the targeted

pyramidal cell population90.
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Inhibition-based oscillatory coordination of pyramidal cell assemblies offers what appear to be

advantageous sources of temporal coordination. First, enforcing periodic windows of inhibition and

excitability in pyramidal cells may guarantee that only the most well timed afferents exert their influence

on the pyramidal cell population, essentially establishing smooth interaction channels between certain

inputs while blocking others91. Moreover, inhibition might serve to “sharpen” and ensure the integrity of

excitatory outputs: without periodic inhibition, small temporal jitter in pyramidal cell assembly spiking

would result in desynchronized assemblies. In the presence of regular inhibitory currents, pyramidal cell

spiking rebounds in synchrony across the population; neurons that need to fire in tandem are then able to

sustain this synchronicity over longer periods of time92,93.

1.10 Summary

Interneuron activity profoundly shapes the output of the hippocampus, a brain region whose intact

dynamics support associative memory and, consequently, organisms’ ability to navigate the demands of a

complex world. To date, little work has characterized inhibitory interneuron activity during paradigms

that specifically test associative memory processing. In the work that follows, I show that inhibitory

interneurons flexibly vary their spike rates in response to distinct stimuli combinations during an

associative memory task (Chapter 2). Given inhibitory interneuron involvement in sculpting oscillatory

activity, I develop a method to quantify and predict spike-phase relationships to various rhythms over

time. Applying this method across locomotive and associative memory processing epochs revealed groups

of interneurons that shifted their spike-phase relationships as a function of behavioral state (Chapter 3).

Finally, I identify the presence of systematic interneuron spike timing relationships to theta and gamma

rhythmic circuit processes—again, a property that depended on the animal’s behavioral state, as well as

the combination of olfactory and visuospatial information available during associative memory

processing. Evidence from this work converges to demonstrate the dynamism inherent to hippocampal

inhibition, and its potential contributions to associative memory and survival.
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CHAPTER 2: DIFFERENTIAL RECRUITMENT OF INHIBITORY INTERNEURONS: FIRING

RATES

2.1 Abstract

Flexible, dynamic activity in the brain is essential to information processing. Neurons in the

hippocampus are capable of conveying information about the continually evolving world through changes

in their spiking activity. This information can be expressed through changes in firing rate and through the

reorganization of spike timing in unique rhythmic profiles. Locally projecting interneurons of the

hippocampus are in an ideal position to coordinate task-relevant changes in the spiking activity of the

network, as their inhibitory influence allows them to constrain communication between neurons to

rhythmic, optimal windows and facilitates selective responses to afferent input. During a context-guided

odor–reward association task, interneurons and principal cells in the CA1 subregion of the rat

hippocampus demonstrate distinct oscillatory profiles that correspond to correct and incorrect

performance, despite similar firing rates during correct and incorrect trials (Rangel et al., eLife 5:e09849,

2016). Principal cells additionally contained information in their firing rates about task dimensions,

reflective of highly selective responses to features such as single positions and odors. It remains to be

determined whether interneurons also contain information about task dimensions in their firing rates. To

address this question, we evaluated the information content for task dimensions in the firing rates of

inhibitory neurons. Interneurons contained low, but significant information for task dimensions in their

firing rates, with increases in information over the course of a trial that reflected the evolving availability

of task dimensions. These results suggest that interneurons are capable of manifesting distinct rhythmic

profiles and changes in firing rate that reflect task-relevant processing.

2.2 Introduction

Successful information processing in the brain is characterized by dynamic patterns of neuronal

activity that reflect information about the changing world. In the hippocampus, a brain region important

for learning and memory, these changes often manifest as selective responses to features of the
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environment [1]. During associative memory processing, neurons in the CA1 region of the rat

hippocampus have been shown to exhibit highly selective and reliable changes in firing rate in response to

specific spatial locations within an environment, stimuli such as odors that are relevant for performance

[2], and the conjunction of specific odors in particular spatial locations [3,4,5]. Metrics that exploit these

selective increases in firing rate have been devised to quantify neuronal information content for particular

task features [3, 6,7,8]. These analyses have revealed subsets of neurons in the hippocampus whose

transient changes in firing rate reflect the availability of behaviorally relevant features in the environment,

leading to the hypothesis that the hippocampus dynamically recruits appropriate neuronal ensembles in

the service of memory [9,10,11,12,13].

Associative memory processing is additionally accompanied by dynamic shifts in the oscillatory

profile of the local field potential (LFP) in the CA1 region of the rat hippocampus [3]. In a context-guided

odor–reward association task, rats must learn that odors are differentially rewarded depending upon the

context in which they are encountered. During intervals in which rats correctly associated odors with the

contexts in which they were rewarded, we observed large amplitude changes in the theta (4–12 Hz), beta

(15–35 Hz), low gamma (35–55 Hz), and high gamma (65–90 Hz) frequency ranges. A surprising

indicator of performance was the reorganization of spike timing with respect to the ongoing oscillations,

such that both interneurons and principal cells exhibited distinct profiles of engagement in each of the

four rhythms depending upon the trial outcome (correct or incorrect). For example, while the largest

proportion of interneurons exhibited consistent spike timing relationships to each of the four frequency

ranges during correct performance, many exhibited spike timing relationships to only theta during

incorrect performance despite similar overall firing rates between correct and incorrect trials. This finding

revealed a previously underexplored task-relevant selectivity in the rhythmic domain, and highlighted the

dynamic patterns of activity in the interneuron population as a hallmark of successful processing.

Having established that the selective reorganization of interneuron spike timing is related to

successful performance, we wished to additionally evaluate the extent to which interneurons manifest

selectivity for task dimensions in a manner similar to principal cells of the hippocampus. Specifically, we
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tested whether interneurons modulate their firing rates for different task dimensions. We have previously

reported that principal cells in the CA1 region of the hippocampus with distinct profiles of engagement in

theta, beta, low gamma, and high gamma differentially represent task dimensions in their firing rates [3].

As the largest proportion of interneurons exhibited engagement in all four rhythms during correct

performance, we examined the information content in the firing rates of this subpopulation for three key

task dimensions: odors, positions, and odor–position combinations. Our preliminary results suggest that

this interneuron population exhibited low, but significant information content for task dimensions in their

firing rates, with increases in information for odors and odor–position conjunctions that reflected the

availability of odor stimuli. This suggests that in addition to providing a task-relevant oscillatory

framework for the hippocampal network, interneurons may convey information about task dimensions.

2.3 Materials and Methods

All experimental procedures were carried out as previously described in Rangel, Rueckemann, Rivière et

al. 2016 [3]. They are briefly described here.

Behavioral Paradigm

Rats performed a context-guided odor–reward association task in which odors were differentially

rewarded depending on the spatial context in which they were encountered. In this task, rats were placed

in a behavioral apparatus consisting of two arms, or contexts, oriented at 180° with respect to each other

and separated by a central chamber (Fig. 2.1). Each context contained two odor ports. On each trial, rats

were given access to one of the contexts, which were distinct from each other on the basis of their spatial

location within the recording room. To further distinguish each context, vinyl or plastic contextual wraps

of different colors and textures were used to cover each arm and face plate containing the odor ports. Rats

learned to sample odors presented in each port by poking their snouts in an odor port. LED sensors within

each odor port registered nose pokes (poke onset). Odors were delivered into the odor port 250 ms after

the initiation of a nose poke (odor onset). Odors were presented in pairs that were consistent throughout
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the experiment. One odor of a pair was assigned as correct in the first context, with the opposite odor

assigned as correct in the second context. Odor positions were pseudorandomized and counterbalanced

such that the rat had no prior knowledge of which odor port would contain the correct odor of a pair.

Correct trial: In order to receive a water reward, rats were required to maintain a nose poke for 1500 ms

in the odor port containing the correct odor of a pair. If an odor port contained the incorrect odor, the rat

needed to remove his nose from the port before 1500 ms had elapsed from poke onset. Following an exit

from the incorrect odor port, the rat was allowed to move to the adjacent port containing the correct odor,

where he had to maintain a nose poke for 1500 ms to receive his reward. Upon completion of a nose poke

in the correct odor port, a water reward was immediately delivered to an indentation in a tray positioned

directly under the odor port. Incorrect trial: Holding a nose poke for 1500 ms in the odor port containing

the unrewarded odor resulted in a white-noise buzz and no water reward on that trial. Rats encountered

pairs of odors in blocks, with two blocks of odor pairs per half-session (four odors in a half-session, eight

odors in a full session, 96 trials total). Contextual wraps with unique colors and textures covering each

arm were switched between half-sessions. Data was analyzed during 1500-ms sampling intervals in

correct odor ports (correct trials). Each half-session was analyzed separately.

During behavioral training, rats completed 80 trials each day until they could perform at 75%

accuracy. Recordings began after rats achieved this performance criterion. Only those sessions in which

the rat achieved at least 75% accuracy were included in the data analysis. Data during 1500-ms sampling

intervals in incorrect odor ports (incorrect trials) were excluded from analysis due to an insufficient

number of trials for each task dimension.

Neural Recordings and Interneuron Identification.

We performed high-density extracellular tetrode recordings from the CA1 region of the

awake-behaving rat in order to obtain single cell and local field potential (LFP) activity. Signals were

amplified 4000–8000 × and digitized at 40 kHz by an Omniplex Neural Acquisition system (Plexon).

Local field potentials (LFPs) were digitally isolated with a band-pass filter from 1 to 400 Hz and spikes
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were isolated with a band-pass filter from 400 to 8000 Hz. Putative interneurons were isolated according

to firing rates and waveform characteristics. Waveform features, such as peak and valley voltage

amplitudes and total peak-to-valley distance, were compared across tetrode wires in OfflineSorter

(Plexon). Interneurons clustered according to mean firing rate (≥5 Hz), mean width at half of the

maximum amplitude of the waveform (< 150 μs), and mean temporal offset from peak to trough (< 350

μs) [14,15,16].

Local Field Potential and Spike-Phase Coherence Analyses.

A third-order Butterworth filter was used to band-pass filter the LFP in the theta (4–12 Hz), beta

(15–35 Hz), low gamma (35–55 Hz), and high gamma (65–90 Hz) frequency ranges. The instantaneous

phase was then calculated by taking the arctangent of the complex Hilbert transform of the filtered signal.

For interneurons demonstrating spike-phase coherence to all four frequency ranges (theta4–12 Hz, beta15–35 Hz,

low gamma35–55 Hz, and high gamma65–90 Hz) during correct trials (32 out of 67 total interneurons recorded, 6

rats, 53 half-sessions), the phase of the filtered LFP at the time of each spike was recorded for the 1.5 s

odor sampling intervals leading up to reward delivery. Spike-phase relationships were assessed using a

Rayleigh statistic, and interneurons were categorized as significantly phase coherent to a rhythm if

exhibiting a p < 0.05. This criterion was previously used to identify interneurons with significant

spike-phase coherence that, upon further characterization, also exhibited differences in the magnitude and

phase of coherency across correct and incorrect trials [3].

Quantifying Information.

For interneurons demonstrating spike-phase coherence to all four frequency ranges (theta4–12 Hz,

beta15–35 Hz, low gamma35–55 Hz, and high gamma65–90 Hz) during correct trials, the information contained in

the firing rate of the interneuron for a task dimension (odors, positions, or odor–position conjunctions)

was calculated according to the following equation:

𝐼 =  
𝑖 = 1

𝑛

∑ 𝑃
𝑖
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𝐹
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Where i designates a variant of the task dimension (one of four possible odor port positions, four

possible odors, or eight possible odor–position combinations as each odor is rewarded in more than one

position), n is the total number of variants, Pi is the probability of the occurrence of variant i, Fi is the

mean firing rate during the occurrence of the variant i, and F is the overall mean firing rate of the cell. To

determine whether calculated scores could be acquired by chance from the spiking behavior of a given

interneuron, task conditions were randomly shuffled 1000 times and the observed information was

considered significant if greater than the 95% confidence interval of the condition-shuffled scores.

For the interneurons with significant information for a given task dimension, additional

information scores were calculated for three non-overlapping 500 ms intervals that directly preceded and

spanned the 1.5-s nose poke interval. These intervals included a 750–250-ms interval prior to nose poke

onset (before), the 500 ms interval after odor onset (odor), and the last 500 ms of the nose poke (end).

Differences in the median information across the three time intervals were assessed using a Friedman’s

test, with post hoc pairwise comparisons performed using a Tukey’s Honest Significant Difference test.

2.4 Results.

All interneurons with significant spike-phase coherence to theta4–12 Hz, beta15–35 Hz, low gamma35–55

Hz, and high gamma65–90 Hz during correct trials (32 out of 67 total interneurons recorded, 6 rats, 53

half-sessions, see Sect. 2) also contained significant information for one or more task dimensions (odor,

position, and odor–position) in their firing rates. An example of an interneuron with significant

spike-phase coherence to all four rhythms and significant information for all three task dimensions is

shown in Fig. 1. The median information for odors was 0.015 bits/spike (N = 21, interquartile range

= 0.0194), the median information for position was 0.038 bits/spike (N = 47, interquartile range = 0.0720),

and the median information for odor–position was 0.041 bits/spike (N = 51, interquartile range = 0.0609).

The median of the average firing rates exhibited by this group of interneurons during correct trials was

24.57 Hz (interquartile range 12.45 Hz).
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Figure 2.1. Spike-field coherence and firing profiles of a single interneuron in the CA1 region of the rat
hippocampus. (a) Upper: Gabor spectrogram during the odor sampling interval of a single trial. Middle:
Corresponding raw local field potential and the band-pass filtered local field potential in the theta (4–12
Hz), beta (15–35 Hz), low gamma (35–55 Hz), and high gamma (65–90 Hz) frequency ranges. Lower:
Spike times of a single interneuron that demonstrated significant spike-field coherence to each of the four
frequency ranges. (b) Circular histograms indicating the phases of theta4–12 Hz (orange), beta15–35 Hz (blue),
low gamma35–55 Hz (yellow), and high gamma65–90 Hz (purple) at the time of each spike, with the direction of
the mean resultant length vector (R) shown by the arrow in black. P-values were calculated using a
Rayleigh statistic. (c) Spiking activity of the interneuron during the sampling intervals of rewarded odors
on correct trials. Each row of tick marks represents spiking during a single trial. Bar graphs above tick
marks indicate mean firing rates every 250 ms. The overall mean firing rate of this interneuron was
24.563 Hz. Center: Schematic of the context-guided odor–reward association task. Pairs of odors are
differentially rewarded depending upon the context in which they are presented. (d) The spiking activity
of this interneuron contains significant information (see Sect. 2) for odors, positions, and odor–position
combinations. Information scores are indicated above distributions of information scores from shuffled
data.
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Although there were interneurons with significant spike-phase coherence to combinations of the

four rhythms examined (e.g., theta only, theta and high gamma, etc.), few of these interneurons also

exhibited significant information for task dimensions. For example, the population of interneurons with

significant spike-phase coherence during correct trials to only theta4–12 Hz (14 interneurons, 6 rats, 18

half-sessions) produced just three instances of significant information for each task dimension. Given

these low numbers, analyses were restricted to the population of interneurons coherent to all four of the

rhythms examined during correct trials.

We then tested whether the information for a specific task dimension changed over the course of a

trial (Fig. 2.2). We compared the information content during the before, odor, and end intervals. The

interneurons coherent to all four rhythms exhibited an increase in odor information across the three

intervals examined (Friedman’s test: d.f. = 2, χ2 = 12.67, p = 0.0018). Post hoc comparisons revealed that

this increase occurred at the end of the nose poke, but not during the interval immediately after odor

delivery (Tukey’s Honest Significant Difference test, p < 0.05 for comparisons of the before interval to

odor and end intervals). These interneurons also exhibited a similar increase in odor–position information

across the three intervals examined (Friedman’s test: d.f. = 2, χ2 = 11.76, p = 0.0028) that occurred only at

the end of the nose poke (Tukey’s Honest Significant Difference test, p < 0.05). This interneuron group

did not exhibit increases in position information across the three intervals examined (Friedman’s test: d.f.

= 2, χ2 = 3.87, p = 0.1443).
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Figure 2.2. Information for odors and odor-positions evolves over the course of odor sampling. Left:
Median information (bits/spike) for odors for interneurons exhibiting significant spike-phase coherence
relationships to all four rhythms examined (theta4–12 Hz, beta15–35 Hz, low gamma35–55 Hz, and high gamma65–90
Hz) during a 500-ms interval prior to nose poke (before), a 500-ms interval directly after odor delivery
(odor), and 500 ms prior to the end of the nose poke (end). Vertical gray bars indicate the interquartile
range. The top vertical line indicates q3 + 1.5 × (q3 − q1) and the bottom vertical line indicates
q1 − 1.5 × (q3 − q1), where q1 and q3 are the 25th and 75th percentiles, respectively. Asterisks (*) indicate
a significant pairwise comparison using a Tukey’s Honest Significant Difference test, p < 0.05. Middle:
Same as in A, for position information. Right: Same as in B, for odor–position information.
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2.5 Discussion.

Our preliminary results suggest that interneurons may convey information about task dimensions

in their firing rates. The low, but significant information for task dimensions in the interneuron population

indicates that they have potentially subtle, but reliable changes in firing rate that account for changing

task conditions. Notably, the median information for each dimension is roughly an order of magnitude

lower than previously reported medians derived from the firing rates of the pyramidal cell population [3].

To illustrate the types of firing rate changes that might occur to produce information scores of this

magnitude, we provide the following extreme case: an interneuron with a change in firing rate at only one

of four positions, a mean firing rate of 24.5741 Hz (the median for this group of interneurons), and a

position information value of 0.038 bits/spike (the median for this group of interneurons), would need to

exhibit a firing rate increase of approximately 14 Hz. The extent to which this degree of selectivity

impacts the hippocampal network remains to be determined. Although the interneurons generally have

low information values, more analyses must be applied to better characterize the range and reliability of

the firing rate changes driving the significant information scores in this study [8, 17].

Interneurons demonstrated an increase in firing rate selectivity over the course of the nose poke

interval that reflected the availability of information about task dimensions. Specifically, the relatively

stable degree of information for position before and during the odor sampling interval is consistent with

the early availability of position information prior to the nose poke. In contrast, information about odors

became available 250 ms after the initiation of a nose poke, and the interneurons demonstrate increases in

information for these dimensions only at the end of the odor sampling interval. These results suggest that

the selectivity of interneurons’ firing rates for these dimensions is a product of task-relevant engagement.

A number of future analyses could enhance the interpretive power of these preliminary results.

For instance, future characterizations of this data could employ information measures that are more

sensitive to the direction of changes (increases or decreases) in firing rate demonstrated by interneurons

over the course of a trial. In addition, it would be informative to quantify information during a number of

additional intervals during the task, including incorrect trials, correct rejection trials, and reward
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consumption intervals. Quantifying information during these additional intervals would help assess the

degree to which the observed increases in information are related to a reward. Further exploration will

facilitate the development of more nuanced and comprehensive hypotheses as to the mechanisms through

which interneurons contribute to successful information processing in the hippocampus.

Leading hypotheses in the field have proposed that interneuron activity crucially shapes the

oscillatory profile of the hippocampus, providing a temporal scaffolding within which pyramidal neurons

can receive [18, 19], process, and successfully transmit behaviorally relevant information [20, 21].

Support for this view stems in part from the organization of the hippocampal network, where the locally

projecting interneuron population densely innervates large numbers of principal cells [22, 23]. This

widespread innervation, compounded with high firing rates [24], amplifies the impact of interneurons’

inhibitory currents and places interneurons in a unique position to coordinate the simultaneous activity of

large ensembles of pyramidal cells. In particular, periodically occurring inhibitory currents create

alternating windows of suppression and relative excitability in the principal cell population, ensuring that

only precisely timed inputs are able to elicit principal cell responses [21]. In this way, interneuron activity

has the ability to simultaneously sculpt the oscillatory profile of the hippocampus while constraining the

subset of inputs to which principal cells can respond [25]. The observed interneuron selectivity for task

dimensions suggests that interneurons are capable of shaping the overall information content of the

network through both the temporal coordination of principal cell excitability and reliable changes in firing

rate.

The mechanisms whereby interneurons acquire the observed selectivity for task dimensions

remain obscure. Here, we briefly consider two hypotheses for the emergence of this information content.

On the one hand, interneurons might inherit information directly from the afferents that simultaneously

recruit subsets of principal cells in a feedforward inhibitory manner. It is also possible that the observed

firing rate selectivity for task dimensions in the interneuron population emerges directly from their

interactions with various ensembles of pyramidal cells, each containing highly selective information for

distinct task dimensions. Our finding contributes to a growing body of evidence that interneurons are
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active facilitators of task-relevant processing through at least two forms of selective engagement:

reorganization of spike timing into multiple rhythms and the conveyance of information about task

dimensions through changes in firing rates [14, 17, 26, 27].
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CHAPTER 3: MODELING RELATIONSHIPS BETWEEN RHYTHMIC PROCESSES AND

NEURONAL SPIKE TIMING

3.1 Abstract.

Neurons are embedded in complex networks, where they participate in repetitive, coordinated

interactions with other neurons. Neuronal spike timing is thus predictably constrained by a range of ionic

currents that shape activity at both short (milliseconds) and longer (tens to hundreds of milliseconds)

timescales, but we lack analytical tools to rigorously identify these relationships. Here, we innovate a

modeling approach to test the relationship between oscillations in the local field potential (LFP) and

neuronal spike timing. We use kernel density estimation to relate single neuron spike timing and the phase

of LFP rhythms (in simulated and hippocampal CA1 neuronal spike trains). We then combine phase and

short (3 ms) spike history information within a logistic regression framework (“phaseSH models”), and

show that models that leverage refractory constraints and oscillatory phase information can effectively

test whether—and the degree to which—rhythmic currents (as measured from the LFP) reliably explain

variance in neuronal spike trains. This approach allows researchers to systematically test the relationship

between oscillatory activity and neuronal spiking dynamics as they unfold over time and as they shift to

adapt to distinct behavioral conditions.

3.2 Introduction.

The neural code crucially depends on spike timing. In the brain, variations in spiking patterns

over time convey information about the external world (1), instigate (and register) changes within the

body (2), and engage distinct behavioral states (2-4). A major aim in neuroscience is the quantification of

temporal regularity in these spike trains and the identification of its underlying generators. Establishing

relationships between temporal patterns of spiking activity and their neural drivers is challenging,

however, and requires methods that can 1) describe temporal fluctuations and 2) evaluate possible neural

mechanisms responsible for these fluctuations. Individual neurons in the central nervous system are
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embedded in complex networks, where they receive inputs from a variety of both distally located and

neighboring neurons. Individual neurons additionally generate spontaneous intrinsic ionic currents that

interact with these input sources. Currently, few quantitative methods are designed to systematically

assess the contribution of specific rhythmic currents in shaping single neuron spike timing. Here, we

provide a powerful statistical modeling approach that allows us to weigh the relative contributions of

refractory and rhythmic current influences on neuronal spike timing, predict moment-to-moment

variations, quantify the uncertainty of our predictions, and assess the goodness-of-fit of our models.  

Neuronal activity obeys constraints at multiple timescales. Action potentials (spikes) are

large-amplitude, short-lived (<1 ms) neuronal membrane voltage deflections. These are followed by

transient periods of hyperpolarization, during which neurons are less likely or unable to emit further

spikes (5-7). At longer timescales, regularly-occurring ionic currents create phasic temporal windows

during which an individual neuron is more or less primed to produce spikes (8,9). These currents can arise

spontaneously in the absence of synaptic inputs (10,11), or they may result from repetitive, coordinated

network interactions. Notably, these longer-timescale ebbs and flows in subthreshold membrane

potentials, whether intrinsically or synaptically generated, superimpose extracellularly to produce neural

oscillations in the local field potential (LFP) (12,13). Oscillations in the LFP thus reflect a mixture of

intrinsic and synaptic currents shaping single neuron activity, but the degree to which these combined

currents influence spike timing remains uncertain.

In the hippocampus, a brain region extensively studied in the context of learning and memory,

pyramidal cell and inhibitory interneuron spiking is often rhythmically organized in the theta (4-12 Hz)

and low gamma (15-35 Hz) frequency ranges (14-17), and evidence suggests that interneurons powerfully

contribute to periodicity in the hippocampal LFP (18,19). Rhythmic temporal structure in interneuron

spike trains arises from both neuronal resonance (i.e. intrinsic cellular properties that give rise to

preferential responses at specific frequency ranges and spontaneous membrane oscillations, (20,21)) as

well as interactions with a range of intra-hippocampal (22,23), cortical (22-25), and subcortical (26-28)

inputs. Thus, hippocampal interneuron spiking is temporally constrained at both short timescales (i.e.

36



milliseconds) due to refractoriness, and at longer theta and gamma rhythmic timescales (i.e. tens to

hundreds of milliseconds) due to a combination of intrinsic and synaptic current fluctuations. Whereas the

influence of the after-hyperpolarization on neuronal spiking is well-known, and the temporal structure of

this influence has been characterized via statistical models (29,30), we currently lack the tools to evaluate

the effect that longer-duration rhythmic constraints exert on spike timing. Moreover, there are few

existing methods for assessing short and long timescale oscillatory influences together to provide a

holistic view of the temporal constraints that can shape neuronal spiking. Here, we deploy a series of

statistical models that leverage spike history information as well as LFP rhythms to model the rhythmic

temporal structure of both simulated and hippocampal inhibitory interneuron spike trains.

Our approach is grounded in the use of generalized linear models (GLMs) and maximum

likelihood estimation (31), which have been used extensively to account for the absolute and relative

refractory periods following a spike occurrence (29,30,32,33). Typically, these models use logistic

regression to predict the probability of spiking from the preceding spike history. Following previous work

(29,30,32,33), we constructed a short history model (“SH model”), which predicted upcoming spiking

according to spike history in the preceding 3 ms. Beyond capturing the absolute after-hyperpolarization

constraint, we also modeled the relationship between spiking and a longer-duration history (250 ms, “LH

model”) to detect patterns in spike emissions that cycled along hundreds of milliseconds at most. This LH

model allowed us to flexibly capture structure in spike trains at exquisitely fine temporal resolution

without prior assumptions about specific factors that contributed to the structure (e.g. refractoriness,

spike-rate adaptation, rhythmicity at various frequency ranges). In this way, LH models behaved much

like sliding-window autocorrelations or spectral analysis of spike trains (34), but applied in a predictive

(rather than exclusively descriptive) setting. Despite their descriptive and predictive abilities, LH models

do not by themselves disambiguate the various possible neural mechanisms underlying temporal structure

in spike trains.

To explicitly test hypotheses regarding the presence of rhythmicity in spike trains, we developed a

model that could represent rhythmic currents as measured from the LFP, and also quantify their
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relationship to neuronal spike trains. In the work that follows, we present strategies for (1) representing

spiking relationships to the phase of a particular LFP rhythm using Kernel Density Estimation (KDE), and

(2) combining LFP phase information and neuronal refractory constraints on spiking. First, we used KDE

to directly model the likelihood of LFP phases given observed spiking, and subsequently derived the

posterior probability of spiking over time given a phase time series. Since phase models could not capture

short timescale refractory constraints on spiking, and SH models were insensitive to long timescale

structure, we innovatively combined phase and short history information in a logistic regression

framework (“phaseSH models”). These comprehensive models were able to effectively capture and

specify short (refractory) and long (rhythmic) timescale influences in simulated spike trains and

hippocampal CA1 neurons, which addressed the major limitations of each model independently.

Moreover, since our models specifically assess the probability of spiking relative to phase, they provide

information about the reliability of these relationships over time that cannot be obtained from traditional

measures of spike-phase relationship based on circular averages (e.g. the Rayleigh statistic). We

additionally compared phaseSH model performance against that of phaseLH models (GLMs containing

phase and long history as predictors), to test whether including long history provided additional

information to better predict held-out spike trains. In our dataset, most spike trains were better predicted

by the phaseSH models, suggesting that long history did not add information above and beyond phaseSH

models in these cases. The model comparisons described in this work provide a new paradigm for

rigorously assessing the contribution of rhythmic processes to single neuron spiking dynamics.

3.3 Results.

Modeling temporal structure at short and long timescales

To characterize the temporal structure of single neuron spiking activity, we constructed five

distinct models that exhibited sensitivity to spiking fluctuations at either short or long timescales, or a

combination of the two. Here, short timescales refer to millisecond-resolution variations in spiking driven

by after-hyperpolarization currents, while long timescales refer to a variety of potential mechanisms that
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could explain variations in spiking along tens to hundreds of milliseconds, including rhythmic synaptic

currents. We applied these models to both simulated and electrophysiologically recorded datasets, with

the recorded data drawn from previously published work that included CA1 pyramidal cells and

inhibitory interneurons (35). This dataset was recorded during an associative memory paradigm, where

rats learned that odors in a pair were differentially rewarded depending on the context in which they were

encountered. To receive a reward, rats maintained their position at the odor port containing the correct

odor of a pair for 1250 ms after delivery of the odor stimulus (see Materials and Methods). Our simulated

data match the organizational structure of the CA1 recordings, with individual trials lasting 1250 ms, and

each trial preceded by an additional 250 ms of spiking history for the early time samples in the trial (Fig.

1A). For the present work, all model parameters (for both simulated and recorded datasets) were learned

with a dataset of training trials (50% of trials in the session), while the remaining trials were held out for

performance evaluation.

We first modeled short timescale constraints on neuronal spike timing imposed by absolute and

relative refractory periods. To do this, we constructed a logistic regression model whose predictions relied

solely on the short history (3 ms) of the spike train (“SH model”, Fig. 3.1B). We additionally constructed

a long history model (“LH model”, 250 ms) that captured longer timescale constraints on neuronal

spiking activity, including (but not limited to) modulation by oscillatory currents. This 250 ms period

corresponded to the period of a 4 Hz rhythm, ensuring that the LH model could capture temporal

modulation of spiking activity at frequencies greater than or equal to 4 Hz (Fig. 3.1B). With 250

parameters to learn, we anticipated that LH models would be vulnerable to fitting noise in the training set.

We nevertheless sacrificed predictive generalizability in this model in order to (1) maximize the model’s

ability to discover temporal structure at fine (and multiple) timescales, and (2) make predictions with fine

temporal resolution. For instance, any neuron in the dataset that did not have a true relationship to the

phase of the theta rhythm could still produce an LH model capable of capturing shorter timescale

rhythmic fluctuations (e.g. low gamma, 35-55 Hz), neuronal adaptation dynamics, rebound spiking, as

well as very fast membrane constraints (e.g. 1 ms refractory periods). Alternate models of long history
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have opted to bin temporal epochs or smooth spike times by applying various temporal filters, effectively

averaging spike numbers over longer periods of time to reduce overfitting at the expense of temporal

resolution (42). Windowing methods impose a set duration for relative refractory periods, which could

vary widely across neurons, and also limit the fastest frequency modulation they can identify. Allowing

millisecond-to-millisecond variation in our LH model increases the size of the family of functions we can

fit to the data. To strike a balance between this model’s flexibility and its ability to generalize to new data

(i.e., robustness), we imposed an L2 penalty on the LH model’s regression weights (44), which reduced

noise in coefficient estimates while allowing the model to discover, at fine temporal resolution, any

systematic relationships present in the data regardless of the underlying generative mechanism.

To specifically test the hypothesis that CA1 neuronal spike timing was systematically related to

the phase of an ongoing oscillation, we first estimated the instantaneous phase of this oscillation at all

time samples, and selected phase estimates that co-occurred with spiking events. We subsequently

estimated the distribution of phases given a spike occurrence using a kernel density estimator with a

Gaussian kernel whose bandwidth was optimized via 5-fold cross validation, as described in the methods.

We then computed the probability of observing a spike given the instantaneous phase at every𝑦
𝑖
 =  1 ϕ

time sample or , by applying Bayes’ transform to the kernel density estimator (Fig. 3.1C).𝑖,  𝑝(𝑦
𝑖

=  1|ϕ
𝑖
)

Finally, to produce models that could capture temporal constraints on neural spiking activity at both short

and long timescales, we constructed two logistic regression models that combined phase and history

information: one containing phase and short history (“phaseSH models”), and another containing phase

and long history (“phaseLH models”, Fig. 3.1D, see Materials and Methods).
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Figure 3.1. Data structure and model specification. (A) Data are from a previously published study, in
which rats successfully associated odors with a rewarded context. All analyzed intervals correspond to
1250 ms epochs (spikes in dark grey) with a preceding 250 ms serving solely as history regressors for the
first time samples of the behavioral epochs.(spikes in light grey). (B) Long (LH) and short history (SH)
models, generated via logistic regression. The target consists of a neuron spike (or the lack thereof), yi, for
each time sample i. Predictors are either the 3ms (short history, ) or the 250ms (long history, )𝐻

𝑖
𝑆 𝐻

𝑖
𝐿

preceding the current time sample. LH model coefficient estimates are uniquely subject to L2
regularization. (C) Phase model, generated via kernel density estimation (KDE). We perform cross
validation to optimize the bandwidth of a Gaussian kernel. The resulting estimator represents the
probability of a phase given that a spike has occurred, and this estimator can then be used to predict the
probability of spiking over time, as a function of a phase time series. (D)Models combining a phase and
history predictor. Each of these predictors is represented as the log-odds of the phase-based probabilities
of spiking, , and the log odds of history-based probabilities of spiking, , respectively.𝑙ϕ 𝑙(𝑚)
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Model performance on simulated data

We first validated the ability of each model to capture temporal structure at short and long

timescales in simulated spiking data. We generated four “types” of spike trains, where spiking obeyed

ground truth probabilities that incorporated a combination of short timescale (refractoriness) and/or long

timescale (rhythmic modulation) constraints on spiking: termed hereafter atemporal, refractory

non-rhythmic, non-refractory rhythmic, and refractory rhythmic spike train types (Fig. 3.2A). A total of

50 simulated spike trains were created for each ground truth. The average target firing rate of these

neuronal spike trains (6 Hz) approximated the average firing rate of a large proportion of CA1 inhibitory

interneurons recorded during an associative memory paradigm (Supplemental Fig. S3.1).

Each model produced systematic predictions (and deviations from the ground truth) that varied

according to simulated spike train type (Fig. 3.2A). In order to quantify deviations between model

predictions and the ground truth of each type of spike train, we first leveraged an information-theoretic

approach. This consisted of computing the average Kullback-Leibler (KL) divergence between the ground

truth spiking probabilities and the empirically derived, model-based probabilities (see Materials and

Methods: Data Simulations). Small (~ 0) KL divergences between the ground truth and model-based

probabilities indicated little to no deviation from the ground truth, and thus demonstrated an ability to fit

the temporal structure in the spike train. Larger KL divergences, on the other hand, indicated systematic

deviations from the ground truth and demonstrated an inability to capture essential sources of variance in

the spike train.

SH models incurred the smallest and least variable KL divergences for simulated spike trains

exhibiting a refractory constraint but no phase modulation (refractory non-rhythmic spike trains), and

produced systematically large KL divergences from the ground truth whenever spiking was rhythmically

modulated (non-refractory rhythmic and refractory rhythmic; Fig. 3.2B, middle and far right). In cases

where simulated spike trains did not have a refractory period, SH models predicted increased firing within

milliseconds following a spike in the history (atemporal and non-refractory rhythmic; Fig. 3.2A, second

row, far left and middle right panels). SH models thus excelled at capturing variance in spike trains
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containing refractory constraints but no rhythmic phase modulation and, as expected, dramatically failed

to capture variance in spike trains modulated by rhythmic phase.

Phase model predictions flexibly adapted to each simulated spike train’s ground truth, capturing

rhythmic phase modulation when it existed (non-refractory rhythmic, and refractory rhythmic), and

basing predictions on the average spike rate when it did not exist (atemporal, and refractory

non-rhythmic). These properties allowed the phase model to cleanly approximate the ground truth

probabilities in the atemporal and non-refractory rhythmic spike trains, with very subtle deviations from

the flat ground truth in the former case. The phase model incurred slightly larger KL divergences from the

ground truth whenever the latter incorporated a refractory constraint (refractory non-rhythmic, and

refractory rhythmic), but these KL divergences were relatively infrequent given the low firing rate of

these simulated spike trains (Fig. 3.2B). At faster spike rates, however, phase models dramatically

diverged from the ground truth for spike trains governed by refractory constraints (Supplemental Fig.

S3.2A, middle left and far right). Phase models were thus adept at capturing variance in rhythmically

modulated spike trains, but suffered from their inability to account for after-hyperpolarizations.

LH models were susceptible to spurious patterns in data whose ground truth was either

completely uniform (atemporal) or only contained refractory constraints (refractory non-rhythmic),

despite reducing noisier coefficient estimates through L2-regularization. These models consequently

suffered KL divergences from the ground truth that were relatively larger than those incurred by phase

and SH models for the non-rhythmic simulated spike trains (Fig. 3.2B, far and middle left). This model

was, however, able to capture rhythmic temporal structure in spike trains whose ground truths

incorporated phase modulation, albeit noisily (non-refractory rhythmic, refractory rhythmic; Fig. 3.2A).

LH models, as formulated here, were not ideal for capturing rhythmic constraints on spiking.

PhaseSH models closely matched SH model predictions for simulated spike trains that had no

phase modulation, performing slightly worse than SH model predictions (atemporal, and refractory

non-rhythmic; Fig. 3.2B, far and middle left). This was likely a consequence of including the phase

component which, while close to uniform, was not quite flat (Fig. 3.2A, left boxed panel, fifth row of
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models). As with the SH models, in cases where there was no refractory constraint, the models tended to

overestimate the probability of spiking immediately following a spike (atemporal, and non-refractory

rhythmic; Fig. 3.2B, far left, middle right). PhaseSH models best approximated the ground truth

probabilities for spike trains that exhibited both refractory and rhythmic constraints (refractory rhythmic;

Fig. 3.2B, far right). PhaseSH models were thus well suited for capturing rhythmic constraints when they

existed, readily captured variation in spike trains for simulated spike trains with both slow (~6 Hz) and

fast (~40-60 Hz) average firing rates, (Supplemental Fig. S3.2A), and approximated SH model predictions

when rhythmic constraints were not present in the data.

Lastly, phaseLH model predictions behaved similarly to LH models, capturing spurious patterns

in atemporal and refractory non-rhythmic spike trains (Fig. 3.2B, far and middle left), but could

approximate oscillatory spike distributions over time due to the combined contributions of LH and phase

models (non-refractory rhythmic, and refractory rhythmic; Fig. 3.2A, sixth row). Noisy estimates,

however, resulted in large and frequent KL divergences from the ground truth (Fig. 3.2B). In simulations,

phaseLH models were thus less adept than phaseSH models at accurately describing rhythmic constraints

in spike trains.

Using the phaseSH models, we hoped to identify neurons whose spike trains were specifically

influenced by rhythmic currents and were thus systematically related to the phase of an LFP oscillation.

Given the phase model’s ability to produce reasonably smooth and accurate predictions even in cases

where simulated spike trains did not exhibit phase modulation, we were not able to use phase model

performance alone to identify the neurons we sought. Instead, we first noted that disparities in predictions

between the phaseSH model and the SH model should lead to differences in likelihood-based measures of

goodness-of-fit (42). We consequently took a model comparison approach and computed the log losses of

phaseSH and SH models (evaluated on held out trial data, see Materials and Methods: Evaluating Model

Performance and Goodness-of-Fit). We then subtracted these log losses to produce the log loss difference

between models (see Materials and Methods: Identifying Neurons Exhibiting Spike-Phase Relationships).

Log loss differences closer to zero resulted from similar performance between phaseSH and SH models,
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indicating that oscillatory phase failed to provide information above and beyond what was already

encoded in SH model predictions. This was precisely the pattern observed for atemporal and refractory

non-rhythmic simulated spike trains, whose temporal structure was unrelated to oscillatory phase (Fig.

3.2C). In contrast, log loss differences much smaller than zero emerged when the phaseSH model’s

predictions held an advantage over SH model predictions, indicating that oscillatory phase information

improved the likelihood-based goodness-of-fit. A similar pattern of results emerged when using KL

divergences to compare phaseSH and SH models (Supplemental Fig. S3.3). Notably, this was exactly the

result obtained for non-refractory rhythmic and refractory rhythmic simulated spike trains, which were

systematically related to oscillatory phase (Fig. 3.2C, Supplemental Fig. S3.2B). Using likelihood-based

model comparisons between the phaseSH and SH models, we were able to successfully recover the

simulated spike trains whose spike probability was organized according to oscillatory phase.
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Fig. 3.2. Model results in a simulated dataset. (A) Panels depict two cycles (250 ms) of held out spiking
(black ticks) for individual simulated spike trains and their corresponding ground truth probabilities (grey,
all rows), or probabilities generated from short history (yellow, 2nd row), phase (pink, 3rd row), long
history (light purple, 4th row), phaseSH (short history and phase, orange, 5th row), and phaseLH (long
history and phase, dark purple, 6th row) models for four simulated spike trains corresponding to different
“types,” where a “type” consists of a unique combination of rhythmic and refractory constraints. LH and
phaseLH model heights are truncated to standardize axes across panels. Ground truth probabilities are
replicated on each panel (within column) to facilitate visual comparisons across true and empirical model
probabilities. Some model probabilities lie exactly along the ground truth for the entire time series (such
as the phase model for the atemporal neuron). Vertical dashed lines mark the edges of two cycles of data.
Boxed probability distributions highlight the qualitative performance of SH models and phaseSH models
on neurons with either only refractory constraints, or both refractory and rhythmic constraints. (B)
Average Kullback-Leibler (KL) divergences of the ground truth from a model’s probabilities across 50
simulated spike trains per type. Inset for the refractory non-rhythmic spike train type shows values more
narrowly distributed along zero for SH models than for phaseSH models. Black horizontal bars mark the
median, and whiskers mark 25th and 75th percentiles of the distribution. (C) Number of simulated spike
trains (N=200) by the difference in log losses between phaseSH and SH models.
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Model application to CA1 neurons

We subsequently applied all models to CA1 inhibitory interneurons, where we aimed to identify

interneurons in the dataset whose spike timing preferences were systematically related to the phase of the

theta (4-12 Hz) rhythm. We additionally replicated this analysis using the phase of the low gamma (35-55

Hz) rhythm. For each rhythm separately, we trained each of the five models for every interneuron in the

dataset, and subsequently designed a series of model comparisons to determine (1) whether phase-based

models could more accurately predict spike timing in unseen trials relative to long history-based models,

and (2) whether interneuron spiking could be reliably explained specifically by rhythmic currents, as

measured from the LFP, across trials.

Comparing phase-based and long history-based model performance

To address this first question, we quantified the proportion of interneurons in this dataset whose

phaseSH model reliably outperformed the phaseLH model. To test for reliability, we subtracted the

phaseLH model log loss from the phaseSH model log loss for each of the 20 train-test splits of data,

yielding a distribution of 20 log loss differences for each neuronal spike train. If, for a given spike train,

the phaseSH model smoothly recapitulated all the relevant information embedded in the much more

detailed but mechanism-agnostic phaseLH model, then we expected the distribution of log loss

differences across the 20 folds to be significantly smaller than zero according to a one-tailed t-test,

indicating that long history-based models overfit to the training set and were unable to generalize to held

out data from the same neuronal spike train. With few notable exceptions, we found that the phaseSH

models based on theta (Fig. 3.3A, left) and low gamma (Fig. 3.3A, right) phase information were able to

account for variation in held out interneuron spike trains more readily than phaseLH models during the

odor sampling epoch (theta: 91% interneuron spike trains, n = 122 out of 134, one-tailed t-test, p < 0.001;

low gamma: ~89% interneuron spike trains, n = 120 out of 134, one-tailed t-test, p < 0.001). This trend

was reversed when log losses were evaluated on the training trial data (Supplemental Fig. S3.4), where

the phaseLH models held a clear advantage (unsurprisingly) over the phaseSH models.
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Figure 3.3. Model comparisons for odor sampling CA1 inhibitory interneuron data, for theta- and
low gamma-phase based models separately. (A) (top) Theta phase-based models: Differences between
phaseSH and phaseLH model log losses (y-axis) evaluated on held out data, across 20 folds (train-test
splits) of data for each CA1 interneuron spike train (x-axis). Black horizontal bar within boxplots marks
the median, whiskers mark the 25th and 75th percentiles of the distribution of folds, diamonds mark
outliers. A log loss difference of zero (marked by dotted red line) indicates equal performance across
phaseSH and phaseLH models. Grey bars mark interneuron spike trains whose spike-phase distributions
(drawn from the combined train and test trial data) significantly differered from uniform according to a
Rayleigh test for non-uniformity (p-val < 0.001). Pink bars mark the distributions of folds whose log loss
differences significantly differed from zero (p < 0.001), according to a one-tailed t-test. (bottom) Same as
the top panel, but for differences between phaseSH and SH model log losses. Interneuron spike train
identity in both top and bottom panels are sorted according to the median of the log loss difference
between phaseSH and SH models across folds. (B) Low gamma-phase based models: all details same as
in A.
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Identifying neurons with reliable rhythmic engagement

To address the second question, we aimed to assess how reliably rhythmic currents in the LFP

accounted for variance in neuronal spike trains. To achieve this, it was necessary to compare model

performance between phaseSH and SH models, a model comparison that we previously established as a

suitable metric to assess reliable spike-phase relationships to rhythmic currents measured from the LFP

(Fig. 3.2C, Supplemental Fig. S3.2B). We compared the log losses for these models for the same 20

train-test splits used previously (Fig. 3.3A), and compared the distribution of log loss differences for each

interneuron spike train against the null hypothesis that there was either no difference across the model log

losses (which would indicate no effect of rhythmic currents on spike train temporal structure) or that this

difference was larger than zero (which would indicate that the SH model outperformed the phaseSH

model). This metric resulted in ~80% (n = 107 out of 134, one-tailed t-test, p < 0.001) of interneuron

spike trains exhibiting log loss differences that were reliably smaller than zero, suggesting that theta phase

robustly explained variance in these neurons’ spike trains (Fig. 3.3B, left). We also performed this

analysis for phaseSH models leveraging low gamma phase information and found that 44% of interneuron

spike trains (n = 59 out of 134, one-tailed t-test, p < 0.001) exhibited log loss differences that were

reliably smaller than zero (Fig. 3.3B, right).

We additionally compared the results of the log loss differences between phaseSH and SH models

against the results of a Rayleigh test for non-uniformity in circular distributions (Fig. 3.3B, bottom grey

bars). Few discrepancies between the metrics emerged when identifying neuronal relationships to the

theta rhythm, amounting to approximately 8% of interneuron spike trains (n = 11 out of 134; where the

Rayleigh test identified 9 out of 11 neurons missed by the model comparison approach, and the latter

identified 2 out of 11 neurons missed by the Rayleigh test; Fig. 3.3B, left). Discrepancies between the

metrics also arose when assessing low gamma relationships. Here, the disparities amounted to

approximately 10% of interneuron spike trains (n = 14 out of 134; Rayleigh test: identified 10 out of 14;

model comparisons: identified 4 out of 14; Fig. 3.3B, right). The exceptions highlight a crucial difference
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between the Rayleigh test and the phaseSH model. The Rayleigh statistic exclusively accounts for number

of spikes pooled across all trials, irrespective of the total number of time samples available for the

recording. The phaseSH model, on the other hand, accounts for firing rates (the number of spikes and the

number of total time samples), and our cross-validation approach implicitly assesses trial to trial

reliability of spiking. With our modeling approach, a cell is identified as significantly entrained to a

particular rhythm if its baseline firing rate is robust and its spike timing is reliably reproducible across

trials. The Rayleigh statistic and phaseSH models can thus offer complementary information: the

Rayleigh statistic reveals whether a cell emits spikes biased towards particular phase angles, and phaseSH

models assess the predictability and reliability of spikes occurring at particular phase angles.

This effect was particularly evident when we tested model performance on CA1 pyramidal cell

data. Although CA1 pyramidal cells in this dataset expressed high firing rates during odor sampling

intervals for particular positions, odors, and odor position combinations (35), there were only six trials

available for every odor position combination. Given the high degree of selectivity for certain stimulus

combinations, we analyzed pyramidal cell spike trains for each odor position combination separately,

yielding only six trials per pyramidal cell spike train: a much smaller number of available trials for

training and testing than even some of the sparsely firing inhibitory interneurons (Supplemental Fig.

S3.6). This resulted in larger discrepancies between the Rayleigh statistic and theta phase-based model

comparisons, particularly when attempting to identify neurons whose spiking was related to the theta

rhythm. While the Rayleigh statistic identified 35% of pyramidal cell spike trains as related to the theta

rhythm (n = 15 out of 43 pyramidal cell spike trains, p < 0.001), the model comparison approach

identified 12% of pyramidal cell spike trains as reliably related to the theta rhythm (n = 5 out of 43,

one-tailed t-test, p < 0.001). These discrepancies were dramatically reduced when identifying neurons

whose spiking was related to the low gamma rhythm. Here, the Rayleigh statistic and the low gamma

phase-based model comparisons yielded closer agreement, where the Rayleigh statistic identified ~7% of

pyramidal cell spike trains as related to low gamma (n = 3 out of 43, p < 0.001), while the model

comparison approach identified ~5% of pyramidal cell spike trains as reliably related to low gamma (n =
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2 out of 43, one-tailed t-test, p < 0.001). In each case, the phase-based model comparison approach

tended to yield more conservative estimates of spike-LFP relationships than those produced by the

Rayleigh statistic, given the phaseSH model’s ability to account for both the probability of spiking over

time as well as the rhythmic temporal structure of spiking.

To further verify that population-level metrics presented in Fig. 3.3 were accurately selecting for

rhythmic temporal structure in spike trains, we closely evaluated models and their performance on a

subset of sample CA1 interneuron spike trains strategically drawn from the population to represent the

median log loss difference at the 0th (most negative median log loss difference, marking the most

predictive theta phaseSH model), 25th, 49th, 51st, 75th, and 100th percentiles of the distribution of all CA1

interneuron median log loss differences (Supplemental Fig. S3.7). This selection procedure ensured close

inspection of a wide range of neuronal spike trains, some of which should be reliably leveraging phase

information specifically to achieve accurate phaseSH model predictions above and beyond the average

firing probabilities represented by their SH models. With this subset of neurons, we specifically asked:

how much did phase information contribute to the performance of each of the models that included it? To

address this question, we trained a hundred versions of each model whose predictions were either partially

or completely based on phase data (phase, phaseSH, and phaseLH models), with phase values shuffled

randomly within a single cycle while keeping spike history intact. We then computed the log losses

evaluated on the held out data for the phase-permuted models, as well as those from the unperturbed

models.

For interneuron spike trains drawn from the 0th to the 51st percentile of the distribution of median

log loss differences, it was clear that models using intact phase information produced log loss values that

were far smaller than the most extreme values of the distribution of log losses from the models trained on

phase-permuted data (Supplemental Fig. S3.7). The log loss values for LH and SH models are included

for reference. This predictive accuracy metric supported the results from the population metrics in Fig.

3.3B, suggesting that interneuron spike trains whose log loss differences between phaseSH and SH
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models are significantly smaller than zero have spike trains whose temporal structure is reliably related to

the phase of the theta rhythm.

Characterizing rhythmic engagement profiles across behavioral epochs

The temporal structure of neuronal spiking varies across distinct behaviors (2-4). Here, we

additionally apply model comparisons between phaseSH and SH models to evaluate hypothesized

rhythmic current influences across different behavioral epochs during the associative memory task. We

specifically aimed to visualize shifts in rhythmic current influences across the running approach to the

odor port and the subsequent odor sampling epoch when the CA1 region was likely engaging associative

memory processes. The pattern of model comparisons reveals a qualitative shift between the approach and

odor sampling epochs (explored quantitatively in Supplemental Fig. S3.5). While interneuron spike trains

appear to be strongly related to rhythmic currents in the theta frequency range, this degree of relationship

tends to shrink during the odor sampling epoch (Fig. 3.4A). On the other hand, relationships to low

gamma-range rhythmic currents tend to increase during the odor sampling epoch relative to their

influence during the approach epoch (Fig. 3.4B). Model comparisons between phaseSH and SH models

can reveal differences in the degree of influence that rhythmic currents exert across distinct behavioral

epochs.
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Figure 3.4. PhaseSH models trained on data from distinct behavioral epochs capture shifts in CA1
interneuron spike-LFP relationships. (A) Each line represents the median log loss difference between
the theta phaseSH model and the SH model trained on a single interneuron’s spike train in either the
running approach or odor sampling epoch. A difference in height between the approach and odor
sampling behavioral epochs thus indicates a change in a spike train’s degree and reliability of entrainment
to the theta rhythm across trials. (B) Same as in A, for the low gamma phaseSH models. Note the scale
differences across A and B. More negative values indicate that the phaseSH model outperformed the SH
model.
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Characterizing rhythmic engagement profiles that change over time

We next sought to leverage the temporal resolution of the phaseSH models to characterize the

time course of single neuron relationships to rhythmic processes, such as the theta (4-12 Hz) and low

gamma (35-55 Hz) rhythms, as reflected in the local field potential (LFP). In the hippocampus, running

epochs coincide with the dominant presence of theta oscillations (45, 46), and running speed is positively

correlated with increasing interneuron firing rates (14, 17). Accordingly, we hypothesized that behavioral

epochs during which rats were running towards odor ports (approach epochs) would likely coincide with

high rates of CA1 interneuron spike phase relationships to the theta rhythm relatively consistently

throughout the approach interval. In contrast, the odor sampling epoch of the associative memory task

requires parsing multiple input streams to integrate the relevant contextual and odor information that

should guide the rat’s successful behavior. We thus hypothesized that some interneurons would be more

likely to exhibit shifts in spike phase relationships to distinct CA1 rhythms during this odor sampling,

associative memory window.

To characterize the time course of spike phase relationships during the approach and odor

sampling epochs, we again compute differences in model log losses on held out data to ask whether the

relative predictive accuracies between the theta and low gamma phaseSH models varied over the course

of associative memory processing within the odor sampling epoch, for each interneuron independently.

The millisecond resolution of phaseSH models allowed us to track whether any given held-out spike was

better predicted by the probabilities generated from the theta or low gamma phaseSH models. We could

then aggregate these log losses within arbitrarily small or wide window sizes (in this case 50 ms duration

with no overlap) and take the median of these across results from the 20 train test splits of the data within

the odor sampling window to obtain an estimate of the relative strength of the relationship to either of the

two rhythms.

We present the median log loss differences (computed over time) between the following models:

theta phaseSH minus SH, theta phaseSH minus low gamma phaseSH, and low gamma phaseSH minus

SH. Across the population, this analysis captured the relatively weaker low gamma rhythmic current
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influences on spiking during the approach epoch (Supplemental Fig. S3.8A-C left, Fig. 4, Supplemental

Fig. S3.5). During the odor sampling epoch, however, transient periods emerged during which low

gamma phaseSH models outperformed theta phaseSH models (Supplemental Fig. S3.7B, right). This

pattern of low gamma rhythmic current influence bore out when comparing the theta phaseSH model

against the SH model: along the diagonal of the matrix, the accuracy of the theta phaseSH model tended

to suffer (Supplementary Fig. S3.8A, right), while model comparisons between the low gamma phaseSH

and SH models revealed slight increases in the influence of low gamma rhythmic currents on spike timing

(Supplementary Fig. S3.8C, right).
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Figure 3.5. Model comparisons over time reveal rapid shifts in spike-phase relationships to LFP
rhythms during an odor sampling epoch. Models were fit to spiking and rhythmic phase data from
behavioral epochs when rats were either running towards the odor port (left column, approach) or odor
sampling (right column). (A) Rows correspond to three unique interneuron identities, matched across
approach and odor sampling behavioral epochs. Columns within each heatmap correspond to
non-overlapping 50 ms-long time windows spanning a continuous interval of 1250 ms. Color scale
corresponds to log loss differences between the theta phaseSH and SH model computed on held out data
for each of the 20 train test splits. Warmer red colors indicated that theta phaseSH models outperformed
SH models. The average firing rates across all 20 held out sets during the approach are as follows, for
each neuron in order of rows from top to bottom: 35.5 Hz, 36.6 Hz, 42.4 Hz. For the odor sampling
epoch, the average firing rates are as follows: 20.3 Hz, 20.9 Hz, 26.2 Hz. (B) Same as in A, for the same
three neurons, but for log loss differences between the theta phaseSH model and the low gamma phaseSH
model. Warmer red colors indicated better performance by theta phaseSH models, while cooler blue
colors indicated better performance by low gamma phaseSH models. (C) Same as in A, but for log loss
differences between low gamma phaseSH models and SH models. Warmer red colors indicated better
performance for low gamma phaseSH models. All color maps are displayed on the same scale.
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Figure 3.6. Model comparisons over time on held-out data, with significance assessed per time
window using a two-tailed one-sample t test. As in Fig. 5, models were fit to spiking and rhythmic phase
data from behavioral epochs when rats were either running toward the odor port (left column, approach)
or odor sampling (right column). Model performance was tested on the held-out trials of each train-test
split. A: rows correspond to three unique interneuron identities, matched across approach and odor
sampling behavioral epochs. Columns within each heatmap correspond to nonoverlapping 50-ms long
time windows spanning a continuous interval of 1,250 ms. Colors correspond to log loss differences
between models combining theta phase and short history (phaseSH) and SH model computed on held-out
data for each of the 20 train test splits that were significantly different from a distribution centered around
zero according to a two-tailed one-sample t test (n = 20 log loss differences per window, P < 0.00004).
Pink bars in heatmaps correspond to time windows whose distribution of log loss differences indicate
better theta phaseSH model predictions relative to SH model predictions; blue indicates SH model
predictions significantly outperformed theta phaseSH model predictions. B: same as in A, for the same
three neurons, but for significant log loss differences between the theta phaseSH model and the low
gamma phaseSH model. Pink in these heatmaps indicates that the theta phaseSH model significantly
outperformed the low gamma phaseSH model; blue indicates that low gamma phaseSH models
significantly outperformed the theta phaseSH models. C: same as in A, but for significant log loss
differences between low gamma phaseSH models and SH models. Blue in these heatmaps indicates low
gamma phaseSH models significantly outperformed SH models; pink indicates that SH models
outperformed low gamma phaseSH models. White bars indicate no significant difference in model
performance.
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To further explore the range of trends in rhythmic influence, we selected a subset of neuronal

spike trains with dynamic outcomes in the model comparisons over time. Notably, one of the three sample

interneuron spike trains exhibited relatively few time windows with significant theta or low gamma

rhythmic current influences during the approach or the odor sampling epoch (Fig. 3.5A-C & Fig. 3.6A-C,

left, middle rows, rows, two-tailed one-sample t-test, p < 0.00004, n = 20 log loss differences per time

window), but it did exhibit what appeared to be a relatively sustained relationship to low gamma rhythmic

currents during the odor sampling epoch (Fig. 3.5B & Fig. 3.6B, right, middle rows, two-tailed

one-sample t-test, p < 0.00004, n = 20 log loss differences per time window). The other two sample

interneuron spike trains exhibited relatively strong and consistent theta relationships during the approach

(Fig. 3.5A & B, Fig.3. 6A & B, left, top & bottom rows, two-tailed one-sample t-test, p < 0.00004, n = 20

log loss differences per time window), and weaker low gamma relationships during this interval (Fig.

3.5C & Fig. 3.6C, left, two-tailed one-sample t-test, p < 0.00004, n = 20 log loss differences per time

window). During the odor sampling epoch, however, the theta phaseSH models for these neurons

decreased in predictive utility over the course of the odor sampling epoch (Fig. 3.5A & B, Fig. 3.6A & B,

right, top & bottom rows, two-tailed one-sample t-test, p < 0.00004, n = 20 log loss differences per time

window). Surprisingly, when the theta rhythmic influence decayed in one of these spike trains, the low

gamma rhythmic influence acquired prominence towards the end of the epoch (Fig. 3.5B & Fig. 3.6B,

right, top row, two-tailed one-sample t-test, p < 0.00004, n = 20 log loss differences per time window).

Model comparisons evaluated over time can thus test the hypothesis that specific rhythmic

currents shape spike timing at fine time resolution, and the phaseSH model’s failures and successes in

predictive utility have the potential to reveal rapid shifts in spike timing.

3.4 Discussion.

Neuronal spike timing and its rapid dynamics equip organisms to successfully adjust to a shifting

landscape of sensory information and behavioral demands. With the present work, we offer a modeling

approach that can (1) capture short-lived intrinsic constraints on spiking as well as rhythmic current
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influences that unfold over relatively longer timescales, and (2) evaluate neuronal recruitment by a

constellation of distinct rhythmic currents, as measured from the local field potential (LFP), over time.

Specifically, models including the immediate spiking history and information about the phase of an LFP

oscillation—termed “phaseSH” models in this work—can recover short and rhythmic long timescale

constraints on cellular spiking. Importantly, we prescribe approaches to identify neurons in large datasets

that exhibit systematic relationships to LFP rhythms. By innovatively applying long-established statistical

modeling methods and their associated performance metrics, these models can make informed (and

verifiable) predictions over spiking at fine time resolution, rather than collapsing estimates across long

windows of time and assuming consistent temporal structure during these periods. With our statistical

models, it is possible to explicitly test neuronal participation in rhythmic processes at exquisite temporal

resolution. 

In this work, we propose a novel application of kernel density estimation (KDE) to estimate the

conditional probability of spiking given the phase of an LFP oscillation and we apply these predictions

over time. To specifically test the hypothesis that spike timing is related to the phase of an oscillation (and

is thus likely influenced by rhythmic currents), it is imperative to construct models that avoid imposing

distributional biases (e.g. normality) on their relationship. Biased models may fail to recover various

features (e.g. variance, complexity) of the true underlying relationship and result in hypothesis tests using

unrepresentative relationships. With KDE, we can instead empirically estimate the relationship from

training data. We first estimate the likelihood of theta (or low gamma) phases given spike occurrences

using KDE (Fig. 1C). We subsequently compute the posterior probability of observing a spike given

observed phase values, and we apply this probability mapping over the duration of the phase timeseries to

produce probabilities of spiking that unfold over time (Fig. 1C). Crucially, we leverage cross validation to

select the optimal kernel bandwidth used to convolve the distribution of phase observations that

co-occurred with spikes. Our use of KDE to estimate the conditional probability of spiking given phase,

and our ability to produce an optimized estimator, presents an innovative contribution to the problem of

characterizing spike-phase relationships.
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Our goal was to apply KDE-based “phase” model predictions over time. Phase model predictions

suffered, however, from the inability to account for short timescale refractory constraints. For this reason,

we additionally constructed logistic regression models using the 3 ms short (“SH”) history of spiking, and

combined the predictions from this model with those from the phase model (Fig. 3.1D). This combination

yielded the “phaseSH” model, which was capable of adjusting predictions according to refractory

constraints while simultaneously testing whether particular rhythmic currents explained variance in spike

trains (Fig. 3.2). PhaseSH models captured ground truth rhythmic dynamics in simulated spike trains and

they did so more accurately than models whose predictions were based on the 250 ms long (“LH”) history

of spiking (Fig. 3.2B). 

Simulations also revealed a key property of phaseSH models: they produced flat predictions over

time whenever spikes were not systematically organized according to the phase time series being tested.

This property allowed us to leverage model comparisons between phaseSH and SH models in order to

identify simulated (Fig. 3.2C, Supplemental Fig. S3.B) and CA1 neuronal spike trains (Fig. 3.3B,

Supplemental Fig. S3.5, S3.6) that exhibited reliable rhythmic relationships. 

Alternative statistical approaches to quantifying rhythmic temporal structure in spike trains exist.

Of these, the Rayleigh statistic and mean resultant length vectors are prominently used in the field

(35,47). While a useful metric to distinguish the density of spiking concentrated along some phases

(example in Fig. 3.1C) from a uniform distribution, the Rayleigh statistic requires pooling spikes over

large windows of time. In contrast, our cross validated model comparison approach allowed us to quantify

the predictive utility of phaseSH models on held out data, enabling assessment of its predictions both

across trials (Fig. 3.3) and within trials over arbitrarily small time samples down to millisecond resolution

(Fig. 3.4). These features allow us to examine the trial-to-trial reliability of spike-phase relationships, as

well as identify rapid shifts in spike-phase relationships over the course of behavior. A strength of the

Rayleigh statistic, however, is that it will not take baseline firing rate into account, unlike our KDE and

logistic regression models. This means that its estimates of spike-phase relationships will not distinguish
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between neurons exhibiting vastly different firing rate behavior, as long as each neuron provides the same

total number of spikes. A sparsely firing neuron recorded over a long session may produce the same

number of spikes, and obtain the same Rayleigh statistic, as a frequently firing neuron recorded over a

much shorter session. In contrast, KDE probabilities implicitly account for the baseline probability of

firing (Fig. 3.1C). A sparsely firing neuron recorded over a long session will thus produce a smaller

amplitude KDE curve than a frequently firing neuron recorded over a shorter session, for the same

number of spikes and same degree of phase relationship. This distinction crucially disambiguates

rhythmic neurons—where rhythmicity requires firing at consistent phase bins for a large fraction of

consecutive cycles—from neurons that exhibit systematic phase relationships but which spike so rarely as

to coincide with a smaller, and more sporadic (e.g. non-consecutive), fraction of the rhythm’s many

cycles. In this regard, the Rayleigh statistic and our modeling approach provide complementary

information that together fully captures systematic relationships to LFP rhythms, as well as the likelihood

of a neuron’s rhythmicity.

When we applied cross validated model comparisons between phaseSH and SH models to

multiple behavioral contexts and neuron types, we revealed a range of dynamic relationships to theta and

low gamma rhythms in the hippocampus. Specifically, we identified changing degrees of CA1 interneuron

entrainment to theta and low gamma rhythms across high velocity and odor sampling epochs (Fig. 3.4),

and even changing entrainment over the course of the odor sampling interval at fine (50 ms) time scales

(Fig. 3.5, Fig. 3.6, Supplemental Fig. S3.8). Given the dynamism we describe in the hippocampus, and the

often highly task-selective responses of hippocampal neurons, we recommend thoughtful consideration of

the isolated intervals of interest. Specifically, eliciting many trials with stereotyped behavior is necessary

to best leverage the ability of our method to characterize reliable rhythmic entrainment when cells are

active and the evolution of rhythmic entrainment over time for particular processing states. 

Oscillatory currents prominently manifest within a variety of brain regions. Sensory stimuli can

evoke a cascade of oscillatory interactions, which often reflect tight excitatory and inhibitory control of

spiking in piriform cortex during the presentation of odors (48), and produce exquisite gamma oscillatory
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dynamics in visual cortices in response to attended stimuli (49, 50). In motor systems, tight coordination

can also be observed throughout the basal ganglia in response to utilized cues (51) but also in travelling

waves through motor cortices during movement preparation and execution (52-54). Aberrant oscillatory

patterns have been observed in a number of neural disorders (e.g. disrupted gamma in Alzheimer's disease

(55,56), disrupted beta in Parkinson's disease (57)) and are commonly used as markers of altered

interactions and disease progression. However, in all cases, the relationship between these oscillatory

currents and cell spiking activity has been poorly understood due to a limited ability to assess spiking

relationships to ongoing oscillations at the time scales over which they evolve (as opposed to averages

over seconds-long epochs). Our modeling approach can be applied broadly in these contexts to precisely

characterize how and when large scale, coordinated currents engage cells to support dynamic information

processing.

3.5 Materials and Methods.

Experimental Design: Behavioral Paradigm

All procedures involving animals were carried out according to guidelines set forth by the

National Institute of Health, with approval from the Institutional Animal Care and Use Committee

(IACUC) in Boston University (approval number: 13-057). Experimental procedures have been

previously described at length in (35) and will be briefly reviewed here.

We aimed to elicit multiple stereotyped and behaviorally controlled instances of “associative

memory processing” during a window of time in which rats had to integrate information about odor cues

and the context in which they were presented to produce an appropriate, rewarded response.

Odor sampling epoch.

The data analyzed in this study were recorded from the CA1 subregion of the hippocampus in rats

performing a context-guided associative memory task (35,36). Rats learned that odors in a pair were

differentially rewarded as a function of the context in which they appeared. Contexts were differentiated

according to their spatial position in the room as well as the texture and coloring of material wrapped
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around the context's surface. During a given trial, rats were allowed access to one context at a time, and

odor delivery within an odor port (start time of each trial) was triggered 250 ms after the rat poked his

nose into that odor port. Odor reward contingencies remained constant throughout the experiment, and

odor delivery locations were pseudorandomized across odor ports within a context. Two pairs of odors

were used for each session, with the first block (48 consecutive trials) featuring odors A and B, and the

second block consisting of odors C and D, for a total of 96 trials per session. Interneuron data recorded

from each block of odors was analyzed separately, given the potential differences in spiking temporal

structure driven by distinct contexts. Pyramidal cell data was analyzed separately for each odor-position

combination since these neurons have previously been shown to spike selectively for specific positions

and odor-position combinations in this task (35). Correct trials. In order to receive a water reward, rats

maintained a nose poke in the correct odor port (the one containing the rewarded odor within that context)

for 1250 ms following the odor onset, after which a water droplet was delivered to a well directly below

the odor port. If the rats initially poked their nose into the incorrect port, they had up to 1250 ms

following odor onset to remove their snout, after which they were able to poke into the correct odor port

and maintain the nose poke. Incorrect trials. If the rat failed to end the nose poke 1250 ms following odor

onset in the incorrect odor port, a buzzer would sound and no reward would be delivered. Recordings

began only after rats had successfully achieved a 75% performance criterion. Incorrect trials are

consequently infrequent, and we excluded them from this study. For our phase modeling efforts, all

intervals were restricted to the 1250 ms intervals following odor onset in which rats maintained their nose

in the odor port containing the correct odor prior to receiving a reward. We refer to this interval as the

“odor sampling epoch.” The first time point assessed by our models begins at the time of odor

presentation, with the preceding 250 ms serving solely as spike history for the first 250 time samples of

the odor-sampling interval. Approach epoch. We also separately fit models to data drawn from a

behaviorally distinct epoch: the running approach to the odor port. To create these approach epochs, we

selected the 1500 ms interval with the highest median velocity preceding a correct odor sampling trial. As
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we did for the odor sampling epoch, phase models are fit to data from a continuous 1250 ms period, with

the preceding 250 ms serving as spike history for the first 250 time samples of the approach intervals.

Data Acquisition

We carried out high-density extracellular tetrode recordings from the CA1 subregion of the

hippocampus and extracted single-unit and local field potential (LFP) data. The Omniplex Neural Data

Acquisition system (Plexon) amplified (4000-8000 x) and digitized (40 kHz) signals. Single units.

Putative interneurons were isolated according to waveform features: mean firing rate ( 5 Hz), mean≥

width at half-maximum of waveform (<150 s), and mean temporal offset from peak to trough (<350 s)µ µ

(18, 37). Local Field Potentials. LFPs were bandpass-filtered in the theta (4-12 Hz) range using a

third-order Butterworth filter. We then obtained instantaneous phase estimates by computing the

arctangent of the filtered signal’s complex Hilbert transform. Frequency range selection was based on the

observable frequency bands in average spectrograms during the odor sampling epoch (35).

Data Preparation

In the present study, we examined interneuron spiking and CA1 local field potentials (LFPs) for

single correct trials, each consisting of 1500 1-ms time samples (250 ms before odor stimulus delivery,

1250 ms after odor stimulus delivery). Time samples occurring within trials are consecutively sampled

(sampling frequency = 1000 Hz), while time samples between trials are separated by longer (and variable)

stretches of time. Each interneuron spike train was analyzed with respect to the simultaneously recorded

CA1 LFP, acquired from the same tetrode that collected single-unit spikes. To test the generalizability of

trained models, we partitioned trial labels into train (50%) and test sets (50%). We generated a total of

twenty train-test splits for each neuronal spike train. Consecutive time samples within a trial retained their

temporal structure. History Variables. During the odor sampling epoch, the odor that the rat used to make

a decision (to stay or move to the next odor port) was made available 250 ms after the nose poke. In the

first 250 ms of the trial, the rat’s behavior is the same (stationary) as its behavior for the rest of a correct

trial, the only difference being the availability of the odor. Given this, we use the first 250 ms of the trial
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as the history for the first time samples post-odor release. The 250 ms at the very beginning of each trial

were only included in the models as spiking history regressors; they never served as target variables (Fig.

1A). Fitting history models to data from the approach epochs proceeded identically.

Data Simulations

We produced synthetic data to simulate four distinct “types” of spike trains, each with

unique ground-truth dependencies that governed spike probability. These simulated spike trains

exhibited: (1) no temporal modulation / “atemporal” with no refractory period and no

relationship with respect to a simulated phase time series oscillating at 8 Hz, (2) short timescale

temporal modulation / “refractory non-rhythmic” with a refractory period (lasting 3 ms

post-spike) and no relationship with respect to a simulated phase time series oscillating at 8 Hz,

(3) long timescale modulation / “non-refractory rhythmic” with no refractory period but a

relationship with respect to a simulated phase time series oscillating at 8 Hz, and (4) both short

and long timescale modulation / “refractory rhythmic” with a refractory period (lasting 3 ms

post-spike) and a relationship with respect to a simulated phase time series oscillating at 8 Hz.

We simulated forty-eight time series, each spanning 1500 ms (identical in length and

approximate number to trials in our behavioral task, where the first 250 ms of each trial serve

exclusively as history predictors for the early time samples of each odor sampling interval, Fig.

1A). For each time series, we created a time-matched vector of probability densities indicating

which phases were most likely to coincide with spikes. For simulated spike trains that had no

phase relationship, each cycle of the probability vector consisted of a flat, uniform distribution

whose value corresponded to the average probability of spiking. For simulated spike trains

governed by a phase relationship, each cycle of the probability vector consisted of a von Mises

distribution peaking at 0 radians, with an inverse variance of 2 (equivalent to a Gaussian kernel
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bandwidth of 0.5). Phase cycles were each 125 ms long, simulating an 8 Hz oscillation. This

probability vector thus represented the probability of spiking given the phase of an 8 Hz

oscillation. To equip simulated spike trains with a refractory period, we forced the model

probabilities generated above to adjust to 0.00001 (essentially zero) in the 3 time samples

immediately following a sampled spike (see sampling procedure below).

To sample spiking events from these ground truth probabilities, we used a single-trial

binomial distribution (software: Python Numpy, random.binom), which produced a spike (1) or

not a spike (0) according to the probability value at that particular time sample. Once the

simulated data had been generated, each simulated spike train underwent history and phase

model-fitting as described in the sections below. To test the degree of divergence between

model-based probabilities and ground truth probabilities, we calculated the Kullback-Leibler

(KL) divergence,
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where and are the ground truth and modeled probability of spiking at time sample i,𝑝
𝑖

𝑞
𝑖

respectively. This value can be interpreted as the cost, in bits, incurred when modeling the

distribution of spikes using the model-based probabilities instead of the ground truth.

We computed the KL divergence at each time sample to compare the ground truth to a

given model’s predictions. We then computed the average of all the KL divergences across time,

to provide an overall sense for the degree of misalignment between the ground truth and

model-based predictions throughout the entirety of the time series. A smaller average KL

divergence indicates increased alignment between the ground truth and the model.
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Constructing History Models

We constructed models that used the history of spiking over long or short timescales. For short

history models (“SH models”), we reasoned that using 3 ms of history would capture both the absolute

and initial segments of the relative refractory periods that neurons undergo immediately after emitting an

action potential. In contrast, the long history model (“LH model”) can reflect various temporal constraints

on spiking over a more extended past. Consequently, for neurons in the hippocampus, the history should

also encode the periodic structure of spiking due to oscillatory current modulation, if it exists. In order to

test whether long history could capture the periodic distribution of spikes over time, we set the long

history interval to begin 250 ms prior to current time sample i, equivalent to a full period of the lowest

frequency (4 Hz) within the theta 4-12 Hz frequency range, and additionally able to capture any rhythmic

current influences at faster frequencies.

In order to generate probabilities of spiking given the long and short histories separately, we fit

logistic regression models, according to the expression below,
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where corresponds to spiking at time sample i and is a vector that represents history, long (with𝑦
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dimensions: 1 x 250) or short (with dimensions: 1 x 3), for that time sample. In models that commit to

including either long history or short history parameters, m is replaced by L for long history, or S for short

history (Fig. 3.1A). For ease of notation, we define the vectors and𝐻
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that minimizes the normalized negative log likelihood, NNLL, given by
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For short history models, we fit a coefficient vector containing four parameters (β
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), with one parameter for the baseline spike rate and one for each millisecondβ
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of short history. In contrast, long history models require fitting a coefficient vector containing 251β
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parameters ( ). This large number of parameters renders the LH model aβ
~(𝐿)

=  β
0
(𝐿), β

1
(𝐿), …,  β

250
(𝐿)

high-variance model, susceptible to large variations in coefficient estimates as a function of small changes

to the training dataset, and weakly generalizable to held-out data (38). To mitigate this statistical

disadvantage while retaining the flexibility and mechanistic agnosticism we prize in this model, we

minimize the NNLL in this model with an added L2 penalty,
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where the penalty term works to increase the NNLL. To minimize the NNLL in light of thisλ‖β
~

‖
2

2

penalty, the coefficient vector is optimized such that the most useful predictors are assigned large

coefficients, while remaining predictors are assigned coefficients approaching zero, thus attenuating the

effect of noise in parameter estimation. The regularization strength parameter, is set to equal 1 byλ

default; we did no optimization over this parameter. LH model fits were performed using Python’s

sklearn.linear_model.Logistic Regression method, and SH model fits ensured that the penalty argument

was not active.

Learning Phase Representations
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The local field potential (LFP) is a complex signal, manifesting a number of oscillatory and

non-oscillatory components at different times. Others have successfully leveraged the Fast Fourier

Transform of spike-triggered averages of the LFP as a predictor of synchronous spiking activity across

multiple, simultaneously recorded units (41). Spike-triggered averages of the LFP may comprise multiple

nested oscillatory and non-oscillatory components, and will thus represent a complex signal. In our work,

we aim to tease apart the variety of oscillatory components present in the LFP, and use these to assess the

timing of single neuron spiking relative to the oscillatory process. Systematic spike timing relative to

rhythmic phase may indicate a neuron’s engagement in the processes that give rise to the corresponding

oscillatory LFP feature. Moreover, we wish to identify the potential reorganization of spike timing

relative to the phase of different rhythms present in the LFP over time. For this reason, we have focused

on modeling spike timing according to rhythmic phase.

Raw circular variables like oscillatory phase are inappropriate regressors in a generalized linear

model (GLM). To generate a useful phase representation, we first noted that the spike-phase relationship

can often be approximated by eye from a histogram of spike counts over phase. Leveraging this visual

representation of the relationship, we applied kernel density estimation (KDE) by first repeating the

distribution of spikes over phase to create three identical instances of the distribution and then convolving

the three concatenated distributions with a Gaussian kernel. This procedure yields a smooth function

representing the conditional probability of observing a phase given spiking (after dividing by three toϕ

account for the triple counting of spikes), (Fig. 3.1C), which approximates the effect of𝑝 𝑦 = 1( )

convolving the data with a von Mises kernel.

The Gaussian kernel’s bandwidth (the width at half-maximum amplitude of the Gaussian kernel)

crucially determines the ultimate shape of the kernel density estimator. In order to learn the optimal kernel

bandwidth within a given interneuron dataset, we applied 5-fold cross validation on the training subset of

trials (software package: Python sklearn, GridSearchCV, Kernel Density method, grid size = 1000 (39)).

For the CA1 pyramidal cell datasets, we applied leave-one-out cross validation (instead of 5-fold cross
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validation) on the training subset of trials. This change ensured maximal use of the small amount of

pyramidal cell spiking data available for kernel bandwidth selection.

On each fold of the cross-validation procedure, we sampled observations from the training set to

generate a distribution of spiking over phase, and the optimal bandwidth (out of several possible

bandwidths) was selected if its resulting estimator maximized the log likelihood over validation sets. It is

important to explore the cross validated performance of a set of candidate kernel bandwidths that are

sufficiently narrow or wide to capture fine or broad fluctuations of spiking as a function of phase.

Increasing the total number of candidate kernel bandwidths will increase the computational time required

to select the final bandwidth, but it will potentially result in a more accurate estimator. To estimate

spike-phase relationships in this work, we explored the cross validated log likelihoods of 20 candidate

bandwidths ranging from the equivalent of 6% to 40% of a phase cycle at kernel half-maximum. This

range was selected to span a wide assortment of candidate bandwidths and smoothly capture slow or fast

fluctuations of spiking over phase. This range is similar to the set of inverse variances deployed in (40),

who previously developed a successful method for estimating spiking relationships to oscillatory phase

that differs substantively from the method currently applied here.

After estimating the probability of phases conditioned on spiking, we applied Bayes’ Theorem to

obtain the posterior probability of spiking given phase for the training set:
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where the prior over spiking activity in the training set, , was computed as the average𝑝(𝑦 = 1)
𝑡𝑟𝑎𝑖𝑛

number of spikes divided by total time samples in the training set, and the prior over phase, , was𝑝(ϕ)

uniform, . The probability of spiking given held out phase data, , was computed in the1
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same way, but with likelihood , derived from the held-out distribution of spikes over𝑝 ϕ | 𝑦 = 1( )
𝑡𝑒𝑠𝑡
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phase. Importantly, we used the prior over spiking from the training set, to prevent the phase model from

using any information in the held out set of spikes. These steps ensured that the held-out set is a truly

independent, and unbiased test of model performance.

Models Combining Phase & History Information

We constructed models that account for both short and longer timescale temporal constraints by

combining phase and history information. We fit logistic regression models to regressor combinations that

included either short history and phase (“phaseSH models”), or long history and phase (“phaseLH

models”):
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In these models, we avoid re-fitting history coefficients by taking the log-odds of the probabilities

over spiking generated by the long history, , or short history, . To include a phase representation that𝑙
𝑖
𝐿( ) 𝑙

𝑖
𝑆( )

was suitable for logistic regression, we took the log-odds, , of the , for each time sample i𝑙
𝑖
ϕ 𝑝(𝑦

𝑖
= 1|ϕ

𝑖
)

derived from the training data. For models combining phase and history information, only three

coefficients are fit: the intercept, (with superscript c(m) to signal this coefficient’s applicability onlyβ
0
𝑐(𝑚)

to these combined models, as distinct from the history-only models specified in Eq. 3), and coefficients

and . Notably, these models will only fit these three parameters irrespective of the dimensionalityβ 𝑙𝑚( ) β𝑙ϕ

of the originating history term, given that only the log-odds of the probability of spiking given

history—and not the original history vector itself—is included in the models. The log-odds are expressed

below,
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We then generated predictions over spiking using the held out dataset with each of the models:

short history only , long history only , phase , phase and short history𝑝 𝐻
𝑖
𝑆( )( ) 𝑝 𝐻

𝑖
𝐿( )( ) 𝑝(𝑦
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, and phase and long history . We refer to these models as SH, LH, phase, phaseSH,𝑝 𝑙
𝑖
𝑆( ), 𝑙

𝑖
ϕ( ) 𝑝 𝑙

𝑖
𝐿( ), 𝑙

𝑖
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and phaseLH models, respectively, throughout the manuscript.

Evaluating Model Performance and Goodness-of-Fit

To assess the likelihood-based goodness-of-fit (42) of models on the held out set of spikes, we

computed the average log loss LL of each model,
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where i corresponds to each 1 ms time sample, yi represents a spiking event in the held out data, 1-yi

represents the absence of a spiking event in the held out data, corresponds to the predicted probability𝑦
^

𝑖

of a spike occurring according to the model, and 1 - corresponds to the model’s predicted probability𝑦
^

𝑖

that a spike will not occur at time sample i. The log loss represents the degree of disparity between a

model’s predicted spiking probability and the actual occurrence of a spike or its absence. As a

consequence, smaller values indicate improved predictions.

Identifying Neurons Exhibiting Spike-Phase Relationships
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The phase model (as described in section Learning Phase Representations) can fit a relatively flat

line to spiking data that is uniform over all phases. This makes it difficult to assess whether the phase

model performed well because it approximated the average probability of spiking or whether it performed

well by approximating rhythmic structure. To identify cells with strong phase relationships, we computed

the log loss (eq. 10) of the phaseSH and SH models, and subtracted the log loss of the SH model from that

of the phaseSH model. A negatively valued log loss difference indicates that including phase provides

information beyond that encoded in the SH model (phaseSH log loss < SH log loss). In contrast, a log loss

difference approaching zero indicates that phase is not adding much more information than the SH model

contains by itself (phaseSH log loss SH log loss). We computed this log loss difference for each of the≈

twenty train-test splits of data for each neuron, and then performed a one-tailed t-test (p < 0.001) to assess

whether the distribution of log loss differences was significantly smaller than zero, indicating that

phaseSH models significantly outperformed SH models. This method effectively disambiguates neurons

with systematic relationships to the phase of an LFP oscillation from those whose spiking is unrelated to

the specified oscillatory phase. 

Characterizing Variations in Spike-Phase Relationships Over Time

One substantial advantage of phaseSH models is their ability to make predictions over spiking at

fine temporal resolution. To leverage this ability in individual neurons, we first fit phaseSH and SH

models for each train-test split of the data in a behavioral epoch of interest, we bin the behavioral epoch

into arbitrarily small window sizes (here, 50ms, with no overlap), and then compute the mean log loss

differences between the models for each train-test split of data (n = 20 unique log loss differences, one for

each train-test split of data). This yields, for each 50ms window, a distribution of log loss differences

between the models we wish to compare (e.g. theta phaseSH to SH, or theta phaseSH to low gamma

phaseSH, or low gamma phaseSH to SH). For each time window, we then used a two-tailed one-sample

t-test to assess whether the distribution of log loss differences (in that window) was significantly different

from zero at a Bonferroni-corrected alpha of 0.00004 (that is, 0.001 divided by the total number of time
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windows, which corresponds to the number of t-tests performed per neuron). The alpha was corrected to

account for the multiple comparisons performed which, uncorrected, would dramatically inflate the

likelihood of a Type I error.

Rayleigh Test for Non-Uniformity of Circular Distributions

To compare the results of the widely used Rayleigh test for non-uniformity against our model

comparison approach to identify spike-phase relationships (described above), we computed the Rayleigh

statistic for each neuronal spike train. The mean resultant length vector, r, is defined by,

(11)𝑟 =  1
η

𝑗 = 1

η

∑ 𝑐𝑜𝑠 ϕ
𝑗( )( )2

+  1
η

𝑗 = 1

η

∑ 𝑠𝑖𝑛 ϕ
𝑗( )( )2

where corresponds to the total number of spikes in a spike train, and represents a phase angle thatη ϕ
𝑗

co-occurred with spike j. The mean resultant length vector can then be used to compute the Rayleigh

statistic, Z, where Z = r2 / .η

Under this framework, the probability that a neuronal spike train generates a Z statistic of a

particular magnitude given that the spike train was in fact drawn from a uniform distribution of spikes

over phase is given by,

(12)𝑝
𝑅𝑎𝑦

 = exp( 1 +  4η +  4(η2 – 𝑅2) – (1 + 2η))

where, as in eq. (11), corresponds to the total number of spikes in a given spike train, and R refers to theη

resultant length vector, expressed as R = .η𝑟

Code Availability
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All code underlying the analysis methods described above is freely available at the following:

https://doi.org/10.5281/zenodo.6837168.

Supplementary Figures occupy the remaining pages of this chapter.
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Supplementary Figure S3.1. Average firing rates across the CA1 interneuron population during
odor sampling intervals. Firing rates were computed over all 1250 ms odor sampling intervals within a
session for a given CA1 interneuron. The median average firing rate is 11.8 Hz. A large proportion of the
population clusters near 6 Hz, below the median.
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Supplementary Figure S3.2. Model results in a simulated dataset of spike trains with high average
firing rates (40-60 Hz). (A) Average Kullback-Leibler (KL) divergences of the ground truth from a
model's probabilities across 50 simulated spike trains per type. Note the large average divergences
incurred by the phase model for spike trains governed by a refractory period (middle left and far right
subpanels). (B) Number of simulated spike trains (N=200) by the difference in log losses between
phaseSH and SH models. Log loss differences between phaseSH and SH models separate rhythmic
simulated spike trains from non-rhythmic ones.
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Supplemental Figure. S3.3. Average Kullback-Leibler (KL) divergence between phaseSH and SH
model probabilities separate rhythmic from non-rhythmic simulated spike trains. Histogram depicts
the number of simulated spike trains (with a ~6 Hz average firing rate) with a particular average KL
divergence between phaseSH and SH model probabilities. Bars are colored according to the ground truth
(“spike train type”) of the contributing spike train (50 spike trains per type).

85



86



Supplemental Figure S3.4. Population log losses evaluated on training trials. (a) Rows along the
heatmap correspond to unique CA1 interneurons; each column corresponds to one of the five models.
Color scale indicates the log loss of a model trained and tested on a single fold of a given interneuron's
data. Warmer values signal log losses that are smaller than the corresponding row mean. Interneurons
were sorted according to their phaseSH model log loss. (b) (top) Differences between phaseSH and
phaseLH model log losses (y-axis) evaluated on the same data that was used to fit model coefficients
(training trials), across 20 train-test splits of data for each CA1 interneuron (x-axis). Black horizontal bar
in boxplots marks the median, whiskers mark the 25th and 75th percentiles of the distribution of train-test
splits. The red horizontal line lies along zero, the value that would indicate equal performance across
models. (bottom) Same as top panel of B, but for differences between phaseSH and SH model log losses.
Interneuron identity in both top and bottom panels are sorted according to the median log loss difference
between phaseSH and SH models across the 20 folds.
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Supplementary Figure S3.5. Model comparisons for approach epochs. (A) Theta phase-based
models: Differences between phaseSH and SH model log losses (y-axis) evaluated on held-out data,
across 20 folds (train-test splits) of data for each CA1 interneuron (x-axis). Black horizontal bar within
boxplots marks the median, whiskers mark the 25th and 75th percentiles of the distribution of folds,
diamonds mark outliers. A log loss difference of zero (marked by dotted red line) indicates equal
performance across models. Grey bars mark interneurons whose spike-phase distributions (drawn from
the combined train and test trial data) significantly differered from uniform according to a Rayleigh test
for non-uniformity (p-val < 0.001). Pink bars mark the distributions of folds whose log loss differences
significantly differed from zero (p < 0.001), according to a one-tailed t-test. (bottom) Interneuron
identities are sorted according to the median of the log loss difference between models across folds. (B)
Low gamma-phase based models: all details same as in A.
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Supplementary Figure S3.6. Model comparisons for CA1 pyramidal cell activity during odor
sampling. (A) (top) Theta phase-based models: Differences between phaseSH and phaseLH model log
losses (y-axis) evaluated on held out data, across 20 folds (train-test splits) of data for each CA1
pyramidal cell spike train (x-axis). Black horizontal bar within boxplots marks the median, whiskers mark
the 25th and 75th percentiles of the distribution of folds, diamonds mark outliers. A log loss difference of
zero (marked by dotted red line) indicates equal performance across complete short and complete long
models. Grey bars mark pyramidal cell spike trains whose spike-phase distributions (drawn from the
combined train and test trial data) significantly differered from uniform according to a Rayleigh test for
non-uniformity (p-val < 0.001). Pink bars mark the distributions of folds whose log loss differences
significantly differed from zero (p < 0.001), according to a one-tailed t-test. (bottom) Same as the top
panel, but for differences between phaseSH and SH model log losses. Pyramidal cell spike train identity
in both top and bottom panels are sorted according to the median of the log loss difference between
phaseSH and SH models across folds. (B) Low gamma-phase based models: all details same as in A.
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Supplemental Figure S3.7. Model log loss permutation tests. (A)Model log loss performance (vertical
tick marks) for phaseLH history (dark purple), LH (light purple), phase (pink), SH (yellow), and phaseSH
(orange) models relative to distributions of 100 log losses drawn from corresponding models trained on
permuted phase predictors (grey histogram). Phase observations were randomly shuffled within cycles,
while spike times (and consequently spike history) remained intact. The data for phase-permuted models
were sourced from the same training trials as intact-phase models, and were tested on the same held out
set of trials. Left column corresponds to models including theta phase information, while right column
corresponds to models including low gamma phase information for the same interneuron. (B - F) Same as
in A, but for distinct CA1 interneuron spike trains. Interneurons were selected according to whether the
median log loss difference between their theta phaseSH and SH models corresponded to the 0th, 25th,
49th, 51st, 75th, and 100th percentiles, respectively, of the distribution of all CA1 interneuron median log
loss difference, in the bottom subpanel of Fig. 3.3A.
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Supplemental Figure S3.8. Model comparisons over time across the population across behavioral
states. Models were fit to spiking and rhythmic phase data from behavioral epochs when rats were either
running towards the odor port (left column, approach) or odor sampling (right column). (A) Rows
correspond to three unique interneuron spike train identities, matched across approach and odor sampling
behavioral epochs, and are sorted according to the time window with the most positive value for the log
loss difference (theta phaseSH - low gamma phaseSH) model comparison. Columns within each heatmap
correspond to non-overlapping 50 ms-long time windows spanning a continuous interval of 1250 ms.
Color scale corresponds to log loss differences between the theta phaseSH and SH model computed on
held out data for each of the 20 train test splits. Warmer red colors indicated that theta phaseSH models
outperformed SH models. (B) Same as in A, for log loss differences between the theta phaseSH model
and the low gamma phaseSH model. Warmer red colors indicated better performance by theta phaseSH
models, while cooler blue colors indicated better performance by low gamma phaseSH models. (C) Same
as in A, but for log loss differences between low gamma phaseSH and SH models. Warmer red colors in
this heatmap indicated better performance for low gamma phase SH models.
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CHAPTER 4: BEHAVIORALLY DEPENDENT HIPPOCAMPAL INTERNEURON ENTRAINMENT

TO MULTIPLE RHYTHMS

4.1 Abstract
Inhibition orchestrates neuronal responses to inputs, and sculpts the oscillatory dynamics of brain

regions. Characterizing inhibitory interneuron spike timing with respect to rhythms consequently provides

insight into the mechanisms of network organization in response to behavioral demands. Relatively few studies

have assessed the dynamism of interneuron oscillatory spiking across multiple rhythms, changing behaviors,

and varying sensory inputs. To address this gap, we statistically modeled the relationship between CA1

interneuron spike timing and the rhythmic phase of local field potential (LFP) oscillations as rats performed a

context-guided associative memory paradigm. CA1 interneurons organized into groups with preferential

engagement in distinct phases of the theta rhythm, and theta phase preference predicted the phase of their

entrainment to higher frequency low gamma (35-55 Hz) and high gamma (65-90 Hz) rhythms. Notably,

patterns of engagement in low gamma—but not theta or high gamma—varied across associative memory

processing and goal-oriented locomotive behavioral states. Within associative memory processing epochs,

distinct olfactory and visuospatial inputs provoked changes to theta, low gamma, and high gamma spike-phase

relationships, with predominant shifts involving entrainment to a particular rhythmic phase, or the complete

lack thereof. Interneuron spike-phase relationships can consequently be flexible—rather than fixed—when

multiple behaviors and inputs are considered. Our results suggest that inhibition may dynamically shape

hippocampal oscillatory dynamics to meet changing behavioral demands.

4.2 Introduction
Continuously evolving environments impose extreme demands on organisms. To mitigate the

metabolic costs involved in foraging for food, and the dangers inherent to wandering into predators’

territories, organisms must learn to associate the features of an environment (e.g. what it looks like, what

it smells like) with the positive or adverse outcomes they predict. This enables organisms to accurately

infer the future presence of rewards or dangers while minimizing risks. Hippocampal subregions have

been implicated in the formation of precisely these types of associations1–3, with the CA1 subregion

serving as a primary output node from the hippocampal trisynaptic network4–6. To effectively support
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associations between sensory, visuospatial, and affective features of an environment, this subregion must

parse a wide array of input streams from cortical7–10, subcortical8,11–13, and intrahippocampal8,9 structures.

In the present work, we leveraged an associative memory paradigm to assess how various combinations

of rewarded olfactory and visuospatial inputs recruited putative inhibitory interneurons recorded from the

hippocampal CA1 subregion.

Inhibition plays a key organizing role in neural circuit dynamics14. In the CA1, inhibitory

interneurons bias the array of effective inputs that ultimately shape excitatory principal cells’

outputs8,15–17, and in doing so, they help sculpt the region’s oscillatory profile18,19. The two major CA1

input streams—CA3 Schaffer collaterals and entorhinal cortex perforant path fibers—each recruit

feedforward inhibition as they attempt to entrain principal cells in the network7,20–22. A diverse array of

inhibitory interneurons carefully orchestrates pyramidal cells’ responses to these inputs, by targeting

inhibition onto distinct pyramidal cell dendritic and somatic compartments8,9,16,17,23,24. Previous studies

have shown that the activity of these distinct interneuron types can work to enhance the influence of each

afferent pathway. For instance, CA1 interneurons targeting pyramidal cells’ distal dendrites are selectively

recruited by subcortical neuromodulatory inputs, a process that transiently blocks perforant path inputs

while simultaneously privileging Schaffer collaterals synapsing onto pyramidal cells’ proximal dendrites8.

Transient blocks of certain inputs need not constitute a competitive mechanism: in fact, enforcing a

temporal sequence where Schaffer collateral inputs precede perforant path inputs results in enhanced

pyramidal cell voltage responses to the latter9. Inhibition can consequently work cooperatively with

various afferent streams to scaffold the temporal relationships that shape hippocampal output.

The coordinated interplay of extrinsic inputs, local inhibitory recruitment, and pyramidal cells’

responses results in systematic patterns of ionic currents, which superimpose to produce rhythmic

fluctuations of the CA1 local field potential (LFP)25,26. LFP oscillations are remarkably dynamic, with the

dominant frequencies within a region evolving over time and as a function of the animal’s behavioral

state19,27–32. Notable frequency ranges in the CA1 include the theta (4-12 Hz) oscillation, which covaries

with rodent locomotion30–32 and sniffing28, a behavioral affordance that provides rodents with access to
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high-fidelity olfactory information33. Optogenetic silencing of parvalbumin positive (PV+) interneurons in

the CA1 disrupts theta LFP oscillations, suggesting an important inhibitory contribution to this

hippocampal rhythm18. Very fast rhythmic fluctuations also emerge in the CA1. These faster frequencies

can be subdivided into distinct ranges, which differ slightly depending on the study34–36, but generally fall

into lower (35-55 Hz) and higher (65-90 Hz) gamma bands. Notably, many studies find that slower and

faster gamma frequency bands manifest along distinct phases of the theta cycle34,35,37,38, a result that aligns

with studies showing that distinct inputs influence the CA1 sequentially within the timescale of a theta

cycle9,39. Inhibitory activity is additionally implicated in the generation of gamma oscillations25,40–42, and

the diversity of interneuron types23,43 may result in differential recruitment of interneuron classes into

distinct gamma frequencies36.

A combination of intrinsic resonance properties and preferential recruitment by distinct

neuromodulatory, perforant path, and Schaffer collateral afferents may render distinct CA1 interneuron

types more or less likely to participate in slow versus high gamma oscillations. A number of studies have

attempted to map the morphological and molecular properties of interneurons to their electrical activity

patterns. This work has successfully correlated interneuron expression of molecular markers (such as

parvalbumin, somatostatin, among others) to these cells’ tendency to spike according to particular phases

of the hippocampal theta oscillation43–48. Valuable extensions of this work additionally characterized

interneurons according to their spike-phase relationships relative to faster oscillations—often treating

gamma as a single, broad oscillatory band spanning frequencies within the 25-90 Hz49,50 range, or

above44,50. These studies have identified some degree of systematicity between molecularly and

morphologically characterized interneuron types and their spike-phase relationships to faster gamma

rhythms. With a finer grained separation of gamma frequency bands as they manifest during complex

behaviors, it is possible that we may observe interneurons preferentially participating in distinct gamma

oscillatory processes.

In this study, we were concerned with assessing CA1 inhibitory interneurons’ spike-phase

relationships across theta (4-12 Hz), low gamma (35-55 Hz), and high gamma (65-90 Hz) rhythms in
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response to distinct combinations of olfactory and visuospatial inputs during associative memory

processing. To this end, we evaluated the spike timing patterns of putative CA1 interneurons recorded

during a context-guided associative memory task, where odorants’ reward values depended on the spatial

context in which they were experienced1,27. Similarly to previous work, in the present study we were able

to cluster inhibitory interneurons according to their spike-phase relationships to the theta (4-12 Hz)

oscillation43,45. Unlike the bulk of prior studies, however—which explored these relationships either under

anesthesia43 or during locomotive behaviors45—we examined interneuron theta spike-phase relationships

during an odor sampling, associative memory processing window. To date, it remained unclear from prior

work whether interneuron theta spike-phase relationships constitute a relatively stable intrinsic neuronal

property, or whether distinct input combinations can flexibly recruit interneurons into distinct theta

spike-phase relationships. Here, we leveraged various combinations of odorants and visuospatial

information to show that spike timing relationships to the theta rhythm are not necessarily a fixed

property of inhibitory interneuron types, and can be flexibly recruited into either theta-entrained or

theta-insensitive states in response to different combinations of inputs.

We additionally explored the relationship between theta spike-phase relationships and interneuron

entrainment to higher frequency oscillations. We found systematic relationships between inhibitory spike

timing organization according to particular theta phases and the likelihood of entrainment to either low

gamma (35-55 Hz) or high gamma (65-90 Hz) rhythms. In particular, we observed that the likelihood of

entrainment to low gamma phase differed as a function of behavioral demand (associative memory

processing versus goal-oriented locomotion), while the likelihood of entrainment to high gamma

frequencies given theta phase preference remained relatively stable across behavioral states. Surprisingly,

relationships between theta phase preference and high frequency relationships were not necessarily

simultaneous or nested in nature: entrainment across rhythms could be systematic but occur at orthogonal

times over the course of associative memory processing.

This work provides a unique perspective on the degree to which distinct olfactory and

visuospatial inputs flexibly or stably recruit interneurons into theta spike-phase relationships, a property
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that has often been discussed as a fixed intrinsic feature of interneurons that facilitates classification of

interneurons into types. We learn here that inhibitory interneuron dynamics during an important

evolutionarily-honed skill—that of leveraging arbitrary stimuli combinations to predict the likely future

presence of rewards—can be flexibly recruited into a constellation of rhythmic spike timing patterns.

4.2 Results

To characterize inhibitory interneuron spike-phase relationships during associative memory

processing, we leveraged a context-guided associative memory paradigm1,27. Odors in a pair were

differentially rewarded depending on the spatial context in which they were presented, and rats had to

sustain a nose poke in the odor port containing the rewarded odor for 1500 ms—an epoch referred to as

“odor sampling”—in order to receive a water reward (Figure 4.1A). During this task, we performed

high-density extracellular tetrode recordings of the CA1 subregion of the hippocampus, obtaining a

sample of 31 putative inhibitory interneurons (see STAR Methods). To specifically examine CA1

interneuron spike timing as a function of olfactory and visuospatial inputs, we split interneuron spike

trains and local field potentials (LFPs) according to the odor-context combination present during the odor

sampling epoch. Within an experimental session, rats experienced four consecutive blocks of odor pairs

(24 trials per block, with a maximum of 12 rewarded trials per odor in a pair), resulting in a maximum of

8 spike trains per inhibitory interneuron. We excluded odor blocks where the performance criterion (≥

75% accuracy) was not met. To assess the effects of behavioral state on inhibitory dynamics, we

additionally evaluated interneuron spike trains during a time-matched (1500 ms) locomotive approach

epoch preceding corresponding odor sampling epochs.

Next, we applied kernel density estimation to model51 the relationships between interneuron spike

timing and the phase of the theta (4-12 Hz), low gamma (35-55 Hz), and high gamma (65-90 Hz) LFP

oscillations (Figure 4.1B). Each interneuron spike train was summarized by these three rhythmic “phase

models”, which describe the probability of spiking given the phase of the respective CA1 oscillation. We

fit rhythmic phase models to a total of 206 (odor sampling) and 207 (approach) interneuron spike trains,
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rather than the expected maximum of 248 spike trains. These discrepancies stem from our spike train

exclusion criteria: we excluded spike trains corresponding to low accuracy odor blocks, as well as spike

trains recorded during periods in which interneurons did not emit the minimum number of spikes

necessary to fit the rhythmic phase models (see Methods).

CA1 Interneurons’ Theta Spike-Phase Relationships Predict Entrainment to Higher Frequencies.

After having fit the rhythmic phase models to each spike train, we first examined whether CA1

interneuron spike timing was organized according to stereotyped phases of the theta oscillation during

associative memory processing, as previously reported under anesthesia43 and awake, locomotive45

epochs. We used the circular mean of phase angles that co-occurred with spiking, as well as the

spike-phase distributions’ ability to meet the Rayleigh statistic for non-uniformity (p < 0.05), to cluster

interneuron spike trains (Figure 4.2A). This classification scheme yielded four distinct clusters of phase

models, with peaks in probability of spiking along the trough (yellow, 76 out of 206 spike trains, 37.1%),

ascending (blue, 63 out of 206 spike trains, 30.7%), and the early descending (orange, 12 out of 206 spike

trains, 5.85%) phase of the theta cycle. The distances between the centroids of each theta cluster were as

follows: trough (yellow) to ascending phase (blue): 1.91 rad, 109.48 deg; trough (yellow) to early

descending phase (orange): 1.79 rad, 102.95 deg; and ascending (blue) to early descending (orange): 2.57

rad, 147.56 deg (Figure 4.2B, top). We additionally identified a cluster of spike trains with a uniform

distribution (hot pink, 55 out of 206, 26.7%) of spikes along the theta cycle, termed “theta-insensitive”45,

“tonic”52, or “theta-off”53 interneurons in earlier work.
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Figure 4.1. Behavioral variables and model fitting procedure. (A) The context-guided associative
memory task takes place on a linear maze whose distinct compartments, context 1 (pale pink) and context
2 (blue), are separated by a rectangular start box (depicted in grey, with schematic rat). The rat waits in
the start box until granted access to either one of the two contexts on a given trial. Two odor ports lie at
the end of each context (grey squares). Rats learn that odors in a pair (e.g. A, B) are differentially
rewarded depending on the context in which they are presented (e.g. A rewarded in context 1, B rewarded
in context 2). Each odor port emits a single odor on a given trial, and the odor delivered per odor port is
pseudo randomized across trials. To obtain a reward, rats must maintain a nose poke in the odor port
containing the rewarded odor for a duration of 1500 ms. The available odor pair changes every 24 trials.
Here, we analyze inhibitory interneuron spiking and CA1 local field potential (LFP) data only for correct
trials, resulting in a maximum of 12 trials per odor-context combination, with a maximum of 8 unique
odor-context combinations available. A single interneuron contributes at most 8 spike trains. (B)
Model-fitting procedure26, consisting of identifying rhythmic phase values that coincided with inhibitory
interneuron spiking, and convolving this distribution with a Gaussian kernel that has been adapted to a
circular basis and whose bandwidth was selected via 7-fold cross validation26. Lastly, we compute the
conditional probability of spiking given phase using Bayes’ theorem to obtain the phase model for a given
interneuron’s spike train.
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Interestingly, when we performed this clustering procedure (using distinct phase boundaries, see

Methods) for the low gamma (35-55 Hz) and high gamma (65-90 Hz) phase models, we also identified

distinct spike timing preferences relative to each of these rhythms (Figure 4.2B, middle & bottom;

Supplementary Figure S4.1B). According to these schemes, four low gamma clusters emerged, with

peaks along the ascending (26 out of 206 spike trains,12.6%), early descending (14 out of 206 spike

trains, 6.80%), trough (51 out of 206, 24.7%) phases of the low gamma cycle, as well as a low

gamma-insensitive group (115 out of 206 spike trains, 55.8%; Figure 4.2B, middle; Supplementary

Figure S4.1B, top). In the high gamma rhythm, three clusters appeared, with peak firing probabilities

along the ascending (86 out of 206 spike trains, 41.7%) and descending (11 out of 206 spike trains,

5.34%) phases of the high gamma cycle, and a high gamma-insensitive cluster (109 out of 206 spike

trains, 52.9%; Figure 4.2B, bottom; Supplementary Figure S4.1B, bottom).

Interneuron spike timing patterns may depend on the behavioral state of the animal. Applying the

same clustering scheme as in the odor sampling epoch, we assessed the distributions of rhythmic phase

models fit to data from the locomotive approach epoch (Supplementary Figure S4.1C & D). We found

relatively similar proportions of spike trains sorting into the theta phase clusters (trough: 90 out of 207,

43.5%; ascending phase: 62 out of 207, 29.9%; early descending phase: 12 out of 207, 5.80%; and

theta-insensitive: 43 out of 207, 20.8%), as well as the high gamma phase clusters (early descending

phase: 70 out of 207, 33.8%; ascending phase: 1 out of 207, 0.483%; and high gamma-insensitive: 136

out of 207, 65.7%). Approach epoch models tended to differ, however, in how they distributed along the

phase of the low gamma cycle, with spike timing more frequently insensitive to the phase of the low

gamma cycle than observed during odor sampling, with the exception of spike timing preferences relative

to the descending phase (descending phase: 25 out of 207, 12.1%; early ascending phase: 4 out of 207,

1.93%; late ascending phase: 4 out of 207, 1.93%; and low gamma-insensitive: 174 out of 207, 84.1%).

This difference in the interneuron spiking timing relationships to low gamma were apparent despite

observing no statistically significant differences in the amplitude of the low gamma oscillation across the

odor sampling and approach epochs (two-tailed paired t-test comparing mean low gamma amplitudes
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across LFP wires in the odor sampling v. approach epochs: t(29) = -1.1202, p = 0.2718). Interneuron

rhythmic engagement along the phases of the low gamma oscillation may represent a unique consequence

of either olfactory input processing specifically, or associative memory processing more generally.
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Figure 2. Interneuron spike trains cluster according to spike-phase relationships with the theta
(4-12 Hz) CA1 oscillation. (A) Each observation corresponds to a CA1 interneuron spike train. The
x-axis describes the circular mean of the spike train’s spike times relative to theta (4-12 Hz) phase angles.
The y-axis corresponds to the sum of the Kullback-Leibler divergences (sum kld) of each spike train’s
theta phase model against its own average probability of spiking. The sum kld is not used for clustering,
but provides a visual intuition for the distribution of rhythmic entrainments to the theta oscillation across
different interneuron spike trains. An idealized theta cycle is illustrated in pale grey. Three clusters
comprise spike-phase distributions that met the Rayleigh criterion for non-uniformity (p < 0.05) and
whose circular means lay within the following edges: (2.85, -2], (-2, 0], and (0, -2.85], corresponding to
the yellow (theta trough), orange (theta ascending phase), blue (theta descending phase) clusters,
respectively. Cluster centroids lie at: -2.65 rad, -0.952 rad, and 1.74 rad, respectively. The fourth cluster
(hot pink) comprises spike-phase distributions that did not meet the Rayleigh criterion for non-uniformity
(p ≥ 0.05). (B)Mean-centered phase models fit to spike-phase relationships relative to the theta (4-12 Hz),
low gamma (35-55 Hz), and high gamma (65-90 Hz) rhythms filtered from the CA1 local field potential
(LFP). Low gamma cluster centroids lie at: -0.753 rad, 0.770 rad, and 2.31 rad, respectively. High gamma
cluster centroids lie at: -1.73 rad, and 2.13 rad, respectively. Each interneuron spike train is described by
these three rhythmic phase models. Phase models for each rhythm have been clustered according to their
ability to meet the Rayleigh criterion for non-uniformity, and their peaks along their respective rhythm’s
cycle. Pale grey sinusoids in each subpanel represent the corresponding rhythm’s idealized cycle
trajectory. X axes for all subpanels span the range between -𝜋 to 𝜋. (C) Conditional probabilities (color
axis) of spike train assignment to a given high-frequency cluster (low gamma, top; high gamma, bottom)
given membership in a theta cluster for the odor sampling (left subpanels) and time-matched running
approach (right subpanels) epochs. Asterisks and values mark the theta-high frequency combinations
whose conditional probabilities were statistically greater than expected by chance as evaluated through a
permutation test. Entries lacking annotations in the matrix correspond to conditional probabilities that
were likely to occur by chance (p < 0.05). (D) Joint probabilities (color axis) of spike trains’ assignment
to low gamma (rows) and high gamma (columns) cluster identities. As in C, asterisks and values mark the
combinations of cluster assignments that were unlikely to occur by chance, as evaluated through a
permutation test (p < 0.05).
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Perforant path and Schaffer collateral pathways providing input to the region exert their influence

along distinct phases of the theta cycle9, and high frequency oscillations have also been reported to

distribute along different phases of the theta oscillation34,35,38. We consequently asked whether a given

interneuron spike train’s theta phase relationship systematically predicted its engagement and phase

preference with respect to low gamma and high gamma oscillations. To achieve this, we computed the

conditional probability of belonging to a low gamma cluster identity as a function of membership in a

theta cluster (Figure 4.2C, top left), and separately, the conditional probability of membership in a high

gamma cluster given membership in a theta cluster, during the odor sampling epoch (Figure 4.2C, bottom

left). While the largest likelihoods were assigned to membership in low gamma-insensitve or high

gamma-insensitive groups regardless of theta phase preference, other systematic relationships emerged,

with theta-trough spike trains organizing along low gamma-descent phases. Theta-descending interneuron

spike trains were capable of organizing along all low gamma phase clusters. Theta-trough and

theta-descending spike trains were particularly likely to organize along high gamma-ascending phases. On

the other hand, theta-ascending spike trains tended overwhelmingly to organize their spike trains

significantly along the low gamma-descent (Figure 4.2C, left), with smaller likelihoods of entrainment to

the high gamma-ascending phase. Notably, theta-insensitive spike trains had a significant likelihood of

organizing according to low gamma-ascent and -descent, as well as the high gamma rhythm’s ascent, with

significance assessed via permutation tests (Supplementary Figure S4.2A).

We performed the same analysis with the approach epoch rhythmic models and found that theta

phase similarly predicted high gamma relationships, but results differed in the predictions for low gamma

relationships (Figure 4.2C, right; Supplementary Figure S4.2B). Here, theta-ascent spike trains ceased

to engage entirely in low gamma spike-phase relationships, while theta-trough and -descent spike trains

shifted spike timing to the low gamma rhythm’s ascending phase, again reinforcing the notion that odor

sampling epochs recruit interneuron spiking into low gamma relationships in a way that differs from

locomotive approach epochs.
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The ability of interneurons to organize their spike timing according to either low gamma or high

gamma frequencies may result from distinct patterns of inputs, or represent an intrinsic constraint borne

from unique resonance properties48–50, or a combination of these factors. If this were the case, we would

expect interneuron spike trains to organize along one of the high frequency bands, but remain insensitive

to the other one. To determine whether this prediction holds true, we computed interneuron spike trains’

joint probabilities of belonging to a given low gamma and high gamma cluster identity, during the odor

sampling (Figure 4.2D, left) and approach (Figure 4.2D, right) epochs. For each of the following

proportions, note that the denominator reflects the intersection, in terms of number of spike trains, of

evaluated cluster pairs (see Methods). We first found that a majority of spike trains were insensitive to

both rhythms (Figure 4.2D, left & right, see bottom right entry in matrix). The next-largest proportions

exhibiting joint membership, approximately 30%, participated only in the high gamma frequency band

while remaining insensitive to low gamma frequencies during the odor sampling epoch, and this

proportion dropped modestly to 24% during the approach epoch. Although low gamma-early descent

relationships emerged during odor sampling epochs, these relationships disappeared during the approach.

Surprisingly, however, 26% of spike trains participated preferentially in both high gamma and the low

gamma-ascent phase during the approach epoch. These findings reveal diverse interneuron engagement

that depends on the animal’s behavioral state: insensitivity to fast frequencies altogether, engagement in

one fast frequency to the exclusion of the other, and—although less frequent—a combination of low

gamma and high gamma relationships.

Temporal coincidence and anti-correlation of interneuron rhythmic spike-phase relationships.

We subsequently worked to understand whether interneurons engaged in theta, low gamma, and

high gamma frequencies simultaneously, or whether these relationships were systematically predictive of

each other, but occurred at distinct times over the course of odor sampling. During odor sampling, we

qualitatively observe intervals within a single trial where high frequencies manifest in the absence of large

amplitude theta oscillations (Figure 4.3A, see interval between 200-600 ms), as well as nested within
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theta oscillations (Figure 4.3A, see interval between 1000 ms to the end of the LFP trace). Whenever fast

frequencies did coincide with theta oscillations, low gamma frequencies appeared to concentrate along the

rising, peak, and falling phases of the theta cycle. On the other hand, high gamma frequencies appeared to

manifest discretely near the peaks and troughs of theta cycles (Figure 4.3B). These results align with

previous hippocampal silicon probe recordings acquired under anesthesia35 as well as tetrode recordings

performed during rat locomotive epochs34.

To assess the relative timing between interneuron entrainment to theta, low gamma, and high

gamma oscillations, we fit new phase models to data drawn from non-overlapping 250 ms windows

spanning the duration of the odor sampling epoch (1500 ms). We were then able to assess each spike

train’s degree of entrainment (see Methods) to these rhythms over the course of associative memory

processing. In Figure 4.3C, we show an example interneuron’s entrainment time course for its spike

trains in response to odors G (top) and H (bottom), respectively. This interneuron exhibited simultaneous

entrainment to theta and low gamma frequencies when odor G was present, but organized its spikes only

to the low gamma oscillation when odor H was present (Figure 4.3C). To quantify the simultaneity or

temporal anti-correlation of interneuron spike trains’ rhythmic relationships, we computed a Pearson

correlation between measures of entrainment to each rhythm obtained for each non-overlapping time

window, where degree of entrainment was measured using the sum of the Kullback-Leibler divergences

(sum kld, see Methods). This was done for each pairwise combination of rhythms: theta and low gamma,

theta and high gamma, and low gamma and high gamma (Figure 4.3D). Each distribution of Pearson

correlation coefficients (r) yielded two modes, one located near perfect correlations, and another

concentrated along more negative correlations. To examine whether a given interneuron could exhibit

simultaneity of entrainment and anti-correlated entrainment to multiple rhythms, we counted the number

of interneurons whose odor-context spike trains yielded a mixture of strongly anti-correlated (r < -0.05)

and strongly correlated (r > 0.05) entrainment to pairs of rhythms, and we restricted this analysis to only

those interneurons with significant entrainment (Rayleigh test, p < 0.05) to both rhythms at some point

during the odor sampling epoch (theta-low gamma: 20 out of 30 interneurons engaged in both rhythms;
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theta-high gamma: 29 out of 30 interneurons; low gamma-high gamma: 5 out of 19). We found relatively

few interneurons with odor-context spike trains whose multi-rhythmic engagement could be both

simultaneous and anti-correlated in time (theta-low gamma: 3 out of 20 interneurons; theta-high gamma:

10 out of 29; low gamma-high gamma: 5 out of 19). In short, few interneurons—recorded across different

odor-context conditions—could participate in multiple rhythms orthogonally, unsystematically, or

simultaneously over the course of associative memory processing, and this appeared to be particularly

frequent in interneurons with theta and high gamma rhythmic entrainment.

Interneurons can flexibly shift in and out of entrainment to rhythmic phase in response to distinct

olfactory and visuospatial inputs.

There is a substantial body of work that attempts to identify systematicity between interneurons’

morphological, transcriptomic, and spike timing profiles43,50, which has facilitated theta-phase interneuron

classification schemes in studies that lack access to morphological and molecular information45.

Seemingly implicit in these classification schemes is that interneurons’ theta phase preferences may

represent a stable neuronal property, either by virtue of intrinsic resonance54, or connectivity patterns, or a

combination of these. Given the heterogeneous patterns of entrainment to distinct frequency bands

observed when we fit models across behavioral states (Figure 4.2), and over time within odor sampling

epochs (Figure 4.3), we sought to characterize explicitly whether an interneuron’s activity could be

organized differently within a rhythmic frequency band as a function of the active set of environmental

stimuli during associative memory processing.

To address this question, we counted the number of interneurons whose various odor-context

responses had been sorted into multiple theta clusters (Figure 4.4A). We found that 16 out of 30

interneurons reorganized their spike timing within the theta frequency band, as a function of different

olfactory and visuospatial inputs. With few exceptions, cluster reassignments tended to reflect

entrainment to a specific theta phase and theta-insensitive states (14 out of 16 reorganizing interneurons),

rather than shifting theta phase preferences. To obtain a quantitative measure of the interchangeability of

119

https://paperpile.com/c/ZjdwEH/C9rK+kZil
https://paperpile.com/c/ZjdwEH/9vSm
https://paperpile.com/c/ZjdwEH/3jQC


phase models across odor-context conditions, we assessed the predictive accuracy of an interneuron’s

phase models (Figure 4.4B, left) against spike-phase distributions drawn from other odor-context

conditions (“other”, Figure 4.4B, right). To set a baseline expectation for model predictive accuracy, we

also tested each phase model against the spike-phase distribution used during model fitting (“own”),

which should on average display more accurate predictions (here, log likelihoods closer to zero).

An interneuron that exhibited a theta cluster reassignment (Figure 4.4B, top left) incurred larger

prediction errors (more negative log likelihoods) when its various phase models were tested against data

sourced from the other conditions than when the models were tested against the data that generated them

(Figure 4.4B, top right). In contrast, an interneuron whose theta phase models were consistently sorted

into the same cluster identity exhibited overlapping distributions of log likelihoods when tested against

their own data, and against data from other odor-context conditions, indicating stable theta-phase spiking

relationships across odor-context combinations (Figures 4.4A & B, bottom).

We took the same approach to assess whether interneurons exhibited flexibility and stability in

low gamma and high gamma entrainment. We found that a majority of interneurons shifted their low

gamma (19 out of 30 interneurons) and high gamma (21 out of 30 interneurons) spike-phase relationships

as a function of the active set of stimuli. Similar to our observations for the theta rhythm, the majority of

shifts involved transitions between entrainment to a given phase and loss of entrainment altogether (low

gamma: 15 out of 19 interneurons; high gamma: 21 out of 21 interneurons, Figures 4.4C & E). An

interneuron could be insensitive to a fast frequency for most input combinations yet participate

rhythmically for a single odor-context combination (Figure 4.4D). The reverse could also be true: an

interneuron could participate rhythmically in a fast frequency for the majority of input combinations, with

varying degrees of entrainment, yet remain insensitive in response to a few sets of stimuli (Figure 4.4F).

In an effort to quantify this variability in interneurons’ rhythmic responses to odor-context

conditions across our recorded population (n = 30), we used a linear mixed effects model to predict

interneurons’ average cross-validated log likelihood per condition using as fixed effects both rhythm

(with levels theta, low gamma, and high gamma) and cross validation test type (with levels ‘own’ or
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‘other’, referring to whether the kernel density estimator was tested against the data that generated it or

the data sourced from the remaining odor-context conditions, respectively). To account for

interneuron-level variability (e.g. differences in baseline rates of spiking), the linear mixed effects model

was also specified with random intercepts for each interneuron. This model failed to explain substantially

more variance in average cross-validated log likelihood than a model omitting test type (�2 (1) = 0.979,

p=0.32). Our results indicate that interneurons tended to—on average—engage in relatively stable

spike-phase relationships for different combinations of olfactory and visuospatial inputs, as reflected in

the pattern of kernel density estimator predictive accuracies across test type (Figure 4.4G).

4.3 Discussion

CA1 inhibitory interneurons comprise a heterogeneous class of cells whose properties render

them effective sources of rhythmic temporal organization25, promoting network stability during excitatory

input processing14. In the hippocampus, inhibitory interneurons are recruited through a combination of

feedforward excitatory inputs7–9, as well as dense feedback projections from their local pyramidal cell

targets21. This intricate pattern of connectivity, along with changes to the predominant afferent sources of

excitatory drive into the network, may give rise to variable interneuron spike timing engagement in

rhythmic circuit interactions. In this study, we leveraged a context-guided associative memory paradigm,

where rats learned that odors in a pair were differentially rewarded according to spatial context1,27. We

were consequently able to examine the spike timing responses of CA1 inhibitory interneurons in response

to distinct combinations of olfactory and visuospatial inputs, as well as compare activity patterns across

behavioral states during the same task. By combining a complex behavioral paradigm and statistical

modeling techniques, we show that putative CA1 interneurons can flexibly participate in rhythmic

network processes as a function of behavioral state, and in response to distinct combinations of

behaviorally relevant olfactory and visuospatial inputs during associative memory processing.
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Figure 4.3. Theta, low gamma, and high gamma frequencies can entrain interneurons
simultaneously and orthogonally. (A) Single trial local field potential (LFP) from an odor sampling
epoch. Illustrates periods of high frequency content with weak to no theta prevalence (200 to 500 ms), and
periods during which high frequencies appear nested within visible theta cycles (1000 to 1500 ms). (B)
Example average z-scored power spectrograms from four rats’ LFPs, with time aligned to the peak of
theta cycles, obtained during the odor sampling epoch. Corresponding average theta-filtered signals are
superimposed in white in each spectrogram. The first and second spectrograms were computed from two
different simultaneously recorded LFPs from the same rat. The remaining three spectrograms were
contributed by three different rats. (C) Sample entrainment time course for a single interneuron’s spike
trains in response to odor G (top) and odor H (bottom middle). Entrainment for each rhythm is measured
as the divergence between the rhythm’s phase model and a uniform model predicting spikes according to
the neuron’s average probability of spiking. Each rhythmic phase model is fit to odor sampling data
spanning 250 ms consecutive, non-overlapping windows, starting with the window immediately
following odor delivery, 250 ms following the nose poke; each window’s edges are printed along the time
axis. Below each spike train’s entrainment time course, we show the corresponding, color-coded phase
models from which the entrainment metric was derived. Note the second window for each spike train,
where odor A recruits the interneuron into both theta (hot pink) and low gamma (light teal), while odor F
recruits the interneuron into low gamma only. (D) Distributions of Pearson r correlations reflecting the
relationship between the sum of the Kullback-Leibler divergences (sum kld) computed from the same
spike-train’s theta, low gamma, and high gamma phase models, for all spike trains (grey) and spike trains
excluding those whose models were insensitive to at least one of the examined rhythms (red).
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To assess CA1 interneuron selectivity to particular odor-context combinations, we first segmented

interneuron spike trains and local field potential (LFP) phase estimates according to the odor-context

combination available during odor sampling. We then modeled the relationship between interneuron spike

timing and the phase of the theta (4-12 Hz), low gamma (35-55 Hz), and high gamma (65-90 Hz) LFP

oscillations during odor sampling and goal-oriented locomotive epochs within the context-guided

associative memory task (Figure 4.1)27.

In addition to identifying well-established classes of theta phase relationships43,45, we found that

low gamma and high gamma spike timing relationships also reliably clustered according to their

respective phases (Figures 4.2A & B; Supplementary Figures S4.1B-D). Previous juxtacellular

recording studies identified interneuron spike-phase relationships to the oscillatory phase of broadly

defined gamma frequency bands (25-90 Hz)44,49,50. Our findings build on this work by characterizing

gamma-band interneuron spike timing across behavioral states, when gamma oscillations manifest along

dissociable sub-ranges that likely reflect distinct underlying generators36,57. Inhibitory interneurons have

been particularly implicated in gamma-rhythmic generation25. Stimulation of CA3 Schaffer collateral

afferents produces an evoked response in CA1 that is accompanied—in the absence of further CA3

input—by gamma oscillations centered approximately at 40 Hz32. GABAA receptor blockage abolishes

this response, leading to the hypothesis that a pyramidal-interneuron CA1 network oscillator was

sustaining the accompanying gamma oscillations. The CA1 additionally comprises a variety of

interneuron classes exhibiting distinct intrinsic properties that may differentially contribute to the

generation of slower or faster gamma rhythms. Two distinct populations, differentiable by the duration of

their membrane excitatory postsynaptic potentials (EPSPs), have been reported in the region24.

Interneurons with slower EPSPs tended toward less spike timing precision than those sporting shorter

duration EPSPs, whose spike timing was very fast and precise, a difference that was attributable to each

group’s NMDA receptor activation kinetics24. Distinct phase preferences along fast oscillatory cycles

could reflect a variety of influences, but perhaps most tantalizing is the contribution of gap junctions

between interneurons58. Gap junction connectivity could ensure spike time-locking to the same gamma
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cycle59, but slight conduction delays (introduced either by the influence of chemical synapses or the

spatial distribution of gap junctions60) across interneurons might produce reliable, short phase lags that

manifest as distinct low gamma and high gamma phase clusters in our data. A combination of distinct

laminar distributions of afferent connectivity, electrochemical interneuron-interneuron interactions, and

intrinsic ion channel and receptor variation may thus explain different interneurons’ predilection for

spike-phase relationships relative to distinct slower and faster gamma frequency ranges, as well as the

emergence of the distinguishable phase-based clusters observed here.
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Figure 4.4. Flexibility and stability in CA1 interneuron oscillatory responses to olfactory and
visuospatial inputs. (A) Counts of interneurons whose spike trains were sorted into more than one theta
cluster identity. (B) Schematic of the maze, with color-coded odor identities (top). Red-tinged colors (left)
are only rewarded in the left-side, pink context; blue-tinged colors (right) are only rewarded in the
right-side, blue context. Left column contains phase models corresponding to two different interneurons’
theta phase models, where each phase model is color-coded according to the combination of olfactory and
visuospatial inputs present. The interneuron in the top left exhibited theta cluster reassignments, while the
interneuron in the bottom left was stably assigned to a single theta cluster identity across all odor-context
combinations. Right column panels correspond to log likelihood distributions computed by testing a phase
model trained on data from a given condition (x-axis) on data from its own training set (‘test condition =
own’, dark grey) or against data from all remaining conditions (‘test condition = other’, pale grey). Less
negative log likelihood values reflect more accurate predictions. (C) Same as in A, but for the low gamma
cluster identities. (D) Sample interneuron with low gamma entrainment exclusively for one odor-context
combination; testing this model against data from all other conditions yields the largest prediction errors
(log likelihood distributions that do not overlap with and are more negative than the distribution of log
likelihoods obtained from testing the model on the data that generated it). Results are jittered laterally for
the conditions with flat phase models. (E) Same as in A and C, but for high gamma cluster reassignments.
(F) Sample interneuron, whose phase models were sorted into multiple high gamma cluster identities. (G)
Distributions of average log likelihood across the 30 interneurons, for each rhythm, for models tested
against the data that generated them (‘own’), and data from other odor-context conditions (‘other’) for a
given interneuron. Mean log likelihoods correspond to the linear mixed effects model intercepts for each
rhythm by test type.
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In the present study, interneuron entrainment across distinct phases of the low gamma oscillation

emerged more frequently during odor sampling periods relative to locomotive approach epochs, despite a

lack of significant difference in low gamma amplitudes across behavioral epochs (Figure 4.2C & D). The

emergence of interneuron spike timing recruitment across diverse low gamma phases may reflect lateral

entorhinal cortex (LEC) coordination with hippocampal CA1 cell assemblies. During odor sampling in a

variant of the olfactory associative memory paradigm, Igarashi et al. (2014) observed concurrent increases

in LEC and CA1 low gamma-band power, in the 20-40 Hz range29. Recent work from our group has

provided evidence supporting a causal relationship between LEC and CA1 low gamma coherence:

rhythmically stimulating the LEC resulted in optimal recruitment of CA1 neuronal spike timing

particularly within subsets of the low gamma frequency range identified here61. LEC influence on

interneuron spike timing may also emerge indirectly through the trisynaptic pathway. The LEC receives

direct projections from the rodent olfactory bulb62, and specifically disrupting odorant information—while

maintaining intact respiration—abolishes a rhythmic current sink in the outer third of the dentate gyrus

(DG) molecular layer63, the location where LEC fibers synapse onto DG apical dendrites64,65. It is possible

that (transformed) odorant information percolates through the trisynaptic pathway and converges onto

both CA1 radiatum interneurons and local CA1 pyramidal cells by way of CA3 Schaffer collaterals. The

absence of a difference in low gamma amplitudes across odor sampling and locomotion may be

attributable to volume conduction during locomotive epochs, as previously documented35. On the other

hand, odor sampling low gamma may arise locally in the CA1 pyramidal layer through the multiplexed

contribution of LEC and CA3 inputs interacting with local interneuron and pyramidal cell microcircuits.

Local generation of low gamma oscillations, as opposed to volume conduction, may specifically emerge

during associative memory processing, given that power in this frequency band increases in the CA1 over

the course of olfactory associative learning29,66. Although hypothetical at this point, future work could

explicitly examine the possibility of behavioral state-specific local generation of low gamma frequency

power.
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A spike train’s entrainment—or its insensitivity—to particular theta phases systematically

predicted its pattern of low or high gamma phase activity (Figure 4.2C). Moreover, the same interneuron

spike train—although rare—could engage in both low and high gamma oscillatory phase, while the

majority engaged selectively in either low gamma or high gamma oscillations (Figure 4.2D). We

investigated whether the systematicity in these observed cross-rhythmic spike-phase profiles was a

consequence of nested theta-gamma rhythms—in which case entrainment to each rhythm should appear

simultaneously—or whether high-frequency relationships could emerge orthogonally from theta

entrainment over the course of associative memory processing. When we fit models to discrete windows

over the course of odor sampling, we found that temporal relationships were broadly distributed across

the population of spike trains, some of which exhibited orthogonal theta-low gamma, and theta-high

gamma relationships, while others exhibited similar entrainment trajectories across theta and higher

frequencies (Figure 4.3). In particular, high gamma oscillatory entrainment tended to emerge both

simultaneously and orthogonally from theta relationships across interneurons’ various odor-context

responses. While theta-gamma nested relationships have received substantial attention in the field34,35,37,67,

and the theta-gamma LFP relationships we observe align with previous reports35,38, less is known about

gamma rhythmic dynamics that emerge independently of theta oscillations, or which at least coincide with

clear reductions in the power of the theta oscillation27,67,68. These periods may reflect processes distinct

from those generating strong theta-gamma coupling in the CA1 network. Moreover, their prevalence may

vary topographically: a recent study leveraging an olfactory association task showed that the power of

faster frequencies appears to be inversely proportional to theta power across the CA1 proximo-distal

axis66. As with the questions relating to local generation versus volume conduction of low gamma in the

CA1 pyramidal layer, addressing the functional role of theta-independent gamma oscillations—as well as

their underlying mechanisms—will require further work.

Lastly, we find occasional flexibility, as well as overwhelming stability, in interneurons’ rhythmic

spike timing responses to varying odor-context combinations. Interneurons in our sample could shift

between entrainment and insensitivity to each of the rhythms examined. They nevertheless maintained
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their phase preference across odor-context conditions when they were entrained, with few exceptions

(Figure 4.4A). Differential recruitment of interneuron activity is most frequently explored in changes to

firing rates. Indeed, interneurons’ firing rates can be modulated according to the active subset of

pyramidal cells69, they can vary across the animal’s spatial location in a manner reminiscent of principal

cell place field dynamics70–72, and they can change as a function of olfactory inputs in associative memory

tasks 28,68. Our work reveals an additional mechanism—oscillatory spike timing variations—whereby

interneurons reflect information about relevant constellations of environmental features.

Inhibitory dynamics have long been considered essential stabilizing components in networks that

receive overwhelming excitatory drive14. Although it is clear that our population of CA1 interneurons

exhibited overwhelming stability in spike-phase relationships, it might appear surprising that some in this

sample displayed flexibility for some odor-context conditions. The functional consequence of this

state-dependent flexible engagement in multiple rhythms remains to be causally probed, and offers

exciting new directions towards understanding the intrinsic and microcircuit parameters that determine

interneuron rhythmic spike timing. Notably, the present study illuminates the importance of assessing

inhibitory dynamics—indeed, any neuronal dynamic—within diverse behavioral conditions. Our work

presents an early and essential first step in ascertaining the role of inhibition in coordinating inputs and

local excitation to adaptively meet a wide range of behavioral demands.

4.4 Methods

Behavioral Paradigm.

All protocols involving animals were performed in accordance with National Institutes of Health

(NIH) guidelines, and with the prior approval of the Institutional Animal Care and Use Committee

(IACUC) in Boston University (approval number 13-057). The context-guided associative memory task

and apparatus have been previously described in detail (see Rangel et al. 2016), and will be briefly

described here.

Apparatus.
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The behavioral apparatus comprises a central start box flanked by two diametrically opposed 45

cm stems that make up each spatial context. Contexts were differentiable according to the spatial position

in the room, and by the color and texture of wraps secured over the surface of the arms. Each stem

widened into a trapezoidal area, also covered with the context wrap, at the end of which sat a face plate

containing two circular apertures, termed odor ports (Figure 1A). Rats were behaviorally shaped to insert

(“poke”) their noses into the odor ports, a process that triggered the release of a given odor 250 ms after

poke onset. The odor port containing the rewarded odor was counterbalanced across trials.

Odor sampling epoch

Correct trials. Rats learned that odors in a pair were differentially rewarded depending on the

context in which they were presented. To trigger the release of a water reward (from a well located

underneath the odor port), rats learned to sustain a 1500 ms nose poke in the port containing the rewarded

odor of the pair. If the rat first poked its snout into the port containing the unrewarded odor, the rat had up

to 1500 ms to remove his snout, after which he could initiate a 1500 ms nose poke in the correct odor

port. A single correct trial consisted of a 1500 ms interval (“termed odor sampling”) that led to a reward.

Incorrect trials. Nose pokes lasting 1500 ms in the port containing the unrewarded odor triggered

a white noise buzz instead of a water reward. We did not include analysis of these trials because rats were

overtrained when we began electrophysiological recordings, resulting in very few incorrect trials per

odor-context combination.

Approach epoch. To compare results from odor sampling windows against those from locomotive

behavioral states, we selected time-matched (1500 ms) epochs prior to each correct odor sampling trial,

when the rat displayed the highest velocity during stem traversals towards the odor ports.

Task Structure. Rats performed the task for a total of 96 trials, which consisted of four

consecutive 24-trial blocks in which rats deployed associations for a single odor pair. Because each odor

in a pair was only rewarded in a single context, each odor contributes a maximum of 12 correct trials to

the data set. We excluded data from odors that had fewer than four correct trials. Since there were a total
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of four odor pairs over the course of an experimental session, and given that we only analyze correct

trials, we obtained interneuron responses for a maximum of eight odor-context combinations.

Electrophysiological Recordings.

We performed high-density extracellular tetrode recordings, with independently moveable

tetrodes implanted into the CA1 subregion of the hippocampus. This allowed us to isolate single units as

well as local field potentials (LFPs). Signals were amplified (4,000-8,000 times) and digitized (40 kHz)

using Plexon’s Omniplex Neural Data Acquisition system.

Single Units. We isolated putative CA1 inhibitory interneurons according to waveform shape

features (mean width at half maximum: 150 us; mean temporal offset from peak to trough: 350 us), as

well as an average firing rate criterion (≥ 5 Hz)73. Inhibitory interneurons possess extremely large

dendritic and axonal arborizations, spanning various CA1 layers23,35. It may consequently be possible to

record the same interneuron over multiple days, even as tetrode wires are gradually advanced. To ensure

extremely conservative estimates of interneuron counts, if the same tetrode within a given rat contained

an interneuron across multiple sessions, we selected only one of the sessions for which the tetrode

recorded putative interneuron activity.

Local Field Potentials (Estimating Instantaneous Phase). We used a third-order Butterworth

filter to bandpass-filter LFPs in the theta (4-12 Hz), low gamma (35-55 Hz), and high gamma (65-90 Hz)

frequency ranges. We subsequently took the arctangent of the filtered signal’s complex Hilbert transform

to compute instantaneous phase estimates for each corresponding frequency band. Frequency ranges were

selected according to the observed frequency ranges in a previous study leveraging the same dataset27.

Dataset Preparation.

Our goal was to characterize CA1 interneuron spike timing relationships in response to different

combinations of odorants and visuospatial (context) information. We consequently split each

interneuron’s data according to the available odor-context combinations. Each interneuron could thus

132

https://paperpile.com/c/ZjdwEH/ZOZ2
https://paperpile.com/c/ZjdwEH/LvqI+QQaL
https://paperpile.com/c/ZjdwEH/sIZ0


contribute a maximum of eight spike trains. In some cases, the full eight odor-context combinations were

unavailable as a function of the following exclusion criteria: performance for a given 24-trial block fell

below 75% accuracy; the accuracy criterion for the 24-trial block was met, but one of the odors in the pair

had fewer than 4 correct trials; or the interneuron exhibited fewer than 7 spikes for a given odor-context

combination. After applying these exclusion criteria, the dataset consisted of 206 odor sampling

interneuron spike trains (from n = 30 out of 31 interneurons, one interneuron did not spike during odor

sampling), and 207 approach spike trains (from 31 out of 31 interneurons). One interneuron didn’t emit

spikes at all during the odor sampling epoch, but did spike during a subset of the approach epochs

preceding odor sampling. Those spike trains are consequently analyzed during approach epochs, but

having no spikes to fit models to, are not included in the odor sampling epoch spike trains.

Kernel Density Estimation and Phase Models.

Phase models, representing the conditional probability of spiking given oscillatory phase, were fit

according to the procedure described in Rivière et al. (2022). For a given spike train and the CA1 LFP

recorded on the same tetrode, we selected all phase angles that coincided with a spike, where ,𝑥
𝑎

𝑥
𝑎

∈ 𝑋

and . This distribution of phase angle observations was convolved with a Gaussian𝑋 =  {𝑥
1
,  ...,  𝑥

𝐴
}

kernel of the form,𝐾(𝑥; ℎ) 

, (equation 1)𝐾(𝑥; ℎ) =  1
2π

exp( −𝑥2

2ℎ2 )

where the smoothing parameter, or bandwidth, controls the width or spread of the kernel, and whoseℎ

bandwidth (also termed “smoothing”) parameter was selected via 7-fold cross-validation74,75 (softwareℎ

package: Python sklearn, GridSearchCV, Kernel Density method, grid size = 1,000)51,76. Candidate

bandwidths spanned the equivalent of 6% to 40% of a phase cycle at the kernel’s half-maximal point,
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which ensured that phase models could capture the potentially varied distributional features of spike

densities within a phase cycle (e.g. multiple modes, dispersion)77.

The goal is to estimate an unobservable probability density function that generates the𝑝(𝑥)

empirically observed distribution of phase angles that coincide with spikes. To estimate this function, we

convolve the distribution of phase angles with , according to the following expression,𝑋 𝐾(𝑥; ℎ)

, (equation 2)𝑝
^
(𝑥; ℎ) =  1

𝐴ℎ
𝑎=1

𝐴

∑ 𝐾(
𝑋−𝑥

𝑎

ℎ ) =  𝑝(𝑝ℎ𝑎𝑠𝑒 | 𝑠𝑝𝑖𝑘𝑒 =  1)

a probability density function (or kernel density estimator76) generated from the mixture of Gaussian𝐴

probability densities, where each individual Gaussian’s mean corresponds to the location of each

observation, . These Gaussians have been adapted to treat and as identical points51. The resulting𝑥
𝑎

− π π

kernel density estimator76 yielded the probability of observing a phase angle given spiking. Lastly, we

applied Bayes’ Theorem to this estimator to obtain the probability of spiking given phase, termed “phase

model” (Figure 1B),

, (equation 3)𝑝(𝑠𝑝𝑖𝑘𝑒 =  1 | 𝑝ℎ𝑎𝑠𝑒) = 𝑝(𝑝ℎ𝑎𝑠𝑒 | 𝑠𝑝𝑖𝑘𝑒 = 1) 𝑝(𝑠𝑝𝑖𝑘𝑒)
𝑝(𝑝ℎ𝑎𝑠𝑒)  

where corresponds to the average probability of spiking, and represents the uniform𝑝(𝑠𝑝𝑖𝑘𝑒) 𝑝(𝑝ℎ𝑎𝑠𝑒)

probability of observing any one phase angle; that is, .1
2π

Computing the sum of Kullback-Leibler divergences (sum kld).

To examine the degree of entrainment to rhythmic phase, we compare a spike train’s phase model

against a model representing the spike train’s uniform average probability of spiking (Supplementary
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Figure 1A). Probability distributions are routinely compared using the Kullback-Leibler divergence

(kld)78, expressed below as,

(equation 4)𝑘𝑙𝑑(𝑝
𝑖 
|| 𝑞

𝑖
) =  𝑝

𝑖  
𝑙𝑜𝑔

2
(

𝑝
𝑖

𝑞
𝑖
) +  (1 − 𝑝

𝑖
)𝑙𝑜𝑔

2
(

1−𝑝
𝑖

1−𝑞
𝑖
) ,

where corresponds to a given phase bin (out of a 1000 phase bins used to fit the kernel density𝑖

estimator), refers to the empirically obtained phase model, and represents the average probability of𝑝 𝑞

spiking. The kld is a non-symmetrical measure, meaning that unless , in𝑘𝑙𝑑(𝑝
𝑖
||𝑞

𝑖
) ≠ 𝑘𝑙𝑑(𝑞

𝑖
||𝑝

𝑖
) 𝑝

𝑖
= 𝑞

𝑖

which case . Our formulation commits to treating the phase model, which is empirically𝑘𝑙𝑑 =  0

estimated, as our proxy for the (unobservable) ground truth distribution underlying the spike train. We

believe this a reasonable decision given that we have previously shown, in simulations, that phase models

accurately approximate known ground truths across spike trains driven by both rhythmic (e.g. those

related to phase) and uniform underlying distributions51.

To summarize the Kullback-Leibler divergences across all 1000 phase bins over which we fit the

phase models, we sum across all computed (Supplementary Figure S4.1A),𝑘𝑙𝑑
𝑖

, (equation 5)𝑠𝑢𝑚 𝑘𝑙𝑑 =
𝑖 

1000

∑ 𝑘𝑙𝑑
𝑖

which provides a numerical estimate of the degree of a spike train’s degree of entrainment with respect to

the phase of an oscillation. We wish to emphasize that this provides information beyond that offered by

the Rayleigh test for non-uniformity of circular distributions79: while the latter considers only the number

of spikes that organize around particular phase angles, the sum kld implicitly takes spike rate (and

consequently, time) into account. This enables the sum kld to distinguish between spike trains that are

truly rhythmic—where spikes systematically are emitted across all cycles, or nearly every cycle of an

oscillation—from spike trains that are systematically related to particular phases of an oscillation, but are
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so sparse as to skip several cycles of the oscillation51. For this reason, we take the sum kld to approximate

degree of rhythmic entrainment.

Clustering Procedure.

To organize spike trains according to their theta (4-12 Hz), low gamma (35-55 Hz), and high

gamma (65-90 Hz) phase preferences, we leveraged the Rayleigh test for non-uniformity of circular

distributions79, as well as the circular mean of the spike-phase distributions (Figure 4.2A,

Supplementary Figure S4.1B & C). First, we separated spike-phase distributions according to their

ability to significantly deviate (or fail to deviate) from a uniform distribution according to the Rayleigh

statistic (p<0.05). The spike-phase distributions that did not meet this criterion constituted the

theta-insensitive, low gamma-insensitive, and high gamma-insensitive clusters, for each rhythm

respectively.

The remaining spike-phase distributions were clustered according to fixed phase boundaries, set

for each rhythm separately. Boundaries for theta clusters were set as follows: trough (2.85 to -2] rad;

ascent (-2 to 0] rad; and descent (0 to 2.85] rad, where parentheses (“(”, “)”) and brackets indicate

non-inclusive and inclusive edges, respectively. Boundaries for low gamma clusters were set as follows:

ascent (-2 to 0.25] rad; descent (0.25 to 1.25] rad; trough (1.25 to -2] rad. Lastly, boundaries for high

gamma clusters were set as follows: ascent [- to 0) rad; and descent [0 to ) rad. For each rhythm,π π

cluster boundaries were found for odor sampling epochs, and subsequently applied identically to cluster

spike-phase distributions from approach epochs (Supplementary Figures S4.1C & D).

Conditional & Joint Probabilities of Cluster Membership.

One of our goals was to examine whether a spike train’s theta phase preference systematically

predicted the likelihood of that spike train’s entrainment to higher frequencies. To address this question,

we computed the conditional probability of observing spike train membership in low gamma or high
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gamma cluster identities given spike trains’ theta phase preferences (Figure 4.2C), for odor sampling and

approach epochs separately. We computed the conditional probabilities according to the following,

, (equation 6)𝑝(𝑙𝑜𝑤 𝑔𝑎𝑚𝑚𝑎
𝑙 
| 𝑡ℎ𝑒𝑡𝑎

𝑘
) =  

𝑛(𝑙𝑜𝑤 𝑔𝑎𝑚𝑚𝑎
𝑙 
& 𝑡ℎ𝑒𝑡𝑎

𝑘
)

𝑛(𝑡ℎ𝑒𝑡𝑎
𝑘
)

where represents the number of spike trains that were sorted into both low𝑛(𝑙𝑜𝑤 𝑔𝑎𝑚𝑚𝑎
𝑙 
& 𝑡ℎ𝑒𝑡𝑎

𝑘
) 

gamma cluster identity and theta cluster identity . The same procedure was applied to compute𝑙 𝑘

conditional probabilities of high gamma cluster membership given theta cluster membership,

(equation 7)𝑝(ℎ𝑖𝑔ℎ 𝑔𝑎𝑚𝑚𝑎
𝑚

| 𝑡ℎ𝑒𝑡𝑎
𝑘
) =  

𝑛(ℎ𝑖𝑔ℎ 𝑔𝑎𝑚𝑚𝑎
𝑚 

& 𝑡ℎ𝑒𝑡𝑎
𝑘
)

𝑛(𝑡ℎ𝑒𝑡𝑎
𝑘
) ,

where represents the number of spike trains that were sorted into both high𝑛(ℎ𝑖𝑔ℎ 𝑔𝑎𝑚𝑚𝑎
𝑚 

& 𝑡ℎ𝑒𝑡𝑎
𝑘
) 

gamma cluster identity and theta cluster identity .𝑚 𝑘

We additionally asked how likely spike trains were to participate in both low gamma and high

gamma relationships. To this end, we computed the joint probability of membership in a given low

gamma and high gamma cluster identity,

𝑝(𝑙𝑜𝑤 𝑔𝑎𝑚𝑚𝑎
𝑙
 & ℎ𝑖𝑔ℎ 𝑔𝑎𝑚𝑚𝑎

𝑚
) =  

𝑛(𝑙𝑜𝑤 𝑔𝑎𝑚𝑚𝑎
𝑙
 & ℎ𝑖𝑔ℎ 𝑔𝑎𝑚𝑚𝑎

𝑚
)

[𝑛(𝑙𝑜𝑤 𝑔𝑎𝑚𝑚𝑎
𝑙
) + 𝑛(ℎ𝑖𝑔ℎ 𝑔𝑎𝑚𝑚𝑎

𝑚
) ] − 𝑛(𝑙𝑜𝑤 𝑔𝑎𝑚𝑚𝑎

𝑙
 & ℎ𝑖𝑔ℎ 𝑔𝑎𝑚𝑚𝑎

𝑚
) ,

(equation 8)

where represents the number of spike trains that were assigned to𝑛(𝑙𝑜𝑤 𝑔𝑎𝑚𝑚𝑎
𝑙
 & ℎ𝑖𝑔ℎ 𝑔𝑎𝑚𝑚𝑎

𝑚
)

both low gamma cluster identity and high gamma cluster identity .𝑙 𝑚
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Permutation Tests to Assess Chance Conditional and Joint Probabilities of Cluster Membership.

To test for the likelihood of obtaining the conditional and joint probabilities described above by

chance, we performed a permutation test. For each spike train and its corresponding LFP, we identified all

LFP theta phase cycles, binned each cycle according to the cluster edges (see “Clustering Procedure”),

and we randomly jittered spike times within theta cluster bins. We repeated the permutation process

twenty times, to generate a distribution of twenty conditional (Supplementary Figure S4.2A & B) and

joint (Supplementary Figure S4.2C & D) probabilities computed from shuffled data. We then computed

all conditional and joint probabilities using these twenty new shuffled datasets. This permutation

procedure avoids disrupting the theta spike-phase relationships, while selectively asking whether high

frequency relationships could have been obtained by chance. We then computed the fraction of

conditional or joint probabilities (depending on the analysis) that exceeded the value of the conditional or

joint probability obtained from intact data. If this fraction was smaller than 0.05, we considered the result

statistically significant.

Phase Amplitude Spectrograms.

To assess how high frequency oscillations distributed along the theta cycle, we computed

spectrograms using the complex Morlet wavelet transform80. Time points corresponding to theta peaks

were estimated from the filtered LFP trace. Spectrograms in Figure 4.3B were generated using a wavelet

transform (Python, scipy.signal, `cwt` method, wavelet order = 4, peak Morlet frequency = 250 Hz)38 of

the 1000 ms surrounding (symmetrically) each identified theta peak within a session. We subsequently

compute z-scored power spectrograms, and report the average of all individual trial, z-scored

spectrograms.

Simultaneity of spike train rhythmic entrainment across frequency bands.

To examine the extent to which interneuron spiking was simultaneously entrained in theta and

higher frequency bands, we first segmented odor sampling trials into 250 ms windows, starting at the time

138

https://paperpile.com/c/ZjdwEH/uO2f
https://paperpile.com/c/ZjdwEH/jcMQ


of odor delivery up to the end. This yielded five non-overlapping windows. We then fit each rhythmic

phase model to the distributions of phase angles that coincided with spiking within each of these

windows, producing three rhythmic phase models per window, per interneuron spike train. For each of

these phase models, we computed the degree of entrainment (sum kld). Next, for each spike train, we

assessed the degree to which pairs of rhythmic phase models (e.g. theta and low gamma, theta and high

gamma, low gamma and high gamma) tended to exhibit similar degrees of entrainment across the five

non-overlapping windows. To achieve this, we computed Pearson correlation coefficients between the

sum klds for a pair of phase models, for five observations, one per window. Correlation coefficients close

to 1 indicated mirrored time courses of entrainment across a pair of rhythms. Of note, correlation

coefficients close to 1 could not distinguish between entrainment trajectories that were similar because

they were both quite flat (e.g. not different from a uniform distribution of spiking across phase) or

trajectories that shared similarly large degrees of entrainment. On the other hand, correlation coefficients

close to -1 indicated opposing entrainment time courses (e.g. when one rhythm’s sum kld was low, the

other rhythm’s sum kld was likely larger). Lastly, correlation coefficients closer to 0 reflected

unsystematic trajectories of entrainment across pairs of rhythms.

Selectivity of rhythmic entrainment as a function of olfactory & visuospatial inputs.

One of our primary goals was to assess the degree to which interneuron rhythmic entrainment was

stably or flexibly recruited across distinct combinations of olfactory and visuospatial inputs (odor-context

combinations). We formulated this question as one where we assessed each interneuron’s kernel density

estimators’ interchangeability across odor-context combinations. For instance, a kernel density estimator

fit to phase angles drawn from odor-context A would prove “interchangeable” with an estimator from

odor-context C if its prediction accuracies on spike-phase data from condition C were indistinguishable

from predictions on its own data (e.g. data from condition A).

Prediction accuracy was measured via cross-validated log likelihoods (Python, sklearn,

KernelDensity estimator, `score_samples` method) where a given condition’s kernel density estimator was
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tested on the data that generated it (“own”) and, in separate tests, against data drawn from all other

conditions (“other”). The mean log likelihood computation is formulated as below,

(equation 9)𝑚𝑒𝑎𝑛 𝑙𝑜𝑔 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 =  1
𝐴

𝑎=1

𝐴

∑ −  𝑙𝑛(𝑝
^
(𝑥

𝑎
; ℎ))

where we evaluate the kernel density estimator )—representing the probability of observing a𝑝
^
(𝑥

𝑎
; ℎ

phase angle given spiking, —at each phase angle . More negative mean log𝑝(𝑝ℎ𝑎𝑠𝑒 | 𝑠𝑝𝑖𝑘𝑒 =  1) 𝑥
𝑎

likelihoods indicate worse performance than less negative log likelihoods.

To assess the degree to which odor-context combinations selectively entrained spike-phase

relationships across the population of interneurons recorded during odor sampling, we fit a linear mixed

effects model predicting average log likelihood per condition, per interneuron, with fixed effects of

rhythm (levels: theta, low gamma, and high gamma) and test type (levels: “own” and “other”). Test type

refers to whether the log likelihood resulted from a kernel density estimator predictions (using equation 9)

on the spike-phase data from the condition the estimator was trained on, while “other” referred to log

likelihoods resulting from predictions on spike-phase data from the remaining odor-context conditions.

We additionally included random intercepts for interneuron identity, to account for different

baseline firing rates across neurons in the population. The model was specified programmatically (R,

lme4 package, `lmer` method) as below,

(equation 10)𝑚𝑒𝑎𝑛 𝑙𝑜𝑔 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ~ 𝑟ℎ𝑦𝑡ℎ𝑚 +  𝑡𝑒𝑠𝑡 𝑡𝑦𝑝𝑒 +  (1|𝑖𝑛𝑡𝑒𝑟𝑛𝑒𝑢𝑟𝑜𝑛 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦)

where the notation specifies a unique intercept (“1”) given a unique(1|𝑖𝑛𝑡𝑒𝑟𝑛𝑒𝑢𝑟𝑜𝑛 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦)

interneuron identity81. We additionally performed a log likelihood ratio test82 to determine the degree to
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which test type explained significant variance in average log likelihoods. The reduced model was

specified similarly to equation 10, but omitted the fixed effect of test type,

. (equation 11)𝑚𝑒𝑎𝑛 𝑙𝑜𝑔 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ~ 𝑟ℎ𝑦𝑡ℎ𝑚 +  (1|𝑖𝑛𝑡𝑒𝑟𝑛𝑒𝑢𝑟𝑜𝑛 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦)

We determined the significant differences across the full and reduced models by comparing the ratio of

the log likelihoods against the null hypothesis that the ratio should equal 1 under a chi squared

distribution:

(equation 12)𝑙𝑜𝑔 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑟𝑎𝑡𝑖𝑜 =  − 2 (𝑙𝑜𝑔 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
𝑟𝑒𝑑𝑢𝑐𝑒𝑑

 −  𝑙𝑜𝑔 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
𝑓𝑢𝑙𝑙

)

Data and Code Availability.

All code and data are made publicly accessible at Github repository.
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Supplementary Figure S4.1. Schematic illustration and equation describing the computation for the sum
of the Kullback-Leibler divergences (kld) between a given spike-train’s rhythmic phase model and the
spike-train’s own uniform average probability of spiking. Phase model is in pale teal, uniform model is a
flat black horizontal line, and individual kld values are represented by black vertical dotted lines. (B)
Clustering schemes for low gamma, and high gamma for models fit on interneuron spike trains recorded
during the odor sampling epoch. (C) Rhythmic phase models fit to spike trains recorded during the
locomotive approach epoch. Theta model centroids (top subpanel) during the approach emerged as
follows: trough (yellow dotted line): -2.73 rad; ascending phase (orange dotted line): -0.987 rad;
descending phase (blue dotted line): 1.83 rad. Low gamma model centroids (middle) subpanel: ascending
(leftmost dotted line): -1.10 rad; trough (rightmost dotted line): 3.12 rad. High gamma (bottom subpanel)
centroids: ascending phase (left dotted line): -2.02 rad, descending phase: 2.18 rad. (D) Mean-centered
rhythmic phase models fit to interneuron spike trains and LFPs drawn from the locomotive approach
epoch. Rows correspond to models fit to the phase of theta, low gamma, and high gamma, respectively.
Note that no interneuron spike trains were sorted into the low gamma early descent phases.
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Supplementary Figure S4.2. Permutation test results for conditional and joint probabilities of
rhythmic entrainment across frequency bands. (A) Results of the permutation tests examining the
likelihood of randomly observing conditional probabilities of low gamma (top, rows) or high gamma
(bottom, rows) cluster membership given theta phase relationship (columns) during odor sampling. Each
subpanel corresponds to a combination of low gamma given theta cluster identity (top), or high gamma
given theta cluster identity (bottom). The colored vertical line in each subpanel represents the conditional
probability computed from the intact data, while the grey histogram corresponds to the conditional
probabilities computed from the shuffled data. The probability of obtaining a conditional probability
greater than those drawn from the distribution of shuffles is printed on each subpanel, and constituted the
basis for significance (p < 0.05). (B) Same as in A, but for the approach epoch. (C) Results of the
permutation tests examining the likelihood of randomly observing joint probabilities of low gamma
(rows) and high gamma (columns) cluster membership, during the odor sampling epoch. The features of
each subpanel match all features described in A. (D) Same as in C, but for the approach epoch.
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Chapter 4, in full, is being prepared for submission to Current Biology. Rivière, Pamela D;

Rangel, Lara M. The dissertation author was the primary investigator and author of this paper.
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CHAPTER 5: DISCUSSION

Throughout this dissertation, I explore hippocampal inhibitory interneurons’ spike rates and spike

timing in response to evolving constellations of inputs, as they manifest across distinct behavioral states

and stimuli. In Chapter 1, I demonstrate that a population of hippocampal CA1 inhibitory interneurons

reflect behaviorally relevant stimulus information in their firing rates during associative memory

processing. This result suggests that inputs differentially recruit inhibition as animals perform the task. To

quantify and predict inhibitory interneuron spike timing dynamics, in Chapter 2 I innovatively apply

statistical tools to model the relationship between interneuron spiking and the phase of two important

CA1 oscillations, the theta (4-12 Hz) and low gamma (35-55 Hz) frequency bands. I leverage each

model’s cross-validated prediction accuracy to reveal moment-to-moment variations in interneuron

spike-phase relationships across locomotive and associative memory processing epochs. In some cases,

interneurons demonstrated dynamism in their oscillatory spike timing within associative memory

processing windows, flexibly shifting their spike timing preferences from theta to low gamma

frequencies. With the work in Chapter 3, I go on to characterize the specific rhythmic phase at which CA1

inhibitory interneurons relate to theta (4-12 Hz), low gamma (35-55 Hz), and high gamma (65-90 Hz)

oscillations. I find that an interneuron’s theta phase preference (or lack thereof), predicts its engagement

in faster oscillations, and these multi-rhythmic relationships vary as a function of the animal’s behavioral

state. Moreover, if an interneuron exhibited a rhythmic phase preference, it could still shift to firing

uniformly relative to a given rhythm when other odor-context combinations were present, indicating

variable likelihoods of entrainment during associative memory processing. In sum, this work offers

evidence in support of flexible hippocampal interneuron recruitment, and motivates future research efforts

reevaluating neural dynamics across the wide range of behavioral states that organisms express as they

make their way in the world.
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