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EPIGRAPH

The single greatest constant of history is that everything changes.

—Yuval Noah Harari, Homo Deus: A Brief History of Tomorrow
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ABSTRACT OF THE DISSERTATION

Spatial-Temporal Dynamics in Multi-Strain Bacterial Populations

by

Liyang Xiong
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Massimo Vergassola, Chair
Lev Tsimring, Co-Chair

Bacteria are widespread on Earth. They play important roles in shaping the global ecosys-

tems as well as influencing human health. In nature, different bacterial species often coexist in

a common environment. The interactions of them are diverse and often lead to intricate spatial-

temporal dynamics. Quantitative experimental measurements as well as mathematical modeling

could help us better understand the mechanisms behind such dynamics. In this dissertation, I

discuss several spatial-temporal structures for multi-strain bacterial systems and different modeling

strategies are used to help explore the mechanisms of different spatial-temporal patterns. A key
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question regarding a system of different bacterial species is how coexistence is maintained, consid-

ering that different bacterial species often have different growth rates and they can even kill each

other sometimes. In Chapter Two, I discuss a novel theoretical framework for robust coexistence

and pattern formation in bacterial mixtures with contact-dependent killing. In Chapter Three, I

present a beautiful spatial flower-like pattern in two-species bacterial systems from experiments

and build two different models, a discrete interface model and a phase-field model, to elucidate

how differential motility and mechanical interactions between bacterial species can create complex

spatial structures. In Chapter Four, I introduce the agent-based modeling, which simulates each

individual bacterial cell in large populations. Two examples of applications of such agent-based

modeling in microfluidic environments are described. All these chapters combine to highlight

the effort towards understanding the spatial-temporal dynamics of multi-strain microbial systems

quantitatively.
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Chapter 1

Introduction

Microbial communities inhabit every ecosystem on Earth, from soil to hydrothermal vents

to plants to the human gut [1, 2, 3]. They often form dense biofilms, whose structures are shaped

by biological, chemical, and physical factors [4, 5, 6]. In the wild, most biofilms are comprised

of multiple bacterial strains. They feature a diverse repertoire of social interactions, including

cooperation [7, 8], competition [9], and predation [10]. Bacteria often signal, sense, and respond to

each other through secondary metabolites [11] or antibiotic compounds [12], and co-cultures can

even exhibit different motility from either species on its own [13]. These interactions may lead to

the emergence of complex spatial structures, which can have a profound effect on bacteria survival

and function, and promote biodiversity by optimizing the division of labor within the biofilm [14].

Spatial structure can also enhance horizontal gene transfer among different species [15].

All these complicated interactions determine that bacterial systems are often not at steady

states but rather dynamical and coupled to the environments they inhabit. Understanding the

mechanisms of the various spatial-temporal dynamics is critical and can benefit human health

[16], industrial fermentation [17], agriculture [18], etc. To better unveil the fundamental principles

governing the dynamics of bacterial systems, quantitative methods are essential. In quantitative

1



biology, the combination of quantitative experimental measurements and mathematical modeling

could not only shed light on the explanation of observed phenomena, but also help make predictions

about the living systems. Building predictive models for microbial communities in nature is

often challenging, considering the large number of bacterial species and their diverse interactions.

However, even starting from relatively simple systems with only a few strains or species present,

the principles for microbial organization uncovered could be general and provide hints at systems

with more complexity. In the next few chapters, I would like to illustrate some examples of how

modeling and experiments can be combined to explore different dynamics in different multi-strain

bacterial populations.
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Chapter 2

Coexistence and pattern formation in

bacterial mixtures with contact-dependent

killing

2.1 Introduction

In natural habitats, microorganisms often form multispecies communities with intricate

social organization and complex spatial structure [1]. The repertoire of interactions among microor-

ganisms is very diverse and includes cooperation [2, 3], competition for common resources [4, 5],

and predation [6, 7, 8]. One major question drawing significant interest is how different microbial

species may stably coexist within a common environment in the presence of competition and

predation [4, 9]. In this chapter, we address this question theoretically, focusing on one ubiquitous

mechanism of bacterial predation: contact-dependent killing of neighboring cells by direct injection

of lethal toxins via the type VI secretion system (T6SS) [10, 11, 12, 13, 14, 15, 16]. The T6SS has

been found in many genera of bacteria, including Vibrio, Pseudomonas, and Acinetobacter.
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In a recent paper [17], Borenstein et al. demonstrated that while small micro-colonies of

T6SS-sensitive cells are quickly eliminated by surrounding T6SS-active cells, sufficiently large

micro-colonies can survive the assault and expand. They explained this size-dependent bifurcation

with a purely geometric mechanism. Since the killing occurs on the perimeter of the colony, and

the growth is in the bulk, the overall balance between killing and growth depends on the colony

size. However, these theoretical results predicted no stable coexistence; rather, T6SS inhibition

was expected to lead to bistability. Depending on initial conditions, either the T6SS-sensitive or

T6SS-active bacteria outcompete the other strain and asymptotically approach a spatially uniform

state. The experiments with mixtures of E. coli (T6SS-sensitive strain) and Vibrio cholerae (T6SS-

active strain) indeed showed either growth or shrinkage of localized domains of E. coli depending

on their initial size. However, the finite time span of the experiments did not allow the authors to

see complete elimination of one strain, thus the question of possible coexistence remained open.

McNally et al. [18] also recently studied phase separation in a system of two mutually-antagonistic

T6SS-active strains of V. cholerae and found persistent domain coarsening, which indicates that the

stronger strain would eventually win the competition.

In another recent paper [19], Blanchard et al. computationally studied the dynamics of a

bacterial population with contact-dependent inhibition, such as that mediated by the T6SS. In the

well-mixed case, they also found bistability leading to extinction of one strain or the other. On

the other hand, they reported that in spatio-temporal simulations, if the diffusion of bacteria was

sufficiently slow, two strains could coexist separated by stationary interfaces in a finite parameter

domain. However, this effect in their two-component model with bistability could have been

a consequence of front pinning that may sometimes occur in coarse finite-difference numerical

simulations [20] (see more on this in the Discussion).

While local antagonistic interactions generically lead to phase separation and coarsening via

front propagation and thus cannot sustain stable strain coexistence, additional long-range interactions
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may potentially change this outcome and lead to stable coexistence. In this chapter, we revisit the

possibility of stable coexistence in a binary mixture of T6SS-active and T6SS-sensitive bacteria,

taking into consideration the potential effects of long-range growth inhibition. We demonstrate

theoretically and numerically, using both continuous deterministic and discrete stochastic models,

that the interplay of short-range killing and long-range growth inhibition can indeed stabilize the

system in a bimodal state with well-separated patches of different bacterial strains. Furthermore,

when diffusion of the inhibitor is fast but finite, stable patterns with a characteristic spatial scale

can emerge. Such long-range growth inhibition can plausibly arise in natural settings, since a

number of factors that limit colony growth, including resource availability, waste accumulation, and

quorum sensing, are mediated by fast-diffusing small molecules [21, 22, 23]. Long-range growth

inhibition can also be forward-engineered using the tools of modern synthetic biology [24], for

example, by placing an antibiotic resistance gene under the control of a promoter that is repressed

by a fast-diffusing quorum-sensing signal (e.g. AHL).

2.2 Methods

2.2.1 Continuum deterministic model

We developed a continuum population dynamics model for a binary mixture of two strains of

bacteria that grow on a two-dimensional surface and interact via both short-range contact-dependent

killing and long-range growth inhibition. The model is based on the partial differential equations

for the area densities of T6SS-sensitive bacteria n1(r, t) and T6SS-active bacteria n2(r, t), and the

reaction-diffusion equation for the density of the growth inhibitor A(r, t) in a two-dimensional
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space, r ∈ R2:

∂n1

∂t
=

γ1

1+A
n1(1−n1−n2)−δn1−κn1n2 +∇

2n1 (2.1)

∂n2

∂t
= n2(1−n1−n2)−δn2 +∇

2n2 (2.2)

∂A
∂t

= γAn1−δAA+DA∇
2A (2.3)

The first equation describes the logistic growth of the T6SS-sensitive cells, their spontaneous death,

killing by co-located T6SS-active cells, and diffusion. Note that the growth rate of T6SS-sensitive

strain 1 is reduced by the local concentration of inhibitor A(r, t). We use a simple Hill-like function

for the inhibition since the specific form is not qualitatively important. The second equation

describes the logistic growth of T6SS-active cells, their spontaneous death, and diffusion. The death

rates of both strains are small, and if they move on solid agar, their diffusion rates are also small.

While these parameters can be different for the two strains, that difference is not essential, and we

assume them to be equal for simplicity. The third equation describes synthesis, decay, and diffusion

of the inhibitor A that reduces the growth rate of species n1. This model has a typical structure of

a reaction-diffusion system. Strictly speaking, bacterial communities are not reaction-diffusion

systems since they do not “react” with each other as chemical species, and their motility is often

quite different from simple linear diffusion. However, such simplified description of their collective

dynamics (growth, death, interactions, and motility) is convenient and may serve as a reasonable

first approximation to more realistic models of multi-strain bacterial communities.

Here, we assume that A is only produced by n1 and only inhibits growth of n1. This

interaction of A only with n1 can be realized in synthetic biology as discussed later. However, in

natural environments, it might also be produced by n2 and inhibit growth of n2. The analysis of

a more general model with A produced by and inhibiting growth of both strains is discussed in

Appendix, where we also allow for different death rates of the two strains. In the analysis and
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simulations described below, we use Eqs. (2.1)-(2.3) for simplicity, but our main conclusions are

general. In these equations, all variables and parameters are scaled by the growth rate of species

2, the diffusion constant of both strains, and the maximum total density of bacteria at which the

logistic growth saturates. Note that in our model the cell growth saturates in the bulk at sufficiently

large density, while Borenstein et al. [17] assumed that growth was continuous, with new cells

pushing old cells out of the simulation domain once the maximum density was reached. This is an

important difference, since in the latter case, the faster-growing strain always wins for sufficiently

large initial domains, while in our system, the outcome is more complex and parameter-dependent.

2.2.2 Discrete stochastic model

We also developed a lattice-based, discrete-element model to study the effects of stochasticity

on the population dynamics of two bacterial strains. We assume that each site of a square lattice

may contain an integer number of T6SS-sensitive and T6SS-active cells, n1 and n2, respectively. At

every time step, each cell can divide with a probability that is proportional to its growth rate (γ1 or

γ2, respectively), thereby increasing the occupancy number of the corresponding cell type in that

lattice site by one. We assume that each lattice site can only accommodate no more than n0 cells, so

once the total number of cells n1 +n2 at a certain lattice site reaches n0, cell division at that site is

suspended. To model the short-range cell motility, we allow cells to hop to any of four neighboring

lattice sites with rates Pn if that neighboring site has a vacancy. A cell can also spontaneously die

with probability proportional to δ, thus reducing the number of cells of its type in its lattice site

by one. Finally, type-2 cells can kill type-1 cells with probability proportional to κ if they occupy

the same site, thus reducing the occupancy number n1 by one. All these processes are simulated

as independent Markovian events. We also introduce a real-valued inhibitor field A that is defined

on the same lattice. It is produced at each lattice site in proportion to the corresponding n1 value,

degrades with rate δA, and diffuses with the diffusion constant DA. The spatio-temporal evolution
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of A was simulated deterministically using the first-order split-step pseudo-spectral method. We

employed 256×256 or 512×512 lattices with periodic boundary conditions.

2.3 Results

2.3.1 Continuum deterministic theory

Population dynamics without long-range inhibition

Let us first consider the two-species population dynamics without long-range inhibition by

assuming γA = 0 and imposing the initial condition A(r,0) = 0. Clearly, A(r, t) will then remain

zero at all times and can be omitted from consideration. The set of two Eqs. (2.1), (2.2) possesses at

most four fixed points, including the trivial fixed point n1,2 = 0, two “pure” states in which either

n1 = 0,n2 6= 0 or n1 6= 0,n2 = 0, and a mixed state where both n1,2 6= 0. The linear stability analysis

(see Appendix of this Chapter) shows that if δ < 1,γ1, the trivial state is always unstable, and pure

n1 and n2 states are stable for sufficiently large and small γ1, respectively. For intermediate γ1,

at 1 < γ1 < 1+κ(1−δ)/δ, the system is bistable (see Fig. 2.7A, blue wedge). In the following,

we will always assume γ1 > 1, since the most interesting dynamics occur within this regime. For

non-zero γA, the bifurcation analysis can be carried out as well (Appendix of this Chapter).

In the bistable regime, two sub-colonies dominated by species 1 and 2, can coexist by occu-

pying different spatial domains. If these domains contact each other and the diffusion coefficients

of the two species are non-zero, smooth fronts will form separating the domains of different species.

These fronts will generally move in either direction depending on the system parameters γ1,δ,κ.

Generally, since γ1 > 1, for small killing rate κ, the front propagates in the direction of species 2,

and species 1 wins, while for sufficiently large κ the front reverses, and T6SS-active species 2 wins.

For given γ1 and δ, there is a unique value of κs at which the front is stationary. For δ,κ� 1 it can
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Figure 2.1: (A) The blue-shaded wedge in the parameter plane (γ1,κ) for δ = 0.01 shows the
region of bistability in which both pure states are stable and may transiently coexist in space;
however, the fronts separating them would generically move in either direction when diffusion is
not zero. (B, C, D) demonstrate how one-dimensional fronts reverse direction when κ is increased
from 0.06 (B) to 0.087 (C) to 0.12 (D) for γ1 = 6 [direct numerical integration of Eqs. (2.1), (2.2)].
Only the dynamics of n1 are shown here. In the region where n1 is high, n2 is low and vice versa.
The red solid line in (A), which is plotted according to formula (2.4), corresponds to the stationary
front solution. It separates the parameter regions in which either n1 or n2 win the competition. The
symbols show the parameters values for which the fronts were indeed found to be stationary in
direct simulations.

be found analytically using the so-called Maxwell rule [25] (see Appendix for details),

κs =
3δ(γ1−1)2(γ2

1−1−2γ1 lnγ1)

2γ3
1 +3γ2

1−6γ1 +1−6γ2
1 lnγ1

(2.4)
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For small γ1− 1, this expression simplifies to κs = 2δ(γ1− 1). Direct numerical simulations of

Eqs. (2.1), (2.2) agree well with this formula (Fig. 2.1).

Infinitely fast inhibitor diffusion

In the limit of infinitely fast inhibitor diffusion (DA→ ∞), A is spatially-uniform with a

magnitude that is dependent on the average concentration of type-1 bacteria over the entire domain:

N1(t) =
∫

C n1(r, t)dr/Area(C). For δA� δ, after the initial transient, the magnitude of the inhibitor

A becomes slaved to the current value of N1: A(t) = γAN1(t)/δA. In the bistable regime, after the

phase separation has occurred, N1 ≈ n∗1s1, where s1 is the surface area fraction occupied by the

type-1 strain and n∗1 = 1−δ(1+A)/γ1 is at the local fixed point. This yields the self-consistency

condition resulting in the relation between s1 and A:

A =
γ1−δ

δAγ1
γAs1

+δ

. (2.5)

Now we can use the results of the analysis of the two-variable model with re-normalized

γ
∗
1 = γ1/(1+A) = (δAγ1 +δγAs1)/(δA + γAs1) (2.6)

instead of γ1 and determine how the region of bistability will depend on s1 (see Fig. 2.2A). The

bistability region for arbitrary 0 < s1 < 1 is the wedge 1 < γ∗1 < 1+κ(1−δ)/δ (Fig. 2.2A). Since

for each s1 there is a unique line corresponding to a stationary front, we can also plot a union

of all lines κ(γ1) by using Eq. (2.4) with γ1 replaced by γ∗1 for arbitrary 0 < s1 < 1; this union

forms a wedge shown in Fig. 2.2B. Thus, any combination of κ and γ1 within this wedge can yield

a stationary, phase-separated structure with a particular area fraction s∗1, for which κ and γ∗1
(
s∗1
)

satisfy Eq. (2.4). Similar results can be obtained in the dual-inhibition model in which both species

produce and are inhibited by the same inhibitor (see Appendix).

12



pure n1

pu
re

 n
2

A B

0 2 4 6 8 10 12
0

0.02

0.04

0.06

0.08

0.1

0 2 4 6 8 10 12
0

0.02

0.04

0.06

0.08

0.1

pu
re

 n
2

pure n1

bistable, no 
stationary front

bistable, 
stationary front

s1=0 s1=0.25 s1=0.50

s1=0.75

s1=1.00

s1=0

s1=0.50

s1=1.00

s1=0
s1=0.5
s1=1
stationary front

bistable

bistable, no 
stationary front

Figure 2.2: (A) Regions for bistability on (κ, γ1) plane for three different values of strain 1 area
fraction s1. Blue wedge (s1 = 0) that corresponds to s1 = 0 and A = 0 is the same as the one for
the two-variable model shown in Fig. 2.1. (B) The region of bistability for all values 0 < s1 < 1
(blue wedge) and the region where fronts would become stationary at specific values of s1 (red
region). Parameters are δ = 0.01,γA/δA = 2.

Dynamically, if the parameters κ and γ1 fall within the domain allowing a stationary front for

a certain area fraction s∗1 given by Eqs. (2.4), (2.6), but the initial area fraction of species 1 s1(t = 0)

is smaller than s∗1, then n1-domains will expand, and s1 will increase until it becomes equal to s∗1, at

which time the expansion terminates. Conversely, if s1(t = 0)> s∗1, domains of n1 will shrink until

s1→ s∗1. This phase separation with subsequent stabilization of the total area fractions occupied by

n1 and n2 is easily seen even when δA/δ = O(1) in numerical simulations of a 2D version of this

model starting from random initial conditions (Fig. 2.11). Figure 2.12 shows a comparison of the

stationary state of a 1D system as predicted either analytically using Eqs. (2.4), (2.6) or with direct

1D numerical simulations of the continuum model.

Finite inhibitor diffusion

For large but finite diffusion rate DA, the approximation of spatially-uniform A is only

applicable for a sufficiently small system size L� q ≡
√

DA/δA. In larger systems, the spatial

variability of A becomes essential. Furthermore, a finite diffusion rate DA imposes a characteristic
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scale for isolated domains of n1 and n2. Indeed, consider an isolated island of n1 in an infinite

“sea” of n2 in 1D (Fig. 2.3A). This island is a source of inhibitor A that gradually dissipates in

the surrounding area. Thus, an island of n1 generates a localized bump of A, whose amplitude A0

depends on the size of the island. If the half-width of the island x0 is much smaller than the inhibitor

diffusion scale q, we can neglect the variation of A across the island and obtain the following

approximate expression for A0 valid for small qx0 (see Appendix),

A0 =
γA

δA
(1−δ/γ

∗
1)qx0 (2.7)
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Figure 2.3: (A) A sketch showing the distribution of A produced by a spot of n1 surrounded by the
sea of n2. (B, C) The width of an isolated spot of n1 as a function of DA (B) and γ1 (C). The curves
show the results from theory while the symbols are from simulations. Parameters are δ = 0.01,
δA = 0.02, and γA = 0.04. κ = 0.06 in (B), and DA = 800 in (C).

The value of A0 depends on the size 2x0 of the island of n1. For a very small island, the value

of A0 is also small, γ∗1 is large, and the island will be expanding. For a sufficiently large island, the

value of A0 is also large, the effective growth rate of n1, γ∗1 will be small, and the island will shrink.

The island will neither expand nor shrink if the value of γ∗1 = γ1/(1+A0) satisfies Eq. (2.4), which

in turn yields a solution for x0. Comparisons between the width of an isolated spot of n1 given by

this calculation and the direct simulation are illustrated in Fig. 2.3B, C (for these plots, we used a

more accurate expression for A0 than Eq. (2.7), see Appendix). The simulation results are generally

consistent with the theory; the slight deviation is due to the fact that we neglected the variation of
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A and n1 across the island. Also, in the simulations, there is a minimum size for stable stationary

islands - very small islands shrink and disappear. Ref. [17] also pointed out the existence of a critical

minimal size of a T6SS-sensitive domain surrounded by T6SS-active cells, but in that work, the

mechanism behind it was related to the balance between the bulk growth and perimeter killing, so

the bigger the domain, the greater the ratio between the area and the surrounding perimeter. In our

model, the bulk growth is saturated at the maximum local density, so the balance between killing

and growth is weakly dependent on the area. The existence of the critical minimum domain size is

not seen in the analytical results because we neglected the width of the front between n1 and n2 in

the theory (Fig. 2.3A). However, in our simulations, for a finite diffusion of n1 and n2, the interfaces

have a finite width. When the size of an island becomes so small that the two finite-width fronts of

the island between n1 and n2 overlap and annihilate each other, the island collapses.

We also performed simulations of the full 3-component deterministic model in 2D starting

from random initial conditions and observed the formation of quasi-regular patterns of a characteris-

tic size, see Fig. 2.4. Depending on the parameters (such as the strain 1 growth advantage γ1 in the

case of Fig. 2.4B), the patterns can manifest as strain 1 islands surrounded by strain 2, or vice versa.

For intermediate values of γ1, labyrinthine patterns are observed.

Turing-like instability

It is well known that an interplay of short-range activation and long-range inhibition is

responsible for the onset of the Turing instability [26]. We wondered if pattern formation in our

system is also the result of a Turing-like instability. Here, indeed, slowly-diffusing bacteria n1

effectively play the role of self-activator by shielding interior cells from the killer strain n2 and thus

promoting their own growth. At the same time, the fast-diffusing field A produced by n1 acts as an

inhibitor for the growth of n1. When the diffusion constants of activator and inhibitor are sufficiently

different, the Turing mechanism manifests itself in the linear instability of a uniform state with
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Figure 2.4: Pattern formation in a deterministic model with finite DA = 80 and random initial
conditions. (A) Three snapshots of n1. (B) Snapshots at time t = 40000 for different γ1. γ1 = 4.5
in (A) and other parameters: δ = 0.01, κ = 0.03, γA = 0.04, δA = 0.02.

respect to small spatially-periodic perturbations with finite wavenumbers. To test whether our

system indeed exhibits Turing-like instability, we linearized the full model Eqs. (2.1)-(2.3) near the

mixed state and computed the eigenvalues of spatially-periodic perturbations. We indeed found that

for certain parameter values, the mixed state is linearly unstable with respect to finite-wavenumber

perturbations (Appendix).

Figure 2.5A shows the region corresponding to the Turing-like instability in the (κ,γ1) plane

for fixed δ,γA,δA and finite DA, along with the theoretical lines limiting the region for stationary

fronts in the case of infinite DA, as shown as the red sector in Fig. 2.2B. As explained above, the

existence of such fronts leads to stable pattern formation. The heatmap indicates the values of the

wavenumber corresponding to the maximum positive eigenvalue. The Turing-like instability region

lies inside the domain allowing stationary fronts, but it is much narrower. Similarly, the region

for stable pattern formation obtained numerically from the full nonlinear model Eqs. (2.1)-(2.3)

for finite inhibitor diffusion is significantly wider than the corresponding Turing-like instability

domain (Fig. 2.5B). These results suggest that pattern formation in this system is more robust and

easily observable phenomenon than linear Turing-like instability of a well-mixed state. While the
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Turing-like instability can indeed initiate morphogenesis in this system, the patterns can emerge and

stabilize in a much broader range of system parameters due to nonlinearity of the system. In fact,

our numerical simulations show that patterns emerge spontaneously if the two strains are initially

well-separated (there are sufficiently large regions where n1� n2 or n2� n1).
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Figure 2.5: The region of the linear Turing-like instability in the κ− γ1 (A) and κ−DA (B)
parameter planes. (A) The heatmap depicts the wavenumber kmax corresponding to the maximal
positive eigenvalue for the Turing-like instability for DA = 500. The red lines limit the region with
stationary fronts and pattern. The parameter values: (A) DA = 500, (B) γ1 = 7. Other parameters,
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2.3.2 Discrete stochastic model

As described in the previous section, the 3-component continuum model for the two slowly-

diffusing bacterial densities and one fast-diffusing growth inhibitor exhibits a pattern-forming

Turing-like instability. However, numerical simulations show that stable patterns can exist in a much

wider parameter range. We identified a nonlinear mechanism of pattern formation that is based on

interface stabilization due to the self-consistent changes in the growth caused by the fast-diffusing

inhibitor. This raises the question of how such well-separated states can emerge from an unpatterned

initial condition, if it is linearly stable. We note, however, that in an actual experiment, relatively

dilutely inoculated mixtures would initially grow in conditions that are actually very different from

the spatially-uniform, well-mixed state that is typically assumed in deterministic reaction-diffusion

models. If a mixture was inoculated as a smattering of isolated bacteria that initially have no direct

contact, then bacteria of both types would grow for some time unimpeded by interaction with

bacteria of the other type until they form micro-colonies that are large enough when they begin

contacting each other. This scenario can lead to pattern formation even when the uniformly mixed

state is linearly stable.

We used a lattice-based discrete-element model introduced in Methods to simulate this

scenario. The simulation results from this model are illustrated by three snapshots of n1 and n2

in Fig. 2.13A. The initial condition for this simulation was a “dilute mixture” of both strains, so

on average only 10% of lattice sites were occupied, and typically by no more than a single cell of

either type. As seen from the figure, this initial condition eventually gives rise to a patterned state

in which spots of n1 are surrounded by a “sea” of n2. A characteristic size of the pattern emerges,

as evidenced by the narrow-peaked area distribution of n1 spots (Fig. 2.13B). If either inhibitor

production is disabled (γA = 0) or neighbor-killing is turned off (κ = 0), patterns do not form, and

either n1 or n2 takes over the whole system while the other species is driven to extinction unless the

system parameters are tuned precisely to satisfy the balance condition similar to Eq. (2.4) (results
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are not shown).

To evaluate the range of parameters in which patterns spontaneously emerge from a dilute

initial state, we ran a series of discrete stochastic simulations with a range of values of γ1 and

κ. Again, the initial condition were randomly distributed n1 and n2 cells at low concentration.

In agreement with the continuum theory, in the bulk of the region where the existence of stable

patterns was expected, the patterns indeed spontaneously emerged, see Fig. 2.6. As seen from this

figure, depending on the relative growth advantage of the type-1 strain and the killing efficiency of

the type-2 strain, the patterns change their structure: for smaller γ1/γ2 or larger κ, they appear as

isolated islands of n1 surrounded by n2. For large growth advantage of the type-1 strain or small κ,

the patterns are reversed: the islands of n2 are surrounded by the sea of n1. In the intermediate range,

we found more symmetric labyrinthine patterns. We also characterized the observed patterns by the

average fraction of n1 vs. n2 and the power spectrum of the spatial distribution of n1 (Fig. 2.14).
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Figure 2.6: Typical patterns emerging from random initial conditions in stochastic simulations
for different values of parameters κ and γ1. Other parameters are: γ2 = 1,n0 = 10,δ = 0.01,δA =
0.02,γA = 0.004,Pn = 0.1,DA = 12.5. The system size is 256×256. Because the number of cells
must be integers in stochastic simulations, we use unscaled parameters here.
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2.4 Discussion

Ecological diversity is ubiquitous in nature, ranging in scale from the ecosystems that cover

our planet to the microbiome that inhabits our gut. Diversity plays an important role in maintaining

the functions of an ecosystem; e.g., the gut microbiome provides many health benefits to its host

[27, 28, 29, 30]. However, the conditions and mechanisms that robustly stabilize this biodiversity

are still unclear. To study and explain the coexistence of different species within a community,

several models have been proposed, such as the rock-paper-scissors game models [31, 32, 33, 34].

On the other hand, in synthetic biology, stabilization of multi-strain microbial communities has

proven to be a challenge [35]. One recent example of ongoing efforts in this direction is a stable

co-culture of two different strains with different growth rates in microfluidic chips using synthetic

population control gene circuit [36].

Previous modeling studies of multi-strain coexistence used population dynamics equations

similar to our work. Frank [37] studied the dynamics of bacteriocin producers killing susceptibles

and found that only when the habitat was spatially heterogeneous, could the two species coexist.

His results can also be readily applied to other mechanisms of contact-dependent killing. In another

work, Durrett and Levin [31] studied two-species interactions via colicins and showed that in spite

of bistability of well-mixed populations, in a spatially-structured population only one “stronger”

strain will eventually win depending on system parameters; i.e., neither bistability, nor coexistence

occurs. This was consistent with previous experimental results [38]. On the other hand, Iwasa et al.

[39] showed that in relatively small stochastic lattice-type models, a narrow parameter region of

bistability may exist, but still without coexistence. Blanchard et al. [19] studied the interaction of

two bacterial strains in the presence of contact-dependent killing using a reaction-diffusion-type

model and correctly predicted the emergence of bistability that may in principle lead to coexistence

of the strains. They also showed through numerical simulations that fronts separating two strains

can remain static in a finite parameter range if the diffusion of bacteria is slow enough. However,
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this latter result has to be taken with the grain of salt because front stabilization in finite-difference

simulations may come from pinning. The phenomenon of front pinning in systems with periodic

or random inhomogeneities has been studied previously [40, 41, 42, 43, 44]. Discretization of

a continuous reaction-diffusion model in finite-difference numerical integration provides such

periodic structure that can stop slowly moving fronts [45, 46]. In our simulations, to minimize

pinning artifacts, we used high spatial resolution (512-1024 nodes) and relatively large diffusion

constant for bacteria Dn = 1. We also verified our simulations by increasing spatial resolution and

comparing the results to analytical predictions. The results shown in Fig. 2.1 demonstrate that

our simulations are indeed consistent with continuum theory. However, if we artificially decrease

spatial resolution and reduce the diffusion constant in our simulations, we immediately begin to

see prominent pinning effects. We performed numerical simulations of the two-variable model

(without long-range inhibition) for small bacterial diffusion Dn = 0.01 and different numbers of

grid points Ng. Some results of these simulations are shown in Appendix (Fig. 2.15). For example,

for Ng = 128 nodes and a certain value of γ1, there is a large finite range of κ at which the fronts are

stationary, but this range becomes progressively smaller as the number of nodes increases toward

the values used in our work.

The coexistence of different species creates the possibility of the emergence of regular

patterns. One example is a spiral pattern in the rock-paper-scissors model [34]. The balance of

local activation and global inhibition has been used to explain many forms of pattern formation,

such as self-organized patchiness in ecosystems [47]. In another study, nutrient competition and

mechanical pushing can drive the occurrence of spatial patterns that can also cycle through hole,

labyrinth, and spot patterns [48]. The mechanical pushing plays the role of local activation, and

nutrient competition assumes the task of global inhibition.

In this paper, we demonstrated that a combination of short-range killing with long-range

growth inhibition may lead to stable coexistence and pattern formation in mixtures of T6SS-
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sensitive and T6SS-active bacteria. In the absence of either one of these two mechanisms, one of

the two strains eventually takes over, and no stable spatial patterns form. While the mechanism of

pattern formation is similar to the Turing instability, the parameter region for stable coexistence

and pattern formation is much broader than the range of the linear Turing-like instability of the

uniform mixed state. Thus, in a broad parameter range, the stable patterns may co-exist with stable

uniform states, and the final outcome depends on the initial conditions. If cells of both types are

initially well separated, the system evolves towards stable patterns. In experiments, this would

correspond to an initially dilute bacterial inoculum where individual cells are not in direct contact,

allowing them to develop into patches (micro-colonies) before making contact with each other. We

performed simulations of a lattice-based discrete stochastic model that incorporates cell growth,

death, diffusion, neighbor killing and growth inhibition, and indeed found that patterns emerge

spontaneously from an initially dilute state for a broad range of parameters, as predicted by the

theory.

In our continuous model, the motion of bacterial cells is described by diffusion terms. In

reality, bacterial cells do not simply diffuse like Brownian particles. For example, T6SS-sensitive

motile E. coli cells perform a run-and-tumble random walk, and T6SS-active bacteria A. baylyi

move on agar surface through twitching using their pili [49]. Furthermore, when bacteria form

dense communities such as biofilms, cells push each other, and so mechanical stress plays an

important role in cell motility and overall colony organization [50, 51, 52]. In addition, cell motion

and growth of real biofilms are affected by cell-cell adhesion and secretion of extracellular matrix

[53]. None of these factors are included explicitly in our model. Instead, we use diffusion as a

simple but reasonable approximation of the cell motility, as many researchers have done previously

[54, 55, 56, 57]. In our stochastic lattice model, the cells can jump to neighboring sites only if

there is room there. Still, the results of our stochastic simulations are consistent with the theory and

simulations of the deterministic continuum model.
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While we only presented theoretical results here, we anticipate that the mechanism of

pattern formation described in this paper operates in nature and can be observed in the laboratory.

Compared to the Turing instability, this mechanism can produce stable patterns in a much wider

parameter range, likely making it easier for experimental verification. In our system, it requires

that the T6SS-sensitive bacteria grow faster than T6SS-active ones (γ1 > 1) and the killing rate

κ is small. These conditions are not difficult to fulfill. Different bacteria exhibit vastly different

growth rates and abilities to metabolize different carbon sources [58, 59, 60]. For example, in our

preliminary experiments, the growth rate of T6SS-sensitive E. coli was found to be significantly

faster than T6SS-active A. baylyi. In the laboratory, we can also vary growth rates by changing

carbon sources and/or adding sublethal amounts of antibiotics that selectively slow down growth

of different species. The ability of T6SS-active bacteria to kill their neighbors also varies greatly

by both the predator and the prey. For example, of three T6SS-active species, A. baylyi can kill

V. cholerae, while A. baylyi itself succumbs to Pseudomonas aeruginosa [61]. According to the

same study, the T6SS killing rates of these strains are comparable to their division rates if predator

and prey cells maintain prolonged contact. However, motile cells are unlikely to have prolonged

contacts, so the effective killing rate may be significantly smaller. Furthermore, in laboratory

environments, one could tune killing rates in a broad range by knocking out certain T6SS toxic

effectors [62], placing key components of the T6SS under an inducible promoter in the predator, or

by placing an immunity gene under an inducible promoter in the prey. The death rate used in our

model is of the order of 0.01 compared with the growth rate which is typical in reality [63].

Our model also requires bacteria to produce a long-range inhibitor. As mentioned above,

production of fast-diffusing waste or consumption of fast-diffusing nutrients could provide a native

mechanism of long-range inhibition. Since bacteria vary in their ability to utilize different carbon

sources, it is likely that the degree of growth inhibition within a pair of strains would also differ.

However, long-range inhibition could be also forward-engineered using synthetic biology [24]. For
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example, E. coli could be endowed with an antibiotic resistance gene controlled by a promoter

repressed by a quorum-sensing signal, such as AHL produced by a constitutively expressed AHL-

synthase LuxI [64, 65]. If we add that antibiotic to the media, then as E. coli grow and produce

more and more AHL, which represses the antibiotic resistance gene, the growth of E. coli colonies

would gradually slow down. The T6SS-active strain (A. baylyi) could be made immune to this

antibiotic by constitutively expressing the same resistance gene. Another possible candidate for

such long-range inhibitor is colicin, a type of bacteriocin. Some wild type E. coli can produce

colicins against closely related bacteria [66, 67, 68], but they themselves are usually not affected

by their own colicin so long as they express an immunity gene [67]. If that immunity gene was

knocked out, fast-diffusing colicins would inhibit the growth of E. coli.
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2.6 Appendix

2.6.1 Analysis of the two-strain model

We consider the interaction of two strains of bacteria, fast-growing strain 1 with local density

n1(r, t) and slow-growing strain 2 with local density n2(r, t). The growth of both strains is limited
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by the total local density of bacteria, so when n1 + n2 approaches n0, the growth of both strains

saturates. Both strains are characterized by the same death rate δ. Additionally, strain 2 kills strain 1

on direct contact with the rate κ. Both strains are assumed to diffuse horizontally with the same

small diffusion constant Dn. The model reads as follows

∂n1

∂t
= γ1n1(1−

n1 +n2

n0
)−δn1−κn1n2 +Dn∇

2n1 (2.8)

∂n2

∂t
= γ2n2(1−

n1 +n2

n0
)−δn2 +Dn∇

2n2 (2.9)

In the following, we assume that all parameters γ1,γ2,δ,κ,Dn,n0 are positive. Without loss of

generality, we can rescale time t̃ = γ2t, space x̃ = (γ2/Dn)
1/2x, and densities, ñ = n/n0, so in

rescaled variables γ̃2 = 1, γ̃1 = γ1/γ2, δ̃ = δ/γ2, κ̃ = κn0/γ2, D̃n = 1. For simplicity, in the following

we will drop tildas and keep the same notation for the rescaled variables and parameters:

∂n1

∂t
= γ1n1(1−n1−n2)−δn1−κn1n2 +∇

2n1 (2.10)

∂n2

∂t
= n2(1−n1−n2)−δn2 +∇

2n2 (2.11)

Spatially uniform steady states and their stability. This system has four steady states:

1. n1 = 1− δ

γ1
,n2 = 0.

2. n1 = 0, n2 = 1−δ.

3. n1 = 1−δ− δ

κ
(γ1−1), n2 =

δ

κ
(γ1−1).

4. n1 = n2 = 0.
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The Jacobian matrix is

J =

a11 a12

a21 a22


with

a11 = γ1(1−2n1−n2)−δ−κn2 (2.12)

a12 = −γ1n1−κn1 (2.13)

a21 = −n2 (2.14)

a22 = 1−n1−2n2−δ (2.15)

Steady state 1 has eigenvalues λ1 = δ− γ1,λ2 = ( 1
γ1
−1)δ. When γ1 > δ,1, it is stable and n1 > 0.

Steady state 2 has eigenvalues λ1 = (γ1−1)δ−κ(1− δ),λ2 = δ−1. When δ < 1 and κ > κb =

δ(γ1−1)
1−δ

, it is stable and n2 > 0. Steady state 3 is positive when γ1 > 1, δ < 1 and κ > κb but is

unstable. Trivial steady state 4 is unstable if γ1 > δ or δ < 1.

The system is bistable in the range

1 < γ1 < 1+
κ(1−δ)

δ
(2.16)

Stationary front in two-variable model. In the bistable regime, there may exist fronts

separating colonies of strains 1 and 2. These fronts generally move in either direction depending

on the system parameters. Generally, if γ1 > 1, for very small killing rate κ, strain 1 always wins,

and the front propagates in the direction of strain 2, while for sufficiently large κ the front reverses.

There is a unique value of κs = κ(γ1,δ) at which the front is stationary. This value of κs can be

found approximately for small δ and κ, when n1 +n2 is close to 1 using the Maxwell rule known in
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thermodynamics.

In the following we assume that κ = εK, δ = ε∆ with ε� 1, and introduce new variables

N = ε
−1(n1 +n2−1), ξ = n1−n2. (2.17)

Conversely, n1 = (1+ εN +ξ)/2,n2 = (1+ εN−ξ)/2. In the new variables and in the first order in

ε, Eqs. (2.10),(2.11) can be rewritten as

∂tN = −N
2
(γ1 +1)− N

2
(γ1−1)ξ−∆− K

4
(1−ξ

2)+∇
2N, (2.18)

ε
−1

∂tξ = −N
2
(γ1−1)− N

2
(γ1 +1)ξ−∆ξ− K

4
(1−ξ

2)+ ε
−1

∇
2
ξ. (2.19)

The first equation describes fast relaxation toward the solution

N =−
2
(

∆+ K
4 (1−ξ2)

)
γ1 +1+ξ(γ1−1)

. (2.20)

Assuming that the fast initial relaxation has occurred, and N is slaved to slow variably ξ, we can

substitute N from Eq. (2.20) in Eq. (2.19). Returning to the original parameters κ and δ, after simple

algebra we get a single reaction-diffusion equation for the slow dynamics of ξ,

∂tξ = f (ξ)+∇
2
ξ, (2.21)

where

f (ξ) = δ
1−ξ2

1+Γξ

[
Γ+(Γ−1)(1−ξ)

κ

4δ

]
(2.22)

with Γ = (γ1− 1)/(γ1 + 1). For small δ and κ, this equation describes slow front propagation.

Function f (ξ) has two roots ξ1,2 =±1 corresponding to stable fixed points of Eq. (2.21), and an

intermediate root at Γ+(Γ−1)(1−ξ) κ

4δ
= 0 corresponding to an unstable fixed point. Maxwell
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rule states that a front solution of the 1-D reaction-diffusion equation (2.21) connecting stable fixed

points ξ1 and ξ2 is stationary if
∫ ξ2

ξ1
f (ξ)dξ = 0.

For Γ� 1, we can drop Γξ in the denominator of (2.22). Then it becomes a cubic polynomial,

and it is evident that the integral will be zero if f (ξ) is anti-symmetric with respect to zero, i.e.

when intermediate root is ξ = 0, or Γ+(Γ−1) κ

4δ
= 0, which gives

κ

δ
= 2(γ1−1). (2.23)

For finite Γ, integration of the full function (2.22) yields the following expression for the ratio κ/δ

at which the front is stationary,

κ

δ
=

3(γ1−1)2(γ2
1−1−2γ1 lnγ1)

2γ3
1 +3γ2

1−6γ1 +1−6γ2
1 lnγ1

. (2.24)

It is easy to check that expression (2.24) reduces to (2.23) for small γ1−1.

2.6.2 Analysis of the three-variable model

The full model with long-range inhibition reads as follows

∂n1

∂t
=

γ1

1+A/A0
n1

(
1− n1 +n2

n0

)
−δn1−κn1n2 +Dn∇

2n1, (2.25)

∂n2

∂t
= γ2n2

(
1− n1 +n2

n0

)
−δn2 +Dn∇

2n2, (2.26)

∂A
∂t

= γAn1−δAA+DA∇
2A. (2.27)
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Use the same scaling as above and Ã = A/A0, γ̃A = γAn0/(γ2A0), δ̃A = δA/γ2, D̃A = DA/Dn, we have

∂n1

∂t
=

γ1

1+A
n1(1−n1−n2)−δn1−κn1n2 +∇

2n1 (2.28)

∂n2

∂t
= n2(1−n1−n2)−δn2 +∇

2n2 (2.29)

∂A
∂t

= γAn1−δAA+DA∇
2A (2.30)

where we again drop tildes for simplicity of notation.

Bifurcation analysis of the spatially uniform steady states. Full three-variable system

possesses at most 5 real spatially uniform steady states:

1. n1 =
γ1−δ

δγA
δA

+γ1
,n2 = 0,A = γ1−δ

δ+
γ1δA

γA

.

2. n1 = 0,n2 = 1−δ,A = 0.

3. n1 = −b+
√

b2−4ac
2a ,n2 = 1− n1− δ,A = γA

δA
n1 where a = κγA

δA
,b = κ− γA

δA
[δ+ κ(1− δ)],c =

(γ1−1)δ−κ(1−δ).

4. n1 =
−b−

√
b2−4ac

2a ,n2 = 1−n1−δ,A = γA
δA

n1 where a,b,c are the same as those in steady state

3.

5. n1 = 0,n2 = 0,A = 0.

The Jacobian matrix for the system is

J =


a11 a12 a13

a21 a22 a23

a31 a32 a33


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with

a11 =
γ1

1+A
(1−2n1−n2)−δ−κn2

a12 = − γ1

1+A
n1−κn1

a13 = − γ1

(1+A)2 n1(1−n1−n2)

a21 = −n2

a22 = 1−n1−2n2−δ

a23 = 0

a31 = γA

a32 = 0

a33 = −δA.

The trivial fixed point 5 is always unstable, and we will not consider it below. The steady

states of n1,n2 vs. κ with their stability are illustrated in Fig. 2.7(A),(B). When γ1 is smaller than a

threshold γ1c, steady states 3 and 4 always exist although steady state 3 is non-physical in this case

(it corresponds to negative n2) [Fig. 2.7(C) left]. At the critical value γ1 = γ1c, a codimension-2

bifurcation occurs when steady state 2 overlaps with steady states 3 and 4 and two saddle-node

bifurcation points emerge [Fig. 2.7(C) middle]. When γ1 > γ1c, there are two isolated saddle-node

bifurcation points in which steady states 3 and 4 merge and disappear [Fig. 2.7(C) right].

The condition for the saddle-node bifurcation is b2−4ac = 0, which leads to the equation

for bifurcation values of κ = κs,

[1+
γA

δA
(1−δ)]2κ

2
s −2

γAδ

δA
[2γ1−1− γA

δA
(1−δ)]κs +

(
γAδ

δA

)2

= 0, (2.31)
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Figure 2.7: (A),(B) Steady states of n1 and n2 for different γ1 and κ. Solid lines correspond
to stable solutions, long-dashed to unstable solutions, and short-dashed to non-physical steady
states for which either n1 or n2 are negative. (C) Codimension-2 bifurcation at γ1c = 2.98. when
two saddle-node bifurcation points are born at certain γ1 and κ and pure solution n1 6= 0,n2 = 0
changes stability. (D) Domains of different stable steady states in the (γ1,κ) parameter plane.
Other parameters: δ = 0.01,γA = 0.04,δA = 0.02.

and thus

κs± =
γAδ

δA


2γ1−1− γA

δA
(1−δ)±2

√
γ2

1− γ1[1+
γA
δA
(1−δ)]

[1+ γA
δA
(1−δ)]2

 . (2.32)

From Eq. (2.32), it can be shown that κs± are real only when

γ1 > γ1c = 1+
γA

δA
(1−δ). (2.33)

We also notice that there is a transcritical bifurcation between steady states 2 and 4

[Fig. 2.7(A)(B)]. At the transcritical bifurcation point, n1 = 0 which leads to c = 0, and thus

κ = κt =
δ(γ1−1)

1−δ
. (2.34)
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It is worth mentioning that if b > 0 at κ = κs+ , the saddle-node bifurcation between steady

states 3 and 4 happens at n1 < 0, and then the transcritical bifurcation occurs between steady states

2 and 3 instead of 2 and 4 (an example is shown in Fig. 2.8). In this case, region 2 in Fig. 2.7(B)

disappears, and only regions 1 and 3 remain.

Domains in the parameter plane (γ1,κ) corresponding to different spatially-uniform stable

steady states are shown in Fig. 2.7(D).
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Figure 2.8: For sufficiently large γ1 and small γA, the saddle-node bifurcation between steady
states 3 and 4 moves to (non-physical) negative n1, and the transcritical bifurcation occurs between
steady states 2 and 3. Parameters: γ1 = 7,γA = 0.01, other parameters are the same as in Fig. 2.7.

Localized spot of n1. Here we find an approximate solution for the width of a stationary

spot of n1 surrounded by the sea of n2, when the diffusion coefficient of A is large but finite. For that

we need to compute the distribution of A produced by such a spot, and find at which spot size the

level of A within the spot is such that the interfaces between n1 and n2 are stationary. To compute

the stationary distribution of A we use Eq. (2.30) with ∂tA = 0,

γAn1−δAA+DA∇
2A = 0. (2.35)
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We consider only the 1D case here, but the generalization to 2D is straightforward. We assume that

the spot size is much larger than the width of the interfaces separating n1 and n2 (which is of the order

of (Dn/γ1)
1/2), but much smaller than the diffusive scale of the inhibitor q = (δA/DA)

1/2, and so

the spot can be approximated by a rectangular “pulse” with constant n1 ≈ n1∗ = 1−δ(1+A(0))/γ1

for −x0 < x < x0 and zero outside (see Fig. 2.3A). Solving the Poisson equation (2.35) in these two

domains and matching A and dA/dx at x =±x0, we obtain the following solution for A(x):

A(x) =


γA
δA

n1∗(1− e−qx0 cosh(qx)), −x0 < x < x0

γA
δA

n1∗
eqx0−e−qx0

2 e−q|x|, |x|> x0

(2.36)

Substituting n1∗ = 1−δ(1+A(0))/γ1 in Eq. (2.36) and take x = 0, we can obtain A(0) explicitly,

A(0) =

γA
δA

(
1− δ

γ1

)(
1− e−qx0

)
1+ γAδ

γ1δA
(1− e−qx0)

(2.37)

The value of A at the front is

A(x0) =

γA
δA

(
1− δ

γ1

)
(1− e−qx0 cosh(qx0))

1+ γAδ

γ1δA
(1− e−qx0)

(2.38)

For large inhibitor diffusion, qx0 � 1, the difference between A(0) and A(x0) is small, these

expressions can be further simplified to

A(0)≈ A(x0)≈
γA

δA

(
1− δ

γ1

)
qx0, (2.39)

which shows that for small x0 the magnitude of A bump is proportional to x0, as expected. The spot

will be neither expanding nor shrinking if the value of γ∗1 = γ1/(1+A(x0)) with A(x0) from (2.38)

satisfies Eq. (2.24), which yields the equation for x0.
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Turing-like instability. To explore the possibility of a linear Turing-like instability in our

three-component system, we linearized Eqs. (2.28)-(2.30) near relevant fixed points and studied the

eigenvalues corresponding to spatially-periodic perturbations ∼ exp(ikx+λt). Each fixed point has

three eigenvalues. Fig. 2.9 shows three examples of maximal eigenvalues of relevant steady states in

different parameter regions [regions 1, 2 and 3 in Fig. 2.7(B)] vs. wave number k. The middle panel

(κ = 0.053) indeed demonstrates the occurrence of the Turing-like instability when steady state 4 is

unstable with respect to small perturbations within a finite range of wavenumbers. The right panel

(κ = 0.07) shows the situation when the fixed point is unstable with respect to spatially uniform as

well as spatially-periodic perturbations, but the maximal growth rate occurs at a finite wavenumber.

Our numerical simulations show that stable patterns are also possible in this parameter range.
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Figure 2.9: Maximal real parts of eigenvalues of different steady states in different regions
(regions 1, 2 and 3) in Fig. 2.7(B) vs. wave number k. Parameters are γ1 = 7,δ = 0.01,γA =
0.04,δA = 0.02,DA = 100.

2.6.3 Dual-inhibition model

To formulate the model considered in the Main text, we assumed that the long-range inhibitor

A was only produced by the T6SS-sensitive strain, and only affected its own growth. To generalize

this model, here we assume that A is produced by both n1 and n2 and it also can inhibit the growth
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rates of both strains, although not necessarily equally. Furthermore, here we allow strains to have

different death rates δ1 and δ2. We still assume that both strains have the same diffusion constant

for simplicity. Now the model equations read as

∂n1

∂t
=

γ1

1+A
n1(1−n1−n2)−δ1n1−κn1n2 +∇

2n1, (2.40)

∂n2

∂t
=

1
1+αA

n2(1−n1−n2)−δ2n2 +∇
2n2, (2.41)

∂A
∂t

= γA1n1 + γA2n2−δAA+DA∇
2A. (2.42)

Similar to the results in the Main text, for infinitely fast inhibitor diffusion, A is spatially-uniform

with a magnitude that is now dependent on the mean concentrations of both types of bacteria

over the entire domain. If s1 is the surface area fraction occupied by the type-1 strain, then

n∗1 = 0,n∗2 = 1− δ2(1+αA) and n∗1 = 1− δ1
γ1
(1+A),n∗2 = 0 are the two local fixed points. This

yields the self-consistency condition resulting in the relation between s1 and A:

s1γA1(1−
δ1

γ1
(1+A))+(1− s1)γA2(1−δ2(1+αA)) = δAA, (2.43)

then

A =
s1γA1(1− δ1

γ1
)+(1− s1)γA2(1−δ2)

s1γA1
δ1
γ1
+(1− s1)γA2δ2α+δA

. (2.44)

Stationary fronts for infinitely fast inhibitor diffusion. First, we derive the condition for

stationary fronts for the generalized two-variable model with δ1 6= δ2 . Since A affects the growth

rate of n2 in the subsequent analysis, we also do not scale out the growth rate of n2 and write it
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explicitly as γ2. Consider the equations

∂n1

∂t
= γ1n1(1−n1−n2)−δ1n1−κn1n2 +∇

2n1, (2.45)

∂n2

∂t
= γ2n2(1−n1−n2)−δ2n2 +∇

2n2. (2.46)

We assume that κ = εK, δ1 = ε∆1, δ2 = ε∆2 with ε� 1, and again introduce new variables

N = ε
−1(n1 +n2−1), ξ = n1−n2. (2.47)

Conversely, n1 = (1+ εN +ξ)/2,n2 = (1+ εN−ξ)/2. In new variables and in the first order in ε,

∂tN = −N
2
(γ1 + γ2)−

N
2
(γ1− γ2)ξ−

1
2
(∆1 +∆2)−

ξ

2
(∆1−∆2)−

K
4
(1−ξ

2)+∇
2N(2.48)

∂tξ

ε
= −N

2
(γ1− γ2)−

N
2
(γ1 + γ2)ξ−

ξ

2
(∆1 +∆2)−

1
2
(∆1−∆2)−

K
4
(1−ξ

2)+
∇2ξ

ε
(2.49)

The first equation describes fast relaxation toward the solution

N =−
(∆1 +∆2)+ξ(∆1−∆2)+

K
2 (1−ξ2)

γ1 + γ2 +ξ(γ1− γ2)
. (2.50)

Assuming that the fast initial relaxation has occurred, and N is slaved to ξ, we can substitute N from

Eq. (2.50) in Eq. (2.49). Returning to the original parameters κ and δ1,2, after simple algebra we get

a single reaction-diffusion equation for the slow dynamics of ξ,

∂tξ = f (ξ)+∇
2
ξ, (2.51)

where

f (ξ) =
1−ξ2

1+Γξ

[
δ1 +δ2

2
Γ− δ1−δ2

2
+(Γ−1)(1−ξ)

κ

4

]
(2.52)
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with Γ = (γ1− γ2)/(γ1 + γ2). For small δ1,2 and κ, this equation describes slow front propagation.

Function f (ξ) has two roots ξ1,2 =±1 corresponding to stable fixed points of Eq. (2.51), and an

intermediate root at δ1+δ2
2 Γ− δ1−δ2

2 +(Γ−1)(1−ξ)κ

4 = 0 corresponding to an unstable fixed point.

Maxwell rule states that a front solution of the 1-D reaction-diffusion equation (2.51) connecting

stable fixed points ξ1 and ξ2 is stationary if
∫ ξ2

ξ1
f (ξ)dξ = 0.

For finite Γ, integration of the full function (2.52) yields the following expression for κ at

which the front is stationary,

κ =
3(γ−1)2(γ2−1−2γ lnγ)

2γ3 +3γ2−6γ+1−6γ2 lnγ

(
δ1 +δ2

2
− δ1−δ2

2
γ+1
γ−1

)
, (2.53)

where γ = γ1/γ2.

Returning to the three-variable model (Eqs. (2.40)-(2.42)), we notice that for spatially

uniform A, the rescaled growth rates are γ∗1 =
γ1

1+A and γ∗2 =
1

1+αA , and

γ =
γ∗1
γ∗2

= γ1
1+αA
1+A

. (2.54)

Thus, the fronts become stationary when A is equal to uniform A∗ at which γ and κ satisfy Eq. (2.53).

This value of A∗ corresponds to a particular area fraction s∗1 according to Eq. (2.44). Thus, the union

of the curves defined by Eq. (2.53) together with Eqs. (2.44) and (2.54) when s1 changes from 0 to

1, will yield the region for stationary fronts where we can expect emergence of patterns.

Stability of stationary fronts. Next we derive the condition for stability of stationary fronts

with respect to their uniform displacement. If there is a small front displacement that changes s1

with respect to s∗1 by a perturbation ∆s1, then the ratio of γ1/γ2 changes as well, by ∆γ = ∂γ

∂A
∂A
∂s1

∆s1.

It is easy to see that the stationary front is stable if ∆s1∆γ < 0, so for s1 > s∗1, γ < γ∗, the front moves

in the direction that decreases s1 back to s∗1. In the opposite case, the front will move in the direction
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to further increase s1, and n1 will win. Thus, the condition for stable stationary fronts is

∂γ

∂A
∂A
∂s1

= γ1
α−1

(1+A)2

γA1γA2[αδ2(1− δ1
γ1
)− δ1

γ1
(1−δ2)]+ [γA1(1− δ1

γ1
)− γA2(1−δ2))]δA

[s1γA1
δ1
γ1
+(1− s1)γA2δ2α+δA]2

< 0.

(2.55)

If δ1,δ2,γA1,γA2� 1, the condition can be simplified to

(α−1)(γA1− γA2)< 0. (2.56)

This means if n2 produces A faster than n1 (γA2 > γA1), for the stationary fronts to be stable, the

growth inhibition of n2 should be stronger (α > 1) and vice versa. If α = 1, then γ = γ1 is a constant,

and the front is only stationary on a single curve, as in the two-variable model without long-range

inhibition.

One example of the region for stationary fronts and pattern formation is shown in Fig. 2.10.
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3
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Stationary front boundary from theory

Figure 2.10: Typical patterns emerging from random initial conditions in stochastic simulations
of the dual-inhibition model for different values of parameters κ and γ1. Other parameters are
n0 = 10,α = 0.1,δ1 = 0.01,δ2 = 0.005,γA1 = 0.004,γA2 = 0.001,δA = 0.02,DA = 12.5,Pn = 0.1.
The system size is 256×256.
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2.6.4 Front pinning

To address the issue of possible front pinning due to spatial discretization of continuous

reaction-diffusion-type models and compare the results with Blanchard et al.[19], we performed

1D simulations of front dynamics in the two-variable model (Eqs. (2.10)(2.11)), but changed the

diffusion constant to a much smaller value Dn = 0.01 using different spatial discretizations of the

computational domain of fixed length L = 1024. The results are shown in Fig. 2.15. The width

of the wedge in the (γ1,κ) plane in which fronts are stationary decreases exponentially with the

number of grid points. When the number of spatial points is 1024, the width of the wedge is so

small that it appears as a single line that is consistent with the continuum theory prediction (red

curve). However, when the number of spatial points is reduced to 512, the wedge where fronts

are stationary appears, which means front pinning. When the number of points is reduced even

further, the region for front pinning becomes larger. The fewer number of grid points is equivalent

to smaller diffusion constants for the same spatial resolution, thus these results also imply that, as

the diffusion constant becomes smaller, the parameter region for pinned fronts increases, which is

consistent with Ref. [19]. In our simulations, we used relatively high diffusion constant Dn = 1 and

a sufficiently large number of grid points to make pinning effects negligible.

2.6.5 Details of the discrete lattice model

In our stochastic simulations, we used a discrete lattice model to simulate strain competition

and pattern formation. Specifically, the rules of the model are as follows: the number of cells in

each strain is an integer number, so we used unscaled parameters to carry out the simulations. We

use a lattice model to do stochastic simulations, the rules for the simulations are:

1. We consider a square lattice model 0≤ {i, j} ≤ N.

2. The number of individuals of each of the two species n1, n2 at each lattice site {i, j} is integer,
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and the sum of n1(i, j) andn2(i, j) cannot exceed the maximum carrying capacity n0.

3. The inhibitor A is defined as a real-valued field on the same lattice.

4. At each time step ∆t, n1(i, j) can increase by one, [n1(i, j)→ n1(i, j)+1], with the probability

γ1n1(i, j)[1− (n1(i, j)+ n2(i, j))/n0]∆t or die [n1(i, j)→ n1(i, j)− 1] with the probability

(δn1(i, j)+κn1(i, j)n2(i, j))∆t. Similar probabilities apply to n2 with swapping of subscripts

1↔ 2 without the killing term.

5. Each cell can jump to one of four neighboring squares with the probability Pn∆t. The

destination site is chosen at random, unless the neighboring site already has n0 cells, then

jumping there is forbidden.

6. We impose periodic boundary conditions in both dimensions for n1(i, j),n2(i, j), and A(i, j).

7. Reaction-diffusion dynamics of A is implemented via a split-step pseudo-spectral method.

Time x104
0 0.5 1 1.5 2

s 1,s
2,A

0

0.5

1

1.5

2
s1
s2
A

t=1000 t=3000

t=20000
0

1
n1

Figure 2.11: Phase separation in the deterministic model with spatially uniform inhibitor A
(infinite DA) and random initial conditions. Three snapshots of n1 and the time course of s1,s2
and A for 2D model. At large times, the area fractions s1 and s2 approach constant values, and the
patterned state stabilizes. Parameters: γ1 = 4.5, δ = 0.01, κ = 0.03, γA = 0.04, δA = 0.02.
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Figure 2.12: Final area fractions of the two strains and the inhibitor level A as functions of the
killing rate κ in the deterministic 1D model with spatially uniform inhibitor A (infinite DA) and
random initial conditions. The solid curves show the theoretical predictions using Eqs. (2.4)(2.6)
in the Main text, and the circles show the simulation results. Parameters: γ1 = 4.5,δ = 0.01,γA =
0.04,δA = 0.02, system size is 4096.
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Figure 2.13: Discrete stochastic simulations of pattern formation in a mixture of T6SS-sensitive
(n1) and T6SS-active (n2) bacteria. (A) Three snapshots of a typical simulation. (B) Area
distribution of spots of n1 at t = 20000. The distribution result is from 10 stochastic simulations.
Parameters: γ1 = 3,γ2 = 1,n0 = 100,δ = 0.01,γA = 0.0001,δA = 0.005,Pn = 0.04,DA = 5 and
κ = 0.00025.
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Figure 2.14: Analysis of the patterns in stochastic simulations in Fig. 2.6. (A) n1 area ratio s1
vs. γ1 in stochastic simulations for different κ. The fraction of n1 changes continuously from 0
to 1 as the control parameter γ1 moves across the pattern-forming range. (B) Peak wavelength of
the asymptotic pattern vs. γ1 for the same three values of κ as in panel (A). The circles are from
simulations. The curves are smoothing spline extrapolated of the circles with the same color. The
characteristic scale is diverging near the boundaries of the pattern-forming region in the parameter
space. Inset: the power spectrum for κ = 0.006,γ1 = 8. It has a well-defined peak corresponding
to the characteristic distance between the spots or the period of the labyrinthine pattern.
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Chapter 3

Flower-like patterns in multi-species

bacterial colonies

3.1 Introduction

In addition to biochemical interactions, mechanical forces also play an important role in

shaping the structure of bacterial communities. In dense colonies, bacteria push against each other

due to growth and motility. Bacteria can exploit these mechanical interactions to adapt to the

environment. For example, mechanical stresses cause buckling in Bacillus subtilis biofilms that

allows them to improve nutrient transport and consumption [1, 2, 3]. Although the role of mechanical

interactions in single-species colonies has been studied previously [4, 5, 6, 7, 8], dynamics of multi-

species communities driven by mechanical forces have received much less attention. Since bacterial

strains can have significant differences in their growth and motility characteristics, one can expect

the development of highly-heterogeneous mechanical stress distribution , which in turn can result in

a complex spatiotemporal dynamics of the colony.

To study the interactions between bacterial species with distinct biological and physical
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properties, we choose Acinetobacter baylyi, a gram-negative bacterium that easily moves on soft

surfaces using twitching motility [9, 10, 11], and an Escherichia coli strain that is almost non-motile

on soft agar. Additionally, wild-type A. baylyi possesses a Type VI Secretion System (T6SS) that

enables them to kill other bacteria (including E. coli) on direct contact [12, 13]. We found that when

these two strains are mixed together and inoculated on an agar surface, growing colonies develop

intricate flower-like structures that are absent when either species is grown by itself.

To shed light on the mechanism behind this intricate pattern formation, we tested whether

biological cell-cell communication or mechanical interaction between strains with different motili-

ties played the key role. Experiments with A. baylyi mutants lacking T6SS showed that the pattern

formation did not rely on this system. On the other hand, genetically impairing A. baylyi motility

eliminated the patterns entirely. We also demonstrated that agar concentration that affects cell motil-

ity, also played an important role in pattern formation. These findings suggested that the mechanical

interactions between species were indeed primarily responsible for the pattern formation.

We then formulated and analyzed two models: a geometrical model of the colony boundary

motion and a 2D phase-field model of the entire colony, to describe the mechanical interactions

between two species. Our results show that growth and cell motility differences are sufficient

to explain the emerging patterns. Since the mechanism of flower-like pattern formation is rather

general, it may be broadly generalizable to other multi-species colonies.

3.2 Results

3.2.1 Flower-like patterns in mixtures of A. baylyi and E. coli on nutrient-

rich soft agar

We inoculated a mixture of E. coli and A. baylyi cells with an initial density ratio of 10:1 at

the center of a Petri dish filled with soft LB agar (0.5% agar). To distinguish the two strains, we
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labeled E. coli with constitutively expressed mTFP. After growing at 37◦C for 3 days, this colony

developed an intricate flower-like pattern (Fig. 3.1a). To see how such patterns form, we tracked the

colony growth with time-lapse imaging (Fig. 3.1b). Up to 8 hours after inoculation, the expanding

colony remained nearly uniform and circular. Then the colony front began visibly undulate. As the

colony expanded further, the undulations grew and formed cusps that in turn would leave behind

tracks (or “branches”). These branches then merged, following the movement of cusps along the

interface as the colony continued to expand. The branches were visible even in bright-field imaging,

but they were also bright in the teal fluorescence channel, indicating that branches predominantly

consisted of E. coli cells (Fig. 3.6).

To test whether these flower-like patterns originate from interactions between the two species,

we grew each species separately on the same 0.5% LB agar surface. The E. coli motility on agar is

small, and the colony size remained relatively unchanged after 16 hours of growth (Fig. 3.1c, left).

After the same time, a colony of highly motile A. baylyi reached the edge of the plate (Fig. 3.1c,

right). In both cases, no patterns emerged, which proved that the flower-like pattern formation was a

result of inter-species interaction. We measured the sizes of mixed, pure E. coli and pure A. baylyi

colonies at different times after inoculation (Fig. 3.1d). The expansion speed of mixed colonies falls

between those of pure A. baylyi and pure E. coli colonies, and the speed did not change much once

the colonies began expanding.

3.2.2 E. coli destabilize colony front by hindering A. baylyi expansion

To observe the pattern formation at higher resolution, we modified the experimental setup

to fit under a fluorescence microscope (see Methods). After 24 hours of growth, a droplet of 1:1

mixture of E. coli (expressing mTFP) and A. baylyi (expressing mCherry) grew into a clearly-visible

flower-like pattern (Fig. 3.2a). By zooming in on the front of the expanding colony, we were able to

track the formation and merging of branches that gave rise to the flower-like structure of the patterns
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Figure 3.1: Flower-like patterns in mixtures of E. coli and A. baylyi. a, The pattern after 3 days
of growth on a 0.5% LB agar surface. b, Time-lapse bright-field images of the developing pattern.
c, Pure E. coli and pure A. baylyi colonies show no patterns. d, Radius of the colony vs time for
pure E. coli (green), pure A. baylyi (red), and the mixture of E. coli and A. baylyi (blue). The
radius is defined as

√
Area/π where Area is the area of the colony which is calculated after image

segmentation.

(Fig. 3.2b). While A. baylyi killed most of E. coli via T6SS within the inoculum, a significant

number of E. coli managed to survive at the periphery where they were not in direct contact with A.

baylyi. E. coli also has a higher growth rate (1.53±0.11 h−1, n = 3) than A. baylyi (1.13±0.03

h−1, n = 3), so by the time the colony began to expand, E. coli cells had already grown near the

colony boundary which resulted in a band of E. coli around the expanding colony of mostly A.

baylyi (Fig. 3.2b, 11h).

As the colony kept expanding, in regions with more E. coli cells near the front, the expansion

was slower, so the interface began to curve inward (Fig. 3.2b, 13h). As the undulations grew bigger,
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Figure 3.2: Development of branches in a growing pattern. a, The whole colony in a Petri
dish after one day. b, Time-lapse microscopic images of the front propagation leading to branch
formation and merging. c, Kymographs of detrended brightness, speed and curvature along the
colony boundary. d, Scatter plots for detrended brightness vs speed (left) and detrended brightness
vs curvature (right). Each circle corresponds to one virtual tracking node at one time point.

the E. coli in the regions lagging behind became more concentrated, thus slowing down the local

front advance even more. Eventually, the front folded onto itself near these stagnant regions

and formed narrow “branches” that continued to grow outward with the expanding colony front

(Fig. 3.2b, 15h, 17h). Later, the front with the branches folded again, and the previous branches

merged inside the new fold (Fig. 3.2b, 19h, 21h). Since E. coli continued to grow at the expanding

colony front, new undulations and branches constantly appeared, and eventually a macroscopic,

flower-like pattern of growing and converging branches formed.

To quantify the effect of local E. coli concentration on the colony expansion, we analyzed

the time-lapse images in Fig. 3.1b (see Methods). We adapted a boundary tracking program for

eukaryotic cells [14] to track the boundary of the bacterial colony. The colony boundary was

parameterized by 300 virtual “nodes” connected by springs [15]. For each node, we measured local

brightness (a proxy for E. coli concentration), speed and curvature. To offset the non-uniformity of
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the illumination and the overall change in speed and curvature for a growing colony, we detrended

the data. The kymographs of these quantities for each node are shown in Fig. 3.2c. Then we

computed cross-correlations between these quantities within the time window when the pattern

began to form (about 9.5 - 11.5 hours after inoculation). As shown in Fig. 3.2d (left), the brightness

and extension speed show strong anti-correlation (Pearson coefficient ρ = −0.67). This result

confirms that higher E. coli density slows down the front propagation. Variations in the front speed

lead to variations of the local curvature, and the scatter plot between brightness and curvature indeed

shows significant anti-correlation (Fig. 3.2d right, Pearson coefficient ρ =−0.43).

3.2.3 Robustness of flower-like patterns to perturbations

First, we explored the effect of the initial A. baylyi:E. coli (A:E) density ratio on the resulting

pattern. We varied the ratio of A. baylyi to E. coli in the inoculum while maintaining the same

total density of bacteria. We found that when the starting ratios are low (A:E = 1:100 and 1:10),

flower-like patterns emerged, while at high ratios (10:1 and 100:1) the E. coli were completely

eliminated and no patterns formed (Fig. 3.3a). At the intermediate ratio 1:1, A. baylyi dominated

significantly at the center of the colony by killing E. coli, but the flower-like structure still developed

at the colony periphery.

Second, we wondered whether T6SS-dependent killing played a role in the formation of

these patterns when E. coli were not completely eliminated. We tested this by knocking out T6SS

in A. baylyi (see Methods for details). The growth rate of T6SS− A. baylyi (1.09± 0.01 h−1,

n = 3) was not significantly different from the wild type while their motility was slightly lower as

determined by colony expansion rate. Still, it was much higher than E. coli (Fig. 3.7 and 3.8). We

inoculated mixtures of T6SS− A. baylyi and E. coli with different initial ratios on 0.75% LB agar,

and observed that the colony formed an outer ring of E. coli (Fig. 3.4) and subsequently developed

front instability, branches of E. coli, and a flower-like pattern in all cases (Fig. 3.3b). The only
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Figure 3.3: Pattern formation requires A. baylyi motility, but not killing. a-b, Bright-field
snapshots of colonies of T6SS+ a, and T6SS− b, A. baylyi with E. coli 16 hours after inoculations
at different initial density ratios. c, The average colony radius vs density ratios. d, Number of
branches at the onset of front instability vs density ratios. e, Colonies of pure pil− T6SS+ A. baylyi
and the mixture of pil− T6SS+ A. baylyi and E. coli 16 hours after inoculation.

qualitative difference between the T6SS− and T6SS+ cases was that in the non-killing case E. coli

remained at a high concentration within the area of the initial inoculum. We measured the average

radius of the colonies with different initial density ratios (Fig. 3.3c). In the case of mixture of

T6SS− A. baylyi and E. coli, the more E. coli in the inoculum, the slower the colony expanded,

which is consistent with our hypothesis that E. coli hinders the overall colony expansion. However,

the trend is not as significant for T6SS+ case because, as we reason, T6SS+A. baylyi kill most E.
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coli at the early stage, which increases and stabilizes the effective A:E ratio. We also counted the

number of branches as they first emerged, and found more branches in colonies seeded with less E.

coli (Fig. 3.3d). In general, the overall structure of the patterns remained unchanged in the mixture

of T6SS− A. baylyi and E. coli. Thus, we concluded that the T6SS did not play a major role in the

formation of flower-like patterns.

Third, the fact that two-species colonies expanded much more quickly than pure E. coli

colonies strongly suggested that the high motility of A. baylyi is primarily responsible for the colony

expansion. To test this hypothesis, we knocked out the pilTU locus of T6SS+ A. baylyi, which

is required for the pilus-based twitching motility of A. baylyi [16, 11]. As expected, colonies of

pilTU− A. baylyi cells did not expand significantly (Fig. 3.3e, top) and did not form branching

patterns when mixed with E. coli cells on 0.75% LB agar (Fig. 3.3e, bottom). The results are the

same when the colonies grew on other concentrations of LB agar (Fig. 3.10). This demonstrates

that the high A. baylyi motility plays a crucial role in the flower-like pattern formation.

3.2.4 Pattern-forming instability originates at the colony interface

Experiments showed that the formation of flower-like patterns appears to be preceded and

caused by growing undulations of the colony front, where E. coli cells concentrate and locally

slow expansion. To mechanistically understand how a ring of low-motility bacteria surrounding

an expanding core of highly-motile bacteria can create such patterns, we turned to mathematical

modeling. We adapted a one-dimensional “geometrical” model of front dynamics [17, 18] that casts

the motion of the interface x(σ, t) in natural, reference-frame independent variables of curvature κ

and metric g as a function of its arclength s and time t (see Appendix of this chapter):

κ̇ =−

(
∂2

∂s2 +κ
2

)
F[κ,g], ġ = 2gκF[κ,g].
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In the overdamped limit, the velocity functional F is determined by the balance of a constant outward

pressure force F0 due to A. baylyi motility, surface tension Fs proportional to the interface curvature,

and the resistance (friction) force Fr that is assumed to be proportional to the local concentration

of E. coli on the interface c(s, t) (Fig. 3.4a). For simplicity we ignore E. coli growth and leakage

from the boundary in the interior and assume that the local concentration of E. coli is only changed

by stretching or contraction of the interface, therefore c is taken to be inversely proportional to

the metric
√

g. A straightforward linear stability analysis demonstrates that the interface is indeed

unstable to a broad spectrum of initial perturbations (for more details see Appendix).
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Figure 3.4: Discrete interface model. a, Sketches of the continuum and discrete interface models.
b, Snapshots of the interface in discrete interface model for a sample simulation with parameters
listed in Appendix. The colors of the nodes correspond to the distance between node and its
neighbors. c, “Fossil record” of E. coli density on the moving interface.

To simulate the interface dynamics beyond the linear regime, we also constructed a discrete

model of the continuous interface by replacing it with a closed chain of nodes connected by straight

links (Fig. 3.4a bottom). Each node carries a fixed amount of E. coli, so the local density of nodes

per unit length of the interface corresponds to the local density of E. coli. Nodes are driven by

a constant outwards expansion force F0, surface tension, and a friction force that is proportional

to the window-weighted average density of nodes per unit length. Additionally, we introduced
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short-range repulsive forces between nodes and between nodes and links, to prevent self-crossing of

the interface. Detailed description of this model is also given in Appendix.

As an initial condition, we assumed that the chain forms a circle with nodes slightly perturbed

from equidistant positions. Figure 3.4b shows time-lapse snapshots of the interface in a sample

simulation. Fig. 3.4c shows the aggregate image of the interface during the colony expansion, with

the color of a point corresponding to density of nodes when the interface passed through that point.

Assuming that a fixed fraction of E. coli is left behind the interface, this interface “fossil record”

should roughly correspond to the density of E. coli inside the colony. At the beginning, the interface

remains nearly circular, but initial perturbations quickly grow as the colony expands, producing large

front undulations. Regions with lower node density expand more quickly because they experience

less friction, and this expansion stretches the chain and further reduces the node density per unit

length, creating a positive feedback loop. Concave regions, on the contrary, accumulate nodes

and thus move outward more slowly. Eventually, cusps are formed in these lagging regions that

have very high node density and therefore move very slowly, if at all. The regions on both sides

of the cusp continue to expand toward each other and eventually “collide”. After collision they

form “double-layers” that remain nearly static and only increase in length as the overall interface

expands further. Thus, “branches” with high concentration of E. coli form. As the front continues to

expand, the interface already containing branches continues to undulate and form new cusps. This

causes the earlier branches to merge, similar to what we observed in experiments (Fig. 3.2b). These

simulation results suggest that indeed branch formation and merging can be explained by mechanics

of a resistive ring surrounding a colony, which is stretched by the colony expansion. However, since

this model neglects E. coli growth, the average density of nodes per unit length gradually decays,

and eventually, the front instability ceases, in divergence with experimental results. To account for

cell growth as well as for the diffusive leakage of E. coli from the interface into the bulk of the

expanding colony, we developed a more elaborate 2D model of the growing multi-species colony.
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3.2.5 Phase-field model of flower-like pattern formation

We also developed a more detailed two-dimensional, multi-component model of the expand-

ing bacterial colony that is conceptually similar to the phase-field models used for description of

eukaryotic cell motility and migration [19, 20, 21] (Fig. 3.5a). It is based on three PDEs for the

densities of A. baylyi ρA, E. coli ρE , and the phase field φ that changes continuously from 1 inside

the colony to 0 outside (see Appendix for the detailed formulation of the model). The latter is

introduced to avoid computational difficulties of dealing with the sharp colony interface. All three

components are diffused and advected by the velocity field that is generated by a combination of

stress due to cell growth and motility, viscosity, and bottom friction that is proportional to the local

E. coli density.

When we initialized the model with small circular domains of either pure E. coli or A. baylyi,

the colony boundaries remained circular, and no patterns emerged (Fig. 3.5b). Consistent with the

experiments, the E. coli colony only slightly expanded, while the A. baylyi colony expanded rapidly

(Fig. 3.5c). When we initialized the model with a mixture of A. baylyi and E. coli, the colony grew

at an intermediate speed (Fig. 3.5c), as in the experiments (Fig. 3.1d). The mixed colony simulations

also exhibited front instability leading to formation of branches of E. coli (Fig. 3.5d, the snapshots

of A. baylyi are shown in Fig. 3.11). As the colony grew, the branches merged and expanded, and a

flower-like pattern developed. The E. coli density, colony boundary curvature and expansion speed

can be analyzed using the same method we used for experimental data shown in Fig. 3.2c,d, which

also shows the anti-correlation between E. coli density and local speed (Fig. 3.12).

Agar concentration is known to have a strong effect on the motility of bacteria [9] and

their adhesion to the agar surface [22], so we reasoned that in our phase-field model changing

agar concentration could be simulated by changing friction parameters. The frictional force in

our model consists of two contributions: a small basal friction (characterized by parameter ξ) and

stronger contribution proportional to the local E. coli concentration with coefficient β. Thus, to
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Figure 3.5: Phase-field model simulations of two-species colony growth. a, Illustration of the
model. b, Snapshots of the colonies of pure E. coli and pure A. baylyi at t = 12. A colony of
E. coli expanded only slightly, while a pure colony of A. baylyi expanded quickly, but remained
circular. c, Colony radius vs time for the mixed and single-species colonies. Radius is defined as√

colony area/π. d, Several snapshots of E. coli density during the growth of a mixed colony in
simulations. e, Colony snapshots at time t = 16 in simulations using different friction parameters.
For larger friction, the colony grew slower, but still featured flower-like patterns. For smaller fric-
tion, the colony expanded more quickly, but patterns eventually disappeared. However, increasing
the initial concentration of E. coli at low friction coefficients restored patterning. f, Experimental
snapshots with different agar concentrations 16 hours after inoculation: similar phenomenology
observed.

mimic different agar concentrations, we varied both ξ and β. The leftmost panel in Fig. 3.5e shows

the colony snapshots at t = 16 for the same parameter values as the time-lapse sequence in Fig. 3.5d.

The next panel corresponds to larger ξ and β (presumably, higher agar concentration), where as

expected, the colony expanded slower. The third panel shows the snapshot for smaller ξ and β

(lower agar concentration), in which case the colony expands fast, but no patterns emerge. However,
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for the same low ξ and β, when we started a simulation from 10x higher E. coli density, the friction

provided by E. coli increased, and patterning re-emerged (Fig. 3.5e, fourth panel).

These numerical predictions were fully validated by experiments in which we varied the

agar concentration and the initial density ratio of E. coli and T6SS− A. baylyi. The leftmost panel in

Fig. 3.5f shows the snapshot of the colony started from 1:1 mixture after 16 hours of growth on

0.75% agar surface. When we increased the agar concentration to 1% (Fig. 3.5f, second panel), the

colony expanded slower but the flower-like pattern emerged. Conversely, for low agar concentration

(0.5%), colony grew fast but patterns were completely eliminated (Fig. 3.5f, third panel). However,

for the same 0.5% agar concentration but A:E=1:100 initial density ratio, the flower-like pattern

formation was rescued (Fig. 3.5f, fourth panel).

3.3 Discussion

Motility plays a key role in the spread of dense bacterial colonies. In this paper, we studied

the structure of growing colonies comprised of two bacterial species, E. coli and A. baylyi, with

very different motilities. Not only did the highly-motile species (A. baylyi) accelerate the spread

of the slow species (E. coli), but the structure of the expanding colony quickly became highly

heterogeneous and eventually produced very intricate, flower-like patterns.

Pattern formation in growing colonies of single bacterial species has been studied extensively

[23, 24, 25, 26], and branching patterns were often found in these experiments. The emergence of

these patterns is usually driven by nutrient limitation and ensuing chemotaxis, with agar concentra-

tion also having a strong effect on their morphology. For example, colonies expand homogeneously

on soft agar rich with nutrients, but under nutrient limitation and in semi-solid agar, complex

patterns emerge [24, 26]. In our system, however, we used rich LB media, and single-species

colonies in the same conditions did not produce patterns. This suggested that the mechanism of
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pattern formation here was different. We also found no significant differences in pattern formation

with T6SS+ and T6SS− strains of A. baylyi. In fact, we did not observe noticeable killing of E. coli

by T6SS+ A. baylyi after a short initial period. We believe that an extracellular matrix may have

played a role here, as recent studies showed that it protected bacteria from T6SS attacks from other

species [27, 28]. Overall, our experiments and modeling provided strong evidence in favor of the

mechanical nature of the pattern-forming instability, arising from the interplay between outward

pressure generated by the growth and high motility of A. baylyi, and the friction provided by sessile

E. coli that adhere to the agar surface.

Ecologically, one of the primary challenges for any species is to maximize its geographic

dispersal. Motility enables bacteria to escape from local stresses, move to locations with more

nutrients, or invade host tissue [9]. However, motility, especially on hard surfaces, requires

additional gene expression which could be a metabolic burden [6]. So some bacteria take advantage

of other species with larger motility to colonize new niches. For example, by hitchhiking on

zooplankton, water-borne bacteria can reach places that are otherwise inaccessible for them due to

density gradients [29]. Non-motile Staphylococcal species hitchhike on swimming bacteria such

as Pseudomonas aeruginosa [30]. In other studies, motile swarming Paenibacillus vortex was

shown to transport non-motile Xanthomonas perforans [31] or E. coli [32] on agar surfaces. In

our system, A. baylyi cells move by twitching instead of swarming, and our results suggest that

slow-moving bacteria might take advantage of fast-moving twitching species by hitchhiking, or

“surfing” along the expanding boundary, and thus spread farther. This can be seen clearly from the

experiment in which E. coli and A. baylyi were inoculated separately at a small distance on agar

surface. A. baylyi colony expanded and pushed E. coli to places where E. coli alone could not reach.

Although E. coli and A. baylyi may not necessarily find themselves in the same ecological niche,

bacteria with different motilities are ubiquitous in the environment [9]. Therefore, the mechanisms

of codependent motility and pattern formation described here are likely to be broadly applicable in
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natural habitats or even have implications in the transmission of pathogenic microbes. For example,

Acinetobacter baumannii, an increasing threat in hospitals due to multi-drug resistance [33], is

closely related to A. baylyi [34, 13] and also has twitching motility [35, 36], and thus other microbes

which coexist with A. baumannii might also take advantage of its motility to spread.

3.4 Methods

3.4.1 Strains

We used E. coli MG1655 and A. baylyi ADP1 (ATCC #33305). The E. coli strain carried

a plasmid that constitutively expressed mTFP and a kanamycin resistance gene. A. baylyi had a

kanamycin resistance gene and the mCherry gene integrated in the genome. We also constructed a

T6SS− A. baylyi (Mhcp) mutant by first fusing the tetracycline resistance marker from pTKS/CS to

approximately 400 bp homology arms amplified from either side of hcp (ACIAD2689) in the A.

baylyi genome, and mixing the donor oligo with naturally competent A. baylyi. The pilTU− strain

was constructed similarly to delete the genes ACIAD0911-0912.

3.4.2 Culture conditions and image capturing

E. coli and A. baylyi cells were taken from -80◦C glycerol stocks, inoculated in LB with

appropriate antibiotics (kanamycin for E. coli and T6SS+ A. baylyi, tetracycline for T6SS− A.

baylyi) and grown at 37◦C separately. When their OD600 reached about 0.3, both E. coli and A.

baylyi were concentrated to OD=1, still separately. They were then mixed at specified volume ratios,

and 3 µL was inoculated on the surface of 10 mL LB agar in the center of an 8.5 cm Petri dish.

The plate was incubated at 37◦C. The images were taken using a custom “milliscope” fluorescence

imaging device unless indicated otherwise.
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When the colony development was to be observed under a microscope, a 5.5 cm Petri dish

was used with 15 mL 1% base agar (without LB) and top 10 mL LB agar (1% agar). After the cell

culture was inoculated and dried, it was put on the stage of an inverted, epifluorescence microscope

(Nikon TI2). The magnification was 4X. Fluorescent images were acquired using a 4X objective and

a Photometrics CoolSnap cooled CCD camera in a 37◦C chamber. The microscope and accessories

were controlled using the Nikon Elements software.

The bacteria growth rates were measured in a Tecan plate reader.

3.4.3 Colony tracking

We adapted the method and the MATLAB™ code from [14] to track the colony boundary.

The bright-field images were first segmented to identify the colony using an active contour method

[37]. Then the colony boundary pixels were interpolated by a closed cubic spline and the boundary

was parameterized by 300 virtual nodes, which were evolved in time as a coupled spring system

(Fig. 3.13) [15]. For each node, three quantities were measured: brightness, extension speed and

curvature. Brightness at each node was defined as the median of the neighboring pixels assigned to

each node (see [14]). Extension speed was computed by the displacement of a node from frame t to

frame t +10. Curvature was calculated by taking derivatives of the spline contour. Then the time

series of these quantities were detrended and smoothed using FFT. An example of these quantities

for all nodes at a particular time point is shown in Fig. 3.14. In Fig. 3.2d, we sampled 7 time points

with 20 min interval from 9.5 h to 11.5 h and for each time point we plotted 100 nodes.

3.4.4 Mathematical models

Detailed description of the two models is given in Appendix.
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3.6 Appendix

3.6.1 Interface model

Continuous interface dynamics

To describe the motion of the interface separating the growing bacterial colony from the

environment, we can use the framework originally proposed by Brower et al. [17, 18] for solid-

ification patterns. The 1D interface (a closed line) at time t is specified by the position vector

x(t,σ) where 0 < σ < 1 is the variable parametrizing the interface such that x(t,0) = x(t,1). Using

the “orthogonal gauge” assumption that the velocity dx/dt is orthogonal to the tangent vector

τττ = ∂x/∂σ, the equation of motion for the interface can be written in the general form

dx
dt

= n̂F(x,∂x/∂σ, ...) (3.1)
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where n̂ is the unit normal to the interface at x (perpendicular to τττ) and F is the velocity functional

that generally may depend on the overall interface position and other parameters. As Brower et

al. [18] demonstrated, this equation can be transformed to the reference-frame independent local

equations of motion for the local curvature κ and the curve metric g = τττ ·τττ as a function of arclength

s and time t:

κ̇ =−

(
∂2

∂s2 +κ
2

)
F (3.2)

ġ = 2gκF (3.3)

Here the arclength is given by

s =
∫

σ

0

√
g(σ′)dσ

′ (3.4)

and the curvature is defined by

κ =−n̂ · ∂
2x

∂s2 (3.5)

Now we need to specify the velocity functional F for our system in which a growing colony is

surrounded by the thin band of highly frictional E. coli that hinders the colony expansion. Thus,

we assume that F depends only on the local curvature κ and the local concentration of E. coli on

the interface, c. This assumption will be violated if/when the interface will develop large folds and

will attempt to “collide” with each other, then non-local terms in F become essential. We confine

our continuous description here to sufficiently early times before this non-local interaction occurs.

Under the additional simplifying assumption that the total amount of E. coli on the interface is

conserved and neglecting their diffusion along the interface, the local concentration of E. coli will

be inversely proportional to the square root of metric g, c = c0/
√

g. In reality, of course, E. coli
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also grows and is left behind in the bulk of the colony, but we assume that in a quasi-stationary

regime these two processes approximately balance each other. Thus, the closed-form model for the

interface expansion has the following form

κ̇ =−

(
∂2

∂s2 +κ
2

)
F(κ,c0/

√
g) (3.6)

ġ = 2gκF(κ,c0/
√

g) (3.7)

For specificity, we assume that F has the following simple form:

F = F0− γκ−αc (3.8)

where F0 is the maximal expansion velocity and c is the concentration of E. coli at the point x

(defined by s or σ) on the interface at time t. This expression assumes that the expansion velocity is

reduced in linear proportion to the local E. coli concentration c with proportionality coefficient α

and is also subject to the linear surface tension with coefficient γ. Then, the model (3.6),(3.7) can be

rewritten as

κ̇ =−

(
∂2

∂s2 +κ
2

)
(F0− γκ−αc0/

√
g) (3.9)

ġ = 2gκ(F0− γκ−αc0/
√

g) (3.10)

We can perform a linear stability analysis of a flat interface (κ = 0,g = 1) by substituting ansatz

κ = Keiks+λt (3.11)

g = 1+Geiks+λt (3.12)

68



in Eqs. (3.9), (3.10). The Jacobian of the linearized system reads

J =

 −γk2 αc0k2/2

2(F0−αc0) 0

 . (3.13)

For positive γ,α and F0 > αc0 (the latter condition means that the colony with smooth interface is

expanding), one of the two eigenvalues of this Jacobian is always positive. At small wavenumbers

k, it increases linearly with k,

λ =
√

αc0(F0−αc0)k (3.14)

and for large k it reaches the maximum value

λm =
αc0(F0−αc0)

γ
(3.15)

Since the growth rate is positive for all values of k, this instability may lead to singularities in

curvature (cusps). This is indeed what is found in numerical simulations of the discrete analog of

this model (see the next section). These singularities correspond to the origins of “branches” of E.

coli that the interface leaves behind during the flower pattern growth.

Flexible-chain interface model

The interface dynamics beyond linear instability stage can be analyzed numerically. Un-

fortunately, it is difficult to implement self-avoidance of the interface in the framework of the

continuum model described in the previous section. Thus, we implemented a discrete flexible-chain

model that is analogous to the continuum model described above but contains additional interaction

terms between the nodes that prevent self-intersection of the chain. Specifically, we represent the

interface as a closed chain of N nodes with coordinates xi, i = 1, ...,N. Let us introduce the vectors

connecting node i−1 to node i (we assume that node 0 is the same as node N): ∆∆∆i = xi−xi−1. Each
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node is driven by the “expansion force” F0 that acts along the unit vector n̂i that is directed outwards

along the bisectrix of two adjacent edges, ∆∆∆i and ∆∆∆i+1. It is counteracted by the “friction” force that

is directed along −n̂i and is proportional to the local density of E. coli ci associated with node i

and by the surface tension force that is proportional to the local curvature of the interface κi. In

addition, we introduce repulsion forces between all nodes and edges that prevent the interface from

self-intersecting. The equation of motion in the overdamped limit can be written as follows:

dxi

dt
= n̂i(F0−αci− γκi)+∑

j 6=i
fnn
i j +∑

j 6=i
fne
i j (3.16)

The discrete analog of the local curvature at node i is defined as follows,

κi =

∣∣∣∣∆∆∆i+1

∆i+1
− ∆∆∆i

∆i

∣∣∣∣ 2
∆i +∆i+1

(3.17)

where ∆i = |∆∆∆i|.

We assume that each node carries the fixed “amount” of E. coli c, and the local concentration

of E. coli ci is defined as the average amount of c per unit length of the interface. In the simplest

case, it can be computed as c/Li where Li is the half-sum of lengths of two edges attached to node

i, Li = ½(∆i +∆i+1), however in simulations we typically used longer averaging over 2 adjacent

edges on both sides,

ci =
2(2K +1)c

∑
K
j=−K[∆i+ j +∆i+1+ j]

(3.18)

with K = 2.

The last two terms in the r.h.s. of Eq.(3.16) represents the vector sum of possible repulsive

forces acting on the node i from other nodes (fnn
i j ) or edges (fne

i j ) of the chain. The node-node force

acts along the vector connecting nodes i and j, xi−x j. We assume that the node-edge force acts
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perpendicular to the orientation of the j-th link, ∆ j. We assume that the node-node force fnn
i j is zero

if dnn
i j = |xi−x j|> d0 and varies as Fm(1−dnn

i j /d0)
4 for dnn

i j < d0 with large Fm� F0. Similarly,

the node-edge force fne
i j is zero if the distance between the node i and the edge j, dne

i j > d0 and varies

as Fm(1−dne
i j /d0)

4 for dne
i j < d0.

Parameters

We used parameters below (Table 3.1) unless specified otherwise.

Table 3.1: Parameters for interface model.

F0 α γ Fm d0 c N dt
1 0.5 10−8 0.1 0.01 1 512 0.001

3.6.2 Phase-field model

Model description

In this more elaborate 2D model of a two-strain colony, we consider it as a growing mass of

compressible fluid. A convenient way to describe a compact expanding colony is to use a phase-field

approach where the phase φ changes smoothly from 0 outside the colony to 1 inside. The evolution

of phase field φ is given by the equation:

∂φ

∂t
=−u ·∇φ+Γ(ε∇

2
φ−G′(φ)/ε+κε|∇φ|) (3.19)

where u is the velocity field, κ =−∇ ·(∇φ/|∇φ|) is the local interface curvature, and ε characterizes

the interface width. The term G(φ) = 18φ2(1−φ)2 is included to force the bistable dynamics of φ

field with two stable fixed points at 0 and 1. The dynamics of the A. baylyi cells density ρA within
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the colony is described by

∂(φρA)

∂t
+∇ · (φρAu) = ∇ · (φDA∇ρA)+αAφρA(1−ρA−ρE) (3.20)

The second term in the left-hand side is the advection term while the two terms in the right-hand

side are diffusion and growth terms respectively. DA and αA are the diffusion constant and growth

rate of A. baylyi respectively. The growth term follows logistic form and we assume that the growth

can be saturated when the total density of A. baylyi (ρA) and E. coli (ρE) reaches 1. Note that the

densities of two species are already scaled here.

Similarly, the dynamics for E. coli cells density ρE is described by

∂(φρE)

∂t
+∇ · (φρEu) = ∇ · (φDE∇ρE)+αEφρE(1−ρA−ρE) (3.21)

where DE and αE are the diffusion rate and growth rate of E. coli. Note that the advection of the

phase field and both cell densities is provided by the same velocity field u.

The velocity field could be determined by the overdamped Stokes equation:

∇ · [ν(φ)(∇u+∇uT)]+∇ · (χσA)− [ξ+β f (ρE)φ]u = 0 (3.22)

where ν(φ) = ν0φ is the viscosity, σA = −ηφρAI is the stress provided by motile A. baylyi cells

(I is the identity matrix). χ is a random number uniformly distributed between 1±∆, which adds

noise to the stress driven by A. baylyi. Because pure E. coli colony expands very slowly and pure A.

baylyi colony expands fast, we assume that the stress provided by E. coli is negligible compared to

A. baylyi. Our experiments with mixtures of E. coli and A. baylyi show that regions where there are

more E. coli move outward more slowly, so we assume that E. coli cells provide friction to prevent

colony from expanding fast. This is described by the last term in which ξ is the basal friction
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constant and f (ρE) = ρE determines how the friction is modulated by E. coli cells. Here we assume

it is simply proportional to ρE .

In reality, as the colony expands, the nutrients in the media are expected to get depleted

over time at the center of the colony. In the experiment, we use rich LB media. Besides, since

the interesting dynamics of the pattern formation mainly happens at the colony boundary, and the

pattern inside the colony does not change once it forms, we do not include the nutrient diffusion and

uptake in our model. Actually, in our model, the growth of bacteria saturates once the total density

reaches 1. This effect is similar to nutrient depletion at the center of the colony which could stop

the growth.

Parameters

Parameters of simulations on 0.75% LB agar are shown in Table 3.2. Some of these

parameters (such as growth rates αE and αA) are known from experiments, while others had to be

plausibly hypothesized. For example, the diffusion constants for bacterial motion are only known

very roughly [24, 38], but since A. baylyi is motile and E. coli is not, we chose the diffusion constant

of A. baylyi to be two orders of magnitude higher than that of E. coli.

Our simulations showed that viscosity and diffusion terms did not play significant roles

in the dynamics. Changing DA had little effect on the colony expansion speed and the pattern

formation (Fig. 3.15). The reduction of ν0 makes colony expand faster but the flower-like pattern

still forms (Fig. 3.15). On the contrary, the stress and friction terms play major roles in our model.

For the stress term, η is chosen to make the expansion speed of pure A. baylyi colony similar to

experiment measurement. We also added white uniformly-distributed noise (with magnitude ∆) to

the stress term to break the circular symmetry and induce the front instability. When ∆ is small, the

colony front instability also occurs, but at a later time point and merging of branches is not obvious

(Fig. 3.15, first row), so we choose ∆ = 0.3 in our simulations.
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Table 3.2: Parameters for phase-field model.

Γ ε DA αA DE αE

0.008 cm/h 0.16 cm 0.0024 cm2/h 1.2 h−1 4×10−5 cm2/h 1.3 h−1

ν0 η ξ β ∆ ∆x ∆y ∆t
0.0036 cm2 0.03 cm2/h 1 18 0.3 0.01 cm 0.01 cm 1×10−4 h

Note that if parameters ν0,η,ξ,β are multiplied by the same constant factor, the velocity as

determined by Eq. 3.22 will not change. So we set arbitrarily ξ = 1 and chose other parameters

ν0,η,β relative to ξ.

To model the changes in the agar concentration (Fig. 3.5e), we changed ξ and β while keep

ν0 and η the same. As shown in Fig. 3.5e, for the simulation for 0.5% LB agar, ξ = 0.5,β = 1

and for the simulation for 1% LB agar, ξ = 2,β = 35. The colony radii after 14 h in simulations

are illustrated in Fig. 3.16 which can be compared to Fig. 3.7. Note that in Fig. 3.7, we show the

experimental data after 16 h of growth because in experiments, the colonies only begin to expand 2

to 3h after innoculation, while in simulations the colonies begin to expand immediately.

Numerical algorithm

The numerical algorithm is similar to [21]. We aim to solve Eqns. 3.19-3.22 with uniform

spatial grid sizes ∆x,∆y and fixed time step ∆t from initial conditions φ0,ρ0
A,ρ

0
E ,u

0. The system

variables at time t = n∆t are denoted as φn,ρn
A,ρ

n
E ,u

n.

We first solve Eq. 3.19 by forward Euler scheme:

φ
n+1 = φ

n−∆tun ·∇φ
n +∆tΓ[ε∇

2
φ

n−G′(φn)/ε+ εκ
n|∇φ

n|]

with κn calculated by κn =−∇ · (∇φn/|∇φn|) when |∇φn|> 0.05, and set to 0 otherwise.

The reaction-diffusion-advection equations for ρA and ρE are discretized using the forward
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Euler scheme:

φ
n ρn+1−ρn

∆t
+

φn+1−φn

∆t
ρ

n = Advection+Diffusion+Reaction (3.23)

where φn+1 is obtained from the above step, and ρn+1 is only updated when φn > 10−4. The

advection term is calculated by

[∇ · (φn
ρ

nun)]i j = (φn
i+1/2, jρ

n
i+1/2, ju

n
i+1/2, j−φ

n
i−1/2, jρ

n
i−1/2, ju

n
i−1/2, j)/∆x

+(φn
i, j+1/2ρ

n
i, j+1/2vn

i, j+1/2−φ
n
i, j−1/2ρ

n
i, j−1/2vn

i, j−1/2)/∆y

and for the diffusion term

[∇ · (φnD∇ρ
n)]i j = D[φi+1/2, j

ρi+1, j−ρi, j

∆x
−φi−1/2, j

ρi, j−ρi−1, j

∆x
]/∆x

+D[φi, j+1/2
ρi, j+1−ρi, j

∆y
−φi, j−1/2

ρi, j−ρi, j−1

∆y
]/∆y

where u = (u,v), φi±1/2, j = (φi±1, j + φi, j)/2, φi, j±1/2 = (φi, j±1 + φi, j)/2, and we used the same

definitions for ρ, u and v between collocation points. Then we can calculate ρn+1 from Eqn. 3.23.

The Stokes equation Eq. 3.22 is integrated by the semi-implicit Fourier spectral method

[21, 39] (to stabilize the scheme, we subtract the term ν0φ0∇2u from both sides of Stokes equation

with large constant φ0, e.g. φ0 = 200):

ξu−ν0φ0∇
2u = ν0∇ · [φ∇uT +(φ−φ0)∇u]+∇ · (χσA)−β f (ρE)φu

To obtain un+1, we set un+1
0 = un and solve the equation below iteratively using spectral Fourier
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method:

ξun+1
k+1−ν0φ0∇

2un+1
k+1 = ν0∇·[φn+1

∇uT,n+1
k +(φn+1−φ0)∇un+1

k ]+∇·(χσA)
n+1−β f (ρn+1

E )φn+1un+1
k

where k = 0,1,2, · · · are iteration steps. In simulations, we constrain the error by iterating the above

process until

max |un+1
k −un+1

k−1|< 0.01max |un+1
k |

or until kmax = 200, and the final un+1 = un+1
m .
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Figure 3.6: Bright-field image (left) and mTFP channel image (right) for the flower-like pattern
after 24 hours of growth under milliscope.
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Figure 3.7: Colony radii after 16 hours of growth in 37◦C for pure T6SS+ A. baylyi, pure T6SS−

A. baylyi, pure E. coli, mixture of T6SS+ A. baylyi and E. coli with 1:1 initial density ratio, mixture
of T6SS− A. baylyi and E. coli with 1:1 initial density ratio with different agar concentrations
(10 mL LB agar). For pure T6SS+ A. baylyi on LB agar (0.5% agar) plate, after 16 hours, the
colony already reached the edge of the plate, so the radius of the plate is shown here. For each
combination, experiments were run in triplicate.
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Figure 3.8: Examples of the colonies for all combinations of E. coli and A. baylyi with different
agar concentrations after 16 hours of growth on 10 mL LB agar. When A. baylyi and E. coli were
mixed, the initial seeding density ratio was 1:1.

Figure 3.9: Microscope image of mixture of E. coli and T6SS− A. baylyi on agar surface. Red
color shows A. baylyi (mCherry channel) while green color shows E. coli (mTFP channel).
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Figure 3.10: Examples of the colonies for pure pil− T6SS+ A. baylyi, mixture of pil− T6SS+ A.
baylyi and E. coli with initial seeding density ratio 1:1 with different agar concentrations after 16
hours of growth on 10 mL LB agar.
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Figure 3.11: Several snapshots of A. baylyi density during the growth of a mixed colony in a
phase-field model simulation.
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Figure 3.12: a, Kymographs of detrended brightness, speed and curvature along the colony
boundary from the simulation in Fig. 3.5d. b, Scatter plots for detrended brightness vs. speed (left)
and detrended brightness vs. curvature (right). Each circle corresponds to one virtual tracking
node at one time point. Pearson coefficient for detrended brightness and speed is ρ =−0.71, and
for detrended brightness and curvature is ρ =−0.75. Data points from 8 to 11 h are used in the
scatter plot.

81



Figure 3.13: Examples of the tracked colony boundary and traces of 300 virtual nodes on the
colony boundary. Black curves show the splines interpolated from the positions of 300 nodes at
each time point. Different curves with colors show the traces of each node.
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Figure 3.14: An example of the detrended brightness, speed and local curvature for all 300 nodes
after 10 hours of colony growth in experiment.
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Figure 3.15: The influence of different parameters on the pattern formation in phase-field model.
The parameters in Table 3.2 are used for the baseline simulation. For each snapshot, only one
parameter (the parameter on top of each snapshot) is changed relative to the baseline simulation
while other parameters stay the same.
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Figure 3.16: Colony radii after 14 h of growth in simulations. The parameters in Table 3.2 are
used for the 0.75% LB agar simulation. For the simulation for 0.5% LB agar, ξ = 0.5,β = 1 and
for the simulation for 1% LB agar, ξ = 2,β = 35.
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Chapter 4

Agent-based modeling of bacterial

population dynamics

Agent-based modeling is useful in studying bacterial population dynamics. In the continuous

models, the cell populations are represented by fields which normally characterize the cell densities.

In the agent-based models, each cell can carry a set of equations and is simulated individually. Each

cell can be modeled as a spherocylinder of unit diameter that grows linearly along its axis and

divides equally after reaching a critical length. It can also move along the plane due to forces and

torques produced by interactions with other cells. The slightly inelastic cell-cell normal contact

forces are computed using the standard spring-dashpot model and the tangential forces are computed

as velocity-dependent friction. In the agent-based model, the cell-cell and cell-substrate interactions

are considered which generates a more “realistic” characterization of bacterial population dynamics.

Besides, the incorporation of both intra- and intercelluar dynamics makes it a multi-scale model. In

this chapter, I will present two examples of the applications of agent-based modeling in exploring

bacterial population dynamics.
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4.1 Species-independent attraction to biofilms through electri-

cal signaling

4.1.1 Experimental phenomena

Recently, bacterial cell-to-cell communication mechanism based on ion channel-mediated

electrical signaling was discovered [1, 2]. It has also been shown in experiments that B. subtilis

biofilms can periodically release potassium signals, producing electrical waves through and beyond

the biofilms. Such long-range signaling could affect distant bacteria that are not part of the biofilm.

More specifically, the distant motile cells are periodically attracted to the electrically oscillation

biofilm (Fig. 4.1). Experimental evidence shows that extracellular potassium can direct cell motility

by affecting the potassium ion channel activity and cell membrane potential which can modulate

the tumbling frequency of distant cells.

4.1.2 Modeling

To integrate the above described experimental evidence into a coherent phenomenological

framework, we turned to mathematical modeling. We utilized an electrophysiological model based

on the mathematical framework developed by Hodgkin and Huxley [3] to predict changes in

membrane potential in response to extracellular potassium.

Our agent-based model assumes that each motile cell changes its electrophysiological state

and motility independently of each other and only in response to changes in extracellular potassium.

We describe intracellular potassium-driven dynamics within each cell using a generalization of the

electrophysiological model introduced in earlier paper [2]. The membrane potential is governed by

the standard Hodgkin-Huxley-type conductance equation,
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Figure 4.1: Distant motile cells are periodically attracted to an electrically oscillating biofilm.
(A) Illustration of motile cell interaction with a biofilm within a shared microfluidic growth
chamber. Membrane potential changes are reported by Thioflavin T (ThT, pseudocolored cyan), a
cationic dye that acts as a Nernstian voltage indicator [2]. ThT fluorescence increases when the
cell becomes more inside-negative, making ThT fluorescence inversely related to the membrane
potential. Motile cells (pseudocolored red) express a fluorescent protein mKate2. Motile cell
density is measured using mKate2 fluorescence in the 100 µm region outward from the biofilm
edge. Scale bar, 50 µm. (B) Filmstrip showing the edge of a biofilm that is located on the top
of each image. Images depict periodic motile cell attraction to an electrically oscillating biofilm
and subsequent passive dispersal away from the biofilm. Gray (phase contrast), cyan (membrane
potential), red (motile cells). Scale bar, 50 µm.

ηC
dV
dt

=−gKn4(V −VK)−gL(V −VL) (4.1)

in which C is the capacitance of the cell membrane. The first term in the right hand side describes the

change in membrane potential by potassium ions escaping the cell through potassium ion channels,

while the second term describes the leak current. In the standard Hodgkin-Huxley model, the

membrane potential dynamics are very fast (milliseconds), much faster than the slow changes in

extracellular potassium and corresponding changes in bacterial motility (hours). Since it is very

difficult to simulate together processes of such vastly different timescales, we introduced a scaling

factor η to slow down the intracellular electrophysiological dynamics. The scaling factor is also

applied to Eqns. (4.4) and (4.5). As long as the electrophysiological processes remain much faster
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than the slow part of the model, this did not have an appreciable effect on the slow dynamics of the

cellular population. We used the value η = 300 and verified that changing this factor to 150 did not

appreciably affect the results of our simulations.

The resting potentials VK and VL set by the ion pumps, and generally are dependent on both

intra- and extracellular potassium levels, for which we assume a simple linear form,

VK = VK0 +δK(Ke +Ki) (4.2)

VL = VL0 +δL(Ke +Ki) (4.3)

The fourth power in the first term of Eq. (4.1) stems from the fact [4] that bacterial potassium

channels are formed by four subunits, which on average are open during a fraction of time n whose

dynamics is given by the following rate equation:

η
dn
dt

= α(S)(1−n)−βn (4.4)

where the first term describes channel opening and the second term specifies the rate of channel

closing. As in [2], the opening rate α of the potassium channel is assumed to depend on metabolic

stress, S, according to the Hill function α(S) = α0Sm/(Sm
th+Sm). This metabolic stress variable that

stands for the concentration of stress-related metabolic products [5], such as excess NAD+ [6, 7] is

itself controlled by the membrane potential according to the equation

η
dS
dt

=
αs(Vth−V )

exp(Vth−V
σ

)−1
− γSS (4.5)

In departure from previous model in [2] that described time-dependent dynamics of the extracellular

potassium in the dense biofilm environment, here we assume that motile cells have sufficiently low

density and therefore do not change the extracellular potassium appreciably. Instead, we focus on
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the concentration of the intracellular potassium Ki,

dKi

dt
=−εgKn4(V −VK)+βK(V0−V ) (4.6)

where the first term describes the flux of potassium through ion channels and the second term

describes the action of potassium pumps which maintain the membrane potential at the resting value

V0. The second term only appears when V0 >V and is zero otherwise, because the ion pump can

only pump the potassium from outside to inside of a cell.

It can be shown that the regulation of the intracellular potassium described by Eq. (4.6) plays

the role of the integral feedback control loop similar to other mechanisms of bacterial chemotaxis

[8]. Indeed, in the absence of stress S ≈ 0, the ion channels are closed n≈ 0, and the membrane

potential equilibrates near V = V0 independently of the level of extracellular potassium (perfect

adaptation). However, a change in extracellular potassium levels may cause complex transient

changes in the membrane potential. When extracellular potassium level rises, according to Eq. (4.1)

it slightly depolarizes the cell (increases V ). The depolarization causes opening of the ion channels

n > 0, intracellular potassium flushes out according to Eq. (4.6), and the cell becomes strongly

hyperpolarized. Then the channels close, and the ion pumps restore the membrane potential to the

resting value. If the level of extracellular potassium continues to rise, the process repeats, and a

periodic sequence of depolarization pulses ensues (Fig. 4.2). If the level of extracellular potassium

slowly decreases, it slightly hyperpolarizes the cell, but the channels remain closed, and the ion

pump maintains the membrane potential close to the resting value. These transient changes in the

membrane potential lead to changes in intracellular energy levels (we can think of this energy as

PMF or ATP) and in turn lead to changes in the bacterial motility. We describe the energy dynamics
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by the simple relaxation equation:

dE
dt

=−αEV − γEE (4.7)

and postulate that the tumbling probability is downregulated by the energy:

P =
Kq

E
(E−E0)q +Kq

E
(4.8)

The strong anisotropy in the dynamics of the membrane potential for increasing and de-

creasing extracellular potassium leads to the chemotactic response of motile bacteria to the spatial

gradient of potassium (Fig. 4.2). Indeed, if a cell swims up the gradient, it experiences rising

levels of potassium and strongly hyperpolarizes, thus increasing the mean proton motive force

and the level of energy in the cell. Therefore, its tumbling probability diminishes, and the cell

continues to swim in the same direction. However, when the cell swims down the potassium

gradient, hyperpolarization does not occur, and the tumbling probability remains high.

To simulate bacterial motion, we adapted the mechanical agent-based model developed

in our earlier work [9, 10]. Each cell is modeled as a spherocylinder of unit diameter that grows

linearly along its axis and divides equally after reaching a critical length ld = 4. It can also move

along the plane due to forces and torques produced by interactions with other cells and its own

flagella-mediated motility (however, we do not model the flagella dynamics explicitly). The slightly

inelastic cell-cell normal contact forces are computed via the standard spring-dashpot model, and the

tangential forces are computed as velocity-dependent friction. During periods of directed motion,

the cell experiences a self-propelling force directed along its axis. During the periods of tumbling,

the self-propelling directional force is switched off, and the cell experiences a strong random torque

which quickly turns it in a random new direction. The probability of switching from directed motion

to tumbling for each cell is controlled by variable P that is computed from the electrophysiological
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Figure 4.2: Mathematical modeling of the motile cell response to extracellular potassium released
by a biofilm. (A) Extracellular potassium emitted from the biofilm over time. (B) Intracellular
potassium in motile cells over time. (C) Instantaneous membrane potential (MP) in motile cells
over time. (D) Average membrane potential in motile cells over time. (E) Average energy in motile
cells over time.

cell model. Biofilm-bound cells were assumed to be non-motile (no self-propelling force, no

tumbling torque).

The dynamics of extracellular potassium ion field were implemented via a reaction-diffusion

model where the biofilm cells played the role of sources and sinks of potassium periodically,

∂Ke(r)
∂t

= ∑
j

f (t)δ(r− r j)+Dk∇
2Ke(r) (4.9)
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Here Ke is the extracellular potassium concentration and r j is the location of the j-th cell, f (t) is

the periodic function describing periodic excretion (with rate αk) and absorption (with rate −βkKe)

cycles of extracellular potassium by the biofilm cells, and Dk is the potassium diffusion constant

[11].

Each simulated motile “cell” carried a set of equations above describing its membrane

potential dynamics in response to the local extracellular potassium concentration. The effect of the

motile cells on the extracellular potassium concentration was ignored. The parameters of the model

are shown in Table 4.1.

Table 4.1: Parameters for mathematical model.

Parameter Value Description Source
gK 36 mS/cm2 potassium ion channel conductance per unit area [3]
gL 0.3 mS/cm2 leak conductance per unit area [3]
C 1 µF/cm2 membrane capacity per unit area [3]

VK0 -688 mV basal potassium resting potential measurement
VL0 -5694 mV basal leak resting potential measurement
δK 1 mV/mM potassium sensitivity of potassium resting potential [2]
δL 18 mV/mM potassium sensitivity of leak resting potential [2]
Sth 0.04 mM metabolic stress constant [2]
Vth -148 mV membrane potential threshold measurement
α0 0.12 ms−1 maximal opening rate of potassium channel [3]
β 0.156 ms−1 potassium channel closing rate [3]
m 1 opening rate Hill coefficient [2]
σ 0.2 mV steepness of the membrane potential stress response [2]
γs 0.3 ms−1 stress relaxation rate fitting
αs 0.03 mM/(ms mV) membrane potential stress response rate fitting
η 300 scaling factor fitting
ε 7×103 (mM cm2)/(mA min) rate of potassium flux through the open channel fitting

βK 0.8mM/(min mV) potassium pumping efficiency fitting
V0 -148 mV pump resting potential fitting
αE 0.008 (min mV)−1 PMF accumulation rate fitting
γE 0.8 min−1 PMF relaxation rate fitting
E0 1.535 mM PMF basal value fitting
q 7 tumbling rate Hill coefficient fitting

KE 0.002 mM PMF threshold for tumbling rate change fitting
αk 64 mM/min extracellular potassium production rate fitting
βk 400 min−1 extracellular potassium consumption rate fitting
Dk 8×104 µm2/min extracellular potassium diffusion constant [11]
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We performed multiple simulations in a narrow channel of length 100 and width 20

(Fig. 4.3B). The biofilm consisting of approximately 200 cells was initially grown in the back

of the open channel (100 × 20 µm2), after which 100 motile cells were introduced into the open

space of the channel. Of course, this computational domain represents only a small portion of

the microfluidic chamber used in experimental studies, so our computational results only can be

interpreted on a semiquantitative level, as a way to reveal and explore the underlying biophysical

mechanism of the potassium-driven chemotaxis. For simplicity, we also neglected growth and

division for motile cells and only considered their motion in response to the external potassium

changes. We used periodic boundary conditions on the side walls for motile cells: when a motile

cell touches the left wall, it disappears and reappears at the right side and vice versa. The non-motile

biofilm cells were periodically switched between producing and absorbing potassium.

At each time step we computed the average concentration of potassium and the motile cell

density near the biofilm edge. The periodic oscillations of cell density are clearly seen, which

indicate that an oscillating source (biofilm) of extracellular potassium can periodically attract motile

cells by changing their membrane potential (Fig. 4.3B).

Our model was predominantly informed by measurements in stationary cells, providing

the opportunity to independently validate modeling predictions through additional motile cell

measurements. In particular, we tested the modeling prediction that motile cells moving along a

spatial potassium gradient are expected to have a similar membrane potential profile as stationary

cells responding to temporal changes of potassium (Fig. 4.3C). In other words, motile cells during

peak biofilm electrical activity should on average have a more negative membrane potential. To test

this prediction, we measured the distribution of membrane potential in motile cells specifically at

the attraction (peak) and non-attraction (trough) phases of the electrical oscillations in the biofilm.

As predicted by our model, we find that motile cells have on average a more negative membrane

potential in the attraction phase (Fig. 4.3D). These data show that similar to stationary cells, the
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Figure 4.3: Agent-based modeling of motile cell attraction driven by electrical signaling from
biofilms. (A) Top: schematic illustrating how extracellular potassium alters motility by changing
the membrane potential. Step 1: extracellular potassium depolarizes the cell. Step 2: depolarization
prompts adaptation by the cell leading to hyperpolarization. Step 3: hyperpolarization increases
the proton motive force, thus directing motility by altering the tumbling frequency of the cell.
Bottom: the computational model encompassing: (1) spatiotemporal reaction-diffusion model
for the extracellular potassium Ke dynamics; (2) intracellular electrophysiological model for the
cell membrane potential V , ion channel state n, metabolic stress S, intracellular potassium Ki, and
energy needed to drive the flagellar motor E; and (3) discrete biomechanical model for individual
cell motion influenced by their internal motility and interaction with other cells. The motility
of individual cells is affected by the internal cellular state E via the change of the probability of
tumbling. (B) Two snapshots of the combined agent-based simulation show increased density of
motile (red) cells near the biofilm during the peak of the attraction phase to the biofilm. Biofilm
cells are colored according to their membrane potential during each time point, where cyan
coloring indicates more negative membrane potential relative to black coloring. (C) Distributions
of membrane potential in motile cells from the computational model indicate that motile cell
membrane potential is more negative during the peak of the attraction phase to the biofilm. (D)
Experimental data confirm the modeling prediction that the distribution of motile cell membrane
potential (ThT, a.u.) is more negative during attraction to the biofilm compared to the non-attraction
phase. (E) Plot of motile cell density in the first 40 m away from the biofilm edge over time,
obtained from agent-based modeling simulations of motile cell attraction. The region closest
to the biofilm edge is located at the top of the plots for both (E) and (F) and distance from the
biofilm edge increases moving downward. (F) Experimental data show similar motile cell density
dynamics in the first 40 µm away from the biofilm edge.
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membrane potential of motile cells also depends on the electrical activity of the biofilm. In addition,

we find that the motile cell density profile as a function of time and distance from the biofilm is

consistent with modeling predictions (Fig. 4.3E and F). Together, these results further validate

the mathematical model and allow us to establish a coherent framework to interpret experimental

observations.

4.2 A stabilized microbial ecosystem of self-limiting bacteria

using synthetic quorum-regulated lysis

4.2.1 Two-strain co-culturing in experiments

Stability of an ecosystem cannot arise without mechanisms that prohibit the faster-growing

species from eliminating the slower one. Orthogonal quorum-sensing (QS) systems and a pop-

ulation control circuit with diverse self-limiting growth dynamics can be combined to engineer

two “ortholysis” circuits capable of maintaining a stable co-culture of metabolically competitive

Salmonella Typhimurium strains in microfluidic devices. Basically, the circuit exhibits oscillations

characterized by periodic lysis events, which are driven by activation of the Lux-controlled positive

feedback loop upon reaching a quorum threshold of AHL, as seen in earlier [12]. A lysis event

reduces the population dramatically, and a few survivors resume the process, starting again below

the quorum threshold. The Lux and Rpa systems are suitable for two-way orthogonal signalling

[13]. These components can be used to design synchronized lysis circuits (SLCs) [12] in two

bacterial strains, where each strain is programmed to lyse upon reaching a critical population density

(Fig. 4.4a). Through two orthogonal SLCs, two bacteria strains can be engineered to coexist in a

common environment for long time (Fig. 4.4b).
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a b

Figure 4.4: Experimental demonstration of long-term co-culture of competitive species with
unequal growth rates using signal orthogonal self-lysis. (a) Genetic diagram of a two-strain
ecosystem of self-lysing Salmonella constructed with two signal orthogonal QS systems, rpa and
lux. (b) Video stills of a representative co-culture of the Lux-CFP and Rpa-GFP strains with the
lysis plasmid. Addition of the lysis plasmid prevents either strain from taking over for the duration
of the experiment.

4.2.2 Modeling

We used agent-based modeling to visually show how the “ortholysis” strains might behave

with different QS parameters.

For the agent-based model, we use the same method as shown in the last section to simulate

bacterial motion. To describe the intracellular dynamics of each cell, we adapted the ordinary

differential equation model from [12]. Specifically, the intracellular dynamics are as follows:

Plux = α0 +αH
( Hi

H0
)m

1+( Hi
H0
)m

dHi

dt
= b

Ii

KI + Ii
+Dm(He(xi, t)−Hi)

dIi

dt
= CIPlux− γIIi

dLi

dt
= CLPlux− γLLi

Here the variables Plux,Hi, Ii and Li are the activity of luxI promoter, intracellular AHL, LuxI and
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lysis protein of the i-th cell. He(xi, t) is the extracellular concentration of AHL at the location of the i-

th cell. luxI promoter is induced by AHL. b Ii
KI+Ii

is the production term for AHL. Dm(He(xi, t)−Hi)

describes the exchange of intra- and extra-celluar AHL across the cell membrane. CIPlux and γIIi are

the production and degradation terms for LuxI. CLPlux and γLLi are the production and degradation

terms for lysis protein.

The extracellular AHL concentration He(x, t) is governed by linear diffusion equation

∂He(x, t)
∂t

= Dm ∑(Hiδ(x−xi)−He(x, t))−δHHe(x, t)+DH∇
2He(x, t)

In the simulation, we use 2D finite difference methods to describe the diffusion of AHL.

We implement the model in traps with diffrent side lengths (20, 40 and 60). To simulate the

lysis of each cell, we assume that when the concentration of lysis protein Li is above a threshold

Lth, the cell has a probability of Pr = pL(Li−Lth) per unit of time to lyse and once a cell lyses, it is

removed from the trap.

We chose model parameters to qualitatively fit the experimental results and the parameters

H0,m,b, pL were chosen to account for the differences of experimental measurements and dynamic

behaviors between Lux-CFP and Rpa-GFP strains. The parameter values for the Lux-CFP strain are

α0 = 0.1 (Lux promoter basal production); αH = 2 (Lux promoter AHL induced production); H0 = 1

(AHL binding affinity to Lux promoter); m = 4 (Hill coefficient of AHL induced production of Lux

promoter); b = 1.5 (AHL production rate); KI (Conc. of LuxI resulting half maximum production

of AHL); Dm = 10 (Diffusion constant of AHL across cell membrane); CI = 1 (LuxI copy number);

γI = 1 (Degradation rate of LuxI); CL = 1 (Lysis gene copy number); γL = 0.5 (Degradation rate

of lysis protein); δH = 0.1 (Dilution rate of extracellular AHL); DH = 65 (Diffusion constant of

extracellular AHL); pL = 0.3 (Probability of lysing); Lth = 1.6 (Threshold of lysis protein for lysis).

To simulate the constant-lysis Rpa-GFP strain, these parameters have different values:
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H0 = 0.2,m = 1,b = 0.8, pL = 0.03. Besides, Rpa-GFP strain’s growth rate is 10% larger than

Lux-CFP strain.

We first modeled a system where the QS parameters of the Rpa system were the same as

the Lux system parameters used in previous [12]. However, we used the experimental difference

in growth whereby the Rpa-GFP strain grows at 110% the rate of the Lux-CFP strain. With the

Lux-CFP strain seeded in a 10:1 ratio with respect to the Rpa-GFP strain in the model simulation,

the resulting dynamics show antiphase oscillations (Fig. 4.5a). Seemingly due to volume exclusion,

as shown by their fluorescence time series, the populations enter an antiphase pattern where the

strains switch off growing and lysing (Fig. 4.5c).

We then took into consideration the innate differences between the two QS systems [13]

by changing several of the Rpa-GFP strain’s QS parameters in relation to the Lux parameters

used. Furthermore, based on the observed phenotypic phenomenon, the probability of lysing was

reduced tenfold, which allows more AHL to build up and a constant lysis dynamic to develop

(Fig. 4.5b). The resulting dynamics were similar to the experimental observations, with a constantly

lysing Rpa-GFP strain maintaining the majority of the population share and the Lux-CFP strain

intermittently firing and lysing (Fig. 4.5d). To understand how these dynamics and the size of

the growth container affect stability, the agent-based model was run many times under different

conditions. For conditions where Lux-CFP is oscillating and Rpa-GFP is in constant lysis (lys/osc),

or where both are oscillating (osc/osc), ten simulations were carried out in volumes of 20, 40 and

60 a.u. each. As the size of the space increases, so does the average residence time of the co-culture

(Fig. 4.5e), suggesting that, as we expected, larger traps will have fewer issues with losing co-culture

to stochastic events.

101



Figure 4.5: Agent-based model elucidating experimental dynamics. (a) Video stills of a represen-
tative, virtual co-culture of two self-lysing strains both in the oscillatory regime of the lysis circuit
in a simulated trap of size 60. Scale bar at the top right of the micrograph indicates half of the size
of the trap. The number at the bottom of the micrographs indicates iteration time. (b) Video stills
of representative, model-generated video recreating experimental dynamics. The number at the
bottom of the micrographs indicates iteration time. (c) Time trace of the GFP (green) and CFP
(blue) fluorescence of the trap in a, over time. (d) Time trace of the GFP (green) and CFP (blue)
fluorescence of the trap in (b), as well as population of the Lux-CFP strain (black dashed line). (e)
From left to right: (1) GFP in constant lysis phase, CFP in the oscillatory phase in a trap with size
20; (2) GFP in constant lysis phase, CFP in the oscillatory phase in a trap with size 40; (3) GFP in
constant lysis phase, CFP in the oscillatory phase in a trap with size 60 (the video in b is in this
size trap with these lysing conditions); (4) both strains in oscillatory phase with trap size 60 (the
video in a is in this size trap with these lysing conditions).
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