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Characterizing Innate and Adaptive Immune Responses to vaccine strain Coccidioides 

posadasii (cts2/ard1/cts3Δ) 

 

by 

 

Anh Loan Diep 

Doctor of Philosophy in Quantitative and Systems Biology 

University of California, Merced, 2021 

Professor Katrina K. Hoyer 

 

Coccidiomycosis, colloquially known as Valley fever and Desert fever, is a 

respiratory fungal disease caused by Coccidioides immitis and Coccidioides posadasii. In 

the United States this fungus is endemic to the California San Joaquin Valley, most of 

Arizona, and the American Southwest. Infection cases are increasing but there is still no 

effective vaccine or new therapeutics against severe chronic and disseminated 

coccidiomycosis. Tremendous work has been done over the years to elucidate infection 

pathogenesis, fungal genetics, and fungal immunity. However, more work must be done 

to deeply characterize effective and ineffective immune responses to Coccidioides to 

further enhance therapeutics and fungal vaccine development. We assess host immune 

response to Coccidioides posadasii (cts2/ard1/cts3Δ), an avirulent vaccine strain 

previously characterized to provide effective protection. We show that avirulent 

Coccidioides posadasii infection in in vitro cell-based assays demonstrate macrophages 

hold no bias towards pro-inflammatory (M1) or anti-inflammatory (M2) polarization 

while DCs become proinflammatory (DC1). Macrophages and DCs show decreased 

MHC-II and CD86 co-expression after culture with avirulent Coccidioides, suggesting a 

novel virulence mechanism by which Coccidioides can block immune activation by 

inhibiting antigen presenting cell (APC) activation and maturation. In vivo infections 

show a promising mixed DC1/DC2, pro- and anti-inflammatory, response with no 

changes in APC activation/maturation, suggesting other immune cells contribute to 

protective immunity. Our adaptive experiments suggests that Tregs play a detrimental 

role in Coccidioides clearance. When adoptively transferred, Tregs increase fungal 

burden in the lungs and enhance DC2 frequency. These results highlight the complicated 

nature of vaccine development and suggest that the effective, protective avirulent strain 

induce immune activation that is inhibited by Treg presence. This work contributes to 

characterizing vaccine-induced immune responses to Coccidioides infection. This thesis 

work builds a foundation for future immune studies aimed at manipulating host immunity 

to reduce disease severity. 
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CHAPTER 3: Regulatory T Cells influence Coccidioides Infection Clearance and Local 

Immune Cell Responses 

Introduction 

Coccidiomycosis, colloquially known as Valley fever or Desert fever, is a fungal 

respiratory disease endemic to the Central Valley in California, Arizona, and most of the 

American Southwest [1]. Of those who get symptomatic infections, approximately 4% will 

progress into severe chronic and/or disseminated disease [1]. There is no cure for chronic Valley 

fever and existing anti-fungal therapeutics have extremely toxic side effects when used long-term 

[2]. Our pediatric study found that at time of diagnosis, patients with chronic disease outcome 

had higher Treg frequency in their peripheral blood [3]. There is an urgent and outstanding need 

for further research into Coccidioides immunity.  

Regulatory T cells (Tregs) are a specialized population of CD4+ cells that control 

inflammatory responses by suppressing effector T (Teff) cell and antigen presenting cell (APC) 

activation. Through this suppression, Tregs prevent unnecessary tissue damage during infection 

clearance and regulating host immune development to prevent self-recognition [4]. Our lab was 

the first to show a correlation between heightened Treg frequency in the peripheral blood at time 

of diagnosis and chronic disease outcome [3]. Though well studied in other fungal models (such 

as Paracoccidioides, Cryptococcus, Candida), there is very little known about Treg contribution 

to Coccidioides immune responses [5]. 

There are several potential implications of Treg correlation to Coccidioides disease 

outcome. Hosts with naturally higher Treg frequencies are less likely to clear infection as the 

Tregs could suppress effector T cell and APC function. Tregs could also directly induce cell 

death in T cells via granzyme B production [4]. In this case, a naturally high Treg frequency 

would be detrimental for infection clearance as hosts could be ill-adapted to mount an effective, 

pro-inflammatory response. Further, Tregs within the lung could be more suppressive. DBA/2 

mice, which are resistant to Coccidioides infection, have a much lower natural Treg frequency 

and IL-10 expression in their lungs compared to the susceptible strains, C57BL/6 and BALC/c 

backgrounds [Chapter 1, Table 1].  

Coccidioides could influence the immune microenvironment to recruit more and/or more 

suppressive Tregs to dampen immune activation. CCR5 expression on Tregs is thought to 

enhance their suppressive capacity [2]. CCR5+ Tregs are detrimental in murine Histoplasma 

infection, where CCR5 KO mice had less fungal burden and higher Th17 associated cytokines in 

their lungs versus CCR5-sufficient mice [6]. There is evidence that Coccidioides influences the 

lung microenvironment via induction of arginase production in lung epithelial tissues [7]. It is 

plausible that Coccidioides produces other metabolite compounds that could induce and/or 

attract Tregs to the site of infection as part of a larger virulence mechanism to inhibit antifungal 

responses.  

We examine Treg impact on fungal burden and APC polarization and activation within 

the lungs. Using in vivo Treg transfer and avirulent Coccidioides infection models, we show that 

Treg transfer increases fungal burden within the lungs, as measured by colony forming units 
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(CFU) (Figure 1.) Treg transfer also increased DC2 frequency within the lung draining lymph 

node (dLN) but had no impact on activated DC frequency (Figure 2). In vivo primary infection 

with avirulent Coccidioides resulted in decreased Treg frequency in the lung by day 14 post-

infection (PI) and increases in activated T cell frequencies within draining lymph node and lungs 

at day 7 PI (Figure 5, 6). Altogether, our data characterizes adaptive immune responses to 

avirulent, vaccine Coccidioides posadasii (cts2/ard1/cts3Δ) and characterizes Treg impact on 

fungal infection burden.  

Materials and Methods 

Mice 

Six- to eight-week-old C57BL/6 (JAX # 000664) and DBA/2J (JAX #000671) male and female 

mice were utilized for experiments and sex matched whenever possible. Mice were housed and 

bred within the University of California Merced specific-pathogen free animal facility in 

compliance with the Department of Animal Research Services and approved by the Institutional 

Animal Care and Use Committee. 

Tissue Harvest and Dissociation  

Mouse pulmonary draining lymph nodes (dLN) and lungs were mechanically homogenized and 

collected in PBS 1% FBS and filtered through a 100 μM mesh filter. Cell suspensions were 

centrifuged at 1200 rpm for 5 minutes at 10 ̊C. Red blood cells in lung homogenates were lysed 

using 1x lysis buffer made from 10x Ammonium Chloride Lysis Buffer Stock (NH4Cl 

(ammonium chloride) 8.02gm NaHCO3 (sodium bicarbonate) 0.84gm EDTA (disodium) 0.37gm 

in 500 mL Millipore water; (Fisher Scientific). Cells were washed, centrifuged, and resuspended 

in PBS 1% FBS.  

Regulatory T cell Sort 

Peripheral LNs and mesenteric LNs from 6–8-week-old female donor mice were processed, 

labeled with anti-CD4 PerCP (Clone: RM4-5; 1:400, BioLegend), anti-CD25 FITC (Clone: 

PC61.5.3; 1:200, Invitrogen), anti-CD127 PE-Cy7 (Clone: A7R34; 1:400, eBioscience), and 

filtered through a 70 μM mesh filter. Cells were sorted under sterile sorting conditions on the BD 

FACS Aria II - Flow cytometer/Cell Sorter. Murine Tregs were identified by gating for live, 

CD4+, CD127-, CD25hi cells and sorted at >90% purity. Sorted cells were centrifuged and 

resuspended in RT PBS for injection/transfer. For sorting strategy used, see Liu et. al [8]. 

 

 

Treg Adoptive Transfer 

Recipient mice were anesthetized with isoflurane gas (Piramal Critical Care) inhalation using a 

Rodent Anesthesia Machine (Parkland Scientific) and injected retro-orbitally with 0.5-1 x106 

Tregs suspended in 100 μL PBS. Control mice received 100 μL PBS.  

Flow cytometry 
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Cells were resuspended at 2x106 cells and labeled in 50 µl volumes (using antibodies described 

below from eBioscience unless otherwise noted) for 30 minutes in the dark at 4 ̊C. Unbound 

antibody was removed by washing cells in PBS 1% FBS then fixed in 1x 

Fixation/Permeabilization Buffer (eBioscience) for 45 minutes at room temperature (RT) in the 

dark. Cells were washed and centrifuged at 1500 rpm for 10 minutes at RT and resuspended in 

100 µL PBS 1% FBS for flow cytometry analysis. Data was acquired on a LSRII (BD) and 

analyzed using FCS Express (DeNovo Software). Cell antibody panels were as follows: 

Adaptive T Cell Panel: Fixable Viability Dye eFluor 506 (1:500, eBioscience), anti-CD3ε (clone 

145-2C11; 1:200, eBioscience), anti-CD4 PerCP (clone RM4-5; 1:400, Biolegend), anti-CD8α 

PE-Cy7 (clone 53-6.7; 1:400, Invitrogen), anti-CD25 APC (clone PC61.5, 1:400, Invitrogen), 

anti-CD69 APC-eFluor 780 (clone H1.2F3, 1:400, Invitrogen), anti-CD62L PE (clone MEL-14, 

1:1600, BioLegend), anti-CD44 PE eFluor610 (clone IM7, 1:200, eBioscience), FOXP3 FITC 

(clone FJK-16s, 1:100, Invitrogen). 

Dendritic Cell Panel: Fixable Viability Dye eFluor 506 (1:500, eBioscience), anti-CD11c FITC 

(clone HL3, BD Biosciences; 1:400), anti-F4/80 PerCP-Cy5.5 (clone BM8; 1:400, eBioscience), 

anti-MHC-II (I-A/I-E) APC-Cy7 (clone M5/114.15.2, BioLegend, 1:200), anti-CD86-PE (clone 

PO3.1, 1:200, eBioscience), anti-CD8α PE-Cy7 (clone 53-6.7; 1:400, Invitrogen), anti-

SIRPα/CD47 APC (clone P84, 1:400, BioLegend).  

Coccidioides culture and harvest 

 NR-166 avirulent Coccidioides posadasii (cts2/ard1/cts3Δ) laboratory strain derived from 

parent isolate C735 was used for all infections (BEI Resources). Liquid 2x Glucose 1x Yeast 

Extract (2X GYE) media (Fisher Scientific) was inoculated with frozen fungal stock and cultured 

at 30 ̊C in a shaking incubator for 72 hours. Liquid culture was streaked onto 2x GYE agar plates 

and grown to confluency, then desiccated until the gel condensed. To obtain arthroconidia, the 

fuzzy white growth was scraped off the plate into PBS and filtered through a 40 µM mesh filter. 

The fungus was pulse-vortexed for 1 minute to disassociate and centrifuged at 9000 x g for 30 

minutes at room temperature. The fungal pellet was washed with PBS resuspended in PBS for 

use. Arthroconidia suspension was stored at 4 ̊C until use. For complete protocol used, see Mead 

et. al [9]. 

CFU Analysis 

Whole lung was processed in 2 mL of PBS 1% FBS via mechanical homogenization. Lung 

homogenate was pulse-vortexed for a minute. 100 µL of lung homogenate was plated on 2X 

GYE agar plates and spread using glass beads. Plates were checked for CFUs over the course of 

4-7 days and final CFU count recorded on day 7. CFUs counted on the plate are calculated to 

obtain final number of units for the whole 2 mL of lung. (#
𝐶𝐹𝑈𝑠

100
µ𝐿) 𝑥 (2000) = total CFUs per 

2 mL or per whole lung.  

Statistics  

Experimental data was analyzed using paired Student’s t-test or unpaired Student’s t-test, and all 

data analyzed for outliers using Grubbs Outlier Exclusion analysis with GraphPad Prism version 

8 for Windows Software (GraphPad Software). Figure legends denote the comparisons analyzed, 

if outliers were detected and excluded, and the p-value for each figure. 
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Results  

 

Figure 1. Treg transfer into C57BL/6 mice increase fungal burden within the lungs. (A) 

Sorted Tregs were transferred 2 days before and on the day of infection, and mice were 

sacrificed 2 days post infection. Draining lymph node and lungs were harvested for 

immune cell assessment and lung homogenate was plated for colony forming units. (B) 

Fungal lung burden as measured by CFUs per total lung in two murine backgrounds 

infected with avirulent Coccidioides and the presence or absence of Tregs. C57BL/6 data 

is from 3 experiments, n=6-7 mice, DBA/2J data is from 1 experiment, n=2-3 mice. Each 

dot represents a biological replicate; line represents the mean. Unpaired Student’s t-test 

was used, Grubbs Outlier Exclusion method used to identify and exclude outliers, *p 

<0.05.  

Treg transfer increases fungal burden in lungs 

To explore the influence of Tregs on infection clearance, we transferred sorted Tregs into 

the susceptible C57BL/6 mice infected with the avirulent, vaccine Coccidioides posadasii 

(cts2/ard1/cts3Δ) strain. Tregs were injected two days before and on the day of intranasal 

Coccidioides infection and fungal burden evaluated two days post-infection (Figure 1A). 

C57BL/6 control mice, infected with Coccidioides with no Treg transfer, averaged 108.8 CFUs 

whereas Treg transfer mice averaged 454.2 CFUs. This represents a 4.2-fold increase in 

Coccidioides burden when additional Tregs are present (Figure 1B). DBA/2J mice had on 

average 3.8 CFUs with PBS mock transfer and 22.5 CFUs with Treg transfer, a 5.9-fold increase 

(Figure 1C).  
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Figure 2. Lung DC2 frequency decrease with Treg transfer. C57BL/6 mice were given 

Treg transfers as outlined in previous figure (Figure 1) and infected with 105 Coccidioides 

arthroconidia. (A) DC (CD11c+ cells) frequency does not change with Treg transfer and 

frequency of activated cells (MHC-II+ CD86+) do not differ. (B) DC1 are defined as 

CD8α+ DCs. (C) DC2 are defined as SIRPα+ DCs. Activated frequency obtained by 

gating off respective subtype population. Each dot represents a biological replicate; line 

represents the mean. Data is from 3 experiments, n=5-6 mice, Grubbs Outlier Exclusion 

method used to identify and exclude outliers. Paired Student t-test used. 

DC frequencies in the dLN and lung shift after Treg transfer 

Since Tregs regulate immune responses by directly interacting with antigen presenting 

cells (APC), we also analyzed APC changes in the lung and dLN post transfer and infection. We 

characterized Treg impact on DC polarization and activation/maturation by measuring MHC-II 

and CD86 co-expression on DCs. Contrary to our original hypothesis, there are no changes in 

dLN and lung DC frequency following adoptive Treg transfer and Coccidiodes infection (Figure 

2A, 3A). DC1 frequencies remain unchanged while DC2 frequency dropped with adoptive Treg 

transfer, from an average of 28.3% to 24.9% (p= 0.0616) within the lung (Figure 2B, 2C). In 

contrast, DC2 frequency increased from an average of 19.0% to 23.3% within the dLN with Treg 

transfer (Figure 3C). MHC-II and CD86 co-expression frequency remain unchanged across all 

DC subtypes with Coccidioides infection and additional Tregs (Figure 2, 3).  

 



 

 

42 

 

 

Figure 3. dLN DC2 frequency increases with Treg transfer. C57BL/6 mice were given 

Treg transfers as outlined in previous figure (Figure 1) and infected with 105 Coccidioides 

arthroconidia. (A) DC (CD11c+ cells) frequency does not change with Treg transfer and 

frequency of activated cells (MHC-II+ CD86+) do not differ. (B) DC1 are defined as 

CD8α+ DCs. (C) DC2 are defined as SIRPα+ DCs. Activated frequency obtained by 

gating off respective subtype population. Each dot represents a biological replicate; line 

represents the mean. Data is from 3 experiments, n=5-6 mice, Grubbs Outlier Exclusion 

method used to identify and exclude outliers. Paired Student’s T-test used, *p<0.05  
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Figure 4. Lung Treg frequency decreases at day 14 PI with avirulent Coccidioides 

infection. dLN and lung activated T cell frequency peaks at day 7 PI. (A) Infection 

timeline overview: mice were infected with 105 Coccidioides arthroconidia in 30 μL of 

PBS, mock infection mice received 30 μL of PBS. (B, E) Treg frequency was obtained 

from CD25+ Foxp3+ populations gated off CD4+ T cells. (C-D, F-G) Activated T cell 

(CD69+) frequency gated off of respective CD4+ and CD8α+ populations. Data is from 3 

experiments with PBS controls pooled from all experiments. n=5-14 mice, line represents 

the mean. Unpaired Student’s t-test used to compare PBS data against infection 

timepoints. Grubbs Outlier Exclusion method used to identify and exclude outliers, 

*p<0.05, **p<0.005, ***p<0.0005 

Treg frequency decreases in the lungs post-infection 

To further characterize adaptive immune responses to the vaccine strain, we measured T 

cell frequencies within the dLN and lung after avirulent Coccidioides infection. C57BL/6 mice 

were infected with either a mock infection of PBS as our control or 100,000 arthroconidia/mouse 

intranasally and sacrificed at days 1, 7, and 14 post infection. We analyzed the lung as it is the 

primary site of infection and the lung draining lymph node as it is the most proximal lymph node 

(Figure 4A). At day 14 PI, lung Treg frequency dropped to a 1.6% average as compared to the 

uninfected PBS control’s 2.5% (Figure 4E). To assess early T cell activation, we measured 

CD69+ expression frequency within CD4+ and CD8α+ T cell populations [10]. CD69+ CD4+ T 

cell frequency averaged 3.9% at 1 day post infection, representing a 1.4-fold decrease compared 

to the PBS control (Figure 4C). At day 7 PI, dLN CD69+ CD4+ frequency peaked at 6.7% 

average compared to control 5.4%, with no changes observed within CD69+ CD8α+ frequency 

(Figure 4C, 4D). Conversely, at day 7 PI in the lung, CD69+ CD8α+ frequency peaked at 22.2% 

average compared to the uninfected control 3.7% (Figure 4F, 4G). At 7 days post infection, this 
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represents a 1.2-fold increase in activated CD4+ T cells within the dLN and a 6-fold increase in 

activated CD8α+ T cells within the lung.  

 

Figure 5. CD62L/CD44 expression in CD4+ and CD8α+ T cells within the dLN. Mice 

were infected with 105 arthroconidia in 30 μL of PBS, mock infection mice received 30 

μL of PBS. (A, D) Frequency of CD62L+ CD44-, naïve T cells. (B, E) CD62L+ CD44+: 

frequency of activated, effector T cells still residing within dLN. (C, F) CD62L- CD44+: 

frequency of activated, effector T cells ready to leave dLN. Data is from 3 experiments 

with PBS controls pooled, each dot represents a biological replicate, n=6-14 mice, line 

represents mean. Unpaired Student’s t-test used to compare PBS data against infection 

timepoints. Comparisons Grubbs Outlier exclusion method used to identify and exclude 

outliers, *p<0.05, **p<0.005, ***p<0.0005, ****p<0.00005 

T cells downregulate CD62L and upregulate CD44 expression at day 14 PI in dLN 

 Though we observed significant activated T cell changes on day 1 and day 7 post 

infection, CD69 is an early activation marker expressed transiently upon initial activation. As T 

cells activate and encounter antigen from professional APCs within the lymph node, we assessed 

T cell responses within the lung draining lymph node by measuring CD62L expression and 

CD44 co-expression. Naïve T cells express CD62L, or L-selectin, to help facilitate their 

trafficking into lymph nodes [11]. CD44 expression is associated with effector activation and in 

some infection models, better infection clearance and heightened inflammation within the lung 

[12]. In combination, these markers provide cues into the activation and migratory capacity of T 

cells. Day 1 post infection, CD62L+ CD44- CD4+ T cell frequency averaged 78.6% compared to 

the PBS control 70.7%, with no changes observed within the corresponding CD8α+ population 

(Figure 5A, 5D). CD62L+ CD44+ CD4+ T cell frequency peaked at day 7 PI with an average of 

5.9% as compared to the 4.2% control (Figure 5B). CD62L- CD44+ CD4+ T cell frequency 

averaged 7.0% at day 1 PI and 17.3% at day 14 PI, representing a 1.5-fold decrease and a 1.7-

fold increase respectively against the 10.4% PBS average (Figure 5C). CD62L- CD44+ CD8α+ 

T cell frequency had a stark drop at day 14 PI, averaging 0.7% compared to the control 3.3%, a 
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significant 4.7-fold drop (Figure 5F). Altogether, these data show CD44 expression in CD4+ T 

cells increase at day 7 PI and by day 14 PI, they begin to downregulate CD62L, suggesting 

readiness to leave the lymph node.  

 

Figure 6. CD62L/CD44 expression in CD4+ and CD8α+ T cells within the lung. Mice 

were infected with 105 arthroconidia in 30 μL of PBS, mock infected mice received 30 

μL of PBS. (A, D) Frequency of CD62L+ CD44-, naïve T cells. (B, E) CD62L+ CD44+: 

frequency of activated, effector T cells still residing within dLN. (C, F) CD62L- CD44+: 

frequency of activated, effector T cells ready to leave dLN. Data is from 3 experiments 

with PBS controls pooled, each dot represents a biological replicate, n=6-14 mice, line 

represents mean. Unpaired Student’s t-test used to compare PBS data against infection 

timepoints Grubbs Outlier exclusion method used to identify and exclude outliers, 

*p<0.05, **p<0.005 

Naïve lung T cell frequency decreases while activated T cells increase at day 14 PI  

 After assessing dLN T cell responses, we examined lung T cell responses as this is the 

primary site of Coccidiodes infection. Activated T cells from proximal lymph nodes would 

localize to the infection. Thus, one could expect an increase in activated cells within the lung 

post infection. Frequency of CD62L+ CD44- CD4+ T cells, naïve cells, at day 14 PI averages 

20.1%, a 2-fold reduction compared to the control 42.6% average (Figure 6A). No changes were 

observed in the corresponding CD8α+ population (Figure 6D). CD62L- CD44+ CD4+ T cell 

frequency increases at day 14 PI at an average of 57% with Coccidioides infection as compared 

to the 37.5% control average (Figure 6C). CD62L- CD44+ CD8α+ T cell frequency peaks at 

17.3% average, a 3.4-fold increase compared to the control average of 5.1% (Figure 6F). Lung T 

cell response analysis revealed an increase in activated CD4 frequency at day 14 PI whereas 

CD8α frequency peaks at day 7 PI. Together, these data suggest that effector CD8α responses 

begin 7 days post infection whereas CD4 responses require longer activation time before they 

traffic to the lungs.  
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Discussion 

Tregs are detrimental to disease outcome in Paracoccidioides infection, and their ablation 

resulted in rescued anti-fungal immune responses and prolonged survival [13]. Our lab observed 

a correlation between increased Treg frequency in peripheral blood at time of coccidiomycosis 

diagnosis and a chronic disease outcome [3]. Thus, I hypothesized that Treg transfer would 

decrease APC activation state and increase fungal burden. Treg adoptive transfer results in 

increased avirulent Coccidioides burden within the lungs, as measured by higher CFU count 

(Figure 1). However, there were no significant changes in DC frequency or activated/matured 

DC frequency within the draining LN or lung with Treg transfer (Figure 2A, 3A). DC2 

frequency decreased within the lung and significantly increase within the dLN in the presence of 

adoptively transferred Tregs (Figure 2C, 3C). This Tregs may not inhibit APC activation or 

maturation during infection but instead influence APC polarization.  

Since DCs shape adaptive T cell response, our next experiments focused on 

characterizing the impact of avirulent Coccidiodes infection on CD4 and CD8 T cell populations. 

We continued avirulent characterization work done in Chapter 2 to further characterize 

susceptible C57BL/6 mouse immunity to vaccine strain Coccidioides posadasii (cts2/ard1/cts3Δ) 

Our study aims to expand the field’s understanding of how this avirulent vaccine strain impacts 

T cell populations. The work in this chapter demonstrates the first evidence for Treg kinetics 

post-infection. We observed a drop in Tregs frequency by day 14 PI (Figure 4E). In parallel, 

early activated CD4 T cell responses within the dLN and lung peak at day 7 PI (Figure 4). We 

further characterized later immune activation by measuring CD62L vs. CD44 co-expression on T 

cells. By day 14, CD62L- CD44+ CD4+ T cell frequency increased in both dLN and lung 

(Figure 5, 6). This increase corresponds to the Treg frequency decrease at day 14 PI (Figure 4E). 

Together, our interpretation of the data is that as Tregs decrease over time, activated T cells take 

their place.  

Overall, these data suggest Tregs inhibit fungal clearance and could potentially impact 

adaptive immunity by influencing DC polarization and adaptive T cell frequencies. The absence 

of IL-10, a Treg associated cytokine, the susceptible C57BL/6 mouse develops protective 

memory responses to virulent Coccidioides challenge [14]. Further work must be done to show 

whether Treg presence inhibits T cell activation or migration into the lung. To examine Treg 

influence on adaptive immunity, one could deplete Tregs during Coccidioides vaccination and 

compare protection and survival with virulent secondary challenge against Treg-sufficient 

controls. Should Treg depletion prove beneficial for survival, clinicians could target Tregs for 

depletion during vaccination to enhance anti-fungal immunity development. This could result in 

better adaptive immunity and memory formation, as seen in IL-10 absent murine models of 

vaccination [14]. Examining Treg influence on DC polarization would also broaden the field’s 

understanding of Treg impact on adaptive immunity through the APCs. CTLA-4 on Tregs 

competitively bind to CD80/CD86 on APCs, decreasing that APC’s ability to interact with naïve 

T cells for activation [15]. Blocking Treg interaction with APCs could increase the chances of 

productive T cell activation during vaccination, leading to better adaptive immunity and memory 

formation. The work in this thesis chapter outlines foundational evidence for Treg contribution to 

infection persistence and further characterization of adaptive immunity to vaccine Coccidioides. 
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Further work to characterize these responses could revolutionize our understanding of 

Coccidioides disease outcome markers and improve vaccine development.  
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CHAPTER 4 

Conclusion 
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CHAPTER 4: CONCLUSION AND FUTURE DIRECTIONS 

CONTRIBUTIONS TO THE FIELD  

Macrophage and DC Polarization in response to Coccidioides 

 The work outlined in this thesis explores vaccine strain Coccidioides posadasii 

(cts2/ard1/cts3Δ) influence on antigen presenting cell polarization. Previously, it was known that 

macrophages are critical for infection clearance via phagocytic function, and DCs are critical for 

training adaptive immunity activation [1-2]. Pro-inflammatory cytokines such as IFNγ enhance 

macrophage phagocytosis suggesting a critical role for pro-inflammatory responses and signals 

in infection clearance [2]. DCs induce immune proliferation and T cell activation in response to 

formalin-killed Coccidioides and lysate [1, 2]. Differentially polarized antigen presenting cells 

(APC) respond differently to infection and produce differing cytokines [4]. Thus, APC 

polarization and effector products influence the immune microenvironment which shapes 

adaptive immune cell recruitment, activation, and maintenance [5]. DC1 subtypes promote pro-

inflammatory, antifungal Th1/Th17 responses whereas DC2 subtypes promote non-productive 

Th2 responses [4-5]. Correspondingly, macrophages follow a similar polarization schema. M1, 

or classically activated macrophages, are highly phagocytotic and secrete antimicrobial, 

antifungal cytokines [6]. M2, or alternatively activated macrophages, are associated with wound 

healing and sometimes granuloma development [7]. M2 are especially detrimental for antifungal 

responses as their specialized properties suppress inflammation and promotes tissue repair 

instead of phagocytosis. In Cryptococcus infection, M2 cells inhibit clearance by secreting anti-

inflammatory, Th2 associated cytokines and their presence promotes fungal dissemination [7].  

 In Chapter 2, our work characterizes DC and macrophage responses to Coccidioides. 

Bone-marrow derived DCs cultured with Coccidioides and DC2 polarizing stimuli, still 

preferentially polarize into DC1 [Chapter 2]. Bone-marrow derived monocytes become 

dominantly M0 but do not polarize into M1 or M2 subtypes [Chapter 2]. Coccidioides may block 

M1/M2 polarization to prevent specialized cytokine responses as a means of evading innate 

immunity. DCs and macrophages cultured with Coccidioides also had significantly less MHC-

II/CD86 co-expression, suggesting Coccidioides is actively inhibiting APC 

activation/maturation. Supernatant-based experiments suggests this inhibition is contact 

dependent. In vivo infection data reveals a mixed DC1/DC2 frequency in the lungs and no 

significant changes to MHC-II/CD86 co-expression. As the lung is a complex immuno-mucosal 

tissue, there are other immune and epithelial cells that could contribute to fungal detection and 

pathogen response. Such cells are possibly interacting with Coccidioides and lung DCs to 

promote the mixed DC1/DC2 frequency observed. Our study in Chapter 2 is the first to show 

evidence for a novel virulence mechanism where Coccidioides could evade immune detection 

and clearance by influencing APC polarization and activation. Other fungal species manipulate 

macrophage polarization for survival, thus it is likely Coccidioides has similar evasion 

mechanisms [7]. By influencing DC activation and polarization, Coccidiodes can impact 

adaptive immunity and memory formation. Lowered MHC-II and CD86 co-expression on DCs 

can be interpreted as decreased capacity to activate T cells [4-5].  
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Coccidioides vaccine research has come a long way and yielded many exciting 

discoveries about adaptive fungal immunity. The work done in this thesis highlights the 

importance of defining early innate responses to Coccidioides infection for vaccine development. 

Though previous studies demonstrate T cell activation, proliferation, and mixed T effector 

differentiation, the mechanisms by which APCs generate these responses are not well 

characterized. We do not know what signaling pathways, receptors, and interactions between 

APCs and naïve T cells result in strong antifungal Teff response. Further exploration of APC 

polarization and activation could yield novel targets for enhancing immunization by targeting the 

professional APCs that would stimulate adaptive immunity.  

Treg Contribution to Infection Clearance 

 Previous work done by our lab shows a strong correlation between elevated Treg 

frequency in peripheral blood at time of diagnosis and chronic disease outcome in pediatric 

patients [8]. Tregs are well characterized in autoimmunity and cancer with their function being 

crucial for maintaining immune tolerance and regulating inflammatory responses [9]. Treg 

function in coccidioidomycosis is poorly understood. Our best examples for coccidiomycosis 

comes from paracoccidiomycosis, caused by Paracoccidioides brasiliensis, a distant genetic 

cousin. In paracoccidiomycosis mouse models, Treg depletion extends survival rates and rescues 

protective Th1/Th17 responses within the lung [10]. Further, T cells in mice depleted of Tregs 

and infected with Paracoccidioides, produce far more pro-inflammatory cytokines associated 

with effective fungal clearance than T cells in Treg-sufficient mice [10, 11]. Patients with 

chronic disease outcome also had elevated IL-10, a regulatory cytokine associated with Treg 

function [8]. In susceptible mouse backgrounds, the absence of IL-10 resulted in better 

Coccidioides clearance in the lungs as well as protection against virulent Coccidioides infection 

[12]. Though these studies suggest Tregs promote unfavorable disease outcome, further work 

must be done to characterize the mechanisms by which it occurs.  

It is possible that high Treg frequency corresponds to poor Coccidioides infection 

clearance. This idea is supported by the DBA/2 resistance versus C57BL/6 susceptibility to 

Coccidioides infection [13]. This resistance is ascribed to the full Dectin-1 receptor of DBA/2 

mice versus the truncated version in the C57BL/6 [13, 14]. However, DBA/2 also produce less 

IL-10 and have a lower Treg frequency in their lungs than C57BL/6; combined with our 

pediatric study data, this suggests host Treg frequency contributes to infection susceptibility 

[Chapter 1, Table 1]. Another possibility is that the Tregs have higher suppressive capacity. 

Unbiased immune parameter analysis found that CCR5+ Tregs associated with chronic disease 

outcome [9]. CCR5 expression in Tregs is thought to increase migratory capacity to different 

tissues, thus increasing ability to impact infection outcome [15]. CCR5 KO mice cleared 

Histoplasma infection while CCR5-sufficient mice did not, and CCR5 KO lungs had elevated 

Th17 associated cytokines and decreased Treg numbers [15.] Together, these data emphasize the 

likelihood of Tregs, particularly CCR5+ Tregs contributing to chronic disease outcome.  

The work detailed in Chapter 3 provides further evidence of Treg detrimental impact on 

Coccidioides clearance. C57BL/6 mice that received adoptive Treg transfer have impaired fungal 

clearance, as measured by colony forming unit counts (Chapter 3, Figure 1). The mice also have 
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decreased DC2 frequency in their lungs, suggesting that Tregs can shape DC polarization and/or 

migration during Coccidioides infection (Chapter 3, Figure 2). In Cryptococcus infection, IL-10 

promotes DC2 polarization and increases fungal burden in the lungs [16]. Our study was 

performed in the Coccidiodes-susceptible C57BL/6 mouse model using avirulent Coccidioides, a 

strain designed to have no replication capacity and therefore little to no virulence within the host 

[17]. Treg transfer extends avirulent Coccidioides persistence within the lung as compared to the 

control PBS transfer, demonstrating Treg impact on fungal clearance even with an attenuated, 

weakened strain.  

Next, to further characterize adaptive immune responses to Coccidioides, we assessed 

activation and migratory capacities of CD4+ and CD8α+ T cells within the dLN and lung 

(Chapter 3, Figure 4). CD69+ is the earliest inducible cell surface marker so we assessed its 

expression to identify early activated T cells [18]. Activated CD4 frequency peaked within dLN 

and lung at day 7 PI and activated CD8αfrequency at day 7 PI within the lung. As CD69 is a 

transiently expressed marker and would provide limited insight to activation at later time points, 

we also assessed CD62L/CD44 expression on T cells over time. CD62L, or L-selectin, is 

upregulated on T cells to promote trafficking to secondary lymphoid organs where they can 

interact with DCs and become activated [19]. CD44 expression is associated with effector 

activation and in Mycobacterium TB models, better infection clearance and heightened 

inflammation within the lung [20]. At day14 PI, CD62L- and CD44+ CD4+ T cells increased in 

frequency within both the dLN and lung, suggesting activated, effector responses arise at day 14 

PI (Chapter 3: Figure 5, 6).  

FUTURE DIRECTIONS 

Coccidioides research has boomed in the last decade as growing concerns within endemic 

regions have motivated legislation to enhance research funding and community awareness. 

Though well studied and characterized by fungal geneticists and ecologists, there are still many 

questions about Coccidioides immunity. A major challenge to developing fungal vaccines are 

due to the diverse morphologies and antigen expression throughout life cycles [21]. An effective 

fungal vaccine must educate the adaptive immunity against all possible fungi forms to ensure 

complete protection. Fungi are also eukaryotes, sharing many common molecules with humans, 

complicating the search for unique markers to target. To date, most antifungal drugs are 

derivatives of azoles created in the late 1980s and even these are not suitable for chronic 

infection treatment as they cause severe, toxic side effects when used long term [22]. 

Understanding basic immunological responses to Coccidioides is crucial for improving future 

therapeutics and enhancing our knowledge base to create strong, effective fungal vaccines.  

The work in this thesis suggests evidence of a virulence mechanism by which 

Coccidiodes is actively inhibiting APC polarization activation (Figure 1A-1C). Future work done 

with Coccidioides and human APCs (such as DCs and macrophages) to characterize innate 

immune response to virulent fungal challenge would yield patient-relevant data. APC 

polarization data from patients during acute and chronic infection could help elucidate what early 

immune events lead to infection clearance or persistence. Further work examining signaling 

networks within APCs exposed to Coccidioides could also provide further details on where APC 
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polarization is blocked at a transcriptional level. Next steps should include repeating the studies 

outlined in Chapters 2-3 with virulent Coccidioides strains. This would yield invaluable data 

comparing APC polarization and activation of avirulent, vaccine Coccidioides versus wild-type 

and clinically derived strains.  

The Treg data presented in this thesis utilizes the avirulent, vaccine strain on an already 

susceptible mouse genetic background. Though the data is promising, the most immediate next 

steps to confirm Treg contribution to infection outcome is to deplete Tregs within a susceptible 

mouse model and infect with virulent Coccidioides strains. To take cue from the 

Paracoccidioides field, Treg depletion during ongoing infection of mice to rescue productive 

immune responses and increase survival would provide definitive proof that Tregs are 

detrimental to disease outcome [10-11].  

Examining Treg functional state during virulent Coccidioides infection and comparing it 

to avirulent infection could define Treg impact on adaptive immunity and memory development 

(Figure 1C-1D). Vaccinated C57BL/6 mice develop protective, memory T cell responses to 

Coccidioides in the absence of interleukin-10, a Treg associated cytokine [12]. Depleting Tregs 

during Coccidioides vaccination could enhance anti-fungal immunity development and memory 

development. Memory T cell subset identification via flow cytometry would also define critical 

memory subsets for Coccidioides protection. Tissue resident memory cells are responsible for 

protective responses in bacterial and viral respiratory infections, but little is known about their 

contribution to fungal, respiratory immunity [23-24]. Memory subset identification studies would 

help to define T cell populations responsible for providing long lasting immunity within the lung.  
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Figure 1. Avirulent Coccidioides posadasii induces M0 and DC1 polarization but 

inhibits MHC-II/CD86 expression. Tregs are detrimental for infection burden as their 

presence increases fungal burden within lungs. (A) In vitro assays with monocytes and 

DCs defined polarization and activation in response to avirulent Coccidioides. (B) 

Monocytes become M0 but do not polarize or activate in response to Coccidioides. Grey 

arrows represent this polarization block. (C) DCs polarize into DC1, and exhibit 

decreased activation in contact-dependent interactions with Coccidioides. (D) In vivo 

Treg adoptive transfer with Coccidioides infection increases fungal burden within the 

lung. Tregs suppress T helper 1 (Th1) and T helper 17 (Th17) cells whose cytokine 

products can shape innate immune cell responses. 

SUMMARY 

 Coccidioides research has come a long way since its original scientific record in the 

1800s but many questions regarding fungal immunity remain. This research is the first to assess 

APC polarization responses and show Treg contribution to Coccidioides infection persistence in 

mouse models. Our Treg transfer work suggests Tregs are detrimental to disease outcome. 

Further work to understand APC involvement in activating/educating adaptive immunity will be 

crucial. Activating and promoting the correct APC subtype has implications for adaptive 

immunity activation. Such knowledge would further our understanding of Coccidioides 

susceptibility in patients and enhance vaccine development. Chronic coccidiomycosis robs 

individuals of their quality of life and ability to work. Fungal vaccines and new therapeutics for 

treating chronic infection would change and save countless lives. 
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