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Foreword 

This is Part IV of the five-part report Construction of Mathematical 

Software. 

\' 
~ 

The following outline of the complete report lists the topics 

covered in each of the five parts: ,, 

Part I. General Discussion (F. N. Fritsch) 

1. Background Material 

2. Design Criteria and Tradeoffs 

3. Problems of Mathematical Software Distribution at LLL 

4. Evaluation of Mathematical Software 

5. Summary and Conclusions 

Part II. Some Examples of Mathematical Software 

1. Software for the Elementary Functions (R. E. von Holdt) 

2. Software for Input/Output Conversion (R. E. von Holdt) 

3. E!S~ACK: Software for the Algebraic Eigenvalue 

Problem (R. P. Dickinson, Jr.) 

4. Calculating Pade Approximants (R. L. Pexton) 

Part III. The Control of Error in the Gear Package for Ordinary 

Differential Equations (A. C. Hindmarsh) 

Part IV. Nonlinear Least Squares Codes (Brad Johnston) 

Part V. Some Application Codes 

1. Organization of the HEMP Code (Tokihiko Suyehiro) 

2. A Simplistic View of Light Diffusion and the MORSE 

Code (Nan Davies) 

3. An Examination of Some Table Searching Methods Found 

in Texts and in the Field (Glenn L. Hage) 
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CONSTRUCTION OF MATHEMATICAL SOFTWARE 
PART IV: 

NONLINEAR LEAST SQUARES CODES 

Introduction 

The present report is mostly a commentary on three nonlinear least 

squares codes taken from a book by Bevington. 1 Bevington's book has four 

nonlinear least squares codes; but one of them (CHIFIT) was left out of 

this report because, so far, I have been able neither to understand it 

completely nor to make it run on the computer. 

To really understand Bevington's book, one must have some back-

ground in statistics. Here I try to make it possible for one to use and 

understand the codes without such a need; one will end up knowing the 

meaning of the terms, but the interpretation of the real value of the 

results of particular least squares problems may still require the help 

of a statistician. 

Chapter 1. Some Elementary Statistics 

1. Basic Definitions 

Consider N elementary events that make up all the possible outcomes 

of some experiment. (The word "elementary" is used here to mean that 

these events are mutually exclusive and equally likely.) Let some higher-

level event A be defined by the occurrence of any one of some subset of 

NA events out of the set of N elementary events. The probability P(A) of 

A is then defined to be NA/N. A set of all mutually exclusive outcomes 

of an experiment is called a sample space. 

Consider two events A and B. The event "A and B" written An B, 

means that both events A and B occur. We will show that 
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P(A()B) = P(A) PA(B), ( 1.1) 

where PA(B) means the probability that B happens, given that A happened. 

Let NA, NB, and NAB be the number of elementary events that constitute 

A, B, and An B, respectively. Then 

P(AnB) 
NA NAB 

= N NA 

By definition, NAB/N = P(A n B). The meaning of PA (B) is that the sample 

space has been narrowed down to the elementary events in A. Therefore 

NA 8 /NA, and the result (1.1) follows. The events A and Bare 

said to be independent if the fact that A happened does not affect P(B). 

In terms of numbers of elementary events, the independence of A and B 

means that 

or p (B) 

so that 

P(AnB) = P(A) P(B). ( 1. 2) 

Equation (1.2) can obviously be extended to any number of independent 

events. One must not confuse mutually exclusive events with independent 

events. If A and Bare mutually exclusive events, then P(AnB) = 0. 

Any set of N observations y. is a finite sampling of a possibly 
1 

infinite set of observations; In terms df the infinite set of observations, 

one can define various statistical qu~ntities, such as the mean and the 

variance. The mean~ is the limit of the average values of the yi's. 

It is defined as 

~ = lim 1 
N __, N 

N 

L 
i=l 

Y.· • 
.1. 
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For any real problem we have only a finite number N of observations, and 

we define the sample mean y as 

N 

y 1 = N ~ yi. ( 1. 3) 

i=l 

We say that the sample mean is the best estimate E of the mean, and we 

write E(JJ) = y. The deviation d. of the observation y. can be defined with 
1 1 

respect to the mean o~ with respect to the sample mean. Usually, we take 

the deviation to be di = Yi - y. 

The variance of the observations has to do with the spread of the 

observations about the mean. Many sets of observations could have the 

same mean. Some could all be clustered very close to the mean, while i 
! 

others are spread out quite far from the mean. The more spread-out the 

observations~ the less confidence one has in the sample mean being a 

good estimate of the true mean. 

N 
lim 1 

= 
N-+oo N L 

i= 1 

The variance o 2 is defined as y 

2 
(y i - J..l) • 

The standard deviation oy of the observations is defined as the square 

root of the variance. As we will see later in Eq. (1.23), the uncertainty 

in determining the mean is proportional to the standard deviation. 

For a finite number of observations we must define the sample 

variance. To begin with, if we knew the mean, we could define the sample 

variance as 

N 
1 

= rr- L 2 
(y. - J..l) • 

1 
( 1. 4) 

i=l 

But we do not know the mean J..l; we know only the sample mean y. The fi~st 

thing that comes to mind is to replace J..l in Eq. (1.4) by y. However, 

we must look a little deeper to get the correct formula. 
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N 
It turns out that, for N observations, y., the sumS: 1: 

1 
i=l 

is minimized when ~ = y. This can easily be seen by calculating 

setting it equal to zero, and solving the resulting equation for ~. 

Therefore, we would expect that replacing ~ in Eq. (1.4) by y would lead 

to an underestimate of the variance. To make up for this sum being 

·too small, we must also reduce N in the factor 1/N. This is done by 

replacing N by the number of "independent" observations (called the 

number of degrees of freedom), that is, the number of observations in 

excess of those required to determine an estimate for the unknown quan-

tity ~. At least one observation must be made to g~t this estimate. 

Therefore, we replace N in Eq. (1.4) by N-1 and define the sample 

variance 

N 

0~ = N ~ 1 L 
i= 1 

- 2 
(y i - y) . ( 1. 5) 

To make this formula more plausible, consider what would happen if we 

had just one observation and used Eq. (1. 4) with ~ replaced by y. We 

would take y to be equal to this observation, and get a zero deviation, 

which would give zero as the estimate of the variance; this would, in 

general, be a very poor estimate indeed. However, by having the factor 

1/(N-1) in front of Eq. (1.5), the formula becomes indeterminate, as it 

should be in this case. As N becomes larger, Y ~ ~. and the sample 

variance approaches the variance. 

Many observed physical quantities are more or less symmetrically 

distributed about their mean. Next we consider an important class of 

distributions of observations that are symmetrical. Some of the obser

vations are too large and some are too small; but, for a large enough 

set of observations, there are about the same number of small ones 

as large ones. 
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2. The Gaussian Error Distribution 

Suppose ~ is the observation spacing, in the sense that a plot 

made to the following prescription has a "reasonab leu shape. There is a 

total of N observations. 

N1 of the yi's are in the interval (y-~, y+~) 

{ 

N. 
1 

2 
N. 

1 

2 

" 

" 

" 

" 

" " " 

" " " 

" " " (y-i~, y-(i-1)~) 

" " " 

Then make a plot (histogram) as in Fig. 1.1, where 

From the definition of N., it is clear that [N. = N, where the sum is 
1 1 

( 1. 6) 

taken over the number of rectangles on either side of the mean. The area 

under the histog~am is equal to unity, since 

2~[h. = 1. (1.7) 
1 

In the limit, as N + ~ and ~ + 0, a smooth bell-shaped curve results, 

0
as shown in Fig. 1.2. If there are numbers ~ and a such that the equation 

of the above curve is given by 

h (y) = 1 
2 

e -KY~v) ( 1. 8) 

then the experimental points are said to follow the Gaussian error dis-

tribution. 
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Fig. 1.1 Histogram of experimental observations. 
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Fig. 1.2 Gaussian error distribution. 
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Return to the definition of the mean given by Eq. (1.3). Suppose 

the set of N observed values y. contains only N < N distinct y. 's. Let 
1 1 

these distinct values be denoted by yJ., and let N. of they. 's be equal 
J 1 

to yj. Then the mean y could be written 

N 
1 I y .N. y = N' = 

J J 
j=l 

N 

2 
j=l 

P{y.)y., 
J J 

( 1. 9) 

N. 
where the sums are taken over all the distinct values y., and P {y .) = ...1. 

J J N 

is an estimate for the probability that y. will be observed. 
J 

In the same way, the variance cr~, defined by Eq. {1.4), can be 

written (we must here use ~ in place of y) 

N 

0'~ = I (1.10) 

j=l 

If we had available to us an infinite number of observations of y, then 

.these sums would be replaced by integrals, and our sample estimates of 

statistical quantities would be replaced by their true values. In this 

case, Eqs. (1.9) and (1.10) become 

y ::i looy f(y) dy (1.11) 

2 Loo(y 
- ~) 2 f(y) dy. O'y = (1.12) 

In these formulas, f(y) dy is the probability that y will have a value 

between y and y + dy, and f(y) is called the density function. 

From the way h(y), given by Eq. (1.8), was constructed, it follows 

that, if the experimental points follow the Gaussian error distribution, 

then 

f(y) = (1.13) 
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It turns out, as one would expect, that, for th~ Gaussian error distri-

bution, the mean and variance are the ~ and o, respectively. that appear 

in Eq. (1.13). To prove this, one has only to put Eq. (1.13) into Eqs. 

(1.11) and (1.12) and perform the indicated integrations. 

There are many other distribution functions, but for least squares 

theory, the Gaussian is the most important. 

Suppose y is an observation from a "parent" (or "true") distribution 

'that is Gaussian with mean J.l and standard deviation o. From Eq. (1.13) the 

probability P that the observed value of y will be between y - d and 

y + d, for any fixed d > 0, is given by 

p =i~+d 
J.l-d 

1 - }(Y~~ l 
e d y = ___,.;;1== 1 d 

o{"i; 
d 

We have used the obvious change of variable ~ = y - J.l. 

- lx(~f 
e d~. 

Therefore, the probability of y falling within one standard 

deviation of J.l [this means y is the interval (~-0, lJ+O)] is given by 

P = a~Jo 
-0 

= 

If we make the change of variable t 1 S. , we obtain y;-d 

dt 0.68 

3. Many Observations of One Thing vs One Observation of Many Things 

Up to this point, we have been considering many observations of 

one thing. For example, one could make many measurem~nts of the length 

*see Ref. 2, p. 297. 
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of a desk top. Then one could calculate the mean by using Eq. (1.3) and 

the variance by using Eq. (1.5). Now we consider a different problem, 

where one variable depends on another. Suppose, for example, we measure 

some time-dependent quantity. We look at the clock, and read a dial on 

some instrument •. Assume the time measurements are exact, but there are 

statistical fluctuations of the dial readings of the instrument. We end 

up with a set of pairs of quantities 

the ith observation, and f(t.) is the 
1 

where t. is the time of 
1 

corresponding dial reading. Because 

there are statistical fluctuations in the dial readings, we must have some 

f (t.) . 
1 

2 
0 f(t.) 

1 
by using Eq. (1.5), we must have many dial readings for each t., not . 1 

just one. Therefore, one must use some estimate for these variances, 

based on the known accuracy of the instrument, etc. The lack of good 

variances is one of the inherent weaknesses of least squares theory. 

Another problem with least squares is that the entire structure depends 

on the dial readings having a Gaussian distribution; and, more often than 

not, one does not know the true distribution. The method of least squares 

is often used, despite these shortcomings, to fit functions to observa-

tions and the value of the results must be judged with these limitations 

in mind. 

4. The Propagation of Errors 

Suppose the dependent variable y is a function of M independent 

variables u1 ,u2 , ... ,uM, so that (for the ith observation) 

(1.14) 

If u 1 ,u 2 , ... ,uM are the means of the independent variables, then the 

most probable value of y is given by 

-10-



y (1.15) 

i i i I 
If more and more observations u 1 ,u2 , ... ,uM were made, giving many dif-

ferent values of yi' the mean of these yi 's would approach the mean given 

byEq. (1.15). 

The sample variance o~ of y can be found by using Eq. (1.5) where 

N sets of data, i i i 
u 1' u2 ' ... 'uM , i = 1,2, ... ,N, were taken. The deviations 

i i yi - y can be expressed in terms of the deviations u 1 - u1 , u2 - u2 , ... , . 

using the first part of Taylor's series: 

M 

~ L (1.16) 

k=l 

Putting Eq. (1.16) into Eq. (1.5) gives (see Appendix A) 

M 

~L (I. 1 7) 

k=l 

If k ~ £, we define the sample covariance between the variables 

uk and u t as 

N 
2 1 L i 

uk) 
i 

ut) (J - N-1 (uk - (ut -
ukut-

i= 1 

(I. 18) 

When t k, the variance 2 is given by 2 = (J 0 
uk ukuk 

Therefore, Eq. (1.17) 

can be written 

(1.19) 

The is the average of cross terms involving products of 

deviations of uk and u£ simultaneously. If the fluctuations in uk and u£ 

are uncorrelated, there would be about as many negative terms in Eq. (1.18) 

as positive ones, and we would expect the covariance to be small in 

2 comparison with the variances cru 
k 

This assumption is often 
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made when dealing with the independent variables of a least squares 

problem. 

Therefore, if the variables u 1 , u2 , ... are uncorrelated, then 

(1.20) 

5. The Mean and Its Estimated Error 

If the observed y. 's follow the Gaussian error distribution and each 
]. 

j. has associated with it a standard deviation cr., one can show, using 
]. ]. 

the method of maximum likelihood (see Ref. 1, pp. 69-70), that the mean 

y is given by 

N 

('~;) 2 
i= 1 y = N 

(~;) 
(1.21) 

i?l 

By using Eq. (1. 20) we can find an expression for the variance of 

the mean. Since y is a function of the observed y. 's, Eq. ( 1. 20) gives 
]. 

(1.22) 
i=l 

If the uncertainties of the data points are equal, so that cri a, then 

by using Eq. (1. 3) one gets 

2 a . (1.23) 

If the uncertainties are not equal, one uses Eq. (1.21), and the result 

is 

i= 1 (

1ai) (1.24) 

-12-
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Chapter 2. The Least Squares Problem 

1. The Principle of Least Squares 

Suppose we have made N observations y., each corresponding to some 
1 

variable x .. The x. 's are assumed to be exact, and let cr. be the standard 
1 1 1 

deviations of y.. Let y = f(x, t) be a mathematical model for a physical 
1 

experiment, where~ is a vector of parameters we wish to find. Assume 

that the observations follow the Gaussian error distribution. This means 

that if we took an infinite number of observations y . . , j = 1,2, ... for 
1J 

each x., instead of just one, then these y .. 's would be symmetrically 
1 1J 

scattered about their mean y. and their histogram would become a bell-
. 1 

+ 
shaped curve as in Fig. 1.2. Suppose now that a is the parameter vector 

corresponding to these yi's. This vector is called parent parameter vector. 

But in fact we have made only one observation yi for each xi, and we 
+ + 

want to find a parameter vector a so that f(x. ,a) will be the best esti-
1 

mate for the mean yi. The tool we use to accomplish this is the method 

of maximum likelihood, which is the assumption that the observations Yi 
+ + 

are better approximated by f(x. ,a), where a is the parent parameter 
1 

vector, than by any other parameter vector. To use this idea, we calculate 

the probability of getting our actual observations yi and then maximize 

this probability with respect to the parameter vector. 

From Eq. (1.13), the probability Pi for getting the observed value 

* yi is given by 

p. = 
1 

K 
1 e 

cr ,vz;r 
1 

( 2. 1) 

+ 
where we have replaced the mean y by f(xi,a), and K is the appropriate 

constant of proportionality. We assume that all our observed Yi's are 

* Actually the probability of getting a yi between Yi and Yi + dyi. 
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independent, so that, by extendtng Eq. (1.2) to any number of independent 

events, the probability of getting the complete set of yi's is equal to 

the product of the individual probabilities. We therefore get 

N -+ 2 
N 

1 :E c--f(x.,a)) 
-+ n ( aj}z;) e 

-z- i=l 1 1 
( 2. 2) P(a) = K a. 1 

j=l 

-+ 
where we have written P(a) to indicate the dependence of the probabi 1i ty on 

the parameter vector, and the K in Eq. ( 2. 2) is not the same as in Eq. ( 2. 1) • 

-+ • 
Using the method of maximum likelihood, we maximize P(a) w1th respect to 

-+ 
a. The first term in Eq. (2.2) is a known constant. Therefore, to max-

-+ 
imize P(a), we minimize the sum in the exponential. We define this 

quantity (chi-squared) x 2 • as follows: 

N 

L 
i=l 

1 -+ 2 
-

2
- (y. - f(x., a)] . 

a. 1 1 
1 

( 2. 3) 

We have shown therefore that, if the observed data y. follows the Gaussian 
1 

error distribution, then the best parameter vector t is the one that 

minimizes Eq. (2.3). This is called the principle of least squares. 

2. Some Statements About the Results of a Least Squares Calculation 
+ + 

Given a function f(x,a) where a is a vector of parameters, N data 

points (x. ,y.), and standard deviations a. of the y. 's, we have seen 1 1 1 1 

that the least squares problem is to find; that minimizes x2
• given by 

Eq. (2.3). 
-+ 

If a has n parameters, then the number of data points (obser-

vations) minus the number of parameters, N - n, is called the number 

of degrees of freedom. It can be shown that under certain circumstances 

the expected value of x2 • E(x 2), is equal to the number of degrees of 

freedom. 

N - n ( 2. 4) 

-14-
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(see Ref. 3, Section 12). However, we can make this seem plausible by 
N 1 

noting that, on the average, IY· - f(x. ,!) I::::: o., so that .L -2 [y
1
. 

1 1 1 1=1 0. 
-+- 2 

- f(x.a)] ~ N, rather than N- n. 
1 

1 
Suppose, however, that there were 

just as many parameters as observations. 2 Then we would expect X to be 

very small. This is another way of saying that one can usually fit a 

function of n parameters through n points. This is one argument for 

putting N- n in place of N in Eq. (2.4). If N > n, which is the usual 

case, then n of the observations would be taken up in determining the n 

parameters, and the remaining N - n parameters would be available to 

allow some flexibility in this determination, in order to minimize x 2 . 

Thus, statistically one has only This; 
i 

suggests the introduction of the 

N - n parameters to work with. 

reduced x 2 , defined as x2 /(N-n). r 
If the 

observations are Gaussian, and the standard deviations a. of the y. 
1 1 

correspond to experimental reality, then we would expect that, for a good 

2 
fit, Xr 1. 

Suppose, however, that for some least squares problem x; is either 

much larger than 1 or much smaller than 1. What are we to conclude then? 

(1) 

Roughly, the implications are as follows. 

2 
xr too large: 

(a) The model was wrong, which means that the functional relation 
-+-

y = f(x,a) was not correct. 

(b) The model was correct, but the estimates of the sta~dard devia-

tions were too small. This means that we overestimated the 

accuracy of the experiment. 

(2) x; too small: 

(a) There were too few data points for the number of parameters to 

be found. 

(b) The estimates of the standard deviations were too large. This 

means that we underestimated the accuracy of the experiment. 

-15-
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3. The Difference Between Linear and Nonlinear Least Squares Problems 
-+- -+- n 

If the function f(x,a) is of the form f(x,a) = L a. F. (x), then we 
i=l 1 1 ..... 

have a linear least squares problem. If f(x,a) is not of this form, we 

have a nonlinear least squares problem. Some nonlinear least squares 

problems can be changed into linear ones, for example, by taking the 
..... 

logarithm of both sides of y = f(x,a). The difficulty with doing this is 

that the resulting least squares problem is really a different problem, 

in the sense that the weighting is changed. 

4. The Solution of the Linear Least Squares Problem 

Given N data points (x. ,y.), standard deviations cr. of they. 's, 
1 1 1 l. 

and the fitting function 

n 

f(x,;) = L 
j=l 

a.F.(x), 
J J 

(the X. 1 S 
1 

..... 
are assumed to be exact), we must find a so that 

N 
1 ..... 2 

- 2 [y. - f(x. ,a)] 
cr I. I. 

i= 1 i 
2 

is minimized. 

(2. 5) 

( 2. 6) 

Minimizing x
2 

with respect to~ requires ax 2;aaj = 0, for j = 1,2, 

... ,n. Doing this gives the normal equation 

e = 
..... 

aa, 

where B is the vector with 

N 

2 

and a is the symmetric matrix with 

-16-
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N 

~ 1 
L2 
i=l cri 

One can also show that 

1 
= 2 

F . (X • ) Fk ( X . ) • 
J 1 1 

(2.9) 

* (2. 10) 

The matrix a, given by Eq. (2 .10), is called the curvature matrix. The 

.solution of Eq. (2.7) is 

(2.11) 

If we define the matrix e: to be the inverse of the matrix a, then Eq. (2.11) 

becomes 

-+ 
a = e:e. 

From Eqs. (2 .12) and (2. 8) one gets 

n 

i {·jk t[ a! Y i Fk (xi)]} a. = L e:jkt\ = 
J 

k=l k=l 

5. Weights and Errors in Linear Least Sguares Problems 

One can weight the data in many different ways for 

problem. By this we mean that x2 could be defined as 

N 
x2 ~ w. [y. -+ 2 - f(xi,a)] , 

1 1 

i=l 

where w. is a given positive quantity and is called the 
1 

now distinguish three types of weights as follows. 

Case I. w. 
1 

2 2 1/cri, where cri is the variance of yi. 

(2.12) 

(2.13) 

a least squares 

(2. 14) 

weight of yi. We 

* 1 Note that, without the factor 2, a would be the Hessian matrix. See 
Ref. 4, p. 39 ., 
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Case II. The weights w. are chosen to be certain values for reasons 
1 

peculiar to some ~roblem. 

Case III. The weights are unknown, so one sets w. = 1. 
1 

We now derive formulas for the statistical quantities appropriate 

for these three cases, and it will make the discussion easier if we intro-
..... 

duce some additional riotation. There are n parameters a; they are dis-

tinguished by subscripts ai. Different experimental determinat~ons of 

them are distinguished by superscripts. The same goes for the y's: each 

xi, assumed to be exact, corresponds to a yi' and m* different expe~imental 

determinations of yi will be denoted by y{, j = 1,2, ..• ,m • 
..... 

If there were m experimental determinations of a, then from Eq. 

·· (1 .18) the sample covariance o 2 between a. 
ajak J 

and ak is given by 

m 

02 1 2 = iii-T aj ak 
i=l 

(2.15) 

where trj and ak are the mean values of these parameters. The errors in 

the parameters come from errors in the y's. Expanding in a Taylor 

series, as we did in Eq. (1.16), we get 

i a. - a. 
J J 

i 
(yR. - yR. ) • (2.16) 

The notation on the right side of Eq. (2 .16) means that the partial 

derivatives are to be evaluated at the mean values of the y's. One gets 

a better understanding of the notation above by knowing that, as the 

number of experimental determinations of the y's gets larger and larger, 

* One should get clearly in mind that there are 

N data points,(x. ,y.) 
1 1 

n parameters, and 

m different deter~inations of the N data points. 

Therefore, m least squares problems c~uld be solved. 

-18-
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Putting Eq. (2.16) into Eq. (2.15). one gets (see Appendix A) 

N N 

=I I 
s=l R.=l 

a a. a ak 
_j__ 
ayR. ays ' 

(2.18) 

2 
where crR.s is the covariance between yR. and ·ys. If we assume that the 

fluctuations in yR. and ys are uncorrelated, then 

{

cri1 = cr 2
1 , the variance of y

1
, when R. = s 

cr2 = 
R.s 

0, when R. # s. 

Then Eq. (2.18) becomes 

When we set j = k in Eq. (2.19), we get the variance 

2 2 
cr = cr a. a. a. 

J J J 

~ 2(~ )2 :::: L crt ay
1 

· 
R.= 1 

Case I 

of a., 
J 

(2. 19) 

given by 

(2.20) 

The weights for Case I are given by wi = l,b ~ 
1 

From Eq. (2.13), 

aa. 

ar7 
n 

= L 
s=l 

(2.21) 

so that Eq. (2.19) becomes 

N (" ) •,c•,J)( i Fp(x1 J) cr2 
t1 cri ~1 

1 - e:. e:kp 2 aj ak - JS 
R. p=l crR. 

n n( (x1 ) F p (x1)) = I ~1 R.~l 
_!p e:. e:k . 
cr2 s JS p 

s= 1 R. 
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From Eq. (2.9), this becomes 
n n n ( i <;s"sp) Ekp 

n 
02 ~·2 2 a. e: . e:k 2 2 ojpe:kp' aj ak sp JS p 

s=l p=l p=l s=l p=l 

= (2.22) 

where o. 
JP 

is the Kronecker delta function. (We have used the fact that 

it he inverse of a symmetric matrix is also symmetric.) 

When j = k, one gets the variance of aj, 

(2. 23) 

Case II 

In case II, the w.'s are given positive numbers, x2 is given by 
l. 

Eq. (2.14), and f(x,a) is given by Eq. (2.5). The normal equation is 

+ + B = a.a, where 

N 

Bk = 2 wiyi Fk(xi) (2.24) 

i=l 

N 

Cl.jk 2 W. Fj(xi)Fk(xi). 1 
(2.25) 

i=l 

If e: is the inverse of the a matrix, then the solution to the 

normal equation is given by 

n N 

aj = 2 e:jk 2 wiyi Fk(xi). (2.26) 

k=l i=l 

From Eq. (2.26), one can get an expression for aaj/ayk' which is 

n 

= 2 e: . w k F ( xk) . 
JP p 

(2.27) 

p=l 
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We must put Eq. (2. 27) into Eq. (2 .19) to get an expression for 

cr 2 , but Eq. (2.19) requires the variances cr 2
1
., of the y

1
. 's, which we do 

aj ak 

not have. To make the necessary approximations for these variances, we 

will consider how the weights should be chosen. 

For any number of reasons, weights are assigned certain values in 

least squares problems; but, if one wishes any statistical statements 

about the results~ he should pick the weights so that the absolute values 

of the terms in the sum [Eq. (2.14)] are all more or less the same. There-

fore one must pick the weights w. so that, on the average, 
]. 

Define the weighted difference ei as 

Then Eq. (2.14) becomes x2 

..... 
y. - f(x. ,a) = 

1 ]. 

N 

= 1: 

e . 
]. 

i=l 

so that E(y.) 
]. 

..... 
= f(x.,a) implies 

]. 

E(e.) = 0. 
1 

2 e .. 
]. 

From Eq. (2.29), 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

When the superscript notation, with m experimental determinations, is 

used, the variance 0 f y. ' 
]. 

which we write as var(yi), is given by 

m ·c 2 
var(y.) lim 1 I (YI ..... )2 lim 1 L ei = - - f(xi a) = -

j=l Vw;) ]. m-+a: m m-+a: m 
j=1 
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= 
1 

w. 
1 

m 

lim .!. ' 
m-+a: m ~ 

j=l 

1 var(e.). w. 1 
(2.32) 

1 

Note that we have used Eq. (2.31). We do not know the variances of the 

ei's, so we use Eq. (2.28) and assume they are all equal to the variance 

of some single quantity e, and we get 

N N 
var(e.) var(e) - 1 

~ [ei 
2 1 

.~ 
2 - - E(ei)] = e. - - N . 1 N - n - n 1 

i= 1 1= 1 
1t 

1 2 2 (2.33) N X - s • - n 

where x2 is given by Eq. (2.14), and s 2 is defined by Eq. (2.33). From 

Eq. (2.32), one gets 

~=1 ~1.). 
1 w. 

1 

(2.34) 

where the "hats" mean "an approximation to." Then, from Eqs. (2.33) and 

(2.34), one gets 

(2. 35) 

Returning to Eq. (2.27), we put this expression into Eq. (2 .19) 

and replace ai in the latter formula ./2" by cr1 given by Eq. (2.35): 

N 

[Ct E jpw t Fp (xt )) Ct EkqwtFq(x•))] 
(12 52 ~ 1 

~ 

ajak 
i= 1 

w.t 

1t 

In this formula, there are N-n degrees of freedom. It is similar to 
Eq. (1.5), where there were N-1 degrees of freedom. One should notice, 
however, that Eq. (1. 5) comes from many observations of one thing, but- in 
Eq. (2.33) there is one observation of many things. The complete justi
fication of Eq. (2.33) requires more statistical background than is 
assumed in this report. 
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Using Eq. (2 .25) and the fact that e: is the inverse of a, one gets 

Putting j = k, we get the variance of a. 
J 

where 

(12 
a. 

J 

2 
~ s € ••• 

J J 

Case II I 

In Case III, wi = 1 for all i, and the normal equation is e = 

N 

'\ = L 
i=l 

N 

y.Fk(x.), 
1 1 

ajk = L Fj(xi)Fk(xi). 
i=l 

(2.36) 

( 2. 3 7) 

-+ 
aa, 

(2. 38) 

(2.39) 

If e: is the inverse of the a matrix, then the parameter vector ~ is 

given by 

(2.40) 

In this case, we do not have variances of the observed data, so that, 

2 2 2 2 following Case II, so set ai =a ::::: s, where s is given by Eq. (2.33), 

with thew. 's = 1. 
1 

2 Using Eq. (2.19), replacing a. 
1 

by 

culate the partial derivatives, we get 

2 
s e:.k 

J • 

-23-
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s • and using Eq. (2.40) to cal-

(2.41) 



so that the variance of a. is 
J 

2 2 
aa. = 0 a. a. 

J J J 
(2.42) 

[Note that Eqs. (2.37) and (2.42) are the same as in Ref. 5, p. 18, Eq. (5)]. 

6. The Variance of the Observations 

In Cases II and III, the variances of the y's were not given, but 

they were 2 2 approximated by cr. = (1/w.)s 
1 1 

in Case II and cr~ = s 2 (with the 
1 

w. 's = 1) in Case III. Using these results, we got approximations for the 
1 

covariances of the parameters. One can go back and get another approxima-

tion for the variance of the y. 's. Thinking of the y's as being functions 
1 

of the a's, one uses Eq. (1.19) and gets 

cr~ = L L 
k=l R.=l 

-+ .... 
d[f(xi,a)] a(f(xi,a)] 

a ak a a R. 
(2.43) 

n n 

For Cases II and III, one uses Eq. (2.41) for cr 2 in formula (2.43), and 
akaj 

the result is 

n n 

L L Eki 
k=l i=l 

-+ -+ 
a[f(xi,a)] a[f(xi,a)] 

aak a a R. 

From Eq. (2.5), 
-+ 

we find that a[f(xi,a)]/aak Fk (xi), so that 

( 2 • 44) 

k=l i=l 

This is the same formula that is given by Varljen [Ref. 5. p. 18, Eq. (7)]. 
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Chapter 3. The U~ivariate Algorithm* 

1. Introduction 

The univariate method of finding the least squares solution for the 

parameter vector ~ consists of changing one parameter at a time. There 

are many variations of the univariate method, depending on how the param-

eter changes are made. The algorithm described below takes a minimizing 

step in the sense that x2 is minimized with respect to each parameter 

separately. 

2. The Basic Procedure 

(1) First guesses for the parameters a. and the absolute values of 
J 

increments 6a. are provided by the user. One 
J 

incremented by an amount 6a., where the sign 
J 

code so that x2 decreases. 

parameter a. at a time is 
J 

of 6a. is chosen by the 
J 

(2) The parameter aj is repeatedly incremented by 

to increase. 

6a. until x2 starts 
J 

. 2 
(3) After the relative sizes of the three X 's corresponding to the 

a.'s are as in Fig. 3.1, one fits a parabola through the three points 
J 

labeled 1, 2, and 3 on the curve. Point 3 must be higher than point 2, 

but it does not matter whether it is higher or lower than point 1. We 

then find the a. corresponding to the minimum of the parabola. 
J 

(The code 

does not test to see if the value of x2 at the parabolic minimum is less 

than at point 2, but this should be done.) 

(4) x2 is minimized for each parameter in turn, until all the parame-

ters have been modified once. In two dimensions (that is, for two 

parameters), this corresponds to one zig-zag. Control is then returned 

* 1 Bevington calls this algorithm the grid search, and the name of his 
code for this method is GRIDLS. 
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a. ( 1) 
J 

a. ( 2) 
J 

a. (3) 
J 

f--~aj --f--~aj •I 

Fig. 3. 1. x2 
as a function of a.. The remaining parameters are fixed. 

J 
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to the main code, which must call GRIDLS as many times as needed for 

convergence. 

A property of any algorithm that takes minimizing steps is that the 

minimum points occur where the X 2 contours are tangent to the direction of 

search. This is true regardless of the dimensionality of the space and 

the direction of search. For a proof of this, see Ref. 4, Section 2.7. 

This method is quite dependent on scale changes and rotation of axis. 

2 Consider Fig. 3.2, where contour curv~s for X are shown for a least squares 

problem in two dimensions. 

If the univariate search were started at point A, where neither of 

the directions of search is "downhill," the algorithm could not get started. 

If the axis were rotated through an angle a, then the minimum point M would 

be reached in one step. If the axis were not rotated, but the scale 

changed so that the contours were shortened in the direction along the 

ridge, as shown in Fig. 3.3, then the univariate method could get started. 

This is because the X 2 contour through point A in Fig. 3. 2 lies within a 

right angle, and the contour in Fig. 3.3 goes outside a right angle. There-

fore, a good univariate algorithm should have a scale-change option. The 

code described below does not have this option. 

The univariate method would seem to be appropriate when the variation 

of x2 with respect t~ each parameter were more or less independent of the 

values of the other parameters. This is almost never the case, but this 

independence is assumed to get a formula for the standard deviations of 

the parameters, Without doubt, this code usually gives a poor estimate 

of these standard deviations. The grid search method usually conveTges 

very slowly toward the minimum, but the simplicity of the calculations 

often compensates for this inefficiency. 

3. Powell's Modification of the Univariate Search 6 

Before going on with the detailed discussion of the flow chart for 

Bevington's code GRIDLS, it is appropriate to point out that better methods 
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c 

/ 
/ 

Fig, 3.2. Contour curves for X2 in two dimensions. The X2 surface has a 

ridge ilong the dotted line, where the direction of the contour 

curve is discontinuous. Point A is the starting point, and M 

is the minimum point we wish to find. 

N 
c 

A 

Fig. 3.3. The effect of a change of scale. 

-28-



for solving least squares problems, when derivatives are not used, are 

extensions of the simple univariate method. The simple search described 

above often becomes bogged down, but it reveals a pattern of directions that 

point toward the minimum. For illustrations of this phenomenon, see Ref. 4, 

Section 2.5. One can move in the direction of this pattern and speed up 

the minimization process. Powell's method uses conjugate directions (Ref. 4, 

Section 2.6), the nature of which will not be defined here. By using 

conjugate directions one ensures that the minimum of a quadratic function 

will be reached in a predetermined number of steps, where this number is 

related to the number of parameters. Quadratic functions are important in 

minimization •ethods, not so much because ~hey frequently occur, but because 

many functions are closely approximated by a quadratic near their ~inima. 

The first iteration of Powell's algorithm is the same as the first 

iteration of the univariate algorithm (one iteration being to search on 

each parameter just once). In the parameter space, each parameter can 

be thought of as an independent direction. The direction of the net result 

(on all parameters) of the first iteration is made one of the new inde

pendent directions for the next iteration. The direction that is thrown 

away, in order to add the new direction, is the (old) direction that caused 

the largest decrease in X2 . Since this is usually the major component of 

the new direction being added, doing this retards the build-up of linear 

dependence among the parameter directions. 

4. Usage of Subroutine GRIDLS 

The calling sequence for GRIDLS is as follows: 

CALL GRIDLS (X,Y,SIGMAY,NPTS,NTERMS,MODE,A,DELTAA,SIGMAA,YFIT,CHISQR) 

It should be emphasized that only one step is done per call to the sub-

routine. (Each parameter is modified just once.) 

(1) Input Variables 

X: array of independent variables x .. 
l. 

-29-



•· 

Y: array of dependent variables y .. 
1 

SIGMAY: array of standard deviations of the y. IS • 
1 

NPTS: number of pairs of data points. 

NTERMS: number of parameters. 

MODE: determines the method of weighting the 1 east squares fit. 

+1} {w (i) = 

0 + w(i) = 
-1 w(i) 

:./SIG~AY(i)''2} 

1/y(i) 

for all 

i = 1, NPTS. 

A: array of parameters. (Must start with approximate values.) 

DELTAA: array of parameter increments. 

·(2) Output Variables 

A: array of final values of parameters. 

SIGMAA: array of standard deviations of parameters. 

YFIT: array of calculated values of the dependent variables. 

[YFIT(i) 
+ + 

f(xi,a), where a is the final parameter vector.] 

2 CHISQR: Xr for the fit. 

5. The GRIDLS Flow Chart (Fig. 3.4) 

The variable NFREE = N-n, which is the number of degrees of freedom 

in the fit, must be greater than zero. The user must supply a function 

subprogram FUNCTN (X, I ,A) that calculates f(x., ~). The value of x2 is 
1 

evaluated with the function subprogram FCHISQ (see Ref. 1, p. 194). FCHISQ 

calculates 

N 
1 2 = N-n 

i=l 
+ 

[Note that f(x. ,a), rather than x. 
1 1 

and 
+ 
a, is input to FCHISQ.] 

* There are physical processes where the number of successes is much 
smaller than the possible number of events. An example is the counting of 
radioactive decay rates. For these problems, one uses the Poisson distri
bution (see Ref. 1, p. 36) rather than the Gaussian distribution, and it 
is often true that the uncertainty in each measurement is related to the 
magnitude of the thing observed. But just how are we to relate cr. and y.? 
The answer is that the Poisson distribution automatically gives t~e stan~ 
dard deviation; it is given by cr.=·~ (see Ref. 1, p. 109). 

1 v J i 
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11 NFREE = N PTS - NTERMS 

~o 

20 ---l 

21 

<o 

"* Interchange 
2 2}----......l 

X 1 and X 
2 

Box 21 means to calculate 

i and define it to be xf 

=0 

<0 
71 X 2 _X 2 

1 - 2 

X~ =X~ 

Fig. 3.4. Flow chart for the subroutine GRIDLS (see Ref. 1, p. 213). 
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,olio .. 

81 Find min. of A{j) by fitting a parabola 
through three points, using (3.1 ). 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

90 
_____ j 

*At this point, there is an unnecessary calculation of YFIT(i}, i = 1, NPTS. 

t If the search 'to final the X 's, so they are as in Box 81 1 requires more than 5 
steps, .6A(j) is increased; if it requires less than 5 steps, .6A(j) is 
decreased; if it requires just 5 steps, .6A(j) is left alone. 

Fig. 3.4. Continued. 
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.. 
In the flow chart, (Fig. 3.4), the parameter increment DELTAA(i) is 

written ~A(i). The formula used to calculate the minimum of the parabola 

shown in Fig. 3.1 is 

a.(min) 
J 

= a.(3) -
J 

( 3. 1) 

When discussing flow charts, either in the text ~r in footnotes on 

the flow charts themselves, we will, for example, refer to "box 21" and 

mean statement 21 in the code to which the flow chart refers. These 

statement numbers are also indicated on the flow chart and are taken there 

to refer to that box. 

6. The Standard Deviation of the Parameters 

For the linear least squares problem, the standard deviation of the 

parameter a. is gotten from Eq. (2. 23) and is 
J 

( 3. 2) 

where£ is the inverse of the curvature matrix a, given by Eq.(2.9). For 

the nonlinear least squares prOblem, one may still be able to use Eq. (3.2) 

for the standard deviations, where a is given by Eq. (2.10). To find out, 

we look a little farther into the linear problem and then extend the ideas 

in an obvious way to the nonlinear problem. 

-+ 
First solve the least squares problem for a. Let any one of the 

parameters, say am, be changed by an amount ~am. Now solve the least 

squares problem again, with respect to all the parameters except am. 

Bevington 1 (p. 224) gives a proof that, if ~a is small enough, then m 

£ mm 

*see Fritsch 7 for a discussion of formulas like this. 
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In this formula, ~X2 is the increase in X2 caused by the change ~a in the 
m 

parameter a , and E is the mth diagonal element of the inverse of the m mm 

curvature matrix. Equation (3.3) comes from a second-order Taylor's series 

expansion of X2 around the minimum, where first de_rivatives with respect 

to the parameters are zero. Therefore Eq. (3. 3) is correct for the linear 

least squares problem and, if we set ~am cra , the standard deviation 
m 

of a , then from Eq. m 
2 

( 2. 2 3), ~a IE = 1, m mm so that from Eq. (3.3), ~X 2 = 1. 

Therefore, we see that, in a linear least squares problem, a change of any 

one of the parameters by one standard deviation causes x2 to increase by 1. 

For a nonlinear least squares problem, Eq. (3.3) may be far from 

correct when ~a ls set equal to a . However, these ideas can be used m · a 
m 

in the nonlinear problem as follows: 

1. Solve the. nonlinear least squares problem for the correct :param-

. -+ eter vector a. 

2. Find what change ~a is required when varying each parameter a m m 

separately, to increase X2 by 1 (in the sense explained above). 

3. 
2 ' 

If X changes by about 1, whether we add ~a or -~a to am' then m m 

this is an indication that the change is a good estimate of the 

standard deviation of that parameter. 

4. If one has an approximation to E , then compare~~ with the mm v-mm 

result of step 3. If they are approximately equal, then this is 

a further indication that this is a good estimate of the standard 

* deviation of a . 
m 

In all of Bevington's nonlinear least square codes, the approximation 

(3.2) is used ~ithout the further check on a unit change in X2 

In the GRIDLS subroutine, the assumption is made that the variation 

of X 
2 

with respect to each parameter is independent of the other parameters 
2 

(at least near the minimum of X). Therefore, Eq . .(2.10) implies that the 

* These r6ugh ideas on the problem of obtaining statistical quantities for 
nonlinear least squares problems will be clarified in a. future report by 
N. Smiriga and J. Karush. 
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curvature matrix is diagonal, so that its inverse, E, is also diagonal, 

and these diagonal elements are given by 

Eo o 
JJ 

2 ( 3. 4) 

An estimate for a 2 x 2 1aa~ can be obtained from the last three points along 
J 

the search (referring to Fig. 3.1), by using the well-known formula for 

the numerical approximation of the second derivative of a function of one 

variable: 

( 3. 5) 

The calculation of x2 is done with the subroutine FCHISQ. As we saw 

earlier, this subroutine calculates 2 2 X , rather than X . 
r 

The relation 

between them is 

_x:_ 
N-n (3.6) 

Using Eqs. (3.2), (3.4), (3.5), and (3.6), one gets 

2 

2 2 
where Xr,i means Xr at point i in Fig. 3.1, where i = 1,2, or 3. This 

last formula is used in statement 83 of GRIDLS (Fig. 3.4). 

Chapter 4. The Gradient Search Algorithm 

1. The Basic Procedure 

A gradient algorithm does its search in the direction of the negative 

gradient of x2 with respect to l. T~is is also called the method of 

steepest descent. The methods differ in how far they go in the direction 
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of the negative gradient. The algorithm discussed below approximately 

minimizes x2 along the direction of the negative gradient. 

One could also introduce a scale change, since this method can be 

quite sensitive to scale changes. Bevington's gradient search code, called 

GRADLS (Ref. 1, p~. 215-222), is a method of steepest descent combined 

with a change of scale. A change of scale is a special type of change of 

-+ . 
variable, where the parameter vector a 1s replaced by a new parameter vec-

tor b such that 

b. 
1 

F.. a .• 
1 1 

( 4. 1) 

The E;.. 's are either provided by the user or built into the algorithm. In 
1 

GRADLS, the relation is b. = a./f1a. (so that t;.. = 1/f1a.), where the user 1 1 1 1 1 

picks the 6a. 's. 
1 

In GRADLS, however, the user is not entirely free in his 

choice of the 6a. 's. 
1 

The reason for this is that the gradients are cal-

culated numerically according to 

(4.2) 

where f = 0.1. Therefore, 6a. must be small enough to give an accurate 
J 

estimate for these partial derivatives, and yet big enough to allow for 

reasonable step sizes in !. A true scale change gives one complete freedom 

in the choice of the t;.'s in Eq. (4.1), so that, for example, one could 
1 

possibly change the X 2 contours from those shown in Fig. 3. 2 to those in 

Fig. 3.3. In GRADLS, therefore, one is not really dealing with a change 

of scale, but with a change to dimensionless parameters. This is a good 

place to say a few things about a true change of scale in connection with 

the method of steepest descent . 
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* 2. Change of Scale 

A problem is "well scaled" when similar changes in the different 

2 parameters cause similar changes in X 
-+ 

Given f(x,a), and a scale change 

vector t = Ct 1 ,t 2 , ... ,tn), one defines a new parameter v~ctor g, given 

by Eq. (4.1) and a new function g(x,g) defined by 

-+-
g(x,b) - f ( x, 

n -+ b ) ... , tn = f(x;a). ( 4. 3) 

The relation between the gradients is then 

ag 
~ 

1 

( 4. 4) 

Also from Eq. 
-+ 

(4. 1), the relation between increments in the paramet~rs a 

-+ 
and b, denoted by -; and 

-+ 
b, respectively, is 

6a. 
1 

1 

ti 
6b .. 

1 

Suppose A is a positive number such that 6b. 
1 

step in the direction of the negative gradient in 

-+ 
corresponding change in a-space is 

6a. 
1 

(4.5) 

= - .!_ __1..&. is a "small" A ab. 
-+ 1 
b-space. Then the 

(4.6) 

Therefore, it is clear that 6~· is not in the.~irection of the negative gra

dient in t-space, unless the t~ are all equal. 
1 

The reason for the above development is the hope that one could pick 
-+ -+ 

a scale change vector t, so that the problem would be well scaled in b-space. 

Then one uses the method of steepest descents in t-space. One could stay 

in g-space until the "bottom of the hole," or the solution forb is found, 

* See Appendix B for a discussion of the geometry of parameter changes. 
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-+ -+ 
and only then return to the corresponding a in a-space~ In GRADLS, how-

ever, control is returned to the user after each step, so it is necessary 

to provide the corresponding cSa. 's after each step. 
1 

Another case for 

which it would be necessary to calculate the cSa. 's after each step is 
1 

when the scale-change vector t itself changes at each step. (The vector 

-+ t does change for each step in the subroutine CURFIT to be described 

be 1 OW. ) 

Consider a least squares problem with just two parameters. It would 

be interesting to have corresponding plots of the X2 contours in ~-space 
-+ . and b-space, along w1th the paths from the corresponding starting points 

to the minimum points. Such a study could not be done with GRADLS because 

of the limitation, pointed out above, on the 6a's. One would need another 

steepest-descent code, allowing a scale change, which would use exact 

expressions for the partial derivatives. 

There is a disadvantage to two-dimensional illustrations of the method 

of steepest descents, because the path is made up of parallel and perpendi-

cular segments, so that the path looks very much like that of the univar-

iate method. This is true in two dimensions, but it does not generalize 

to higher dimensions (see Ref. 4, pp. 75-76). 

3. Powell's Modified Gradient Method 

It is interesting to note that Powe11 8 devised a strategy using gra-

clients that is much more effective than the simple gradient method described 

above. The method finds the common center of nested similar ellipses. 

Consider Fig. 4.1. The starting point is at P, and we wish to find the 

minimum point C. Powell finds a point M such that the direction PM passes 

near the point C. This is done in three steps: 

(1) Proceed down the gradient from the starting point P to a point R, 

where x2 is minimum. 

(2) In the space perpendicular to PR, find the point M at which x2 · is 
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Fig. 4.1. Powell's method of finding the minimum point. 
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minimum. 

(3) Go from M in the direction PM until X 2 is minimum near C. 

This idea can be generalized to any number of dimensions (see Ref. 9, 

pp. 4 58-4 6 0) . 

4. The GRADLS Subroutine 

The input and output quantities for GRADLS are the same as those for 

GRIDLS, except that the present code does not provide the standard deviations 

of the parameters, which is the array SIGMAA. The reason for this is that 

the second derivatives 'of X 2 are never computed with respect to any indi-

vidual parameter. 

The calling sequence for GRADLS is as follows: 

CALL GRADLS(X,Y,SIGMAY,NPTS,NTERMS,MODE,A,DELTAA,YFIT,CHISQR) 

As in all of Bevington's codes, GRADLS does only one iteration, so that 

the user's code must call GRADLS over and over again, until some stopping 

condition is met. 

-+ 
The method of steepest descents is used in b-space, so that one must 

have some step size in order to run a search in the direction of the nega-
-+ 

tive gradient. In GRADLS this step size is given by the unit vector y in 

the gradient direction. 

so that one puts 

one gets 

ob. 
J 

-y ./::.a .• 
J J 

The j~ component of this unit vector is given by 

From Eq. ( 4. 5) and the fact that si 

( 4. 7) 

1 I 1::. a. , 
1 

( 4. 8) 

One could question the wisdom of using -y. for the b.-step in Eq. 
J J 

( 4. 8) . 
-+ 

This seems to be a large step, since y is a unit vector in 
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..... 
b-space. The reason why this makes sense is that one usu~lly has !:::.a. << 

J 

a., so that orte unit of length along any vectoring-space corresponds to 
J 

..... 
moving a much smaller distance in a-space. 

It should be emphasized here that 6a. is the step size for the incre
J 

ments in a., used in the search for l that minimizes x2 , while !:::.a. is the 
J . J 

(user supplied) increment for calculating the partial derivatives and for 

defining the dimensionless parameter b .. 
J 

The formula used for finding the minimum of the parabola through 

three points is (Fig. 4.2) 

a. (min) 
J 

a.(3) - 6a. 
J J 

1 1 
+ -

2 
(4.9) 

Note that this formula is different from the one used in the GRIDLS sub-

routine, given by Eq. (3.1). The above formula is used in box 91 in the 

detailed flow chart, and its use there may be a little confusing, because 

we are changing all the variables at once. The method of finding the 

minimum of the parabola can easily be applied ton-dimensions, because we 

are always searching along a line anyway. Figure 4.2 illustrates the idea 

for the case of parameters a 1 and a 2 . Along the line S in the a
1 

- a
2 
plane~ 

..... ..... ..... 

the vectors a 1 , a 2 , and a 3 are shown analogous to the values aj(l). aj(2), 

and a.(3) in Fig. 3.1. 
J 

5. The GRADLS Flow Charts 

Figure 4.3 is a rough outline flow chart, and Fig. 4.4 is a detailed 

flow chart. The Roman numerals on the flow charts identify portions of 

the detailed flow chart that correspond with the rough flow chart. 
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Cross section of the x2 surface 
a long the $-direction 

s 

Fig. 4.2. Method of finding the minimum, given the parameters a 1 and a 2 . 
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~ 
2 2 . 

x1 =x (a) 

~ 
Increment a. according to 6 a. = -A. . 

J J J 
Aa., 

J 
for j = 1 1 2 1 ••• , n 

~ 
2 2 ... 

x2 = X (a) 

€f 
If x ~ is greater than xf, go back and increment the original 

a.' s by l/2 6 a .• 
J 2 J 2 

If x2 is less than x1, go to the next box. 

<f 
Keep on incrementing the a.'s until i 

J 
starts to increase. 

~ 
Pass a parabola through three points that include the minimum 

and pick ford the minimum of the parabola. 

~ 
2 

If X (a} is less than~, we are finished; otherwise, use a2 

Return 

Fig. 4.3. Outline flow chart for the subroutine GRADLS. 
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13 

Detailed Flow Chart for the 
Subroutine GRADLS 

11 

31 

39r-------------------~ 
'---- SUM= SUM+ [ GRAD(j)] 2 

41 
GRAD{j} =~A(j) GRAD{j} 1 j = 11 NTERMS 

.JsuM 

A {j) ::: A (j) + GRA D(j) I j ::: 1 I NTERMS 

The statement X~ = x2 

means to calculate 

. 2 d d f" • b 2 x on e me 1t to e X 
1 

• 

Fig. 4.4. Detailed flow chart for the subroutine GRADLS. 
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) 
62 

A{ j) =A( j) - GRAD{j) 

GRAD {j) = 1/2 GRA D(j) ._ ____ ::s_;O~ 

j = 1, NTERMS 

_____ 7~1 A{j) = A(j) + GRAD(j) 

j = 1, NTERMS 

74 

2 2 
X1=X2 <0 

x2-x2 2- 3 

91 1 

A= ~ 2 2 )+ 1/2 X 1 -X 2 
1 + 2 2 

x3 - x2 

A{j) =A(j)- 6[ GRAD(j)], j = 1, NTERMS 

<0 
A(j) = A(j) +(A- 1) GRAD(j) 

j = 1, NTERMS .._----------<... 

z=O 

Return 

.. Fig. 4.4. Continued . 
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Chapter 5. Gauss's Method 

1. The Basic Procedure 

-+ 
The method of Gauss starts by expanding the fitting function f(x,a) 
~ 0 • + 

about a 0 to first order in a Taylor series in the parameter increments oa, 

where -; = ~ + 0~. 
0 

n -+ 
Clf(x,a) 

Cla. 
J 

o a .. 
J 

( 5. 1) 
-+ 

f(x,a) + 2 
j=l 

I 

The right-hand side of Eq. (5.1) is a lihear function in the parameter 

increments oaj, to which one can apply the method of linear least s~uares. 

The partial derivatives on the right side of Eq. (5.1) are to be e~aluated 
i -. af -. , 

(x,a 0 ) for -"- (x,a) I . 
0 aj ao 

t h . . -+ w '11 . Clf a t e starting point a 0 . e WI write -a--
aj 
-+ 2 With the above approximation for f(x,a), X can be expressed in terms 

of the parameter increments: 

n 

]

2 
()f + 

-"-- (x. ,a0 )oa. oa. I J J . 
( 5. 2) 2 

j=l 

Forminz the partial derivatives of x2 with respect to th~ parameter incre-

ments, one gets 

n 

() f -+ ] -"-- (x.,a0 )oa. 
o a. I J 

J 

(S. 3) 2 
i=l 

() 2 
Setting X = 0, fork= 1,2, ... ,n, gives the equations a (oak) 

-46-



J' 

N 

2 1 
[yi f(xi •~o)] 

df -+ 

a~ 
-

a ak (xi,aO) 

i=l 1 

N ( t, I 1 
2 a. i=l 1 

Interchanging the i and j summations on the right gives 

N 

Z a~ [ Yi - f(xi.~O) ]a!: (xi.~O) 
i=l 1 

-2 -"- (x. ,ao)-'"1- (x. ,ao) oa .. 1 af ... af ... ~ 
a . a a j 1 a ak 1 J 

1 

This 
+ 

is a set of n linear equations (the normal equations in o a), 

e = 
+ 

a o a, 

where the vector e and the matrix a are given by 

N 1 
+ L ... J a f f\ 2 [Y· - f (Xi 'aQ) a ak (xi,aO), a. 1 

i= 1 1 

N 

ajk L 1 af + af + 
= 

a~ ~ 
(x. ,ao)-a- (xi,aO). 

i= 1 J 
1 ak 

1 

Solving Eq. ( 5. 4) for + replaces -+ by + 0~ o a, one ao ao + 

again until the process converges ( a! ... 0) . 

If one is going to use the Gauss method to solve 

and starts all 

the nonlinear 

(5.4) 

(5.5) 

(5.6) 

over 

least 

squares problem, it is often better not to form the normal equation (5.4), 

but to solve directly the overdetermined system 

i 1, 2, ... ,N, ( 5. 7) 

using MLR. 10 The procedure for doing this is given in Appendix C. 
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2. The Effect of a Scale Change on the Gauss Method 

It is interesting to know and easy to show that the Gauss method is 
..... ..... 

independent of the scale change a -+ b, where b. = ~.a.. We have seen that 
1 1 1 

a scale change can be very important in the method of steepest descents . 

To show this, first make the (induced) mapping Eq. 
..... 

(4.3) from f(x,a) to 
..... ..... 

g(x,b). Now perform the Gauss process using g(x,b), just as we did to get 

from Eq. (5.1) to Eq. (5.4). This results in the equation 
I 

where 

and 

Using Eq. 

a' ob' 

N 

13 ' 2 1 
[Yi 2 k o. i= 1 1 

N 

2 1 ag 
a' jk 2 ab.'" 

i=l o. J 1 

(4.4)' Eqs. ( 5. 9) 

j3 I 
k 

a' jk 

1 
c:- 13k' <.,k 

1 
~ aJ.k' <.,j<.,k 

- g(xi,bol] ~ abk 
..... 

(xi,bO) 

..... 21. 
(xi ,bo) abk 

..... 
C xi' bo ). 

and (5.10) become 

where 13k and ajk are given by Eqs. (5.5) and (5.6), respectively. 

the diagonal (scale change) matrix D is introduced as 

0 
D 

~n 
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(5. 8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

When 

(5.13) 



Eqs. (5.11) and (5.12) become 

* -h 
D ~' (5.14) 

a' -1 - 1 
D etD • (5.15) 

Therefore, Eq. (5.8) becomes 

But, from Eq. (4.5), r• r• -1* -1 -1 r• · ub = Dua, so that D ~ = (D aD ) (Dua), from. wh1ch 

one gets Eq. (5.4). Therefore, mathematically the scale change has no 

effect on the Gauss method; but, of course, numerically it may have some 

effect. 

. h 11,12 Chapter 6. The Levenberg-Marquardt Algont m 

1. The Basic Procedure 

If the starting point r
0 

is too far from the final solution ~ of a 

nonlinear least squares problem, the Gauss method often gives corrections 

6a. to the parameters that are much too large. To prevent this, the 
J ' 

2 Levenberg-Marquardt algorithm minimizes the sum of X and a weighted sum 

of squares of the corrections. Therefore, S is minimized, where 

* 

s 
n 

x2 + >- 2 
j=l 

2 ( 6 a.) . 
J 

It should be pointed out that 
1/£;1 

0 

0 

1 It; n 
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The factor A is a ~<;eighting factor for the second term in S. 

To minimize S, we set the partial derivatives of S with respect to 

the oa.'s equal to zero, getting 
J 

+ 2 A oak = 0, 

Putiting Eq. (5.3) into Eq. (6.2) gives 

n 

2 a j k 6 a j + A oak, 

j=l 

for k 1 , 2, ... , n. (6. 2) 

(6. 3) 

where Sk and ajk are defined by Eqs. (5.5) and (5.6). 

matrix a' such that 

If we define! a new 

I 

a .. 
lJ 

{

aij } 

a .. + A 
11 

when 

then the Levenberg-Marquardt equation corresponding to Eq. (5.4) is 

(6.4) 

(6.5) 

It is clear that, when A-+ 0, this gives Eq. (5.4),which is the Gauss 

method. On the other hand, as A -+ oo, then 

s. :::; A oa.' 
J J 

( 6. 6) 

from which 

ca. 1 :::; 
I J 

s .. 
J 

( 6. 7) 

Return to the definition of x2 
given by Eq. (2.3), from which it 

follows that 
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~ a a. 
J 

N 

-2 L -}[yi- f(xi,!)J 
i= 1 °i 

(6. 8) 

Therefore, from Eq. (5.5), 

( 6. 9) 

so that from Eqs. (6.7) and (6.9) it is clear that A -+ 00 gives a correction 

o!, which is a small step in the direction of the negative gradient. 

Thus the Leven~erg-Marquardt idea of minimizing S given by Eq. (6.1) 

produces an algorithm that is a hybrid between the Gauss and gradie~t 

methods. At the start of a least squares problem, A should be large 

enough to take advantage of the slower but more positive convergence of 

the gradient method. As A is made larger, the length of the step gets 

smaller, and the direction of the step approaches that of the negative 

gradient. As A is made smaller, the step size gets larger and tends in 

the direction given by the Gauss method. 
2 Levenberg said it would be best to find the minimum of X as a func-

tion of A on each iteration. This requires quite a bit of calculation. 

One objection to this is that it may be less efficient to spend time 

looking for a minimum of x2 with respect to A than to start a new iteration 

with more up-to-date information for a' and S. Marquardt suggested that 

Levenberg's scheme would lead to overemphasis toward the,gradient solution. 

On the other hand, Fletcher does not agree with Marquardt on this point 

(see Ref. 13, p. 2). The algorithms for the Levenberg-Marquardt process 

differ in the way A is selected at each iteration. 

Marquardt 12 found that, on the average, there was an 80° to 90° 

difference in direction between the negative gradient direction and the 

direction given by the Gauss method. This can be seen in Fig. 6.1. 
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-----~· minimum of i 2 X contours 

X 

p 

Fig. 6.1. The difference in directions at point P between the negative 

gradient (arrow A) and the Gauss direction (arrow B). 
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2. The Levenberg-Marquardt Scale Change Algorithm 

We have seen that, as A • 0, the Levenberg-Marquardt algorithm 

approaches the Gauss algorithm for which no scale change is necessary. A 

~odification in the a' matrix of Eq. (6.4) makes it possible to introduce 

a scale change that becomes effective as A + oo, where the gradient method 

is used. We have seen that the scale changes in the gradient method can 

be very important. 

The new a' matrix is defined as 

{

ij 
' a .. = 
1J 

· a .. (l+A) 
11 

} , where {:.] (6. 10) 

The equation to be solved for 6; is still Eq. (6.5), where! is also the 

same as before, namely, Eq. (5.5). As before, when A • 0, this new equa-

tion approaches the Gauss equation. When • 00 , Eq. (6.6) is replaced by 

sj - A a .. 6., - JJJ 
(6.11) 

so that 

6a. ::::: ~(B~). 
J JJ 

(6.12) 

The difference between this result and the previous result, Eq. (6.7), 

is the presence of a factor a .. in the denominator of Eq. (6.12). Using 
J J 

Eq. (6.9), Eq. (6.12) can be put in the form 

Ca. ~ 
J 

(6.13) 

Referring to Eq. (4.6), one sees that Eq. (6.13) implies a scale 

change, such that 
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.. 

.. 

(6.14) 

From Eq. (5.6), 

a .. 
JJ 

N 

= 2 -i(a;~ (x .• ~))
2

~ 0 • 
i=l 0 i J 1 

(6.15) 

so that we are safe in using Eq. (6.14). 

Now we ask what is the effect of the scaling given by Eq. (6.14)? To 

answer this question, we must digress to another view of the scaling 

question. 

3. More About Scaling 

Differentiate Eq. ( 6. 8) again with respect to- a .. 
J 

One gets 

1 a2 2 
-~ 
2 aa~ 

J 

[ 
a f ..... J 2 
~ (xi ,a) 

J 

N 

2: 
i= 1 

) [yi- f(xi,~)J 
1 

..... 
(x. ,a). 

1 
(6.16) 

If the second sum in Eq. (6.16) is small with respect to the first, then 

1 
2 

a2x2 
2 a a. 
J 

Therefore, from Eq. 

~ ~ -i(aaf (x .• ~) )2 L 
0 

a. 1 
i=l i ] 

(6.15), a .. 
J J 

1 
;::,; 2 i.x:. 

2 a a. 
] 

(6.17) 

, so that, from Eq. (6.14), 

(6.18) 

Contour curves of a quadratic function (in two dimensions) are made 

less eccentric by a simple scale change that makes the coefficients of the 
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; 

.. -

squared terms equal. For example, consider the function 

f(x 1 ,x 2) 2 2 6x 1x 2 . = 36x 1 + x2 -

The scale change xl 6x 1 , x2 x2 glVeS 

f(x
1

,x 2) -2 fCx 1 ,x 2J. = xl + x2 xlx2 -

Rough contour plots of f and f are shown in Fig. 6.2. 

In the least s~uares problem the natural extension of the above process 

2 2 2 would be a scale change that makes ax /'aak=:::l, for all k = 1,2, ... ,n. The 

reason for this is that, near the solution ~ of a least squares problem, 

the first derivatives of X 2 , with respect to the parameters, are approxi-

2 + 
mat ely zero. When X is expanded in a Taylor series about a in the 

2 , i£ quantities o a. , the coefficients of the terms o a. are ... Near the 
1 1 2 2 a a. 

+ 1 

solution a, the coefficients of these squared terms are the most important. 

2 + 
Therefore, the X contours near a are approximated by the contours of a 

Taylor series expansion up to second-order terms. Consider the Taylor 

expansion of x 2 around the least squares solution, at which x 2 = X~: 

x2 ::::: x2 1 a 2x 2 2 1 ax 
2 

0 2 + 2 ---az o a 
1 

+ 2 + 
0 --2 a2 ... 

a1 0 a a2 0 

(6.19) 

Define 

M that 0 2 1 0 2 a. ai, so a. = ax:_ ai' 1 1 

1 0 2 a a. 
1 0 

and 

x2 ::: x2 1 o-2 1 o-2 + 2 a1 + 2 a2 + 0 ... (6.20) 
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(a) (b) 

Fig. 6.2. (b) Contour 
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'i:. 

From Eq. (6.18), we see that the scale change induced by the defini-

tion of the matrix a•, given by Eq. (6.10), could be expected to improve 

the scaling. 

There is a thecry of optimal scaling, 14 and the above scaling is not 

optimal (except in the two-variable quadratic problem); however, it is 

found in practice that the above type of "diagonal" scaling is of con-

siderable benefit. For more information and examples on scaling, see 

R e f. 4, p p • 9 0 - 9 7. 

4. The Solution of Eg. {6. 52 

Given the diagonal matrices A and c J 

al cl 

a2 c2 
0 0 

A = c = J (6.21) 
0 0 

a c n n 

and any full matrix B = (b .. ) 1 

1J 
one can establish the following identities: 

(AB) .. a. b .. 
1J 1 1J 

( BC) .. b .. c. 
1J 1J J (6.22) 

(ABC) .. a. b .. c. 
1J 1 1J J 

The solution of Eq. ( 6. 5) is 

.... 
cSa (a')- 1S . (6.23) 

Define the diagonal matrix D such that 

0 
D (6.24) 

·va;;;: 
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where the a' matrix is given by Eq. (6 .10). In terms of D and a', define a 

new matrix a" such that 

a' Da" D. (6.25) 

The matrix a " is then given by 

al2 a 
1 A 

In 
+ 

..;a;;~ ~~ 
a21 

1 + A 
a2n 

~~ V a22 V ann 
a" ('6.26) 

ani an2 
1 + >.. 

~~ -.Jann ~ 

In Bevington's! subroutine CURFIT, the array a" is called ARRAY, so that 

ARRAY(i,j) = alj" 

The reason for forming a" is the hope that it will be easier to find 

its inverse than the inverse of a', because the elements of a" should be 

more or less the same size. This scaling of the matrix a' is necessary 

because Bevington uses the Gauss-Jordan matrix inversion method, which 

is far from the best way to invert matrices. The code is called MATINV 

(seeRef. l,p. 302). 

From Eq. (6.25), 

(Da"n)-l (6.27) 

where 
1 

0 

~1 1 
(6.28) 

1 
0 
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Therefore, 

(6.29) 

Let -1 E: = (a.") , so that 

oa ( 6. 30) 

[In CURFIT, E: is also called ARRAY, after the matrix inverter MATINV 

finds the inverse of the matrix a.".] Writing out Eq. (6. 30) in component 

form, 

n f\ E:jk 

..Ja.j j vakk 
(6.31) 

This is the equation used in statements 81-84 in CURFIT. 

Numerically it would be better to solve Eq. -"-+a (6.5) for u using some 

method other than by forming the inverse of the a.' matrix, as is done in 

CURFIT. Other methods are Gaussian elimination and Householder reflections, 

as in MLR. 10 

5. The Variance of the Parameters 

The variance of the parameter a. can be approximated by [see Eq. (3.2)] 
J 

::::: E: .. > 
J J 

(6.32) 

where E: is the inverse of the curvature matrix. We have seen in the dis-

cussion just before Eq. (6.18) that a. is an approximation to the curvature 

matrix, not a.' given by Eq. (6.10). Nevertheless, the code uses the 

inverse of a.' rather than the inverse of a.. One reason for doing this is 

that the subroutine has the inversion of a.', but not that of a.. Another 

reason is that A is usually small when the solution of a least squares 
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problem is re~ched, so there is then very little difference between a and 

a'. Therefore, from Eq. (6.27), 

(6.33) 

(6.34) 

6. The Algorithm Given by Marquardt 

2 -+-
(1) Compute X (a). 

(2) The user sets -3 A (usually A~ 10 ). 

(3) Compute o~ and 

(4) If x 2 (~ + o~) > 

Step 3. 

2 -+ 
X (a + o~) with this choice of A. 

2 -+ 
X (a) , increase A by a factor of 10, and repeat 

( 5) If 
2-+--+- 2-+-x (a +oa) < X (a) decrease A by a factor of 10, take a' 

-+ 
a + o~ to be the new starting point, and return to Step 3, 

-+- -+ 
substituting a' for a. 

It may be necessary to recompute 01 several times in order to get a value 

of A that works, but the matrix a and the vector t need be calculated just 

once per iteration (because the matrix a' , given by Eq. (6.10), is gotten 

from the matrix a, and S does not depend on A) • 

The input and output variables are the same as in the other codes, 

except for the extra input variable FLAMDA = A. The calling sequence for 

CURFIT is as follows: 

CALL CURFIT(X,Y,SIGMAY,NPTS,NTERMS,MODE,A,DELTAA,SIGMAA,FLAMDA,YFIT,CHISQR) 

This subroutine does only one step of the Levenberg-Marquardt process, 

leaving the convergence criterion to the user. This subroutine has the 

special feature that it allows either analytical or numerical derivatives. 
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7. The Flow Chart for CURFIT 

Figure 6.3 is an outline flow chart for CURFIT, and Fig. 6.4 is a 

detailed flow chart. The Roman numerals identify corresponding parts on 

the two flow charts. 
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... 

-r 

Evaluate weights 

Set up)<' matrix 
and ~ vector 

Set up ARRAY ( j,k) 

Calculate the new parameters 

'f 2 · · · I I h 1 x 1s not mcreasmg, ca cu ate t e 
standard deviations of the parameters and 
divide A by 10 

<0 

'f 2. . . 1 x 1s mcreasmg, 
multiply A by 10 

Fig. 6.3. Outline flow chart for the subroutine CURFIT. 
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13 sO 

(Return) 

l 
30 

NFREE = NPTS - NTERMS 

>0 

(MODE<O) =>W(i) = 1/ly(i)l] 

(MODE=O)=>W(i)=1 
2 

~0~1,NPTS 
(MODE> 0) =>W(i) = 1/o·. 

I 

$(j) =a(j,k) = 0 

for j,k = 1, NTERMS 

r--_------

~-~ = DERIV(j), for j = 1, NTERMS 
J x=x. 

I 

{3(j) = {3(j) + W(i)[ y(i) -f(x(i), ~)] DERIV(j) 

r-----

51 

I 
53 

61 

a(k,j) =a(j,k) 

for j = 1, NTERMS 

k = 1, j 

Box 63 means to calculate 

x2 
and define it to be X~. 

Fig. 6.4. Detailed flow chart for the subroutine CURFIT (see Ref. l,p. 237). 
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81 

84 

71 I 

l ARRA Y(j,k) = a(j,k) }~\= 1, NTERMS:, 
• .Ja(j,j)a(k,k) J 

74 ARRA Y(j,j) = 1 + :\., j = 1, NTERMS 

80 Invert the matrix ARRAY(j,k), using the subroutine MATINV 

Introduce the array B(j), where 

NTERMS 
B(j) =A(j) +""{3(k) ARRAY(j,k), for j = 1, NTERMS 

L..i .Ja(j,j) a{k,k) 
k=1 

{Note that ARRAY here is the inverse of ARRAY, in Box 71 ) 

91 
YFIT(i), using 8 in place of A, fori= 1, NPTS 

101 

A(j) = B(j) If 
rr = JARRAY(j,j) t~ 1, NTERMS 

oj a{j,j) 

Fig. 6.4. Continued. 
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Appendix A 
Expressions Involving Squares of Sums 

Writing out expressions involving squares of sums is illustrated by 

the following examples: 

I. (A. 1) 

The right-hand side of Eq. (A.l) is the sum of all pairs of the b's. 

m 

II. 2 
j=l 

III. 

( 
~ 'a. b .. )

2 

= L . 1 1J 

i=l 

n 

2 
i= 1 

a.(b .. + c
1
.)J 

2 

1 1J 

n 

= L 
i=l 
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(A.3) 



. , ... 

Appendix B 

The Geometry of Parameter Changes 

The change of variable from ~ to b is a cause of some confusion 

because the gradient of x 2 with respect to b points in a different direction 

-+ 
than the gradient with respect to a, and it is the latter that we are 

int!erested in. 

The difficulty is more apparent than real. Starting with the fitting 

-+ • -+ -+ 
function f(x,a), cons1der a continuous mapping~ from a-space to b-space, 

-+ -+ -+ 
so that b =~(a). This mapping must be such that for each a there cor-

-+ 
responds one and only one b and the mapping goes both ways. This mapping 

need not be linear, as in Eq. (4.1). 
-+ 

Then for any a there is a corres-
• -+ 

pond1ng b such that 

-+ 
a (B. 1) 

-+ 
where ~-l is the inverse mapping. Replacing a in 

-+ 
f(x,a) by Eq. (B.l), 

-+ 
one gets a function g(x,b) such that 

-+ 
f(x,a) 

-+ 
g(x,b). (B .. 2) 

Denote by x! the function x 2 with respect to f{x,~). and denote by X~ the 

f . 2 . h -+ unct1on X Wlt respect to g(x,b). 

B. 1. 

Suppose the contour surface of x2 (in two a 
+ f 2 . h In b-space, the contour sur ace Xb m1g t 

dimens~ons) is as in Fig. 

look like the contour curves 

of Fig. B. 2. The point p in Fig. B. 1 corresponds to point Q in Fig. B.2, 

in the that X2(P) 2 sense = Xb(Q). a 

The gradient of x2 at p wi 11, in general, point in a different dire c-a 

tion and be of a different length than the gradient of 2 at Q. The xb 

-69-



N 
0 

Fig. B.l. The contour surface of x!. 
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Q 

Fig. B.2~ The contour surface of!~· 
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corresponding minimum points in both figures are indicated by x's. 

Suppose we start at point Q in Fig. B.2 and proceed some distance 

along the negative gradient to a point Q', so that 

(6.3) 

Corresponding to the point Q' 
~ ~ 

in b-space, there is a point P' in a-space, 

·such that 

(B.4) 

I 

I 
For the general nonlinear transformation ~. lines in Fig. B.2 correspond 

I 

to curves in Fig. B.l. For the linear transformation, Eq. (4.1), lines 

in Fig. B.2 correspond to lines in Fig. B.l. But, even in the linear 

case of (4.1), unless ~i = 1 for all i, P' will not lie on the line 

furough the gradient at P. However, the important point to see is that, 

in any case, 

(B.S) 
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Appendix C 

Nonlinear Least Squares, the Gauss Method, Using MLR 

Given: 

(1) N data points (x.y.). 
. l. l. 

(2) Standard deviations ai, associated with the yi 's (we assume that the 

x. 's are correct). 
l 

-+
(3) A function f(x,a). 

To solve: 

+ 
The equation y. 

l. 
:::: f,( x . , a) in 

! 1 
I 

+ 
the least squares sense (a is a vector!of 

I 
j 

parameters with n elements). We have seen that the Gauss method requires 

that one find o~ that minimizes X2 , given by Eq. (5.2). 

one writes the following (overdetermined) equations that 

2 0 in Eq. ( 5. 2) : X = 

+ n 
yi f(xi,a 0 ) 

L 1 Clf + 
+ aa.- (x.a0)oa., a. a. a. l. J 

l. l. j=l l. J 

or 

+ n 
yi f(xi,a 0 ) 

L 1 ()f -+-

a. a. a. a-a.- (xi,a0)oaj. 
l l j=l l. J 

This last equation can be put in the vector-matrix form 

AX Y, 

where A is a ma~rix with N rows and n columns, 

a .. 
l.J 

X is the n-vector of unknowns: 

-73-

i 
I 

When using MLR, 

result from setting 

(c. 1) 

(c. 2) 



• 

X. 
1 

oa .. 
1 

Y is the N-vector: 

yi 
y . = 

1 cr. 
1 

1 
cr. 

1 

(c. 3) 

(C.4) 

When using MLR to solve for X, one gives MLR the quantities N, n, A, Y. 

Then, MLR gives back a vector X that is the solution of the overdetermined 

system, in the sense that the length of the vector 

R = AX - Y ;C c. s) 

is minimized. It is easy to show that this gives the least squares solution 

for o~ = X. 

The Normal Equation 

We are trying to find the vector X that gives an approximate solution 

toEq. (C.l). 
. T 

If we multiply both sides of this equation by A , the 

transpose of the matrix A (recall that a~. = a .. ), we get the normal 
1 J J 1 

equation 

(C.6) 

This equation is a set of n equations in n unknowns. If we dP. fine the 

matrix B and vector Z as 

(C. 7) 

then Eq. (C.6) becomes 
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• 

'oi 

BX = Z, (c. 8) 

and the solution for X is 

X (c. 9) 

This is the sort of thing that is always done in Bevington's codes, 

but there are distinct numerical advantages of solving Eq. (C.l) in the 

sense of Eq. (C.S). 

Recall from Eq. (2.22) that the varUances and covariances come from 

B- 1 . In Eq. (2.2) the sy'mbol E: is the same as B- 1 here. The matri B-l 

is (optionally) available from MLR . 
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