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Abstract

Sexual dimorphism is common throughout the animal kingdom, leading to sex-specific phe-

notypic differences. The common whitetail skimmer dragonfly, Plathemis lydia (Drury,

1773), is sexually dichromatic, where males of this species display a conspicuous white

abdomen and females display a dark brown abdomen. Differences in abdomen conspicu-

ousness between male and female P. lydia are likely attributed to differences in selective

pressure where males use their white conspicuous abdomen during male-male territorial

chases. We hypothesized that male P. lydia would exhibit wing morphology adaptations to

better offset the costs of predation and territoriality and that these adaptations would differ

from females. We used field-collected images to quantify differences in body length, wing

length, wing area, wing shape, and wing loading between male and female P. lydia. Our

results show that male P. lydia have significantly shorter fore and hind wings relative to body

size with a higher wing loading when compared to females. We also found that male P. lydia

have narrower and pointier fore and hind wings compared to females. These results are

consistent with the idea that males are adapted for faster flight, specifically higher accelera-

tion capacity, and higher agility whereas females are adapted for higher maneuverability.

Introduction

Evolutionary biologists have long been captivated by the variation in coloration seen across

the animal kingdom and research on coloration has significantly advanced our understanding

of evolutionary processes. Inter- and intraspecific signaling are pervasive and have evolved as

central elements of key ecological and evolutionary processes. For instance, signaling is essen-

tial for species recognition, mate choice, and predator avoidance [1–3]. Intraspecific color

divergence has been a central focus of evolutionary research [4–6]. Sexual dichromatism, a

form of sexual dimorphism, may occur when selection favors males with exaggerated signals,

such as brighter and more colorful morphological traits for mating and male-male competi-

tion, whereas selection on females favors dull coloration for background matching [7–12].
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Conspicuous communication signals, such as bright and intense coloration, can impose sig-

nificant costs as they are often used by visual predators to identify prey [13–15]. Therefore it is

axiomatic that, compared to females, the risk of detection and predation are high for conspicu-

ous males [16–20]. Nonetheless, evidence suggests that certain adaptations, such as attack

deflection, altered behavior, signal partitioning, and communicating privately (i.e. in a manner

that is less conspicuous to predators than to conspecifics) can offset the negative consequences

of exhibiting vivid signals [14, 21–25]. For instance, Chotard et al. [25] found that the conspic-

uous hind wing wingtails in the scarce swallowtail butterfly function to deflect a predator’s

attack away from vital body parts. Veins in these regions were found to be less resistant to ten-

sile force and break sooner while maintaining fore wing integrity and allowing for an escape.

Such adaptations are favored by natural selection as they permit the survival of conspicuous

prey [26]. Other processes besides predation risk may also drive the evolution of adaptive mor-

phological traits. For instance, organisms that exhibit sexual selection may undergo adaptation

to offset pressures from male-male competition and female mate choice. Male victors from

competitions with male rivals benefit by gaining increased mating opportunities [27]; hence,

morphological features vital for male-male competition are likely under positive selection pres-

sure in the context of sexual selection.

Wing shape can be an excellent indicator of adaptation to selective pressures such as preda-

tor avoidance [25], sexual selection [28], migration [29, 30], and foraging strategies [31]. For

instance, wings that are long and narrow are associated with increased speed and agility (the

speed at which a turn can be made), whereas wing shapes that are short and wide are associ-

ated with reduced speed and increased maneuverability (the radius of the turn that can be

made) [32–39]. Specifically, in terms of increased speed, wings that are long and narrow are

associated with high acceleration capacity [40]. In addition, body and wing sizes greatly impact

the flight performance of flying organisms through changes in wing loading [41]. Wing load-

ing is the measurement of the amount of weight carried by each wing in flight [42].

The order Odonata, composed of dragonflies and damselflies, is one of the oldest lineages

of winged insects known for their large size, vivid coloration, conspicuous diurnal behavior,

and flight performance [43]. The morphology and shape of dragonfly wings are highly variable

[35]; possibly indicating divergent selective pressures on wing shape. The flight performance

of a dragonfly can be substantially affected by variation in the shape of fore and hind wings.

Johansson et al. [37] found that migratory populations of the globe skimmer dragonfly (Pan-
tala flavescens) had a broader wing base and an overall more slender wing shape compared to

non-migratory populations, suggesting that wing shape is important for successful long dis-

tance migration. As for wing loading, dragonflies with low wing area relative to body mass

exhibit high wing loading which increases flight speed and organisms with high wing area rela-

tive to body mass exhibit low loading which increases maneuverability [41]. Organisms with

high wing loading exhibit turns with large radius, whereas, organisms with low wing loading

exhibit turns with small radius [42].

The common whitetail skimmer dragonfly, Plathemis lydia (Drury, 1773), is sexually

dichromatic; males exhibit a conspicuous white abdomen with a median dark band on translu-

cent fore and hind wings, whereas females exhibit a dark brown abdomen with median and

terminal dark spots on translucent fore and hind wings (Fig 1). Differences in abdomen and

wing coloration between male and female P. lydia are likely attributed to differences in selec-

tive pressure. Experiments on clay models suggest that white coloration is more conspicuous

to avian predators than duller and darker coloration. For instance, Marshall et al. [44] found

that white painted lizard clay models were detected and attacked more often than brown and

gray painted lizard clay models. Another study found that the luminance contrast and attack
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rate were higher on lizard clay models with white markings when compared to lizard clay

models with purple markings [45].

Male P. lydia use their white conspicuous abdomen during male-male territorial chases,

however, they do not use them during courtship with females [46, 47]. Considering that the

visibility of male P. lydia is enhanced, it is likely that they are detected more frequently by

predators than females. Predator evasion and male-male territory chases presumably pose the

same selective pressures on wing size and shape. For instance, increased acceleration, speed,

and agility are essential flying abilities for evading predation [48]. Such flying abilities may

allow male P. lydia to accelerate to a maximum speed quickly and evade predation despite

increased detection. As for male-male territorial chases, increased speed is associated with

Fig 1. Dorsal view of a (a) male common whitetail skimmer dragonfly and (b) female common whitetail skimmer

dragonfly (Plathemis lydia).

https://doi.org/10.1371/journal.pone.0303690.g001
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effectively herding rival males out of claimed territories [47, 49]; hence, it is likely that

increased speed is an essential flying ability for male P. lydia. Considering that females are not

under the same pressures as males, it is likely that female P. lydia favor wing shapes that

increase maneuverability and gliding instead of speed and agility. Therefore, we hypothesized

that male dragonflies will exhibit wing adaptations associated with increased acceleration,

speed, and agility to escape from frequent predator attacks and perform male territorial chases,

whereas females will exhibit wing adaptations associated with increased maneuverability. We

predicted that wing male P. lydia will exhibit narrower and pointier fore and hind wings and

higher wing loading compared to females.

Methods

Specimen collection

Male and female Plathemis lydia were caught with insect nets during the summer of 2022 in

Greenville, North Carolina, United States of America (35.6069˚ N, 77.3665˚ W). We placed

each individual in a clear plastic bag with a reference scale on top and photographed with an

iPhone XR. We immediately released all captured specimens once photographs were taken.

We examined dragonfly wing venations from each photograph to prevent measuring recap-

tured dragonflies. No permits or voucher specimens were required as this study was carried

out on public lands and did not involve collection or preservation.

Body length, wing length, wing area, and wing loading

We used the program ImageJ version 1.53 [50] to estimate the length and area of the fore and

hind wings of each photographed P. lydia dragonfly. Body length was measured from the tip of

the head to the end of the abdomen (excluding appendages). We used the distance between

landmarks 0 and 5 to estimate the length of the fore and hind wing (S1A Fig). To measure the

area of the fore and hind wings, we used imageJ to trace the outline of the wing shape. These

points were carefully taken from the interior side of the most exterior venations (S1B Fig). In

addition, a straight line connected gaps on the proximal side of the wings (landmark 1 and 10

on fore wings; landmark 1 and 11 on hind wings). We measured the body size and wing length

of 36 individuals (18 males and 18 females). Due to wing damage, we were not able to calculate

wing area and wing loading for all 36 samples. Instead, we calculated wing area and wing load-

ing for 32 individuals, 18 males and 14 females. In addition, due to the dark banding on the

fore and hind wings, we analyzed the shape of 9 fore and 10 hind wings (no duplicate wings

for any individuals).

We used a Shapiro-Wilk [51] test to determine if the residuals for body length, fore and

hind wing length, and fore and hind wing area were normally distributed. We calculated rela-

tive fore and hind wing length by dividing mean fore and hind wing length by body length and

calculated relative fore and hind wing area by dividing mean fore and hind wing area by body

length. Wing loading is defined as body mass relative to wing length as an indicator of flight

efficiency and maneuverability [52]. While we were unable to collect the dry body mass, we

used body length3 as an estimate of body weight and hence a replacement of body mass to cal-

culate total wing loading. To calculate total wing loading, we divided the estimated body

weight by the sum of the area of all four wings for each individual
estimated weight ðbody length3Þ

fore and hind wing area

� �
:

We performed a Welch’s t-test to evaluate whether there was a significant difference in

body length between male and female P. lydia dragonflies. We used an analysis of covariance

(ANCOVA) to test for differences in wing traits between male and female P. lydia while using

body length as a covariate to control for body size. Specifically, we built models that fit log
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(fore and hind wing length), log (fore and hind wing area), and log (wing loading) as a func-

tion of log (body length), sex and their interaction. We performed all analyses above in R ver-

sion 4.3.2 “Eye Holes” [53].

Wing shape: Size variation and allometric effect

We used the R package StereoMorph [54] to obtain 10 landmark points on the fore wing and

11 landmark points on the hind wing from each photographed P. lydia dragonfly (S2 Fig).

Depending on the sex, P. lydia dragonflies have median dark band or median and terminal

dark spots on translucent fore and hind wings, and therefore, we used the program Darkroom

version 6.3.2 to alter photo exposure (black, midtones, and white) in order to identify wing

venations and collect wing landmark for shape analyses. We then used the program MorphoJ

[55] to perform all wing shape analyses with collected landmarks. In order to directly compare

fore and hind wing shape without the effect of size, we performed a generalized Procrustes

analysis (GPA). A Procrustes analysis implements isomorphic scaling, translation, and rota-

tion to determine the optimal fit for two or more landscaped shapes.

We then performed a Principal Component Analysis (PCA). We corrected for wing size by

extracting residuals from a regression of procrustes distance to log centroid size before testing

for shape difference between the fore and hind wings of male and female P. lydia. The use of

residuals, to account for allometry, assumes a common allometric relationship in both sexes.

Wing centroid size is the measure of size, calculated from the square root of the sum of squared

distances from the centroid of all landmarks. Correcting for the effect of size on shape is neces-

sary as wing size has an allometric component, and therefore has the ability to affect wing

shape variation [56, 57]. Residuals are uncorrelated with the independent variables and are val-

ues of shape that do not contain the effect of size [58]. Finally, we performed a permutation

test with 10,000 rounds on procrustes distance, as the dependent variable, and the residuals, as

the independent variable to test if there is a significant difference between fore and hind wings

of male and female P. lydia dragonfly.

Results

Body length, wing length, area, and wing loading

Residuals for body length, fore and hind wing length, and fore and hind wing area did not

deviate from normality (S1 Table). Average and standard deviations for all morphological

measurements can be found in S2 Table. We found that male Plathemis lydia dragonflies

were significantly longer than female dragonflies (t = -7.4424, df = 33.236, p-value = 1.427e-

08) (Fig 2). When running an ANCOVA and using body length as a covariate, we found that

male P. lydia dragonflies had significantly shorter fore and hind wings when compared to

female dragonflies (Table 1 and Fig 3). In addition, we found that male P. lydia dragonflies

had significantly lower fore and hind wing area when compared to female dragonflies

(Table 1 and Fig 4). Furthermore, when comparing total wing loading between male and

female P. lydia dragonflies, we found that male dragonflies had significantly higher wing

loading than female dragonflies (Table 1 and Fig 5).

Wing shape: Size variation and allometric effect

We found that the fore wing centroid size between male and female P. lydia dragonflies was

not significantly different (ANOVA: F = 2.18, df = 1, p-value = 0.1596) (Fig 6). In addition we

did not find a significant difference in hind wing centroid size between male and female P.

lydia dragonflies (ANOVA: F = 0.08, df = 1, p-value = 0.7762) (Fig 7). When controlling for
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size, we did not find a significant difference in fore wing shape between male and female drag-

onflies (Permutation test with 10,000 rounds, p-value = 0.0925) (Fig 6). However, when con-

trolling for wing size, we did find a significant difference in hing wing shape between male and

female P. lydia (Permutation test with 10,000 rounds, p -value = 0.0306). We found that male

hind wings were narrower at the base and middle with pointier tips than females (Fig 7). For

the fore wings, the first principal component accounted for 39.29% of the variance and the sec-

ond principal component accounted for 25.89% of the variance (S3A Fig). For the hind wings,

the first principal component accounted for 56.23% of the variance and the second principal

component accounted for 16.70% of the variance (S3B Fig).

Discussion

Our results show that male Plathemis lydia have a significantly longer body length, have signif-

icantly shorter fore and hind wings relative to body length, and higher wing loading when

compared to females. We also found a significant difference in wing shape between male and

female P. lydia, where the hind wings of males were narrower at the base and middle with

pointier tips than the wings of females. Fore and hind wing centroid size between male and

female P. lydia were not significantly different, showing similar trends to fore and hind wing

area when not corrected for body length. Plathemis lydia is a sexually dichromatic organism,

where males exhibit a conspicuous white abdomen and females exhibit a dark brown abdo-

men. The conspicuous abdomen of male P. lydia are not used during courtship with females

Fig 2. Mean body length for male and female common whitetail skimmer dragonfly (Plathemis lydia).

https://doi.org/10.1371/journal.pone.0303690.g002
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but instead during male-male territorial chases [46, 47]. Therefore, due to enhanced visibility,

it is likely that male P. lydia are detected more frequently by predators than females. Conse-

quently, differences in selective pressures due to sexual dichromatism may have driven the dis-

parities found in the fore and hind wing between male and female P. lydia.

Plathemis lydia exhibits male-biased sexual size dimorphism, where the body length of

males are significantly longer than females. Sexual size dimorphism has been widely observed

throughout animal taxa including birds [59], anurans [60], fish [61], and insects [62]. Across

taxa, the evolution of larger body sizes has been found to be favored by both natural and sexual

selection with larger body sizes being associated with higher fitness [63]. Larger body sizes

may be sexually advantageous in predator escape [64], resource competition [65], and compe-

tition for mates [12].

Sexual selection through male-male competition strongly favors larger male body sizes,

contributing to the evolution of male-biased sexual size dimorphism [66]. For instance, territo-

rial bees have undergone selection for larger body sizes compared to females due to their

highly territorial behavior and male-male competition as well as the resource defense polygyny

mating system of the species [67]. Male-biased sexual size dimorphism has also been associated

with an increase in male body size plasticity that is likely driven by sexual selection on males in

insect species [68]. In the order Odonata, body size of territorial species is linked to measure-

ments of male fitness such as longevity, mating rate, lifetime mating success, and territorial

success [69, 70]. These measurements of fitness are potential drivers of male-biased sexual size

dimorphism in P. lydia, especially considering the male-male competition over territorial

resources in this species [71].

Male-male territorial chases are energetically costly and having wings that maximize abili-

ties associated with territorial defense is essential [72]. Territorial chases in dragonflies often

result in males being evicted from a claimed territory, hence, increased speed is a vital flight

Table 1. Summary of morphological comparisons using an ANCOVA test.

Response variable Effect df f P-value

Fore wing length Body length 1 0.5671 0.4569

Sex 1 37.2196 8.11e-07

Body length: Sex 1 0.0278 0.8687

Residuals 32

Hind wing length Body length 1 8.5875 0.006199

Sex 1 31.3211 3.501e-06

Body length: Sex 1 1.6513 0.208002

Residuals 32

Fore wing area Body length 1 5.1824 0.03066

Sex 1 31.0303 5.848e-06

Body length: Sex 1 0.0646 0.80118

Residuals 28

Hind wing area Body length 1 10.521 0.003049

Sex 1 21.122 8.368e-05

Body length: Sex 1 0.205 0.654194

Residuals 28

Wing loading Body length 1 205.4594 2.021e-14

Sex 1 28.2541 1.171e-05

Body length: Sex 1 0.0441 0.8353

Residuals 28

https://doi.org/10.1371/journal.pone.0303690.t001
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Fig 3. Wing length comparisons between male and female common whitetail skimmer dragonfly (Plathemis lydia):

(a) Forewing length and (b) Hindwing length. The teal colored circles and slope represent data from female

dragonflies whereas royal blue colored triangles and slope represent data from male P. lydia dragonflies.

https://doi.org/10.1371/journal.pone.0303690.g003
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performance [47, 49]. Lohmann et al. [73] found, via simulation, that dragonflies with higher

speed produce overshooting, which is an adaptive feature of male-male territorial chases.

Overshooting is an aggressive interception strategy to pursue and effectively herd rival males

from a territory while avoiding collision. Hence, morphological wing features that increase

overall speed and energy efficiency should be selected for in dragonflies that perform male-

male territorial chases.

Energetically efficient flight is dependent on wing shape, which is tightly linked with flight

performance [40, 74]. For instance, wing shapes that reduce flight costs are long and narrow

and associated with increased speed and agility [32–39]. Berwaerts et al. [40] found that long

and narrow wings are correlated with high acceleration capacity. Male P. lydia have narrower

hind wings compared to females suggesting they are adapted for high acceleration during terri-

torial chases. However, P. lydia males have short fore and hind wings relative to body length.

Fig 4. Wing area comparisons between male and female common whitetail skimmer dragonfly (Plathemis lydia): (a)

Forewing area and (b) Hindwing area. The teal colored circles and slope represent data from female dragonflies

whereas royal blue colored triangles and slope represent data from male P. lydia dragonflies.

https://doi.org/10.1371/journal.pone.0303690.g004

Fig 5. Wing loading comparisons between male and female common whitetail skimmer dragonfly (Plathemis
lydia). The teal colored circles and slope represent data from female dragonflies whereas royal blue colored triangles

and slope represent data from male P. lydia dragonflies.

https://doi.org/10.1371/journal.pone.0303690.g005
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One explanation for shorter fore and hind wings is that the decrease in wing area allows for

higher wing loading [41]. Wing loading, the ratio of weight to wing surface area of an organ-

ism, plays a significant role in flight speed and flight maneuverability [41, 42, 75]. Organisms

with high wing loading have a smaller wing area relative to their mass which increases their

flight speed whereas organisms with low wing loading have greater wing area relative to their

Fig 6. (a) Transformation grids and (b) warped outline drawings for fore wing shapes of male and female common whitetail skimmer

dragonfly (Plathemis lydia).

https://doi.org/10.1371/journal.pone.0303690.g006

Fig 7. (a) Transformation grids and (b) warped outline drawings for hind wing shapes of male and female common whitetail

skimmer dragonfly (Plathemis lydia).

https://doi.org/10.1371/journal.pone.0303690.g007
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mass which increases their flight maneuverability [41, 42]. It is likely that male P. lydia have an

increase in energetically efficient flight due to the shape and size of their hind wings compared

to females; which may be vital considering the male-male territorial chases that males perform.

Additionally, in territorial odonate species, males with longer wing lengths have been found to

defend territories for fewer days compared to males with shorter wings, suggesting that this

may be another advantage of exhibiting shorter wings during male-male competition [76].

Increased agility and speed due to narrow wings and higher wing loading is likely to result in

more effective exclusion of competitors from a dragonflies’ territory.

In addition to male-male territorial related stressors, male P. lydia are likely to experience

predator related stressors due to enhanced visibility. Organisms with bright conspicuous col-

oration are more likely to be detected by predators than organisms with dull coloration, espe-

cially males in sexually dichromatic species [13–18]. Increased speed and agility are essential

flying abilities for evading predation [48] and, similarly to male-male competition, morpholog-

ical features that increase these flight performances should be selected for. Considering that

male P. lydia exhibit enhanced visibility, it is likely that they are detected more often than

females and therefore, more susceptible to predation. The morphological features that may

have been adapted for territorial chases, narrow wings and high wing loading, may also be

adapted for the speed and agility required for predator evasion.

Compared to male P. lydia, females have longer fore and hind wings relative to body length

and lower wing loading. In addition, we found that females exhibited hind wings that were

wider at the base and middle with blunt tips. Organisms that exhibit wide wings and lower

wing loading are likely to have increased energy demand with reduced flight speed and

increased flight maneuverability [32–39, 41]. Dakin et al. [77] found that species with low wing

loading display turns that have faster rotations and are sharper. As a result, speed may not be

an important aspect of flight performance for female P. lydia and instead high maneuverability

has been selected for. Maneuverability in flight has two primary components, turning radius

and speed, that may be subject to different selective pressures [75]. Components of maneuver-

ability are impacted by the allocation of mass, specifically the center of mass for a species

[75, 78]. Mass allocation could explain differences between male and female wing areas relative

to body length. High maneuverability allows organisms to evade predation as it is associated

with the ability to complete turns with small radii [42, 52]. Prey are generally smaller than

their predators and this allows prey species to make turns that are quicker and sharper than

predators, allowing them to escape predation despite being slow flyers [79]. In addition, stud-

ies suggest that the basal lobe of the hind wing is associated with gliding [37, 80] and therefore,

it is likely that female P. lydia have increased gliding performance compared to males due to

exhibiting wider hind wings.

Conclusions

In conclusion, we investigated wing morphometric differences between sexes of a sexually

dichromatic dragonfly, P. lydia). Male P. lydia display a conspicuous white abdomen whereas

females display a dark brown abdomen. Due to differences in conspicuousness, it is likely that

males are detected more often than females, and therefore, experience an increased level of

predator related stressors. In addition, male P. lydia exhibit male-male territorial chases, which

may cause increased sexual selection pressures. We found that male P. lydia had significantly

shorter fore and hind wings relative to body length and higher wing loading when compared

to females. In addition, we found that male P. lydia had hind wings that were narrower and

pointier than females. The shape and size of male wings suggest that there have been adapta-

tions associated with increased flight speed, agility, and acceleration capacity. Female P. lydia
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have wider hind wings that are likely adapted to increase flight maneuverability in the form of

smaller turning radii. Considering that sexes of P. lydia dragonfly experience different selective

pressures, the sexes have likely adapted different wing morphologies that offset these pres-

sures.This is the first study to demonstrate wing morphological differences between the sexes

in a sexually dichromatic dragonfly where males and females are undergoing different selective

pressures due to variation in conspicuousness.

Supporting information

S1 Table. Summary of normally distributed residuals using a Shapiro-Wilk test.

(DOCX)

S2 Table. Average and standard deviation for all morphological features tested.

(DOCX)

S1 Fig. Measurements of fore and hind length (orange) and wing area (blue) of common

whitetail skimmer dragonfly (Plathemis lydia). The dragonfly on the left is the male (a) and

the dragonfly on the right is the female (b).

(DOCX)

S2 Fig. Fore and hind wing landmarks used to capture wing length and wing shape of the

common whitetail skimmer dragonfly (Plathemis lydia). Ten landmarks were used on the

fore wing and eleven landmarks were used on the hind wing. The dragonfly on the left is the

male (a) and the dragonfly on the right is the female (b).

(DOCX)

S3 Fig. Principal components scores for (a) fore wing and (b) hind wing shape of the common

whitetail skimmer dragonfly (Plathemis lydia). Teal colored circles points and mean confi-

dence ellipse represent data from female P. lydia dragonflies whereas royal blue colored circles

and mean confidence ellipse represent data from male P. lydia dragonflies.

(DOCX)

Acknowledgments

We are grateful to Michael Reynolds and Brandon McNeil for their assistance in wrangling

dragonflies and Dr. Michael Brewer for allowing us to use his insect nets. In addition, we are

grateful to Dr. Michael Brewer and Dr. Mysia Dye for comments on this manuscript. Lastly,

we are also grateful to the anonymous reviewers for their insightful comments and suggestions

that improved this manuscript.

Author Contributions

Conceptualization: Andrew O. Rubio, Ashley M. Dye, Kyle Summers.

Data curation: Andrew O. Rubio, Ashley M. Dye, Kyle E. Ifill.

Investigation: Andrew O. Rubio, Ashley M. Dye, Kyle E. Ifill.

Writing – original draft: Andrew O. Rubio, Ashley M. Dye, Kyle E. Ifill, Kyle Summers.

Writing – review & editing: Andrew O. Rubio, Ashley M. Dye, Kyle E. Ifill, Kyle Summers.

References
1. Ruxton GD, Sherratt TN, Speed MP. Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning

Signals and Mimicry. Oxford University Press; 2004. 249 p.

PLOS ONE Wing morphometric differences in a sexually dichromatic dragonfly

PLOS ONE | https://doi.org/10.1371/journal.pone.0303690 May 29, 2024 13 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0303690.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0303690.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0303690.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0303690.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0303690.s005
https://doi.org/10.1371/journal.pone.0303690


2. Kokko H, Brooks R, McNamara JM, Houston AI. The sexual selection continuum. Proc Biol Sci. 2002

Jul 7; 269(1498):1331–40. https://doi.org/10.1098/rspb.2002.2020 PMID: 12079655

3. Losos JB. An Experimental Demonstration of the Species-Recognition Role of Anolis Dewlap Color.

Copeia. 1985; 1985(4):905–10.
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