UC San Diego
Other Scholarly Work

Title

Large Scale Air-Sea Interactions with a Simple General Circulation Module;
Equilibrium Statistical Mechanics of Quasi-geostrophic Flows

Permalink
https://escholarship.org/uc/item/0fw7t91p
Author

Salmon, Richard L

Publication Date
1976

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/0fw7t91p
https://escholarship.org
http://www.cdlib.org/




ECKART DISSERTATION PRIZE

The Eckart Dissertation Prize commemorates the late Dr. Carl Eckart;
it was first offered in 1975.

- Dr. Eckart was a pioneer in the field of quantum mechanics and under-
water acoustics, and he served as Director of Scripps institution of
Oceanography from 1948 to 1950." A professor of geophysics from 1948 to
1973, he also established Scripps's Marine physical Laboratory in 1946 and
served as its director for two years. He was the first vice-chancellor for
academic affairs (1965-66) of the University of California, San Diego, and
chaired the university's academic senate for two years (1963-65).

Dr. Eckart was a member of the National Academy of Sciences, American
Physical Society, American Geophysical Union, Acoustical Society of America,
American Academy of Arts and Sciences, American Association for the Advance-
ment of Science, and other prestigious societies. He rgceived numerous
medals and honors, and published more than 70 scientific articles in American
and foreign journals during his 7l1-year lifetime.

The Eckart prize was established by Scripps Director Dr. William
Nierenberg and Dr. Joseph R. Curray, then Chairman of the Graduate Department
of the Institution, and carries with it a $1,000 award for the "most original
and most stimulating" dissertation, presented with coherence, brevity, and
clarity. -

The prize has a three-fold purpose: to honor the memory of Dr. Eckart,
to recoénize students who prepare outstanding theses, and to provide a
learning experience for students who serve on the selection committee. The
committee is composed of one graduate student from each of the seven curricular

groups and a faculty member chosen by the chairman of the Graduate Department.



Committee members selecting the second recipient of the Eckart Prize
were Duncan C. Agnew, William C. Bartram, R. David Bowlus, George Halikas,
“Julian P. McCreary, Russell E. McDuff and Carrel A. Ramsey, students, and

Professor John D. Isaacs, faculty advisor.



UNIVERSITY OF CALIFORNIA

San Diego

Large Scale Air-Sea Interactions with a

Simple General Circulation Model
and

The Equilibrium Statistical Mechanics ef

Quasi-geostrophic Flows

A dissertation submitted in partial satisfaction of
the requirements for the degree of Doctor of Philosophy

in Oceariogranhy

by

Richard Lawrence Salmon

Committee in charge:

Professor Myrl C. Hendershott, Chairman
Professor Charles S. Cex

Professor Russ L. Davis

Professor Daniel L. Clte

Professor William B. Thompson

1976



The dissertation of Richard Lawrence Salmon is approved,
and it is acceptable in quality and form for publication

on microfilm:

d&xu-wg éﬂ?ﬂ

Doeny E- %M/
/Y N YA

(/l/ﬁ ﬁ?/ﬂl//b/%.

Committee Chairman

University of California, Sen Diego

1976

ii



DEDICATION

To Mom and Dad
and

Susie and Dee

iii



TABLE OF CONTENTS

List of Symbols

List of Figures

List of Tables

Acknowledgements

Vita and Fields of Study

Abstract

1.

Large Scale Air-Sea Interactions with a Simple General

Circulation Model

£HWw N

The Equilibrium Statistical Mechanics of Quasi-

Abstract

. Introduction

The Model

Three Experiments

. Discussion

References

geostrophic Flows

SHw N

Abstract

. Introduction

The single-layer system
The two-layer system

Bettom topography and variable rctation rate

iv

Page

vi

xiii
Xiv
XV

Xvi

24
45
48

49

49
50
57
67
78



5. Numerical verification
6. Discussion

References

Appendix 2.A

Appendix 2.B

Appendix 2.C

Page
83
94
95
96
98

100



=Hh £ Y D

o

s

=

-~ -

s
v(t)

-
=

°2qy<bg=

LIST OF SYMBOLS
Chapter 1

available potential energy

heat capacity

depth of oceanic mixed layer

Coriolis parameter

eddy viscosity

a friction term

a heating term

kinetic energy

pressure

Significance parameter

averaging time

deterministic predictability time scale in the atmosphere
predictability time scale in the occan
significance time

a general functional of the state of the atmosphere
vertical velocity

& spherical harmonic

colatitude

potential temperature

Newtonian heat exchange coefficient
static stability, a standard deviation

shear stream function

vi



E D EXR QoW

velocity potential

longitude

reference longitude of the maximum anomaly
vertical average of the velocity potential
average stream function

angular velocity of the earth

vertical velocity in pressure coordinates

vii



& Wy = W O

Kdef

Lbox
P

U,u
v
xi’ai’bi’Ai’Bi
74
OL)Q)B|)BL
B*

Q] A0 w S

Chapter 2

mean layer depth

energy

a general phase function
Coriolis parameter
bottom topography
Jacobian operator

wavenumber of mode i

reciprocal of the radius of deformation

length of the square model ocean
2 general point in phase space
probability distribution function
nondimensional square wavenumber
conjugate functions

a general volume in phase space
phase coordinates

enstrophy or potential enstrophy
inverse temperatures

spatial derivative of rotation rate
phase space

ratio of mean depths

vorticity or potential vorticity
correlation coefficient

standard deviation

an orthonormal eigenfunction

viii



Q,w

streamfunction
structure functions

area integration

¢



Figure

1.1

1.5 (b)

(b)
(c)

LIST OF FIGURES

Comparison of the model energy cycle averaged
over one year with Saltzman's (1970) observations
for winter and for summer.

Average flow quantities in the model and in the
real atmosphere.

SST anomaly pattern and average surface stream-
function in WM.

Average static stability, O , in experiment Wi.
The variance of sea-level potential temperature
in deg® in CR.

The variance of sea-level potential temperature
in deg2 in WM.

The field of significance parameter for the
averages in Figures 1.5 a-b.

The variance of potential temperature at

500 mb in CR and

in WM; and

The transient conversion in CR and

in WM.

Spectra of surface air temperature and 10 x

sea surface temperature at 45 N in ML.

The longitude, @2(¢) , of the maximum positive

SST anomaly at 50 N for the slave ocean in CR and

Page

22

23

28

30

32

33

36
36
36
38

41



Figure

1.9 (a)

2.1 (h)

2.1 (d)
(a)

N
~nN

for ML.

The composite average SST anomaly and 24-day-
running-mean-averaged streamfunction anomaly at
750 mb for ML and

for the slave ocean in CR.

The composite average transient conversion in
ML and

in CR.

Chapter 2

The kinetic energy spectra per unit depth and
the available potential energy spectrum for
equilibrium two-layer flow in the case where
5=11, R =10, and Bl =10°

The same as (a) except & = 1.

The correlation coefficient between layers and
the ratio of available potential to total
kinetic energy for the case of (a).

The same as (c) except & = 1.

Pseudospectra of kinetic energy per unit volume
in the top and bottom layers at the beginning

of experiment A and after 57 days.

X

Page

43

43

43

43

74

75
76

77



Figure

2.2 (b)

2.3 (a)

2.3 (b)

2.4

2.5 (a)

2.5 (b)

Pseudospectra of kinetic energy per unit volume
in experiment A after 794 days and the
theoretical equilibrium state.

The correlation between layers in experiment A
after 57 days and the theoretical equi]iBrium
correlation.

The correlation between layers in experiment A
after 794 days and the theoretical equilibrium
correlation.

The ratio of available potential to total kinetic
energy in experiment A.

The correlation between layers in experiment B
after 53 days and the theoretical equilibrium
correlation.

The correlation between layers in experiment B
after 498 days and the theoretical equilibrium

correlation.

Xxii

Page
88

89

90

91

92

93



Table
1.1

| .
1.3

&l

LIST OF TABLES

Chapter 1

The set of harmonics used in the experiments
described in this paper.

Energy cycles of the three experiments.

The contribution of the various zonal wave-
numbers m to the globally-averaged variances
of 6"5 and Q'W and their average spatial

correlation coefficient r.

Chapter 2

Sunmary of numerical experiments.

xiti

Page
19

27
39

84



ACKNOWLEDGEMENTS

I am very grateful to my faculty advisor Myrl Hendershott and
to my office-mate Greg Holloway for their help and encouragement over
the past four years. My association with them has heiped to make my
years at Scripps happy as well as (I hope) productive.

The climate study project (Chapter 1) was inspired by the
pioneering work of Dr. Jerome Namias to whom I wish to acknowledge
many informative conversations.

While a graduate student at Scripps I was supported by an NDEA
fellowship and as a research assistant under the Office of Naval

Research, Contract N00014-69-A-0200-6043.

Xiv



VITA
May 4, 1949 -- Born -- Waukegan, I1linois
1971 B.S. in Meteorology and Oceanography

University of Michigan, Ann Arbor

1971 - 1974  NDEA fellow,Scripps Institution of Oceanography
University ot California, San Diego

1974 - 1975 Research Assistant, Scripps Institution of Oceanography
University of California, San Diego

FIELDS OF STUDY

Major Field: Oceanography

Studies in Physical Oceanoaraphy and Fluid Mechanics.
Professors Robert S. Arthur, Charles S. Cox,

Russ E. Davis, Myri C. Hendershott, Walter H. Munk,
Joseph L. Reid, Albert . Green and Stanley J. Jacobs.

Studies in Meteorology.
Professors Edward S. Epstein and William R. Kuhn.

Studies in Applied Mathematics.
Professors Forman A. Williams and John W. Miles

Studies in Data Analysis and Inverse Theory.
Professors Richard A. Haubrich and Robert L. Parker

Studies in Marine Chemistry.
Professor Joris M. Gieskes

Studies in Marine Biclogy
Professors John A. McGowan and Michael M. Mullin

Studies in Marine Geology
Professor Henry W. Menard

XV



ABSTRACT OF THE DISSERTATION

Large Scale Air-Sea Interactions with a
Simple General Circulation Model
and
The Equilibrium Statistical Mechanics of

Quasi-geostrophic Flows

by

Richard Lawrence Salmon
Doctor of Philosophy in Cceanography
University of California, San Diego, 1976

Professor Myrl C. Hendershott, Chairman

Two loosely related studies utilize the quasi-geostrophic
dynamical equations in applications in which the nonlinear or turbulent
terms are of critical importance. In both cases, the importance of the
noniinear terms requires that the solutions to the equations be
subjected to a statistical interpretation.

In Chapter 1, 1 have coupled Lorenz's (1960) two-layer atmos-
pheric mode! to a "copper plate" ocean to cbtain a simple model that
can be used to study the effects of large scale sea surface temperature
anomalies on the dynamics of the atmosphere. With 164 degrees of

freedom, the atmospheric model mimics the observed northern hemisphere

xvi



energy cycle in fair detail. In three experiments, each lasting one
year, I consider an ocean

(a) with fixed temperature that depends only on latitude;

(b) with fixed large amplitude sea surface temperature

anomalies; and

(c) with temperature determined by heat exchaﬁge with the air.
The results suggest that,even in the case (b) of exaggerated anomalous
forcing where a statistically averaged atmospheric response is detect-
able, the response may be small compared to random differences that
occur in an averaging time as short as one year.

In Chapter 2, I apply the principles of classical equiiibrium
statistical mechanics to derive the equilibrium states toward which
spectrally truncated representations of the equations of motion would
evolve in the absence of forcing and viscosity. In the case of two
immiscible layers, 1 find that the internal radius of deformation con-
stitutes an impcrtant dividing scale: At scales of motion larger than
the radius of deformation, the equilibrium flow is nearly barotropic
while at smaller scales the streamfunctions in the two layers are
statistically uncorrelated. The equilibrium lower layer flow is posi-
tively correlated with bottom topography (anticyclonic flow over sea-
mounts) and the correlation extends to the upper layer at scales
larger than the radius of deformation. I suggest that some of the
trends observed in non-equilibrium flows may be looked on as manifest-

ations of the tendency for turbulent interactions to maximize the

entropy of the system.
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CHAPTER 1

Large Scale Air-Sea Interactions with a

Simple General Circulation Model

Abstract

We have coupled Lorenz's (1960) two-layer atomspheric model to
a "copper plate" ocean to obtain a simple model that can be used to
study the effects of large scale sea surface temperature ancmalies on
the dynamics of the atmosphere. With 164 degrees of freedom, the
atmospheric medel mimics the observed northern hemisphere eneray cycle
in fair detail. In three experiments, each lasting one vear, we con-
sider an ocean

(a) with fixed temperature that depends only or latitude;

(b) with fixed large amplitude SST anomalies; and

(c) with temperature determined by heat exchange with the air.
Only in (b) are significani dynamical effects observed. These consist
of a weak monsoon response in the subtropics and a tendency for storms
to intensify over warm water at higher latitude. Experiment (c) devel-
oped SST anomalies that resemble the observed anomalies; however, the
atmosphere and ocean in (c¢) differ insignificantly from the atmosphere
and recomputed "slave ocean" in (a), even when the flows are averaged
in reference frames moving with the anomalies. Our results suggest
that the atmosphere may be too noisy to be much affected by SST anoma-

lies on time scales over which the anomalies are themselves predictable.



1. Introduction

We wish to study the effects of large scale sea surface tem-
perature anomalies, such as those described by Namias (1959), on the
dynamics of the overlying atmosphere. By "anomaly" we mean the
instantaneous departure of the sea surface temperature (SST) from its
long-term time average. The persistence of SST anomaiy patterns cver
time scales of months has led many people to believe that a better
knowledge of these anomalies and their influence on the atmosphere
could lead to improvements in long-term weather predictions. HHowever,
the associated heating anomalies are very small compared to manv of
the other fluxes that balance the heat budget of an atmospheric
column; and it has therefere proved difficuit to envision specific
mechanisms by which SST anomalies might affect the weather. OQur task
is to weigh the relative importance of these two opposing features:
long term parsistence versus weakness of the signal.

The problem is complicated by the atmesphere's intrinsic lack
of exact predictability. By this we mean that the equations govern-
ing atmospheric metion are il11-posed with respect to initial value
problems in the sense that perturbations in the intital conditions at
the smallest scales lead to completely different solutions after
finite times. The cause of the growing difference is the propatation
of the initial perturbation from the smallest to the largest scales
of motion via the nonlinear terms in the Navier-Stokes equations. We
can define an atmospheric predictability time scale, TA’ as the time

required for a perturbation in the flow at the scale of the separation



between weather observing stations to reach the largest scales of
motion. Theoretical and numerical estimates for TA range between
5 days and about 3 weeks.

The existence of a limiting predictability time, TA’ for the
atmosphere has important implications for the problem under study.
First, it underscores the importance of studying forcing fields (such
as SST) which have themselves a predictability time that is longer
than TA. The predictability time for sea surface temperature, To,
is of the order of months because of the high heat capacity of the

oceanic mixed layer and its relatively sluggish motion. Thus

and knowledge of the SST pattern ought to permit forecasts longer

than T, provided there is some significant connection between SST

A
state and the state of the atmosphere above.

However, the limit on exact predictability suggests that this
connection might at best be statistical. Consider the following
hypothetical experiment: Imagine an ideal atmosphere whose external
forcing fields (continents, oceans, solar heating, etc.) are freely
controlled by us. Let V(t) be any functional of the state of the
atmosphere at time t. Let (1) denote some standard state for the
forcing fields and let (2) denote some other forcing state (for ex-

ample, a state with fixed SST anoma]ies).- Now imagine two experi-

ments beginning from the same initial conditions but subject to the



different forcing conditions (1) and (2). Let V](t) and V2(t)
be the outcomes of these experiments.

We should not be surprised if, after times longer than TA’
the two outcomes no longer resemble one another. However, it is mis-
leading to attribute all of the difference Vi = V2 to the different
forcing conditions (1) and (2). At any time, in fact, the major part
of V] - V2 is apt te be random, i.e. unpredictable; but we are -

interested only in that part of V] - V, that can be predicted. The

2
predictable part of V] B V2 will not be removed by statistical
averaging. Therefore, we should compare not the outcomes themselves
but rather their statistics.

It is plausible that the statistics of V depend only on the
forcing (not on the initial conditions) and that the statistics change
when the forcing changes. However, we should still want to know
whether the statistical difference between V] and V2 is large or
small compared to the likely random differences.

For fixed forcing conditions, V(t) is a stationary stochas-
tic process with ensemble mean <V> which is independent of time. e
find <V> by averaging V(t) over many realizations, or, as is
commoniy done, by assuming V(t) to be ergodic and averaging in time.

The time-average estimator

T

[ vit)at
0

-
—-l
i
e

is a random variable with expected vaiue <V> and standard deviation



1/2 1

proportional to T~ for large enough T. That is, the average
of V over a record of length T is "within" const/T]/2 of . Ns.
Now suppose <V]> and <V2> are the ensemble averages of V
subject to the different fixed forcing conditons. Then the time, Ts’
required for a change in forcing from state (1) to state (2) to make
jtself felt above the natural noisiness in V 1is given roughly by:

|<V]> - <V2>[ = const]/TSV2 + constz/TS]/2

He might call TS the "significance time scale" for V.

The pertinence of Ts to our problem is that if TS >> T0
for any realizable change in SST state, then such changes are poor
long term predictors of V because they are themselves destroyed by
random processes before they can produce significant changes in V.
If, on the other hand, To > Ts’ then the field of SST may be a
useful predictor of the quantity V. Said another way: if To > TS,
then the long persistence of SST anomalies overcomes the weakness of
their heat fluxes; but if TS > To’ then the opposite is true.

By means of a mathematical model, we can, in principle,

1 T is large enough if > T => |R(t)| << 1 where

2

R(x) = <V(t)V£t +1)> - <V>

<V™> - <V

is the autocorrelation of V. See section 3 for a further discussion.



estimate the quantities <V>, const, and TS and thereby determine
if and how knowledge of SST anomalies can help to extend forecasts.

In the following pages we present the results of such a study. By
way of overall summary, we find that, for several quantities of
interest studied in our simple model, TS is of the order of T0 or
longer, so that knowledge about SST anomalies would ndt greatly extend
forecasts. However, our conclusions depend on the many simplfying

assumptions we have made and may well be altered by future work.



2. The Model

We are interested in the behavior of the coupled ocean/
atmosphere system over time scales of months -- the time scales in
which 35T anomalies are observed to appear and disappear. Such times
are long compared to TA and to the energy transit time through the
atmospheric spectrum. Consequently, we require a somewhat sophisti-
cated model for the atmosphere -- one that correctly simulates the
many nonlinear processes that maintain the global general circulation
against dissipation. In order to accommodate nonlinear transfers of
energy over a range of scales, the atmospheric model must be a numer-
ical one. As such, it must be both economical and computationally
stable with respect to the relatively long time integrations required
for statistical averaging. To satisfy these requirements, we have
adopted a simple atmospheric model invented by Lorenz (1960).

Our ocean model can likely be far simpler, because a time
scale of months is possibly still short compared to the time required
for ocean currents to greatly alter an SST anomaly pattern whose
features are several thousand kilometers in diameter. To begin with,
we will ignore oceanr motion altogether; our model ocean will be a
stationary heat reservoir covering the globe.

In the two-layer version of Lorenz's atmospheric model the
dependent variables are:

¢+ 1t the streamfunction at 250 mb

v - 1 the streamfunction at 750 mb

84+ o the potential temperature at 250 mb



® - o the potential temperature at 750 mb
Ap
- 1
X - a5 f e(p)dp
0
the vertical average of the velocity potential
(ap = 500 mb).

In terms of the above variables, the two-layer equations take the form:

\72‘11_ + T vy f£) +I(TvT) = For (1.1)

VT, +T(CVF)+ T(EVT)-V(FvX)=F (.2

t

&, +J(‘/,’6’)+J—(’L\TO’) ”V'(G'VX) = Heg (1.3)
o, + T(¥c) + J(T;6)-VOIX = Hs (1.4)
bC, V0= V- (fVT) (1.5)
where
1 K Ty =
b=d (- (P =2
and « = R/C_ = (gas constant)/(heat capacity at constant pressure).



Here, Fw, FT, Hys H0 are the friction and heating terms. The above
equations are very nearly the conventional quasi-geostrophic approxi-
mation, except that the variability of Coriolis parameter, f, is
retained in all terms. The method of vertical differencing incorpor-
ates the boundary conditions = %%—= 0 at p = 1000 mb and p = Q.
The vertical velocity at 500 mb is assumed to be “506 = Ap vzx.
Lorenz showed that, under adiabatic conditions, the equations

(1.1 - 1.5) conserve the sum of

K = ap [ v vy +vT0T] (1.6)
g
and
lm o

/
A= 2bCpap L.(81, b 4t (1.7)
g [od+Lo*(e72]
which are the vertical-finite-difference analogs of the kinetic and
available potential energy per unit area. Here, the brackets (L
denote the area average over a region on whose boundary the normal

velocity vanishes; and

g’se-[e] = rofeia-iay

il

The requirement that the vertically-differenced equations (1.1 - 1.5)

conserve quantities that are analagous to the adiabatic invariants of

the exact equations accomplishes two things:

1) It virtually assures computational stability of the dif-

ferenced equations.
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2) It permits us to analyze the energy budget of solutions to

the differenced equations.
For a detailed development of the differenced equations and
energy invariants the reader is referred to Lorenz's original paper.

We complete the set of model equations with a thermal equation

for the ocean:

26w = H (1.8)
5‘{_:‘ w

lle solve the equations (1.1 - 1.5, 1.8) spectrally by expand-

ing the dependent variables in terms of spherical harmonic functions:
o0

o M AmM __m M m m i
(‘/I/Z/)@,G’),X' 9""’):2 2= (%\’Q“IT”AU">Xrl;QvVn)xlrn("(.(p/’

B ms=-n

and then truncating the series to include only certain pre-chosen

harmonics. Here,

Y™ ) = { 2nil (n-iml)]

4T (nriml)!

V)_ Dlmf Lrh(p
g ' ((,'05‘ O() &

where « 1is the colatitude, ¢ the longitude, and an an associated

m

n has m oscillations running east-west

Legendre's function. Y
around the globe and n - |m| zero-crossings between the north and
south poles. As is well known, the spherical harmonics comprise a

complete set of orthogonal functions and satisfy the eigenvalue

relation £ B
VY= - nlntl) Ya
rez
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where re is the earth's radius.

The somplete set of coupled ordinary differential equations

are as follows:

K(k+1) d__(t: = . P (q}m +L T )V'(Y-H)x (1.9)
dt r <nmy <v,sy i
X F,,,,,\ + 20000 S St CR
m
K(K*\) d Lk o _—{_ Z 2 (/C:\m r_‘s.f.L/:‘ /{T'/ )"(Y{-l) (].]0)
dt )é <n,my <YXS?
m.JS- )‘ '/z_ ,)- ’ )' A -J‘I'
x EV\VJ ”‘r)'( ?) (Z) 2= M k(K4 Alr'k
i v.5=
L2 -t ()
l PR PRt (1.11)
’ M S ms-J
G'QI;| & ——I— 2. Z <LPnMQVS-+Th G,—) Er\rkJ it
d—{:: Yé Z <nmy (Y:S) 3
e g . XS nlnn)-vlrat)- K(K\\)} Ap\n( H ,
C(nym) Ges) —Z—Y_‘
s (1.12)
: ™ e i
C;G.i ach et (_q/n g‘rs*‘ L Q:) Ean +
Je | g r mmr(ns)
& e Q:‘Xf {Y\lnfl)f\d\qf‘) i\(kfn e (/
(r\,m\ (".S) 'ZY_Z
0J-J' (].]3)

<l elaeel) B2 = oy (*/\ (2 lee)-klics) A
<

”J>
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dB ey (1.14)
dt %

In the above equations the symbol ,§%~> refers to that part
YAy

(o] tn
of EZ =, that includes only the finite set of "velocity
=0 mz-n
harmonics" -- the harmonics chosen to represent ¥ and 7. Similarly,
0 N
521 : refers to that part of Eib 2z that includes only the
n,m = mz=—n

"thermal harmonics" representing &, ¢ ,X , and @.,. To reduce the
possible number of deqgrees of freedom, we assume that the flow is
symmetric about the equator. In this case, the velocity harmonics

include only functions Ynm for which n -/m/ is odd; whereas the

msj

ity and

thermal harmonics have n - [m| even. The expressions A

EmSj are the Adams and Elsasser integrals defined by

nrk
. 7T zTT- .
mSy R ) AR T BT R |
A,,,,K—gs:nm dec gc«(p Ya I Je
and o i :
e §ax §ap 128 s TRy
hl"K_ ‘\_Oc‘Cp Qo( a(P aqp ()o( K o

James (1973) gives a formula for evaluating these integrals. In
equation (1.13), it can be shown that A?ﬂ;J =0 unless r=k + 1.

2om 7 m : :
Thus Qnm is coupled to C 4y and © 'y via the thermal wind

relation.

Under adiabatic conditions, the spectrally-truncated dif-

ferenced equations conserve the sum of the spectral truncations of
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(1.6) and (1.7). We shall refer to

Ky:n— Nm 2 3
= ;-_2. l s }h(ml)(z JOM)) i
and

AT:Z‘)(},AP {/leqt/é'"/f?(l Jo,,., , h#0, mz0

8 Lm™ o fs (Il les1?)-go

"S)

as the kinetic and available potential energy in mode n-m.

We solve the prognostic equations (1.9 - 1.12, 1.14) with a
predictor/corrector time-stepping scheme. Although there is ne
prognostic equation for X, we can obtain a set of diagnostic
equations for /1:': in terms of the prognostic variables ¥ 77, &,
4 ¥ Qw by replacing (1.13) with its time deri vaFive and substi-
tuting from equations (1.10) and (1.11) for g%;;' and féfi..

The resulting equations can be simplified in their general form and

solved by Gaussian elimination on the cemputer.

It remains to specify the friction and heating terms. They

are:
() (e.)
Py P, Bogy (1.15)
(a) (b) (e)
E = 4k V¥ -24% T wft (1.16)



) (d) (e)
Hg = —\er(e-e*)+,k_,(aw.95)—ga (1.17)
L3
(c) (C” (e)
He = ~hle-¢*) -l - £ (1.18)
2=
(d)
HW . '/\L(Qw"e_;) (1.]9)

where V; and @ are the surface streamfunction and air tempera-
ture (Eq. 1.23). The terms designated by letters represent the
effects of:

(a) friction with the ground, and

(b) between levels;

(c) net radiational convergence, mean sensible and latent
heat transfer, and small scale vertical mixing in driving
the atmosphere toward a steady state: &= 8*, O=0
that would prevail in the absence of large scale flow;

(d) anomalous latent and sensible heat exchange between the
ocean and lower troposphere; and

(e) small scale horizontal mixing.

The terms (a) can, if one desires, be thought of as an Ekman friction

in which case
x 2
WEKman 0 ———R—"A ‘2 < Y__.‘#S) (] '20)
& ¢ £

14



In (d) the anomalous heat flux from ocean to atmosphere is assumed to

obey:
flux =A (&, - o) - (1.21)
so that
/ K 7
Al: (?l}_)_.g__?‘ e AL i ——2\——- (1.22)
Qp CP IDWCPND

where D is the depth of the oceanic mixed layer (assumed constant)
and subscript "w" refers to ocean variables. We express the

surface variables in terms of the model variables by:

A A i (1.23)

If 99 and & are linear in pressure then Jtzz. However, it is more
realistic to assume that the variables are linear in height, in which
case J'= 1.6 for a "standard atmosphere”.

The above extremely crude parameterization abstracts the
atmospheric heating field into two parts: a part that is correlated
with the temperature of the lower bounding surface and a part that is
independent of it. Both parts are characterized by equilibrium states

! - y

: 1
(9*,0'*; Qw) and return time scales (K;’ i ;\T We have

tentatively assumed that these time scales are equal:

15
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and adjusted their values, along with the other parameters in
(1.15 - 1.19), to obtain a model general circulation whose spectral
energetics agree reasonably well with Saltzman's (1970) summary of the

observational data. The values we arrived at are the following:

%,,= 2.55 days }_—= 67.9 days
1 2 1
— = — == 10.2 days
o A D
L. 41.6 days and <© days
A2
*
o = 12.5 C
and
m o
E\// Z = \Q?(Y\L}L i ./{‘ / /M
Er 1 o Yot (.00016 day ) nE
E6 Z ning) 9"m
k EO' (n,m) Cﬂm

2 el S
The valve of K corresponds to %Eé'f— = 3.12 cm-sec ~ in (1.20). Our
S U

5 -1 -1 ; g
choice of >\] corresponds to A= 22.3 ly-day”' -deg”’ which is
smaller than the value of 63.1 used by Doos (1962). The two extrene
values of ,\\2 correspond to D = 9.3 meters and D =© (constant

temperature ocean). The eddy viscosity is quite modest; at the



highest wavenumbers considered it amounts to only about one fourth

- - * - -
the ground friction. &, which is assumed proportional to Yg is

sketched in Figure 1.4.

We do not permit the model to determine its own globally-
averaged temperature but set éf=6&s'=(7 throughout. Thus the only
globally-averaged temperature of physical significance is G° , which
is proportional to the average temperature difference between 250 mb

and 750 mb. For G2 only, we use
O ) X
(Hs). = (£ +41)(%°—c7,,° ) (1.24)

instead of (1.18). (7* is chosen so that the equilibrium & is less
than its value in Nature. In this way, we model implicitly the
destabilizing influence of water vapor in the earth's atmosphere.

The computer program that solves the model equations is
written in a general form that accepts any basic set of spherical
harmonic functions. The choice of specific set is to some extent
arbitrary, but the chosen harmonics should accommodate spectral energy
transfers analogous to those which are known to be important in the
real atmosphere. Table 1.1 presents the set of harmonics we have used
in the experiments in section 3. It consists of a zonal flow and 4
zonal wavenumbers, each with 3 degrees of freedom in the north-south

direction. The chosen zonal harmonics are just sufficient to resolve

the classical three-cell (Hadley, Ferrel, polar) structure of the

general circulation.

it
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Our restrictive choice of harmonics drastically under-repre-
sents the influence of the higher wavenumbers in the flow, whose
principal dynamical effect is assumed to be the destruction of accur-
acy in deterministic forecasts on a time scale of TA' 2 ke assume
a priori that for times longer than Tps only the statistics of the
large scale flow are pertinent; and we direct our research to the
questions:

1) How do the stationary statistics of our atmosphere change
when the properties of the ocean model are changed?

2) How long must one average to detect these statistical
changes above the random noise in the large scale flow?

Our approach is strictly valid only if unresolved small
scales exert no ocean-sensitive effects on the large scale statistics,
and if the random noise in large scales can be reasonably well mimicked
by a model that includes only large scales.

While a rigorous justification of our method awaits careful
experimentation with higher resolution models, we are encouraged by the
resemblance of some statistics of our simple model with those based on
real observations. Figure 1.1 compares the model energy cycle,
averaged over 357 days, with Saltzman's (1970) observed energy cycle
(band averaged in zonal wavenumber m) for winter and summer. The

overall agreement between model and atmosphere is good except for the

2The time required for the propagation of order one error from the
smallest scales resolved in our model to the largest scales is less

than three days.



TABLE 1.1

The set of harmonics used in the experiments described in this paper.

Harmonic n-m refers to YE.

Velocity Harmonics

5-0 8-3 11-6 14-9 17-12
3-0 6-3 9-6 12-9 15-12
1-0 4-3 7-6 10-9 13-12

Thermal Harmonics

6-0
4-0 7-3 10-6 13-9 16-12
2-0 5-3 8-6 11-9 14-12

0-0 3-3 6-6 9-9 12-12
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model wavenumber 3. Further experiments have shown that the situation
improves considerably when we include mountain ranges and large scale
stationary heating, which are known to force the very long waves.
Figure 1.2 compares the model average flow fields with the observa-
tions. Generally speaking, our simulation resembles the atmosphere
under winter conditions except for the imposed equatorial symmetry.
The method of spectral solution has been applied extensively
to Lorenz's model (minus the ocean) by other investigators. However,
ours is the first application (of which we are aware) that allows the
static stability O to vary in space. The static stability is known
from both theory and experiment to exert an important control on flow
in rotating, differentially-heated fluids. Moreover, static stability
and SST may be correlated in Nature; Namias (1973) has shown that when
SST anomalies are large, there is sometimes good correlation between
SST anomaly and the thickness (temperature) of the air below 750 mb.
Solving equations (1.9-1.14) with the harmonics in Table 1.1
amounts to time-stepping 164 coupled nonlinear real ordinary differen-
tial equations. With a time step of .25 days, one year's climatic

simulation equires about 3.25 minutes of CPU time on a 7600 computer

at a cost of about $32.
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Figure 1.1

Comparison of the model energy cycle averaged over one year with
Saltzman's (1970) observations (band averaged in zonal wavenumber m)
for winter (in brackets) and for summer (in parentheses). Boxes
represent energy in 105 joules m-z. Arrows represent fluxes in
watts m’z. Both the definition of energy quantities and the
spectral truncation differ between our model and the Saltzman data,
so that the comparison is not intended to be exact. The conversion
arrows give the gain of kinetic energy in each band from the total
available potential energy. The spurious energy loss from the
highest wavenumbers in the model would disappear if the time step

were reduced.
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3. Three Experiments

In this section we present the results of three experiments
in which the model equations were solved with the harmonics in Table 1.1
subject to the forcing (1.15-1.19, 1.24). The three experiments are:
I. A control run (CR) in which the sea surface temperature
is fixed (AZ = 0) and depends only on the latitude.
IT. A run (WM) with fixed large amplitude SST anomalies that
resemble the observed anomalies in shape.

ITIT. A mixed layer run (ML) in which the ocean is free (/\2 #0)
to adjust its temperature by heat exchange with the atmos-
phere. The mixed layer depth was taken to be 10 meters.

The mixed layer experiment was actually performed first. We then used
the time average of the zonally averaged sea temperature in ML for the
fixed ocean in CR. For experiment II we superimposed the longitudin-
ally-sinusoidal SST anomaly pattern of Figure 1.3 on the standard
ocean of CR. Because the anomalous heating field in experiment II
resembles the heating fields hypothesized in various linear theories
of atmospheric response to large scale stationary heating (for example,
Smagorinsky, 1953), we will refer to experiment II as the "weak
monsoon" (4M) experiment. Each of the three experiments was allowed
several months of simulated time in which to reach statistical equili-
brium. Then the equations were stepped for 357 days and all the data
was saved. Some averaged properties of CR have already been given in

section 2.

We begin our analysis of the three experiments by showing that

24
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the different ocean models cause no statistically significant
difference in the globally-averaged energy cycle. First, however, we
describe the very simple format we have used to compare statistical
averages: Let V(t) be any quantity and suppose we wish to compare
the average of V in run 1 with its average in run 2. We divide each
run of length T into N subihterva]s of equa]_]ength T/N and form
the average of V over each subinterval. Let %' be the average over

the i-th subinterval. Then the average of V over the entire record

invun J is:

Mz
L<““

— '_
VJ'N

F-
"
-

i
We assume that the subintervals are sufficiently long so that V a&nd

k
V are independent random variables if i # k. Then the variance of
i
V, assumed independent of i, is given by the (unbiased) estimator:
& e LA
O*Z: I Z (V-V)
Ned et

and the standard deviation of V is: " {

R ) e

We define a "significance parameter" for the difference between V}

L, = VELYEL F 6? r-GTz)

)

and V2 by: S

When S, 5 is larger than unity then V} and Vé differ by a

statistically significant amount. 2 For large 51,2 we have the

< i i i <V1> = <V,>, then
For example, if V, and V, are Gaus§1an-w1th Wik 2>
the probgbi!ity that S7.2 Zexceeds unity is 31.7%. Most of the
quantities analyzed appear not to be Gaussian, however.
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following (biased) estimate of the quantity TS defined in section 1:

T S*/Z. T ; (1.26)
7%

For S]’2 < 1 we can say only that o V(t) contains

significant energy at periods longer than T/N then the above method

underestimates the significance of the difference between Vi and

Vé. Since all of the model variables analyzed in the above manner had

computed spectra that were white or blue at periods exceeding one

month, we have chosen T = 357 days and N = 10.

Table 1.2 summarizes the global energy cycles of the three
experiments. The quantities tabulated are the same as those diagram-
med in Figure 1.1 for CR only. From the last two colums of Tabie 1.2
we see that if statistical differences exist between the three energy
cycles, they apparently cannot be detected above the random noise in
time averages of one year or less.

Of course, it is not especially surprising that space-time
averages should be similar in the three experiments, because all three
have the same time-longitude averaged sea temperature. It is more
likely that the experiments have different average spatial distribu-
tions of certain quantities and that the distributions are correlated
in some way with the SST anomaly pattern. Figure 1.3 shows the
average surface streamfunction in WM. A stationary signal is present

in the form of a low level ridge centered near the meridian of maximum

cooling. At upper levels, the ridge becomes a trough that is barely



Table 1 2 Energy Cycles of the Three Experiments

357-day average estimated - significance
Quantity o parameter
I-CR II-WM IIXI-ML i & IX III SI.II SI,III
Kinetic energy 0 12.06 11.90 12.32 «10 12 .24 W76 <77
in zonal 3 094 1.00 -87 009 '07 011 143 033
6 3.02 2.80 2.82 20 14 ,36 .63 +35
wavenumber m 9 2.95 3.00 2.80 21 1,230 326 +1.0 2h
(lcsjoule m-2) 12 092 087 082 007 -06 004 040 095
Available pot. g 45026 450’?1 45023 08{43 082 ogg loié .]2_3
. 4 . . . - - . .
ol A 5. 6 107 - 1.00 - L.185 084074312 35 .38
(107joule m <) 9 51 54 50 +05 .05 .05 ,28 .19
12 17 .16 P 4 01 .01 .01 15 .02
Conversion of 0 +30 .%g .;52 .83 8% .83 1?38 g;
3 .15 . - . . . . .
ATE to KB 5 .61 uBsg b a5 .06 .04 .05 .70 .51
inm 9 .62 .68 <60 .07 .07 .06 38 .16
(watt m-2) 12 .08 .07 .08 .QZ .02 ,02 .29 12
Generation of 0 2.89 2.87 2.85 .05 .08 .10 14 21
3 —.27 '.27 ‘026 '02 002 003 107 021
AFE in n 6 «db <=.d44 =50 i- 04 03 406 3 & 38
(watt m~2) 9 «24 | =25 =423 .02 .02 .02 27 .21
12 --10 -009 "009 001 0005 001 '74 045
Transfer of 0 "2-39 -2039 '2034 005 007 008 004 .35
APE tom 3 41 <45 39 .0% .04 .04 .64 «20
by 6 1.00 .9% 1029’ ugg ogg 083 cgg .gg
t erature 9 .80 .8 . . . . % 4
:ggzziign 12 .18 .16 .18 203 §.02.502 s12 .01
(wat1.: ik 3 01 .02 .01 .01 .01 .004 15 .08
Nonlinear & 34 213 .10 .01 .01 .01 54 807
transfer of S 32 12 A2 .01 .01 .02 04 2205
KE to zonal - 55 .0% .03 .02 .003 .003 .004 33 1.53
flow by o,
(Watt m ) 3 .04 .03 .04 '8§ cog 08% ofg o%g
b 6 "111 "008 ‘007 . 00 . ¢ . .
Ga;"dﬂi ¥§ vave O w08 | wedll w08 03 .03 .02 +28 501
1nterac&§ons 12 14 <14 i 8 01} 402 LOX 003 1.20
att m ]
Grogz Btﬂtic 166,01 165'98 165078 .19 t17 023 010 -55

s3ability _oy
(10”7 joule m
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detectable in the strong westerly flow. The signal in Figure 1.3 is

statistically significant (SI 11 exceeds 3.0) and agrees approxi-

mately with linear theory. It is interesting, however, that the
maximum response occurs in the subtropics (25 N lat.) and not at the
latitude of maximum anomalous heating (44 N). This is apparently
because the strong nonlinearities associated with mid;latitude storms
would completely disrupt a weak stationary wave. The average stream-
function in CR is independent of longitude.

The large SST anomalies in WM have no direct influence on
the average flow at middle and high latitudes; but they may affect the
travelling storms that pass through these regions. Figure 1.4 shows
the average static stability field in WM. A region of low static
stability occurs just downwind of the region of maximum surface heat-
ing and a stable regions occurs downwind of the maximum cooling. From
linear baroclinic instability theory, we anticipate that the storms
might intensify as they pass through the region of low static stability
and weaken in the region of high stability. One possible index of
storm intensity is the variance of potential temperature which is mapped
at sea level in Figure 1.5a for CR and Figure 1.5b for WM. The field
of SI, 11 for the averages in Figures 1.5a,b is given in Figure 1.5c.
From Figure 1.5b it does indeed appear that storms intensify in the
region of low static stability. A spectral analysis of the tempera-
ture records at stations A and B in Figure 1.5b verifies that the

larger variance of 695 at station A is primarily caused by the

intensification of disturbances with periods between 3 and 9 days.
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Figure 1.5a

The variance of sea level potential temperature

in de92 in CR.

Figure 1.5b

The variance of sea level potential temperature

; Qi
in deg™ in WM.
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Figure 1.5c The field of significance parameter for the averages
in Figures 1.5a, b.
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Figures 1.6 a, b show the variance of potential temperature
at 500 mb in the same two experiments. Again in WM, ?;T;? is a
maximum innfﬁe region of low static stability. Somewhat surprisingly,
however, (5')2 also shows a maximum in CR (Fig. 1.6a). The maximum
in CR is not correlated with a minimum in static stability and occurs
purely by chance.

Still another index of storm intensity is the quantity

V\II/Q/ T \/_\/6)__ W -(9_ (]'27)

where w is the vertical velocity (cm sec_]) at 500 mb. The above
exppression is proportional to the conversion of potential to kinetic
energy by transient motions. The field of (1.27) is contoured in
Figure 1.6c for CR and in Figure 1.6d for WM. In Fig. 1.6d the inten-
sity index is 40% greater at station A than at station B. However, as
we see from Figure 1.6c, the model atmosphere is so noisy that a
disparity of more than 20% can be accounted for by chance alone. In
summary, it appears that SST anomalies as big as + 4 C can infiuence
the pattern of storm intensity if they persist for as long as a year.
However, the effect they produce is no more than twice as large as
could be expected by chance alone.

Experiment ML developed SST anomalies of about the same
and extent as those observed in Nature. As in the observa-

magnitude
e model SST anomalies show good correlation

tions (Namias, 1972), th
£low on the scale of quasi-stationary waves

with the atmospheric
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Figure 1.6

The variance of potential temperature at 500 mb

(e')2 in CR and
in WM; and
the transient conversion w©® ' 1in CR and

in WM.
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(model wavenumber = 3). In the model at least, this correlation is
not surprising; because Xz < %1 the model ocean acts like a Tow-pass
filter to the atmosphere with a cutoff at period 260 days for D = 10
meters. Figure 1.7 shows the surface air temperature and SST spectra
at 45 N in ML. The peaks at 30 days, 7 days, and 3.5 days correspond
to waves with discrete wavenumbers m = 3, 6, 9. In the model, as in
the real atmosphere, most of the energy is at periods between 1 and
30 days; but the SST spectrum is red. Table 1.3 gives the contribu-
tion of the various zonal wavenumbers to the globally-averaged tem-
perature variances in the air and water and to the total correlation
coefficient, r, between the air and SST anomalies. Although most of
the air temperature variability occurs in the storm scales (m = 6.9),
the ocean, with its high impedance to short time scales, responds
chiefly to m = 0 and 3 which together account for 94% of the total
correlation between air and SST anomalies. We have spectrally anal-
yzed the globally-averaged surface air temperature variance and

found that periods longer than 20 days account for 75% and 65%
respectively of the variance in wavenumbers 0 and 3.

We have visually analyzed the fields of SST and 24-day-
running-mean-averaged streamfunction at 750 mb for the full record in
ML. We find that the SST anomaly pattern changes most rapidly during
blocking episodes when the kinetic energy in wavenumber 3 is a
maximum. Such episodes occur at irregularly spaced intervals of 50

to 75 days. Between the episodes the SST pattern shows a remarkable

persistence.
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TABLE 1.3

The contribution of the various zonal wavenumbers m to the globally
averaged variances of ' = 8_ -6 _ ' = e i

g 0 s 5 es and ew = ew ew and their
average spatial correlation coefficient r. The bar () denotes

time average; the brackets ([ ]) denote space average, and

r = [00.1/(L(62)°1"/% [(83)%1'/%).

B icker [(o71  L(oy73  [ogel] 3
m=0 .23 .033 032 045
3 1.30 065 072 095

6 2.17 .006 .007 009

9 1.1 .0004 .0004 0006

12 .57 .0001 0002 0003

Total 5.38 .105 o it i .149
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In order to determine whether or not the SST anomaly patterns
affect the weather in ML we have tried the following procedure: We
have computed é?w from equations (1.14, 1.19) using the surface air
temperature éé obtained in CR. We refer to the 6M(t);o obtained as
the "slave ocean" for run CR. In both the slave ocean and the ocean
in ML the maximum SST anomalies occur near 50 N. Figure 1.8 shows the
longi tude, ¢2)(t), of the maximum (positive) SST anomaly at 50 N for
ML and for the slave ocean in CR. In both cases the glob of warm
water moves to the east on average.

We now introduce an averaging method which has proved useful
in analyzing the slowly moving SST fields. At every time step we
determine ¢90(t) and translate the picture of the flow until Qoo(t)
coincides with the zero meridian. The average of all the translated
pictures -- which we call the "composite average" -- is the average
flow seen by an observer moving with the SST anomaly. We emphasize,
however, that all of the quantities so averaged are themselves
measured in the reference frame attached to the earth.

Figure 1.9a shows the composite average SST anomaly pattern in
ML and the corresponding composite average of the 24-day-running-mean-
averaged streamfunction anomaly at 750 mb. As in the real observa-
tions (Namias, 1972), warm spots are correlated with anomalous geo-
strophic wind from the south and high pressure to the east.

Figure 1.9b shows the corresponding composite averages for the slave
In Figure 1.9b the SST amp]ifude and the phase lag

ocean in CR.

between pressure and temperature are smaller than in Figure 1.9a; but
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Figure 1.8. The longitude, ¢o(t), of the
maximum positive SST anomaly at 50 N for
the slave ocean in CR (1eft) and for ML

(right).
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Figure 1.9

The composite average SST anomaly (broken line) and 24-day-
running-mean-averaged streamfunction anomaly at 750 mb for
ML and

for the slave ocean in CR. The Maximum anomalous wind
speed is 1.6 m-sec” .

The composite average transient conversion (deg—cm-sec-])
in ML and

in CR.



43




these differences can be quantitatively explained by taking into
account the fact that the slave ocean adjusts its temperature without
changing the temperature of the overlying air. Except for the slight
difference in phase lag, the composite averaged atmospheric flow
fields (such as the 750 mb pressure in Figure 1.9a, b) are remarkably
similar in ML and CR. This similarity supports the view that SST
anomaly patterns are the result rather than the cause of low-frequency
motions in the atmosphere.

Do the SST anomalies affect the pattern of storm intensity in
ML? The composite average static stability in ML and CR show similar
patterns, although there is a slight (.1 C) tendency for lower sta-
bility over warm water in M.. Figures 1.9 c,d show the composite
average conversion of potential to kinetic energy by transients in
ML and in CR. The quantity contoured is:

m

=|-h
@ | —h

we -

f -
where () denotes the time average in the reference frame fixed on

m - -
the earth and (7) denotes the moving (composite) time average. The

storms are actually less intense over warm water in ML than in the

correspoiding location in CR. The differences between Figures 1.9c,d

are therefore almost certainly not statistically significant.
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4. Discussion

Two quantities are fundamentally impertant in deciding whether
long-term predictions based on sea surface temperature can be useful.
The quantities are (in the notation of section 1):

1) the expected change in predictand AXV> caused by the

anomalous sea state; and

2) the ratio of the expected change to the expected error in

the prediction oV

The first quantity determines if and how the predicter {sea tempera-

ture) is capable of affecting the statistics of the predictand V. The

second quantity measures the confidence that can be placed on a single

prediction. In terms of the sea temperature predictability time T0

and the significance time scale TS
ALYy [ To

o Is

While any nonzero value of zS<V9gl represents a definite predictive

skill, the present study has shown tha, even for exaggerated SST

anomalies where ASV> may be appreciable, ‘%%%£> is; often small.

Whether predictions are ever feasible in such cases will depend

largely on the uses to which the predictions will be put. For example

a long-range program of one month agricultural forecasts might be of

great ultimate benefit even if the predictions were correct only

slightly more often than they were wrong.
The conclusions of this study may depend critically on the

many simplifying assumptions we have made, especially our rather
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extreme abstraction of the atmospheric heating field in which we
explicitly neglect complicated radiation and condensation processes.
Even accepting the format of equations (1.15 - 1.19), arguments can no
doubt be made that the values of the forcing coefficients should be
greater or smaller than the values we have used. Here, we simply
restate that our values for the atmospheric friction and heating
coefficients were arrived at by the somewhat novel approach of tuning
the model to the observed energy cycle. This method may be preferable
to a direct estimation of the forcing parameters, because it incorpor-
ates the difficulty of allowing for the effect of the infinite ver-
tical diffusion rate within layers upon the average fluxes of momen-
tum and heat. To oceanographers the ten-meter mixed layer will seem
too shallow; but we can easily argue that A should be two or three
times the value quoted in section 2, in which case D could be as
large as 30 meters with no change in ’XZ‘ More serious, perhaps, is
our neglect of ocean currents. In mid-latitudes, at least, anomalous
north-south advection of the mean horizontal temperature gradient in
the ocean could conceivably compete with anomalous surface heating as
the cause of SST anomalies. Finally, by omitting continents, we have
neglected important sources cf warm and cold air.

However, granting all of the above objections, the results of
this study may still be noteworthy both because of the great current
interest in air/sea interactions and because the large primitive

equation models (which do the best job of simulating climate) cannot

yet be run economically enough to answer statistical questions about



what is essentially a statistical problem.
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CHAPTER 11

The Equilibrium Statistical Mechanics

of Quasi-geostrophic Flows

Abstract

We have applied the methods of classical statistical mechanics
to derive the inviscid equilibrium states for one- and two-layer
turbulent quasi-geostrophic flows, with and without bottom topograbhy
and variable rotation rate. The mathematical development parallels
that of Khinchin (1949) for systems with a single integral invariant
of the motion. In the one-layer case without topography we recover
the equilibrium energy spectrum given by Kraichnan (1967). In the
two-layer case, we find that the iﬁternal radius of deformation con-
stitutes an important dividing scale: At scales of motion larger than
the radius of deformation, the equilibrium flow is nearly barotropic,
while at smaller scales the streamfunctions in the two iayers are
statistically uncorrvelated. The equilibrium lower layer flow is
positively correlated with bottom topography (anticyclonic flow over
seamounts) and the correlation extends to the upper layer at scales

larger than the radius of deformation. We suggest that some of the

statisitical trends observed in non-equilibrium flows may be looked

on as manifestatiors of the tendency for turbulent interactions to

maximize the entropy of the system.
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1. Introduction

We wish to investigate the equilibrium statistical mechanics
of some simple fluid models which are of particular interest to
oceanographers and meteorologists. Specifically we shall derive the
equilibrium statistical states toward which spectrally-truncated
representations of the equations of motion would evolve in the absence
of forcing and viscosity. These equilibrium states are of interest
in themselves, and may be especially important if realistic non-
equilibrium flows are "close" to inviscid equilibrium in some of their
properties.

The models considered in this paper are quasi-geostrophic and
also quasi-two-dimensional in the sense that they conserve analogs of
the kinetic energy and enstrophy of ordinary two-dimensional flow.

We focus initially on two complementary systems. The first fluid
system consists of a single homogeneous layer bounded vertically by
flat horizontal plates. The fluid is constrained by rotation about a

vertical axis to move only horizontally so that the governing equation

ef motion is:

%; + Ty, f)=0 (2.1)

j"" Vi . The

has been discussed by

where ¥ is the streamfunction of the flow and

equilibrium spectrum associated with (2.1)

Kraichnan (1967; 1975); however, a complete mathematical derivation

of the equilibrium probability distributions has not appeared in the

literature. The derivation presented below follows very closely that



of Khinchin (1949) for systems with one integral invariant of the
motion. The reasons for presenting it here are two: First, the com-
plete derivation contributes several interesting details to the liter-
ature of the statistical mechanics of (2.1); and second, it serves as
a model for the mathematically similar but algebraically more complex
analysis of the other system introduced below.

The second fluid model corresponds to quasi-geostrophic flow
in a system comprised of two immiscible layers. The governing equa-
tions are a coupled set:

2%, + T(¥ L) £=1 2 (2.2)

) [ )

3

where %a is the streamfunction of the top layer, 5 of the bottom

layer, and ji, jz are given by:

¥ = v xR B e (2.3)
ji = P8 Bt )

The constants F], F2 are defined by

where f_ is twice the (constant) rotation rate, g' the reduced
)
gravity, and D, the mean depth of the i-th layer. Equations f2.2)
Ys ;
express the conservation of the potential vorticity, jz, of each

layer. A detailed derivation of these equations is given by Pedlosky
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(1970). With a slightly different interpretation on the Fis equations

(2.2 - 2.3) are equivalent to the "two-and-one-half-level baroclinic
Model" of the atmosphere (see, for example, Phillips (1956)). The
equilibrium state of (2.2) has not been previously discussed.

Both the systems (2.1) and (2.2) have been used to model geo-
physical flows. They differ from the general quasi-geostrophic equa-
tions in their neglect of the spatial variation of fo and Di‘ We
defer discussion of these latter effects until later in this paper.
The initial goal is to contrast the equilibrium states of (2.1) and
(2.2), or, said another way, to study (2.2) under the discontinuous
cases Fi =0, Fi # 0.

Both the systems (2.1) and (2.2) are assumed to have simple

closed horizontal boundaries. Corresponding to these boundaries we

define eigenfunctions g}p{g as the solutions to:
(2.4)

qughf?fCZ- . k2>0  constant

QZ =0 on the boundary
with normaiization 4%? = 1, where the overbar denotes integration

over the region enclosed by the boundaries. For simplicity we assume

2 when i # j. (when this condition fails in practice it can

always be restored by infinitesimal perturbations in the boundaries.)

g )

{
D1 e Kosa - 7
It then follows that &= 5&; . The functions zgﬁs are assumed

to be complete in the sense that for any regular function f(x,y)
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fF==Z£Cwy) ; f.=f@

=i )

except perhaps at boundary points. We then expand the dependent

variables of (2.1) and (2.2) in terms of the eigenfunctions:

wé; x. @ | (2.5)

o

o0
(¢, 4)= 2 (a;,b:) @
The choice of notation is a matter of convenience.

The coefficients {Xi} and {ai’bi} comprise generalized
coordinates for the systems (2.1) and (2.2). In the phase spaces
spanned by these coordinates each point represents a possible state
of the fluid system, and the evolution of the fluid system is describ-

ed by a trajectory that is specified by (2.1) and (2.2) in the form:

(2.6)
dy: = ZZ _Re 5Bl ey
dt J 2 R kik,
\ -
Ci_Av fi ‘3;0:'& CLJA,Z. ) ALE —(k'hzfpl}{l {l-‘ !)‘:
d{ I o
o g .0 3 S ) -
dB; = ZZ Bu; L{,'B/Q & NPT “(kAE) b+ E a,
dt g L
where R
Bip == W UCE



Let ﬁ)(x],xz,...,x ,t) and ,@(a], RRL P P bn,t) be the
probability distribution functions for states in the phase spaces,

which we now assume to be finite-dimensional. The time evolution of

the finite-dimensional systems is assumed to be governed by (2.6) with
the summations truncated to run from 1 up to n. By definition, the

probability functions obey Liouville's equation:

:)3563+ 2 T)? (Fx. ) (2.7)

251

and a similar equation for the other system. Equation (2.7) may be
thought of as a continuity equation for motion in phase space with the
"velocity" ;1. given by (2.6). From (2.6) and the fact that B;Jg
is zero whenever two of its indices are equal, it follows that

9X; - O so that (2.7) becomes:

oX¢ pur
26 + 5 % 2= DF .o (2.8)
Y] e=1 oX1 Dt .

At equilibrium (S}{:@;o ),ﬁ(x],xz,...,xn) is constant along

trajectories in phase space. If a trajectory eventually passes arbi-

trarily close to every point within a given volume V of phase space,

then it follows from (2.8) that # is a constant over V. The con-

ventional assumption of equal a priori probability distribution in

phase space is then equivalent to the assumption that V is deter-

mined only by a few general constraints on the motion.

M e TR Ow
System (2.1) conserves the quantities V4. v¥ and 8]

where n is any integer. However, the spectrally-truncated form of
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(2.6) conserves only the spectrally-truncated forms of v4.v¥  and

j’l and we take these for our general integral invariants. Similar

remarks apply to system (2.2) with quadratic invariants fz, j;L and
v¥vY X :
kAl vﬁgﬁi + (4-%)*

In terms of the generalized
Fourier coefficients the constraints are:

§ ¥ = Zn e i A ‘ (2.9)

= L=\

where E and Z are constants proportional to the kinetic energy

and enstrophy; and

b r 2
z‘ A5 =Z, (2.10)
n o,
% B = L
" o (REMED A 2, (kB o2 9 A B .
b3 C(,—L? § R Ac+ T w}i‘;f_;/ﬁ\hbv = é—:cb
(_.:Q =\ e S ST

k> (ke +F+ F)

where Z s and Eab correspond to the potential enstrophies in
a’

b?
the top and bottom layer and to the sum of total kinetic and avail-
able potentiai energy.

We note in passing the existence of an alternative mathemati-
cal formulation. In place of the truncated-spectral streamfunction
representation adopted here, one might instead consider the flow to
be comprised of a large but finite number of discrete point vortices.
Liouville's theorem applies to the latter system if the phase coor-

dinates are taken to be the Cartesian coordinates of each vortex

center. The statistical mechanics of the discrete vortex system was



first discussed by Onsager (1949) and an extensive literature exists.
However, for the present application we much prefer the spectral

formulation as the superior approximation to continuum fluid flow.
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2. The Single-layer System

Corresponding to system (2.1), let XysXgsenusXy be the
coordinates of an n-dimensional phase space which we denote by I
Let

E(x],xz,...,xn) = X X"t Lt X

and

1
e

Z(x],xz,...,xn) = ky

be phase functions which we refer to as energy and enstrophy. Any
set of coordinates (not including all n coordinates) will be called
a component of the system. The subspace consisting of the ccordinates
of a particular component Jj will be denoted by qu The smallest
component subspace is one that contains only a single coordinate X

and we denote it by the special symbol X\r.

We define the structure function of the system by:

: {2.11)
_Q_(E,Z\ = [im 'AT[‘_‘/‘J—Z fﬂg dV

SES§720
E-$E¢ Zx,/<E+4E
3 & p 1
2-3Z <5 hixtczt8Z
R 54 R SR 2
where dV = dx] dx2...dxn is a volume element in F Thus
() (E,2)dEdZ s the volume of phase space [7 in which the energy is

PN B
within g—E of E and the enstrophy within 5 O BT AR o

f(x],.. ,x_) is any phase function, then the phase average of f in
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a system with energy E and enstrophy Z is assumed to be

SE% o e aend

SE,S250 SE ST LL(E,Z)

where the integration limits are the same as in (2.11). For any
component we define the component structure function L) (E Z) by an

integral similar to (2.11), but w1th dV replaced by dV., a

4
volume element in [g, and the integration performed only over the
region of /ii in which the energy of the component is within é;é
§1

of E and the enstrophy within 5 of Z. It can easily be shown
(Appendix A) that if the full system consists of m components
(m £n) with no coordinates in common then

(2.13)

_(E,Z) ff\[_% LJZ&Q\CZU
pripad G 2886 (E 57%‘-'1)

Thus the structure functions obey a composition law analagous to
convolution.

Knowledge of the structure functions gives information about
the probability distributions of the components. Consider a system
comprised of two components with subspaces 111 and /72. Every
state of the system, represented by a point P in f' determines a
I

1 In Appendix A it is shown that the

probability distribution function for P] in its f} subspace is

corresponding point P] in

given by
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CLlE 2) (2.14)

where E and Z are the constant energy and enstrophy of the entire
system; E] and Z] the energy and enstrophy of component 1, which
vary with position in f_']; and ,(7_2 is the structure functicn of
component 2. :

We begin the analysis by calculating the structure function

for a component consisting of a single coordinate X5 It is by

definition:
sJ: (E z) lira IS S\dy"'
Q¢ 5 EZ
' SE, S0 §
E-SE <x < E+§E
2 {82 Lhlxrtc 2482
& 2

which is infinite for k].2 E = Z and zero otherwise. We set

i, (e, 2}~ 6(1«;,::) g(k;lé“—Z)

where C(k. ,E) has to be determined. Integrating the above relation
i

one finds that

LT

g :
C’/b-,.;\ = ,(cu,—(E,z) dz  for E L0

However,

L |
o9 . — A i lx" ! =
S; Ou,;(E,Z)d/., : JE/—amO s SRS el VE
E-JE<x < E+SE
> 1 - A,

w'(E Z) T e 5(‘\.'&.—2) IO] E,Z? 0. (2 l5)
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One can now, in principle, compﬁte the structure function of a
component consisting of any number of coordinates simply by using
(2.15) in the general formula (2.13). However, for components con-
taining a large number of coordinates the integration in (2.13) be-
comes difficult and we seek an asymptotic result. Following Khinchin,
we define the generating functions and conjugate functions for the

system and its components:

Flip)- S de Sz a0

(o( A)

(2.16)

(c,2)=€ g z) /Bl 8)
28 5 4

<O = . -« E
B, (x,0) = Jde [dz (g 2)e

o)

e Rl 2) « € Pt 2) 844 )

v

Here, o« and (> are any two real numbers for which the integrals

converge. From equation (2.13) it can easily be shown that

a' {2.17)
G4, = T . (2, 3)
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and

(<, @)
U ”3(5, z}= 55§ LTrdL dz, U{o( ?3_ z:) (2.18)

m—l (A
X (/m(d B)(l_ 5 £, Z~:‘:IZJ

1, =1

That is, the conjugate functions obey the same composition law as the
structure functions. However, the conjugate functions are integrable:
_SOZIZ &fiﬂZ-(J;(“'B)(5521)f
whereas the structure functions are in general not integrable.
The expression (2.18) can be looked on as the joint probability
distribution of the sums of independent random variables

E = E] * E2 g A, Em

= Z] + 22 Wi & T Zm
exprescad in terms of the joint distribution functions of Ei and

Zaid' If the (/. (""?)' 7) satisfy the conditions of the Central

i e £, &

Limit Theorem, then as m-><, the expression (2.18) tneds asympto-

tically to:
(2.19)
(o(,e)( . [ \
E 7) I RS 5 o —_— K
ke ’ 27T 6z 67 Ji-p* l(l-()‘)
E-mg et 2 ( Ei;lIXE) (2%:;12?7\§* (:l }TVL) _X
YEKT:> P\ & Sie pikivk P

]It will turn out that, for a suitable choice of < and B , the
FANY 2 ¢~ z) are joint distribution functions for the energy and
‘ = .

enstrophy of the components.



where

m (=]
me= Zm,, RN 2Vedz  (2.20)
L= [e]
m e : 2 )
GE : E:f. GE.Z GE :—: Sog (E_— mE},') U“ (O(I(GEI 2) dedz
. s : (3
P zp @< SEm ) (2-m, ) leaicdz
- 6“7_ 0 : i

and similarly for m., and GZZ. By means of (2.16) we may express
the above parameters in terms of the generating functions:

_ i (2.21)
Mg = —-[_QV\QE_L( mzr—tfmdz‘]ﬁ

G = [ﬂhj}]ad; 647.1" L &n l)--]ﬁ:@

=

aenl DI SR i

e uwl«/fnmd [tn8 1o

Now consider the problem of obtaining an expression for the
distribution of the phase point corresponding to the state of a small
component (i.e. one containing few coordinates) in its component sub-
space in the case where the total phase space has a very large dimen-

L2

sion. Let (2 be the structure function for the entire system, s
the structure function for the small component, and 12 2 the struc-
ture function for the component with subspace /71 - - f’, ol
exact expression for the function we seek is then given by (2.14)

with E and Z equal to the total energy and enstrophy of the



system. Since both [ and fg_ contain a large number of coordin-
ates, we can use the asymptotic expression (2.19) for both (1 and
{2, . The constants « and /2 have so far been arbitrary, but we
now find it convenient to define them to be the roots of the two
coupled equations:

(2.22)

At this point we assume these solutions exist in which case 1t is
obvious that the integrals in (2.16) converge. Then using (2.19 -

2.22) we obtain, after some simplification, the following asymptotic

expression for

(2.23)

1, (€, Z-1,) ~ exp {-xa,-—sz,—e(q—mggﬁ.
f:a‘(é;i ;W @) i
o ClemeY -ty Y- ) |

where A, B, C, D are constants given by

/\FQ\ B__\_(ﬂr\(:ﬁ\fe(g e (pr‘i}q'(.{ D:'sz(gn@ll«

SER S(&,) S(9,) S(&,)

and

(&) (Ind ) (I e
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If the last three terms in the exponent in (2.23) are negligible then
(2.23) reduces to Boltzmann's Law.

We can now apply (2.23) to find the probability distribution
of a single coordinate Xs in system (2.1). Putting (2.15) into

(2.16) we obtain for the generating function of the component consist-

Qg‘: (o(' 6) = \/;_:i;;"' (2.24)
+ g

provided 0(#F§K12> 0 . (If not, then gi is divergent.) Accord-

ing of X5 *

ing to (2.22), <X and fB are the solutions to the equations:

B [ (2.25)
_ " i Selpie=ct
E™ g ;2, 1B R*
’,‘ / 2
/ R
y e S e
Z- 2 :; q"{ﬁk’;l

In Appendix B we shew that such solutions exist and are unique for any

: 2 e 2 2
E and Z = k*zE provided kmin £ ky = kmax where kmin

k 2 are the minimum and maximum squared wavenumbers in the trunca-
max

tion. This result i
(1973). Using (2.24) in (2.23) we obtain the distribution function

and

s a generalization of a theorem of Fox and Orszag

for «x.:
i

r A
(ot DX~ F (621 «4,;(.3\ (2.26)
A x.) = |aBRT A, €
#(x.) /.lffr_-

where
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A =Nt G.  Fo= (dipk?) 26

and
/

G = 2 (I, k)’ i k")’

L £ L iy E
(oa eV (o i)™/ 3 gl )(wixp‘? iy

For smail Gi’ X; is normally distributed with expeéted energy

2.27
Fuaks (2.27)
3 cii(sb-L

When Gi is not small (which is the case when mode i contains an
appreciable fraction of the total energy) then the distribution func-
tion for X5 contains a significant correction in the form of locail
maxima at the rms X For modes evenly distributed in wavenumber
space, equation (2.27) predicts an equilibrium energy spectrum of

general form

El(k) = k (2.28)

a+bk™

which can range between + 1 in slope. Thus equilibrium statistical
mechanics predicts a spectral power law that is in rather poor agree-
ment with the inertial ranges of two-dimensional turbulence which are
thought to be k™53 and k3. Equation (2.28) has been verified in
numerical simulations of (2.1) by Fox and Orszag (1973) and Basdevant

and Sadourny (1975).

It is interesting to note that the equilibrium circulation

T

is zero for our truncated system. This is in contrast to the



-—

untruncated equations for which ¥ is conserved (and thus nonzero in

general) and it suggests that not all of our results will generalize

—-—

to numerical schemes that conserve the analog of ¥ as well as —fi
and V¥'v¢
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3. The Two-layer System

We consider now the baroclinic system (2.2) with integral
invariants given by (2.5). The mathematical development parallels the
single-layer case rather closely, and we present only the results. In
the two-layer system the smallest component with definable energy and
potential enstrophies consists of two coordinates a, and bi’ and
the Boltzmann Law aoproximation to their joint probability distribu-
tion is found to be:

— GRS )
‘é? (C(‘;, [D;) = Jf_&_@_—_ﬁl Q%’PK‘*(\&G}—K‘; L;Z?»ZPLahl_n._

e

where
Q.= &{rie) + Bl + Ba
Ry = "((%‘i&»‘) y B, 4 FBL(,;EH)L

P = o + @, (virt) +ﬁ,_('¢/g‘+l)

and ry = kiz/F] ijs the nondimensional square wavenumber, & = D]/DZ’
and o«, /3, [3, are constants that depend on the specified total
energy and potential enstrophies of the system. The conditions on

-, B‘ E Ql for the existence of the generating functions

) are the same as the conditions for the integrability

Bl B, R,
of 42(a, !_7:) , namely:
” (2.30)

Q"’>O 2 R;_>O

and
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Q; R.-P* = _Sv: (re1+8) [+ B& < (rele8)+

+ o3, (ret) +o(p>L(_‘5C-+|)] > 0

for every i. For given values of the constants of motion Eab’ Za’ Zb

we find «, 3 , ﬁiL as the solutions to the equations:
, - 2.3l
= <Eab;7 = Eab el
Z L Zgr?mdp
S <Zp:” " %s

<
“

subject to the conditions (2.30). Equations (2.31) are the analogs

of (2.25) in the single-layer case.

From (2.29) one may readily compute

(2.32)
2. - R./2 (Q.R: - P.%)
Sy i it i
' 2
<b].2> = Q;/2 (Q4R; - P;°)
R, - P 2)
<a].b1.> = P]/z (Q'I i i

and thereby obtain expressions for the following quantities of

physical interest:

(i) the average kinetic energy per unit depth in mode i
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in the top layer KT = 1/2 kiz <a12>
in the botton layer K = 172 k,2 .2
0
(ii) the average available potential energy in mode i ?%r <(ai—bi)2>

and its ratio to the total kinetic energy
(iii) the correlation coefficient P = <a;b.>/v <a1.2 biz> between
the streamfunctions in the top and bottom layer in mode i.
We note that if our truncated system contains arbitrarily large

wavenumbers (k 2

+ =) then the conditions that 0., R. > 0
max |

restrict s], By to positive values. In this circumstance it can
easily be shown that Pi assumes only positive values so that the
streamfunctions in the two layers are positively correlated at all
wavenumbers. If Bi» By < 0 then the layers may be negatively
correlated. Such states are artificial in the sense that they exist
only because of the finite truncation. They represent the relaxation
states for fluids in which the energy is initially peaked near kmax'
As the system adjusts toward equilibrium, energy spreads toward lower
wavenumbers, decreasing the enstrophy, and forcing a negative correla-

tion between layers to conserve potential enstrophy. For flow in

(k_. £y 0) equilibrium states in which « < 0 are
min
These states are non-artificial in the sense that bounded-

bounded domains

possible.

ness is a property of real flows, but they show no discontinuous change

in any property from equilibrium states in which a > 0. For systems

containing arbitrarily large and small scales, the conditions
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(2.30) become «, Bys 8,> 0.

We delete the subscript from r; and regard r as a continu-

ously varying nondimensional square wavenumber with the value

=1+ § corresponding to motion at the internal Rossby radius of
deformation. In the two-layer system, the radius of deformation con-
stitutes an important dividing scale. At scales of mbtion large
compared to r = 1,5 the kinetic energy spectra (per unit depth) of
the two layers are nearly equal and assume the same general form as
the equilibrium spectrum (2.28) for a single-layer flow:

{2.33)
7 Ky &€ L for r<|§

(°(+B“1B_7_\ B LA

The kinetic energy spectra also approach the single-layer Timit at

sufficiently small scales:

ER ‘3 (2.34)
V/ \ g O\
rz|<r «*@‘ { o pz\f/s\

e L+ B2
by « Bz/ \: (ot Bor)

for ¢>>14+8

As r becomes large, their ratio, top to bottom, tends to the value

RC= B /@lgz _ The available potential energy spectrum

approaches zero at either extreme. For r << 1,8 the correlation

s nearly unity, but it falls abruptly
00_'

toward zero near where r equals the larger of SIR

I/J'R:g In cases of interest the latter expressions are both of

coefficient between layers i
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order unity. Thus equilibrium two-layer flow resembles a single

barotropic layer on scales larger than the radius of deformation and

two uncorrelated single layers on smaller scales.

If §=1 and g-= B=@ then we are examining the
algebraically simple case of "equivalent layers". If B>0 then the

realizability conditions (2.30) become simply o(>—@rm.n. Assume

oy << 1 and - 1. The two kinetic energy spectra are

identical and their shape is controlled by the ratio % bR £ i

B " ]/r — then the spectra are increasing with r at all
>
wavenumbers, but if \i\)]/rmin >>1 the spectra are red. For
F—]—( B¢ FJ— the spectra have a maximum between r . =~ and r_. .

max o min
The ratio of available potential to total kinetic energy is:

e Y

({+v) + B(rt2)
X+ BY

€2
which peaks near r = ]2 at a value of .24 for |Z [>>1 .

The ocean and atmosphere are stongly forced fluids whose

high-wavenumber cut-offs are not arbitrarily-chosen limits, but are

. n 3 52 1
determined by the "viscosity jtself. Nevertheless, the mode

equations (2.2) contain realistic turbulent interaction terms, and we

may expect even stronjy viscous flow to exhibit some of the character-
istics of the model inviscid equilibrium if the. Sorbuignt, iMiE e

are efficient in moving the system toward the state of maximum entropy.

In any case, the equilibrium states should indicate the direction 1in A
P et Tows.
which the interactions will tend to drive the statistics of real flow
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Figure 2.1 presents the equilibrium statistical variables in model
two-layer fluids corresponding to the ocean and atmosphere. We choose
6 = 1/7 for the ocean and & =1 for the troposphere. The "inverse

temperatures" a, Bys By are chosen to make 'Q“\m = 10, and the ratios

B B8

u—]- and 5 are near the minimum required to make the kinetic energy
- A=

spectra red at Vit ™ 10 .
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Figure 2.la

The kinetic energy spectra per unit depth (solid lines, arbitrary
scale) and the available potential energy spectrum (dashed line,
different arbitrary scale) for equilibrium two layer flow in the
case where § = 1/7,1&? = 10, and B]/a = 103. The kilometer
scale gives the corresponding inverse wavenumber in an ocean with
a radius of deformation of 35 km, the value on earth in mid-

Tatitude.
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10° r=10°, . 0>
10,000 1000 450 100 OKM

Figure 2.1b The same as Fig. 2.1a except ¢ = 1. The kilometer
the inverse wavenumber in an atmosphere

scale gives
qual to 450 km.

with radius of deformation e
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4, Bottom Topography and Variable Rotation Rate

We now generalize equations (2.1) and (2.2) to cases whefe the
lower bounding surface is not flat and the Coriolis parameter f varies
linearly in the northward direction y by a small fraction of itself

in the flow region. For system (2.1) the new equation of motion is

0F + T, £+ H(xy)) =0 (2.35)
ot g
where
*
H(x,y) = h(x,y) + 8 (¥ - y,)
and
fo
h(X,Y) = D"—d(x’,Y)
Here,
D is the mean depth of the fluid

d(x,y) is the elevation of the bottom above its
average level (assumed small compared to D)

£ is the value of f at y = ¥
0
df _
g% dy at y = Y-

: i e eigenfunctions we
Expanding H(x,y) = g H, ¢i(x,y) in terms of the eigenfuncti

may again express the invariants of the motion in terms of the general
coefficients:

.- (2.36)

i
m

z X
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Methods similar to those used previously then give

i —(4fﬁb;l)(Y;—ﬁbL’4L)L (2.37)
Go0x) = gkt e <+ it

7T

as a first approximation to the distribution of X; - Again, o and
g are constants determined by E and 2 subject to ~the conditions
that o + g kl.2 > 0 for every i.

The distribution (2.37) has the same form as for flat-bottom

flow (Hi = 0) except that the Guassian curve is centered on

LXK, > = [31'_?_;_5; (2.38)
£+ RR.T

instead of zero. Thus the average streamfunction field is an energy-
weighted version of the topographic field. If the flow contains
arbitrarily small scales of motinon then g > 0 and the correlation
between streamfunction and topography is positive at all wavenumbers
(anticyclom'c flow over seamounts, vorticity decreasing northward).

If g <0 then the correlation is negative at all wavenumbers. Again
the latter states are the relaxation states for fluids in which the

nergy is
energy is initially peaked near kmax For all g # 0 the energy

enhanced on topographic scales:
(32 ”\’Ll ,-{;1 (2.39)

In strongly damped numerical cimulations of (2.35) Holloway and

Hendershott (1974) report a positive correlation between topography



and streamfunction and a topographic enhancement of the energy
spectrum similar to (2.39) .

As a special case consider the situation with h(x,y) = 0,
g*#0 on 0 < x,y <L with ¥ " L/2. With g > 0 the mean
equilibrium flow is a broad westward-flowing interior current with
eastward return flow occurring near the north and south boundaries.

In the two-layer system, the effects of topography and vari-
able rotation rate are non-equivalent in the sense that topography
alters the expression for potential vorticity in the Tower layer only.

The governing equations are (2.2) with
Bk
F = VY o+ F (4 k) + BT (%-40)

€ = VI o+ Rk + BYs) +

a
; X

Let ‘K-— 3 A(Q and ﬁ*{y%)f %; @. . Then the

joint distrib;tion of a,, b]. is given by:
ISR - / o)?— (2.40)

g . P exv[- (A, —a,
’(3 (a"l bl_') - \/_C‘-ztﬁt «_};. } Qp L
" |
_ Relbs- k) 2P (a-af) (6,12 ]
P. are again given after (2.29) and
* 7Y

where Qi " Ri
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where
a;’ = BR, V(V‘+i‘§) A.
FS  (QrR-p?)

b;h = B2 i (relss)
BT Jap-p Fqlrﬁ,(rﬂ)—l‘gv.

C(L*'—‘ @J_ Y"("&-ch)[_o(‘f“/gzklﬂhg)_!‘ﬁk
SR (Qr-p?)

b'*.__ ﬁ}; 1“_(_",Ll—+—g) [o(+ ﬁ’,(\ﬂ—Hg)]‘&:F
SF, (QRrR-pP?)

The new expectation values are

T 2AgR - P

and similarly for <b;>, <b1.2>, <a;b;>. The average flow field con-

sists of a topographic part and a g* -part. The ratio of upper to
lower mean topographic flow is
)
a *t 6](r + ])

(red kinetic energy spectra), is nearly unity

Thus bottom topography

1
which, for large 'TI,

for r << 1 and decreases sharply at r = 1
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affects the equilibrium upper layer flow only at scales large compared
to the radius of deformation. Smaller scale topography traps energy

preferentially in the lower layer. For large

B B
1 2
== = b

a a

* =
the ratio a; /bi is nearly unity and both layers are equally

affected by the variable rotation rate.



5. Numerical Verification

To test our theory we have developed a numerical model that
solves the equations (2.2) for flat-bottom two-layer flow in spectral

form. The model ocean is a square box in which the streamfunctions

are represented

K K
W= = = Y,. Sinnllx Sin miy
n=t sl L box L pox

with K = 31 in the cases discussed. The average layer dpeths stand
in the ratio § = 1/7. Our computer program implements the fast
method of Orszag (1971) in which the derivatives are calculated in
Fourier space and then transformed to physical space where the
Jacobian is formed at discrete points and then inverse-transformed.

This algorithm is exactly equivalent to, although computationally much

faster than the direct spectral convolution written in equation (2.6).

Our time steps are center-differenced with periodic smoothing to

remove the computational mode.

In two experiments (summarized in Table 2.1) we have stepped

the model equations forward from arbitrarily chosen initial states

under inviscid conditions. We have also solved the equations (2.31)

iteratively for the inverse temperatures a, Bys By corresponding to

the initial states and then computed from equations (2.32) the final

statistical states toward which the simu]ations should relax if our

theory is correct‘ In F‘igur‘es (2.2 - 2.5) the prEdiCtEd f’ina] states

are drawn with dashed lines. For reasens both aesthetic and practical,
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TABLE 2.1

Summary of Numerical Experiments

Experiment A ' B

Initial conditions layers correlated -uncorrelated
e spectral spike
- {4; at k=8
Lpox 2200 km 1500 ¥m
Radius of deformation 40 km 40 km
kger 17.5 11.9
Length of experiment 800 days 500 days
S velocities
top/botton
in cm per sec
initial -~ 10.00/5.00 13.03/4.11
after 2 mos 9.68/4.96 14.55/4 .98
at end of 10.07/5.38 13.86/5.66
experiment v
predicted 12.70/7.31 13.15/7.41
equilibrium ,

Available Potential energy
in 106 erg per sq cm,

initial 8.62 8.29
after 2 mos 8.79 6.%2
end 7.43 4.67

2:12 1.56

predicted
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the model output data has been doctored in the innocuous manner des-
cribed in Appendix C where the term "pseudospectrum" is also defined.
Here we only note that the method of data reduction should not affect
the comparison between theory and experiment.

In both experiments the model statistics generally evolve
toward the predicted final states, although the two differ signifi-
cantly even after several years of simulated time. The adjustment
of the energy spectra is especially slow. However, many signatures
of the predicted equilibrium state appear very early in the simula-
tions and persist despite the fact that vigorous energy exchange
between the different scales of motion is still occurring. In experi-
ment A the layers are initially perfectly correlated with ¢, = -5 ¥
plus a tiny perturbation and the initial kinetic energy spectra are
bluer than the anticipated final spectra (Fig. 2.2). After two
months the correlation between the layers has dropped significantly at
the higher wavenumbers (Fig. 2.3a) and the kinetic energy spectra have
steepened (Fig. 2.2a) for k < 31. 1In the same period the ratio of

available potential to total kinetic energy evolves rapidly (Fig. 2.4).

A puzzling aspect of the initial development is the relative slowness

with which the highest wavenumbers (k > 31) equilibrate. Perhaps

: s of the box
this is because these wavenumbers correspond to the corner

(n < 31, m < 31) in wavenumber space, and, by accident of this choice

: jvel iads. the
of wavenumber truncation, enter 1nto retatively few triads.. £6r

- 3 i but
remainder of experiment A the <tatistical adjustment is slower bu

et i . The kinetic
generally in the direction of the predicted final state. The
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energy spectra converge at low wavenumbers (Fig. 2.2b) and the highest
wavenumbers gradually relax toward the theoretical curves.

At the start of experiment B the layers are uncorrelated at
all wavenumbers and the energy is concentrated in a spectral spike at
k=8. This experiment shows rapid development, probably because
energy is initially baroclinic. Within two months 25% of the avail-
able potential energy has disappeared and the Towest wavenumbers show
a significant positive correlation (Fig. 2.5a). Medium wavenumbers
show a negative correlation which is probably associated with the
strong conversion of potential to kinetic energy. After 140 days the
negative correlation disappears. The final correlation curve is

extremely close to that predicted by theory (Fig. 2.5b).
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Figure 2.2a Pseudospectra of kinetic energy per unit volume in the
top and bottom layers at the beginning of experiment A
(smooth curves) and after 57 days. The black triangle
on the abscissa marks the wavenumber corresponding to

the radius of deformation.
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Figure 2.2b  Pseudospectra of kinetic -energy per unit volume in
experiment A after 794 days (solid Tlines) and the
theoretical equilibrium state (dashed lines).
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Figure 2.3a The correlation between layers in experiment A
after 57 days (solid curve) and the theoretical
“equilibrium correlation (dashed curve).
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Figure 2.3b
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WAVENUMBER
The correlation between layers in experiment A

after 794 days (solid curve) and the theoretical
equilibrium correlation (dashed curve).
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Figure 2.4 The ratio of available potential to total kinetic energy in
experiment A. The theoretical equilibrium is represented
by dashed curves. Two of the curves have been displaced to

the right.
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=D

Figure 2.5a

The correlation between layers in experiment B
after 53 days (solid curve) and the theoretica]
equilibrium correlation (dashed curve). In
experiment B the layers were initially uncorrelated.
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Figure 2.5b

WAVENUMBER

The correlation between layers in experiment B
after 498 days (solid curve) and the theoretical
equilibrium correlation (dashed curve).
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6. Discussion

We have derived the equilibrium statistical states toward
which spectrally-truncated representations of the equations of motion
would evolve in the absence of forcing and viscosity. The theory gives
no information about the speed of approach to inviscid equilibrium,
which, as our experiments show, may depend on both the initial condi-
tions and the statistic being considered. Neither the theory nor the
experiments thus far performed address the question: to what extent
do the real geophysical fluids resemble ideal equilibrium? We anti-
cipate that waves (which occur in our systems if topography or variable
rotation is present) will complicate the adjustment toward equilibrium.
Numerical experiment by Rhines (1975) and by Holloway (in preparation)
have shown that on scales where the Rossby wave phase speed approaches
the rms particle speed the transfer of energy by turbulent interactions
is inhibited.

It is of great interest to inquire whether the foregoing

analysis can be extended to cases in which the forcing and damping are

nonzero. We are pursuing this possibility. However, on the basis of

current understanding, there 1s some cause for pessimism. Equilibrium

statistical mechanics is incapable of yielding statistics at a time

lag and such statistics are an important ingredient in nearly all

turbulent closure approximations.

a4
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APPENDIX 2.A

This appendix proves (2.13) and the assertion about (2.14).
Suppose m = 2. By definition,

f1(e,;z2) - hm - §SS dv’
SE,S2>0 SESL E- 55 ce'<E45E,
2-324 < 2'<248Z/,

B .
= N SSSC\W * 15652 Sggd\/z%
SE,S—L“’O _ SE £ = _: £
0<t-|<E-* /;_ LiE-‘-—g‘?/( l:7< I:-l:,+$.é—

. - a - 2 - .
DLZ< 2 +£7./7_ Z-2,.527< Z,< Z-2,+5L

Z.

— SSS dV| _kfll(E'-EHZ"Z‘)
O<E\<E
0<z,<2

SRS |

- XOEJE. fo%dzi [,Ql(t;”z,\ 0 (e-g,,7-2).

The upper integration limits may be made infinite because

- = i f E. > FE or Z, > Z. The extension
2 (E E,» Z-1;) is zero for E .
to m>2 is straightforward.

jon of the
Now let T = r] + r2 and let Ml be a reg

i i e as Cartesian coordin-
Subspace L» in which (x], Xpseees Xr) serv

ates. Let M be the region of I' such that for every PeM the
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first r coordinates of P represent a point Py e M. Let f(P) be

a phase function defined on Per with the falues:

1 ifPeM
f(P) =
0 otherwise
Now, according to ( ) the probability that P

€ M] is equal to:

1
£ (Pe M) = £ Pe ™)
o b L 1 SSS£Cer)dv?

SESzo0 SUEZ) SESZ

But T S =
{"h’\ ——“__. j_(f {:( PI) Cl V ’ — .,(,( # “‘n';‘_ (_t_-_"t_';) Z- ?, )c“/l/
Se.§2 Iy

because f depends only on the coordinates of ry- Thus

£2(PeM) = ¢S N, (B-E,72-2,) 4V

Mi T alea)

which proves (2.14).
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APPENDIX 2.B

This appendix shows that there exists a unique solution

to the equations

1 = /

< ¢ ad+Bk.2
1 5 ki’
& & at B>

subject to the constraints o = g k 2

K 2 2 2

. <
min ke~ < kmax ’

The above equations are equivalent to:

2f -~
~ = (2,8 =E

i D_.F ("()FJ) = l‘ﬂxz H
56

where f(a,g) = In ¢ (a,B) = - 1/2 Z In (a + 8 k1.2) + constants.

1

Thus f(a,g) 1is defined on the infinite sector RaB

plane in which « +f;k1.2 > 0 for every 1.

one can verify that on RaB:

2
B, 0.
-f >0, -f >0 and (f ) (fFog) - (fgg)” >

B

We can therefore define curvilinear coordinates on RaB by:

= £ /f §= =1
B a

98"

a,B

(2.8.1)

a-B

By direct computation,

(2.8.2)



In terms of the curvilinear coordinates, the region R 8 is described
a

by:
2 2
Knin < ¥ < Kmax
0 <8 <
and the equations (2.B.1)

which always has a unique solution in R . because, from (2.B.2):

2
2@ s) _ faafes - (fog)
3(a,8) f

a

< 0 throughout RaB'
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APPENDIX 2.C

In order to facilitate comparison of our model statistics with
the theoretical curves in section 3 we have adopted the following
method of analyzing the model output: We apply the standard statisti-
cal estimators for square amplitudes and correlations to groups of
Fourier modes corresponding to wavenumber vectors K = (n,m) 1lying in
circular bands of unit width in the n-m plane. This type of averaging
is strictly correct only in the case of homogeneous isotropic flow
where the Fourier amplitudes corresponding to different vectors of
the same length can indeed be regarded as independent realizations of
the same random variable. Let N(k) be the number of modes contained
in the band centered on integer wavenumber k in our truncated model.
For an infinitely large box and perfect resolution of the flow, N(k)
is a jittery function of k. To remove the artificial jitters from
our "pseudospectral" estimates we multiply each estimate by a smooth-

ing factor
C Kk
S(k) = k)

where C is a constant obtained by least-squares fitting Ck to N(k).

. ; 1
The above averaging procedures were applied equivalently to the e

R ated
output and the theoretically determined equilibrium state calculate

from equations (2.32).
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