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Abstract

Improving Ab-Initio Simulations of Ordering Phenomena in Transition Metal Alloys

by

Elizabeth Decolvenaere

Density functional theory (DFT) is undergoing a shift from a descriptive to a predic-

tive tool in the field of solid state physics, with undertakings like the Materials Project,

OQMD, and AFLOW leading the way in utilizing high-throughput data to predict and

seek novel materials properties. However, methods to rigorously evaluate the validity and

accuracy of these studies is lacking in both the availability and utilization of techniques.

The natural disconnect between simulated and experimental length-scales and temper-

atures, combined with this lack of validation, raises serious questions when simulation

and experiment disagree. In this thesis, we analyze several transition metal systems

where simulations and experiments present unusual disagreements, and develop a new

formalism for comparing high-temperature measurements to ab-initio calculations. Our

work aims to broaden the understanding not only of the specific systems discussed, but

of how presently available ab-initio methods perform for transition metal alloys across

all systems.

Recent high-throughput ab-initio studies of transition metal binaries have suggested a

great number of undiscovered stable phases present in well-studied systems. Co-Pt alloys,

especially, have a long experimental history demonstrating three stable mixed phases:

L10 CoPt and L12 Co3Pt and CoPt3, but density functional theory suggests a set of

yet-unobserved long-period β2-like superstructures at Pt-rich compositions. We analyze

the Co-Pt system in-depth, calculating the energy of over 1,400 structures to thoroughly

explore the series of unusual superstructures suggested by DFT. Simulated diffraction

xiii



patterns, analysis of magnetic behavior, and investigation of the density-of-states em-

phasize the stark differences between measured behaviors and ab-initio predictions. By

moving up the Jacob’s Ladder of functionals, we show that we only replace one set of

discrepancies for another, and even the introduction of vibrational degrees of freedom

fails to solve the massive differences in predicted phase stability. By fitting the ab-initio

results to a cluster expansion Hamiltonian and performing Monte Carlo calculations, we

show that the resulting high-temperature phase diagram is wholly incompatible with

experimental results.

Like Co-Pt, Heusler compounds have unique magnetic properties, resulting in interest

for their potential applications as spintronic materials. The pseudo-binary (Mn,Fe)Ru2Sn,

formed as a solid solution of the full Heuslers (Mn, Fe)Ru2Sn, has been recently shown

to exhibit exchange-hardening implicative of two magnetic phases, despite the presence

of only one chemical phase. Using ab-initio calculations we show that the magnetic

behavior of this alloy arises from a competition between AFM-favoring Sn-mediated su-

perexchange and FM-favoring RKKY exchange mediated by spin-polarized conduction

electrons. Changes in valency upon replacement of Mn with Fe shifts the balance from

superexchange-dominated interactions to RKKY-dominated interactions. Using our elec-

tronic structure calculations, we parameterize a mixed-basis chemical-and-magnetic clus-

ter expansion, and use Monte Carlo simulations to demonstrate a ferromagnetic (FM)

to antiferromagnetic (AFM) behavior dependent on composition with the experimental

study. By examining the low-temperature ensemble averages of magnetic and chemical

correlations, we identify the mechanism behind magnetic hardening in the solid solution.

Our multiple successes in utilizing cluster expansions, both to deeply analyze fail-

ures and successfully describe complex chemical-magnetic interactions, motivates an

experiments-driven approach to lattice Hamiltonians. For alloys, cluster expansion Hamil-

tonians reduce the complex, many-body electron problem of density functional theory to
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a series of simple site-wise basis functions (e.g., products of site occupancy variables) on

an atomic scale. The resulting energy polynomial is computationally inexpensive, and

hence suitable for the (tens of) thousands of calculations of large systems required by

stochastic methods. We present a new method to run the statistical mechanics prob-

lem “in reverse”, using high-temperature observations and thermodynamic connections

to construct an effective Hamiltonian and thereby predict the 0 Kelvin energy spectrum

and associated ground states. By re-examining the cluster expansion coefficients as ther-

modynamic state variables and utilizing entropy-maximization approaches, we develop

an algorithm to select clusters and determine cluster interactions using only a few, high-

temperature experiments on disordered phases. We demonstrate that our approach can

recover not only the stable ground states at 0 Kelvin, but also the full phase behavior

for three realistic two-dimensional and three-dimensional alloy test-cases.
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Chapter 1

Introduction

I HOPE YOU KNOW WHAT YOU ARE DOING

VASP, the last line of many warnings in “tutor.F”

There is little and less in materials science that digital computing has not revolution-

ized. Electronic structure calculations offer a particularly striking success story, begin-

ning with the Schrödinger[1] and Dirac[2] equations derived in the late 1920’s. These two

related equations are, generally, lacking in closed-form solutions for systems containing

more than one electron. Instead, they can only be solved numerically, making for an in-

credibly tedious, if not impossible, task to perform by hand. The first digital computers,

invented in the 1940’s1, could calculate in seconds what previously took hours or days[3],

and without making mistakes or growing fatigued. Finding high-precision, numerical

solutions for the full wavefunction in an arbitrary system had become an achievable goal.

While the first electronic structure calculations were carried out for atoms and small

molecules[4] and pushed the limits of the primitive computers of the 1950’s, modern cal-

culations utilize supercomputing clusters capable of simulating hundreds of atoms and

1to replace their human counterparts, for example, many of the calculations required for the Man-
hattan Project were carried out not by computers, but by rooms full of women!
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thousands of electrons.

1.1 A Too-Short History of

Density Functional Theory

A large part of the success of ab-initio materials science can be traced to the devel-

opment of Density Functional Theory (DFT) by Kohn, Sham, and Hohenberg in the mid

1960’s[5, 6], building on the prior work of Hartree, Fock, and Slater[7–10]. When initially

proposed, Kohn-Sham DFT2 was largely ignored in favor of the Xα method[13]:

“Well, we recognize it now as a big event, but it did not seem so at the time.

That was the second big mistake of my life, not to see [DFT’s] importance,

but then neither I think did the authors judging from the talks they gave,

nor anyone else.”[14]

In the 1970’s, solid-state physicists began to take an interest in DFT and its applica-

tion to solids[15]. The Local Density Approximation (LDA) functional worked well for

simple metals, even though it failed for simple molecules. In 1980, the quantum Monte

Carlo calculations of Ceperley and Alder[16] allowed for an accurate calculation of the

correlation energy of a uniform electron gas, and in 1986 the first successful gradient-

corrected functional was developed by Perdew and Wang[17, 18], enabling significant

improvements in the accuracy of predicted molecular properties. In the early 1990’s the

first general-purpose DFT codes became broadly available, such as the DFT option in

Gaussian[19], and the immensely popular solid-state DFT code VASP[20–22]. At this

point, popularity of DFT in both the computational chemistry and computational ma-

terials science fields skyrocketed[23], and has continued to increase almost exponentially

2As opposed to other “density functional” theories, such as the work of Thomas and Fermi[11, 12]
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since then[24]. Walter Kohn (jointly with John Pople) was awarded the Nobel Prize in

Chemistry in 1998 for his contributions to the field of computational chemistry, cementing

once and for all the status of DFT as among the most valuable scientific advancements

of the 20th century. This history is visited in-depth in References [15, 23–26], and an

interested reader is also encouraged to read about Walter Kohn’s life leading up to the

pivotal year of 1964[27]. Walter Kohn passed away in 20163, but his contributions in

tandem with Sham and Hohenberg have permanently altered the path of chemistry and

materials science research.

1.2 Density Functional Theory and

Cluster Expansion Hamiltonians

DFT as applied to solids offers an incredibly precise, broadly applicable materials

science framework. However, significant fundamental limitations exist: the scaling goes

as the number of electrons cubed and the properties described are accurate only at zero

kelvin. For the calculation of thermodynamically-averaged properties representing real

temperatures and length-scales, DFT itself becomes something to approximate. Cluster

Expansion Hamiltonians[28–30] are one solution, trading flexibility for speed by project-

ing electronic ground-state properties onto an orthonormal basis set of cluster functions

well-suited to Monte Carlo-type sampling techniques. Each Cluster Expansion must be

built and trained for one specific chemical and crystallographic system, but once con-

structed, can be used to sample any property that is an entropy-maximized function of

the ensemble. Via Monte Carlo simulations, Cluster Expansions offer a rigorous thermo-

dynamic link between the microscale world of DFT and the mesoscale world of “real”

3It is among the author’s greatest regrets that she never had an opportunity to meet him

3



Introduction Chapter 1

systems[31–34].

1.3 Challenges in Transition Metals

Transition metals (TMs) pose unique challenges for ab-initio calculations[24, 35–

38], possessing a large number of chemically-active valence electrons distributed between

localized (d -electron) and delocalized (s-electron) states. The highly-localized d -electrons

are also strongly correlated, making the accurate calculation of purely quantum effects

such as exchange and correlation vital in predicting the properties of TMs. Despite the

challenges, TMs and multi-TM alloys account for a significant fraction of current research

effort in materials science. From superalloys[39–41] and high-entropy alloys[42, 43], to

unique magnetic materials[44–47] and spintronics[48–51], to shape-memory materials[52,

53], to thermoelectrics[45, 48, 54, 55], to catalysts[56–59], and even into the exotic realm

of topological phases[48, 60, 61], TMs offer an overwhelming amount of technological

promise.

The temperatures, length- and time-scales relevant to the above litany of applica-

tions makes multi-scale modeling techniques vital to properly characterizing the novel

properties of TM alloys. Even the simplest, most common TM alloy — steel — re-

quires a full stack of multiscale modeling techniques[62–65]: (1) ab-initio calculations,

(2) modeling dilute substitutions and interstitials, (3) dislocation dynamics and defect

migration/diffusion, (4) modeling ripening and growth processes and phase-field simu-

lations, (5) simulating the interaction of grains, and (6) finite-element models suitable

for macroscale (e.g., architectural or civil engineering) design. The problem only grows

more complex for materials intended to operate at extreme temperatures and stresses,

such as turbine blades. When determining the properties of a multi-component TM

alloy, especially at elevated temperatures, proper consideration of the configurational

4
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degrees-of-freedom is vital.

1.4 Overview

In the following Chapters we will explore both DFT as applied to TMs, and how

Cluster Expansions can be used to make equilibrium predictions from zero kelvin DFT

calculations. Chapter 2.1 will cover the theoretical foundation of DFT, explore how DFT

is applied to extended systems, discuss some of the approximations and simplifications

used to make the theory tractable, and touch on problems encountered when DFT is

applied to TMs. Following that, Chapter 2.2 will also give an overview of the Cluster

Expansion formalism, with a few remarks on the problems one may encounter. A more

in-depth discussion of specific failure modes of DFT is then found in Chapter 3, in

addition to an example of a Cluster Expansion being used to construct a phase diagram.

Chapter 4 offers a closer look at the thermodynamics of the Cluster Expansion formalism,

and constructs an alternative model utilizing high-temperature experiments instead of

ab-initio calculations for parametrizing the Hamiltonian. Chapters 5 and 6 form two

halves of one story, demonstrating the predictive power of DFT calculations and the

flexibility of Cluster Expansions through the process of developing an ab-initio model for

novel magnetic behavior. Finally, we will conclude with a brief summary of Chapters 3

through 6, comparing and contrasting our results and drawing some general conclusions.

1.5 Permissions and Attributions

1. The content of Chapter 3 has previously appeared in Reference [32]:

E. Decolvenaere, M. J. Gordon, A. Van der Ven, “Testing predictions from density

functional theory at finite temperatures: β2-like ground states in Co-Pt”, Phys.

5
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Rev. B 92 085119 (2015) 2015 American Physical Society.

2. The content of Chapter 4 has previously appeared in Reference [66]:

E. Decolvenaere, M. J. Gordon, A. Van der Ven, “Recovering 0 Kelvin Effective

Hamiltonian Parameters from High-Temperature Disordered Phases”, arXiv:1609.07175.

3. The contents of Chapters 5 and 6 appear substantially in manuscripts currently

submitted to Phys. Rev. B and Phys. Rev. Lett..

4. This work and Elizabeth Decolvenaere were supported by the MRSEC Program of

the Natural Science Foundation under Award No. DMR-1121053.

5. Simulations were performed using resources from the Center for Scientific Com-

puting in the CNSI and MRL, funded by NSF MRSEC (DMR-1121053), NSF

CNS-0960316, and Hewlett Packard.
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Chapter 2

Theoretical Background and

Computational Methods

We have not succeeded in answering all our problems. The

answers we have found only serve to raise a whole set of new

questions. In some ways we feel we are as confused as ever,

but we believe we are confused on a higher level and about

more important things.

Bernt Øksendal, Stochastic Differential Equations

The universe that we live in is, generally, a classical universe. The length- and

time-scales and temperatures we interact with yield macroscale, generally equilibrium

dynamics obeying Newtonian physics. Any observation we make of a macroscale quantity,

describing some equilibrium set of properties (referred to hereafter as a macrostate), is

nonetheless defined by a series of microscale phenomena. For any set of thermodynamic

variables {X}, whether extensive (system-scaling) or intensive (scale-independent), and

for any measured quantity y, the observed value of y can be expressed as:

7
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〈y〉 ({X}) =
∑
σ∈{X}

P (σ) y (σ) = 〈y〉, (2.1)

Where σ is a microstate (one system snapshot satisfying the conditions given by {X})

and P(σ) is a probability of that microstate. Depending on which set of thermodynamic

variables one wants to control, P can take on different forms. All forms follow the general

form given below for the case of a set of microstates with a constant number of particles

N , a constant volume V , and constant temperature T :

P (σ) =
1

Z (N, V, T )
exp

(
−E (σ)

kbT

)
(2.2)

Z (N, V, T ) =
∑
σ∈N,V

exp

(
−E (σ)

kbT

)
, (2.3)

such that
∑

σ P(σ) = 1, where Z, the partition function, is a normalizing factor, and

kb is the Boltzmann constant. The probability function P , called a Boltzmann or Gibbs

distribution, takes its exponential form from solving for the distribution that maximizes

the entropy S, which contains a logarithmic component:

S ({X}) = −K
∑
σ∈{X}

P (σ) log (P (σ)) . (2.4)

This function defines a measure of information S that satisfies Shannon’s required

properties[67]:

1. continuous in the space of σ,

2. monotonically increases with increasing numbers of unique microstates,

3. additive for sub-divisions of the space of σ (such that the entropy of one ensemble

8
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of σ is a weighted sum of the constituent sub-ensembles, σA and σB).

While K can be any positive scalar in Shannon’s definition (used in computer science

contexts), for our purposes K = kb, i.e., Boltzmann’s constant. A rigorous proof of this

equality, as well as a more in-depth discussion of the connections between information

theory and statistical mechanics/thermodynamics, is given by Jaynes in the course of

several publications[68–72].

Thus far, we have placed no restriction on what {X} or y can be, nor given any advice

on the form of E(σ). Generally, {X} is a set of thermodynamic variables constraining the

system to some space of microstates. In our above example we chose N, V, T to constrain

the number of particles, the volume those particles reside in, and a temperature the

system is at. Each thermodynamic variable has a conjugate variable; the conjugate set

of variables for our system are µ, P, S which stand for chemical potential, pressure, and

entropy, respectively. At temperatures greater than zero kelvin, both a variable and its

conjugate cannot be controlled/specified simultaneously. The identity of y can be any

observable microstate property, e.g., composition, volume, or total magnetic moment.

The ensemble value of y is then given by a weighted average of microstate values, as

described in Equation 2.1.

Intensive variables, such as chemical potential, pressure, or magnetic field, are not

defined in individual microstates. Instead, these intensive variables measure the relation-

ship between their extensive conjugate and the ensemble free energy. In the case of the

canonical ensemble (N , V , T ), the Helmholtz free energy:

A(N, V, T ) = −kbT log (Z(N, V, T ))

is connected to the pressure via the following thermodynamic relationship:

9
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P (N, V, T ) = −∂A
∂V

∣∣∣∣
T,N

= −
∑
σ∈N,V

P(σ)
∂E

∂V
(σ).

Free energies, such as the Helmholtz free energy A or the Gibbs free energy G (T ,

P , N), are also ensemble properties of a specified set of thermodynamic variables. Using

free energies, we can determine the relative stability of various groupings of microstates,

and begin to define phases. Where free energies intersect, phase transitions occur.

Any measurable thermodynamic variable or energy, whether extensive or intensive,

can then be calculated for a given {X}, given we know the form of E(σ). However, we

often do not have a “nice” closed-form expression for E(σ), and even when we do, it is

impractical to calculate the properties of every possible microstate. For even a simple

2D spin system with a scant 1,000 particles, the number of unique microstates (assuming

no symmetry) is 21000 ∼ 10301.

Instead, given a form for E(σ), we utilize Markov-Chain[73] Monte Carlo (MCMC,

or just MC) using the Metropolis-Hastings algorithm[74, 75] to obtain a Boltzmann-

weighted sample of microstates with thermodynamic properties equal to those of the full

ensemble. For our system of 1,000 particles, reasonable estimates for thermodynamic

averages can be achieved with only 1,000,000 or so evaluations 1. Though significantly

smaller than 10301, 106 is still far too large for any ab-initio method to calculate in a

reasonable period of time. Instead, our approach is to sample an even smaller set of

microstates (usually 100 to 1,000) using first-principles methods, and then to train a

simplified Hamiltonian utilizing a reduced set of degrees-of-freedom (DOFs) for use in

MC sampling.

In the following sections we will explain how one goes from first principles to phase

diagrams. The first section covers Density Functional Theory[5, 6] (DFT), a workhorse

1Convergence is usually achieved in a few thousand passes, one pass being a number of attempted
moves equal to the numbers of sites in the system
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electronic structure calculation technique used extensively in materials science. We will

explain both how DFT operates, the assumptions being made, and where the assump-

tions can lead to trouble. The second section explains the Cluster Expansion (CE)

formalism[28], an elegant yet powerful approach to constructing computationally inex-

pensive, ab-initio-accurate Hamiltonians. We will explain how the cluster functions form

a complete, orthonormal basis set, and how by utilizing a reduced (compared to DFT)

set of DOFs, all of the equilibrium properties of a system can be reproduced. Our review

will also briefly touch on the methods used to construct CEs, including a discussion of

regression techniques and sparsity.

2.1 Electronic Structure Calculations

When performing ab-initio calculations, our goal is to make a meaningful predic-

tion using no empirical parameters. Starting with a set nuclei and their associated

coordinates, all of the ground-state properties of the system can be calculated from

Schrödinger’s equation[1]. A general (if deceptively simple) representation of the prob-

lem is given by the time-independent Schrödinger equation:

Ĥ|Ψ〉 = E|Ψ〉, (2.5)

where Ĥ is the Hamiltonian operator, Ψ is a wave function containing the electronic

and nuclear DOFs, and E is the energy. This is an eigenvalue problem, with |Ψ〉 being

an eigenvector of the matrix operator Ĥ, and E is an eigenvalue.

The trouble lies in the forms of Ĥ and |Ψ〉. |Ψ〉 is a many-body wave function, which

has 3(n + N) DOFs describing the location of each of the n electrons and each of the

N nuclei2: r̂|Ψ〉 = Ψ(r1, r2, . . . , rn, R1, R2, . . . , RN). For a non-relativistic treatment,

2If we considered time-dependent properties we would also need the momentum DOFs, giving us

11



Theoretical Background and Computational Methods Chapter 2

Equation 2.5 becomes: 3

[
−

n∑
α

1

2
∇2
i −

N∑
α

1

2mα

∇2
α +

n∑
i

1

2

n∑
j 6=i

1

|ri − rj|
+

N∑
α

1

2

N∑
β 6=α

ZαZβ∣∣Rα −Rβ

∣∣
−

N∑
α

n∑
i

Zα∣∣Rα − rj
∣∣
]

Ψ({rn}, {RN}) = EΨ({rn}, {RN}).

The four summations inside the Hamiltonian are, in order, the electronic kinetic en-

ergy T̂n, the nuclear kinetic energy T̂N , the electron-electron interaction V̂nn, the nuclear-

nuclear interaction V̂NN , and the electronic-nuclear interaction V̂Nn. As the nuclei are

many orders of magnitude heavier than the electrons, we can take the electronic and

nuclear parts of the wave function Ψ as separable: Ψ({rn}, {rN}) = Ψelec.({rn}) ×

Ψnucl.({rN}). The coupling term V̂Nn containing 1
|rα−ri| ensures that the electrons still

feel the background potential of the nuclei, and vise-versa. We can further assume that

the separations of mass scales results in a separation of time scales: for equal distri-

butions of momentum, the electron velocities are orders of magnitude greater than the

nuclear velocities. The result is that for any nuclear configuration the electrons can al-

ways instantaneously equilibrate (with respect to the time scale of the nuclei). These

assumptions comprise the Born-Oppenheimer approximation[76], which allows us to de-

scribe the nuclei as a collection of classical point-charges interacting with each other and

with the electrons only as a background charge density. The remaining quantum part,

the electronic wave function Ψelec (simply called Ψ) now solves:

6(n+N)
3We use Hartree atomic units (~ = e2 = me = 1) to keep our equations free of extraneous symbols.
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[
−1

2

n∑
α

∇2
i +

1

2

n∑
i

n∑
j 6=i

1

|ri − rj|
−

N∑
α

n∑
i

Zα
|rα − rj|

]
Ψ({rn}) = EnΨ({rn}). (2.6)

Here, the {rN} are taken as fixed parameters, such that the coupling term V̂Nn =

V̂ ({rN}). The expectation value of the second sum, 〈Ψ|
∑n

i

∑n
j 6=i

1
|ri−rj | |Ψ〉, contains

both a classical electron-electron interaction, as well as all of the quantum complexity

associated with the fermionic nature of the electrons.

No exact solutions exist for Ψ({rn}) for n > 1. However, even if we could solve for

the exact form of Ψ({rn}), we would not be able to use it. Consider an observable O,

which we wish to calculate. The expectation value of O relies on the operator Ô, such

that:

〈O〉 = 〈Ψ|Ô|Ψ〉 =

∫
dr1

∫
dr2· · ·

∫
drnΨ∗({rn})ÔΨ({rn}). (2.7)

Unless we can determine some simplification that allows us to separate Ψ({rn}), this

(numerical) integration will scale as O(k3n), where k is the number of divisions along each

direction in space. For an extremely rough integration using a 10 × 10 × 10 grid, in an

extremely modest 10-electron system, this is 1030 evaluations. If we could use the entire

computational might of the Cori4 supercomputer at NERSC, this calculation would take

a not-so-modest 1,000,000 years !

For this reason, nearly all approaches to solving Equation 2.6 involve decomposing

Ψ({rn}) into a series of one-particle wave functions ψ(ri), such that evaluations of Equa-

tion 2.7 can be performed on 3-dimensional grids, and the number of evaluations will

scale more reasonably as (something like) O(nk3)5. While many methods exist, perhaps

4Rated at a theoretical peak performance of 31.4 PFlops as of 2017
5Note that this is the time complexity of evaluating 〈O〉, not of determining Ψ({rn})!
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the most popular (owing to a confluence of [relative] computational ease and reasonably

high accuracy) technique is DFT, or Density Functional Theory. In this approach, an

auxiliary non-interacting system described using single-particle wave functions ψKSi (ri) is

solved for, such that the electron energy En and the electron density ρ(r) of the auxiliary

system correspond to the energy and density of the real system. This approach, as well

as the assumptions and approximations made and the problems they can cause, will be

discussed in-depth in the subsequent subsections. Case studies of DFT applied to real

systems are described in Chapters 3 and 5.

2.1.1 Density Functional Theory

The foundation for DFT builds upon two fundamental theorems, known as the

Hohenberg-Kohn (HK) theorems:

1. The full many-particle ground state relies solely upon, and is a unique functional

of, the electron density ρ(r) : E = E[ρ(r)]

2. The density ρ(r) which minimizes E[ρ(r)] is the unique ground-state density, such

that E[ρ(r)] > E[ρ0(r)] for all ρ(r) 6= ρ0(r), where ρ0(r) is the ground-state density

A pair of simple, beautiful proofs of the above two theorems can be found in Hohen-

berg and Kohn’s 1964 paper[6]. Equation 2.6 can be reformulated in terms of energy

functionals, instead of operators. The resulting Hamiltonian looks like:

E[ρ(r)] = T [ρ(r)] + VNn[ρ(r)]({rN}) + Vnn[ρ(r)], (2.8)

where T is the kinetic energy functional, VNn is the potential energy functional of the

electrons interacting with the nuclei, and Vnn is the potential energy functional of the

electrons interacting with other electrons, both classically and quantum-mechanically.
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Prior approximations to T and Vnn, such as the Thomas-Fermi model[11, 12], failed

due to the presence of strong quantum-mechanical effects[77]. To route around this

problem, Kohn and Sham divided the kinetic energy and the electron-electron potential

energy into two parts: (1) an approximation using a non-interacting/classical system

TS[ρ(r)] and VH [ρ(r)], and (2) a set of correction terms that represent the differences

TC [ρ(r)] = T [ρ(r)]−TS[ρ(r)] and VX [ρ(r)] = Vnn[ρ(r)]−VH [ρ(r)][5]. These last two terms

are usually combined into one exchange-and-correlation (XC) functional, VXC [ρ(r)] =

VX [ρ(r)] + TC [ρ(r)]. The energy expression is then:

E[ρ(r)] = TS[ρ(r)] + VNn[ρ(r)]({rN}) + VH [ρ(r)] + VXC [ρ(r)]. (2.9)

Utilizing HK theorem two, we can solve for the density ρ(r) by finding the density

which minimizes the energy, given the constraint that
∫

drρ(r) = n where n is the number

of electrons. To do that, we take a functional derivative of E[ρ(r)] with respect to the

density, and use a Lagrange multiplier µ:

δ

δρ(r)

(
TS[ρ(r)] + VNn[ρ(r)]({rN}) + VH [ρ(r)] + VXC [ρ(r)]− µ

(∫
drρ(r)− n

))
= 0,

µ =
δTS[ρ(r)]

δρ(r)
+
δVNn[ρ(r)]({rN})

δρ(r)
+
δVH [ρ(r)]

δρ(r)
+
δVXC [ρ(r)]

δ(ρ)
,

=
δTS[ρ(r)]

δρ(r)
+ vNn(r; {rN}) + vH(r) + vXC(r).

This equation is, however, just the Hamiltonian for the non-interacting system in a

background potential veff(r) = vNn(r; {rN}) + vH(r) + vXC(r). In effect, this tells us that

for a perfect vXC(r), we can solve the separable eigenvalue problem of a non-interacting
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system, and the resulting density is the real density. The unknown function vXC(r)

accounts for all the differences between the non-interacting system and the real system.

We solve the non-interacting, auxiliary Kohn-Sham (KS) system by starting with an

auxiliary wave function ΨKS({rn}). The simplest available wave function for a series

of non interacting fermions is a Slater determinant[9, 78, 79], made up of orthonormal

one-electron eigenstates ψi,KS(ri):

ΨKS({r}) =
1√
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1) ψ2(r1) · · · ψn(r1)

ψ1(r2) ψ2(r2) · · · ψn(r2)

...
...

. . .
...

ψ1(rn) ψ2(rn) · · · ψn(rn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.10)

The non-interacting energy for a background potential of veff(r) = vNn(r; {rN}) +

vH(r) + vXC(r) is:

〈ΨKS| −
1

2

n∑
i

∇2
i + veff(r)|ΨKS〉 =

n∑
i

∫
dr

(
−ψ∗i (r)

1

2
∇2ψi(r)−

N∑
α

(
Zα

|rα − r|

)
ψ∗i (r)ψi(r)

+

∫
dr′
(
ψ∗i (r)ψi(r)ρ(r′)

|r − r′|

)
+ ψ∗i (r)ψi(r)vXC(r)

)
.

Because of the orthonormality of the one-electron eigenstates, most terms drop out un-

der 〈ψi|ψj〉 = δi,j. What remains is a separable equation decomposable into an eigenvalue

problem solving for single-electron eigenstates. By variationally minimize the expecta-

tion value of the energy with respect to the one-electron eigenstates and using another

Lagrange multiplier to ensure that orthonormality is preserved:
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δ

δ〈ψi|

(
〈ΨKS| −

1

2

n∑
i

∇2
i + veff(r)|ΨKS〉 −

∑
i

∑
j

εij (〈ψi|ψj〉 − δij)

)
= 0

(
−1

2
∇2 −

N∑
α

(
Zα

|rα − r|

)
+

∫
dr′

ρ(r′)

|r − r′|
+ vXC(r)

)
ψi(r) = εiψi(r) = ĥKSψi(r).

(2.11)

Equation 2.11 is a one-particle Schrödinger equation that can be solved to produce

the KS eigenfunctions. The KS eigenfunctions are used to define the density ρ(r), which

is used to update ĥKS in Equation 2.11. At each step, Equation 2.9 is used to calculate

the total energy; when the energy differences become sufficiently small the algorithm is

terminated. Computationally, the most expensive step is integrating functionals of the

density, which isO(k3) where k is, as before, the number of divisions along each dimension

in space. Compared to O(k3n) for evaluations of properties of the full n-electron wave

function, this is an incredible improvement!

The one remaining unknown is the form of VXC [ρ(r)]. DFT is exact for a perfect

VXC [ρ(r)], but unfortunately, the perfect functional is not known[80]. Instead, we have

the “alphabet soup” of VXC approximations, each coming with their own built-in assump-

tions and failure modes[26, 35, 36]. These functionals occupy a rough hierarchy, referred

to as the “Jacob’s Ladder of Functionals” by J. Perdew and K. Schmidt[81]. Each rung

of the ladder adds more complexity to VXC , but also (theoretically) gets closer to the

perfect functional. General forms of each rung of functionals, and a short explanation of

what each one means, are given in Table 2.1.

Other popular approximations/approaches exist which do not neatly fit into the Ja-

cob’s ladder. LDA+U[82–85], which adds an empirical on-site Coulomb repulsion term

U intended to encourage electrons to localize onto (atomic) orbitals with integer oc-
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Table 2.1: Various forms of EXC [ρ] for different approximations used in solid-state DFT.

Approximation Form Represents

Local Density
(LDA)

∫
drρ(r)f(ρ(r)) Uniform electron gas

Generalized Gra-
dient (GGA)

∫
drρ(r)f(ρ(r),∇ρ(r)) Slowly-varying (small) gradients

meta-Generalized
Gradient
(MGGA)

∫
drρ(r)f(ρ(r),∇ρ(r),

τ(r))
GGA + self-correlation corrections

hyper-
Generalized Gra-
dient (HGGA)

∫
drρ(r)f(ρ(r),∇ρ(r),

τ(r), εx(r))
(M)GGA + exact exchange, uses
〈φi|v(r)φj〉

Random Phase
(RPA)

∫
drρ(r)f(ρ(r),∇ρ(r),

τ(r), εx(r), {ψk}empty)
HGGA + long-range correlation,
uses unoccupied orbitals |φk〉empty

cupations, utilizes projections onto localized orbitals of a subset of the KS eigenstates

but can otherwise be tacked-on to other methods. Determination of the parameter U

is an open problem whose solution is hotly debated[86]. Sub-system functions, such as

AM05[87, 88], divide up the problem into different regions (e.g., “edge” vs “interior”) and

apply a different VXC [ρ(r)] to each. Such sub-system functionals can utilize (in theory)

any of the functional forms found in Table 2.1 to each of the subsystems, or entirely new

forms suited only to specific geometries.

Of the alphabet soup of functionals used in solid-state physics 6, the vast major-

ity of calculations are performed using a surprisingly small number of techniques[24].

In materials science, especially for metals, the most popular functional is the PBE[89]

(Perdew, Burke, and Ernzerhof) implementation of the GGA. Materials Project[90],

AFLOWLIB[91], and OQMD[92], three popular high-throughput DFT databases of al-

loys and oxides, utilize PBE and PBE+U (utilizing an empirically-determined on-site

Hubbard correction) for their millions of calculated structures. PBE is a “parameter

6if one includes functionals developed for molecular systems, the space goes from “soup” to “ocean”
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free” functional, meaning free of empirical parameters: every parameter involved is in-

stead derived in some fashion from exact theoretical conditions or constraints.

2.1.2 Density Functional Theory for Extended Systems

DFT applied to bulk, periodic, solid systems provides an additional set of challenges

far beyond “merely” finding VXC [ρ(r)]. First is the choice of an appropriate basis set.

Periodicity provides a periodic external potential from the nuclei and enforces a corre-

sponding periodicity in the probability density of the one-electron eigenstates:

vNn(r; {R}) = vNn(r + τ ; {R}),

|ψi(r)|2 = |ψi(r + τ)|2,

where τ is some integer multiple of a lattice vector of the primitive cell, i.e., equiv-

alent locations in different copies of the primitive cell must “look” the same. Bloch’s

theorem[93] tells us that rather than assigning electrons atomic orbitals of specific nu-

clei, points in reciprocal space, k, provide us with good quantum numbers. Our electrons

live in Bloch States, indexed by reciprocal vector k:

ψk(r) = eik·ruk(r), (2.12)

where uk(r) is periodic function (like vNn(r; {R})). Then, for offsets of the form r+τ ,

ψk(r + τ) only differs by a phase factor, eik·τ = (−1)t where t is an integer. If k falls

outside of the first Brillouin zone (1BZ), we can define a new k
′

= k + g, where g is an

integer multiple of a reciprocal lattice vector of the primitive cell. The exponential part

of Equation 2.12 again differs only by a phase factor for k+ g, while for u
k
′(r) = uk,n(r).
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The meaning of the second subscript on u indicates which eigenstate solution to u we

will use; the periodic nature of vNn(r; {R}) results in a spectrum of solutions for uk(r),

indexed by n. Each n makes up one band, which provides (over the whole 1BZ) one

one-electron state.

The density expression, utilizing the Bloch states, is:

ρ(r) =
1

Ω1BZ

∑
n

∫
dkψ∗

k,n
(r)ψk,n(r)fk,n, (2.13)

where Ω1BZ is the volume of the 1BZ, and fk,n is a band filling factor dependent

on the electron temperature and the band energy relative to the Fermi energy. We can

expand uk,n(r), and hence ψk,n(r) and ρ(r) in a basis of plane waves, such that:

uk,n(r) =
∑
q

cq,k,ne
iq·r ψk,n(r) =

∑
q

cq,k,ne
i(q+k)·r

ρ(r) =
1

Ω1BZ

∑
n

∫
dkfk,n

∑
q′

∑
q

c∗
q′,k,n

cq,k,ne
i(q−q′)·r =

2qmax∑
−2qmax

ρ(r)qe
iq·r.

A cutoff energy is specified to limit the size of the basis set, such that qmax solves

Ecut = 1
2

∣∣q + k
∣∣2. A finite grid of k-points is also specified, transforming

∫
dk →

∑
k w̃k,

where w̃k are the weights of the k-points such that
∑1BZ

k w̃k = Ω1BZ . Symmetries of the

crystal lattice can also be applied to the k-point mesh, making the calculation of cq,k,n

at many points redundant and reducing the sum over all k in the 1BZ to a sum over the

irreducible Brillouin zone (IBZ) with w̃k∀k ∈ 1BZ → skw̃k = wk∀ ∈ IBZ, where sk is a

symmetry-dependent factor and
∑IBZ

k wk = Ω1BZ .

Computationally, this allows for (relatively) inexpensive calculations of the coefficients

cq,k,n. The efficacy of fast Fourier transforms (FFTs) means that each part of the KS

Hamiltonian can be evaluated in the best possible space, and the results then combined.
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For example, the non-interacting kinetic energy operator −1
2
∇2 applied to the Bloch

states simply yields an energy of:

1

2Ω1BZ

∑
n

IBZ∑
k

wkfk,n

qmax∑
q

∣∣q + k
∣∣2∣∣cq,k,n∣∣2,

when evaluated in reciprocal space. The Hartree energy is also easily evaluated in recip-

rocal space, as

2πΩ1BZ

qmax∑
q 6=0

|ρ(q)|2

q2 .

However, other parts of the Hamiltonian (e.g., the XC energy) are not easily evaluated

in reciprocal space. A mixed approach: evaluating some portions of the Hamiltonian in

reciprocal space, and others in real space, can often speed up calculations so far as to

make the FFTs the rate-limiting step.

2.1.3 Pseudopotentials

Unfortunately, for any element heavier than lithium, the basis set size required to

accurately predict the ground-state energy becomes infeasibly large. This is because of

the presence of nodes in the wavefunctions of the non-valence electrons, which require

a large number of terms to converge. Adding more electrons also require adding more

states, and hence also increases the max n which must be considered when developing the

ψk,n(r). Additionally, in heavier elements, the core electrons can reach relativistic kinetic

energies, requiring use of the Dirac equation[2] instead of the Schrödinger equation. All

of these problems, however, can be avoided by moving from an all-electron calculation

to one involving pseudopotentials : collective potentials describing nuclei and their core

electrons that yield smoother overall potentials[94]. This approach assumes the frozen-

core approximation, only valence electrons are presumed to respond to changes in local
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chemical environment.

Many varieties of pseudopotential exist, each solving or guaranteeing a different set of

constraints. The three most common varieties are the so-called “norm-conserving”[95, 96]

and “ultrasoft”[97] pseudopotentials as well as the projector augmented-wave (PAW)

method[98]. We briefly focus here on PAWs, though a more through treatment of each

approach be found in the works cited above.

The KS one-electron Bloch states ψk,n(r), with their many oscillations and nodes

near the core, are related to a better-behaved set of smooth wave functions ψ̃k,n(r) by an

operator T :

|ψk,n〉 = T |ψ̃k,n〉,

T = 1 +
N∑
α

∑
i

(
|ψ(α)
i 〉 − |ψ̃

(α)
i 〉
)
〈pi|, (2.14)

where α are the nuclei, |ψ(α)
i 〉 are (usually) the KS eigenstate solutions for an isolated

atom α, |ψ̃(α)
i 〉 are a basis of smooth functions, and 〈pi| are projector functions with

the property 〈pi|ψ̃(α)
j 〉 = δi,j. The transformation T allows us to solve for the smooth

function ψ̃k,n(r) instead of the oscillating function ψ̃k,n(r) when calculating the KS Bloch

states, drastically reducing the required size of the basis set. The trade-off is in knowing

the isolated-atom KS eigenstates ψ
(α)
i (r), but these must only be calculated once per

element. Via the frozen-core approximation, the isolated-atom core electron eigenstates

from each atom α are used as the first n KS eigenstates of the calculation, and are never

allowed to change.
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2.1.4 The Trouble with Transition Metals

Despite the complex stack of assumptions and approximations made to get to this

point, DFT works spectacularly well and is considered an “incredible success”[24]. In

addition to the tens of thousands of papers7 successfully utilizing DFT to predict the

properties of real materials, many broader studies of DFT applied to a general class

of materials have been published, demonstrating the (generally) small errors between

the results of a suitably-chosen approach and reality[88, 99–108]. Even more reassuring

is the work of Lejaeghere, et al, who have demonstrated the excellent agreement in

calculated properties using vastly different implementations of DFT across broad classes

of materials[109]. However, several “spectacular failures”[36] also persist, nearly all of

which are related to the limitations of presently available XC functionals.

Transition metals (TMs), especially alloys of multiple TMs, pose an especially chal-

lenging problem for DFT[38]. The electronic structure of TMs, characterized by a

partially-filled localized d -shell and a partially or fully filled delocalized s-shell, yields

metals with a rainbow of colored oxidation states. The interplay of strongly localized

d and delocalized s electrons (shown in Figure 2.1) are also what make TMs especially

problematic for the development of accurate yet transferable functionals and pseudopo-

tentials. A more complete treatment of the subject is covered in References [24, 35–38],

and an in-depth example can be found in Chapter 3. Here, we will provide only the

briefest overview of the types and origins of issues DFT calculations of TMs can run

into.

The most consequential error present in modern functionals applied to TMs is the

self-interaction error (SIE)[36]. In layman’s terms, SIE is the unphysical effect of an

electron “seeing itself”, an effect of the ρ(r)ρ(r′) term in the Hartree energy. If we briefly

7the list of papers citing Reference [20] is a good start; as of September 2017 Elsevier counts more
than 20,000 citations!
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Figure 2.1: Cartoon showing the delocal-
ized nature of the s states and the local-
ized nature of the d states. The LDA func-
tional can very effectively treat the uni-
form-electron-gas-like s electrons, but not
the d electrons, which more closely resem-
ble a harmonic potential.

consider electrons as distinguishable point charges, this is equivalent to an electron i

at r feeling the effect of all point charges at every r′. . . including the electron i itself!

This erroneous contribution results in a fictitious delocalization of the electron density,

leading to significant errors when simulating TMs, where the chemically significant d -

states should be tightly bound. But if SIE originates from the Hartree term, how is it

related to the XC functional?

The answer is subtle, and is most easily demonstrated by considering the exact

Hartree-Fock electron-electron interaction energy of the Slater-determinant wavefunc-

tion, and comparing it to the Hartree energy used in DFT:

〈ΨKS|
1

2

∑
i

∑
j 6=i

1

|r − r′|
|ΨKS〉 =

1

2

∑
i

∑
j 6=i

∫
drdr′

ψ∗i (r)ψi(r)ψ
∗
j (r
′)ψj(r

′)

|r − r′|
− 1

2

∑
i

∑
j 6=i

∫
drdr′

ψ∗i (r)ψj(r)ψ
∗
j (r
′)ψi(r

′)

|r − r′|
=

1

2

∑
i

∑
j

∫
drdr′

ψ∗i (r)ψi(r)ψ
∗
j (r
′)ψj(r

′)

|r − r′|
− 1

2

∑
i

∑
j

∫
drdr′

ψ∗i (r)ψj(r)ψ
∗
j (r
′)ψi(r

′)

|r − r′|
=∫

drdr′
ρ(r)ρ(r′)

|r − r′|
− 1

2

∑
i

∑
j

∫
drdr′

ψ∗i (r)ψj(r)ψ
∗
j (r
′)ψi(r

′)

|r − r′|
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Something very subtle has happened when going between the second and third lines.

Specifically, we have changed the interior sum over the eigenstates from j 6= i to all j, to

be able to substitute in ρ(r) =
∑

i ψ
∗
i (r)ψi(r). This adds a pair of terms of the form:

±
∫

drdr′
ψ∗i (r)ψi(r)ψ

∗
i (r
′)ψi(r

′)

|r − r′|
.

As we can see, in Hartree-Fock theory this self-interaction term, present in the

Coulomb energy sum, is exactly cancelled by an equal but opposite term in the ex-

change energy sum. But in DFT, where the exchange energy sum over inner products

between different eigenstates is replaced by a mean-field approximation of the exchange,

the exact cancellation is lost. The perfect functional would, by definition, exactly account

for the SIE of the Hartree term, but thus far even imperfect functionals promising zero

SIE have been “around the corner” for several decades[26].

The correlation portion of the XC energy can also be troublesome, especially in func-

tionals above the LDA level of complexity. This error arises from the way in which many

functionals rely on a measure of correlation developed originally for use with LDA ex-

change. In LDA, the correlation is fit to the difference between Ceperley and Alder’s

quantum MC calculation of the total energy of the uniform electron gas[16], and a calcu-

lation of TS +VH +VX,LDA for the uniform electron gas. For the uniform electron gas, the

exchange term can be directly calculated. This means, however, that the residual corre-

lation term pairs with the LDA exchange energy, such that any cancellation of errors that

may exist is lost if either the exchange or correlation parts are changed. However, the

space of correlation functionals is far less well-developed than that of exchange function-

als, and so, the LDA correlation is often embedded into more sophisticated functionals

either verbatim or with minor adjustments[35]. One example is the very popular PBE

functional, which utilizes the LDA correlation as a parameter in the PBE correlation
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expression[89]. While not unique to TMs, the very localized and highly correlated nature

of the d electrons present in TMs exaggerates the importance of correctly estimating the

correlation energy.

Construction or choice of a good pseudopotential is, often, as much art as science[35].

Despite being considered an ab-initio technique in materials science, there are many

DOFs, and hence choices to be made, when selecting a pseudopotential. In TMs es-

pecially, the phrase “valence electron” can be very ambiguous. Naively, the localized

d electrons could be presumed not to participate in bonding, and therefore should be

held constant. Instead, it is often necessary to leave the s and p electrons below those d

electrons as valence states to get the correct8 answer! The problem only grows worse for

magnetic materials (having neglected the concept of “spin” in our analysis until now),

where different polarizations of the d electron levels can strongly influence otherwise inert

semi-core states. This issue has, however, been partially resolved with the advent of inex-

pensive computing making large, complex basis sets computationally feasible, and as the

results of Lejaeghere, et al, demonstrate, the most modern pseudopotential approaches

are indistinguishable from equivalent all-electron calculations.

Heavier TMs experience non-trivial spin-orbit coupling (SOC) and relativistic ef-

fects. The influence of either (or both) require use of the Dirac equation rather than the

Schrödinger equation as a starting point for DFT. Among other challenges, a DFT ap-

proach to the Dirac equation requires functionals of the current, of which presently there

are exceptionally few. However, the Dirac question can be broken up via the Gordon

decomposition[110], yielding a spin-dependent and orbital-dependent term, the latter of

which is then neglected. What results is called the “scalar relativistic” treatment, and

utilizes four-component spinors instead of the usual spin-up and spin-down wave func-

tions. The orbital momentum, yielding the SOC, is then added back in as a corrective

8“correct” meaning “matching an all-electron calculation”
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term. Standard DFT software, e.g., VASP, allows for calculations with SOC corrections,

but the computational expense is immense and often impractical9. The validity of adding

on the SOC as a perturbation is also dubious:

“Simply put, if the [spin-orbit] coupling is large enough to make a difference

in the calculations, it is also too large to be treated as a perturbation.”[38]

The electronic structure of TMs generally necessitates additional computational com-

plexity and cost. Compared to insulators, an order of magnitude more k-points in the

IBZ are required to accurately simulate TMs, as the Fermi surface must be densely

sampled. In addition, a large basis set may be required in order to represent d and s

states simultaneously. Finally, TM calculations can require smearing of states near the

Fermi surface, to stabilize the correct occupations at the cost of more k-points. While a

computational rather than scientific problem, the resource use of TM calculations poses

problems by impeding the practical applicability of more accurate, yet technically com-

plex, functionals.

Despite these issues, even in TMs DFT (usually) performs exceedingly well. Although

Chapter 3 focuses on a failure case, Chapters 5 and 6 detail a success story where DFT

was used to explain unusual and unexpected experimentally-observed behaviors. More

generally, the future for DFT is incredibly bright! The accuracy and reliability of the

technique, combined with new high-throughput approaches, are beginning to make DFT

a replacement for, rather than a supplement to, experiment. Moore’s law continues to

hold, and with that, techniques deemed computationally impractical a decade prior are

being reexamined as larger and larger calculations become practical. Projects requiring

calculations of thousands of configurations, containing between a dozen and a hundred

9Quoting from the VASP wiki on the LSORBIT tag: “Generally be extremely careful, when using
spin-orbit coupling: energy differences are tiny, k-point convergence is tedious and slow, and the computer
time you require might be infinite”
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atoms, are now routine. And machine learning techniques are being applied to the moun-

tains of data already produced[111–116], and new insights about fundamental materials

relationships are being derived.

2.2 Cluster Expansions

We now have all the tools necessary to calculate the electronic ground state of a

complex, many-atom, many-many-electron system. However, DFT is orders of magni-

tudes too slow to use directly in a stochastically-evaluated thermodynamic calculation.

Instead, we can use the results of a set of DFT calculations to parameterize a faster, but

more limited, Hamiltonian specialized for one problem in one system. The approach used

in this work, the CE (Cluster Expansion) formalism[28–30, 117, 118], coarse-grains the

electronic and ionic DOFs in 3D space onto an occupation variable inside a microstate

vector. Three assumptions are made here:

1. all atoms live on a lattice, and do not significantly deviate from their equilibrium

lattice sites,

2. each microstate, defined as a vector of occupations on the lattice, uniquely defines

the energy,

3. the total energy is an additive function of local configurations.

Assumption 1 encodes two properties: that our system hasn’t melted or sublimated,

and that our system hasn’t undergone a structural phase transition. As long as this

assumption is satisfied, our Hamiltonian will not undergo any surprising changes in func-

tional form while exploring thermodynamic state space. Assumption 2 is a result of the

HK theorems: although the density ρ(r) is not used in the CE formalism, there is still one
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ρ(r) which minimizes the energy for a given atomic configuration, and the many-body

ground state is still a unique functional of ρ(r). The ground state here is assumed to

include structural relaxations, which are also uniquely defined by the occupation of the

lattice (otherwise the first assumption is violated). We therefore do not need to keep

track of, or even have a concept of, atomic position vectors; every relevant DOF is de-

fined by the lattice site indices and their occupants. Assumption 3 allows us to define

a local energy expression, then sum over all primitive cells in the supercell, making the

Hamiltonian trivially extensive and linearly scaling in time complexity with the number

of primitive cells.

The sites of the lattice are indexed from 0 to N − 1, using index i. Each site contains

an occupational DOF, σi, which can be expressed in either a spin (σi ∈ {−1,+1}) or

occupation (σi ∈ {0, 1}) basis. The microstate is defined as σ = {σ0, σ1, . . . , σN−1}. We

can define clusters on the lattice as a collection of indices, i ∈ δ, and the corresponding

cluster functions as operations that take the microstate σ and produce a scalar dependent

only on the occupations of sites in cluster δ:

φδ(σ) =
∏
i∈δ

σi. (2.15)

An example of cluster functions being constructed on a lattice is illustrated in Figure 2.2.

The cluster functions form a complete, orthonormal basis over state space: 〈φa, φb〉 =

δa,b. We can therefore expand any scalar property, e.g., the energy E, in the basis of

clusters:

E(σ) =
∑
δ

Vδφδ(σ), (2.16) Vδ = 〈φδ|E〉, (2.17)

where the Vδ are effective cluster interactions (ECIs) with units of energy. The sum
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Figure 2.2: Starting with atoms in a box (a), the relaxed sites are mapped onto their
equilibrium lattice positions (b). Lattice sites are assigned a σi of ±1 depending on
whether an A or a B sits on the site. Cluster functions, shown in (c), are defined
as products of spins belonging to a collection of sites, e.g., the nearest-neighbor pair
(φ2).

runs over all unique clusters δ in the simulation supercell, which for a supercell containing

n sites, equals
∑n

i=0

(
n
i

)
= 2n. To store 2n floating-point ECIs for a trivial system with

100 sites would require more than 1021 GB of memory10! However, the vast majority of

the ECIs are redundant. To ensure that a microstate σ uniquely defines the energy, we

require that operations that produce degenerate microstates also produce degenerate en-

ergies, i.e., E(σ) = E(T σ), where T is some transformation re-indexing the lattice sites.

As our systems are periodic supercells of primitive lattices, the set of available degen-

erate operations {T } is defined by the symmetries of the lattice, including translational

symmetry. What does this mean for our ECIs?

Consider a 1D periodic chain of three sites, indexed as 1, 2, and 3. The energy is:

10and running enough DFT calculations to solve for that many ECIs would take a lifetime
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E(σ) = V0 + V1σ1 + V2σ2 + V3σ3 + V1,2σ1σ2 + V2,3σ2σ3 + V3,1σ3σ1 + V1,2,3σ1σ2σ3.

Now apply a translation T , such that the labels shift 1→ 2, 2→ 3, and 3→ 1. The

energy is then:

E(T σ) = V0 + V1σ2 + V2σ3 + V3σ1 + V1,2σ2σ3 + V2,3σ3σ1 + V3,1σ1σ2 + V1,2,3σ2σ3σ1.

This energy E(T σ) must be the same as E(σ) for every available microstate in state

space. The same is also true of the energy of (T T σ) (where 1 → 3, etc.). The only

condition that satisfies the energy equality for every microstate and for every translation

is V1 = V2 = V3 and V1,2 = V2,3 = V3,1. Our energy expression is now:

E(T σ) = V0 + Va(σ1 + σ2 + σ3) + Vb(σ1σ2 + σ2σ3 + σ3σ1) + Vc(σ1σ2σ3),

which contains three collective pieces of information: the site clusters, the pair clus-

ters, and the triplet cluster. This is the same amount of information originally present in

our microstate: σ1, σ2, σ3. The original set of seven clusters, with no symmetry operations

applied, contained too much information.

Taking this principle and applying it more generally: clusters that are identical under

a symmetry operation of the lattice must also have identical ECIs. We can define a series

of prototype clusters which are unique under symmetry operations of the lattice. Each

prototype cluster α defines an orbit Ωα, containing all clusters δ that map onto α via the

symmetry operations of the lattice. The energy expanded in the basis of clusters is now:

31



Theoretical Background and Computational Methods Chapter 2

E(σ) =
∑
α

Vα
∑
δ∈Ωα

∏
i∈δ

σi. (2.18)

The space of possible α depends on the size of the simulation cell, the connectivity

of the primitive cell, and the symmetry of the primitive cell. However, it is virtually

never the case that more than 100 clusters are needed, with 20-50 usually being suffi-

cient. We hope that the Vα are monotonically decreasing both with increasing cluster

radius (max [ri,i′∀i, i′ ∈ δ]) and/or with cluster complexity (
∑

i∈δ 1). This is a repeat

of assumption 3, in claiming that the energy is a sum of local properties (or at least,

that any long-range interactions have Vα < our error tolerance). All that remains is to

determine which clusters are required, and solve for their ECIs.

Construction of a CE Hamiltonian proceeds, typically, via the following steps:

1. Define a primitive cell and specify the DOFs of each lattice site

2. Define a CE Hamiltonian via a maximum cluster radius rcut and a maximum com-

plexity C

3. Enumerate symmetrically-distinct configurations containing up to C + ∆ atoms,

plus any experimentally-known thermodynamic ground state configurations

4. Calculate the formation energies of the configurations in step 3, usually using DFT

5. Fit Hamiltonian of step 2 using the energies of step 3

6. If the Hamiltonian does a poor job of predicting energies, increase its size or com-

plexity and return to step 3

7. Enumerate additional symmetrically-distinct configurations containing up to D >

C + ∆ atoms, and evaluate their energies using the Hamiltonian
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8. If the Hamiltonian predicts thermodynamic ground states which do not have DFT-

calculated energies, add those ground states to the set of configurations, then return

to step 3.

Most of the actual work involved in constructing a Hamiltonian is in steps 4 and

5. Traditionally, DFT calculations are performed for 100-300 configurations, yielding

approximately two orders-of-magnitude more data points than goal number of clusters,

and two to three times as many data points as clusters should be present. A good rule

of thumb is for the system to be overdetermined by at least a factor of three. Higher

numbers are better to ensure a well-conditioned solution, because the problem is sparse,

that is, most clusters in the Hamiltonian should have Vα ∼ 0. The general regression

problem being solved in step 5 is:

EDFT = Φ · V ᵀ
, (2.19)

where E is a vector of energies, with rows equaling different microstates, Φ is a

matrix of cluster functions, with rows equaling microstates and columns equaling different

clusters α, and V is a vector of ECIs, which we want to solve for. The use of capital Φ

denotes the extensive cluster function, Φα(σ) =
∑

δ∈Ωα

∏
i∈δ σi. The Φα, differ from the

correlations ϕα(σ) conventionally defined in the literature[28]:

ϕα(σ) =

∑
δ∈Ωα

φδ(σ)

mαNP

, (2.20)

where NP is the number of primitive unit cells in the crystal and mα is the multiplicity

of cluster α per primitive unit cell. Φα and ϕα are then related by a factor of mαNP ,

such that Φα scales with the size of the crystal. This extensive property will prove useful

in applying Legendre transforms to develop thermodynamic potentials for ensembles
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of fixed extensive cluster functions. Otherwise, the vectors and matrices entering into

Equation 2.19 are usually normalized to be per primitive cell.

Once we have a model, we continue with the loop above until we have a satisfactory

model. A satisfactory model generally predicts energies of low-energy structures with

accuracies on the order of ±5 meV, with acceptable errors increasing as one looks at

higher-energy microstates. High energy microstates have very low probabilities of being

observed in an ensemble average, and hence, a larger error is more acceptable, as it is

unlikely likely to be sampled in a statistically significant fashion. A satisfactory model

should, ideally, correctly predict the set of thermodynamic ground states forming the

lower half of the convex polytope in energy-composition space, i.e., the lower convex hull.

In reality, if one is only concerned with sampling compositions in a neighborhood around

some composition x∗ x = x∗±δ, poor performance far from x∗ is acceptable, including the

prediction of incorrect ground states (especially if the real material undergoes a structural

transformation sufficiently far from x∗).

The final step is using the fitted Hamiltonian in MC simulations. The computational

appeal of the CE becomes obvious here: to calculate the change in energy for a proposed

move, one needs only to calculate the change in clusters that touch the involved sites.

For example, consider a proposed move that changes flips the spin of site i. The change

in energy is:

∆E(∆σi) = −2
∑
α

Vα

i∈δ∑
δ∈Ωα

φδ(σ),

where the inner sum is over only individual clusters δ which touch site i. The factor of

−2φδ(σ) comes from the change in Φα(σ) being −φδ(σ) + (−1)φδ(σ). The application of

(−1) to φδ(σ) flips the spin of site i in δ. If the move is accepted, all of the affected φδ(σ)

are then updated. The time complexity of moves is therefore linear in the number of
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clusters in the Hamiltonian, not in the number of sites in the supercell. Armed with this

massive reduction in difficulty, we can easily sample tens of thousands of configurations

for supercells containing themselves tens of thousands of sites!

Lest the reader believe the CE formalism be limited to only two-state systems: exten-

sions to both the spin and occupation basis exist for systems with an arbitrary number of

components. In addition, systems with multiple independent DOFs, e.g., magnetism and

composition (where σi becomes a vector) are discussed in Chapter 6. As we have hinted at

before, we are not limited to only expanding the energy, either. Any scalar[119–123] (or

tensor[124]) product of the lattice occupation DOFs can be expanded in the orthonormal

basis provided by the clusters, and hence, sampled over. If E(σ) is the CE Hamiltonian,

let X(σ) be any other ground state property of the configuration. Then, we can simply

sample over the microstates using E and measure X to replicate the following ensemble

average:

〈X〉 =

∑
σX(σ) exp

[
E(σ)
kbT

]
∑

σ exp
[
E(σ)
kbT

] . (2.21)

Cluster Expansions and Sparsity

Solving for a sparse Hamiltonian, or in general, the problem of sparse regression has

been the subject of many doctoral theses in its own right. Broadly, the techniques used fall

into two categories: (a) approaches that select a set of features, then perform regression,

and (b) approaches that perform feature selection and regression in one step. Examples

of category (a) are evolutionary approaches, where e.g., a genetic algorithm[125] is used

to select features, regression is performed, and the root-mean-squared error or cross-

validation score are used to evaluate fitness. Examples of category (b) include penalized

regression, e.g., ridge regression or LASSO regression[126], as well as Bayesian approaches
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to penalized regression[127, 128]. In addition, there is the matter of choosing weights

for different samples (microstates), and the definition of testing and training sets for

calculation of cross-validation scores. These subjects are touched upon in the following

chapters, and the citations used there can be followed to more in-depth treatments of

the materials.

2.3 Computational Methods

In Chapters 3, 5, and 6, a sizeable 11 12 13 number of electronic structure calculations

are performed. In all cases, the Vienna Ab Initio Simulation Package (VASP)[20–22, 129]

was used: version 5.3.5 from 2012-2014, and 5.4.1 from 2015 onward. All calculations

utilized projector-augmented wave[98, 130] (PAW) pseudo-potentials, using dataset v.54.

Specific PAWs for each element were chosen using the guidelines at https://cms.mpi.

univie.ac.at/vasp/vasp/Recommended_GW_PAW_potentials_vasp_5_2.html. Unless

otherwise indicated, the generalized gradient approximation of Perdew, Burke, and Ernz-

erhof (PBE) was used for the exchange energy[89] and the interpolation formula of Vosko,

Wilk, and Nusair was used for the correlation energy[131]. With noted exceptions in

Chapter 5, all calculations were performed using spin polarized densities.

All calculations utilized Γ-centered Monkhorst-Pack k-point grids[132] using either the

first order Methfessel-Paxton method[133] (for relaxations) or the tetrahedron method

with Blöchl corrections[134] (for static runs) to integrate over electronic energy levels.

Both the energy cutoffs and the k-point grid densities were chosen via a convergence

method. First, the k-point meshes were converged: the number of divisions along the

shortest real-space dimension were increased in integer steps (with the divisions in the

11Approximately 4,000 unique calculations over five years; in 2014 I alone accounted for for > 65% of
CNSI’s computer cluster use!

12My work at Sandia, however, has lead me to carry out > 100, 000 unique calculations
13I fear for the electricity bill of my future employer
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other two directions adjusted inversely-proportionately) until the change in energy per

step dropped below 1 meV. Next, a similar process was carried out with the energy cutoff:

starting with 1.5 the largest value in the elemental pseudopotential files, the cutoff was

increased in steps of 10 eV, until the change in energy per step dropped below 1 meV.

These convergences were carried out for both end members in every binary surveyed,

and the denser mesh and largest energy cutoff from the pair was used. For supercell

calculations, the k-point mesh was scaled appropriately.

Generally speaking, two categories of calculations were carried out: relaxations and

static calculations. Relaxations allowed for the cell shape and size and/or the internal

ionic DOFs to relax. For these calculations, the ionic self-consistency loops were termi-

nated when forces became smaller than 10−2 eV/Å. If both (a) the cell shape or size

were allowed to relax and (b) the relaxation took more than three ionic steps, another

relaxation was performed. This is because the basis set utilized by VASP is initialized

at the start of a calculation, based on the starting geometry, and then never changed,

even if the geometry changes significantly. All relaxations performed were followed by a

static calculation. While specific static calculations utilized different settings depending

on the goal (e.g., to obtain a density-of-states, or to determine very accurately the in-

ternal forces), all static runs shared one feature: the ionic DOFs were never allowed to

change. Electronic self-consistency loops were terminated with energy differences of, at

most, 10−4 eV for relaxations and 10−6 eV for static calculations.

In addition to VASP, the CASM (a Clusters Approach to Statistical Mechanics) soft-

ware package[31, 135–137] was used in all Chapters to enumerate supercells, manage

simulations, fit CEs, and perform MC simulations. Since joining the Van der Ven group

in 2013, CASM has undergone two complete overhauls and numerous major, feature-

breaking revisions14. Difficulties aside, however, CASM contains multiple incredibly pow-

14Not to mention how Byzantine the codebase has become: even glancing at the source repo has made
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erful features regarding structure enumeration, symmetry analysis, data analysis, and the

“clexulator”. The general features of the code are illustrated in Figure 2.3. Additional

software to automate the fitting of CE Hamiltonians from ensemble measurements was

written for Chapter 4, while modifications to CASM to handle magnetic DOFs were

written for Chapter 6. The author’s contributions to the CASM codebase can be found

at github.com/prisms-center/CASMcode/commits/0.2.X?author=tallakahath.

Figure 2.3: Diagram illustrating the high-level features available in CASM. The
operation of CASM can be generally divided into three categories: (1) setting up and
carrying out ab-initio calculations, (2) constructing and fitting CE Hamiltonians to
data, and (3) performing MC simulations. The majority of the author’s contributed
code lives in the small yellow box labeled “DFT”, concerning the wrapping of VASP.

Google software engineers cry out in fear
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Chapter 3

Testing Predictions from Density

Functional Theory at Finite

Temperatures: β2-Like Ground

States in Co-Pt

When teaching chemistry students, I explain that DFT is some

algorithm meaning unreliable, while ab initio is Latin for too

expensive.

Kieron Burke, from “Perspective on density functional theory”

In this Chapter, we perform a critical assessment of the accuracy of density functional

theory methods in predicting stable phases within the Co-Pt binary alloy. The statistical

mechanical techniques in Section 2.2 are applied to density functional theory calcula-

tions to yield finite-temperature results directly comparable to experimental measure-

ments. The predicted temperature-composition phase diagram of Co-Pt is shown to be
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qualitatively incompatible with experimental observations, indicating that the predicted

long-period superstructure ground states are fictitious. We explore in-depth exactly how

density functional theory can fail for transition metals, building on the framework laid

in Section 2.1. We also show that recently suggested methods to better align density

functional theory and experiment via the hybrid functional HSE06 are unable to resolve

the discrepancies in this system. Our results indicate a need for better verification of

density functional theory based phase stability predictions, and highlight fundamental

flaws in the ability of DFT to treat late 3d -5d binary alloys.

3.1 Introduction

Density functional theory (DFT) has grown to become the most popular electronic

structure calculation method to date[138]. Modern computational resources have made

DFT viable as a high-throughput materials design technique[57, 90, 139], whereby the

existence, stability, and properties of periodic crystalline phases are predicted entirely

from first principles. These approaches are especially attractive for predicting the prop-

erties of systems that are otherwise too expensive or difficult to study experimentally,

such as alloys containing Ru[59], Tc[140], and Pt[56], among others[141–144].

While remarkably successful in predicting phase stability in a wide variety of chem-

ically disparate systems[141], the occasional failures of DFT[145–147] highlight the im-

portance of experiments to validate such predictions. However, there exists a funda-

mental challenge in comparing DFT and experiments: electronic structure calculations

predict zero kelvin properties, while experiments are performed at finite temperatures.

The most reliable measurements of thermodynamic properties are performed at elevated

temperatures, where equilibrium is more readily attained, but also where the entropic

contributions to such properties are the greatest. Accuracy in comparing ab-initio and
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experimental results is vital, because any mismatch may indicate failure in the approxi-

mations used in DFT to accurately reproduce the necessary physics.

Of particular concern are disagreements between the set of observed phases and DFT-

predicted zero kelvin ground states. These errors, while more sensitive to unknown kinetic

barriers or unaccounted for entropic contributions, can also indicate fundamental flaws

in the ab-initio method. Binaries that pair late 3d with late 5d transition metals, such

as Cu-Au[148, 149], Co-Pt[56, 150], Ni-Pt[56, 149, 151], Fe-Pt[56, 152], and Fe-Pd[153],

represent one class of materials where DFT predicts a rich variety of zero kelvin ground

states for which no experimental evidence exists. A wealth of long-period superstruc-

tures have been predicted to be stable in the intermediate continuum of compositions

between xPt 0.5 and 0.75 in the Ni1−xPtx, Fe1−xPtx, Co1−xPtx and Cu1−xAux alloys,

instead of the two phase mixtures of L10 and L12 observed experimentally. In the case

of Cu-Au, Co-Pt, Ni-Pt and Fe-Pd, the L12 AB3 structure is altogether excluded from

the set of ground states, and in the case of Co-Pt, the L10 formation enthalpy is less

stable than the (experimental) solid solution enthalpy[154]. In all cases, the formation

enthalpies for the ordered phases have been predicted to be dozens of meV higher than

experimental results[155–158]. These results derive from zero kelvin predictions, but lit-

tle or no thermodynamic analysis of the finite-temperature impacts has been performed,

and bulk phase diagrams deriving solely from electronic structure calculations have never

previously been constructed for these materials. Co-Pt, Fe-Pt, and Fe-Pd are all can-

didates for use in ultrahigh density magnetic storage[159–164]; resolving uncertainties

about low-temperature predictions of phase (in)stability is thus critical.

This Chapter explores the finite temperature implications of the zero kelvin ground

states predicted by DFT for the Co1−xPtx alloy. We have developed a first-principles

Cluster Expansion (CE) Hamiltonian and used it in semi-grand canonical Monte Carlo

(MC) simulations to construct a temperature versus composition phase diagram. The
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predicted phase stability is in qualitative disagreement with available experimental obser-

vations. Our calculations also indicate that long-range ordered phases persist as ground

states when including corrections for spin-orbit coupling (SOC), antiferromagnetic and

mixed magnetic ordering, and noncollinear magnetism. Using a hybrid functional, we

have attempted to recover experimental results; however, this approach is shown to in-

troduce new errors in the enthalpy and magnetic moments of the structures. These errors

can be traced back to known failings of Hartree-Fock exchange when applied to transition

metals, which we illustrate by analyzing the density of states (DOS) for L10 CoPt.

3.2 Methods

3.2.1 Electronic Structure Calculations

Details about the electronic structure calculations performed in this Chapter are

available in Section 2.3. All calculations were performed spin polarized unless otherwise

noted, with an energy cutoff of 460 eV and a k-point grid with 23× 23× 23 divisions in

the unit cell (and scaled with reciprocal supercell size).

3.2.2 Cluster Expansion and Monte Carlo Simulations

Configurational degrees-of-freedom (DOFs) in an alloy can be described with a CE

(Cluster Expansion) Hamiltonian[28, 29] combined with MC simulations[31, 137, 165].

Details of the CE formalism can be found in Section 2.2. Being concerned with the

entirety of composition space, we chose to use the spin basis (i.e., the Chebychev basis

for a binary), with σi = −1 for Co and σi = +1 for Pt.

Semi-grand canonical MC simulations were performed in a 24× 24× 24 periodic su-

percell with 1000 equilibration passes followed by 2000 thermodynamic-averaging passes
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(where one pass is Nsites attempted “spin flips”). Approximate phase boundaries were

identified by discontinuities in the composition-temperature lines at constant chemical

potential (using temperature increments of ∆T = 2 K), or by plateaus in composition-

chemical potential lines at constant temperature (using chemical potential increments of

∆µ = 0.01 eV).

3.2.3 Phonons

Force constants were calculated using the frozen phonon approach[166–168], per-

turbing large supercells (108 atoms) with small, isolated, symmetrically-distinct atomic

displacements (0.01, 0.02, and 0.04 Å). Following electronic structure calculations, the

resulting force constants were used to construct the dynamical matrix[169]. Vibrational

free energies[170] were then calculated using the quasi-harmonic approximation, repeat-

ing the previous procedure at a variety of slightly smaller and larger (−2% to +10%)

supercell volumes and using a second order polynomial to fit the dependence of the free

energy on volume to determine the change in formation energy with temperature[171].

3.3 Results and Discussion

3.3.1 Zero kelvin and Finite Temperature Results for PBE

To fully characterize the ab-initio properties of the Co-Pt binary, we calculated the

DFT energies of 1469 symmetrically-distinct orderings on the face-centered-cubic (FCC)

lattice selected by an iterative approach. Each configuration was initialized ferromagnet-

ically during the DFT calculations. We started with all known FCC based ground states

as well as all symmetrically distinct orderings of Co and Pt over FCC within supercells

containing up to 6 atoms. A CE was fit to these energies and subsequently used to search
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for low energy configurations in larger supercells. The energies of configurations in the

larger supercells that were predicted to be below or close to the convex hull with the

CE were then calculated with DFT and included in a new fit. The CE was iteratively

improved until no new ground states were predicted. The resulting set of structures

included: (i) all unique supercells up to 6 atoms, (ii) all supercells up to 8 atoms with

platinum composition between 25% and 75%, and (iii) long-period superstructure order-

ings involving (001) layers of Co and Pt stacked in various tilings in supercells with up

to 15 atoms (1 × 1 × n primitive cells). Additional magnetic configurations were tested;

anti-ferromagnetic and mixed/ferrimagnetic orderings were explored and non-collinear

magnetism with SOC corrections was separately included. The formation energies of all

these configurations, calculated using hexagonally-close-packed (HCP) Co and FCC Pt

as reference states, are shown in Figure 3.1.

The set of ground states predicted by PBE (red circles/lines in Figure 3.1, correspond-

ing structures in Figure 3.2) contain a variety of ordered phases at differing compositions.

Most prominent is the β2 CoPt2 ordering, characterized by alternating single (001) layers

of Co and pairs of (001) layers of Pt. The L10 structure, observed experimentally through

a wide range of compositions[172, 173], is predicted to be stable only in a very narrow

chemical potential range as a result of the small difference between the slopes of the tie

lines connecting L10 CoPt to Co2Pt and Co2Pt3. The experimentally observed L12 CoPt3

ordering is entirely absent from the set of ground states, excluded by the depth of the

common tangent between the CoPt2 and FCC Pt phases. A large number of long-period

superstructures, characterized by different arrangements of (001) layers of Co and Pt

and with a preference for Pt-Pt layer pairs (similar to β2) to account for deviations in

stoichiometry (instead of anti-site defects on a L10 supercell), are present along or within

5 meV of the tangent between CoPt and CoPt2.

These enthalpies and ground states match the results of Chepulskii et al.[150] and
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Figure 3.1: Formation energies in the Co-Pt binary as calculated using PBE and
HSE06. For ground state configurations, antiferromagnetic and mixed/ferrimagnetic
orderings and SOC corrections were also considered. Experimental values at 914 K
are from Ref. [156].

Hart et al.[56], although an order of magnitude more configurations have been considered

here. While both prior works have reported a stable D019 (HCP) phase at Co-rich

compositions[56, 150], we restricted our focus to FCC-like superstructures because we

are only interested in equiatomic and majority-Pt alloys (i.e., 0.25 < xPt < 0.75), which

all adopt FCC-based orderings experimentally[154].

The calculated formation energies of L10 CoPt and L12 CoPt3 are approximately

50 meV above (less stable) the measured formation enthalpies at 914 K[156], i.e., an

error of nearly 40%. The lattice parameters, however, are within <1% of experimen-
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Figure 3.2: Crystal structures of the stable ground states predicted in Co-Pt using
PBE (drawn with VESTA[174]). Compositions for ground states, including long-pe-
riod superstructures, are indicated by dotted lines.

tal measurements[173]. Alternative magnetic configurations and SOC contributions did

not result in any further lowering of the formation energies of the ground states and

increased the difference between calculated and measured formation enthalpies [blue tri-

angles, green squares, and purple pentagons in Figure 3.1, respectively]. Figures detailing

the additional magnetic orderings shown in Figure 3.3.

The Co-Pt system forms a FCC-based solid solution at high temperatures and a vari-

ety of FCC-based ordered structures upon cooling. The contributions of configurational

entropy play an important role in determining phase stability when increasing tempera-

ture. We fit[31] the coefficients of a CE to the 1469 formation energies using a genetic

algorithm[125] to determine the optimal basis set. The resulting fit has 89 effective clus-

ter interaction (ECIs) coefficients corresponding to pair, triplet, and quadruplet clusters

[Figure 3.4]. The root-mean-squared error of the fit was 3.3 meV, and the cross validation

score (using leave-one-out cross validation) was 3.6 meV.

The PBE-based phase diagram [Figure 3.5], determined using semi-grand canonical
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Figure 3.3: Symmetrically unique magnetic orderings used when performing electronic
structure calculations. Arrows indicate the sign of the initial magnetic moment (µi)
on a given site: +ẑ for µi > 0, −ẑ for µi < 0, though no coupling of magnetic
moments with crystallographic directions should be inferred. Ferromagnetic orderings
were used in the initial calculations of the PBE set of ground states, though the
antiferromagnetic and “mixed” magnetic orderings were later examined to determine
if an unusual magnetic configuration could be responsible for a change in formation
energy. All figures were drawn using VESTA.

MC, shows a very wide stability region for β2 CoPt2. Although this ordering also has

the highest order-disorder temperature, the transformation is predicted to occur hun-

dreds of degrees lower than the experimental transition temperatures of L10 CoPt and

L12 CoPt3[172, 173, 175]. The L12 CoPt3 structure does not appear at all in the calcu-

lated phase diagram, and the region surrounding xPt = 0.5 consists of a continuum of

defected incommensurate long-period superstructures up to the peritectoid temperature,

decomposing into a mixture of solid solution and β2 CoPt2. We found no evidence for

the stabilization of defected L10 CoPt (i.e., single planes of Co and Pt with a random
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Figure 3.4: ECIs of the PBE CE Hamiltonian, grouped by cluster type. The empty
and point clusters have ECIs of 20.5 meV and 473 meV, respectively.

distribution of anti-site defects); even at compositions close to xPt = 0.5, the structure

instead resembled β2-like Co3Pt5 with anti-site defects concentrated in the paired Pt-Pt

(001) layers. The phase diagram was not explored below 400 K, nor were compositions

below xPt = 0.2 or above xPt = 0.8 explored because these regions were not emphasized

when fitting the CE.

Overall, the resulting phase diagram is inconsistent with the high temperature ob-

servations of L10 CoPt and L12 CoPt3. These phases have been well characterized in

the literature and have important differences in diffraction patterns from the long-period

superstructures predicted by PBE. Experimental characterization of the L10 phase has

historically relied upon the [001] superstructure peak[173, 176, 177], a peak that is absent

in the predicted long-period superstructure orderings. L12 CoPt3, having cubic symme-

try, also has very different diffraction patterns from tetragonal β2 CoPt2 or any of its

derivatives.

While the calculated phase diagram only accounts for configurational excitations at

finite temperature, vibrational and magnetic excitations may also play a role in deter-

mining the relative stability of different orderings. To explore vibrational free energies,
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Figure 3.5: The temperature-composition phase diagrams for Co-Pt from experiments
(dashed red, blue lines[172, 173, 175]), our results with PBE (green), and CALPHAD
(solid black lines[154]). Green shading indicates two-phase regions.

we performed phonon calculations for FCC Co, FCC Pt, L10 CoPt, β2 CoPt2 and L12

CoPt3 within the quasi-harmonic approximation. Figure 3.6 shows the modified convex

hull for L10 CoPt, β2 CoPt2, and L12 CoPt3 when phonon contributions are considered.

However, even at 914 K, L12 CoPt3 never emerges as a stable phase relative to β2 CoPt2

and FCC Pt. Furthermore, the stability of L10 CoPt relative to β2 CoPt2 and L12 Co3Pt

does not increase markedly with increasing temperature. This suggests that rigorous in-

clusion of a vibrational DOF, in addition to a configurational DOF using coarse-graining

schemes[178, 179], are unlikely to qualitatively alter the calculated phase diagram of

Figure 3.5.

Thermal excitations of magnetic moments have previously been shown to be impor-
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Figure 3.6: Phonon contribu-
tions to the formation energies
of L10 CoPt, β2 CoPt2, and
L12CoPt3. Modifications to
the convex hull are only slight,
and the L12 phase is never sta-
bilized, even at 914 K.

tant in affecting phase stability in Co-Pt alloys[172, 175]. In pure Co, entropic contri-

butions arising from spin-spiral excitations have a strong influence on the HCP/FCC

transformation temperature[180]. At Pt-rich compositions, the ferromagnetic to para-

magnetic Curie temperatures occur below the order-disorder transition temperatures of

both L10 CoPt and L12 CoPt3 [154, 172, 173]. Hence, magnetic disorder, neglected in the

calculation of our phase diagram, will likely play a role in determining the precise order-

disorder transition temperatures. An in-depth study of the effects of magnetic entropy

on the phase diagram are beyond the scope of this Chapter. However, below the Curie

temperatures contributions to the free energy from magnetic entropy are expected to be

small. While we do not know the Curie temperature of the β2 phase, those of L10 and L12

are above all of our calculated solid solution transformation temperatures. In the case of

the β2 phase, there are two possibilities: (i) CoPt2 remains ferromagnetically ordered up

to the solid solution transformation temperature, or (ii) CoPt2 becomes paramagnetic

below the solid solution transformation temperature. In scenario (i) our phase diagram

should be negligibly impacted by the inclusion of magnetic entropy, while in scenario (ii),

magnetic entropy will only further stabilize the β2 phase with respect to the L10 and L12

phases. We therefore expect that inclusion of magnetic excitations will not rectify the
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disagreement between finite temperature predictions and experimental observations.

The over-stabilization of β2 and other long-period superstructures with paired (001)

Pt-Pt planes can be attributed to over-delocalized electron charge densities in PBE.

Generalized gradient approximations (GGAs) can perform poorly in transition metals[37,

108, 181] where the significance of the localized d -orbitals comes into conflict with the

orbital-less approach of GGA. Any functional treatment of the electron density leads

to an electron interacting with its own potential, the self-interaction error (SIE), which

causes excessive delocalization of the total charge. Additionally, the GGA functional

can not energetically differentiate between occupied and unoccupied bands, leading to

incorrect predictions for orbital/band occupation and splitting[36, 182]. Because both

the energy levels and occupations of the d orbitals are incorrect, the Co 3d and Pt 5d

bands cannot hybridize, losing significant enhancement of the magnetic moment[183–

185]. Stabilization of a magnetic ground state, however, is a driving force in choosing

the thermodynamic ground states in Co-Pt[186], and ferromagnetic effects drive the

asymmetry in the phase diagram with respect to the Co-rich and Pt-rich L12 phases[172,

175].

3.3.2 Comparison with Hybrid Functional HSE06

Using a screened form of Hartree-Fock exchange, Zhang et al.[147] were able to re-

cover the experimental ground-states of Au-Cu. The parametrization of the hybrid func-

tional developed by Heyd et al. (HSE06)[187, 188] reduces the SIE akin to Hartree-Fock

theory[102], while avoiding the associated singularity in occupation at the Fermi level.

Since HSE06 explicitly includes orbitals, d -orbital hybridization can be recovered, e.g.,

as in Au-Cu. The functional is, however, limited by its computational expense[189] and

accuracy[37, 99].
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To examine the performance of the HSE06 functional, all of the PBE ground states, as

well as L12 CoPt3, FCC Co and Pt, and HCP Co were recalculated [pink hexagons/lines

in Figure 3.1]. The results show qualitative improvement: L12 CoPt3 is predicted as

a ground state, and L10 CoPt is substantially more stable relative to L12 Co3Pt and

β2 CoPt2. However, the enthalpy and lattice parameter errors increase by an order of

magnitude (200–300 meV and 2.5–4.5%, respectively) and β2 remains as a ground state.

These results are not surprising: HSE06 is known to severely overestimate exchange

splitting in itinerant magnetic systems[99, 190, 191]. The default screening parameter

in the HSE06 formalism (ω = 0.2 Å−1, rscreen = 10 Å) results in an effective screening

length an order of magnitude greater than the length scales (rscreen = 0.24− 0.26 Å) for

screening in bulk Pt or Co metals[192], introducing spurious interactions between orbitals

at different sites. This is further verified by stabilization of a ferromagnetic ground state

for Pt in both this Chapter and Ref. [193] over the experimentally observed nonmagnetic

state, and an overestimation of magnetic moments with HSE06 for all experimentally

studied structures.

The shortcomings of both the PBE and HSE06 functionals are more easily visualized

by comparing the calculated DOS (density of states) for Co-Pt (Figure 3.7) with data

from experiments. The width of d -band states, as measured by photoemission[194, 195],

are shown in grey in Figure 3.7, while the electron occupation at the Fermi level can be

inferred from low temperature heat capacity experiments[196–198], shown as the height

between the red dashed lines. In the case of HCP cobalt, PBE predicts a d -band width in

good agreement with experiment, but the occupation at the Fermi level is underestimated.

The excessive delocalization provided by SIE in PBE smears the electron density towards

a more even distribution between orbitals, and this effect is magnified by the inability of

PBE to (energetically) distinguish between occupied and empty orbitals. This latter point

is exemplified by a difference between the calculated exchange splitting (energy difference
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between maxima in spin-up and spin-down DOS) and the experimentally determined

width, indicated in purple. Unsurprisingly, PBE performs well in FCC platinum, where

the d -orbitals are fully occupied and differentiation between sub-shells does not matter.

Though we were not able to find suitable experimental analysis of the L10 CoPt d -bands,

Figure 3.7 shows an unexpectedly wide d -band and low electronic occupation at the

Fermi level in CoPt, similar to Co.

Contrary to expectation, HSE06 worsens the degree of electronic delocalization in

Co even as the SIE should be reduced; this can be attributed to the unrealistic (for

Co) screening length standardized in the HSE06 functional. In Pt, a very large fictitious

exchange splitting is introduced, explaining the large magnetic moment commented upon

previously. Here, an electron has been promoted from the 5d orbitals in PBE to the 6p

orbitals in HSE06 to increase the net number of unpaired spins. The over-stabilization of

a magnetic ground state also reduces the energy of the d -orbitals in all materials; we can

see this in Figure 3.7 where the occupation at the Fermi level drops to between one half

and one quarter of the PBE values. These results both highlight the failures of the PBE

and HSE06 functionals and offer insight as to why these methods describe the Co-Pt

binary so poorly.

Recognizing that the screening length in HSE06 may be inappropriate for the Co-

Pt binary, we explored additional screening and mixing parameters to evaluate their

performance. In the spirit of Moussa, et al [200], we attempted to find a set of parameters

that minimized the error in the DOS at the Fermi level in CoPt. Figure 3.8 shows results

for different values of the mixing and screening parameter. The PBE DOS at the Fermi

level is recovered when the mixing approaches zero, but by this point, the energetics of the

PBE functional are also recovered, which we have demonstrated to be incorrect. While

increasing the screening parameter (reducing the effective screening length) qualitatively

improves the DOS at the Fermi level, the error is still unacceptably large.
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3.3.3 Additional Functionals

Additional functionals were explored, though not in-depth, once initial results indi-

cated a qualitatively similar set and arrangement of ground states to the results using

PBE. The Tao-Perdew-Staroverov-Scuseria[201] meta-GGA functional and its revised
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Figure 3.8: DOS at the Fermi energy for L10 CoPt with different values of the HSE
mixing (top) and screening (bottom) parameters.

variant[105], as well as the Minnesota meta-GGA functional M06-L[202], were tested,

but retained β2-like structures and excluded L12 CoPt3 from the set of ground states.

PBESol[103] was investigated but also produced similar results to PBE. HSESol[203],

and various parametrizations of the HSE functional (in α and ω) were tested only on L10

CoPt, L12 Co3 Pt and CoPt3, and β2 CoPt2, but yielded decreasingly tiny occupations

at the Fermi level as well as worsening energetics and a deepening of the β2 enthalpy

with respect to other ground states.

The importance of localized d electrons in Co-Pt, which has been incorrectly treated

in both PBE and HSE06, motivated the examination of the LSDA+U method[83]. We

explored a two-dimensional grid of U ’s of 1.0–4.0 eV in Co, and 0.0–4.0 eV in Pt, in 0.1

eV steps using the rotationally-invariant method of Dudarev et al.[84]. Unfortunately
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(though perhaps not unsurprisingly), the results showed no set of U ’s that simultane-

ously produced the correct set of ground states, matched the experimental enthalpies

(within a range of ±50%), and matched the experimental c/a ratio (within a range of

±50%). The linear-response approach to determine coupling parameters of Cococcioni

and Gironcoli[204] was also used, but the resulting U ’s produced similar unsatisfactory

results.

3.4 Conclusion

In this Chapter, we have shown that the anomalous ground states predicted in Co-Pt

using the PBE functional result in equally anomalous phase behavior at elevated temper-

ature, wholly inconsistent with the body of experimental literature. By examining our

results in the greater context of the known shortcomings of PBE, we can characterize

the modes of failure, attributing the stabilization of the β2 CoPt2 ground state to SIE

and occupation errors inherent in the functional. Although DFT performs exceptionally

well in a wide variety of inorganic systems, caution must be used when predictions ap-

pear inconsistent with experiment. By using rigorous statistical mechanical approaches,

experimental results can be meaningfully compared with zero kelvin predictions in both

qualitative and quantitative fashions. Unfortunately, when one method falls short, it is

not always sufficient to move up the “Jacob’s ladder” of XC functionals[81]: the HSE06

functional merely trades one set of inaccuracies for another. Based on both our analysis

and the existing literature, we believe that sibling systems (e.g., Fe-Pt, Ni-Pt, Fe-Ni) will

yield similar results. Though the prospect of a one-size-fits-all DFT-based approach to

predicting phase diagrams is appealing, our analysis of the Co-Pt system highlights the

need to review zero kelvin electronic results in a finite-temperature and thermodynami-

cally meaningful fashion.
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Recovering 0 Kelvin Effective

Hamiltonian Parameters from

High-Temperature Disordered

Phases

Thermodynamics is a funny subject. The first time you go through it, you

don’t understand it at all. The second time you go through it, you think

you understand it, except for one or two small points. The third time you

go through it, you know you don’t understand it, but by that time you are

so used to it, it doesn’t bother you any more.

Arnold Sommerfeld

In this Chapter, we present a new method to run the statistical mechanics problem

“in reverse”, using high-temperature observations and thermodynamic connections to

construct an effective Hamiltonian and thereby predict the zero kelvin energy spectrum

and associated ground states. Building upon the discussion in Section 2.2, we re-examine
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the Cluster Expansion formalism through the lens of entropy-maximization approaches to

develop an algorithm to select the relevant lattice basis functions and determine their cor-

responding interaction coefficients. This technique utilizes only a few, high-temperature

experiments on disordered phases. We demonstrate that the approach can recover not

only the ground states at zero kelvin, but also the full phase behavior for three realistic

two-dimensional and three-dimensional alloy test-cases.

4.1 Introduction

First-principles electronic structure methods, such as density functional theory (DFT),

can provide a unique view into atomic-scale properties that are otherwise inaccessible via

experiment. Statistical mechanics, or other scale bridging techniques, can then connect

the quantum mechanical energy spectrum to the realm of experimentally observable, and

industrially-relevant, temperatures and length scales. Directly utilizing first-principles

electronic structure methods in statistical mechanics schemes (e.g., to calculate the en-

ergy of every microstate), though, is in general computationally intractable. While ab-

initio molecular dynamics[205] is increasingly being used to probe high temperature

behavior[206, 207], it remains restricted to artificially small periodic unit cells and short

simulation times[58, 208]. Instead, atomistic models[28–30, 135, 208–220] are more often

used to represent a first-principles landscape as a function of relevant degrees-of-freedom

(DOFs). The path from electronic structure to the laboratory, however, is almost entirely

one-way: should an ab-initio method prove unreliable when compared to experiment, the

experiments cannot be meaningfully used to inform and improve the electronic structure

model with the same detail and precision as a direct, first-principles method.

This situation motivates the development of a technique that goes “in reverse”,

whereby measurements of an easily accessible, high-temperature, and disordered phase
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are used to develop an atomistic model that is accurate at zero kelvin. The advantages

of such an approach are many. An accurate atomistic model parameterized with high

temperature data can be used to predict the energy spectrum over the microstates of

a solid, as well as to reveal thermodynamic ground states that are otherwise difficult

to determine experimentally (e.g., due to sluggish kinetics at low temperatures)[221].

Furthermore, the model can be applied in conventional Monte Carlo (MC) simulations

to predict the full phase diagram[31, 34, 222, 223], or with variance constrained MC to

predict free energies inaccessible to experiment (e.g., inside the spinodal of a miscibil-

ity gap)[224]. Even kinetic properties, such as diffusion[137, 165, 225] and precipitate

nucleation and growth[226], can be elucidated with such a model.

Effective Hamiltonians[28–30, 117, 216, 227, 228], which have seen extensive use in

the literature[31–34, 135, 143, 165, 171, 222, 223, 225, 229–235], provide a framework

well-suited to developing such a model. They have proven to be powerful tools to

extrapolate first-principles energy landscapes and come in many forms. A harmonic

Hamiltonian expressed in terms of inter-atomic force-constants, for example, extrapo-

lates first-principles force-displacement relations to predict phonon properties and vibra-

tional free energies. Cluster Expansions[28–30] (CEs) and anharmonic lattice dynamics

Hamiltonians[135, 211, 211, 212, 218, 219] have enabled the first-principles study of alloy

phase diagrams and structural phase transitions with MC[34, 137, 211, 213, 218, 235, 236].

In their most rigorous form, an effective Hamiltonian can be formulated as a linear ex-

pansion in a set of basis functions, expressed in terms of variables that describe particular

atomic DOFs. Alloy Hamiltonians, for example, commonly referred to as “Cluster Ex-

pansions”, are expressed in terms of polynomials of occupation variables associated with

clusters of sites (e.g., pairs, triplets etc.) in the crystal[28–30]. The resulting polynomial

is computationally inexpensive, and thus well-suited for stochastic methods such as MC,

which require tens of thousands of energy evaluations to calculate accurate thermody-
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namic properties.

In this Chapter we explore the possibility of developing an “experiments-first” effec-

tive Hamiltonian, using high temperature experiments to predict zero kelvin behavior.

We present a new method of parametrizing the Hamiltonian using experimental data

of the disordered state instead of zero kelvin quantum mechanical predictions. The

approach not only yields a parameterization of the expansion coefficients, but also sug-

gests the most probable truncation of the Hamiltonian. Overall, the method enables the

construction of an accurate atomistic model of crystalline materials suitable for a wide

variety of stochastic simulation techniques. Our approach provides a new tool to develop

full phase diagrams and probe otherwise difficult-to-measure thermodynamic properties,

using only a small number of high-temperature observations of a disordered phase.

4.2 A Thermodynamic Approach to Cluster Expan-

sion Parameters

We illustrate our approach of parameterizing an effective Hamiltonian with high tem-

perature experimental data in the context of a binary A-B crystalline alloy. The approach

is, nevertheless, general, and can be applied to any effective Hamiltonian constructed as

a linear expansion of basis functions that depend on one or more atomic DOFs (e.g.,

local magnetic moments like used in Chapter 6, atomic displacements etc.). The analysis

here builds off of the foundation laid in Section 2.2, which the reader is encouraged to

review, in addition to References [28], [237], and [30].
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4.2.1 Thermodynamic Relationships

Experiments are unable to provide direct access to the energies of individual mi-

crostates σ. Methods for measuring internal energies or enthalpies return only the average

over many microstates. Hence, a method based on an inversion of

E(σ) =
∑
α

Φα(σ)Vα, (4.1)

relying on experimental measurements, is unlikely to be found. By instead assigning a

thermodynamic interpretation to the effective cluster interactions (ECIs, V ) of a CE,

other expressions can be derived that relate averages of spatial correlations over clusters

of sites, which can be measured with a variety of local or reciprocal probes, to the V .

It is convenient to work in the canonical ensemble (constant temperature T , number

of sites N , and number of A sites NA ≤ N), which has as partition function Z and free

energy A:

Z(T,N,NA) =
∑
σ

e
−Φ(σ)·V

kbT (4.2)

A(T,N,NA) = −kbT ln [Z] (4.3)

The sum is restricted to configurations σ having fixed composition, and kb is the Boltz-

mann constant. Starting with the canonical free energy, we can produce a number of

derivatives, some of which have been discussed in previous work[238]. We highlight a few

that are of practical importance here:
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∂A

∂Vα
= 〈Φα〉 (4.4)

∂2A

∂Vα∂Vβ
=
∂〈Φα〉
∂Vβ

=
∂〈Φβ〉
∂Vα

= −cov[Φα,Φβ]

kbT
(4.5)

∂2A

∂Vα∂T
=
∂〈Φα〉
∂T

= − ∂S

∂Vα
=

cov[Φα, (V · Φ)]

kbT 2
(4.6)

where 〈y〉 =
∑

σ y
exp

[
−V ·Φ(σ)
kbT

]
Z

denotes the ensemble average of y and cov[y, z] = 〈yz〉 −

〈y〉〈z〉 denotes the ensemble covariance of y and z. S in Equation (4.6) refers to the

entropy.

Equations (4.5) and (4.6) are response functions, measuring how the ensemble average

of an extensive cluster function, 〈Φα〉, responds to a change in either an ECI, Vβ, or the

temperature. Equation (4.6) is especially useful after expanding the covariance of the

products and rearranging slightly:

kbT
2∂〈Φ〉
∂T

= cov[Φ,Φ] · V (4.7)

with cov[Φ,Φ] denoting a matrix, with each element of this matrix,
(
cov[Φ,Φ]

)
α,β

,

corresponding to an ensemble averaged covariance between a pair of extensive cluster

functions, Φα and Φβ. The left hand side of Equation (4.7) is a column vector of the

temperature derivatives of the ensemble averages of the extensive cluster functions Φα,

multiplied by kbT
2.

Equation (4.7) is a crucial component of the approach as it provides a connection

between a measurable set of variables, cov[Φ,Φ] and kbT
2 ∂〈Φ〉
∂T

, and a desirable (but im-

measurable) set of coefficients, V . Once values have been measured for the temperature

dependence of the extensive cluster functions, and for covariances between pairs of ex-

tensive cluster functions, it should in principle be possible to invert Equation (4.7) to
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recover the expansion coefficients V . These expansion coefficients can then be used in

standard statistical mechanics approaches to determine ground states and to calculate

the full phase diagram. Hence, with only a few measurements, information about the

entire phase space can be generated.

4.2.2 Entropy-Maximizing Basis Function Selection

While Equation (4.7) offers the potential to extract the ECI of a CE from experimental

measurements of extensive cluster functions, Φα, and their covariances, a direct inversion

is, in general, infeasible. Experience with first-principles parameterized CE shows that

these Hamiltonians are typically sparse, converging rapidly as the cluster size of a basis

function increases, both in spatial extent and number of sites. Even when the clusters

are small, their corresponding ECI may be close to zero. Before Equation (4.7) can be

inverted, it is therefore necessary to devise a method to determine the “correct” sparse

set of clusters (i.e., non zero elements in V ). Biased regression schemes (such as l1-norm

penalization[239]), while attractive for DFT-based CEs[126–128], perform poorly when

elements in the design matrix (i.e., cov[Φ,Φ]) are correlated[240]. As the columns in our

covariance matrix are themselves correlated, we require an external cluster-selection step

that is robust to this feature.

To this end, we again rely on a thermodynamic interpretation of the expansion co-

efficients V . The entropy-maximization approach of Jaynes[68] (MAXENT) can be em-

ployed to develop a simple metric to judge whether a given cluster should be included

or excluded in a final regression scheme to extract the non-zero V from Equation (4.7).

Treating the ECI as thermodynamic variables, we can re-cast the problem in the form of

finding a set of parameters, V , which satisfy:
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∂A

∂V
= 〈Φ〉obs, (4.8)

where 〈Φ〉obs is an observed value of the extensive cluster functions. This relation yields a

microstate distribution that maximizes the “information entropy” of the system, given the

constraint that 〈Φ〉, the ensemble average, is equal to 〈Φ〉obs. The Lagrange multipliers

in this constrained maximization problem are, conveniently, the ECIs. Our entropy-

maximizing solution is then given by the stationary points with respect to V of the free

energy Υ:

Υ(T,N,NA, V , 〈Φ〉obs) = A(T,N,NA)− V · 〈Φ〉obs. (4.9)

Finding the stationary points is as simple as solving ∂Υ
∂V

= 0 (which returns Equa-

tion (4.8)). When the 〈Φ〉obs are measured in a thermodynamically stable phase, these

stationary points are maxima, as proven by the sign of the Hessian of A (and, therefore,

of Υ) in V :

∂2Υ

∂V
2 = −

cov
[
Φ,Φ

]
kbT

≤ 0. (4.10)

The strict seminegative-definite nature of the Hessian of Υ for thermodynamically stable

phases guarantees a single maximum only. This means that any changes in V that

increase Υ are moving us towards that global maximum — there are no local maxima

upon which to become trapped. Therefore, if we can evaluate how Υ changes when a

cluster is included or excluded, we can use the sign of ∆Υ to determine if that cluster is

moving us towards or away from the MAXENT solution.

A difficulty with Equation (4.9) is that we do not know the free energy A of the

phase in which the 〈Φ〉obs were measured. However, for a disordered solid solution, we
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can approximate it by performing a Taylor expansion of A(V ) around the non-interacting

crystal (V = 0) corresponding to an ideal solution. To first order:

Υ(T,N,NA, V , 〈Φ〉obs) ≈ A0 + V ·
(
〈Φ〉0 − 〈Φ〉obs

)
(4.11)

where A0 is the ideal solution free energy, and ∂A
∂V

∣∣
V=0

= 〈Φ〉0 is the vector of ideal-

solution extensive cluster functions, which can easily be evaluated, as the sites of any

cluster in an ideal solution are uncorrelated by definition. With the Taylor expansion

approximation to Υ, the criterion ∆αΥ as to whether or not a cluster α should be included

is then:

∆αΥ
(
T,N,NA, 〈Φ〉obs

)
≈
(
〈Φ〉0 − 〈Φ〉obs

)
·
[
V new

(
〈Φ〉obs

)
− V old

(
〈Φ〉obs

)]
(4.12)

where V new

(
Φobs

)
and V old

(
Φobs

)
refer to the values of the ECIs calculated using Equa-

tion (4.7) with cluster α included and excluded, respectively. By testing each candidate

cluster α for ∆αΥ > 0, we can differentiate between relevant clusters with small ECIs,

and clusters with 0 ECIs that recover nonzero values due to regression error. This al-

gorithm is described in the following section, and requires only a single pass through

the set of all clusters. For reasons of numerical stability, only cluster observations on

the same length-scale of any “selected” clusters are used for subsequent evaluations of

Equation (4.7).

The uniqueness of the maximum of Υ is only guaranteed where the free energy varies

smoothly, i.e., far from a phase boundary. Additionally, as our Taylor expansion is based

around the ideal solution, observations should only be drawn from the disordered phase.

This is an easy region to access experimentally, and agrees well with the goals outlined
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at the beginning of this section. Using Equation (4.12), we can determine the ideal set of

clusters to include, and with Equation (4.7), we can solve for their ECIs. These clusters

and ECIs are sparse, thermodynamically-consistent, share a one-to-one mapping with

the observed extensive cluster functions, and can be found using only a few observations

of the high-temperature, disordered phase.

4.3 Selection Algorithm

Figure 4.1: Schematic version of the regression scheme, Equation (4.7), indicating
which columns are selected by Equation (4.12) (the set As, in green) and which rows
are included by the cluster radius cutoff (the set AR, in blue). Selecting only rows
that represent extensive cluster functions in As results in large quantities of data going
unused. By using AR, i.e., the set of geometric clusters at or below the cluster radius
of the largest geometric cluster in As, a significantly larger portion of the available
observations can be used.

The approach of our algorithm is to invert Equation (4.7) via regression, using Equa-

tion (4.12) to select which ECIs will be allowed to be nonzero. Additionally, we wish

to restrict the range of measurements, i.e., kbT
∂〈Φi〉
∂T

, utilized in our regression. Fig-

ure 4.1 schematically illustrated the set-up of the regression, indicating which ECIs
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have been selected (in green) and which measurements are being utilized (in blue). Let

some selected set of ECIs be indexed by As = {α0, α1, . . . }, such that our model coef-

ficients are V As = {Vi∈As}. Then, let some utilized set of measurements be indexed by

AR = {β0, β1, . . . }, such that our predicted outputs are yAR = {kb
∂〈Φj∈AR 〉

∂T
}. Then, the

columns utilized in our design matrix, X, must be As and the rows utilized must be

AR, such that X = cov[{Φj∈AR}, {Φi∈As}]. These definitions will be utilized extensively

in the description of our algorithm, below. Our selection-and-regression algorithm runs

in polynomial time, and requires no additional data or information beyond the same

information needed for Equation (4.7). The algorithm as implemented in section III is

outlined below:

1. Form the set of extensive cluster function indices A for which there exists data, up

to a cut-off radius r, sorted by increasing geometric cluster1 size (first by cluster

radius, then by the number of sites in the cluster):

A = {α0, α1, . . . , αn} .

2. Initialize the list of selected ECIs As by selecting the indices associated with the

empty, point and pair clusters from A:

As = {α0, α1, α2} .

3. Let the cluster radius r(αi) be the longest distance between any two sites in αi,

and define Rs be the largest cluster radius of geometric clusters represented in As:

1A geometric cluster refers to the set of sites on a lattice included in the definition of a cluster
function, but not which basis function of the site is being used

67



Recovering 0 Kelvin Effective Hamiltonian Parameters from High-Temperature Disordered Phases
Chapter 4

Rs = max [{r(αi) : ∀αi ∈ As}]

4. Form the set of indices affiliated with geometric clusters as small as, or smaller

than, Rs. This set defines the extensive cluster functions with measurements that

we presume to be dominated by signal, rather than noise:

AR = {αi : ∀αi ∈ A if r(αi) ≤ Rs}

5. Using ridge regression 2 (with regularization parameter γ), calculate the ECIs for

As:

V As = (XXᵀ + γI)−1X · yAR

6. From A, select the next index αj which has not yet been examined, and form the

set Aj:

Aj = As + {αj} .

7. Using ridge regression3 (with regularization parameter γ), calculate the ECIs for

Aj:

V Aj = kbT
2(XXᵀ + γI)−1X · yAR

2 Ridge regression is only used in the selection step, not in the for the final ECIs when As has been
fully determined; the motivation for this choice is described in Section 4.5.3

3During the application of our algorithm, any ∆Υj or ECI values ≤ 0.001 meV in magnitude were
considered to be 0
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8. Use Equation (4.12) to calculate ∆Υ:

∆jΥ(T,N,NA,Φobs) =
∑
α∈As

(
Φ
α

0 − Φ
α

obs

) (
V α
Aj
− V α

As

)
9. If ∆jΥ > 0, As = Aj, otherwise As remains unchanged.

10. Return to step 3, until there exist no indices in A which have not been examined.

11. Using the final set of selected As determine the ECIs. Calculate Rs and construct

AR as in steps 3 and 4, respectively, and build X = cov [{Φj∈AR} , {Φi∈As}]. Solve

for V As using ordinary least squares regression:

V As = kbT
2(XXᵀ)−1X · yAR

4.4 Testing the Hamiltonian inversion approach on

simulated data

We used simulated data sets to test the viability of the methodology developed in

Section II to parameterize an effective Hamiltonian to high temperature measurements.

Benchmarking of the approach was performed on three binary systems (A-B alloys) with

their configurational energy described by CE Hamiltonians. This included two systems

on a 2D triangular lattice using: (I) only nearest and next-nearest neighbor (NN and

NNN) interactions, and (II) six pseudo-random interactions, including three and four-

body clusters. System I has been characterized in-depth by Glosli and Plischke[241]. We

also studied a 3D FCC lattice (III) using clusters and ECIs generated from first-principles

to model the Au-Cu system by Z. Lu, et al [242]. For all systems, we report our results
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using the following dimensionless, reduced units:

τ =
kbT

VNN
m =

µA − µB
VNN

xA =
NA

N

vi =
Vi
VNN

e =
E

VNN

where VNN is the nearest-neighbor-pair ECI from the original CE, and E and e refer to

any type of energy, in the absolute and dimensionless units, respectively. An ECI that

is strictly zero, i.e., vα = 0, is equivalent to cluster function φα being excluded from the

CE.

The normalized chemical potential difference m is related to the slope of the alloy free

energy as a function of alloy composition xA. The reference states for the model CEs were

defined such that the energies for pure A and pure B are both equal to zero. With these

reference states, very negative values of m correspond to B-rich alloys while very positive

values of m correspond to A rich alloys. Equi-composition alloys have intermediate values

of m that are centered around zero.

The simulated data was generated with semi-grand canonical MC simulations per-

formed using the three model CEs, using the CASM code[31, 135–137]. While the

methodology developed in Section II relies upon derivatives taken at constant compo-

sition, xA, rather than at constant chemical potential, m, switching from the canonical

to the semi-grand canonical ensemble requires only minor modifications to the equations

and changes none of the analysis 4. The MC simulations were used to calculate ensemble

averages of the extensive cluster functions, 〈Φα〉, and their covariances, cov[Φ,Φ], in the

disordered solid solution of the model alloys at high temperature. These two quantities

4Specifically, the number of configurations C is now C = 2N , and the point-term ECI changes from
V1 to V ′1 = V1 + µ

2 . This transformation is achieved by examining the argument to the exponential in the

semigrand canonical ensemble: −V ·Φ(σ)+µNA

kbT
, and noting that, for our choice of basis set, NA = Φ1(σ)+N

2 .

We can then collect Φ1(σ)(V1 + µ
2 ) = Φ1(σ)V ′ and bring the remaining µN

2 out of the exponential, and
indeed out of any outer sum over microstates, entirely as the number of sites N is unchanging.
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represent the “experimental data” needed to invert Equation (4.7) to determine the ECIs.

A 30 × 30 periodic supercell of the 2D triangular lattice was used to simulate data for

systems I and II, while a 14 × 14 × 14 periodic supercell of the FCC primitive cell was

used to generate data for system (III). All measurements were taken from cooling runs

at constant dimensionless chemical potential m. The number of passes (Npass), start-

ing dimensionless temperature (τ0), incremental dimensionless temperature (∆τ), and

incremental dimensionless chemical potential (∆m) are given in Table (4.1):

For all three model alloys, we found a strong dependence of the recovered ECI on the

value of m used to generate the simulated experimental data sets. Data sets collected

at chemical potentials that stabilize B-rich alloys or A-rich alloys (i.e., very negative or

very positive values of m) were less robust, as changes in 〈Φ〉 became small at near-

pure compositions. However, in the chemical potential range that stabilizes a more

equi-compositional alloy, a more consistent and reliable set of ECIs could be recovered

(provided the values of m and τ were not too close to a phase transition). To compare the

robustness of simulations performed at different values of m, we employed the following

“consistency score” figure-of-merit:

Sm =
2

‖vm − vm+∆m‖+ ‖vm − vm−∆m‖
, (4.13)

where vm is the vector of (reduced) ECIs evaluated for a simulation performed at chemical

potential m, and ∆m is the chemical potential step size used when performing multi-

ple simulations. Sm corresponds to the (reciprocal of the) average Euclidean norm of

ECIs evaluated at three chemical potentials m and m ± ∆m. This consistency score is

used to evaluate when the inversion algorithm ceases to provide reliable results, due to

divergences or zeros in cov
[
Φ,Φ

]
at phase boundaries or compositional extremes. The

reciprocal form provides easier interpretation of the results, and maps the “steadiest”
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solutions into the largest scores.

In the following three sections, we summarize the thermodynamic phase behavior

of each model system and describe how the inverted CEs compare to the original CEs

used to generate the high temperature data sets. For each alloy system, we determined

the final v with the following process. High temperature measurements (averages of the

extensive cluster functions, 〈Φα〉, and their covariances, cov[Φ,Φ]) were calculated for a

range of m values. The temperature range was chosen to be both narrow and near (but

not at) the highest-temperature phase transition. For each value of m, a sparse vector,

vm was determined using the algorithm of Section 4.3, based on Equation (4.12)5. Next,

runs were filtered to only include the range of m values centered on m = 0 for which Sm

remained sufficiently large. Using this reduced range, only clusters with ECI (entry in

vm) that were nonzero more than 50% of the time were kept, forming the “selected” set.

Finally, ECIs were calculated for the selected set of clusters at each m in the reduced

range, with each m being treated independently. By averaging vm of the selected set of

clusters over the reduced range of m, a final sparse set of ECIs was determined.

Table 4.1: Simulation conditions for semi-grand canonical MC simulations.

Simulation Npass τ0 ∆τ ∆m

I (2D) 10,000 1.29 −2.59× 10−3 0.15

II (2D) 5,000 6.46 −12.9× 10−3 0.3

III (3D) 5,000 3.18 −3.18× 10−3 0.369

4.4.1 System I: NN and NNN 2D Triangular Lattice

The original and recovered clusters and ECIs for the 2D triangular lattice are given in

Table 4.2, with diagrams of the clusters shown in Figure 4.2a. The zero kelvin formation

5During the application of our algorithm, any ∆Υj or ECI values ≤ 0.001 meV in magnitude were
considered to be 0
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energies of several structures, including the five ground states for this CE, are shown

in Figure 4.2b, with the ordering of each ground state illustrated in Figure 4.2c. This

set of clusters and ECIs produces a symmetric phase diagram with both first-order and

continuous phase transitions as is evident in Figure 4.3a. Data for use in our algorithm

was sampled over a wide range of chemical potentials and at temperatures from the region

in Figure 4.3a bounded by blue, dashed lines.

Table 4.2: Cluster Characteristics for the 2-Cluster 2D Triangular Lattice.

Cluster i Original vi Recovered vi

2 1.0 0.969

3 0.1 0.0966

12 0.0 1.26× 10−3

(b)

(c)

1. AB3 2. AB2 3. AB 4. A2B 5. A3B

2 3 12
(a)

Figure 4.2: (a) shows the two initial
cluster prototypes used in our 2D tri-
angular lattice (2 and 3), in addition
to a third recovered cluster prototype
(12). (b) shows the composition vs for-
mation energy of a selection of config-
urations, in supercells containing up to
6 sites. Squares indicate ground states
and are numbered to match (c). (c)
shows schematic cells of the five or-
dered ground states. Red circles rep-
resent particle A, σi = +1, and purple
circles represent particle B, σi = −1.

The algorithm of Section 4.3 was applied to data generated over a range of chemical

potentials, m, yielding a sparse set of ECIs at each m. The region where the algorithm

performs consistently was determined by the location of the first significant increase
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Solid Solution
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AB

A2B
A3B

Figure 4.3: Plots (a) and (b) show
logrithmic heatmaps of the heat ca-
pacity CV (scaled by VNN ), using
the original and recovered ECIs, re-
spectively. The approximate phase
boundaries visible as sharp shifts in
color, and appear at nearly identical
locations in both phase maps. The
blue dashed lines indicate the range
of temperatures across which observa-
tions were taken, while the orange lines
match those in Figure 4.4a.

-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12
m

015304560

Sc
ore

(a)

2 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Cluster Index

0
25
50
75100

Pe
rce

nt

(b)

Figure 4.4: (a) shows the consistency score (Equation 4.13) calculated at each chemical
potential (purple dots) using the recovered clusters and ECIs found via our algorithm.
Only data between the dashed orange lines was used for subsequent analysis. (b) shows
the fraction of runs each cluster appeared in; only clusters above the cutoff (≥ 50%,
dashed red line) were utilized in the final regression step to determine ECIs.
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in the consistency score, Sm, (Equation (4.13)) surrounding m = 0, as can be seen in

Figure 4.4a. The region of data then used to determine the final clusters and their ECIs is

indicated by the orange (dashed) lines in Figures 4.4a and 4.3a, referred to as the “reliable

zone”. The final ECIs were determined following two steps: first, the percentage of m

values in the reliable zone in which each cluster was included in the CE was tallied. This

percentage is presented in Figure 4.4b. Any clusters which appeared in half or more of

the runs in the reliable zone were included in the final set of clusters. This final set of

clusters was then used in a global regression over data collected at all chemical potential

values m in the reliable zone. The final set of ECI are listed in Table 4.2.

In addition to the nearest and next-nearest neighbor clusters (2 and 3, respectively),

the algorithm also picked up the nearest-neighbor triplet (cluster 12). The recovered ECIs

of clusters 2 and 3 are both within 5% of their original values, in addition to maintaining

the 10:1 ratio present in the original CE. The nearest-neighbor triplet has a value nearly

two orders-of-magnitude smaller than that of the next-nearest neighbor ECI; its impact

on any calculated energies is therefore negligible. This assertion is proved by both the

zero kelvin formation energies reproduced using the recovered ECIs in Figure 4.2b, and

the shape and features of the phase diagram in Figure 4.3b. For this simple model CE,

the algorithm of Section 4.3 has successfully recovered not only the correct ground states,

but the correct phase behavior throughout all of phase space, while utilizing only a tiny

fraction of the data available.

4.4.2 System II: 6-Cluster 2D Triangular Lattice

To examine a more complex CE for the triangular lattice, six clusters were chosen

to represent a spread of cluster lengths and cluster sizes. The values of the ECIs were

chosen randomly and are listed in Table 4.3. Their corresponding clusters are shown in
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Figure 4.5a. Zero kelvin formation energies for a selection of orderings on the triangular

lattice, including the five ground states, are shown in Figure 4.5b, with orderings for

each ground state illustrated in Figure 4.5c. The phase diagram for this CE is shown in

Figure 4.6a and is asymmetric, exhibiting both first-order and continuous phase transi-

tions. As before, only data at temperatures bounded by the two blue, dashed lines in

Figure 4.6a was used in the algorithm of Section 4.3 to recover the ECI.

Table 4.3: Cluster Characteristics for the 6-Cluster 2D Triangular Lattice.

Cluster i Original vi Recovered vi

2 1 0.946

3 0.3 0.266

6 0.5 0.433

12 0.3 0.286

14 0 −0.0109

15 0.5 0.450

47 0.3 0.287

Similar to system I described in Section IIIA, we calculated a consistency score for

each chemical potential, and used an increase in the consistency score to bound the “re-

liable zone”. The scores and resulting boundaries are shown in Figure 4.7a. The cluster

frequencies in this region are plotted in Figure 4.7b, with clusters selected more than

50% of the time utilized in the final series of regressions. In addition to the original

clusters, the next-nearest-neighbor triplet (cluster 14) was picked up, with an ECI one

order-of-magnitude smaller then the next-smallest ECI. All of the remaining ECIs re-

covered were within 15% of their original values, and 10% of their relative relationships

to the nearest-neighbor ECI.

The recovered CE correctly reproduces the same ground states and formation energies

(with a vertical offset) of the original CE, as shown in Figure 4.5b. The calculated phase

diagram of Figure 4.6b shows that the transition temperatures and the nature of the
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Figure 4.5: (a) shows the six initial
cluster prototypes (2, 3, 6, 12, 15, 47)
used to generate data, as well as a
spuriously-recovered cluster prototype
(14). (b) shows the composition ver-
sus formation energy for all configura-
tions in supercells containing up to 6
sites. Squares indicate ground states
and are numbered to match (c). (c)
shows schematic cells of the five or-
dered ground states. Red circles rep-
resent particle A, σi = +1, and purple
circles represent particle B, σi = −1.

transition (i.e., first-order versus continuous) are also faithfully reproduced across all of

phase space. These results demonstrate the ability of the algorithm to recover a CE from

high temperature data that correctly predicts phase stability over all of phase space.

4.4.3 System III: 3D FCC Lattice

The algorithm of Section 4.3 was also tested on a CE constructed by Z. Lu, et al. [242]

to describe the Au-Cu binary alloy. The ECIs are given in Table 4.4 and the clusters are

illustrated in Figure 4.8a. The zero kelvin formation energies of the L10 and L12 ground

states, as well as of a number of other configurations, are shown in Figure 4.8b with

orderings of the ground states illustrated in Figure 4.8c. Figure 4.9a shows the phase

diagram, exhibiting expected behavior akin to that experimentally observed for Au-Cu.

As for model systems I and II, only data from temperatures between the two blue, dashed

lines in Figure 4.9a was used to recover a CE.
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Figure 4.6: Plots (a) and (b) show
logrithmic heatmaps of the heat capac-
ity CV (scaled by VNN ), using the orig-
inal and recovered ECIs, respectively.
The approximate phase boundaries are
visible as sharp shifts in color, and ap-
pear at nearly identical locations in
both phase maps, save for a slight
amount of scaling. The blue dashed
lines indicate the range of tempera-
tures across which observations were
taken, while the orange lines match
those in Figure 4.7a.
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Figure 4.7: (a) shows the score (Equation (4.13)) calculated at each chemical potential
(purple dots) using the recovered clusters and ECIs found via our algorithm. Only
data from between the dashed orange lines was used for subsequent analysis. (b)
shows the fraction fo runs each cluster appeared in; only clusters above the cutoff
(≥ 50%, red dashed line) were used in the final regression to determine the ECIs.
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Table 4.4: Cluster Characteristics for the Au-Cu FCC Lattice.

Cluster i Original vi Recovered vi

2 1 0.947

10 0 0.0170

3 0.0224 0

12 0.0622 0.0764

4 0.0576 0

32 0.0129 0

5 0.0157 0

The “reliable zone” of chemical potentials was again determined using the consistency

score (Figure 4.10a) and the final choice of clusters was determined by the frequency with

which they were picked up by the algorithm for each chemical potential within this zone

(Figure 4.10b). In this case, a reduced set of clusters was recovered, excluding the 4-body

cluster and many of the 2-body clusters, but including a new longer-range pair interaction,

shown as cluster 10 in Figure 4.8a. This new set of clusters correctly reproduces the

ground states as well as the on-the-hull degenerate configurations identified using the

original CE as can be seen in Figure 4.8b. MC simulations applied to the recovered CE

also faithfully reproduces the phase behavior of the system to within a scaling factor,

visible in Figure 4.9b.

While the recovered CE in this example differs qualitatively from the original one

in terms of the number and types of clusters, it nevertheless correctly reproduces the

ground states and the finite temperature phase diagram. Equation (4.12) guarantees a

deterministic set of clusters and ECIs, but it does not necessarily guarantee the same

set of clusters will be picked up as those used to generate the high temperature data.

By using the MAXENT method, we bias our recovery towards specific sets of solutions.

This example illustrates that multiple sets of clusters and ECIs can generate the same

phase behavior. Therefore, while the original set of clusters and ECIs can produce the
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Figure 4.8: (a) shows the six ini-
tial cluster prototypes (2, 3, 4, 5, 12,
32) used to generate data, as well as
the newly recovered cluster prototype
(10). (b) shows the composition ver-
sus formation energy for all configu-
rations in supercells containing up to
6 sites, and selected supercells con-
taining up to 8 sites. Squares indi-
cate ground states and are numbered
to match (c), triangles indicate degen-
erate configurations that lie along, but
do not deform, the common tangent
between adjacent ground states. (c)
shows schematic cells of the three or-
dered ground states. Red circles rep-
resent particle A, σi = +1, and purple
circles represent particle B, σi = −1.

phase diagram in Figure 4.9a, we have recovered another solution with qualitatively the

same phase behavior.

4.5 Discussion

We have introduced a method to parameterize an atomistic Hamiltonian that is ca-

pable of accurately predicting both the thermodynamic ground states as well as the full

phase diagram at finite temperature using only information about the disordered state.

We demonstrated the approach for binary alloys modelled with CE Hamiltonians, which

express the dependence of the energy of a multi-component crystal as a linear expansion

of cluster basis functions. The foundation of the approach rests on a thermodynamic

interpretation of the CE formalism: extensive cluster basis functions, Φα, and their cor-

responding effective cluster interaction (ECI) coefficients, Vα, form conjugate pairs like
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Solid Solution

Figure 4.9: Plots (a) and (b) show
logrithmic heatmaps of the heat capac-
ity CV (scaled by VNN ), using the orig-
inal and recovered ECIs, respectively.
The approximate phase boundaries are
visible as sharp shifts in color, and ap-
pear at nearly identical locations in
both phase maps, save for a slight
amount of scaling. The blue dashed
lines indicate the range of tempera-
tures across which observations were
taken, while the orange lines match
those in Figure 4.10a.
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Figure 4.10: (a) shows the score (Equation (4.13)) calculated at each chemical po-
tential (purple dots) using the recovered clusters and ECIs found via our algorithm.
Only data from between the dashed, orange lines was used for subsequent analysis.
(b) shows the fraction of runs each cluster appeared in; only clusters above the cutoff
(≥ 50%, red dashed line) were used in the final regression to determine the ECIs.
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any other set of thermodynamic variables. Such an interpretation reveals the existence

of Maxwell relations that can be converted to a set of equations (Equation (4.7)) relating

two sets of measurable quantities (i.e., the covariance between pairs of extensive cluster

functions and the temperature derivative of the ensemble averages of extensive cluster

functions) to the unknown ECI of a CE.

CEs parameterized from first principles tend to be sparse, and not require the com-

plete set of basis functions. We have shown that a thermodynamic interpretation of

the ECIs also implies a free energy-like function, Equation (4.9). This free energy-like

function has a maximum which corresponds to a specified set of basis functions to be

retained in a truncated expansion consistent with the observed averages of the cluster

basis functions. This follows from Jaynes’ maximum (information) entropy or MAXENT

approach.

The two properties described in Equations (4.7) and (4.12) emerge from a thermo-

dynamic interpretation of the CE formalism. These thermodynamic features motivate

and support an iterative algorithm for the parameterization of an effective Hamiltonian

to high temperature observations. The final step relies on a regression model to invert

Equation (4.7). However, since the measured system is exactly determined (one linear

relation and one unknown for each cluster basis function of a CE), direct inversion of

Equation (4.7) becomes both numerically unstable and computationally intractable as the

number of cluster basis functions becomes exceedingly large in the thermodynamic limit.

Furthermore, most multi-component solids can be accurately described with a sparse CE

where only a small subset of the ECI are non-zero. Hence, ordinary least squares is not a

suitable method for regression, even if only considering the first n rows and first m < n

columns of Equation (4.7). Furthermore, we are also prohibited from sparsity-preserving

techniques such as LASSO[239] due to the nature of both the regressors (the covariances)

and the observed variable (the change in extensive cluster functions with temperature),
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an issue further detailed in Section 4.5.2. It is in this context that an initial step involv-

ing a maximization of the free energy, Equation (4.9), using an approximation for the

disordered state, Equation (4.12), can guide the selection of a sparse truncated CE (i.e.,

a sparse set of non zero ECI). Iteration between inverting a sparse form of Equation (4.7)

and maximizing Equation (4.9) then leads to a Hamiltonian that is consistent with high

temperature measurements of the disordered state. As our three examples illustrated,

the Hamiltonians parameterized this way are capable of reproducing the ground state

orderings as well as the topology of finite temperature phase diagrams with remarkable

accuracy.

The approach introduced here differs from conventional inverse MC schemes[238, 243–

246], which seek to recover interaction parameters of a Hamiltonian from measures of

average cluster functions. While inverse MC methods can generate similar Hamiltonians

as the approach introduced here, they require a new round of MC simulations for each step

in the gradient descent towards the “correct” ECIs. Furthermore, inverse MC methods

provide no proscription as to which cluster basis functions to query, leading to instability

of the solution when numerous spurious cluster functions are considered simultaneously

for the case of a sparse ground-truth. The approach of this work, in contrast, does

not require iteration with MC and relies on an agnostic approach in the selection of

relevant cluster basis functions. In fact, the step relying on Equation (4.9) can also be

incorporated in conventional inverse MC schemes as a way of cluster function selection.

We have said much about “experimental observables” without yet discussing how the

〈Φ〉 and cov[Φ,Φ] may actually be obtained. Ultimately, the extensive cluster functions

are merely the products of site occupation variables, and so if provided with exact atomic

data, one would map each site onto a lattice, assign a spin variable, and be able to di-

rectly calculate Φ. The averages and covariances of the clusters can then be calculated

by sub-dividing a sufficiently large observation into N smaller observations and taking
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averages and covariances across this collection of observations. This sort of exact atomic

information is available via atom probe tomography, which can yield observations with

volumes on the order of 106 nm3[247] or 108 unit cells. High-angle annular dark-field

imaging (HAADF-STEM) can also provide atomic-scale resolution of a sample as well,

and by varying the depth of focus, a 3D image image can be obtained over a compa-

rable volume[248]. Atom probe and HAADF-STEM do not provide 100% coverage of

the volumes they query, but each provides a sufficient overabundance of information

as to allow for some guesses at the unknown zones. Less directly, information on pair

correlations can be obtained via techniques such as x-ray and electron diffraction, the co-

variances of the pair cluster functions using fluctuation microscopy[249], and short-range

pair and multi-body terms using nuclear magnetic resonance (NMR) multiple-quantum

experiments[250]. However, rather than use diffraction or NMR techniques directly, it is

likely these could be used to supplement any interpretation of atom probe or HAADF-

STEM analysis, providing better guesses at information that may be missing.

While the approach introduced here has been developed in the context of a binary

alloy Hamiltonian, it can be used to invert any effective Hamiltonian that is expressed as

a linear expansion of basis functions of relevant DOFs. The linear expansion coefficients

that measure the weight of a particular basis function in the effective Hamiltonian can

again be interpreted as a thermodynamic variable. Equations similar to (4.7) and (4.12)

can then be derived that, through an iterative procedure, enable the parameterization of

interaction coefficients using measurements in a high temperature phase. The types of

Hamiltonians that can be analyzed in this manner include multi-component (i.e., ternary,

quaternary, etc.) CEs, spin-CEs describing non-collinear magnetic solids [216] and lattice

dynamical Hamiltonians in the harmonic approximation and beyond.[135, 137, 213, 236,

251]
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4.5.1 The Effects of Order and Too Much Data

Our selection algorithm provides a unique set of clusters that can describe the ob-

served data; the final values of the ECIs (to within > 0.5%) do not rely on the order

in which clusters are considered. As the nature of Equation (4.10) does not depend on

which subspace of clusters is chosen (the covariance matrix is, regardless, semipositive

definite), results for ∆Υj will remain correct in sign even if some clusters have previously

been included incorrectly. However, if the measurements (rows) utilized in our regression

are dominated by noise, rather than signal, the results of the regression behave erratically.

Specifically, we have found that if we include all measurements available to us (limited

only by when we have chosen to cease enumerating new extensive cluster functions to

measure), the results of our algorithm, and in fact, of any regression (even when selecting

the set of ECIs used in the underlying Hamiltonian we were trying to recover), were di-

vergent. In this way, the values entering Equation 4.12 are then no longer representative

of the data, making our scheme (and any scheme) meaningless. Therefore, addition to

selecting which ECIs to include in the fit, we have also chosen to restrict which measure-

ments we utilize in our regression; these choices are described in the previous section and

illustrated in Figure 4.1.

4.5.2 Numerical Accuracy and Impact of Algorithm Choice

In all of our test cases, we were able to recover both the original ground states and

the full phase diagram, using only a narrow, high-temperature subset of the data. We

have performed other tests using larger quantities of data (e.g., all chemical potentials,

and/or all temperatures, or samples from ordered phases) than the regions we chose,

including temperatures above all ordering phase transitions, and chemical potentials

centered around equiatomic composition. These trials performed strictly worse than
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the results shown above, selecting dozens of spurious cluster and/or regressing to wildly

incorrect ECI values. The reasons for this are related to issues of numerical accuracy,

one consequence being that not all locations in phase-space are equal.

In ordered phases, at large chemical potentials and at low temperatures, the accuracy

of the empirically measured cov
[
Φ,Φ

]
drops dramatically. This effect is a consequence

of the small number of microstates available at these conditions, an effect magnified in

larger clusters (i.e., clusters with a larger radius, or more members). Conversely, at high

temperatures, the entries in the covariance matrix will all go to zero, as kbT >> Vj for all

j ∈ α and the system is driven to total disorder (an effect that is also more pronounced

for larger clusters). This means that, even in a system with no ordered phases, we cannot

draw from arbitrary locations in phase space.

At extremes of temperature or chemical potential, we begin to introduce large amounts

of heteroskedastic noise, or, noise that is not identically and independently distributed

for all clusters. This heteroskedastic noise is not limited only to extreme regions, though

its impact is distinctly lessened at “milder” locations in phase space. In addition to the

noise, the entries in the covariance matrix themselves are not independently distributed,

since two covariances with a common element are themselves correlated. Nor are they

identically distributed, since the variance of larger clusters is more sensitive to smaller

changes in the configuration.

As neither the errors, nor the regressors, are independently and identically distributed,

performing unbiased regression (e.g., ordinary least squares) on the full set of basis func-

tions returns small (but nonzero) values for nearly all the ECIs instead of the desired

sparse solution. Empirically, additional observations only increase over-fitting, rather

than sparsity. Compressive sensing techniques aimed at sparsity, such as LASSO, are

foiled by the multicollinearity inherent in the entries of the covariance matrix. The het-

eroskedastic errors present in the data invalidate the results of most common statistical
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tests for variable relevance, as well as many cross-validation schemes, as both rely on

identically distributed (homoskedastic) errors.

4.5.3 Motivation for Ridge Regression in Selection

When performing extensive cluster function selection, we add a penalty term to A

proportional to the l2-norm of the ECIs to guarantee numerical stability of both Equa-

tion (4.7) and (4.12) (i.e., ridge regression). The regularization parameter γ is chosen

as part of the Bayesian ridge regression scheme as implemented in scikit-learn[252]. By

using ridge regression, we are implicitly assuming that the ECIs are Gaussian distributed

with a mean of 0[253].

Our second derivatives from Equation (4.10) are now:

∂2Υ

∂V
2 = −

cov
[
Φ,Φ

]
kbT

− 2γ

kbT
< 0. (4.14)

For γ > 0, this guarantees that A (and thus Υ) is negative definite (and has a unique

maximum). In the regression portion of the selection step, the addition of a regulariza-

tion term ensures that the modified covariance matrix has no (near-)zero eigenvalues,

preserving the numerical stability of the solution. The trade-off, in the form of (uni-

form) shrinkage, is that the ECIs recovered are slightly smaller than their “true” values.

Shrinkage of the ECIs provides no penalty in the selection stage as long as the sign of

the ECIs is preserved. During the final regression after selection has been performed,

only ordinary least squares regression is used to avoid solution bias and shrinkage of the

ECIs.
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4.6 Conclusion

In this Chapter, we have developed a new method to recover relevant interaction co-

efficients of effective Hamiltonians from experimentally measurable qualities. By careful

examination and manipulation of the free energy, a simple mathematical relationship be-

tween fluctuations of extensive cluster functions and their related interaction coefficients

emerges. The numerical instability of this equation is solved by the development of a

secondary criterion, based on the principle of maximum entropy as put forth by Jaynes.

Using a single pass through the space of basis functions of the Hamiltonian, we recover

a unique solution in polynomial time. The method has been tested in multiple in-silico

experiments, and faithfully reproduced both the original thermodynamic ground states

and the full phase diagrams of each of our simulated systems.
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This Chapter forms part of a pair, with Chapter 6, exploring the pseudo-binary

Heusler (Mn,Fe)Ru2Sn. Formed as a solid solution of two full Heuslers, this material has

recently been shown to exhibit exchange hardening suggestive of two magnetic phases, de-

spite existing as a single chemical phase. Here, we have performed a first-principles study

of the chemical and magnetic degrees-of-freedom to determine the origin of the unique

magnetic behavior responsible for exchange hardening within a single phase. We find a

transition from antiferromagnetic (AFM) to ferromagnetic (FM) behavior upon replace-

ment of Mn with Fe, consistent with experimental results. The lowest energy orderings

in Mn1−xFexRu2Sn consist of chemically- and magnetically-uniform (111) planes, with

Fe-rich regions preferring FM ordering and Mn-rich regions preferring AFM ordering, in-

dependent of the overall composition. Analysis of the electronic structure suggests that

the magnetic behavior of this alloy arises from a competition between AFM-favoring Sn-

mediated superexchange and FM-favoring RKKY exchange mediated by spin-polarized

conduction electrons. Changes in valency upon replacement of Mn with Fe shifts the

balance from superexchange-dominated interactions to RKKY-dominated interactions.

These results are used in Chapter 6 to construct a Cluster Expansion Hamiltonian to

explore how magnetism and chemistry interact at finite temperature, especially in the

(Mn,Fe) disordered solid solution.

5.1 Introduction

The unique electronic properties of full Heusler compounds, defined as L21-ordered

XY2Z alloys with X and Y as transition metals and Z as a main-group element, make them

promising materials for applications in spintronics[254], superconductors[48],

magnetocalorics[53], and shape-memory devices[255]. The flexibility of Heusler com-

pounds derives from their ability to realize large and tunable changes in properties with
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small changes in the valence electron count[256–259]. Different choices of X and Y can

produce various magnetic properties, as both Z-mediated indirect exchange between sec-

ond nearest neighbor pairs of X, and direct exchange involving X-Y interactions, can

give rise to ferro-(FM), ferri-(FrM), or antiferro-(AFM) magnetic configurations[48, 254].

Many Heuslers have been demonstrated to follow Slater-Pauling behavior[258, 260, 261],

a subset of which are calculated to be half-metals[260–263], yielding a family of materials

with unparalleled magnetic flexibility.

The (Mn,Fe)Ru2(Ge,Sn) genus of the Heusler family neatly demonstrates the tran-

sition from AFM to FrM to FM behavior with a change in the ratio of Fe to Mn as

the X element[44, 46]. Mizusaki et al.[46] and Douglas et al.[44] have shown that both

the MnxFe1−xRu2Ge and MnxFe1−xRu2Sn alloys exhibit magnetic behavior indicative

of two-phase coexistence, evidenced by an increase in magnetic coercivity, in spite of

the fact that the alloys form a single chemical phase, i.e., a solid solution on the X

= Mn,Fe sublattice. The spike in coercivity is theorized to be a consequence of lo-

cal AFM/FM domains and interactions between the two, creating exchange hardening

(broadening of the hysteresis loop) as observed on the macroscopic scale. Exchange

bias (shifting of the hysteresis loop) and exchange hardening are both well-studied phe-

nomena in nanocomposites and nanostructured thin films[264, 265] containing distinct

FM-favoring and AFM-favoring chemical phases. However, exchange hardening with-

out the appearance of a second chemical phase is a phenomenon that, at present, is

rarely observed and poorly understood. While previous studies have performed limited

ab-initio calculations to probe the magnetic behavior of the MnRu2Sn and FeRu2Sn end-

members[44, 262], no studies at intermediate compositions of the MnxFe1−xRu2Sn alloy

have yet been performed.

Here, we perform density functional theory (DFT)[5, 6] calculations on the

Mn1−xFexRu2Sn alloy across the entire composition range x = [0, 1], and explore both
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chemical and magnetic degrees-of-freedom (DOFs). We first probe the origin of FM and

AFM ordering in the FeRu2Sn and MnRu2Sn Heuslers, respectively, and seek to answer

why a small change in the electronic configuration causes a dramatic change in mag-

netic ordering. We consider two models of magnetic interaction proposed for Heuslers to

analyze our results: (a) indirect exchange, as a competition between AFM-favoring, Sn-

mediated superexchange and FM-favoring, Ruderman-Kittel-Kasuya-Yoshida (RKKY)

interactions between the X-sites containing Fe and Mn, and (b) direct exchange, as a

consequences of bonding/antibonding/nonbonding interactions between Ru and Mn/Fe.

As MnRu2Sn and Mn-rich MnxFe1−xRu2Sn alloys are known to be AFM or FrM, we

next evaluate a large number of magnetic orderings on the Mn/Fe sub-lattice site, and

study the interplay between magnetic and chemical stability. We predict the existence of

a miscibility gap at zero kelvin with Mn1−xFexRu2Sn separating into a two-phase mix-

ture of pure Heuslers (Mn,Fe)Ru2Sn for all x. The lowest-energy chemical configurations

of MnxFe1−xRu2Sn at intermediate concentrations (0 < x < 1) offer insights into the

low-temperature magnetic behavior of quenched solid solutions.

5.2 Prior Work: Magnetism in Heuslers

Numerous in-depth studies have been published exploring the origin of magnetism

and half-metallic behavior[263, 266, 267], the prevalence and consequences of Slater-

Pauling behavior[258, 260, 261], and the FM or AFM coupling of magnetic moments

in full Heuslers[257]. These studies can be divided into two general categories, namely,

those where: (a) the Y transition metal is assumed to determine the lattice constant and

the valence electron count, but does not participate in the X-X magnetic coupling[256,

257, 268, 269], and those where (b) the X-Y interactions are assumed to dominate the

magnetic Hamiltonian[258, 259, 263, 270, 271]. While these two viewpoints assign the
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observed magnetic behavior to different underlying causes, the conclusions are largely the

same. To best understand which mechanisms determine the AFM-to-FM transition in

Mn1−xFexRu2Sn with increasing x, we examine both philosophies and apply the analysis

methods used in each to the pure Heuslers (Mn,Fe)Ru2Sn.

In the following sections, we offer an overview of magnetism in Heuslers. First,

we explore the origin of a magnetic moment, and why Slater-Pauling behavior leads

to (near-)integer values of the magnetic moment. Next, we review the two models of

magnetic interaction given for Heuslers. In the indirect-exchange only model, we discuss

two different competing modes of indirect exchange that can couple the Mn and/or Fe

containing X sites without the participation of Ru residing on the Y-sites. In the direct-

exchange model, we explore the possibility of X-Y (i.e., Mn/Fe-Ru) interactions being

the dominating influence on whether FM or AFM configurations are realized.

5.2.1 Slater-Pauling Behavior

Galanakis et al.[260, 261] have demonstrated that many full Heusler alloys follow

Slater-Pauling behavior, such that the total ferromagnetic moment is a linear function

of the valence electrons:

Mt = Zt − 24, (5.1)

where Mt is the total moment, Zt is the number of valence electrons, and 24 is the total

number of occupied spin-up plus spin-down valence bands in a traditional XY2Z Heusler.

While common, Slater-Pauling behavior is not universal; as the valence electron count

approaches and passes 30, Galanakis et al. note that the total moment stops rising in

integer steps. The number 24 arises from the 12 electrons occupying the minority bands,

which require 12 electrons in the majority bands to reach zero moment; additional valence

electrons do not change the occupation of the minority states, and so the moment is
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determined by the number of electrons past parity1. In the case of Mn- or FeRu2Sn, the

twelve occupied minority states are: one Sn s, three Sn p, five hybridized Fe/Mn-Ru2 d

and another three non-bonding Ru2 d states. Due to exchange splitting, those twelve

states, plus an additional three (Mn) or four (Fe) states, are occupied by the majority

spin. The states closest to the Fermi level are, however, delocalized conduction electrons

and not easily assigned to localized orbitals.

Depending on the size and electronegativity of the Y element (Ru, in our case), the

total moment may be localized only onto X (e.g., Mn in MnRu2Z compounds), or shared

among the X and Y sites with the moment on Y being as large as 1 µB (e.g., Co in

MnCo2Z compounds)[261]. When Y is a heavier element with better-shielded (and hence

more delocalized) valence electrons and a larger atomic radius (like Ru or Rh), the X-Y

hybridization is smaller than for a lighter Y with more tightly bound d electrons (like Fe

or Co) and a smaller atomic radius. This reduced hybridization results in less moment

being assigned to the Y species in a Wigner-Seitz cell integration.

Overall, there are three ways to change the valence electron count Zt, with differing

levels of side-effects. Selecting different elements for X (e.g., Mn versus Fe) can change Zt,

but can also alter the ground state magnetic configuration. Modifying Y (e.g., Ru versus

Rh) can change Zt without significantly affecting other magnetic properties when moving

within a heavier group (where the valence electrons are more delocalized). For any main

group element Z (e.g., Sn versus Ge), the d states are so far below the Fermi level as

to play no role in determining magnetic effects. Furthermore, their atomic radii are too

small to set the lattice constant (compared to Y ). Main group Z elements, therefore,

only act as an electron sink, changing Zt without affecting any other properties. By

tuning the exchange splitting with a careful choice of X and/or Y, and by tuning the

1at roughly 30 electrons, this rule begins to break down: the exchange-splitting required to push
electrons into the highest-energy anti-bonding orbitals is infeasibly large
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filling via Z, it is possible to realize half-metallic and nearly half-metallic alloys. Many

half-metallic Heuslers, such as MnCo2(Al/Ga/Si/Ge/Sn)[272] and VMn2(Ge/Al)[271],

have been studied via ab-initio calculations.

5.2.2 Indirect-Only Model: Superexchange and RKKY Exchange

The first model of exchange developed for Heusler alloys proposes a collection of lo-

calized moments on the X site (Mn or Fe here) interacting via competing AFM-favoring

superexchange and FM-favoring RKKY couplings[256, 257, 268]. As the X-X distance in

Heuslers is always larger than 2rX , where rX is the Van der Waals radius of X, the major-

ity of X-X exchange is presumed to be indirect. The strongly AFM superexchange inter-

action is mediated by the Z atoms (Sn here), which sit between second-nearest-neighbor

X-X atom pairs. In contrast, RKKY-type exchange undergoes decaying oscillations with

interatomic distance and can be FM or AFM. This interaction is the consequence of

a large localized moment inducing a decaying oscillation in the spin-polarization of the

conduction electrons. Figure 5.1 illustrates, schematically, the spin polarization and oc-

cupations involved in both types of indirect exchange. For the interatomic distances of

relevance in the Mn1−xFexRu2Sn alloys, the dominating terms of RKKY interaction are

ferromagnetic[256, 273].

The Y atoms (e.g., Ru) within the indirect-exchange model can play two roles: they

can affect the lattice constant, and they can contribute to the total valence electron

count. Both factors indirectly influence the exchange interactions between the X atoms.

Superexchange depends on orbital overlap between neighboring X-Z atoms and is reduced

in magnitude by increasing the lattice constant. RKKY interactions reduce in magnitude

and potentially change sign with a change in interatomic distance. Both superexchange

and RKKY exchange parameters scale inversely with the energy required to promote an
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Figure 5.1: (Top) Sn-mediated Superexchange, where AFM orientation of Mn-Mn
pairs is driven by overlap between the Mn d orbitals and the Sn p orbitals. The
fully-occupied Sn p orbital has alternating signs on either lobe; the large degree of
spatial overlap with the partially-occupied Mn d orbitals drives a preference for AFM
pairing between the Sn and Mn electrons, and hence, an AFM pairing between the
Mn pairs. (Bottom) RKKY exchange, where large, localized magnetic moments on
the Mn sites drive an oscillating polarization of the delocalized conduction electrons.
While the Mn pairs are spatially separated for direct exchange to be possible, the
conduction electrons can transmit information about the magnetic moments across
the gap.

electron from a X d -state to the Fermi level and depend on the number and distribution

of states both immediately below and above the Fermi level[269, 273]. The exact elec-
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tronic configuration of the Y atom (beyond the number of valence electrons) is otherwise

considered unimportant in determining magnetic behavior. An assumption is made that

the (usually heavy) Y element has sufficiently delocalized electrons as to play no partic-

ular role in the overall electronic structure near the Fermi energy. Kübler et al. go so

far as to state “We find that the [Y] atoms (e.g., Cu, Pd) serve primarily to determine

the lattice constant [. . . ]”, though they do acknowledge the possibility of Y-mediated

exchange in the case of light, ferromagnetic Y elements such as Co and Ni[257].

The scaling of the competing superexchange and RKKY exchange parameters can

be qualitatively understood using a perturbative approach, where the coupling constants

jRKKY and js at the gamma point in reciprocal space (q → 0) reduce to[273]:

jRKKY (0) = V 4D(εF )/E2
h, (5.2)

js(0) = V 4

εnk>εF∑
nk

(εF − εnk − Eh)−3. (5.3)

V is an electronic mixing parameter, D(εF ) is the density of states at the Fermi level,

εF is the Fermi energy, εnk is the energy of a state at k-point k in band n, and Eh is the

energy required to promote an electron from a d -state of X to the Fermi level. Şaşıoğlu

et al.[269] performed an in-depth exploration of the competition between jRKKY and js,

using Mn-based Heuslers as examples. Their general conclusion is that a large number

of states at (or just below) the Fermi level favor RKKY-type exchange, while a large

number of states just above the Fermi level favor superexchange. The relative stability

between FM and AFM behavior can, therefore, be altered by either varying the number

of electrons with the chemistry on the X site, or by changing the lattice constant.

97



First-principles Investigation of Competing Magnetic Interactions in Heusler (Mn,Fe)Ru2Sn Solid
Solutions Chapter 5

5.2.3 Direct Model: X-Y Exchange

The second model of exchange for Heuslers drops the presumption that the Y sites

do not participate significantly in exchange. The effects of Y-mediated exchange are ex-

plored in-depth by Şaşıoğlu et al.[263, 270, 271] in numerous Heusler systems for lighter

Y elements such as Co and Fe. Dronskowski et al.[259] offer a bonding/antibonding-

motivated discussion of the origin of AFM/FM behavior in Heuslers, demonstrating that

even in cases where the Y element is a heavier element (e.g., Ru), X-Y exchange in-

teractions play a leading role in determining the magnetic configuration of the Heusler.

In cases where Y participates directly in exchange, two types of interactions must be

considered for XY2Z Heuslers: X-Y exchange and Y-Y exchange. As the two Y sites

occupy interpenetrating FCC sub-lattices, the Y-Y distance is usually below 2rY , and so

direct exchange between the two Y may be significant. The X-Y distance can also be

smaller than rX + rY , leading to direct X-Y exchange; however, as both X and Y have

partially-occupied d -states, this mechanism differs from the X-Z superexchange via Z’s

fully-occupied sp states (e.g., Mn-Ru direct exchange would look different than Mn-Sn-

Mn superexchange in MnRu2Sn).

The potential Y-Y interactions can be FM or AFM depending on the ratio of inter-

atomic distance to the d -orbital radius, in a similar fashion to pure transition metal ele-

ments on the Bethe-Slater curve[274]. Similarly, the X-Y interactions can be FM or AFM,

while the X-X interactions are presumed to be purely FM owing to the large interatomic

separation. The magnitudes of the Y-Y interactions are typically very small compared to

those of the X-Y interactions or even the X-X interactions[258, 263], and hence, a simple

model can be constructed with three couplings: X-Y (FM or AFM), X-X nearest-neighbor

(NN) (always FM), and X-X next-nearest-neighbor (NNN) (FM or AFM, depending on

the superexchange-RKKY competition). Even with only three coupling constants, very
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complex ordering phenomena can arise, depending on the sign of the X-Y and X-X NNN

interaction and on the relative magnitude of all three interactions[237, 275–277].

5.3 Methods

5.3.1 Ab-Initio Calculations

General details about the electronic structure calculations performed in this Chap-

ter are available in Section 2.3. All calculations were performed spin polarized unless

otherwise noted, with an energy cutoff of 540 eV and a k-point grid with 17 × 17 × 17

divisions in the unit cell (and scaled with reciprocal supercell size). All local prop-

erties (e.g., site-specific magnetic moments or atomic charges) were determined using

the Wigner Seitz radii provided with the pseudopotentials. Non-neutral calculations

were performed utilizing a homogeneous compensating background charge, fixing lattice

vectors and atomic coordinates to those of the lattice of the neutral parent structure.

The LOBSTER software package[278–280] (version 2.1.0) was used for the calculation

of Crystal Orbital Hamilton Populations (COHP) to analyze bonding[281]. We utilized

the pbeVaspFit2015 basis set[282] and selected per-element basis functions matching the

electrons treated as valence electrons in the pseudopotentials.

5.3.2 Enumeration of Configurations

The energies of all symmetrically-distinct configurations of chemical identity (Fe,

Mn) and magnetic spin (negative or positive per-site moment) within supercells con-

taining up to four unit cells were calculated using VASP with the settings described

above. One configuration containing six unit cells at xFe = 0.33 was also considered,

as the lowest-energy three-unit-cell supercell corresponds to a high-energy, magnetically-
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frustrated state.Volume and site relaxations were minor (0.998 < V/V0 < 1.009, and

mean-squared-displacement < 0.7 × 10−3 Å); however, magnetic relaxations were sig-

nificant. While VASP prohibits changes of the magnetic moments that would lower

symmetry (e.g., FM to AFM), changes that add additional symmetries, or move to a dif-

ferent magnetic configuration with the same symmetry, are allowed. Multiple instances of

AFM structures relaxing to otherwise-enumerated FM structures were found; the initial

AFM structures were considered unstable and were removed from further calculations.

More interestingly, several cases were found where one AFM or FrM configuration would

relax into its spin-reversed twin (i.e., applying the time-reversal operator), and visa-versa

(A→ B and B → A). In the cases where multiple initial magnetic configurations relaxed

onto the same final configuration, the structure with the lowest energy was kept and the

others discarded.

5.4 Results and Discussion

5.4.1 Electronic Structure of MnRu2Sn and FeRu2Sn

To understand the potential causes of complex magnetic behavior in 0 < x < 1

solid solutions of Mn1−xFexRu2Sn, we first sought to understand the electronic difference

between the x = 0 and x = 1 end-members. MnRu2Sn possesses L11 (i.e., (111) spin-up

planes alternated by spin-down planes) AFM ordering on the Mn FCC sublattice with

a large moment on Mn and no moment on Ru. FeRu2Sn, in contrast, is FM with a

large moment on Fe and a small-but-nonzero moment on Ru[44]. In the course of our

enumeration, we examined many different AFM and FrM magnetic orderings of the pure

Heuslers (Mn,Fe)Ru2Sn. The experimentally-observed magnetic orderings (AFM for Mn

and FM for Fe) were found to be the ground states, with energy differences of 24 meV and
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87 meV (per primitive cell) to the next-lowest-energy magnetic orderings for MnRu2Sn

and FeRu2Sn, respectively. In addition to the fully-relaxed structures, we calculated

total and local moments of cells having the experimental lattice constants and of cells

having an averaged lattice constant between the end-member constants. In both cases

the internal ionic DOFs were fully relaxed. Table 5.1 compares calculated total and local

site magnetic moments with experimental total saturation magnetizations measured at 5

T and 4 K and per-site moments extracted from Rietveld refinements of neutron powder

diffraction data.

Table 5.1: Total and per-site magnetic moments for MnRu2Sn and FeRu2Sn obtained
from DFT calculations using different lattice constants, as well as experimental mea-
surements.

System MnRu2Sn Moments (µB) FeRu2Sn Moments (µB)

Total Mn Ru Total Fe Ru

DFT (Full Relax) 0.0 3.155 0.078 4.141 3.065 0.497

DFT (Exp. Lat. Const.) 0.0 3.140 0.078 4.136 3.057 0.498

DFT (Mean Lat. Const.) 0.0 3.134 0.071 4.137 3.059 0.498

Experiment 0.0 3.4(1) 0.0 3.4 3.16(4) 0.4(1)

The moments obtained from DFT in all cases compare favorably to the experimen-

tal results, except for the saturation magnetization in FeRu2Sn, where the lower-than-

anticipated experimental moment in the FM case arises from the dispersion of grain ori-

entations and the presence of grain and magnetic domain boundaries in the experimental

sample[44]. The relaxed DFT lattice parameters of 6.22 Å and 6.21 Å for MnRu2Sn and

FeRu2Sn, are also in good agreement with the experimental lattice constants of 6.20 Å

and 6.19 Å as measured with neutron diffraction at 15 K by Douglas et al.[44]. The

fully-relaxed lattice constants are slightly larger than the experimental values; the lat-

tice constant is set by Ru (the element with the largest radius), and PBE is known to

systemically overestimate lattice constants for 5d elements[283].
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The transition from AFM to FM ordering when going from MnRu2Sn to FeRu2Sn is

somewhat unexpected considering that Mn and Fe differ by only one electron and one

proton. We can understand this transition, as well as the likely intermediate states for

a disordered Mn/Fe solid solution, by analyzing how the electronic structure around the

Fermi level changes with a change in the X element. To most easily compare reciprocal-

space properties, all of the following calculations were performed using the mean lattice

constant between the experimental MnRu2Sn and FeRu2Sn values. The density of states

(DOS) of the non-spin-polarized (referred to hereafter as non-magnetic, or NM, for sim-

plicity2) Heuslers are shown in Figure 5.2, along with the projected DOS of the Mn/Fe

and Ru d -states. Figure 5.2 clearly shows large changes in the states available above

and below the Fermi level when going from NM MnRu2Sn to NM FeRu2Sn. In the Mn

Heusler, there are substantially more states just above the Fermi level than below it,

while in the Fe Heusler, the reverse is true. Far below the Fermi level the electronic

structures of both Heuslers are nearly the same. At the Fermi level, the behavior is

closer to a rigid-band model, with the movement focused on the Mn/Fe site.

We can connect these differences in the Fermi-level states back to the indirect-

exchange-only model of magnetic ordering, i.e., as a competition between superexchange

and RKKY exchange. Both Mn- and Fe-rich Heuslers have a large DOS at the Fermi

level, driving a large RKKY term, but in Fe there is a large drop-off just past the Fermi

level. The superexchange interaction, js in Equation 5.3, is bounded from above by

js(0) ≤ V 4N/E3
h, where N is the number of unoccupied states near the Fermi level[273].

Therefore, in Mn, where N is large, |js| should be greater than |jRKKY |, and AFM be-

havior should dominate. In Fe, where N is smaller, |js| should be smaller than |jRKKY |,

and FM behavior should dominate. It is worth noting here that D(εF ) in the Fe-Heusler

2Non-spin-polarized should not be taken to mean paramagnetic, in this context. While non-spin-
polarized calculations have sometimes been used as a proxy for paramagnetic configurations, we stress
that this approach is generally incorrect.
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Figure 5.2: Non-spin-polarized
site-projected DOS for MnRu2Sn
(above) and FeRu2Sn (below) for
the Mn or Fe and Ru sites; Sn
sites contribute states far below
the Fermi level (≤ −6 eV) and
are not shown. While the states
far below the Fermi level are
largely unaffected by the addi-
tion/subtraction of an extra elec-
tron/proton pair, the behavior at
the Fermi level changes substan-
tially.

is also smaller than in the Mn-Heusler, and so the overall magnitudes of the coupling

constants are expected to be smaller.

The differences in the states near the Fermi level persist into the spin-polarized cal-

culations. The Mn or Fe site-projected DOS for the FM and L11 AFM configurations

are shown in Figures 5.3 a and c, with corresponding formation energies in Table 5.2.

Table 5.2: Relative formation energies per primitive cell of various magnetic and elec-
tronic configurations of MnRu2Sn and FeRu2Sn. All energies represent fully-relaxed
structures.

System FM - NM AFM - NM FM - AFM

(eV) (eV) (meV/µB)

MnRu2Sn 1.305 1.357 16.7

[MnRu2Sn]−1 2.025 2.036 2.6

FeRu2Sn 1.084 0.998 -20.8

[FeRu2Sn]+1 0.716 0.753 11.9
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Figure 5.3: Spin-polarized
site-projected DOS for MnRu2Sn
(a,b) and FeRu2Sn (c,d), show-
ing per-site Mn or Fe DOS
for both FM and L11 AFM
configurations. Panels (b) and
(d) have had an electron added
or subtracted, respectively, such
that the Mn-Heusler has the
same number of electrons as the
Fe-Heusler, and vise-versa.

For the Mn-Heusler, the Fermi level resides at approximately the middle of a broad

peak of both the total DOS and the projected DOS at the Mn site (see Figure 5.3 (a)).

This matches the behavior of the NM states, suggesting dominance of the superexchange

interaction over the RKKY interaction, resulting in the energy of the AFM phase being

more than a dozen meV (per primitive cell) below that of the FM phase. Both the FM

and AFM orderings are also far lower in energy (>1 eV per primitive cell) than the NM

state, indicating a large driving force towards magnetization.

The Fermi level in the FM Fe-Heusler lies at the start of a near-gap where the DOS

is at a minimum for the minority spin, and just past a peak in the majority spin (see

Figure 5.3 (c)). The presence of the majority-spin peak immediately before the Fermi

level leads to a large RKKY contribution to the coupling in the FM configuration of the

Fe-Heusler. In the AFM configuration, however, the very local maximum immediately

after the Fermi level is still smaller than the maximum before the Fermi level in the FM

configuration. This implies that the degree of superexchange (AFM-favoring) coupling in
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the AFM configuration is far smaller than the degree of RKKY (FM-favoring) coupling

in the FM configuration, leading to FM being lower in energy.

To establish the importance of nuclear charge/effective potential on magnetism, we

also considered FM and AFM configurations of Mn- and FeRu2Sn when one electron

is added or subtracted, respectively. The change in total electron count serves to give

MnRu2Sn the same valency as FeRu2Sn, and vice-versa. When an additional electron is

added to MnRu2Sn, the Fermi level moves to higher energy, but the dispersion of the

bands also broadens as the additional electron induces further delocalization, as seen in

Figure 5.3 (b). As a consequence, while the energy difference between FM and AFM

orderings decreases upon addition of an extra electron to MnRu2Sn, there are still a

sufficient number of states above the Fermi level to (barely) prefer the AFM ordering.

Conversely, when an electron is subtracted from FeRu2Sn, the states become more

localized (owing to less Coulomb repulsion) and the Fermi level moves to lower energies,

putting the Fermi energy directly in the middle of the large DOS peak in the FM config-

uration as seen in Figure 5.3 (d). This new distribution of states around the Fermi level

implies that |js| is now much closer in magnitude to |jRKKY |, destabilizing the FM state.

In contrast, the removal of an electron from AFM FeRu2Sn has virtually no effect on the

electronic structure near the Fermi level. As a result, the energy change upon removal of

an electron penalizes the FM state more than the AFM, so much so that for FeRu2Sn it

alters the ground state from FM to AFM. This effect becomes evident upon inspection

of the change in energy when going from the NM state to the FM and AFM states.

Table 5.2 shows that the AFM state gains more in energy compared to the FM state

relative to the NM state in FeRu2Sn upon subtraction of an electron (by approximately

100 meV per primitive cell).

There is another subtle, yet relevant difference between MnRu2Sn and FeRu2Sn: in

the FM configuration, Mn and Ru are AFM aligned to one another, while Fe and Ru are
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FM to one another. This suggests that there are also interactions that couple the X (i.e.,

Mn and Fe) and Y (i.e., Ru) sites, and that these couplings may be important. We can

estimate the relative strengths of Ru-Ru, Ru-Mn/Fe and Mn/Fe-Mn/Fe interactions by

fitting a rudimentary magnetic Hamiltonian to DFT supercell calculations at fixed total

moment. The simplest Hamiltonian takes the form

E = j0 + 3j1〈φNNRu 〉+ 6j2〈φNNMn/Fe〉+ 3j3〈φNNMn/Fe〉+ 4j4〈φNNRu,Mn/Fe〉, (5.4)

where E is the energy per primitive cell, j0 can be interpreted as the energy gain from

exchange splitting, j1 is the Ru-Ru coupling, j2 and j3 are the nearest-neighbor and

next-nearest-neighbor Mn/Fe-Mn/Fe couplings, respectively, and j4 is the Ru-Mn/Fe

coupling. The φ are the products of site-projected moments for Ru, Fe, or Mn, for

either nearest-neighbor (NN) or next-nearest-neighbor (NNN) pairs. The coefficients 3,

6, 4, and 3 correspond to the number of (next-)nearest-neighbor pairs per primitive cell.

We stress that while the ji are not the true exchange constants and are not suitable

for building a more complex model, their magnitudes should give an indication of the

relative strength of each type of interatomic coupling. Curves of the formation energy

(referenced against the NM calculation) versus the net moment as calculated with PBE

are shown in Figures 5.4 a and b, with the values of j0, j1, j2, j3, and j4 fit to these

curves given in Table 5.3.

The leading terms in both MnRu2Sn and FeRu2Sn are the j0 exchange-splitting en-

ergy. While the j1 terms have similar magnitudes as the j0 terms, the contributions from

the Ru-Ru interactions are overall small, as the magnitude of the Ru moments are 0.1

to 0.01 times smaller than the Fe or Mn moments, respectively. The calculated contri-

butions of each term for the lowest-energy FM configuration of each Heusler are given in

the second part of Table 5.3, making the difference in magnitudes more obvious. These
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Figure 5.4: Formation ener-
gies and site-specific magnetic
moments for total-moment-con-
strained DFT calculations in
MnRu2Sn (a) and FeRu2Sn (b).
Absolute values of magnetic mo-
ments are shown in the top two
plots of (a) and (b), where the
chemical symbol specifies which
site-projection is being measured,
and full versus hollow symbols in-
dicate a positive or negative sign
of the moment, respectively. In
the AFM cases, the moments of
both the symmetrically-distinct
Mn/Fe/Ru sites are indicated,
while the average of the absolute
value of the moment is given by
the dashed line bisecting the sets
of markers. Green vertical lines
indicate the equilibrium (mini-
mum-energy) total moment.

results tell us three things: (a) Mn-Mn interactions dominate in MnRu2Sn, (b) Fe-Fe

interactions are the most important in FeRu2Sn, and (c) Ru-Ru and Ru-Fe interactions

are also relatively important in FeRu2Sn. From the signs of the ji’s we can also conclude

that Ru-Ru prefers an AFM-type ordering (though the energy change for this preference

is small), and that Ru-Mn prefers an AFM-type ordering (again, small), while Ru-Fe

prefers a FM-type ordering (larger).
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Table 5.3: Estimated coupling constants ji fit to the results of Figure 5.4 using Equa-
tion 5.4, and the magnitude of the terms for the lowest-energy ferromagnetic and
antiferromagnetic configuration of each Heusler.

System Coupling (meV/µ2
B)

j0 j1 j2 j3 j4

MnRu2Sn -353 331 -31.8 33.4 30.9

FeRu2Sn -85.1 116.3 -33.2 32.1 -15.9

FM State Contribution (meV)

3j1× 6j2× 3j3× 4j4×
〈φNNRu 〉 〈φNNMn/Fe〉 〈φNNNMn/Fe〉 〈φNNRu,Mn/Fe〉

MnRu2Sn 1.8 -1735 911 -15.6

FeRu2Sn 86.5 -1864 901 97.1

AFM State Contribution (meV)

3j1× 6j2× 3j3× 4j4×
〈φNNRu 〉 〈φNNMn/Fe〉 〈φNNNMn/Fe〉 〈φNNRu,Mn/Fe〉

MnRu2Sn 0 0 -984 13.8

FeRu2Sn 0 0 -898 24.8

We can gain further insight about the relative importance of Ru-Ru, Mn/Fe-Mn/Fe,

and Ru-Mn/Fe interactions with the help of a Crystal Orbital Hamiltonian Populations,

or COHP, bonding analysis[281] in the style of Kurtulus, et al [259]. COHP provides an

“energy-resolved visualization of chemical bonding” and enables the easy visualization of

the bonding, anti-bonding, or non-bonding behavior between a pair of sites in a solid. The

COHP procedure weights the electronic DOS by entries from the Hamiltonian matrix,

i.e., overlap of eigenstates, rather than of orbitals as done in a crystal orbital overlap

populations analysis. The resulting set of COHP and energy values looks similar to a

DOS plot, but conveys different (but related) information: negative values correspond

to bonding states, positive values correspond to antibonding states, and values near zero

are interpreted as non-bonding states. The integrated COHP (up to the Fermi level)
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indicates the total bonding/antibonding/non-bonding character of the interaction; the

lowest-energy structure should be the one that maximizes bonding.

Figure 5.5 shows COHP analyses for MnRu2Sn and FeRu2Sn, respectively, contrast-

ing NM, FM, and AFM configurations. All COHP calculations were performed with

the same supercell (containing four primitive cells) and having the mean experimental

lattice constant described earlier. In contrast to previously published results on similar

systems[259], we find only nonbonding interactions at the Fermi level for the Ru-Ru pair

in MnRu2Sn (with a strong antibonding peak above the Fermi level). An antibonding

peak is present at the Fermi level for the Mn-Ru pair in the NM state of MnRu2Sn,

which is not reduced significantly upon spin-polarization. These results are consistent

with our estimates of the various ji in Table 5.3 and let us strengthen our conclusion that

Mn-Mn interactions are the dominating force in determining the magnetic configuration

of MnRu2Sn.

Figure 5.5: COHP bonding analysis for various bonds present in MnRu2Sn (Left) and
FeRu2Sn (Right) for NM, FM, and AFM configurations. For FM and AFM, the thick
line represents the majority spin, while the thin line represents the minority spin.
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In FeRu2Sn, the COHP analysis (Figure 5.5, Left) reveals that the Fe-Ru interaction

is still anti-bonding at the Fermi level, but not by as much as for the Mn-Ru interaction

in MnRu2Sn. For the Ru-Ru pair, spin-polarization turns a bonding interaction into

an anti-bonding interaction, but the value in both cases is small. For the Fe-Ru pair,

spin-splitting allows for an antibonding peak at the Fermi level to shift somewhat more

significantly lower in energy than in the Mn-Ru case; this is reflected in the larger j4

contribution in the Fe-Heusler in Table 5.3. However, none of these results approach

the magnitude of changes when going from NM to FM/AFM, as seen in MnRh2Ge or

MnCo2Ga[259],3.

Overall, our findings imply that magnetism in either the Mn- or the Fe-Heusler is pri-

marily controlled by Mn/Fe-Mn/Fe interactions, with Ru-Fe interactions playing a much

smaller secondary role in the Fe-Heusler. Without making a broader statement about all

Heuslers, we conclude that a competition between FM-favoring RKKY and AFM-favoring

Sn-mediated superexchange determines the magnetic configuration in (Mn/Fe)Ru2Sn. As

a consequence, a reasonable model of magnetism in the disordered Mn/Fe solid solution

can be constructed utilizing only the Mn/Fe sublattice, without the need to consider a

more complex model that explicitly includes the Ru sublattices. Instead, the Ru moment

becomes a dependent variable following the neighboring Fe moments, as the Fe-Ru cou-

pling is several orders of magnitude larger than for Mn-Ru. As the moment on the Sn

sites is never larger than 0.001 µB, we can also disregard Sn-Mn/Fe contributions. The

role of Sn, instead, is to facilitate superexchange via next-nearest-neighboring Mn/Fe

sites.

By simplifying to a model dependent only on the properties of the Mn/Fe sublattice,

the remaining problem becomes somewhat straightforward: how do Mn and Fe prefer

3Ref. [259] reports -COHP per supercell. We report COHP per bond, and so our our results are
smaller by a factor of 12 for Mn-Mn, 6 for Rh-Rh, and 8 for Rh-Mn. We have accounted for these in
our analysis.
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to organize in solution, does anything unexpected happen upon mixing Mn and Fe, and

what happens to the d -bands and the Fermi-level occupation in the range of intermediate

compositions?

5.4.2 Magnetic and chemical coupling in Mn1−xFexRu2Sn

We considered 193 symmetrically distinct chemical/magnetic configurations on the

Mn/Fe sublattice of the full Heusler Mn1−xFexRu2Sn enumerated in supercells containing

up to four copies of the primitive cell (16 total atoms). The calculated formation energies

of these structures, referenced against FM FeRu2Sn and L11-AFM MnRu2Sn, are shown

in Figure 5.6 (a). All formation energies at intermediate compositions x between 0 and

1 are positive, indicating the existence of a chemical miscibility gap at low temperature.

In the thermodynamic limit, Mn1−xFexRu2Sn alloys will, therefore, phase separate into

regions that are Mn rich and regions that are Fe rich. At sufficiently high temperatures,

a solid solution will become stable in which Mn and Fe are uniformly distributed over

the X sublattice of Mn1−xFexRu2Sn, lacking any long-range order. When quenched from

such a temperature (e.g., 1173 K as performed by Douglas et al.), suggish kinetics can

be used to lock in the disordered solid solution.

The absence of long-range order, however, does not mean that the Mn and Fe lack any

order at all. Most solid solutions exhibit a substantial degree of short-range order due

to strong local energetic interactions that are not completely overwhelmed by entropy.

The low energy configurations at intermediate compositions of Figure 5.6 (a) can serve

as useful structural models with which to analyze chemical and magnetic interactions in

local environments that are representative of the high temperature solid solutions that

have been annealed and then quenched. The lowest-energy intermediate-composition

phases contain clustered domains of Mn-rich regions next to Fe-rich domains4.

4It is worth noting that, had we enumerated larger supercells, the lowest-energy structures in the
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Figure 5.6: Formation ener-
gies of the enumerated mag-
netic and chemical orderings in
Mn1−xFexRu2Sn supercells, col-
ored by the absolute value of
the net magnetic moment. The
dashed blue and black lines trace
the lowest-energy FM (µB > 3)
and AFM (µB < 1) structures,
respectively, while the dashed
green line joins the overall lowest-
-energy structures.

In all the structures considered in this study, the per-site magnetic moments for

the (Mn,Fe) sites relaxed to values that range from 2.7 to 3.3 µB, with lower values

at intermediate compositions and higher values for pure Heuslers (Mn,Fe)Ru2Sn. The

magnetic moments on the Ru and Sn sites were universally small, < 0.7µB for Ru and <

0.022µB for Sn. Trends for structures with the lowest (closest to zero) and highest (largest

in magnitude) total moments are indicated with the dark dashed lines in Figure 5.6 (a)

and show a cross-over at equiatomic composition.

The transition from FM to FrM to AFM is best understood by examining the specific

chemical and magnetic configurations of the lowest energy structures as a function of

composition. These structures are shown in Figures 5.7(a-g), in order of increasing Fe

content. Most striking is the consistency in the ordering: in all cases, variants of the L11

ordering, consisting of different frequencies of (111) planes that are each chemically and

magnetically uniform, were found to have the lowest energy, with Mn-rich regions induc-

ing local AFM behavior. As seen in Figures 5.7e and f, Mn aligns AFM to neighboring

intermediate composition range would asymptotically approach zero. This is a result of the Mn/Fe
miscibility gap: larger structures would allow larger and larger volumes of Mn-rich and Fe-rich domains,
decreasing the surface-area-to-volume ratio of the interface.
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Fe atoms, even when Mn is dilute. These low energy AFM arrangements are facilitated

via long-range exchange interactions mediated by the Sn sites. The reverse is not true: in

Figure 5.7 (b), the dilute Fe do not induce any local FM ordering in the neighboring Mn

planes, resulting in the near-zero net magnetic moments observed at Mn-rich composi-

tions in Figure 5.6 (a). This suggests that in dilute solid solutions the isolated Fe atoms

are forced into the AFM configuration favored by the more populous Mn. The price paid

for forcing a Mn-dominated structure to accommodate FM behavior is illustrated by the

> 10 meV/atom energy difference between two structures at xFe = 0.33 having the same

chemical ordering but a different magnetic ordering. These structures are illustrated in

Figure 5.7 (c1) and (c2). They differ in the size of their magnetic supercell (three and

six unit cells, respectively). In the larger supercell, a smaller fraction of the Mn atoms

are forced to participate in FM-like behavior, leading to a lower formation energy.

For each of the low energy chemical configurations, the pure-FM and pure-L11 AFM

magnetic configurations are strictly higher in energy than the FrM magnetic configura-

tions shown in Figures 5.7 (b-f). The energy differences in Table 5.4, normalized per

Bohr magneton, demonstrate that transitions to FM configurations are more costly in

Mn-dominated structures, while transitions to AFM are more costly in Fe-dominated

structures

The calculated magnetic moments in the low energy configurations imply that in

a well-mixed disordered solid solution, Fe will remain FM and Mn will remain AFM,

yielding the mixed magnetic phase proposed by Douglas et al. We can further confirm

this assertion by examining how the Mn and Fe d -states in the mixed phases compare

to the equivalent states of Mn and Fe in the pure Heuslers (Mn,Fe)Ru2Sn. Figure 5.8

shows a comparison between the site-and-orbital-projected DOS for Mn and Fe in the

pure Heuslers Mn- and Fe-projected DOS at each of the intermediate compositions of

Mn1−xFexRu2Sn. The DOS of the Mn and Fe sites only change negligibly in the mixed

113



First-principles Investigation of Competing Magnetic Interactions in Heusler (Mn,Fe)Ru2Sn Solid
Solutions Chapter 5

(a)

xFe = 0.0

(b)

xFe = 0.25

(c1)

xFe = 0.33

(c2)

xFe = 0.33

(d)

xFe = 0.5

(e)

xFe = 0.67

(f)

xFe = 0.75

(g)

xFe = 1.0

-1 Spins

Fe Site

Mn Site Sn Site

Ru Site
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Legend

Figure 5.7: The lowest energy chemical and magnetic configurations for
Mn1−xFexRu2Sn for six compositions, showing only the (Mn,Fe)/(Spin Up,Spin
Down) sites, except for (g), which shows the full unit cell including Ru and Sn. (c1)
and (c2) both represent xFe = 0.33, however, magnetic frustration caused by finite
size effects in (c1) results in a significantly larger per-atom energy than the alternate
but larger structure (c2). Both chemical and magnetic orderings occur along the [111]
direction, creating L11-like variants across composition space. All visualization were
created using the VESTA software package.

phases. This suggests that the Mn and Fe sites behave similarly in the mixed solid solu-

tion and in the pure Heuslers (Mn,Fe)Ru2Sn, and so our analysis of magnetic interactions

in Subsection 5.4.1 holds.
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Table 5.4: Spin-flip energies in the lowest-energy chemical configurations of
Mn1−xFexRu2Sn as a function of composition, in meV/(µB) per primitive cell. The
energy differences are calculated as the absolute value of the difference of the energy
between the lowest-energy structure at the given xFe, and the pure FM or AFM vari-
ant of that structure, normalized per difference in relaxed magnetic moment and per
primitive cell.

xFe Eform FrM vs. FM FrM vs. AFM

(meV) ∆µB ∆E ∆µB ∆E

(µB) (meV/µB) (µB) (meV/µB)

0.25 12.8 3.1 9.4 05 0a

0.33 30.1 3.4 8.1 0a 0a

0.5 18.7 1.5 6.3 2.1 7.2

0.67 15.8 2.0 5.5 1.7 14.7

0.75 12.8 1.5 4.5 2.1 20.0

Our calculated results, combined with the experimental observations of Douglas et

al., lead us to a model of isolated magnetic nano-domains of AFM character embedded in

a larger FM matrix for Fe concentrations of 0.5 ≤ x < 1. We believe the magnetic hard-

ening can be explained by an exchange-hardening effect, where AFM domains centered

on individual Mn atoms or small clusters (< 5 atoms, as no mesoscale ordering is ob-

served experimentally) couple with a single, bulk FM domain carried collectively by the

Fe atoms. Such nano-domains would fall below the observation limit of the experimental

techniques used to characterize the chemical and magnetic distributions, and offer the

simplest phenomenological explanation of the measured magnetic properties.

The Mn and Fe DOS of Figure 5.8 suggest the possibility of half-metallic behav-

ior. Half-metallic behavior is (relatively) common among Heuslers, showing up in mul-

tiple members of the X(Co,Ni,Mn)2Z families of alloys[260–263]. For spintronics, half-

metallicity is considered a promising route to achieve the necessary spin-polarized cur-

rents. Antiferromagnetic (or rather, fully-compensated ferrimagnetic) half-metals are of

particular interest for their net-zero (macroscopic) magnetization, increasing the range
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Figure 5.8: Site- and orbital-projected DOS for the d -states of Mn and Fe sites in
Mn1−xFexRu2Sn, compared against states of the pure Heuslers (Mn,Fe)Ru2Sn. Thin
green/orange lines indicate d -states from pure Heuslers, while thick red/blue lines
with shading indicate the Mn or Fe site-projected DOS from the mixed phase.

of their potential applications[284]. The total DOS for each of the lowest-energy inter-

mediate composition structures is given in Figure 5.9; in no cases is a true gap achieved

in either spin channel. Previous ab-initio calculations of the electronic properties of

MnRu2Sn indicate a gap in the minority-spin DOS at and around the Fermi level; how-

ever, these calculations were performed on the ferromagnetic configuration[262]. As is

clear in Figure 5.9 (a), there is no such gap in the AFM ground state6. Though other

works have performed electronic structure calculations on FeRu2Sn, we are not aware of

publications reporting the electronic DOS.

6While the choice of functional (e.g., GGA-PBE vs. LDA) is known to influence the size of the gap,
the choice of functional should not impact whether a gap is observed at all.[285]
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Figure 5.9: Total DOS for various
compositions of Mn1−xFe2Ru2Sn,
showing several “near-gap” occu-
pations in the minority spin chan-
nel, but no true half-metals.

5.5 Conclusion

In this Chapter, we have performed a systematic first-principles investigation of both

the chemical and magnetic DOFs in the Mn1−xFexRu2Sn Heusler alloy to determine the

origins of exchange hardening in a single phase that is chemically uniform. Careful anal-

ysis of the electronic structure of the MnRu2Sn and FeRu2Sn end members has shown

that magnetic ordering phenomena on the Mn/Fe sub-lattice is determined by a com-

petition between Sn-mediated superexchange, and conduction-electron-mediated RKKY

exchange, with Ru serving only to set the lattice constant. Our results demonstrate that

the transition from L11 antiferromagnetic ordering in MnRu2Sn, to ferromagnetic order-

ing in FeRu2Sn, can be explained by a shifting and narrowing of d -states near the Fermi

level. In MnRu2Sn, the Fermi level bisects a d -peak, leaving more states immediately

above the Fermi level than below as to favor superexchange, while in FeRu2Sn, the Fermi
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level falls immediately after a d -peak, favoring RKKY-type exchange.

The magnetic ordering phenomena of the pure Heuslers (Mn,Fe)Ru2Sn are not dis-

rupted when Mn and Fe are mixed. First-principles calculations predict that the

Mn1−xFexRu2Sn alloy should phase separate in the thermodynamic limit. Low energy

Mn/Fe orderings at intermediate concentrations consist of alternating (111) layers that

are chemically and magnetically uniform. The calculated total magnetic moments of the

intermediate phases follow the trend of moments measured in quenched solid solutions.

An analysis of the density of states of low energy structures confirms that the conclusions

for pure Heuslers (Mn,Fe)Ru2Sn remain valid at intermediate compositions. While sev-

eral configurations present a near-gap in the minority spin channel, no true half-metals

were discovered in Mn1−2xFexRu2Sn.
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Chapter 6

A Cluster Expansion Approach to

Magnetic Hardening in

(Mn,Fe)Ru2Sn Solid Solutions

The most that can be expected from any

model is that it can supply a useful

approximation to reality: All models are

wrong; some models are useful

George Box, from “Statistics for

Experimenters”

This Chapter is the second part of a set, with Chapter 6, exploring the pseudo-binary

Heusler (Mn,Fe)Ru2Sn. Having determined that the magnetic DOF is (1) confined to

the (Mn,Fe) lattice site and (2) independent of the moment of the Sn or Ru lattice sites,

we construct a Cluster Expansion Hamiltonian to explore the effects of configurational

entropy on the magnetic and chemical DOFs. We construct a model capable of exploring
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the chemical metastable solid solution, and use that to analyze the interplay between

local composition and magnetic ordering phenomena. We find that (1) ferromagnetic

behavior dominates the Fe sites, and (2) the Mn sites bifurcate into two populations, one

preferring ferromagnetic ordering, and one preferring antiferromagnetic ordering. The

preference for the Mn sites comes from the local chemical environment, and the small

fluctuations in local composition present in a disordered solid solution.

6.1 Introduction

Heuslers, characterized by four interpenetrating face-centered-cubic (FCC) sub-lattices

and a chemical composition of XY2Z, with X and Y as transition metals and Z as a main-

group metal, have attracted renewed attention in the last decade for their unique mag-

netic properties[48, 53, 254, 255]. Recently, Douglas et al demonstrated significant mag-

netic hysteresis in the pseudo-binary Heusler Mn1−xFexRu2Sn for 0.25 ≤ x ≤ 0.75[44].

Unexpectedly, despite discovering significant evidence for an exchange-hardening-type ef-

fect implying two magnetic and chemical phases, their results indicate a disordered solid

solution on the Mn/Fe sub-lattice and no phase segregation. Traditionally, exchange-

hardening arises as a product of two chemical phases, one preferring ferromagnetic (FM)

ordering, and one preferring antiferromagnetic (AFM) ordering, existing together in a

nanostructured fashion[264, 265]. At the interface between FM and AFM regions, a

spin-pinning effect occurs where spins in the AFM phase (which are only perturbed by

very large external fields) prevent neighboring spins in the FM phase from being flipped

by an external field[286].

Mn1−xFexRu2Sn and Mn1−xFexRu2Ge have both demonstrated the rare phenomenon

of exchange hardening in a disordered solid solution[44, 262], with neutron diffraction data

suggesting a second AFM phase in the bulk FM phase. However, small-angle scattering

120



A Cluster Expansion Approach to Magnetic Hardening in (Mn,Fe)Ru2Sn Solid Solutions Chapter 6

experiments were unable to resolve any evidence of a distinct AFM domain, and the

AFM-associated peaks disappeared in Mn1−xFexRu2Sn around 350 K. Both the Sn- and

Ge-based Heuslers display a remarkable tunability in the exchange hardening with a

change in chemical composition, offering an excellent system to study the phenomenon

in a solid solution.

Both experimental studies offered a phenomenologically-driven hypothesis of mic-

tomagnetism to explain the exchange hardening once bulk phase separation was ruled

out. A recent ab-initio investigation[287] supports this theory via in-depth analysis of

the underlying exchange phenomena, but focuses on pure MnRu2Sn and FeRu2Sn with

only limited analysis of some ordered intermediate-composition phases. Neither exper-

imental or ab-initio prior work is equipped to fully describe or explain the magnetic

ordering behavior present in the chemically-disordered solid solution at finite tempera-

ture. To fully explore the micro- and mesoscale magnetic ordering phenomena, we have

constructed a coupled chemical-magnetic Cluster Expansion (CE) Hamiltonian[28, 288]

suitable for determining ensemble-averaged properties in a disordered solid solution at

experimentally-relevant length-scales and temperatures[31, 137, 165].

Our model allows for simultaneous exploration of microscale magnetic ordering and of

ensemble-averaged properties not easily accessible via experiment. Using our model, we

can demonstrate how magnetic hardening behavior originates from AFM “nano-domains”

localized on Mn sites interacting with a bulk FM phase formed by Fe and Mn sites.

The subtler outcome: that only some of the Mn sites organize antiferromagnetically, is

surprising, and can only be observed with a stochastic simulation technique. In addition

to verifying the experimentally-observed phenomena, we demonstrate that the Mn sites

sub-divide into two distinct populations as a bimodal distribution of magnetic order

parameter. This sub-division can be linked to minute fluctuations in nearest-neighbor

composition that arise in a disordered solid solution.
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6.2 Methods

Full details on the electronic structure calculations can be found in Section 5; we

use these results to fit our CE Hamiltonian. Both the chemical (Mn versus Fe) and

magnetic (↑ vs ↓) degrees-of-freedom (DOFs) reside on one FCC sublattice. As previously

demonstrated in Chapter 5, while the two Ru sites have a small[44] but finite magnetic

moment (0.1µB ≤ µRu ≤ 0.5µB dependent on x), this moment is a strictly dependent

DOF and does not contribute meaningfully to the energy. To construct a set of CEs,

193 symmetrically-distinct magnetic and chemical configurations were enumerated using

the CASM[31, 135–137] software package. We expand here on the CE formalism, first

described in Section 2.2, to describe our simultaneous use of a magnetic and chemical

DOF.

6.2.1 Cluster expansion

To describe both the chemical and magnetic DOFs present in our system, we have

employed a CE Hamiltonian employing two per-site DOFs[289]: the site chemistry xi and

momentmi, both of which can be±1. The occupation variable σi, traditionally describing

a site, is now an occupation vector σi = [xi,mi]. Any given chemical and magnetic

configuration can be described by a microstate vector, σ, and any scalar property of

configuration σ can be expanded in a basis of cluster functions φ
(γ)
δ (σ). The cluster

functions have the following form:

φ
(γ)
δ (σ) =

∏
i∈δ
J∈γ

[xi, 1] J

 1

mi

 (6.1)
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where δ denotes a set of sites, i.e., the cluster’s geometry, and γ denotes a set of DOFs,

i.e.,

J =

ai bi

0 ci

 ∀J ∈ γ,

where exactly one of (a, b, c) can be 1, and the rest are 0, denoting whether site i

contributes its chemical identity (a = 1), its magnetic spin (b = 1), or both (c = 1).

Each cluster function φ
(γ)
δ (σ) therefore is defined as a product of the chemical and/or

magnetic DOFs of the sites belonging to the cluster.

Many of the φ
(γ)
δ (σ) are related to each other by symmetry operations. We can define

a reduced set of cluster geometries α such that an orbit Ωα contains all δ that map onto

α by a symmetry operation of the lattice. If we then color members of the prototype

cluster α by the DOFs contributed by each site, chosen by γ, we can define an orbit Ωβ

that contains all colored clusters that map back onto a reference colored cluster β, i.e.,

a combination of geometry and chosen DOFs, by a symmetry operation of the lattice.

Any scalar property S of a microstate σ can then be expressed as:

S(σ) =
∑
α

∑
β

V(α,β)

∑
δ∈Ωα

∑
γ∈Ωβ

φ
(γ)
δ . (6.2)

Depending on both the scalar property being queried, there are additional symmetries

that must be considered if we assume that magnetic configurations related by the time-

reversal operator are degenerate (or explicitly anti-degenerate) in the given property[290].

For example, if we consider energy (absent an external magnetic field), we want to ensure

that flipping all the spins doesn’t change the energy, e.g., that E(↑↑↑) = E(↓↓↓). This

means that Vα,β must equal 0 for clusters φ
(γ)
δ that contain an odd number of magnetic

terms. Conversely, if we consider the total magnetic moment M of a configuration,
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Figure 6.1: Convex hull for
(Mn,Fe)Ru2Sn showing the good-
ness-of-fit of both formation en-
ergy and magnetic moment at
different chemical and magnetic
configurations at various chemi-
cal compositions. The formation
energies of larger supercells was
also calculated using the CE; en-
tries lying below the miscibility
gap correspond to larger block-
-segregated regions of Mn and Fe,
split along the [111] direction.

clusters containing an even number of magnetic terms must have Vα,β = 0, as the net

moment must change sign if we flip all the spins, e.g., M(↑↑↑) = −M(↓↓↓).

6.3 Results

Two CEs were produced for two properties: formation energy per primitive cell,

and net magnetic moment per primitive cell. For both expansions, configurations were

weighted as exp−∆EF/(−0.05eV) during the fitting process. Figure 6.1 shows an overlay

of predicted versus calculated formation energy and moment. The weighted RMS errors

per primitive cell were 2.4 meV for the formation energy and 0.031 µB for the magnetic

moment, while the CV scores per primitive cell (using shuffled k-fold with 10 folds) were

and 2.7 meV and 0.033 µB, respectively.

Two types of grand-canonical Monte Carlo (MC) simulations were performed: fully-

equilibrated calculations where both DOFs were relaxed during cooling, and metastable

calculations where the chemistry was sampled at 1173 K (i.e, the experimental annealing

temperature) and then frozen, allowing only the magnetic spins to relax while cooling. In
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the latter set of calculations, 100 snapshots1, taken 1000 passes apart (one pass: successful

moves = number of sites), were captured at each chemical potential at 1173 K, cooled, and

re-averaged at each temperature to produce an ensemble measurement. All calculations

utilized a cubic simulation cell containing 4000 primitive cells, with temperature steps of

±5K. Simulations were considered converged when the energy was converged to within

10 meV/unit cell and the composition converged to within 0.01, using a 95% confidence

interval for both measurements[291]. The local chemical and magnetic nearest-neighbor

correlations,

φ2(σi) =
1

12

∑
j∈NN

 xi × xj
mi ×mj

 =

ηx(i)
ηm(i)

 , (6.3)

were used as order parameters ησ(i) to measure the local chemical and magnetic en-

vironments of each MC site (i.e., one with a magnetic/chemical DOF). Positive values

correspond to homogeneous/ferromagnetic environments (e.g., a Fe surrounded by Fe, an

Up surrounded by Up), negative values correspond to anti-site defects/antiferromagnetic

environments (e.g., a Mn surrounded by Fe, a Down surrounded by an Up), and zero

values correspond to L11 ordering of chemistry or magnetism.

Our use of a discrete (e.g., Ising-like) spin variable to represent the magnetic DOF has

implications for the observed Curie/Neel temperatures. As compared to continuous DOF

(e.g., a vector on a unit sphere, like that in a Heisenberg model), the number of unique

microstates (and hence the total possible entropy) is far smaller in a two-state system

than a continuous system[292]. As a result, the ordering/disordering temperatures in our

system must be scaled by a factor of ≈ 0.31 to match experimental results. This factor

of 0.31 comes from the ratio of the Neél/Curie temperatures between a Heisenberg-like

mode and an Ising-like model (calculated with identical Vα,β) in the pure MnRu2Sn and

1100 was chosen as moment and energy varied by < 1% with increasing numbers of snapshots
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FeRu2Sn Heuslers, shown in Figure 6.2. When approaching zero kelvin the two models

converge: the number of relevant microstates collapses towards one, and hence the energy

contribution from entropy approaches zero.

Figure 6.2: Heat capacities (unitless) versus temperature (kelvin) for
pure MnRu2Sn (top) and FeRu2Sn (bottom).The scaling behavior
differs depending on whether a continuous (Heisenberg) or discrete
(Ising) DOF is used. A scaling factor of 0.31 brings the two models
in agreement for the specific clusters and ECIs used in this study.

Phase diagrams, colored by heat capacity, are shown in Figures 6.3(a) and (b). In

Figure 6.3(a), where both chemical and magnetic DOFs were equilibrated, the Néel/Curie

temperatures occur above a miscibility gap. Figure 6.3(b) emulates the chemically

metastable conditions achieved by Douglas et al [44], i.e., a high-temperature annealed

sample quenched into a disordered solid solution, then cooled. There is no miscibility gap

or chemical phase transition, but there is still a series of magnetic phase transitions. At
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Paramagnetic

Miscibility Gap

L11 AFM

Ferromagnetic

Paramagnetic

Figure 6.3: Phase diagrams, colored by
heat capacity, of (a) the fully-equilibrated
system where both magnetic and chem-
ical DOFs were relaxed, and of (b) the
metastable system, where the chemistry
was frozen at 1173 K but the magnetic
spins were allowed to relax to 0 K. A scale
factor of 0.31 was applied to the temper-
atures to account for the use of a discrete
DOF for the magnetism. The red, dashed
line indicates the NeéL/Curie tempera-
tures estimated from the heat capacity. A
second phase transition from a ferromag-
netic to ferrimagnetic ordering occurs in
the metastable system for 0.4 < x < 0.67.

x < 0.4 and x > 0.67 there exists one Neel or Curie temperature, respectively. However,

for 0.4 ≤ x ≤ 0.67 (where the experimental coercivity significantly increases), two phase

transitions occur in series: an initial ferromagnetic ordering, followed by transition to a

ferrimagnetic phase.

To understand the short-range ordering behavior of the mixed magnetic phase we

tracked the evolution of the magnetic order parameter ηm for all of the Mn- and Fe-

occupied sites. Figure 6.4 shows representative low-temperature snapshots of the mag-

netic configurations for different disordered compositions, colored by magnetic order pa-

rameter, while Figures 6.5 shows 2D histograms of ηm and ηx of both species (Mn and

Fe) at each composition shown in Figure 6.4, collected across all 100 snapshots per com-

position. As visible in Figure 6.4, especially panels (a) versus (b), regions of FM ordering

emerge with increasing Fe content, eventually forming one large FM domain studded

with 1-5 atom AFM “nano-domains”. From the corresponding panels in Figure 6.5, we
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see that: (1) Fe atoms with a Fe neighbor form FM domains of increasing size with in-

creasing Fe content, and (2) Above a critical Fe concentration, the Mn population splits

into FM-favoring Mn and AFM-favoring AFM, dependent on the local environment of

the Mn atom in question.

Comparison with Experiment

Powder x-ray diffraction data, simulated using RIETAN-FP[293] and shown in Fig-

ure 6.6(a), demonstrates the lack of chemical order present in the snapshots taken at

1173 K. All of the visible peaks can be accounted for in the diffraction spectrum of the

generic Heusler lattice. While the Mn and Fe are randomly distributed on the (Mn,Fe)

sublattice, within that random distribution some Mn will have more or fewer Mn neigh-

bors than others (and similarly, for Fe). These fluctuations in local neighborhood, while

not contributing to any short- or long-range chemical order, are still sufficient to change

Antiferromagnetic
-1  m  -0.33

Ferromagnetic
0.33  m  1

(a) xFe = 0.40 (b) xFe = 0.50

(c) xFe = 0.60 (d) xFe = 0.75

Antiferromagnetic (L11)
-0.1  m  -0.1

Figure 6.4: Snapshots of short-range mag-
netic orderings in chemically-disordered
Mn1−xFexRu2Sn Heuslers, colored by lo-
cal magnetic order parameter. Snapshots
at x = 0.25 are not shown, as in all cases
the magnetic configuration is completely
L11 AFM (i.e., it would be a solid green
cube).
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Figure 6.5: 2D histograms of the per-species collected ηx and ηm for all Mn and all
Fe sites at each collection of 100 snapshots at selected compositions. Negative val-
ues of either order parameter indicates a strongly antiferromagnetic/heterogeneous
environment (e.g., [↓, ↑, ↓] or [Fe,Mn,Fe]), while positive values indicate a ferromag-
netic/homogeneous environment (e.g., [↑, ↑, ↑] or [Fe,Fe,Fe]; ηm = 0 corresponds to
the L11 AFM ordering.

the magnetic preference of a Mn or Fe site.

The low-temperature mean magnetic moment resulting from our MC simulations,
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Figure 6.6: (a) Simulated powder diffraction patterns of chemical orderings at se-
lected compositions. All visible peaks originate from the Heusler lattice; no (Mn,Fe)
sublattice ordering is present. (b) Low-temperature magnetism, compared between
experiment (at 4 K and in a field of 5T), DFT (at 0 K and no field), and the MC
simulations carried out here (at 5 K and no field).

compared against both DFT calculations of low-energy ordered structures at 0 K and

against experimental measurements made at 4 K and in a field of 5T, can be seen in

Figure 6.6(b). The DFT and MC calculations overestimate the magnetic moment at Fe-

rich compositions because of multicrystallinity and imperfectly-aligned magnetic domains

present in the experimental sample. Most notable in the results is the progression from

L11 AFM-dominated behavior to ferrimagnetic behavior to predominantly FM behavior

with increasing Fe-content.

The moment is not fully saturated at x = 0.75 as some portion of the sparse Mn-sites

are still antiferromagnetically aligned, seen in Figure 6.4 (d). At x = 0.25, however, the
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moment is uniformly zero, as the sparse Fe sites relax into the L11 antiferromagnetic

configuration. At x = 0.40 where the coercivity is the greatest but the moment is very

small, we can see in Figure 6.4 (a) that some small number of FM domains (themselves

containing tiny AFM centers) manage to form, and have a large L11 AFM phase to couple

to. Overall, our results quantitatively and qualitatively match those from experiment,

while snapshots let us visually verify our hypothesis of antiferromagnetic Mn-centered

“nano-domains” leading to exchange-hardening behavior.

6.4 Conclusion

Our analysis demonstrates that antiferromagnetic Mn-centered nano-domains exist

within bulk ferromagnetic domains present in (Mn,Fe)Ru2Sn Heusler alloys. Despite

complete chemical disorder on the (Mn,Fe) sublattice, there effectively exists two mag-

netic phases at low temperatures and compositions of x > 0.25, giving rise to the large

coercivities observed experimentally. These nano-domains are the result of extremely

slight fluctuations in local environment leading to Mn nano-clusters of 5 or fewer atoms;

far too small to be observed using traditional experimental techniques. In this Chapter,

we have constructed a pair of coupled chemical-magnetic CEs and used them to explore

the unique magnetic behavior of Mn1−xFexRu2Sn. Our analysis, building upon a solid

foundation of experimental work, allows for a richer and more-complete landscape of this

Heusler to be explored than either technique alone.
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Conclusion

Transition metal alloys, especially those with magnetic properties, offer great promise

in domains of future technological interest. However, the combinatorial space of alloys

encompasses a domain far too large to be explored by traditional experimental methods1,

especially as ternaries, quaternaries, and quinaries become the focuses of innovation. Ab-

initio methods, especially Density Functional Theory (DFT), offer a new approach to

querying the expensive parameter space of yet-undiscovered alloys. As many promis-

ing materials themselves have applications in computing, the ab-initio driven materials

discovery process forms a positive feedback cycle, providing more advanced computers

capable of simulating alloys previously unimaginable by man or machine. Through the-

ory and simulation we can now not only replicate the phenomena observed in complex

alloys systems, but now predict the behaviors of materials not yet made, and measure

properties otherwise unobservable through classical interrogation techniques.

The overarching theme of this thesis was to develop a better understanding of transi-

tion metal alloys through an ab-initio framework, and to improve our ability to simulate

said alloys. We have presented two strongly-contrasting tales of DFT applied to tran-

1i.e., “shake and bake” metallurgy[294]
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sition metals: one a failure, and one a success. The common elements are d electrons,

magnetism, and the use of a Cluster Expansion (CE) Hamiltonian to understand the

finite-temperature implications of the electronic structure calculations. In both cases we

have gained new insights into the fundamental physics underpinning the alloys in ques-

tion and explored the important contributions of configurational entropy. Sandwiched

in-between these two stories is a description of an alternate path to a CE Hamiltonian,

one utilizing experimental measurements rather than ab-initio calculations. Via this new

approach, we offer a new approach to examining alloy physics, starting with the free

energy and then stripping away the configurational entropy. Our new technique offers a

means of verifying the accuracy of ab-initio calculations, and a new route to alloy thermo-

dynamics when said calculations prove unreliable or too expensive. Together, these three

projects represent incremental but important steps in improving our ability to accurately

simulate yet-undiscovered alloys.

Studying the Co-Pt binary, we verified a previously hinted-at failure case of the pop-

ular functional PBE. By using a CE Hamiltonian and Monte Carlo (MC) simulations,

we provided a thermodynamic connection between zero kelvin electronic structure cal-

culations and high-temperature experimental measurements. Our results proved that

neither configurational nor vibrational entropy could neither account for the differences

in formation energy, nor the unusual set of ground states predicted. We explored the

assumptions and approximations made in common functionals used in DFT, and those

assumptions lead to serious problems in the case of simulating alloys in the Co-Pt system.

These problems were not limited to Co-Pt alone, and instead extended to numerous

other alloy systems. These systemic failings motivated us to determine a means by which

a CE Hamiltonian could be constructed without ab-initio simulations. By considering

the cluster functions and their energy coefficients themselves as pairs of thermodynamic

variables, we determined a relationship between measurable ensemble averages and the
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energy coefficients that would allow us to parameterize a Hamiltonian from experimen-

tal data. To bypass the known sparsity problem of CE Hamiltonians, we then utilized

an entropy-maximization approach to selecting the correct set of clusters to include in

a Hamiltonian. We demonstrated our approach on a variety of model systems, prov-

ing that our technique can reconstruct full phase diagrams from only high-temperature

measurements of the disordered solid solution of an alloy.

Though transition metals can pose unusual challenges to the methods presently avail-

able in DFT, there are many successes. Despite (or perhaps in spite of) our earlier trou-

bles in the Co-Pt system, we simulated and characterized the chemical and magnetic

ordering phenomena in the (Mn,Fe)Ru2Sn pseudo-binary Heusler system using DFT and

a CE Hamiltonian within MC simulations. From the electronic structure calculations, we

determined the origin of magnetic behavior in both MnRu2Sn and FeRu2Sn, and explored

why the simple addition/subtraction of one electron and proton transformed the system

from ferromagnetic to L11 antiferromagnetic order, accompanied by a large change in

the magnetic ordering temperature. Having sampled a large space of chemical and mag-

netic configurations, we constructed a CE Hamiltonian utilizing both degrees-of-freedom,

and parameterized it from our ab-initio simulations. Using MC simulations designed to

emulate the annealing and quenching critical to synthesis of the metastable disordered

solid solution, we were able to determine the origin of the anomalous exchange-hardening

observed experimentally.

Ab-initio simulations improve every year, both with the development of better ap-

proximations to the true all-electron physics, and with the development of more powerful

computers capable of solving larger, harder problems. The techniques we have utilized —

DFT calculations and CE Hamiltonians — are growing both more commonplace and more

powerful. Projects involving thousands of electronic structure calculations are now rou-

tine; exploring the parameter space of ternaries, quaternaries, and quinaries is a matter
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of patience rather than impossibility. A new focus on verification, validation, and un-

certainty quantification has arisen in the materials science community. High-throughput

techniques, both experimental and ab-initio, are revolutionizing research. The work put

forward in this thesis is only a sliver of the progress being made, but it is important.

We have drawn attention to a previously overlooked categorical failure of commonly-used

techniques. We have offered a new approach to utilizing a powerful thermodynamic tool.

And we have demonstrated the success possible when both techniques — DFT and CE

Hamiltonians — are at their peak.
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035125, [arXiv:1208.0030].
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Mater. 31-34 (1983) 88–94.

[269] E. aiolu, L. M. Sandratskii, and P. Bruno Phys. Rev. B - Condens. Matter Mater.
Phys. 77 (2008) 064417, [0712.0158].

[270] E. aiolu, L. M. Sandratskii, and P. Bruno Phys. Rev. B - Condens. Matter Mater.
Phys. 70 (2004) 024427, [0404162].

[271] E. aiolu, L. M. Sandratskii, and P. Bruno J. Phys. Condens. Matter 17 (2005)
995–1001, [0504679].

[272] S. Picozzi, A. Continenza, and A. J. Freeman Phys. Rev. B 66 (2002) 094421.

[273] Z. P. Shi, P. M. Levy, and J. L. Fry Phys. Rev. B 49 (1994) 15159–15178.

[274] K. Azumi and J. E. Goldman Phys. Rev. 93 (1954) 630–631.

[275] W. Selke Phys. Rep. 170 (1988), no. 4 213–264.

[276] D. de Fontaine and J. Kulik Acta Metall. 33 (1985), no. 2 145–165.

[277] G. Inden, Atomic Ordering. 2005.

[278] V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski J. Phys. Chem. A 115
(2011) 5461–5466.

[279] S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski J. Comput.
Chem. 34 (2013) 2557–2567.

[280] S. Maintz, M. Esser, and R. Dronskowski Acta Phys. Pol. B 47 (2016), no. 4
1165–1175.
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Some Thoughts

I entered graduate school in 2012 intending to do experiments. I was going to use mi-

croplasmas to grow exotic nanostructured materials — I would “tame lightning”. At the

time, I considered myself unfit for theory — programming scared me, quantum mechanics

terrified me, and all I could recall from thermo was that “fugacity is an abstraction of

an abstraction”. When I found myself with a plan of research involving experiments and

simulation, I was told that the simulations would be quick, they would be easy, and I

would be back in the lab constructing my own reactor in no time.

I have no regrets about the outcome, even if where I am now was not where I could’ve

imagined going. Five years, three classes on density functional theory, >10,000 lines of

python, and >1,000,000 CPU hours later, I can’t imagine doing anything but theory

and simulation. I (think I) understand what a k-point is. I make terrible DFT jokes.

Magnetism has begun to make sense in some small way. There is still so much that I

don’t know, but it no longer terrifies me. I know that I can learn. And I look forward to

learning it!

Sitting down and writing this thesis, trying to make a unified story from a disjointed

jumble of projects that seem to have each come up by happenstance, has involved a

great deal of reflection. Becoming a PhD has involved both a great quantity of growth,

and a greater part of luck. I will be proud to call myself a Doctor. But I will also be

sad, as it will mean my time at UCSB has ended. Working with the Van der Ven and

Gordon Groups, as well as the professors and students of IRG 3, has been an honor

and a privilege. Collaborating with my mentors at Sandia has been an invaluable gift.

Making the friends I’ve made has been a joy. When I leave, it will be with the strangest

mixture of heartbreak and excitement, because I know that the future is bright, it is an

irreversible transition2.
2As a friend once said about graduating: “You can visit, but it will never be Home again”
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Thank you for reading.
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