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ABSTRACT OF THE DISSERTATION

Automated Quantification of Arbitrary Arm-Segment Structure in Spiral Galaxies

By

Darren Robert Davis

Doctor of Philosophy in Computer Science

University of California, Irvine, 2014

Professor Wayne Hayes, Chair

This thesis describes a system that, given approximately-centered images of spiral galaxies,

produces quantitative descriptions of spiral galaxy structure without the need for per-image

human input. This structure information consists of a list of spiral arm segments, each

associated with a fitted logarithmic spiral arc and a pixel region. This list-of-arcs represen-

tation allows description of arbitrary spiral galaxy structure: the arms do not need to be

symmetric, may have forks or bends, and, more generally, may be arranged in any manner

with a consistent spiral-pattern center (non-merging galaxies have a sufficiently well-defined

center). Such flexibility is important in order to accommodate the myriad structure varia-

tions observed in spiral galaxies. From the arcs produced from our method it is possible to

calculate measures of spiral galaxy structure such as winding direction, winding tightness,

arm counts, asymmetry, or other values of interest (including user-defined measures). In ad-

dition to providing information about the spiral arm “skeleton” of each galaxy, our method

can enable analyses of brightness within individual spiral arms, since we provide the pixel

regions associated with each spiral arm segment. For winding direction, arm tightness, and

arm count, comparable information is available (to various extents) from previous efforts;

to the extent that such information is available, we find strong correspondence with our

output. We also characterize the changes to (and invariances in) our output as a function

of modifications to important algorithm parameters. By enabling generation of extensive
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data about spiral galaxy structure from large-scale sky surveys, our method will enable new

discoveries and tests regarding the nature of galaxies and the universe, and will facilitate

subsequent work to automatically fit detailed brightness models of spiral galaxies.
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Chapter 1

Introduction

“I often say that when you can measure what you are speaking about and express

it in numbers you know something about it; but when you cannot measure it,

when you cannot express it in numbers, your knowledge is of a meagre and

unsatisfactory kind: it may be the beginning of knowledge, but you have scarcely,

in your thoughts, advanced to the stage of science, whatever the matter may be.”

Lord Kelvin (1824-1907)

1.1 Background

Galaxies are extremely common phenomena in the known universe. Each galaxy consists of

stars, gas, dust, and other material (likely including dark matter) held together by gravity.

Galaxies have a wide variety of structures, but most have an elliptical or spiral pattern.

Elliptical galaxies have a smooth, ellipsoidal shape with most of the brightness concentrated

at the center; see Figure 1.1a for an example. Spiral galaxies, such as the ones shown

in Figures 1.1b and 1.1c, have a visible bulge, disk, optional bar, and spiral arms. These

components have a common center; for spiral arms this is the center of the spiral arm pattern

rather than the spiral arms themselves. The bulge is a dense bright spheroidal region, the disk

1



(a) An elliptical galaxy (b) A spiral galaxy (c) A barred spiral galaxy

Figure 1.1: Example elliptical, spiral and barred spiral galaxies.

(a) Spiral galaxy (b) Bulge (c) Disk (d) Bar (e) Spiral arms

Figure 1.2: A schematic illustration of a spiral galaxy and its components, with a viewing
angle orthogonal to the galaxy disk.

is a planar circular structure (unless severely gravitationally perturbed by another galaxy),

and the bar has a linear pattern. The spiral arms can vary widely in arrangement, definition,

and coherence, but almost always form a spiral pattern within the plane of the disk and

around the galaxy center (non-planar arms could occur during a galaxy merger, but this

is rare). These spiral galaxy components are illustrated in Figure 1.2. Lenticular galaxies

have a bulge, disk, and optional bar, but lack spiral arms. Irregular galaxies do not have a

consistent shape. Galaxies almost certainly also have a surrounding invisible dark matter

halo with properties that can only be determined through the directly observable aspects of

the galaxy.

2



1.2 Uses of Spiral Structure Information

Galaxy shape reflects forces at work within the galaxy, its neighborhood, and the universe

as a whole, so galaxy structure reveals important information about the universe at each of

these scales. As we will see in Chapter 2, automated methods are available for the precise

determination of structure in elliptical and lenticular galaxies, as well as the bulge, disk, and

bar components of spiral galaxies. Some basic information about the spiral arms (but not full

descriptions of the spiral arm pattern in the general case) can also be obtained automatically

with existing methods. Chapter 2 also reviews human-guided study of detailed and general

spiral arm structure in small samples of spiral galaxies, as well as manual classifications of

structure in large samples of spiral galaxies. The continued existence of these labor-intensive

manual efforts strongly suggests that spiral galaxy structure information is valuable for

learning about galaxies and the universe.

At the scale of the universe as a whole, galaxy measurements (including spiral galaxy mea-

surements) can be used in order to test several hypotheses about cosmological evolution. One

of these is the cosmological principle, i.e., the assumption that at sufficiently large scales,

the universe appears the same regardless of the position or viewing direction of an observer.

Tests of this principle have been conducted using information about galaxy positions (and

other data, such as measurements of the cosmic microwave background). There is also inter-

est in using spiral galaxy structure information, particularly the distribution of spiral galaxy

winding directions, to test other implications of the cosmological principle. If the cosmolog-

ical principle holds, galaxies should not have a preferred winding direction as a function of

location on the night sky. Contrary to this expectation, Longo [41] found that among about

2,800 spiral galaxies selected by eye for spiral pattern clarity and winding direction, there

was a preferred spin direction along an axis. Land et al. [34] found a similar pattern in

human classifications from the Galaxy Zoo project [40]. However, by presenting the human

classifiers with mirrored and unmirrored images (and with other analyses), Land et al. also

3



found that the human classifiers tended to identify S-wise spiral patterns more readily than

Z-wise spiral patterns (possible explanations include higher sensitivity to S-wise patterns in

the human visual system or biases induced by the design of the Galaxy Zoo website). Since

the sample of galaxies in the Longo study (and the Land et al. study) was skewed much more

heavily toward galaxies in the northern hemisphere of the sky, Land et al. found that this

preference for S-wise galaxies could explain the apparent alignment in spiral galaxy spin.

Later, Longo [42] repeated his study with more (about 15,000) spiral galaxy images and

random mirroring in the images displayed to the human classifiers (without any indication

of whether mirroring was used for a particular image), finding an even stronger signal for

preferred spin direction along an axis. Using an automated tool to determine winding direc-

tion, Shamir [63] also found preferred spin direction along an axis (with a slightly different

axis that remained within error bounds) using an even larger sample. However, winding

directions were only obtained for about 36% of the galaxies in the sample. Additional unbi-

ased (and likely automated) measures of spiral galaxy winding direction will thus be useful

to fill in these gaps and provide further tests as to whether spiral galaxy winding directions

are in line with the cosmological principle.

Winding direction is perhaps the simplest measure of spiral galaxy structure, and so winding

direction is just the beginning of what spiral galaxy structure can reveal about galaxies and

the universe. Despite commonalities in possessing a spiral pattern, spiral galaxies exhibit

many variations in arm arrangement, including arm tightness (and the distribution of arm

tightness), the presence and type of asymmetry, the number, position, and angle of arm forks,

and the overall arm count, with many of these factors having nuances of their own. Each of

these properties could give clues about the evolution of spiral galaxies and the universe as

a whole, since we can measure these structural parameters as a function of galaxy position,

and of the age of the universe when the observed galaxy light was produced. Additionally, by

investigating associations between spiral galaxy structure and environment (e.g., how many

galaxies are nearby), it will be possible to learn more about how galaxy structure changes
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due to interactions with other galaxies.

Spiral arm structure is also critical to understanding galaxy dynamics because it provides

information about the dynamical states of galaxies, and has observed and/or predicted cor-

relations with other spiral galaxy properties. For example, the density wave theory of spiral

structure [36] predicts that spiral arm tightness correlates with the galaxy’s central mass

concentration. Additionally, spiral arm tightness has been observed to correlate with the

mass of the black hole at the galaxy core [6] and properties of a galaxy’s dark matter halo

[60]. As we will see in later chapters, the automated methods described in this work can

provide data about spiral galaxy structure that was previously unavailable for large samples

of galaxies. This detailed large-scale spiral galaxy structure information will provide the

data needed to look for and evaluate possible new correlations, which can in turn provide

insights about the interplay of different aspects of spiral galaxies. Where measurements

of spiral galaxy structure already exist, alternate modes of measurement would be useful

in order to provide independent corroboration or, if the measures conflict, to prompt re-

examination. This assessment of measurement confidence is especially important because

some galaxy properties were determined subjectively or semi-subjectively. Automated spi-

ral galaxy structure measurement can also test whether correlations and other findings of

previous quantitative studies extend to larger samples (before the availability of the method

described in this work and in [12, 13], detailed quantitative structure was only known for

a few tens of galaxies, but we have run our method on the hundreds of thousands of Sloan

objects classified as galaxies, and can readily run our code on results from future surveys).

These samples could not only have greater statistical power, but could also have improved

generality because larger samples can often reach a greater portion of the observable uni-

verse (which, even if the cosmological principle holds, is only homogeneous at a sufficiently

large scale). Where new and previously-discovered correlations are found to extend to these

larger samples, automated description of visual structure could be used as proxy estimates

of properties that would otherwise need to be examined with a process more expensive or
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otherwise less available than imaging (such as spectroscopy).

With automated methods for determining spiral galaxy structure, it would also be possible

to search a large set of galaxies for objects where quantitative measures suggest worthiness

for in-depth human study. For example, astronomers may wish to study galaxies with

certain structural properties, such as rings. By running automated structure-description

methods on a large set of images, the resulting database could be queried in order to produce

a list of objects of interest for the study. For example, to find galaxies with rings, one

could look for cases where there is a long arm with very low pitch angle. It can also be

useful to identify “weird” (qualitatively distinct) galaxies for further study. In the Galaxy

Zoo project, spontaneously identified unusual objects have turned out to be interesting

(e.g., [39], [9]), and automated methods would be a useful complement because they would

likely identify different objects as unusual. Automated methods would not have the human

intuition for weirdness but could, for example, identify subtle but unusual deviations from

a typical pattern. Quantitative measures suggesting spiral galaxy peculiarity could include

extreme structure measurements or galaxies that do not have a typical relationship between

properties. These measures could be useful on their own, or spiral structure information

could provide additional signals to peculiar-galaxy detection methods such as the one in

[62], potentially making these methods more sensitive to abnormalities in spiral structure.

At the scales of the universe, galaxy clusters, and individual galaxies, automated determi-

nation of spiral galaxy structure will provide measurements crucial to testing theories about

galaxies and the universe. In support of goals such as these, large scale sky surveys such

as the Sloan Digital Sky Survey [69] (SDSS) have been conducted, with more planned or in

progress. SDSS has images of almost a million galaxies, many of them spirals. Despite the

large scale of SDSS, orders of magnitude more galaxy images will be available with future

sky surveys due to increased coverage and sensitivity. The Hubble Ultra Deep Field [5] found

about 10,000 galaxies in 1/13,000,000th of the sky, implying that there are about 100 billion
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(i.e., 1011) galaxies observable from orbit at the sensitivity and wavelengths used. With the

sensitivity of the Hubble Extreme Deep field [30], the estimated galaxy count is closer to

200 billion. Even more galaxies are likely to be observable at even higher sensitivities and

at other wavelengths (especially the infrared), including the sensitivities and wavelengths of

the planned James Webb Space Telescope.

For studies involving spiral galaxy structure, the enormous quantities of galaxies imaged in

large-scale sky surveys need to be translated from pixels to structure information. With

this structure information, it will be possible to compare theoretical predictions to observed

structure, and to assess the extent to which simulations match observations of the universe

(with some of these simulations producing images that also need to be analyzed for spiral

galaxy structure). These capabilities are fundamental to the scientific process as applied

to galaxies. Thus, large scale spiral structure information promises to reveal more about

galaxies (including fundamental matters such as the origin of spiral arms, which still remains

at least partially unresolved) and about the universe itself. Large-scale sky surveys provide

the imaging data, but manual efforts to translate it into spiral galaxy structure information

will become increasingly difficult as the number of observed galaxies continues to increase.

1.3 Primary Contributions

After reviewing related work in Chapter 2, I will describe a method for determining quan-

titative spiral galaxy structure automatically. As discussed in detail in Section 3.1, galaxy

structure will be described as a list of logarithmic spiral arcs, as one would obtain by indi-

vidually tracing arcs along each spiral arm (using an arc with a well-defined mathematical

shape). This spiral arm “skeleton” is general enough to capture the wide variety of arm ar-

rangements and other structure variations found in spiral galaxies. As shown in Figure 1.3,

this is critical for accurate description. When simpler measures (such as winding direction
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and average arm tightness) are desired, they can be calculated from the spiral arm skeleton

information. Galaxy brightness is not explicitly included in this representation, but pixel

regions corresponding to each arc are also reported, reducing the problem to a brightness

fit of a known image region with a single galaxy component of known functional form. In

Section 2.2, we will see that automated methods are already available for brightness fitting

in similar situations.

To the best of my knowledge, this method is the first to determine general spiral galaxy

structure in a fully automatic manner. This gives precise, quantitative information, without

human perceptual bias and with full repeatability. The method described in this work

is intended to allow extraction of spiral galaxy structure data useful for the astronomical

purposes discussed in Section 1.2, to facilitate automated brightness profile fitting of spiral

galaxies with tools currently requiring extensive human input (e.g., GALFIT [51]), and to

provide insight into the use of image processing and image understanding techniques in

astronomical applications.
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Figure 1.3: Spiral galaxy structure descriptions must be very flexible in order to capture the
myriad variations observed for this type of galaxy. Spiral galaxies can vary in arm count
(a measure that is often not even well defined), may not be symmetric, can have arm forks
and arms that are not spatially contiguous with other arms or other galaxy components, can
have severe bends in the arms, and, in general, can have almost arbitrary arm arrangement.
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Chapter 2

Related Work

2.1 Morphological Classification

Galaxy classification systems are one of the earliest schemes for characterizing galaxy struc-

ture. The Hubble sequence [29] was the first classification system to gain widespread popu-

larity, and it is still in use today. The categories are typically arranged in a “tuning fork”

pattern (Figure 2.1), starting with elliptical galaxies, which are categorized according to

their apparent degree of ellipticity. Next is a category for lenticular galaxies, which have a

bulge and flat disk, but no visible spiral arms. Spiral galaxies are split into two sequences

of categories according to whether the galaxy has a bar or not. Within each of these se-

quences, the category is chosen according to the prominence of the galaxy bulge (particularly

the concentration of light near the center of the galaxy), how tightly the spiral arms wind

around the center of the galaxy, and the extent to which the spiral arms are smooth versus

fragmented. Several extensions of this categorization system have been proposed; for exam-

ple, the de Vaucouleurs system [16] uses three parallel sequences for spiral galaxies (barred,

unbarred, and intermediate), adds a category at the ends of these sequences for galaxies
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with fragmented arms and a weak bulge, and also introduces a three-way branch for the

presence of rings (ring structure present, absent, or intermediate). For a review of galaxy

classification systems, see [66].

Figure 2.1: The Hubble “tuning fork” classification system. The fork begins with elliptical
galaxies classified according to their degree of apparent ellipticity, followed by S0 (lenticular)
galaxies that have a bulge and disk, but no visible arms. The branches correspond to
unbarred and barred spiral galaxies, with categories along this sequence arranged according
to the prominence of the galaxy bulge, as well as the tightness and smoothness of the spiral
arms. Irregular galaxies, which do not have well-defined shapes as elliptical, lenticular, or
spiral galaxies, are not shown. Image credit: STScI/NASA.

Category membership gives useful information about the structure of spiral galaxies, and

correlates with important physical properties [55]. Consequently, many automated methods

describe spiral galaxy structure by determining a galaxy’s category membership within one
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of these classification systems (see [4] for a review of these methods). However, the Hubble

sequence and related classifications are inherently subjective [55], in part because classifica-

tion criteria are not precise and may conflict with each other (for example, a galaxy may

have tightly-wound arms, suggesting it should be placed toward the middle of the fork in

Figure 2.1, but also have a weak bulge, suggesting it should be placed toward the end of

the fork). Human classifiers thus use their own criteria to remove ambiguities and resolve

conflicts. Automated classifiers trained on these categorizations simply attempt to recreate

the interpretations used by human classifiers. Even if conflicts between categorization cri-

teria were minimized (e.g., by using an automated procedure that is allowed to define the

categories, and optimizes the distinctness and consistency of these categories), the categories

themselves discard useful structure information, in part by discretizing quantitative measures

of spiral arms (e.g., their winding tightness). Furthermore, since the categorizations are done

at the galaxy level, they tend to ignore or make assumptions about spiral arm arrangement

(e.g., asymmetry and arm forks) and ignore within-galaxy variation in arm properties. This

information loss could in theory be addressed with a very large number of categories, but

this would be impractical due to the granularity needed to capture quantitative measures,

and the exponential growth in categories for each combination of galaxy-level criteria and

for each spiral arm. Thus, galaxy classifications are useful, but for full information it is

necessary to determine quantitative properties of individual galaxy components (including

the bulge, disk, bar, and spiral arms).

2.2 Bulge, Disk, and Bar Fitting

Automated methods are available to fit quantitative models of the galaxy bulge and disk

(and, in some cases, the bar as well). Compared to spiral arm patterns, these components

are relatively simple. Each type of component appears at most once in the galaxy, and they
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always have the same center (or nearly the same center) as the galaxy itself. All of these

components also have brightness contours well represented by a generalized ellipse (an ellipse

where the exponent is also a parameter, allowing the ellipse to vary in shape from a 4-tipped

star to a rectangle). Thus, each component can be described by a two-dimensional brightness

model with parameters for the generalized ellipse that determines the brightness contours,

and for the brightness fall-off as a function of the distance defined by these contours.

Since the bulge, disk, and bar can each be described with a fixed number of parameters,

typical data fitting techniques can be adapted for astronomical use. In some works, the

bulge and disk are fit by directly using a χ2 fitting routine or a nonlinear least squares

solver. Several software packages are also available for performing these bulge and disk fits

(as the primary feature or as one of their capabilities), including GIM2D [64], BUDDA [15],

GALFIT [50], and MegaMorph [24]. BUDDA, GALFIT, and MegaMorph are also able to

fit bars. Fitting the bulge, disk, and bar gives precise information about these components,

and can make remaining features (including spiral arms) more visible by subtracting other

light. However, they do not fit the spiral arms themselves.

2.3 Spiral Arm Pitch Angle Measurement

Since spiral arm structure has many types of variation not encountered with the bulge,

disk, and bar, automated fitting is much more difficult in this case. However, if the spiral

arms are assumed to be symmetric (which disregards many types of potential variation

including some of the cases illustrated in Figure 1.3, but nonetheless is appropriate for some

galaxies), then a measure of spiral arm winding tightness (the pitch angle) can be determined

quantitatively. This can be done with a Fourier transform that represents the image as a

sum of logarithmic spirals (or other spiral functions) [56]. In its basic form, this procedure

entails correcting for galaxy inclination (so that the image appears as if the galaxy were
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viewed along a line orthogonal to its disk), choosing inner and outer radii (the radii of the

annular ring that defines the pixel region used in the Fourier transform), finding the Fourier

component (logarithmic spiral function) with the highest amplitude as a function of the pitch

angle and the number of Fourier modes (corresponding to the number of arms when spiral

structure is highly symmetric), and then using the pitch angle of this Fourier component.

In [11], additional human supervision is added for reliability: the pitch angle is plotted as

a function of the inner radius to determine inner-radius ranges where the pitch angle is

stable, and solutions (Fourier components with a given pitch angle and mode count) are

selected according to visually determined agreement with the image and visually determined

stability in the pitch angle plots. As described in [57] and [59], Fourier methods can also be

used to measure pitch angle as a function of distance from the galaxy center. This is done

by computing a series of Fourier transforms, each covering a smaller, contiguous portion of

the galaxy distance range, and varying the inner and outer boundaries of this ring-shaped

window. The galaxy distance range (i.e., the smallest inner-radius boundary and the largest

outer-radius boundary) is still determined manually.

These Fourier methods provide important quantitative information with a well-defined math-

ematical foundation. However, they assume symmetry in spiral arm structure and they

require manual input to determine the Fourier window and to interpret the results. The

symmetry assumption is reasonable in some cases, but many galaxies are strongly asym-

metric, so Fourier models are not always appropriate. If different arms in the galaxy have

different pitch angles, or if at least one arm does not cover the full radial extent of the

galaxy, pitch angle measures (overall or as a function of radius) may be misleading. In the

common case of flocculent spirals, which consist of a larger number of scattered arm frag-

ments, asymmetry can be especially severe, and the lack of spatial localization in the Fourier

transform could make it difficult to distinguish these shorter, weaker arms from coincidental

brightness alignments. Additionally, manual input is needed in order to determine the inner

and outer radii for the ring-shaped Fourier window; the inner radius is especially important
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because excessively large values miss some of the spiral structure and excessively small val-

ues introduce severe interference from the galaxy bulge (and sometimes other components,

such as the bar). Human supervision is also useful in order to verify that the chosen Fourier

component is a good visual match with the image. In many settings, these factors are not

limiting; many galaxies are symmetric, and manual supervision is common and appropriate

in many astronomical studies. However, other methods are needed for strongly asymmetric

galaxies, for image sets too large for per-image human input, and when arm-level details

about spiral structure are desired.

2.4 Automated Fitting of Restricted Spiral Models

Automated methods for spiral galaxy fitting are available for restricted classes of spiral

galaxy models. In [2], the spiral model consists of two symmetric spiral arms attached to the

two ends of a (possibly zero-length) bar. Orientation (i.e., the strength and direction of local

linear structure) is determined for each pixel, and then the model is fit by minimizing the

difference in alignment between the model and the local orientation near the model. Coarse-

to-fine grid search is used to determine the model parameters because gradient descent-like

methods encountered too many local optima. The symmetric, two-armed spiral model is also

used in [52], but the fit uses brightness information instead of local orientation, and more

detail is added, namely parameters for the bulge and disk, parameters for the brightness

distribution of each component, modeling of the patchiness from HII regions seen at shorter

wavelengths, and support for multiple wavebands (but with only the brightness parameters,

not the shape parameters, variable across wavebands). Error bars for the estimated param-

eters are also given. The model is fit with a Markov chain Monte Carlo procedure with

simulated annealing, using different annealing temperatures for different parameters, and

fitting the model in three main stages (first the bulge and disk, then with the bar added,
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and finally the full model). Both of these methods can be useful for precise study of poten-

tially large samples of “grand-design” spiral galaxies (which have two smooth, prominent,

symmetric spiral arms), but many galaxies do not follow this pattern.

Dynamical grammar models [45] are applied in [70] in order to represent spiral galaxy struc-

ture as a set of stars (or “on” pixels) belonging to knots that in turn arise from spiral

arms. To fit this model, the number of arms and knots must be pre-determined, and then

an expectation-maximization algorithm [17] is used to determine the assignment of stars to

knots, the assignment of knots to arms, and the (logarithmic-spiral-like) shape parameters

for the spiral arms. Results are demonstrated for a simulated and a thresholded image.

The dynamical grammar model is promising for representing arbitrary spiral galaxy struc-

ture (and even the processes underlying this structure), but the fitting is complex (and can

reach local optima) even for a model with the arm count fixed to two. By using automated

methods that can determine the position and approximate shape parameters of the spiral

arms (i.e., the methods described in this work, specifically Chapter 3), it may be feasible to

automatically fit a dynamical grammar model that expresses the full range of spiral galaxy

structure.

Ganalyzer [61] is a tool that assesses the degree to which a galaxy is spiral or elliptical.

Ganalyzer works by correcting for galaxy viewing angle, producing a two dimensional radial

intensity plot that gives image brightness as a function of distance (from the galaxy center)

and polar angle, applying peak detection (as a function of angle) for each fixed discretized

distance value, grouping the peaks, and then fitting lines (in the space defined by the radial

intensity plot) to the top one or two groups of peaks to determine the extent to which the

galaxy is spiral vs. elliptical (since spiral galaxies are expected to have stronger shifts in their

brightness peaks as a function of distance from the galaxy center). In addition to determining

the spiral-ness of a galaxy, Ganalyzer’s intermediate representation is likely sufficient to

provide a measure of spiral arm tightness, and in [63] it was used to measure spiral arm
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winding direction. Ganalyzer is very fast and promises to be useful for obtaining some galaxy-

level spirality measurements, but does not provide a model of the spiral galaxy structure

itself, and we are not aware of any attempts to evaluate accuracy beyond spiral/elliptical

classification for 525 galaxies [61] and spiral arm winding direction for 120 galaxies [63].

2.5 Human-Interactive Detailed Spiral Fitting

Other methods for spiral structure extraction use human guidance as direct input to the

spiral fitting procedure. This human interaction has been necessary in order to determine

spiral galaxy structure without sacrificing generality. An early work in this area is [54],

which represents spiral arms by a series of connected line segments parameterized by their

starting position and the angles between adjacent line segments. Given a good, manually

determined initial positioning of these spiral arms (automatic determination of these initial

positions was attempted but not successful), the fit is refined using a Markov chain Monte

Carlo technique.

To determine pitch angle variations along spiral arms (in the galaxy M51) without the

symmetry assumptions of Fourier analysis, [48] examines wavelet coefficients as a function

of image position and wavelet orientation. Starting with a manually selected point on each

spiral arm, wavelet-coefficient maxima are used to trace spiral arms (arm spurs and forks

are deliberately ignored), and the maximum orientation at each such point gives the local

pitch angle. This has enabled detailed study of arm positions and pitch angles for a single,

manually examined galaxy with prominent spiral structure.

In [44], points are manually selected at the start of and along each spiral arm, and then

a logarithmic spiral arc is fit to the points selected for each arm. A similar procedure is

followed in [14], where human insight about spiral dust lanes or bright stars is incorporated
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into the point selections, in [58], where this manual selection of points is one of the two

methods used to measure pitch angle (the other is a Fourier method of the type discussed in

Section 2.3), and in [27] to study the spiral structure of the whirlpool galaxy (M51). In [26],

the start location of each spiral arm is manually determined, and then the pitch angle (and

galaxy inclination) are manually adjusted to obtain a good fit. These methods are suitable

for detailed study of individual galaxies or small sets of galaxies, and allow incorporation of

expert knowledge about the galaxy or about the task at hand (for example, if one wants to

trace star-forming regions of an arm, those points can be selected). Such methods can also

describe arbitrary spiral structure because the points on a spiral arm can be freely selected

without requiring arm symmetry or other assumptions. However, this manual selection

introduces subjectivity, reduces repeatability, and limits the number of galaxies that can be

practically examined.

For detailed fits of galaxy brightness distributions, GALFIT [50, 51] is typically used. GAL-

FIT allows specification of an arbitrary number of brightness components and their initial

(pre-fit) parameters. In earlier versions of GALFIT [50], these brightness components had

generalized-ellipse contours, allowing fits to galaxy components such as bulges, disks, and

bars using one or more brightness components for each of these galaxy components (GALFIT

is flexibile enough to accommodate user judgment as to how many brightness components

are used, and the initial parameters for each one). The brightness fall-off function and its

initial parameters are also chosen for each component. The most recent version of GALFIT

[51] can model spiral structure (and other non-axisymmetric galaxy features) by allowing

modifications of the contours of each component’s generalized ellipse. The contours’ dis-

tance from the center (as a function of polar angle) can be modified by sinusoidal and/or

polynomial functions, and spiral rotations can be introduced into the coordinate system used

as the frame of reference for the contours.

Since GALFIT allows an arbitrary number of galaxy brightness components, each with a
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wide array of available shape parameters, GALFIT can fit arbitrary spiral structure. Each

of these components, as well as good initial values of all free parameters and the selection

of which parameters are fixed, must be provided by the user for each galaxy. Without per-

galaxy specification and unless the model is simple enough to characterize structure that

is fairly similar across all galaxies (such as the bulge and disk), GALFIT’s minimization

procedure (a Levenberg-Marquardt algorithm using the χ2 model-to-image distance) will

encounter many local optima or other problematic conditions, and fail to reach a satisfactory

fit (though GALFIT is generally able to detect that this has happened). As such, GALFIT

is well suited to provide precise refinements of galaxy models manually developed for each

galaxy, and has seen wide success in detailed study of relatively small sets of galaxies, but

it is not intended or suitable for automated fitting of spiral galaxies. However, the methods

described in Chapter 3 may provide the means to automatically determine initial per-galaxy

spiral models and parameters suitable for input to GALFIT.

2.6 Large-Scale Manual Determination of Spiral

Galaxy Structure

To determine spiral galaxy structure over large sets of images, fully manual efforts are still

used. The Galaxy Zoo project [40] coordinates hundreds of thousands of human volunteers

to classify Sloan Digital Sky Survey [69] images by eye over the Web. In the initial Galaxy

Zoo project, volunteers were asked to place images into one of six categories: clockwise or

anticlockwise spiral, edge-on spiral, elliptical, star/don’t know, or merger [40]. Galaxy Zoo

2 [67] adds increased detail; for spiral galaxies this includes categories for the number and

tightness of spiral arms, the relative dominance of the bulge, and the presence or absence

of a bar. Elsewhere, a painstakingly detailed structural catalog of 14,034 galaxies was man-

ually derived by a single professional astronomer [46]. Designations include galaxy T-type
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(morphological classification under the de Vaucouleurs system, as discussed in Section 2.1)

as well as features such as bars, rings, and gravitational lensing, and spiral arm counts and

flocculence. Human classifications of spiral arm winding direction have also been conducted

for hundreds to thousands of galaxies on multiple occasions ([65], [8], [68], [31], [33], [1], [42]);

in particular, 15,158 galaxies were classified by eye in [42]. These manual determinations

of spiral galaxy structure are useful in part because they can incorporate human judgment

and common sense, but human perceptual biases are a concern, quantitative information is

difficult to obtain, and manual input will be increasingly difficult as image set sizes continue

to increase.

2.7 An Unfulfilled Need for Automated Fitting of Gen-

eral Spiral Structure

We have surveyed a variety of methods for galaxy structure determination. Each type of

method has its own mixture of structure-extraction abilities and limitations, and there are

situations where each type of method is useful. However, there are also situations where one

would like to automatically extract general spiral galaxy structure, and this is not covered

by existing methods: one has been required to either restrict the amount of spiral structure

information available (e.g., by using classifications, galaxy-level measurements, or a non-

general model of spiral galaxy structure), or eschew automation. Our method, described in

Chapter 3, will fill this gap by giving a description of the spiral arm “skeleton” as a list of

parameterized arcs that can describe arbitrary spiral arm structure. This method does not

give information about the brightness distribution of the galaxy or its components, but our

method could be combined with GALFIT [51] or other brightness-fitting methods in order to

do so. In addition, since the method provides the pixel regions corresponding to each spiral

arm segment, these pixel regions could be used to determine brightness-related measures of
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individual arm segments.
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Chapter 3

Extracting Spiral Arm-Segment

Structure

“I never worry that all hell will break loose. My concern is that only part of hell

will break loose and be much harder to detect.”

George Carlin (1937-2008)

3.1 Representing Arm-Segment Structure

In order to extract information about spiral galaxy structure, it is first necessary to have a

sense of what a spiral arm is. Astronomers have studied spiral arms in detail, but to the

best of my awareness, a precise and broadly adopted definition of “spiral arm” does not exist

in the astronomical literature. Instead, spiral arms tend to be an “I know it when I see it”

phenomenon: astronomers tend to represent the concept of spiral arms though examples and

visual description rather than through a precise definition.1 Perhaps this is because spiral

1 This is not without precedent; consider the long period of time in which the term “planet” was used
before being formally defined, as well as the controversy surrounding this definition, despite extensive prior
study of the various objects frequently referred to as “planets.”
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arms are common, visually distinctive, and subject to precise study on the level of individual

galaxies, but exhibit a wide range of variation among galaxies.

Galaxies often have two arms, but many others have one, three, four, or even more arms.

Spiral arms may be coherent for a long span, or they can exhibit various degrees of flocculence,

with highly fragmented spiral arm structure. They may or may not be symmetric, may or

may not have forks, may or may not be connected to structures such as a bar or the bulge,

and, in general, can have almost arbitrary arrangement. See Figure 1.3 for a depiction of

some of the variation observed in spiral arm structure.

Most of these types of variation concern the arrangement of spiral arms, rather than the

arms themselves. An important consequence is that individual arm shapes are consistent

enough to allow at least approximate description with a parametric function. In 1942, Danver

[10] proposed using the logarithmic spiral arc shape, noting it was a good fit for observed

galaxies, and it has been commonly used since then. Other functions have been considered,

but the logarithmic spiral is perhaps the most widely used, and is regarded as providing a

good fit to spiral arms (see, for example, [11] and [14]). Since spiral arms can be at least

approximately described using a logarithmic spiral arc shape, since (as discussed later) we

can accommodate deviations from the spiral arc shape (such as arm bends) by using more

than one arc and by reporting the corresponding image region along with the arc, and since

the logarithmic spiral function is already common in astronomy, we use this function to

describe individual spiral arms (or segments of arms). Logarithmic spirals can be expressed

in polar coordinates as

lgspφ,a,r0(θ) = r0 · e−a·(θ−φ), 0 ≤ θ − φ ≤ θe (3.1)

Here, φ gives the angle between the polar axis and the starting point of the arc. r0 is the

initial radius, which defines the distance from this starting point to the origin, and thus
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Figure 3.1: Parameterization of the logarithmic spiral in Equation 3.1. The dark blue
region denotes the arc given by the parameters, and the light blue region shows a partial
continuation of the arc beyond its angular extent θe. The initial radius r0 controls the size of
the arc and φ rotates the arc. The most important parameter is the pitch angle; taking the
arctangent of this value gives the angle between the arc and a circle centered at the origin.
This angle is constant throughout the span of the arc.

affects the size scaling of the arc. a is the pitch angle; taking the arctangent of this value

gives the angle between the arc and a circle centered at the origin. This angle is constant

along the spiral curve. A positive pitch angle means that the arc winds inward from its

starting point, and a negative pitch angle means that the arc winds outward. θe specifies

the angle subtended by the arc (this angle may exceed 360 degrees). φ and θe then define

the arc’s endpoints; the arc starts at θ = φ and ends at θ = φ + θe. These parameters are

illustrated in Figure 3.1.

An automated system should be able to determine these spiral arm shape parameters, while

also accounting for the many types of variations seen in galaxy-level spiral structure (partic-

ularly in arm arrangement). As such, the choice of structure representation is critical. If it is

not general enough, it forces information loss and biases results toward structure that can be
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represented. Since we aim to produce an automated method, we must also ensure that the

structure representation does not demand information that is only available through human

input, and remains computationally practical on large sets of galaxy images.

As discussed in Section 2.1, galaxy classifications (e.g., the Hubble type) give a rough indi-

cation of spiral structure but lose information due to the differences in structure that can be

found within each category. Another choice has been to use a galaxy-level model with a fixed

number of parameters – for example, a model with two symmetric arms extending from a

possibly zero-length bar, with parameters to control the bar length, arm start location (bar

rotation), arm tightness, and possibly the position and inclination of the galaxy as a whole.

While such models can describe certain subtypes of galaxies (e.g., “grand design” spirals

with exactly two arms that are long, well-defined, and symmetric), they cannot cover the

full range of variation in spiral galaxy structure.

It is then natural to consider using a mixture model, i.e., to choose or automatically infer

a set of galaxy models (i.e., mixture model components) and have the fitting procedure

select a model (or weighted set of models) that best matches an input image. However,

mixture models assume an underlying classification scheme (where the classifications are the

choice of or weights on mixture model components), but spiral galaxy structure does not fall

neatly into categories. For example, one could consider defining mixture model components

according to the number of spiral arms in the galaxy, but spiral arms vary widely in how

well defined they are, to the point where arm count can be ambiguous. Even if the number

of arms were known, variations in their arrangement would either force a large number of

sub-categories (such as how many arms are forks of another arm, connected to a bar or

the bulge, or freestanding), or require within-category variation to be addressed through

means other than mixture models. Although these factors do not make mixture modeling

impossible, they do suggest that mixture modeling is not a natural choice for representing

spiral galaxy structure.
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Part-based models [20] can alleviate some of the rigidity in shape models. Instead of using

a single global template, part-based models represent visual phenomena as a set of parts

along with probability distributions on the spatial arrangements of pairs of parts. This

decomposition into parts and their spatial relationships is appealing, but part-based models

assume that the objects of interest can be represented with a tree structure that is consistent

across cases. Visual variations (e.g. missing parts) can be accommodated, but are treated

as deviations from a “true” structure (e.g., some parts may not be visible because they are

occluded by some other object). Part-based models have been successful in areas where the

consistent tree structure assumption holds (such as person detection [19]; the set of human

body parts is roughly constant at the needed level of detail, and these parts are attached

to each other in a consistent way). However, the previously-discussed variations in spiral

galaxy structure entail that galaxies do not have a fixed tree structure. Consequently, the

use of part-based models would still require a choice between the loss of generality in single

models and the explosion of component-model possibilities in mixture models. Furthermore,

a prominent advantage of part-based models is that they can encode information about

which spatial arrangements of parts are more likely than others, but due to the current

lack of large-scale quantitative data about spiral galaxy structure, favoring certain types of

spatial arrangements would only bias the results. Even if this data were available, spiral

galaxy structure is likely too inconsistent for spatial-arrangement preferences to be reliable,

although spatial arrangement signals (e.g., arm endpoints are somewhat more likely near the

galaxy bulge) could eventually be a useful refinement as long as they are weak enough to

avoid biasing the results.

Other models would be able to represent the full variety of spiral structure, but contain so

much complexity themselves that it becomes difficult to determine which model variant best

matches the image. As discussed in Section 2.5, GALFIT II models [51] can express a wide

variety of spiral structure through arbitrary sets of component parts that can be individually

positioned. The structure expressed in these models would be extremely valuable, but such

26



models pose difficulties for automatic fitting, even with the large degree of expert human

input needed in order to select components and determine reasonable initial parameters for

these components. As such, these models currently have practical limits on the structure

that can be extracted automatically, even if they can represent arbitrary structure in great

detail. However, once spiral structure is available automatically through other representa-

tions, the extra information may enable automated fitting of GALFIT models by guiding

a search through the highly complex model space that the GALFIT models impose. Vi-

sual grammars [72] likely also have the requisite flexibility to represent spiral arm structure.

However, visual grammars are so general that they would be a setting for, rather than a

full answer to, questions of spiral galaxy structure representation. Visual grammars would

also introduce challenges of their own: a model of sufficient complexity may pose issues with

computational tractability, and grammar rules could produce biases that favor certain spiral

arm structures over others. Existing (and likely simpler) spiral galaxy structure information

would likely be needed to guide the search for model configurations and parameters for each

galaxy, so that computational tractability can be retained. Such information is also needed

in order to validate that the model covers all variations in spiral galaxy structure, and does

not prefer certain structure configurations over others unless the favored configurations are

proportionally more common. Consequently, it is prudent to pursue automatic fitting of

other, simpler representations of spiral galaxy structure before attempting to fit a visual

grammar model. Dynamical grammars [45] can capture even more information, since gram-

mar rules can represent physical processes that give rise to spiral arm structure, rather than

just describing the visual aspects of this structure. Such models are very promising because

they can directly encode hypotheses and models of galaxy dynamics, along with their re-

lationship to the observed image. In [70], a two-armed spiral galaxy grammar model was

fit to a few galaxies (see Section 2.4), but dynamical grammar models used for fitting can

be much more detailed and general once automated methods can extract prior information

(about general per-galaxy spiral structure) that identifies promising areas of the (very large)
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dynamical grammar search space. Like GALFIT and visual grammars, dynamical grammars

are likely to be more appropriate for automated fitting once more information about spi-

ral galaxy structure is available to validate models and guide fitting. Dynamical grammars

would then be able to refine and expand upon this information.

In consideration of the need to represent a wide variety of spiral structure while also re-

taining computational practicality across large datasets, I have chosen to represent spiral

galaxy structure as a set of logarithmic spiral arcs (Equation 3.1) in a shared polar coor-

dinate system, along with the pixel regions corresponding to each arc. This allows precise

quantification of individual spiral arms, whose “backbone” structure is typically close to a

well-defined parametric arc shape (the logarithmic spiral). Crucially, this precision does not

come at the expense of generality. Since the logarithmic spiral arcs are individually posi-

tioned, this representation can naturally accommodate wide variations in arm arrangement,

and thus in galaxy-level spiral structure. At the level of individual arms, most arms follow

the logarithmic spiral shape, but even when a single logarithmic spiral cannot describe the

entire arm with suitable accuracy, a sequence of a few such arcs can be placed along the

spiral arm, improving generality and thus accuracy, with the additional benefit of reveal-

ing unusually-shaped arms. The logarithmic spiral function and coordinate system are two

dimensional because spiral arms are roughly coplanar (they reside within the galaxy disk).

Using a shared coordinate system forces the spiral arms to have a common center, but this

does not lose useful generality because the existence of a common center is a known physical

property of spiral galaxies.

A key difference between this list-of-arcs representation and the other representations dis-

cussed above is that the arms are modeled (and can be detected) separately, which bypasses

complications that would otherwise arise from structure variations. To model a fork in an

arm, for example, two arcs can be arranged to produce this fork shape. We do not need to

explicitly create a mixture model component, grammar rule, or other model construct that
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accommodates this situation, do not need to ensure that such model constructs explicitly

cover all structure variations (requiring manual or automated examination of a large set of

spiral galaxy images), and do not need to expend computational time explicitly searching

for forks and other structure variations. Instead, both parts of the fork are arcs that can be

detected individually. The fork can be found afterward by examining the arrangement of the

arcs (e.g., by considering the closest distance between endpoints of one arc with any point on

another arc). Additionally, since the set of arcs can have arbitrary size, this representation

does not create restrictions or rapid search-space expansion with respect to arm count.

The list-of-arcs representation does not take advantage of possible patterns in relationships

between components. However, at this point this would be more of a liability than an

advantage because the patterns would be very loose, we don’t have data to infer these

patterns even if they exist, we would have to make sure to avoid biases, and there would

be additional computational overhead. This representation also does not model brightness

information, but this facilitates independence between the spiral arcs, avoiding the detailed

parameter interactions that are one reason why GALFIT models are difficult to fit (see

[51] and [49] for further discussion of fitting considerations). Furthermore, the list-of-arcs

representation provides the information needed to determine brightness parameters with

existing methods. The pixel region and logarithmic spiral shape would be known, so it

would only be necessary to calculate the brightness fall-off as a function of distance from

and along the logarithmic spiral arc (or the arc parameters can be refined as part of the fit,

but they still do not need to be estimated from scratch), possibly in combination with bulge

and disk fits to the galaxy. As discussed in Section 2.2, fitting brightness models with a fixed

number of parameters can already be done automatically.

In addition to the arc-level parameters, it is also helpful to include some information at

the galaxy level, namely the galaxy center and inclination (viewing angle). Since material

in all spiral arms orbits a common center, and all spiral arms are coplanar, the center
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and inclination are common across all spiral arms in a galaxy, and affect all of a galaxy’s

spiral arms in a consistent manner. Thus, determining the center and inclination at the

galaxy level avoids a problematic choice between re-discovering this information for each

spiral arm and entangling the detections of the individual spiral arms (which would lose

the important benefits of separate detection discussed above). Using these galaxy-level

parameters also improves the speed and reliability of the spiral arm fits (since there are

fewer free parameters), and guarantees consistency of information that is known in advance

to be consistent. As will be discussed in Section 3.3, the center and inclination can be

determined before starting detection of spiral arms, so this variation can be removed before

spiral arm fitting. Furthermore, since the center and inclination are consistent within any

particular galaxy, fixing these parameters within a galaxy does not lose any useful generality.

Since the list-of-arcs representation produces well-defined arcs, but the notion of a spiral arm

is not well defined in all cases, I will refer to the former as an arc, will refer to the region

of the arm described by the arc as a “spiral arm segment,” and will reserve the term “spiral

arm” for the (sometimes ambiguous) reference to the physical phenomenon in spiral galaxies.

Arcs should, of course, describe spiral arms, but there may be more than one arc (and thus

more than one spiral arm segment) per spiral arm. This can happen when it is not obvious

whether one spiral arm is a continuation of another. For example, if a spiral arm has a tight

bend, it may be better (for semantic and/or modeling purposes) to describe it with two

spiral arm segments, one on each side of the bend, and leave it up to the user (and the task

at hand) to decide whether the spiral arm segments belong to the same spiral arm. Other

ambiguities include brightness gaps that could result from dust lanes or two distinct arms,

and branch (fork) structures where either (or neither) of the two prongs could be considered

the continuation of the spiral arm. Additionally, the option to use multiple arm segments to

describe (what could be interpreted as) one spiral arm allows additional modeling flexibility;

if a spiral arm shape deviates too much from a logarithmic spiral curve, the arm can be

described with multiple arm segments instead of a single arm segment. In light of these
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considerations, we note that the distinction between “spiral arm” and “spiral arm segment”

does not indicate a loss of information; it is an artifact of describing an ambiguous concept

with precise quantitative information.

The list-of-arcs representation describes a spiral arm-segment “skeleton” that provides cru-

cial information about spiral galaxy structure. From the set of arcs it is possible to de-

termine quantities such as arm winding direction, tightness (pitch angle), asymmetry and

lopsidedness, branching, and degree of flocculence. This information will be useful for the

astronomical goals described in Section 1.2. It can also facilitate development of further au-

tomated methods, which can use this information as initial conditions or constraints on the

fit. Furthermore, to the best of my knowledge, this representation allows the most detailed

description of spiral arm structure currently available from an automated method. In the

following sections, I will describe a method for determining the information given under this

representation.

3.2 Image Brightness Transformation

The method described in this work can accept images in popular formats (e.g., PNG or

JPEG), in which case the steps described in this section can be skipped, but astronomical

images are generally acquired and used as FITS files. These files contain close-to-raw data

from a telescope’s sensor (i.e., as flux measurements), and as such these files differ from most

images familiar in everyday life. Of particular importance is that FITS images have a very

high dynamic range: some image pixels have brightnesses orders of magnitude greater than

other pixels, depending on where they were pointed (much more brightness can be received

from a galactic bulge as compared to a region without a visible object, for example). This

poses extra hazards when applying image processing and computer vision methods to these

images (high-brightness pixels can have outlier-like effects on linear filtering methods, for
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example). In addition, brightness values from spiral arms encompass only a small portion

of the image’s brightness range, so without further processing, large brightness values from

sources like foreground stars and galactic bulges would drown out the signal (brightness

variation) from spiral arms. To address this, we transform image brightness values so that

spiral arm-related variation covers a much wider portion of the image intensity range.

Astronomers already have methods for brightness transformation, in part because this op-

eration is also useful when preparing images for human viewing. We adopt the procedure

described in [43], where brightness values at each pixel are transformed according to the

function

r(x) =



0 if x < m

asinh(x−mβ )

asinh(M−mβ )
if m ≤ x ≤M

1 if x > M

(3.2)

Astronomers frequently use the asinh function because, as discussed in [43], it is approxi-

mately linear for smaller brightness values and approximately logarithmic for larger values.

The linear region of the function preserves details from relatively faint regions, such as spi-

ral arms. The logarithmic part suppresses extreme intensities from regions that are much

brighter than spiral arms, preventing these regions from dominating the intensity range of

the image. The parameter β controls the brightness level where the function transitions from

linear to logarithmic. The behavior of this function is illustrated in Figure 3.2.

We must now choose values for m, M , and β. When choosing m, we note that the smallest

brightness value in the image is generally significantly larger than zero, due to near-constant

values for the background sky. If we were to set m = 0, r(x) would compress all of the

brightness values toward the upper end of the transformed brightness range, making the

entire image appear bright and inducing severe information loss. A reasonable response is
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Figure 3.2: Behavior of the asinh function and its β parameter. The function is applied
after subtracting a near-minimum brightness value from all pixels in the image (see text).
This asinh function is approximately linear for x < β, retaining brightness variation from
features such as spiral arms, and approximately logarithmic for x > β, suppressing extreme
brightness values. Smaller values of x (corresponding to relatively faint features such as
spiral arms) thus span a much larger range of the output values. Appropriate settings for β
(discussed in the text) can thus transform image brightness values in a way that emphasizes
spiral arms.

to set m to the smallest observed pixel value. This can be improved because empty (for our

purposes) regions of the image vary in brightness, in significant part due to noise from the

image sensor. We do not want these noise values to be prominent in the brightness range

of the image, especially since r(x) retains the most brightness variation at the lower end.

Consequently, we set m to the 25th percentile of image brightness values. This cuts off much

of the brightness variation from image noise, adds robustness against unusually small pixel

brightness values, and remains conservative enough to preserve faint objects in the image.

Setting the value for M is simple: since the asinh function suppresses extreme brightness

values, we do not need a maximum-brightness cutoff. Consequently, we can simply set M to

the maximum brightness value in the image.2

2 The M parameter is only present because [43] uses the more generic F (x) instead of asinh(x/β), and
then suggests F (x) = asinh(x/β). With the more general F (x), which we do not need here, the M parameter
may be useful.
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The parameter β is the most important because it determines the transition point between

linear and logarithmic brightness transformation. Its value need not be exact, since bright-

ness variation from the spiral arms need not occupy an exact portion of the image’s brightness

range, but it must still be set to a reasonable value. If it is too high, the brightness range will

still be dominated by bright, non-arm regions. If it is too low, brightness variation from the

arms themselves will be suppressed, and they will be difficult to distinguish from the rest of

the galaxy. We cannot use a fixed value for β because image brightnesses vary according to

factors such as the range of light wavelengths recorded in the image, the instruments used,

and (in some cases) the exposure time. Since extreme-brightness regions occupy only a small

portion of the image area, we can use a brightness percentile to find a good value for β. In

particular, we set β to the 75th percentile of the image brightness.

Since β must be chosen before the brightness transformation is performed, the β value

selection does not benefit from the increased consistency imparted by the brightness trans-

formation. Additionally, a single asinh operation is sometimes insufficient to fully emphasize

spiral arms over extreme brightness values. These shortcomings are removed by applying

r(x) twice. After the first transformation by r(x), we treat the resulting image as input,

repeat the percentile-based selection of m and β (using the same percentiles as before), and

apply the second asinh transformation.

Figure 3.3 illustrates the effect of the brightness transformation. The original image appears

mostly black, with only a few small bright areas visible. Since most of the brightness varia-

tions are miniscule in comparison to the difference between typical and extreme values, the

very brightest image regions dominate at the expense of all other regions. In the transformed

image, the brightness range of the spiral arms (and other galactic features) is preserved, while

the difference between typical and extreme brightnesses shrinks dramatically. To both the

human eye and to automated methods, the brightness information in the image now focuses

much more on features of the galactic disk, including spiral arms.
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Figure 3.3: A sample galaxy image (NGC3631, red band, from the Sloan Digital Sky Survey)
before (left) and after (right) brightness transformation. Without transforming the image
brightness, the image appears mostly black because the bright objects (namely the galactic
bulge and foreground stars) are much brighter than everything else in the image, including
the spiral arms. After transforming the image brightness, intensity variations from the spiral
arms occupy a much wider range of the image values, making them much more visible to
the human eye and to automated analysis procedures.

3.3 Image Standardization

Since spiral arm structure is roughly two-dimensional (the spiral arms lie within the plane of

the galactic disk), it is ideal to view a galaxy face-on, such that the image plane aligns with

the plane of the galaxy disk (i.e., where our line of sight is orthogonal to the galaxy disk).

In a few cases, galaxies are indeed viewed face-on, but it is more common for the galaxy to

be positioned so that the disk is tilted (inclined) relative to our line of sight. If this situation

is left unaddressed, the two-dimensional geometry of the galaxy disk will not correspond to

the geometry in the image. In particular, the spiral arms will appear distorted with respect

to a logarithmic spiral shape. Fortunately, unless the inclination is so severe that spiral arm

structure is not visible at all (an edge-on view), it is possible to compensate for inclination

effects. Along with inclination, variations due to the galaxy center and apparent size will

also be detected and removed.

After determining the galaxy inclination, center, and apparent size, the image will be trans-
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formed so that the galaxy appears as if it were viewed face-on (except for the spherical bulge,

which will appear elliptical for severely inclined galaxies), centered in the image and at a

fixed resolution. It is also possible to leave the image as-is and adjust all subsequent steps

for galaxy inclination, position, and size, but transforming the image ensures that all steps

adjust for these factors in a consistent manner. Transforming the image also avoids adding

unnecessary algorithmic complications and computation time to all subsequent steps.

The transformation to a standardized inclination and center makes these quantities fixed

and known, thus providing the galaxy-level information needed to use the list-of-arcs rep-

resentation of spiral structure (see Section 3.1). Standardizing the resolution of the image

makes size-related galaxy properties (e.g. the number of pixels covered by a spiral arm, or

the length of an arc describing an arm) consistent between galaxies. This aids the orientation

filter approach described in Section 3.5 (since there is less relative variation between spiral

arm sizes and orientation filter sizes), increases the consistency of size-related decisions in

subsequent spiral structure extraction steps, and makes output information (such as spiral

arm sizes and lengths) readily comparable across images.

Assuming that galaxy disks are roughly circular (a known property of galaxy disks that have

not been perturbed by another galaxy [22]), the edge of the galaxy disk will appear elliptical

when viewed at an angle, and will appear circular if and only if viewing angle effects have

been removed. Thus, once the elliptical outline of the disk is known, it is possible to remove

image variation due to viewing angle, centering, and apparent size by stretching the image

so that the ellipse becomes a circle, cropping the image to a square with the circle inscribed,

and resizing the image to a standard resolution (256× 256 in our case, but other resolutions

would likely work as well). Several methods are available to determine the elliptical outline

of a galaxy (explicitly or implicitly) and to de-project galaxy images (e.g., [23], [21]). Here,

we describe a method that is tailored to our purposes (it avoids calculating unnecessary

information, is widely applicable across images, does not need manual guidance, and retains
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sufficient accuracy), but any method that can detect the elliptical outline in an automated

manner (i.e., with sufficient speed and reliability) can be used.

We detect the elliptical outline by iteratively fitting a two-dimensional Gaussian because

this can be done without any manual supervision, and does not waste computation time

in determining unnecessary information (we only need the elliptical outline and not, for

example, the exact brightness concentration of galaxy light in the disk and bulge). It also

allows the use of images already processed for human viewing (e.g., JPEG, PNG) in addition

to FITS images. For FITS images, we apply the brightness transformation described in

Section 3.2. Otherwise, we skip brightness transformation and use the image as is. The two

dimensional Gaussian function is not a perfect description of the light distribution of galaxy

disks, but it is close enough to get the elliptical outline of the disk, which is all we need.

Additionally, given weights for each pixel (e.g., as calculated from a previous iteration), the

optimal values for the Gaussian parameters (the mean and covariance) have a closed-form

solution, avoiding an expensive optimization at each iteration. Using an iterative fit confers

resistance to non-galaxy light sources such as foreground stars and imaging noise; these

objects can be successfully avoided in many cases (see Figure 3.4 for an example). There are

a few remaining cases where this resistance is not enough, but see Section 3.4 for an optional

addition that can complement the resistance provided by iterative fitting.

At each iteration of the Gaussian fit, we compute the weighted mean and weighted covariance

of the Gaussian. The pixel weights for iteration k are calculated as

w
(k)
ij =


Iij · 1

|I| k = 0

Iij · N (
[
i
j

]
|µ(k−1),Σ(k−1)) otherwise

(3.3)

Where Iij is the image intensity (after brightness transformation) at position
[
i
j

]
, |I| is

the number of pixels in the image, µ(k−1) and Σ(k−1) are the weighted mean and weighted
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covariance from iteration k − 1, and N is the standard Gaussian density function in two

dimensions, i.e.,

N (
[
i
j

]
|µ(k−1),Σ(k−1)) =

exp
{
−1

2(
[
i
j

]
− µ(k−1))T 1

Σ(k−1)
(
[
i
j

]
− µ(k−1))

}
(2π)|Σ(k−1)|

1
2

(3.4)

With these weights, we use the standard formulas to calculate the weighted mean and

weighted covariance, i.e., at iteration k the weighted mean is calculated as

µ(k) =

∑
(i,j)

w
(k)
ij ·

[
i
j

]
∑

(i,j)

w
(k)
ij

(3.5)

and the weighted covariance is calculated as

Σ(k) =

∑
(i,j)

w
(k)
ij (
[
i
j

]
− µ(k))(

[
i
j

]
− µ(k))T

∑
(i,j)

w
(k)
ij

(3.6)

In practice, we add a small value ε to the diagonal of Σ(k) in order to avoid problems with

numerical stability. We set ε = 2−52, i.e., the distance from 1.0 to the nearest double

precision floating point number. In a large majority of cases, adding ε to the diagonal is not

needed, but since the other effects of ε are negligible, we always use it.

For several iterations, the Gaussian contours will become a progressively better fit to the

galaxy disk. After that, the fit will temporarily plateau at the disk, and then the Gaussian

contours will shrink further to fit the galaxy bulge. Since we are looking for the outline of the

galaxy disk (not the bulge), we must detect the temporary plateau at the galaxy disk and

stop the iterations at this point. We note that w(k) =
∑
ij
w

(k)
ij approximately measures how

well the Gaussian parameters match image brightness values because w
(k)
ij is a product of
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image intensities and Gaussian density values, with the image intensities fixed and Gaussian

density values normalized so that they sum to 1. Thus, high values of w(k) indicate that the

Gaussian density values are distributed to match bright parts of the image. We can then

detect the plateau as the point where w(k) is improving but at a lower rate (indicating the

plateau), with this slowdown in improvement small and getting smaller (indicating that the

fit is about to exit the plateau). We can quantify these criteria with the second derivative

of w(k); specifically, we define

c(k) = w(k) − 2 · w(k−1) + w(k−2), k ≥ 3 (3.7)

and stop the Gaussian fit at iteration k if k > 3, 0 > c(k) ≥ −δ, and c(k) ≥ c(k−1), using an

empirically determined value of δ = 0.005. As extra protection against pathological cases,

we can also set a maximum number of fits, stopping (and recording a warning) if k ≥ 25,

but in practice this is not needed. After the Gaussian fit is stopped at the plateau, the

10−9 contour of the Gaussian likelihood consistently traces the outline of the galaxy disk

(except possibly when bright foreground stars are present, but these can usually be ignored

with the iterative fitting, and otherwise counteracted using the methods described in Section

3.4). Figure 3.4 illustrates this iterative fitting, and its termination at the plateau. After the

elliptical outline of the disk has been determined, the image can be transformed so that the

galaxy appears circular, centered, and at a constant resolution, as mentioned earlier. Figure

3.5 provides several examples of this standardization.

Two variations are possible in the determination of the galaxy center during the ellipse-

outline fit. In some circumstances, the galaxy center will be known in advance (such as

if the galaxy has already been centered in the image, as it is in many data sources), in

which case we can treat µ as fixed, and only calculate Σ(k) and w
(k)
ij during each iteration.

When it is necessary to determine the center, we can improve its precision by noting that

the Gaussian fit will be better centered over the galaxy center once the Gaussian passes
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Figure 3.4: Images are standardized to a consistent viewing angle and size by detecting
the elliptical outline of the galaxy disk and then transforming the image so that the ellipse
appears as a circle inscribed in the image (which is resized to a constant resolution). The
elliptical outline is determined by iteratively fitting a two-dimensional Gaussian and then
stopping when the fit plateaus (to prevent the fit from collapsing around the galaxy bulge).
The 14 iterations needed for this example image are shown from left to right and then top
to bottom. For each iteration, three characteristic Gaussian likelihood contours are shown
in red, along with the contour used for the galaxy disk outline, in green. Since the other
objects in the image all have lesser total image intensity than the target galaxy, these other
objects are successfully ignored. The final standardized image is shown at the bottom right.

the plateau and shrinks until it is only fitting the galaxy bulge. We can take advantage

of this by performing the iterative Gaussian fit twice. The first time, we stop when either√
(µ(k) − µ(k−1))T (µ(k) − µ(k−1)) < τ (indicating convergence of the center because the

distance between successive µ values is small) or k ≥ 100. The convergence threshold τ has

an empirically determined value of 0.02. After this fit has finished, we record the final value

of µ. In the second Gaussian fit, we fix µ to the value found previously.
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Figure 3.5: Variations due to galaxy viewing position, particularly in viewing angle and
apparent size, are removed using the ellipse fit to the galaxy disk (see text and Figure 3.4).
The top row displays images before this standardization, and the bottom row displays the
corresponding images after standardization.

3.4 Foreground Star Removal

When determining the elliptical outline of the galaxy disk for image standardization, as

discussed in Section 3.3, the iterative fitting often but not always resists disruption from

stars (or other objects) in the image of target galaxy. When the ellipical-disk-outline fitting

does fail, it tends to do so by either finding the outline of a star rather than a galaxy, or by

straddling the galaxy and another object. Often, star disruption is not a problem, because

astronomers have methods for detecting and masking foreground stars. However, star mask-

ing is often done separately from the sky surveys that acquire galaxy images, and to the best

of my knowledge there does not appear to be a consistently used, detailed specification of

how stars are masked and removed. Therefore, I have developed a star masking process that

can be used in situations where star masking is not otherwise available. This star masking

requires images to be available in FITS format, but this format, or something convertible

to it without loss of information, is almost always used for astronomical images. PNG or

JPEG images can still be used if their underlying FITS images are available, in which case

the FITS image is used to obtain the star mask, and then the PNG or JPEG image is used
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instead of the brightness transformation from Section 3.2.

My approach follows the general idea of other star masking procedures in that it uses and

cleans the output of SExtractor (an abbreviation of Source Extractor) [7]. SExtractor detects

pixel regions corresponding to different light sources, and attempts to classify these regions

as stars versus galaxies (i.e., point sources versus non-point sources). However, these are

challenging tasks, in part because of image noise and other imperfections in the image,

because galaxies are composed of many light sources, because many pixels convey brightness

from more than one light source, and because of variation in the imaging environment, such

as the filter bandpass and atmospheric conditions. As such, we cannot expect SExtractor

output to be perfect for our purposes. In particular, we cannot be sure whether a detected

region is a star or a galaxy (without per-dataset human judgment on SExtractor parameters

and classifier training, which can be done partially in place of the methods of this section, but

which we want to avoid here for generality and automation), there may not be a one-to-one

correspondence between SExtractor-detected regions and objects of interest in the image (in

particular, the galaxy may be broken into multiple regions, especially since galaxies often

contain multiple resolvable light sources), and the shapes of the detected regions may be

highly ragged, non-contiguous, and otherwise irregular. To address these issues, we clean

the SExtractor output to make it more amenable to star masking (though not necessarily

more suitable for other applications of SExtractor that do not concern us here), and we only

use star masking when and to the extent necessary. To achieve the latter, we apply star

masks of increasing aggressiveness (initially trying not to use a star mask at all), and only

use star masking in steps where it is needed. The primary use of this star masking is to

aid the galaxy disk outline determination in Section 3.3, but star masking can also be used

to reduce the impact of foreground stars during the image brightness transformation step

(Section 3.2).

The first step in using SExtractor is to run it under its default configuration (using the
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configuration files provided with the executable), except that we ask for a segmentation

image as output (by specifying CHECKIMAGE TYPE SEGMENTATION on the command line or in

the parameter file). We used SExtractor version 2.8.6, but other versions may work as well.

The SExtractor segmentation image gives the identifier of the SExtractor region assigned

to each pixel. We then refine this segmentation image before using it to generate a set of

star masks. First, we remove holes in the pixel regions, which restores individual pixels

and small groups of pixels omitted due to noise, and subsumes objects contained entirely

within other objects. The latter is less common; when it does occur, it can combine regions

corresponding to the same object (which is often a galaxy), but can also lead to stars being

included in the galaxy region. Including stars in the galaxy region has not been a significant

problem; if the star is bright enough to disrupt the ellipse fit to the galaxy, the star region

will generally be large enough that it will not be fully contained within the galaxy region.

After this hole-filling, we replace each pixel’s region value with the majority vote within the

3x3 neighborhood centered on the pixel. Ties can occur at image borders, and are settled in

favor of the current region value. For each region, we then keep only the largest connected

component (using a 3x3 neighborhood), which removes small, often-noisy patches (which are

reassigned to the background).

After cleaning the SExtractor output, we use it to produce star masks with increasing levels

of aggressiveness. The first “mask” is trivial (it does not mask anything). For the non-trivial

star masks, we must first determine which SExtractor region corresponds to the galaxy (or

the most prominent part of it, if SExtractor broke the galaxy into multiple regions). We

call this region the “primary region.” Given the difficulties SExtractor faces in producing

perfectly reliable output (for our purposes) without dataset-specific tuning, combined with

the fact that astronomers can (almost always) automatically center the galaxy of interest (or

at least place it closer to the center than any other object), we simply take the region assigned

to the image-center pixel as the primary region. If no region is assigned to the center, we

instead use the region with a pixel closest to the center. Next, since regions contiguous
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to the primary region may be part of the galaxy (which would be, for our purposes, a

false separation by SExtractor) or may be another object such as a star, we also define an

“extended region” consisting of the primary region and all regions directly or transitively

adjacent to the primary region. The raggedness of SExtractor regions can interfere with

region adjacency, but this was counteracted by the region-cleaning steps mentioned above.

We then have four types of pixels for defining star masks: background pixels, pixels in a

SExtractor region that is not part of the primary or extended region, pixels that are part

of the extended region but not the primary region, and pixels that are part of the primary

region.

We can then use this information to mask out stars that interfere with the elliptical-disk-

outline determination described in Section 3.3. To do so, while only using star masking

where and to the extent necessary, we must determine when stars are disrupting this disk-

outline determination process. Although star disruption is rare, it is severe when it occurs

(if a star caused the ellipse fit to only be partially distorted, this distortion can be corrected

in subsequent iterations). Thus, star disruption tends to be easily detectable as long as

there is at least a weak sense of what the ellipse fit would be like without star disruption.

Since astronomers can at least approximately determine galaxy centers automatically, we can

detect star disruption by looking for ellipse centers that drift too far from the image center.3

In particular, we consider stars to be disrupting the ellipse fit when, after performing this fit,

the Euclidean distance between the ellipse center and the image center is greater than 2.5

pixels. The exact choice of this threshold is not critical. Since star disruption tends to be

severe (when it occurs at all), its effect on ellipse centering is severe as well (the center tends

3 In an earlier attempt to detect disruption from stars, the ellipse was divided into inner and outer parts,
and then the ratio of the two average brightness values was calculated. Since stars often cause the ellipse fit
to straddle the star and the galaxy, the outer part of the ellipse would be unusually bright, and the inner
part would be unusually dim (since there would not be an object in the middle). However, this often resulted
in false detections for galaxies with dim bulges and/or a foreground star near the galaxy edge (even a small
star that would not disrupt the ellipse fit), and did not detect star disruption when the ellipse fit focused
entirely on a star. Thus, we found the ellipse center distance to be a better means of detection, to the point
where it was worth introducing the assumption that the galaxy is close to the image center, especially since
this assumption is reliable in practice.
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to move to a foreground star, or between a galaxy and a foreground star), so star-disruption

cases can usually be easily distinguished from normal cases. To handle the rare instances of

ambiguous distance values, we set a tight threshold because the risk of using an unnecessarily

aggressive star mask is preferable to the risk of choosing the wrong elliptical image region,

especially since an ellipse fit around the primary region is usually reasonable and the star

mask can be removed after the ellipse fit.

When the ellipse fit is considered to be disrupted by a star, we use the next (more aggressive)

star mask and repeat the ellipse fit. We first try the ellipse fit without a star mask. If star

disruption is detected, we then try the ellipse fit with a star mask that zeros pixels in all

SExtractor regions that are not part of the primary or extended region. This removes stars

and other objects that are very unlikely to be part of the galaxy (due to their distance in

the image), but are sometimes bright enough to cause a problem. If star disruption is still

detected, the next star mask zeros pixels in all SExtractor regions except the primary region

and the background (in particular, this zeros out the extended region). This can remove

stars that are closer to the galaxy, at the risk of masking out part of the galaxy (though

even if this happens, the ellipse fit often succeeds anyway, and subsequent steps see the

full galaxy because the mask is removed after the ellipse fit finishes). If star disruption is

still detected, we zero out all pixels outside the primary region, regardless of whether these

pixels are background or part of a SExtractor region. This is rarely needed, but it can

cope with missed SExtractor detections in the unlikely case that they exist. This could also

cope with bright pixels that were assigned to the background during the SExtractor region

cleaning (e.g., removal of non-contiguous pixels), but this case has never been observed,

perhaps because SExtractor would likely consider an image-separated bright pixel region

as a separate object detection. If all of these masks fail to adequately reduce the distance

between the ellipse center and the image center, the ellipse fit from the final star mask is

used. The level of star masking needed can be reported to the user (in case it is important to

verify the rare cases where aggressive star masks were needed, for example), and the image
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standardization process is now more resistant to disruption from stars. Figure 3.6 provides

examples of the different levels of star masking that can be applied.

Figure 3.6: Star masking can prevent stars (and other objects in the image) from interfering
with the image standardization described in Section 3.3, and can improve the consistency
of the brightness transformation described in Section 3.2. The first column gives example
images that contain objects other than the galaxy of interest; the image intensities are
transformed (Section 3.2) for visibility. The second column shows image regions produced
using cleaned SExtractor output (see text). The primary region is in blue, the part of the
extended region that is not part of the primary region is in green, and SExtractor detections
not part of either of these regions are in yellow. The next three columns show the different
levels of star masking that can be applied using these regions. The first level (after the one
that does not apply a star mask at all) removes SExtractor regions other than the primary
or extended region. The second level also removes pixels that are in the extended region
but not the primary region. Note that this removes a star in the top example and part of
the galaxy in the bottom image, reflecting the fact that adjacent SExtractor detections are
sometimes part of the galaxy and are sometimes a separate object. The final mask zeros
all pixels except the ones in the primary region. This is done to accommodate the unlikely
cases of missed SExtractor detections and bright pixels reassigned to background during
SExtractor output cleaning. The last two masks sometimes zero out parts of the galactic
disk, but even in these cases enough of the disk remains for the iterative Gaussian fit to
remain close to the pixel region corresponding to the disk.

If an input image has a severe amount of CCD noise, some pixels in the “empty” regions of

the image may have unusually bright values after the brightness transformation described in

Section 3.2. If this effect is strong enough, brightness values comparable to the galaxy disk

can be scattered throughout the “empty” image regions, causing the ellipse fit to stop while

it still encompasses an area much larger than the galaxy disk. We can address this situation
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with a procedure similar to star masking. If imaging noise is affecting the ellipse fit, the

contours of the ellipse will typically extend beyond the image region. When this occurs, we

can (during ellipse fitting only) zero out pixels that are not part of the primary or extended

region, and then repeat the ellipse fit. This is usually sufficient to remove imaging noise, but

if the ellipse fit still extends outside the image boundary, we can again repeat the ellipse fit,

this time also zeroing out pixels in the extended region (but not the primary region). If the

ellipse still extends outside the image boundary, the last ellipse fit is used. The level of “noise

masking” used is also reported to the user; if all noise masking measures fail, it is likely that

the field of view in the input image did not encompass the entire galaxy. This noise masking

is rarely needed for the images we used, but it nevertheless increases the robustness of the

ellipse-fitting procedure.

Star masking can also improve the consistency of the brightness transformation described

in Section 3.2. In this brightness transformation, the β parameter controlled the transi-

tion point between near-linear and near-logarithmic treatment of the brightness values, and

was chosen based on the distribution of brightness values (by computing a percentile). Fore-

ground stars can distort this distribution by introducing additional extreme brightness values

that would otherwise be rare. Since we are only interested in brightness values within the

galaxy, we can avoid star-induced distortions to the brightness distribution by measuring the

brightness percentile within the galaxy region rather than within the image as a whole. For

this purpose we find it sufficient to use the primary region: even if SExtractor fragments the

galaxy into more than one region, the primary region covers most of the galaxy, including the

bulge and most of the disk. The lower part of Figure 3.6 gives an example of how the primary

region covers most of the galaxy (in the upper example, the galaxy is not fragmented). This

coverage is sufficient to get a reasonable brightness percentile value. Furthermore, losing

some “typical” galaxy pixels from the percentile calculation is better then introducing spuri-

ous extreme brightness values (a risk incurred if other, possibly star-containing, SExtractor

regions are included in the percentile calculation). In addition to modifying the selection

47



of the β parameter, we clip image brightness values that exceed the maximum brightness

found within the primary region (the region that contains the galaxy bulge, and thus the

brightest part of the galaxy). This avoids wasting part of the image brightness range on

values only seen from foreground stars. Even with these modifications, we still need the

brightness transformation because the galaxy bulge also has extreme brightness values (so

the spiral arms often occupy a small part of the brightness range even without foreground

stars), but the star masking eliminates two sources of unwanted variation in the brightness

transformation: non-galaxy influences on the brightness distribution used to select β, and

the portion of the image brightness range occupied by the galaxy.

3.5 Orientation Field Generation

Given an image with transformed brightness (Section 3.2) and standardized apparent size and

viewing angle (Section 3.3), we would like to determine pixel regions corresponding to spiral

arm segments. However, the brightness values themselves do not give a strong indication

of whether or how the pixel is part of a spiral arm. Spiral arms are generally neither the

brightest nor the dimmest region of the galaxy and can vary in relative brightness compared

to the rest of the galaxy components. Instead, the pattern of brightness is often much more

informative. Thus, we calculate pixel-level features that capture some of these patterns,

thereby providing better information about spiral arm membership. We do so by calculating

an orientation field as described in [2, 3]. We summarize this procedure, and then describe

a method for enhancing the image so that spiral arms are more distinctive in the orientation

field.
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3.5.1 Determining the Orientation Field Vectors

This orientation field generation procedure [2] uses the fact that, if a pixel is part of a spiral

arm, then nearby pixels along the spiral arm (and the pixel itself) will generally be brighter

than nearby pixels not along the spiral arm. Within a small region around the pixel, this will

manifest itself as a roughly linear brightness pattern along the spiral arm. For each image

pixel, the orientation field determines the strength and direction of this linear brightness

pattern. Generating the orientation field has three main steps: applying oriented image

filters at a given resolution to get per-pixel orientation strengths and directions, combining

this orientation information across three image resolutions, and applying normalization and

de-noising to the resulting orientation field. We summarize these steps here; for derivations

and more detail, see [2].

For a single image resolution (scale), the initial orientation strengths and directions are

determined by applying a set of oriented filters to an image via convolution. The convolution

operation replaces each pixel with the weighted sum of its neighbors (including the pixel

itself), with the set of weights given as the image filter.4 The image filters are designed

to favor linear patterns with (or close to) a particular angle θ. Several such filters will be

constructed, one for each of a set of values of θ. The filters are based on the one-dimensional

equivalent of the Laplacian-of-Gaussian function, i.e.,

h(x) =
2√
3
π−1/4 (1− x2)e

−x2
/

2
. (3.8)

This function is illustrated in Figure 3.7a. When extended into two dimensions such that x

is the distance from a line with angle θ, this produces a ridge function that, when used to

produce pixel-neighborhood weights, will favor linear structure in the direction of θ. Since

we only want to look for structure within a small neighborhood around the pixel, the weight

4 The filter is first flipped in both dimensions, but this does not change the filters used here.
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strengths are reduced according to their distance from the center of the image filter, with

the fall-off determined using a Gaussian function. In [2], the reported filter function ψθ(x, y)

applies this Gaussian attenuation isotropically. However, in consideration that h(x) already

falls off to near zero at the endpoints of the x range used in the filter, and to match the

filter matrices given in Appendix F.2 of [2], we only apply the Gaussian attenuation along

the line with direction θ. Each orientation filter is then produced using the function

ψθ(x, y) = h(pθ+90◦(x, y))× 1√
2
e−

1
2(pθ(x,y)2), (3.9)

where pθ(x, y) = x cos θ + y sin θ, and h(x) was defined in Equation 3.8. The orientation

filters are 11 × 11 pixels in size, with values produced from ψ(x, y) such that the x and y

values both have the range [−π, π], with these endpoints corresponding to the outer edges

of the filter pixels. The filters are then normalized (using the Euclidean norm). Nine filters

are used, using angles θ = 0, π9 , . . .
8π
9 . These filters are illustrated in Figure 3.7b; note how

they favor linear structure along the corresponding angle θ.

After applying image convolution with these filters (weights), the per-pixel orientation in-

formation is summarized as ~w =
∑
θ
Eθ e

ı·2θ, where ı =
√
−1 and Eθ is the square of the

convolution result (using the filter corresponding to angle θ) for the pixel in question. The

orientation angle and strength at each pixel are then given via the complex argument and

modulus as arg(~w)/2 and ‖~w‖, respectively. The orientation angle gives the direction at

which the orientation filter response is the strongest. Angles differing by a multiple of π

radians are equivalent. The orientation strength is the extent to which the filter responses

are larger near this dominant orientation. This measure gives strong values to spiral arm

regions (because these regions have a linear brightness pattern and thus have a strongly

dominant orientation), while giving weak values to symmetric light sources (such as stars)

and constant-brightness regions.
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Figure 3.7: Orientation-sensitive filter generation as adapted from [2]. The filters use the
Mexican hat (one-dimensional equivalent of the Laplacian of Gaussian) function, left. This
function is extended along one of nine directions, and then a Gaussian window is applied,
producing the nine filters shown at the right. The strongest positive values are in red
and the strongest negative values are in blue. Each filter yields increased responses when
larger brightness values are aligned or nearly aligned with the filter’s orientation, and yields
reduced responses when larger brightness values are found in other directions (or when strong
brightness values are not present at all). Combining the results of these nine filters produces
a per-pixel measure of orientation strength and direction. Determining this orientation
information at each pixel produces an orientation field.

At a single image resolution, this scheme assumes that the widths of the spiral arms roughly

match the width of the ridge used in the filter. Along with the image standardization

described in Section 3.3, which reduces variation in arm width, the need to match filter-ridge

and arm widths can be at least partially addressed by combining orientation information from

multiple image resolutions. Following the method described in [2], orientation information

from two image resolutions can be combined as

V
(f)
i,j ← V

(c)
i,j +

S
(f)
i,j

S
(c)
i,j + S

(f)
i,j

(V
(f)
i,j − V

(c)
i,j ). (3.10)
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Here, V (c) and V (f) are matrices expressing the orientation information from the coarser

and finer scale, respectively, such that V (c) has been upscaled to the same dimensions as

V (f) using interpolation operations (as one would do with image resizing), and V
(·)
i,j is a

two dimensional Cartesian-coordinate vector giving the orientation at position (i, j). S
(c)
i,j

and S
(f)
i,j give the orientation strength for position (i, j) using orientation information at the

coarser and finer scale, respectively. Like V (c), S(c) has been upscaled to the same size as

S(f). To combine orientation fields from more than two resolutions, we first perform this

procedure for the orientation fields with the lowest and second-lowest resolutions. While

there are orientation fields at higher resolutions, one can then treat the previous result as

the new coarse orientation field, and repeat Equation 3.10 with the orientation field at the

next-highest resolution. As in [2], we combine orientation information from three resolutions:

the highest resolution (in our case, this is the standardized image resolution as discussed in

Section 3.3), along with half and a quarter of this resolution.

After combining the orientation information from multiple image scales (resolutions), [2]

performs a normalization and de-noising procedure. For each orientation field position, this

procedure examines neighbors that are five pixels away in each direction along each axis,

i.e., neighbors with positions

R(i, j) = {(i− 5, j), (i+ 5, j), (i, j − 5), (i, j + 5)}. (3.11)

The orientation strengths are then updated as

Si,j ← median

max(|Vi,j · Vi′,j′| − cos (π/4), 0)∥∥Vi,j∥∥∥∥∥Vi′,j′∥∥∥ : (i′, j′) ∈ R(i, j)


 . (3.12)

This expression performs normalization to make the orientation strengths more invariant to

the overall brightness of the region (otherwise, uniformly increasing the brightness of the

region would increase the orientation strength, and orientations would often be stronger
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near the galaxy bulge). It also zeros out noisy orientation vectors, under the assumption

that regions without an orientation pattern produce orientation vectors with low strength

and random direction (particularly random direction that varies among nearby pixels). The

neighborhood distance of five pixels was chosen because it is close enough for neighborhood-

related expectations to hold, and far enough for orientation vector alignment to occur for

reasons other than the smoothing effect of the orientation filters.

3.5.2 Enhancing Sensitivity to Spiral Arms via the Unsharp Mask

When producing the orientation field as-is in practice, the orientation field directions would

“flow” along spiral arms, but the orientation strengths would usually be similar for arm

regions and non-arm regions, even for well-resolved galaxies.5 When using the original FITS

images (with or without subtracting the minimum), this filled non-arm regions with spurious

orientation vectors of high strength. When rescaling the images to a [0, 1] range (with or

without the brightness transformation given in Section 3.2), very few orientation field vectors

(if any at all) remained after normalization and de-noising (Equation 3.12). Comparing the

orientation fields before and after the adjustment from Equation 3.12, it was found that

either the normalization or the de-noising tends to overpower the other. The normalization

can be helpful (and sometimes necessary) for bringing out spiral arms, but when it does so,

it also greatly amplifies what would otherwise be much smaller orientation strengths in the

non-arm regions. Alternately, when the de-noising zeros out noisy orientation vectors, it also

tends to zero out orientation vectors along spiral arms.

The presence of many strong orientation vectors in non-arm regions may not be problematic

for the symmetric two-arm spiral model in [2], due to the restrictions that this model im-

poses. For example, if the orientation field has three regions with strong, locally consistent

5 We also tried applying the normalization before subtracting the cosine in Equation 3.12 (since the cosine
subtraction would then be applied to a normalized dot product) to ensure that this was not the intended
equation in [2], but this change did not improve the situation.
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orientations, the region conforming the least to the symmetric two-armed spiral model can

simply be treated as noise or otherwise ignored. However, our list-of-arcs model (Section

3.1) is far more general than the symmetric two-arm spiral model, and if the third region is

also a legitimate spiral arm region, we want to report it as such. Consequently, our method

cannot be robust to spuriously strong orientations in the same way as [2]. Instead, we must

either find a way to determine which orientation field vectors truly come from spiral arms,

or suppress spurious orientation field vectors during the orientation field calculation process.

The former would introduce additional uncertainty and require additional computation time.

Furthermore, we aim to apply our method to a large set of images, and many of these images

are less well resolved than the ones generally used in [2], so the difference between arm orien-

tations and non-arm orientations would become even less well defined. Fortunately, we can

instead make the orientation field generation procedure more sensitive to arm regions and

less sensitive to non-arm regions. This is accomplished by using an unsharp mask operation

[35] (a contrast enhancement, despite its name) to the standardized image before orientation

field generation.

When applying the unsharp mask, the image is updated as

I ← I + α(I −G ∗ I) (3.13)

where ∗ is the convolution operation and G is a matrix of Gaussian values (i.e., the filter

used in convolution). This amplifies differences between the image and a blurred version

of this image. Consequently, pixel values are increased to the extent that their neighbors

are dimmer, and decreased to the extent that their neighbors are brighter. The values of I,

which were originally in the range [0, 1], are then clipped back to this range.

If the scale (i.e., the standard deviation) of the Gaussian blur is large enough to include

mostly non-arm pixels in the neighborhoods of arm pixels, then the brightness of spiral arm
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pixels will be increased because arms are brighter than most or all of their surrounding

non-arm regions (most surrounding pixels are from the galaxy disk; a few may be from

the bulge). Likewise, in the inter-arm regions (i.e., where spurious orientation vectors were

problematic), the brightness will be reduced, especially near the spiral arms. This causes

the light from the spiral arms to better match the pattern sought by the orientation filters.

When the orientation of one of the filters (visualized in Figure 3.7b) aligns with the spiral

arm at a particular position (and when the width of the filter is close to the width of the arm,

which was already a requirement), then the filter weights with the highest positive values are

matched to the spiral arm pixels, which now have increased brightness, and the filter values

with the strongest negative values will be matched to pixels outside the spiral arms, which

now have reduced brightness. Figure 3.8 illustrates this effect. Since the orientation filter

response is enhanced to the extent that filters align with arm regions, it becomes easier for

the orientation field de-noising procedure to zero out only non-arm regions.

As shown in Figure 3.9, sufficiently large scales of Gaussian blurring also cause the unsharp

mask to function as a crude form of galaxy disk subtraction, since light from the disk has

a lower spatial frequency than light from the arms, and using the large Gaussian scale

subtracts light with the lower spatial frequencies. Fortunately, the arm-amplification and

disk-subtraction interpretations of the unsharp mask agree that the Gaussian scale should be

reasonably large, and due to the image standardization discussed in Section 3.3, we can use a

constant scale. In particular, we found that using a Gaussian filter with standard deviation

25 satisfies the arm-amplification and disk-subtraction considerations. When performing the

Gaussian blur, pixel values outside of the image should not be set to zero, since this would

artificially reduce blurred values near the image border, and thus cause the unsharp mask to

amplify pixels near the border even if they are not brighter than nearby regions within the

image. Instead, pixel values outside of the image are determined by the value of the closest

pixel within the image, which allows near-boundary pixels to be treated like the other pixels.

Next, the unsharp mask strength α must be determined. Since the image brightness was
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Figure 3.8: The unsharp mask amplifies the relationship between orientation filter responses
and the extent to which the orientation filter is positioned over and aligned with a spiral
arm region. The effects of filter position are shown here in one dimension, with a schematic
view across a spiral arm. Values without the unsharp mask are displayed in blue, and values
with the unsharp mask are displayed in green. Due to the contrast enhancement of the
unsharp mask, image intensities (left) are increased within the relatively bright arm region
and decreased nearby, making the arm more prominent. Comparing these changes to the
orientation filter profile in Figure 3.7a, we note that when the orientation filter has approx-
imately the same width as the spiral arm and the filter is centered within the spiral arm,
image intensity values are increased where the filter values are the most strongly positive, and
decreased where the filter values are the most strongly negative. Consequently, orientation
filter responses (right) are increased when the filter center is within the arm region. Similarly,
when the orientation filter is centered near but not within the arm region, its responses are
reduced. In two dimensions, analogous affects are seen for orientation alignment.

transformed (see section 3.2) and can be rescaled to the constant range [0, 1], we can use

a constant value for α. In consideration of typical differences between arm and inter-arm

brightness, as well as the tradeoff between arm brightness amplification and image clipping,

we find a value of α = 6 to be effective.

Although the unsharp mask amplifies arm brightness, it can also exaggerate noise, which can

be especially problematic for relatively poorly-resolved galaxies. We can optionally reduce

this noise by applying a median filter [28], which replaces a pixel’s brightness value with the

median of the neighborhood around a pixel. We use a 3 × 3 neighborhood, and apply the

median filter directly before the image standardization in Section 3.3. By performing median

filtering before resizing the image (in the image standardization step), the median filter size

is consistent with respect to the input image resolution. If all of the input images have a

consistent resolution in arcseconds per pixel (as they typically would if they were generated
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(a) (b) (c) (d)

Figure 3.9: The unsharp mask can function as a crude form of disk subtraction. Starting
with an image of standardized viewing position (Section 3.3) as shown in (a), a sufficiently
large scale of Gaussian blur will leave mostly disk features (b). When this blurred image is
subtracted from the unblurred image, the arms become more prominent (c). The unsharp
mask adds a multiple of this difference, amplifying the arm-prominence effect (d).

from a sky survey), then the filter size is consistent with respect to size on the sky, and if

the images are provided at the original imaging resolution, then the median filter is applied

at a point where much of the imaging noise affects pixels independently.

After unsharp masking, the orientation filters are more sensitive to spiral arm structure.

High-magnitude orientation vectors still “flow” along the spiral arms, and the orientation

vectors are now weak or non-existent in inter-arm regions. The resulting orientation field

is shown in Figure 3.10. In subsequent steps, the orientation field will be the primary

representation of the image, with one orientation field vector for each pixel. The image

brightness values will not be needed further (except optionally as weights of least-squares

fits to spiral arms).

3.6 Handling Bars in Spiral Galaxies

We are primarily interested in detecting arms in spiral galaxies, but some spiral galaxies

also have bars (see Section 1.1 and Figure 1.2). Although bar information can be useful

in astronomy, methods already exist for fitting bars (see Section 2.2). Thus, our primary
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Figure 3.10: A standardized image (see Section 3.3), left, and its orientation field (after
unsharp masking), right. For viewability purposes, only every fourth orientation vector (in
each direction) is shown.

aim with bars is simply to make sure that they do not disrupt the spiral arm detection.

Such disruption can occur because the orientation field generation procedure responds to

bars in the same way as arms, since both are locally linear. Without accounting for bars,

bar regions can then appear to be arm regions, introducing spurious arm segments into

the spiral structure description. For many applications of our method this may not cause

serious problems because the other arms will generally not be affected,6 and bar-fitted arm

segments have characteristics (e.g., low pitch angle, proximity to the image center, angular

coverage near 2π radians, pixels in the image center) that could likely be detected in post-

processing. Nevertheless, since bar detection (and removal) can still improve the accuracy

of the spiral arm structure description, and since bar detection can benefit from orientation-

field information that is not needed in the final output, we perform bar detection before

looking for spiral arm-segment structure. This bar detection is not sensitive to all bars (for

6 It is possible for arms adjacent to the bar to be affected because the bar could be misinterpreted as an
extension of the arm, but such arms tend to visually join the bar at a sharp angle, so the arm and bar can
be treated in the same way as arm “forks.” As discussed in Section 3.7.2, these forks are split into separate
regions.
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example, since the bar is present near and on opposite sides of the galactic bulge, the bulge

may overpower the bar to the point where the orientation field does not respond to the bar),

but this is not a problem because we only need to detect bars that are prominent enough to

have spiral-arm-like orientation patterns in the orientation field.

Taking advantage of the fact that the overall shape of the bar is linear, we apply the Hough

transform [18], a procedure commonly used for line detection, in order to look for bars. The

Hough transform parameterizes lines with a distance and an angle, since the slope-intercept

form would be problematic for vertical line detections. The specified line is tangent to a

circle, with the radius given by the distance parameter and the point of tangency given by

the angle parameter (the Hough transform does not model or detect line endpoints). To find

prominent lines, the Hough transform maintains an accumulator matrix of votes for all pairs

of discretized values of the line parameters. Each pixel then votes for the parameter pairs

of all compatible lines. The main challenge in our use of the Hough transform is that it will

detect all collinear brightness patterns, not just the bar, so we must eliminate all of these

non-bar line detections.

Many line detections can be eliminated because they are geometrically inconsistent with

known properties of galactic bars. In particular, the linear pattern of the bar passes through

the galaxy center, so we can eliminate any lines that do not come close to the galaxy center.

Furthermore, we employ the assumption that bar length is nearly symmetric on both sides

of the bulge. This comes at the expense of detections for hypothetical asymmetric bars,

but the assumption is useful overall due to the overwhelming proportion of bars that are

at least roughly symmetric. To apply the Hough transform in a way that favors these

properties, we compute a set of accumulator matrices A(r). Each matrix A(r) includes only

Hough transform votes within a circular region; this region has radius r and is centered on

the galaxy bulge (as determined by the image standardization step in Section 3.3). These

matrices can be computed as a single Hough transform (without changing the result) by
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choosing an appropriate pixel vote order. In the traditional Hough transform, pixels have

a vote if they are considered an edge by an edge detection method. Here, the orientation

field takes the place of the edge detection, and we use orientation strengths as pixel vote

weights. In the Hough accumulator matrix, the distance parameter is binned in increments

of 5 pixels, and the angle parameter is binned in increments of π/360 radians.

Each matrix A(r) is then given the score

max
i,j

(A
(r)
ij )

r
, (3.14)

with indexes i and j corresponding to the discretized distance and angle parameters in the

Hough transform. We then select the radius with the highest score. The circular window

for A(r) decides pixel voting eligibility in a way that favors lines that pass through the

center (i.e., the galactic bulge), a line-placement property that we strongly expect from

bars. This window also enables determination of the line (bar) endpoints, which the plain

Hough transform does not detect. The max
i,j

(A
(r)
ij ) term favors strong line detections. The

radius penalty normalizes against larger radii gathering more votes, and favors symmetric

bars (asymmetric bars lose some votes on the shorter side while still incurring the full radius

penalty). The largest eligible value for r is the image radius because this is the largest circular

region that fits within the image. Since the galactic bulge often produces strong orientation

field vectors radiating away from the center, the minimum value of r should exclude regions

where the bulge produces strong linear votes in all directions with a small radius penalty.

The presence of omnidirectional line votes can be quantified as max
i,j

(A
(r)
ij )/min

j
(max
i

(A
(r)
ij )) close

to 1, since the indexes i and j correspond to values for the distance and angle parameters

of a line. We then set the minimum value of r to the point where this ratio falls below an

empirically determined threshold of 1.5.

The highest-scoring value of r gives the radius of the line segment corresponding to the
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strongest bar detection. The angle of this line is then the angle parameter of the Hough

transform bin with the highest vote, i.e, the angle parameter with index argmax
j

(max
i

(A
(r)
ij )).

Since we calculate this highest-scoring bar detection for all images, but not all galaxies have

bars, we must determine whether the strongest bar candidate actually corresponds to a

galaxy bar. Higher values of the score in Equation 3.14 indicate stronger votes for a linear

pattern in the orientation field, so bar presence is more likely for high values of this score. If

a bar actually exists, there should also be strong contrast between the brightness along the

bar and the brightness across the bar. To test this, a second Hough transform is computed

with the image intensities as vote weights, using a circular region with radius r (determined

from the previous step), and producing accumulator matrix B. The image intensities come

from the image standardization step (Section 3.3), except that the image is not stretched

to make the ellipse (galaxy disk outline) appear circular because this can make the bulge

appear linear. A second bar score is then computed as

max
i

(B
(r)
ic )

max
i

(B
(r)
ik )

, (3.15)

where the indexes c and k correspond to the angles closest and perpendicular to the candidate

bar angle. Finally, the bar candidate is accepted if the scores in Equations 3.14 and 3.15

both exceed empirically determined thresholds (7 and 2, respectively). As we will see in

Section 3.7, when a bar is found, it is used during spiral arm-segment detection in order to

help avoid bar-related false positives.

3.7 Spiral Arm-Segment Extraction

When looking for the set of arcs that describes the structure of a spiral galaxy, it may be

tempting to adapt Hough transform line detection (used for bar detection in Section 3.6)
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for the logarithmic spiral model (see Section 3.1 and Figure 3.1 for a description of the

logarithmic spiral curve). The Hough transform has been applied to shapes other than lines

(see, for example, [71]), and provides parameter values for a list of detected shape instances,

as we need here for logarithmic spiral arcs. We thus experimented with using the Hough

transform with logarithmic spirals, but found this approach to be too problematic regardless

of whether it was done in Cartesian or log-polar space (where arcs appear linear). Since the

Hough transform does not naturally model or detect the endpoints of the curve used, the

Hough transform does not determine all needed parameters in our case. Including endpoints

in the Hough transform shape model would reduce the Hough transform to brute force search:

each pixel would have to vote for a quadratic number of subsequences for each compatible

combination of non-endpoint parameters.

Without endpoints in the Hough transform model, all pixels along a curve are treated the

same way regardless of whether their brightness (or any other pixel property determining

vote strength) is in a spatially coherent region or not. Ignoring spatial coherence disregards

an important property of spiral arms, and severely reduces detection accuracy because pix-

els aligned with the spiral arm (regardless of distance from the arm) are considered just as

strongly as actual locations within the arm. False detections can then arise from coinciden-

tal alignments of unrelated regions, while subtle spiral arm structure can be overlooked if

irrelevant pixels on the extrapolated arc do not have high vote strength. Furthermore, the

lengths (and thus pixel vote coverage) of lines and many other shapes (such as circles) are

naturally limited by the edges of the image, but logarithmic spirals can wrap around many

times within the image (or around the image sides if a log-polar representation is used). This

greatly amplifies the false-alignment problem and biases vote counts toward low pitch angles

(tightly wound spirals). In the extreme, a logarithmic spiral could gather Hough transform

votes from all pixels in the image (once or even multiple times) by having a pitch angle close

enough to zero for the distance between revolutions to be one pixel or less. Although values

close to zero could be disallowed through Hough parameter discretization or limits (with the
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risk of information loss), this would only eliminate the most extreme cases; the bias toward

low pitch angles occurs for the full range of pitch angles.

Like attempts to include endpoints in the Hough model, post hoc correction of these endpoint-

related problems would essentially be brute-force search (possibly with some pruning heuris-

tics); for each setting of non-endpoint parameters, all subsequences of the curve would need

to be examined, and we cannot reliably use the Hough vote counts to prioritize the search

because these vote counts are the values that need (potentially severe) correction in the

first place. Endpoint-related problems can be partially avoided by weighting votes according

to the angle agreement between the arc and the orientation at each pixel, but the angle

agreement cannot be expected to be exact and the endpoint-related problems are severe, so

angle weights cannot reduce false detections and fully eliminate pitch angle bias without also

suppressing a significant amount of true detections. Consider, for example, how precise the

orientation/arc alignment would have to be in order to suppress arcs that have multiple revo-

lutions within an arm that is close to circular. Furthermore, although orientation-agreement

weighting could narrow the set of arcs to consider, it would still be necessary to determine

arc endpoints. In all, for spiral arm-segment detection, we found that the problems with the

Hough transform outweighed its benefits.

Instead of using the Hough transform, we will determine spiral galaxy structure with a clus-

tering procedure that uses orientation strengths, orientation angles, pixel proximity, and

acceptable correspondence to a logarithmic spiral shape in order to group pixels belonging

to the same spiral arm segment. Logarithmic spiral arcs fit to these clusters quantitatively

determine the spiral structure of the galaxy. As we will see, the clustering and logarithmic

spiral arc-fitting processes depend on each other: the arc fitting uses the set of pixels deter-

mined (or proposed) by the clustering algorithm, and the clustering algorithm uses the arc

fit as a measure of cluster quality. We will first describe our method for fitting a logarith-

mic spiral arc to a pixel cluster, and then we will describe how to find pixel clusters that
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correspond to spiral arm segments.

3.7.1 Fitting Logarithmic Spirals to Pixel Regions

In the next section we will discuss how to use the orientation field to cluster pixels according

to arm-segment membership. One of the measures of arm segment correspondence will be

how well a spiral arc fits the cluster, and so we will first discuss how to fit logarithmic spiral

arcs to candidate clusters. Recall that, in Section 3.1, we specified the logarithmic spiral

equation as

lgspφ,a,r0(θ) = r0 · e−a·(θ−φ), 0 ≤ θ − φ ≤ θe (3.1 revisited)

where φ rotates the arc about the origin, r0 affects the size scaling of the arc, a is the tangent

of the constant angle between the arc and any circle centered at the origin, and θe specifies

the span of the arc (see also Figure 3.1). The first step in finding the parameters of this

logarithmic spiral is to determine the polar coordinates of each pixel. In doing so we can

use the center determined during image standardization (Section 3.3). If the cluster extends

for less than one revolution about the origin and does not cross the polar axis, then we can

use the standard conversion from Cartesian to polar coordinates with θ ∈ [0, 2π]. If such a

cluster does cross the polar axis, then we can avoid a θ-value discontinuity across the polar

axis by either adding 2π to the θ values starting above the polar axis or subtracting 2π from

values starting below the polar axis. Either can be done as long as the decision is consistent

within the cluster; the two choices only differ in that φ will be exactly 2π larger in the first

case, which produces an equivalent arc.

Additional care must be taken with multi-revolution clusters. Such clusters should have

θe > 2π radians, but a straightforward conversion of pixel locations into polar coordinates

would only have a θ range of 2π. Consequently, we only know θ values up to an integer
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multiple of 2π when the cluster exceeds one revolution about the origin. To determine which

multiple of 2π is appropriate for each pixel, we first note that neighboring pixels should differ

in θ values by less than 2π (tighter bounds are possible, but this is sufficient). Additionally,

adding any multiple of 2π to all θ values does not affect the suitability of these values, so

the θ value of one pixel can be fixed. Thus, for a contiguous cluster, we can first fix θ

at one pixel, consider θ to be known for this pixel, and designate the rest of the pixels as

unknown pixels. For any unknown pixel i adjacent to a known pixel j, we can then set

θi ← θi + 2π · round(
θj−θi

2π ) and then consider pixel j known, continuing the propagation

until all pixels are known.7

For multiple-revolution clusters with more than one connected component, we can use a

generalization of the adjacency requirement: in addition to requiring that adjacent pixels

have the same θ-revolution (i.e., a difference in θ values less than 2π), it is more important for

pixels to have the same θ-revolution when the pixels are nearby. Then, when expanding the

set of known pixels, we always choose a known/unknown pixel pair with the shortest possible

distance. Since determining θ values for non-contiguous pixels is inherently ambiguous,

pathological cases are possible when prioritizing by pixel distance (see Figure 3.11). However,

in such cases it is generally best to avoid fitting a single logarithmic spiral to the region in

the first place (it would be less ambiguous and more descriptive to fit a separate logarithmic

spiral to at least one of the connected components), and as we will see in Section 3.7.2, the

logarithmic spiral fit is used to assess the quality of potential cluster merges. Considering

the circumstances in which non-contiguous cluster fits will be used, a poor fit (as induced by

the choice of θ values for non-contiguous cluster components) is the correct outcome because

it signals that the proposed region should not be assigned a single logarithmic spiral arc.

7 In practice, the pixels do not need to be processed one at a time. For example, one can often locate
an angular range where only one revolution of the arc is present, split this region into two parts, compute
connected components for the remaining pixels, and assign each connected component to the part it is
adjacent to. This leaves only one “seam,” and all pixels in one part can be adjusted at once. However,
extreme caution must be taken with this type of implementation in order to insure proper handling of
pixel-level variations (e.g., hook-like micro-structures) at the cluster boundary.
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(a) (b) (c)

Figure 3.11: When attempting to assign polar-coordinate θ values to non-contiguous image
regions covering more than one θ-revolution, prioritizing θ-consistency by pixel distance will
fail in some pathological cases, but in these cases, a single cluster (spiral arm segment)
should not be assigned to the image regions in the first place. Figure 3.11a is a schematic
illustration of a situation where it is sensible to join non-contiguous image regions into the
same cluster (though it is also reasonable to fit these regions separately). By making the
nearest non-contiguous pixel pair differ in θ value by less than 2π, the fitted logarithmic spiral
arc will cross the small gap (rather than a larger one). Since a single arc can fit both regions
well and the gap between these regions is small, this gap was likely caused by a small dust
lane or by imaging noise, rather than a difference in spiral-arm correspondence. In Figure
3.11b, the extraneous region will cause the other two regions to be joined at the “wrong”
ends. However, this extraneous region belongs to a different spiral arm, so these three regions
should not be grouped together in the first place. This will be correctly indicated with a poor
arc fit, which discourages merges that would combine these regions. In Figure 3.11c, the two
contiguous components could be a single spiral arm connected at the bottom, but they are
more likely to be separate arms (and a separate fit is sensible in either case). Prioritizing the
nearest non-contiguous pixel pair could choose to join either gap under small perturbations
to the pixel regions, reflecting the ambiguity of the underlying situation, but in either case
the combined-cluster arc fit will indicate that the two regions should be fit separately.

For a pixel cluster C, we then know polar coordinates of all pixels, and can fit the parameters

of the logarithmic spiral using a nonlinear least squares minimization of the error function

EC [φ, a, r0] =

∑
i∈C

vi · (ρi − lgspφ,a,r0(θi))
2

∑
i∈C

vi
(3.16)

where vi is the weight for pixel i and (ρi, θi) are the polar coordinates of pixel i. For the

weight values we use the image intensities after brightness transformation, but dropping the

weights produces similar results. We can use a least-squares error function because we do
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not expect severe outliers in the pixel locations. Outliers could occur because some pixels are

far away from the rest of the pixels in the cluster, or because the pixel cluster is not shaped

like a logarithmic spiral (for example, it may be a combination of two arcs). In either case,

the cluster does not correspond well to a single spiral arm segment. When this happens, we

actually want the outlier pixels to cause a poor arc fit because we will use the fitting error

to guide the selection of appropriate cluster regions (see Section 3.7.2).

In practice, we only need to fit the a (pitch angle) parameter of the logarithmic spiral

(Equation 3.1). The parameter φ is simply the smallest θ value of any cluster pixel (or, in

the case of a cluster that has a θ-span less than 2π and that crosses the polar axis, the first

pixel after the θ gap). Once φ is determined, the optimal initial radius for a given pitch

angle can be determined analytically by solving
∂EC [φ,a,r0]

∂r0
= 0 for r0, yielding

best initial radiusρ,θ,v,φ(a) =

∑
i∈C

(ρivi lgspφ,a,1(θi))∑
i∈C

(vi lgspφ,a,1(θi)2)
. (3.17)

After fixing φ, determining a via the least-squares fit of Equation 3.16, and calculating r0 with

Equation 3.17, the arc extent can easily be determined as θe = max
i∈C

(θi − φ). Avoiding the

need to fit the initial radius (and the other parameters) considerably increases the fit speed

by reducing the search space. Furthermore, even though this is a nonlinear least squares

fit, we have never encountered problems with local minima. The speed and reliability of

the logarithmic spiral fit will be especially important because this fit will be performed

frequently. Fitting not only determines the final arc parameters for each cluster, but also

ensures that cluster merges do not combine multiple spiral arm segments.

A special case occurs when the cluster has an annular shape without well-defined endpoints

for the spiral arc (i.e., there is no path of non-cluster pixels from the image center to an area

outside the cluster). In such a situation, we know θe = 2π, but the arc start angle φ is not

well defined. For any nonzero pitch angle, the fitted arc will have a discontinuity at φ with
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a size less than the width of the cluster (if the optimal pitch angle made the discontinuity

larger, the discontinuity would be large enough for the cluster endpoints to be well defined).

In other words, the arc will be almost circular, with a small break. It is possible to perform

a least squares fit with both φ and the pitch angle a as free parameters (r0 is still calculated

using Equation 3.17), but in practice we find that the discontinuity does not fit meaningful

features of the cluster,8 suggesting that these fits are noisy fluctuations around a circle.

Consequently, we set a = 0, producing a circle since we also have θe = 2π. In this case, φ

has no impact, so we arbitrarily set φ = 0. If a circle is not a good fit for the cluster, the

region can be fit with more than one arc (i.e., more than one cluster, each with an angular

range less than 2π), and the clustering procedure (Section 3.7.2) will decide to do so because

it uses logarithmic spiral fit information in its decisions.

Since these annular clusters do not have a path of empty pixels from the image center to

a point outside the cluster, we can use this criterion to detect such clusters. In practice,

sometimes the cluster may have a small “crack” due to noise, such that a discontinuity

in φ still lacks a meaningful interpretation. We can add robustness to this by applying a

morphological closing to the cluster before looking for a path of empty pixels. The amount

of closing should be large enough to fill cracks but small enough to avoid considering tightly

wound spirals as annuli. We find it sufficient to use a radius of 3 pixels (so that gaps of

width 6 pixels or less are filled), which is less than the typical cluster widths seen for the

256× 256 pixel images produced in the image standardization step (Section 3.3), especially

for clusters long enough to reach an angular span of 2π.

8 It is not clear that annular clusters have exactly one point where the radial range somewhat sharply
shifts outward. In the absence of such a pattern, the small discontinuity tends to fit noisy features of the
cluster.
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3.7.2 Clustering Pixels to Match Spiral Arm Segments

When looking for “good” clusters, i.e., pixel regions that correspond to spiral arm segments,

we note that such clusters should be spatially coherent, should have strong and locally

consistent orientations, and should encompass only one spiral arm segment. To address

the spatial-coherence and orientation-based criteria, we first define a pixel-to-pixel similarity

function as

A(vi1,j1 , vi2,j2) =


∣∣∣vi1,j1 · vi2,j2∣∣∣ xi1,j1 ∈ N(vi2,j2)

0 otherwise,

(3.18)

where vi1,j1 and vi2,j2 are orientation vectors for the pixels at positions (i1, j1) and (i2, j2).

N(v) is the 3x3 pixel neighborhood of v. By only giving nonzero similarity scores to neigh-

boring pixels, we encode information about spatial coherence while also reducing the number

of pixel similarities from quadratic to linear. The dot product gives strong values to high-

strength orientation vectors with consistent orientation, encoding another criterion for good

clusters. The absolute value is used because orientation direction is only unique within the

range [0, π).

To extend groupings of locally consistent strong orientation from pixel pairs to pixel clusters,

we use single-link hierarchical agglomerative clustering [32]. Initially, each pixel constitutes

its own cluster. The similarity between two clusters is the maximum similarity among all

inter-cluster pixel pairs. Clusters merge in similarity order until the next similarity falls

below a fixed threshold (empirically determined as 0.15). As illustrated in Figure 3.12, this

causes clusters to “grow” within contiguous areas of strong, locally consistent orientation

– properties we expect from spiral arm regions. Using single-link clustering (i.e., using

the strongest inter-cluster pixel similarity as the cluster similarity) allows us to consider

transitivity in locally consistent orientation: distant points on the same spiral arm generally
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Figure 3.12: A standardized image (see Section 3.3) followed by several snapshots of the
clustering process. Clusters with a size of at least 150 pixels are shown. Cluster colors
can change between snapshots so that pixel-to-cluster memberships (and cluster merges)
are easily visible. By merging clusters in order of the maximum-similarity inter-cluster
pixel pair (with similarity defined by spatial proximity, orientation strength, and orientation
alignment), the clusters grow within spiral arm segments. A secondary merge step (see
Figure 3.14 and the related text) is applied afterward, so the final clusters are not shown
here.

have different orientation angles due to the winding of the arm around the center, but this

clustering procedure traces the chain of locally consistent pixels connecting these points. For

example, in the large purple cluster in Figure 3.12, orientations near the ends of the cluster

are close to horizontal and orientations near the middle are close to vertical, and these pixels

are far from each other, but these pixels are nonetheless recognized as belonging to the

same spiral arm segment. Furthermore, this clustering algorithm naturally determines the

number of clusters in the image, so we do not have to make assumptions about the spiral

arm-segment count, or attempt to determine it separately.

When clusters are built purely from pixel-level orientation field similarities, the clusters do

tend to follow spiral arms, but may combine regions that would best be modeled separately

(e.g., arm forks, or bent arms). Enforcing this third property of good clusters, correspondence

with only one spiral arm segment, can be done using logarithmic spiral arc fit quality. We

note that clusters with poor arc fits can arise once clusters grow large enough for the chain of
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(a) (b) (c)

Figure 3.13: Incorporating logarithmic spiral fit information into the clustering guards
against fitting two spiral arm segments with one logarithmic spiral arc. When two spiral
arms are adjacent to each other, the orientation vectors can flow smoothly throughout the
junction, rather than defining a clear boundary between spiral arm segments. This is shown
(at half resolution for display purposes) in Figure 3.13a. Thus, clustering based solely on
orientation vectors can combine two arm segments into the same cluster. An arc fit to such
a combined cluster does not describe the two arm segments well (Figure 3.13b). If merges
are blocked when the increase in fitting error is too high (see text), the two arm segments
are assigned separate clusters, greatly improving description accuracy (Figure 3.13c). With
the fork shown here, it is ambiguous which cluster the lower region belongs to, but both
interpretations are reasonable, and they both describe the fork structure. The ambiguity is
naturally decided via orientation vector similarities (Equation 3.18) because these similari-
ties define the cluster merge order. Since the right prong of the fork has higher orientation
vector similarities at the junction point, the lower region will be combined with the right
prong of the fork.

locally consistent orientations to potentially branch from one arm segment into an adjacent

arm segment (see Figure 3.13a). This can be prevented by blocking cluster merges where the

individual clusters have much better logarithmic spiral arc fits than the combined cluster.

When two clusters C1 and C2 are about to merge, we fit a logarithmic spiral arc to the

combined cluster, and assess the error increase for each constituent cluster. In particular,

we use Equation 3.16 to calculate the merge-badness score

G[C1, C2] = max

EC1
[φ(m), a(m), r

(m)
0 ]

EC1
[φ(1), a(1), r

(1)
0 ]

,
EC2

[φ(m), a(m), r
(m)
0 ]

EC2
[φ(2), a(2), r

(2)
0 ]

 (3.19)

where (φ(i), a(i), r
(i)
0 ) is obtained from the least-squares fit to Ci as described in Section
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3.7.1. For (φ(m), a(m), r
(m)
0 ) we perform a least-squares fit to the merged cluster C1 ∪ C2,

with the weights vi in Equation 3.16 re-scaled so that
∑
i∈C1

vi =
∑
j∈C2

vj . If G[C1, C2] exceeds

an empirically determined threshold of 2.5, the combined fit is unlikely to properly model

at least one of the two clusters, so the merge is blocked. If the merge between C1 and C2

was blocked, it is tried again later if a subsequent inter-cluster pixel pair also joins these

clusters, since one or both clusters may have grown (changed shape) in the interim. We

find that the threshold of 2.5 is permissive enough to allow relatively good merged-cluster

(single-arc) fits even though better fit errors can always be obtained with two arcs (and

thus more free parameters), while remaining strict enough to avoid merging two regions that

should be modeled separately (with one possible exception discussed and handled below).

Figure 3.13 illustrates how this fit-based merge check can avoid merging two different spiral

arm segments into the same cluster.

We only check this condition when both clusters have reached a minimum size, set to R
10 ,

where R is the image resolution in the shorter dimension. This saves some computation

time, reflects the fact that clusters can only encompass multiple arm-segment regions once

the clusters are sufficiently large, and avoids fitting until a reasonable cluster shape can be

determined. Also, we can optionally refine the merge-badness score to avoid distortions from

small “bumps” or other jagged features of the cluster boundary. These small jagged areas

can disproportionately increase the fit error of both the individual and merged clusters. This

increases both the numerator and denominator of the merge-badness score in Equation 3.19,

so that jagged boundaries can make the combined cluster fit appear better than it would be

under the intended criterion of logarithmic spiral arc compatibility alone. This effect can be

counteracted by computing squared fit error values for each pixel in each (pre-merge) cluster,

temporarily ignoring pixels that have squared error z-scores (number of standard deviations

above the mean) with absolute value greater than 3, and recomputing the merge-badness

score in Equation 3.19 using the remaining pixels. The cutoff of 3 standard deviations is
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a conservative threshold that only ignores a small number of pixels (if any), so that small

jagged areas can be ignored, but larger deviations (arising from the arc shape of the cluster

as a whole) are still considered. If an even more permissive threshold is used, even fewer

pixels are ignored, and the jagged-region removal effect becomes negligible or nonexistent. If

a more aggressive threshold is used, the merge-badness measure becomes too reliant on exact

correspondence to a logarithmic spiral arc. In practice, we find that ignoring jagged regions

is only a small refinement (and can usually be omitted without consequence). When two

clusters have incompatible logarithmic spiral arcs, the effect on a single-arc fit is generally

much stronger than the influence of small jagged parts of a cluster (especially since, as

mentioned in Section 3.7.1, the squared error is much more sensitive to severe outlier values

that result when an entire cluster deviates from a single logarithmic spiral arc, as compared

to pixels that are slightly more distant than normal).

Clusters also grow within the bar region (if the galaxy has a bar), so we must also account

for the possibility that the cluster corresponds to a bar instead of an arm segment. To do

so we use our earlier determination of bar presence and location (Section 3.6). The bar-

fitting error BC is computed as the weighted mean squared distance from the line segment

defined by the bar angle and radius, when a bar detection was made earlier (otherwise,

BC = ∞). The weights (if any) are the same ones that would be used in the logarithmic

spiral arc fit, making the bar fit error directly comparable to the logarithmic spiral arc fit

error. If BC < EC [φ, a, r0], we consider the cluster as part of the bar and substitute BC

for EC [φ, a, r0] in Equation 3.19. Bar clusters can then grow in the same way as spiral

arm segment clusters, without the risk of considering the bar as an arm, and with a more

appropriate model for bar clusters during merge checks.

In cases where the galaxy was highly inclined relative to our line of sight, the bulge can

appear linear after correcting the disk to appear face on (see Section 3.3 for a description of

this process). Since the bulge can appear linear, clusters can also grow in the bulge region,
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so after the clustering described above we delete the cluster containing the center pixel (if

such a cluster exists and is not already described by a bar). We find that such clusters

rarely contain spiral arms; this is likely because a merge with the center-containing cluster

requires a multi-revolution spiral at the center, and since this spiral must fit the arm along

with the bulge, the fit quality will be poor for at least part of the bulge region. This poor

fit quality then discourages merges via larger values of the merge-badness score (Equation

3.19). Nevertheless, it would be ideal to have a bulge model used in the same way as the

bar model (i.e., replacing the logarithmic spiral arc with the bulge model if the latter is a

better fit) as additional discouragement against encompassing the bulge and an arm in the

same cluster. Even with center-containing cluster deletion, bar detection is still necessary

because galaxies that are not highly inclined can have an orientation-field gap at the bulge

region (image center), so bar clusters may not contain the center in this case. Additionally,

using the bar model in fit-based merge checking discourages arms from merging with the

bar region, which also discourages arms from further growing into the bulge region (image

center).

By blocking proposed merges that yield poor fit quality, we ensure that we do not try

to describe multiple spiral arms (or an arm and a bar) with one logarithmic spiral arc,

greatly improving the accuracy of our structure description. This merge checking also reduces

sensitivity to the stopping threshold used in the hierarchical agglomerative clustering; we

can set this value low enough to allow as much meaningful growth (and merging) of clusters

as possible, without as much concern about unwanted merges. Another benefit is that we

can incorporate arc-shape knowledge into the clustering without making the logarithmic-

spiral assumption too strong. Arms that deviate from the logarithmic spiral model are

naturally split into multiple logarithmic spiral segments that can, when needed, form a

piecewise approximation to the actual curve of the arm. If a user wishes to perform a fit

with a different model, the arcs’ associated pixel regions can be used. Additionally, clusters

are formed using pixel-level information (following the “flow” of high-strength orientation
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vectors) rather than explicitly searching for logarithmic spiral curves; the logarithmic spiral

fit can only decide which merges of pre-existing clusters are close enough to a logarithmic

spiral.

This fit-based merge checking is thus beneficial overall, but it can cause slight over-

fragmentation in the clusters. Since merge blocking occurs while the clusters are still forming,

it is possible for a pair of final clusters to be compatible with a single arc, even if earlier

stages of these clusters were not. Using a higher (more permissive) threshold in Equation

3.19 is not feasible because it risks allowing merges of adjacent spiral arms, which is much

worse for description quality than using two arcs to describe one spiral arm. It is possible

to periodically re-check merges that were previously blocked (once either or both of the

two clusters have grown), but this would substantially increase computation time, especially

because many clusters remain unsuitable for merging, for a prolonged period or permanently.

Another source of cluster over-fragmentation is obscuring elements (such as dust lanes and

brightness variations) that create small gaps in the orientation field. Such gaps could be

bridged by increasing the neighborhood size in Equation 3.18, but this would drastically

increase the number of nonzero pixel similarities to consider. Even if a sufficiently large

neighborhood size still yielded reasonable computation time, the ability to jump over pixel

gaps would often need to be suppressed in order to avoid losing spatial coherence in the

clusters, and brightness gaps often indicate genuine separations between spiral arms. Gap-

crossing is thus undesirable until we can restrict it to the small fraction of cases where there

is good reason to ignore spatial discontinuities.

Both sources of cluster over-fragmentation can be addressed by applying a second, purely fit-

based merge step after the earlier clustering has finished. At this point, the number of clusters

is small enough to quickly consider all potential merges of nearby clusters. Additionally, the

close-to-final arc shape of the clusters is known (since most merges have already occurred),

and to address any remaining uncertainty, we can merge the most-certain cases first by
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Figure 3.14: Pixel clusters before (left) and after (right) a secondary merging step performed
after the main pixel clustering. The secondary merging step joins clusters that are compatible
with the same logarithmic spiral arc, but were not previously merged because logarithmic-
spiral compatibility was not clear in an earlier stage of the clustering (before near-final
cluster shapes were known), or because there was a small gap in the orientation field (these
gaps are usually meaningful, but can be jumped over if justified by sufficient compatibility
in the near-final logarithmic spiral arc fit). Cluster colors differ between images so that
pixel-to-cluster memberships (and cluster merges) are easily visible.

merging in order of combined-cluster fit quality. Knowing the larger-scale arc shape of

the clusters also means we have have enough information to justify bridging small gaps in

brightness.9

In this secondary merge (i.e., defragmentation) step, we calculate merge scores G[C1, C2]

(Equation 3.19, including the substitution of the bar score if it is better) for all cluster pairs

with maximum Euclidean distance R
20 between the closest inter-cluster pixel pair. These clus-

ters are then merged in score order until no pair’s merge score remains below the previously

mentioned threshold of 2.5. If a merge is performed, all scores involving the newly merged

cluster are updated. Using the distance threshold (instead of requiring adjacency) allows the

merging to jump over reasonably small brightness gaps if justified by the fit quality of the

9 We did consider methods for bridging larger brightness gaps, as motivated by a few (atypical) cases
where one cluster visually appeared to be along the arc of another cluster despite a large gap between clusters.
However, crossing large brightness gaps requires extrapolation over a long distance and increases reliance on
the assumption that clusters have a logarithmic spiral shape. These considerations, combined with the fact
that large brightness gaps are often even more meaningful than smaller ones (and thus less likely to be a false
separation), plus the risk of false alignments, meant that long-distance merging was too unreliable. Instead,
we found that “true” long-distance merges were better achieved by improving the brightness transformation
(Section 3.2) to make the orientation filtering as sensitive to arms as possible, which changed large gaps to
small gaps in many cases. When improvements to the orientation-filter sensitivity did not make a difference,
we leave the clusters as is, because such a gap is likely to be informative, and users can re-examine separate
clusters more easily than combined clusters.
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merged cluster. Considering all pairs of nearby clusters ensures that all previously-blocked

merges are reconsidered with the near-final cluster shapes. Merging in score order (and thus

merge-certainty order) addresses any remaining tentativeness in the cluster shapes. Figure

3.14 illustrates how this secondary merging step combines clusters corresponding to the same

spiral arm.

After the cluster merges have been finalized, we report clusters (and their corresponding

logarithmic spiral arcs) that are sufficiently large. For 256 × 256 images, we require that

clusters have a size of at least 150 pixels. This size cutoff poses a tradeoff between arc-

detection sensitivity and noise resistance. Since it is much easier for a user of our output to

impose a stricter cutoff (versus a more permissive cutoff) on their own, and since clusters

can be weighted by size (or related measures, such as logarithmic spiral arc length), we use

a fairly permissive cutoff.

At the end, we have a set of pixel clusters, each with a corresponding logarithmic-spiral or

bar parameterization. This information can be used as-is as a description of general spiral

galaxy structure (for comparison with simulations, for example), or it can be used to calcu-

late galaxy-level quantities such as spiral arm winding direction, tightness, asymmetry, or

other measures of interest. Our structure-extraction method does not require a brute-force

search for all possible logarithmic spiral arcs, but rather uses the orientation field and spa-

tial proximity to build image regions corresponding to spiral arms. Higher-level information,

namely the expectation that clusters should be shaped like a single arc (or a linear bar),

is incorporated without being too stringent in the requirement for logarithmic spiral shape;

the clusters can still grow along the arbitrary shapes defined by the orientation field, and

the pixel-to-cluster assignments are available along with the corresponding logarithmic spiral

arcs. This procedure can thus produce a description of arbitrary spiral arm-segment struc-

ture, and does so without human supervision. In Chapter 4 we will detail the information

available from this method, and in Chapter 5, we will evaluate the accuracy of this method
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by comparing it with human determinations of spiral galaxy structure.
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Chapter 4

Information Available From Our

Method

As discussed in Section 3.1, we represent spiral galaxy structure as a list of logarithmic spiral

arcs associated with pixel clusters, such that each parameterized arc (and pixel cluster)

corresponds to one spiral arm segment. This information can be used to calculate measures

of spiral galaxy structure; for example, we have provided measures of winding direction,

arm tightness, and arm count in our output, as discussed later in this chapter as well as in

Chapter 5. These measures are likely useful in their own right, and we also expect that our

list-of-arcs (and clusters) output is precise and general enough to facilitate new measures

and astronomical applications beyond those discussed or even anticipated in this work. To

facilitate these uses, we provide a detailed description of the information available from our

method.

Our method provides spiral galaxy structure information through three types of outputs: a

set of images with information about various steps of our method, a CSV file that provides

arc-level (cluster-level) information, and a CSV file that provides galaxy-level information.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.1: Available image outputs from our method: (a) the input image, (b) the image
after image standardization (Section 3.3), (c) the standardized image after unsharp masking
(Section 3.5.2), (d) the center-containing cluster deleted from the final output (if such a
cluster exists; see Section 3.7.2), (e) the standardized image overlaid with the final cluster
boundaries (including the bar cluster, if any, but this image does not have a bar cluster), (f)
the final pixel-to-cluster assignments, with each cluster given a unique RGB color, (g) the
clusters overlaid with the final logarithmic spiral arcs associated with each cluster, and (h)
the standardized image overlaid with these arcs. The arc-fitting and clustering procedures
are discussed in Sections 3.7.1 and 3.7.2, respectively.

All of the arc-level information is provided in terms of the standardized (de-projected) image,

but the galaxy-level CSV provides the detail needed to re-project any galaxy- or arc-level

information.

4.1 Output Images

The set of images provided by our method is displayed (for an example galaxy) in Figure 4.1.

This image set consists of: the original input image; the image after image standardization

(Section 3.3) and then after unsharp masking (Section 3.5.2); the deleted cluster (if any;

see Section 3.7.2); the boundaries of the pixel clusters overlaid on the standardized image

(including both spiral arm-segment and bar clusters); the exact pixel cluster regions, where
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each cluster is assigned a different RGB color; the pixel clusters with the fitted spiral arcs

(and fitted bar, if it exists) overlaid; and the standardized image with the fitted spiral arcs

(and fitted bar, if it exists) overlaid. A PDF showing the orientation field could also be

provided, but we do not produce it by default because it requires much more time to create

(about 3-4 seconds) than the other images, which may be significant for large image sets.

In the final image (the standardized image with the arc and bar overlay), arcs with a S-

wise winding direction are shown in red, arcs with a Z-wise winding direction are shown in

blue (cyan in Figure 4.1h for easier visibility at a smaller image size), arcs with neither a

S-wise nor a Z-wise winding direction (i.e., arcs with pitch angle zero) are shown in magenta,

and the bar (if present) is shown in green. Most of these images are primarily useful for

visualizing the general idea of what our method “saw” in a galaxy, but the cluster-assignment

image (Figure 4.1f) also provides the set of pixels associated with each logarithmic spiral arc

(or bar). These pixel assignments could be used to perform other measurements of the

corresponding spiral arm segment (or bar), such as a measure of the brightness distribution.

4.2 Arc-Level Information

The per-arc CSV file lists each galaxy multiple times: once for each arc found in the galaxy

image. The first column gives the galaxy name (an echo of the image name). For each

galaxy, each arc is listed in order of arc length; this arc-length rank is provided in the second

column. Next are the core logarithmic-spiral parameters given for each arc (see Section 3.1

and Figure 3.1). These parameters are expressed in terms of the standardized image and

use the estimated (fitted) galaxy center given in the galaxy-level CSV (see Section 4.3). The

pitch angle gives the constant angle between the arc and any circle centered at the estimated

galaxy center; the sign of the pitch angle gives the winding direction of the arc. The initial

angle (the φ parameter) gives the counterclockwise angle from the polar axis (in the image,
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the theoretical line segment extending horizontally from the estimated galaxy center to the

right side of the image) to the start of the arc. The initial radius is the distance (in pixels

within the standardized image) from the estimated galaxy center to the arc at this starting

angle value. This distance may be the closest or farthest point on the arc, depending on the

winding direction of the arc (sign of the pitch angle). The angular extent gives the unsigned

angle subtended by the arc; adding this value to the initial angle gives the ending angle of

the arc. The cluster output color gives the RGB color associated with the cluster in the

cluster-assignment image (Figure 4.1f), enabling measurements of brightness, cluster area,

or other properties.

The per-arc CSV file also provides several values that could be computed from the arc

parameters and/or pixel cluster membership information, but are provided for convenience.

The rStart and rEnd variables give the smallest and largest distances (in standardized image

pixels) from the estimated galaxy center to the arc. One of these values is equivalent to the

initial radius (rStart for Z-wise arcs and rEnd for S-wise arcs); the other can be computed

from the logarithmic spiral function (Equation 3.1) at the end of the arc (initial angle plus

angular extent). The numPixels and arcLength columns give the size of the cluster and

the length of its arc, in units of standardized image pixels. We then give two values for

the cluster’s weighted squared fit error (Equation 3.16): one normalized by arc length and

the other normalized by the number of pixels (we are not sure which is more astronomically

meaningful, or if they both are to various extents in different contexts, so we provide both).

The meanIntensity column gives the average cluster brightness; this brightness is after

brightness transformation (Section 3.2), so while this value gives some information about

the visual distinctiveness of the cluster, its value is unlikely to be astronomically meaningful.

If it is desirable to determine the average of the original brightness values within a cluster,

the FITS brightness values could be de-projected, or the cluster membership image could be

re-projected, based on the values given in the per-galaxy CSV (Section 4.3).
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Finally, the arc-level CSV file provides several flags about the state of the fitting procedure

used to determine the logarithmic spiral parameters of the clusters. The used2rev flag

indicates whether the angle subtended by the cluster exceeded 2π radians; this requires

additional fitting steps (see Section 3.7.1). Such a condition is not problematic unless the

failed2rev flag is set, which indicates that our code was unable to disambiguate θ values

for the cluster (Section 3.7.1). Such a failure is reasonable when evaluating the potential

merge of two long spiral arms that should not be merged together, but this failure should

not occur in our final output, and we are not aware of a case of this happening in the images

we tested. The hasUndefinedEndpoints flag indicates whether we encountered the annular-

cluster scenario described in Section 3.7.1; in this case, the pitch angle is fixed to zero, the

angular extent is 2π radians, and the initial angle is not meaningful (it is arbitrarily set to

zero).

4.3 Galaxy-Level Information

The galaxy-level CSV file provides the status and any warnings regarding the fit to each

galaxy, the parameters used to standardize (de-project) each galaxy image, and (for con-

venience) galaxy-level structure measurements. The fitState column is a text field that

indicates whether the structure-extraction procedure could be completed for the image (in

which case the string “OK” is given), or whether there was a problem severe enough to

necessitate skipping the image (in which case an error description is given). Currently, the

only problem encountered occurs when no clusters exceed the minimum size limit (and, as

will be seen in Chapter 5, this is very rare for spiral galaxy inputs), but if other errors

arise, they would be given in this column. The warnings column can provide zero or more

strings indicating that the image could be difficult to fit, or that an unusual condition was

encountered during the fitting. Indicators that the image could be difficult to fit include
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a low detected galaxy resolution as measured by the minor axis length of the ellipse used

for de-projection (Section 3.3), or a large drift in the measured galaxy center when a star

mask is not available. Unusual conditions encountered during fitting include the need to

delete a center-containing cluster (Section 3.7.2) or the presence of an arc that has unusually

high error per unit length. These warnings do not necessarily indicate that something is

wrong with the output, and in most cases these warnings can safely be ignored. However,

if one wishes to manually review some images in a large set, these warnings may give some

indication of where it may be most useful to look for potentially-problematic cases.

The starMaskUsed and noiseMaskUsed columns indicate whether a star mask or noise

mask was used, and if so, the level of aggressiveness needed (see Section 3.4). The pos-

sible values can be “unavailable” if no mask was provided, “none” if the mask was pro-

vided but not used, or “conservative,” “aggressive,” “last-resort,” or “fail” for the various

levels of aggressiveness. If the star or noise mask is listed as “fail,” fitting may still suc-

ceed on the image (for example, the fitted galaxy center may legitimately be somewhat

distant from the image center), but there is a higher risk of star-related problems. The

hasDeletedCtrClus flag indicates whether a cluster was deleted because it contained the

center pixel but the bar candidate, if present, was not a better fit than a logarithmic spi-

ral arc. The failed2revDuringMergeCheck, failed2revDuringSecondaryMerging, and

failed2revInOutput flags indicate whether our code was unable to disambiguate θ values

for a multi-revolution cluster (Section 3.7.1). As mentioned in Section 4.2, such a condition

is usually not problematic if it occurs during a merge check or during the secondary merging

(some proposed merges are so unreasonable in terms of a combined-cluster single-arc fit that

there is not even a sensible multi-revolution θ disambiguation); it is only a concern if the

failed2revInOutput flag is set, since this would mean that one of the output clusters may

have been fitted improperly. We have never encountered this in the images used anywhere

in this work, but if it does arise, one can examine the arc-level CSV file to see which arc was

affected.
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The galaxy-level CSV also provides information about the fitted ellipse used in image stan-

dardization (Section 3.3) so that the de-projection operation can be replicated for other

images (for example, the FITS image giving the original brightness values) or applied in re-

verse to our output images (e.g., to map our detected clusters to regions in the original FITS

image). The main CSV values to use for this purpose are inputCenterR, inputCenterC,

diskMajorAxisAngleRadians, diskAxisRatio, and diskMajorAxisLength. All of these

values are given in terms of the input image (not the standardized image). The center values

inputCenterR and inputCenterC specify the row and column of the center, with sub-pixel

precision and with the pixel at the upper left of the image corresponding to row 1, column

1.1 The value diskMajorAxisAngleRadians gives the counterclockwise angle from the po-

lar axis (the imaginary horizontal line from the estimated galaxy center to the right edge

of the image) to the major axis of the ellipse, diskAxisRatio gives the ratio of the minor

axis length to the major axis length, and diskMajorAxisLength is the length of the major

axis, in units of input image pixels. Together, these values provide the position and shape

of the fitted elliptical outline of the galaxy disk. As discussed in Section 3.3, the image

is rotated about inputCenter so that diskMajorAxisAngleRadians becomes 90 degrees,

stretched according to diskAxisRatio so that the disk outline becomes circular, and then

cropped so that the bounding square has length diskMajorAxisLength on each side. For

convenience, the CSV also provides standardizedCenterR and standardizedCenterC (the

exact, sub-pixel location of the fitted ellipse center after image standardization) as well as

diskMinorAxisLength (which can be useful for identifying galaxy images with low input

resolution, or images where the ellipse fit may have zoomed in too far).

We also provide information about our bar detection, though this should be viewed mostly

in terms of understanding the state of our fit procedure for a particular galaxy, rather

than as a way to obtain reliable bar detections (as discussed in Section 3.6, bar detec-

tions are only relevant to our goals when the bar may otherwise be mistaken for a spiral

1 This follows the convention in MATLAB, where the code was originally implemented.
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arm). The column barCandidateAvailable indicates whether a bar’s two detection scores

exceeded their thresholds (discussed in Section 3.6; the scores are given in CSV columns

barCandScoreOrifld for the orientation-field-based score and barScoreImg for the score

based on transformed image brightness values). If a bar candidate is available, then the fit

error of the bar (under fixed bar parameters) was used in merge decisions where appropriate

(see Section 3.7.1). If, at the point of producing arc-level output, arc parameters were not

given for a cluster because the bar was a better fit, the barUsed column will be set to true.

Some clusters may both contain the center pixel and have a better fit to the bar, in which case

the bar substitution takes precedence over cluster deletion. The bar parameters (radius and

angle) are given as barHalfLengthStandardizedImage and barAngleStandardizedImage.

These values are given regardless of whether a bar candidate is available (our method tries

to find the most plausible bar parameters for every image, regardless of whether the bar

actually exists), but should only be considered meaningful if the barCandidateAvailable

column (and perhaps also the barUsed column) is set to true.

Next, the galaxy-level CSV provides a few basic statistics about the distribution of arc lengths

in the image, particularly in the degree of fragmentation. The columns totalNumArcs and

totalArcLength simply give the number of arcs and their total length. Basic information

about the distribution of arc lengths is given as the average, median, minimum, maximum,

and upper and lower quartile arc lengths. Arc fragmentation is measured more directly by

considering the arcs laid end to end and sorted in decreasing order by length. We can then

consider the length and rank of the arc at 25, 50, and 75 percent of the total arc length

(columns alenAt50percent and rankAt50percent, and defined analogously for the other

percentage values). These can be interpreted as arc-length-weighted median and arc-length-

weighted quartile values. Galaxies with longer arcs at a given percentile (and perhaps also

with higher concentrations of arc length) may have better-defined arm segments, although

many galaxies inherently have fragmented arms, so in these cases fragmented arcs are an

inevitable consequence of a proper structure description. If a user is interested in other
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measures of arc fragmentation, such measures can be computed from the arc-level CSV

described in Section 4.2.

For convenience, the galaxy-level CSV also provides several galaxy structure measurements

(but users may use the arc-level CSV to compute measurements of other structural proper-

ties, or calculate existing structure measurements in alternate ways). For winding direction,

the CSV provides S-wise and Z-wise classifications according to a simple majority vote of the

arcs (chiralityMaj), the winding direction of the longest arc (chiralityLongest), or the

arc-length-weighted vote of all arcs (chiralityAlenWtd). The underlying vote counts are

also given with one vote per arc (chiralityVotesMaj), and for the arc-length-weighted vote

(chiralityVotesAlenWtd). Another column, top2chiralityAgreement, indicates whether

the two longest arcs are reasonably long (64 pixels, i.e., a quarter of the number of pixels

along one dimension of the standardized image) and agree in winding direction. If both of

the two longest arcs meet this length threshold, the value of this column will be “agree” or

“disagree.” If there is only one long arc, the value will be “one-long,” and if there are no

long arcs, the value will be “all-short” unless there are less than two total arcs (in which

case the value is “< 2 arcs”).

The pitch angle (arm tightness) of a galaxy depends on the pitch angles of its arms, which

often vary within a galaxy. Consequently, our CSV reports several possible galaxy-level

pitch angle measures: the pitch angle of the longest arc alone; the average pitch angle of

all arcs, regardless of length or other properties; average pitch angles weighted by length or

brightness; and finally, a length-weighted average based only on arcs with winding direction

agreeing with the arc-length-weighted dominant winding direction. We believe that the latter

measure may be the best candidate for “the” pitch angle of a galaxy, if one number is to be

assigned to the pitch angle of a galaxy, and we use this measure when comparing to human

classifications (see Section 5.2). However, the user is free to choose whichever measure of

pitch angle they wish, or compute their own from our arc-level information. In addition to
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the pitch angle, we also provide a measure of the error in this pitch angle (considering only

the spread of pitch angles detected in the galaxy): an arc-length weighted standard deviation

of the arcs that agree with the arc-length-weighted dominant winding direction.

Although the notion of arm count is ambiguous (since the concept of a “spiral arm” is not

well defined), we include several basic measures that could provide a plausible arm count.

These measures count the number of arcs exceeding a variety of length thresholds. These

counts are included across all arcs, as well as only across the arcs that agree with the arc-

length-weighted dominant winding direction. Such counts are likely a useful starting point,

but we encourage users to calculate arm count (using the arc-level CSV file) in a way that

best suits their needs.

4.4 Uses of Our Output

Our galaxy-level CSV file provides several measures of fragmentation, winding direction,

pitch angle, and arm count, but we intend these measures to only be a starting point.

Plenty of other measures of galaxy structure (e.g., lopsidedness, or the presence or absence

of a ring) could be computed from our output, and existing structural measures could be

computed in more sophisticated ways (possibilities include incorporating brightness infor-

mation, excluding or down-weighting arcs with a high error per length, and calculating pitch

angle using only the arcs at least partially within a certain radial range within the galaxy

disk). Furthermore, the choice of some measures may depend on the application (e.g., what

one considers to be an arm, or the kind of arm one is interested in, when computing arm

counts). In general, our intent is to provide information from which application-appropriate

measures of spiral galaxy structure can be readily calculated.

In addition to determining properties of a given galaxy, our method can also be used to
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Figure 4.2: Our output can be used to produce an arc database that can be queried to find
galaxies with the desired morphological criteria. Here we look for galaxies with just one
low-pitch-angle arm segment, yielding typical examples of “ring” galaxies.

find galaxies with specific properties. For example, our output can be used to analyze

distributions of galaxy measurements in order to find instances of “weird” morphologies,

and can also be used to organize the detected-arc information into a database that can be

queried to return galaxies with user-specified shape criteria. For example, although our code

does not explicitly search for rings, one can look for galaxies with one very long arm at a

very low pitch angle. Figure 4.2 depicts nine typical objects found using this query.
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Chapter 5

Comparisons With Other Spiral

Structure Information

Figure 5.1 provides several visualizations of our output when run on galaxies where fairly

clean images are available. As we can see, our output is also fairly clean, tracing the arms

in a way that would be plausible to a human. As image quality degrades, we expect both

human and automated designations of spiral structure to be affected, but we find that we

still attain good agreement with humans (where and to the extent that agreement can be

determined), as we explore next.

To the best of our knowledge, this work provides the first means of automatically determining

Figure 5.1: Typical examples of how our method performs on galaxies where fairly clean
images are available. Green represents a bar; red arms wind S-wise, and cyan arms wind
Z-wise.
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arbitrary arm-segment structure in spiral galaxies. We are not aware of any previous large-

scale catalogs providing this information, either manually or with an automated method. As

such, we do not have a basis for directly comparing our output with other methods or studies.

We can, however, compare properties computed from our output, namely spiral arm winding

direction, spiral arm tightness, and (to some extent) the number of spiral arms. These values

can be computed from our output in many ways (including measures more complicated

than those considered in this work, which may have even better correspondence to human

classifications), and the spiral galaxy properties under comparison do not cover the full range

of information that can be determined from our output. Nevertheless, comparisons can

provide information about the accuracy of our method (to the extent that the properties are

well-defined and the previous structure property measurements are accurate). Furthermore,

the measures calculated from our method provide case studies in how structural properties

of interest can be calculated from our output, and may provide guidance in determining

properties (such as the degree of asymmetry or flocculence) not included here.

As mentioned in Section 2.6, Galaxy Zoo [40, 38] and Galaxy Zoo 2 [67] provide information

about spiral arm winding direction, tightness, and count through classifications provided

by hundreds of thousands of human volunteers. For our comparisons with each of these

classifications, we use a sample of 29,250 galaxies where the human classifiers indicated

visible spiral structure, as chosen by the director of the GZ2 project (Steven Bamford,

personal communication). For these galaxies we apply our code to red-band FITS images

from the Sloan Digital Sky Survey [69], processed as described in Chapter 3. Some other

studies specifically measure winding direction or pitch angle, so we compare our results with

these measures as well.
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5.1 Spiral Arm Winding Direction

Spiral arm winding direction is the classification of a galaxy’s spiral arm winding pattern

as clockwise or counter-clockwise. Following Willet et al. [67] and others, we refer to these

categories as “Z-wise” and “S-wise” to avoid ambiguity (otherwise, for example, differing

winding direction conventions could be followed depending on whether one visually traces the

arcs in an inward or outward direction). This naming also emphasizes that the classification is

based on visual information.1 Winding direction is a simple property of spiral arm structure,

but it is nonetheless useful in astronomy and cosmology (see Section 1.2). Furthermore,

winding direction has a well-defined answer for many (but not all) spiral galaxies, allowing

the comparisons to be conducted with less ambiguity than other aspects of spiral structure.

In Galaxy Zoo 1 (GZ1), volunteers chose one of six categories for each galaxy, including

two for winding direction: Z-wise spiral galaxy and S-wise spiral galaxy [40, 38]. The other

four categories are “edge on/unclear,” “elliptical,” “star/don’t know,” and “merger.” These

categories and their corresponding icons (presented to the human classifiers) are shown in

Figure 5.2. Although the galaxies used in our comparison were selected for spiral feature

visibility, galaxies still vary in winding direction clarity. Consequently, human classifiers

viewing the same galaxy may agree or disagree with each other on the winding direction,

and on whether a winding direction is visible at all. For each galaxy, we thus calculate a

“discernibility” score as

max(S-wise votes, Z-wise votes)

total number of votes
.

For example, a discernibility of 60% indicates that 60% of humans voted for one winding

direction, while the other 40% voted either for the other winding direction, or for edge-on (i.e.,

1 We are extracting information about the spiral pattern, not the rotation direction of the material of the
disk (although, since the outward tips of almost all spiral arms point in the direction opposite of the disk
rotation [47], the former can be used as a proxy measurement for the latter in many cases).
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Figure 5.2: Galaxy classification options presented to human volunteers during the original
Galaxy Zoo project (these buttons were arranged vertically on the Galaxy Zoo web site,
archived at http://zoo1.galaxyzoo.org). We are primarily interested in the first two
categories (clockwise spiral and anti-clockwise spiral) because they are used for galaxies with
visible spiral arm structure. Note that galaxies classified as clockwise and anti-clockwise have
Z-wise and S-wise patterns, respectively; we use the latter terminology in this work.

that spiral structure cannot be seen due to the viewing angle) or a non-spiral classification.

For galaxies with higher discernibility rates, we expect our method to have better agreement

with the Galaxy Zoo humans.

Table 5.1 gives winding direction agreement rates (within the 29,250-galaxy subset of Galaxy

Zoo discussed at the beginning of this chapter) as a function of the minimum discernibil-

ity needed for a galaxy to be included in the comparison. Agreement rates are provided

for several winding direction measures computed from our output. Table 5.1 also gives the

percentage of galaxies included at each minimum discernibility, as well as the average dis-

cernibility within each of these subsets. In 19 out of the 29,250 images, our method did not

report any arcs (arm segments), so these galaxies could not be included in the comparison.

Although Galaxy Zoo more readily provides a measure of confidence in galaxy classifications

(as quantified here by the discernibility), we can also include a rudimentary measure of cer-

tainty using our output: we can determine whether the two longest arcs have a length of at

least 64 pixels (i.e., a quarter of the smaller image dimension) and agree in winding direc-

tion. Table 5.2 gives winding direction agreement rates with this criterion as an additional

inclusion requirement.

As can be seen from Tables 5.1 and 5.2, even a simplistic winding direction measure, the

majority vote, has reasonable agreement with Galaxy Zoo when computed from our output.
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Min Discernibility 0 10 20 30 40 50 60 70 80 90 95 100

Inclusion Rate 99.9 99.8 99.7 99.4 98.9 98.0 95.7 91.0 79.4 52.5 32.1 12.5
Mean Discernibility 87.1 87.2 87.3 87.5 87.7 88.1 88.9 90.1 92.2 95.9 98.0 100.0

Majority Vote 80.6 80.6 80.6 80.7 80.7 80.8 81.0 81.4 82.2 83.8 85.3 85.5
Longest Arc 89.0 89.0 89.0 89.1 89.1 89.2 89.4 89.9 90.9 93.0 94.4 95.5
Length-weighted Vote 93.5 93.5 93.5 93.5 93.6 93.7 94.0 94.3 95.0 96.5 97.4 97.9

Table 5.1: Winding-direction agreement with human classifications from Galaxy Zoo 1. Row
1: the minimum proportion of human votes that the dominant winding direction must receive
among the 6 categories from Galaxy Zoo 1. Row 2: the proportion of the 29,250 galaxies
that met the above criterion and had arc detections from our method. Row 3: the mean
discernibility rate among the galaxies included under these criteria. Rows 4, 5, and 6:
agreement rates between Galaxy Zoo 1 and three methods of determining winding direction
from our output.

Min Discernibility 0 10 20 30 40 50 60 70 80 90 95 100

Inclusion Rate 70.9 70.9 70.8 70.6 70.4 70.0 68.7 66.1 59.3 42.0 26.9 10.8
Mean Discernibility 88.8 88.9 89.0 89.1 89.3 89.5 90.2 91.1 92.9 96.1 98.1 100.0

Majority Vote 84.2 84.2 84.2 84.2 84.2 84.3 84.4 84.6 85.1 85.9 86.8 86.8
Longest Arc 97.9 98.0 98.0 98.0 98.0 98.1 98.2 98.3 98.6 99.0 99.3 99.6
Length-weighted Vote 97.7 97.7 97.7 97.7 97.8 97.8 97.9 98.1 98.3 98.8 99.1 99.4

Table 5.2: Winding-direction agreement with human classifications from Galaxy Zoo 1 using
the same measures as Table 5.1, with the additional inclusion condition that the two longest
arcs reported by our method must have a length of at least 64 pixels, and must agree in
winding direction.

Adding arc-length information further improves accuracy, as seen with the agreement rates

when considering only the longest arc, and when weighting by arc length. The arc-length-

weighted vote is likely the best of these measures, agreeing with humans at least 93.5% of

the time, and increasing to 97.9% with increasing human discernibility. When also requiring

that the two longest arcs agree, agreement ranges from 97.7% to 99.4% for the arc-length-

weighted vote. Under this additional criterion, agreement rates when using the longest arc

alone are slightly higher than when using the arc-length-weighted vote, but the difference

is small and the arc-agreement criterion preferentially selects galaxies where the longest arc

is more reliable (since it has a minimum length and the second-longest arc also passes this

minimum while agreeing in chirality).

The increase in agreement seen when using arc-length information suggests that our output
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contains small, spurious arcs (opposing winding directions may be present in the same galaxy,

but this is likely very rare). The presence of these arcs is to some extent a necessary tradeoff

due to our ability to represent arbitrary arm-segment structure: given what appears to be a

small linear pattern in the image, we cannot dismiss it as noise simply because it does not

fit a more restrictive model of spiral structure. Nevertheless, it may be possible to improve

the noise-resistance of our method (beyond what we have already done) without sacrificing

generality. When galaxy images have higher CCD noise, have low resolution, or are otherwise

less well resolved, the risk of these noisy arcs increases. However, these problems can be

partially mitigated by applying noise removal techniques such as the median filter discussed

in Chapter 3. Furthermore, as seen with the discernibility variations in Tables 5.1 and 5.2,

even human consistency varies with image quality (even within a sample of galaxies where

humans reported that spiral structure was visible). If future sky surveys provide images with

higher signal-to-noise ratios, we expect our output to improve accordingly. Additionally, as

discussed in Section 3.7.2, the minimum cluster size is very small; this threshold was chosen

because it provides more choice to the users of our method, not as a cutoff that maximizes

agreement with Galaxy Zoo humans. Thus, improved agreement may be possible with more

aggressive thresholding on arc length, cluster size, or other attributes.

The increase in agreement with humans when requiring agreement of two long arcs (i.e.,

the increase seen when comparing Tables 5.1 and 5.2) indicates that our output provides

information about its expected accuracy for each galaxy. The arc-agreement criterion is not

a perfect indicator; in pathological cases both long arcs may agree and wind in the incorrect

direction (see Figure 5.3 and the related discussion), and one-arm and flocculent (highly

fragmented) spiral patterns often cannot satisfy this long-arc-agreement criterion even if

these patterns are described perfectly. Using other information from our output (e.g., taking

all arcs into account and considering other properties of the arcs, such as their radial extent),

other measures of confidence may be possible.
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With high human discernibility (where we expect the human classifications to be highly

reliable), our agreement rate is very high (97.9% for 100% human discernibility). However,

even with 100% human discernibility and our requirement for two fairly-long agreeing arcs,

there are a few cases (20 out of 3145, i.e., about 0.6%) where we still do not agree with

human classifications. It is useful to study these cases, shown in Figure 5.3, because they

illustrate ways in which our method can occasionally fail. For some galaxies, the image

standardization step (Section 3.3) “zooms in” too far because the ellipse fit was too tight.

This can occur for extremely faint spiral arms, and when it does happen, most or all of the

spiral arm region is not visible in the standardized image, losing much or all of the information

needed to determine spiral structure. The effect has been substantially reduced with an

appropriate brightness transformation (in particular, by selecting the linear-to-logarithmic

transition parameter β, discussed in Section 3.2, via a percentile level that is as low as

possible while still retaining meaningful brightness variations, so that faint details of the

galaxy are brought out as much as possible), but improving the brightness transformation

did not entirely eliminate this effect.

Other winding direction disagreements occur due to arcs that are either spurious, or are

not strongly informative about winding direction. In some of these cases, the two longest

arcs have the “correct” winding direction but are outweighed by other arcs, while in other

cases, the two longest arcs are spurious (at least in terms of winding direction) and outweigh

the correct-direction arcs. Some of the incorrect-direction arcs are reasonable in terms of

overall galaxy structure, but do not capture winding direction information. These arcs often

describe low-pitch-angle, ring-like structures (and thus structures without a well-defined

winding direction) at the galaxy edge or near the bulge (see, for example, the third galaxy

from the left in the third row of Figure 5.3), but can include other phenomena such as

opposite-chirality arms (or arm-like filaments), or severe bends in the spiral arms. In some

other cases, the arcs are more likely to be due to image noise; this factor was discussed earlier

in this section. Figure 5.3 includes some especially severe cases of input image noise, such

96



Figure 5.3: Input images and final detected arcs (overlaid on the standardized images) for the
20 galaxies (i.e, 0.6% of the galaxies) with 100% human discernability (and thus 100% human
agreement) and where our method produced two fairly-long arcs that agreed in winding
direction, but where our winding direction did not agree with the human classification. Our
winding direction measurements agree with the human classifications for the other 3125
galaxies meeting these arc-agreement and human discernibility criteria. For visibility of the
input galaxies, the input images are cropped at 25% on each side when displayed here.

as the third galaxy in the top row and the first galaxy in the second row (from the top).

In one case shown in this Figure, a galaxy could be interpreted either as a two-arm galaxy or

as a ring galaxy. The code originally recognized the two separate arms (before the secondary

merging step discussed in Section 3.7.2), but merged them because the ring fit was good

enough (if two clusters can be reasonably explained with one arc, our code currently merges

them). This ring does not have a winding direction, and absorbs all of the “good” winding

direction votes. In response, one could try reducing the threshold (increasing the stringency)

of the arc fit merge ratio (Equation 3.19) for all arcs or for merges into rings, or prohibiting

merges into rings if one or both arcs have a pitch angle higher than a threshold. However, like
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many tempting tweaks to the method described in Chapter 3, such a change risks causing

more problems than it solves, especially since these failure cases are rare and unusual.

Returning to our overall assessment of winding direction agreement, it is also interesting to

consider how well our winding direction reliability compares to the average human volunteer

in Galaxy Zoo. For this we can consider average agreement (the proportion of galaxies

where the winding direction given by our code agrees with the majority human vote) and

average discernibility (the average proportion of human votes for the dominant winding

direction category). Since the galaxies sometimes may not be sufficiently well resolved to

have a clearly correct answer for winding direction, and since humans had the opportunity to

indicate uncertainty by choosing a category other than clockwise or anti-clockwise (Z-wise or

S-wise) spiral (with no indication of whether they would have agreed with the majority vote),

we cannot exactly compare winding-direction accuracy rates. However, average discernibility

still provides a measure of how well each human perceives winding direction; a vote for the

“wrong” (non-majority) winding direction and a vote for a non-winding-direction category

are both evidence that the galaxy’s winding direction is difficult for humans to determine.

Additionally, although discernibility is computed on a per-galaxy basis and our agreement

with Galaxy Zoo is computed across the set of galaxies, the two measures are still directly

comparable in this regard. Within a set of galaxies (for example, the subset corresponding

to any of the numerical columns of Table 5.1 or 5.2), the mean discernibility gives the

probability that a randomly selected human classifier will agree with the majority vote

for a randomly selected galaxy, while the agreement rate gives the probability that our

winding direction classification for a randomly selected galaxy will agree with the majority

human winding-direction vote. For a more detailed argument as to the comparability of

the mean discernibility of galaxies and mean agreement with humans despite discernibility

being computed for each galaxy and agreement being computed across galaxies, see Davis

and Hayes (2014) [13].
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Comparing the bottom row of Table 5.1 with the “Mean Discernibility” row of the same

table, and assuming the majority human vote within the two winding direction categories

gives the “correct” answer, we find that our length-weighted average vote agrees with the

human majority vote for winding direction more often than the average human voter does.2

The two exceptions are the subsets of galaxies with the highest discernibility cutoffs (95%

and 100%) — sets that, by definition, favor the galaxies with the highest human reliability. In

these sets, our method agrees with the human majority vote about 98% of the time. Further

investigating the observation that human discernbility is only higher than our agreement

(with the majority human vote) for the highest discernibility cutoffs, we find that average

discernability equals average agreement at a point between the 90% and 95% discernibility

cutoffs. Figure 5.4 illustrates this crossover point. When the minimum discernibility is

92.9%, our method agrees with the majority winding-direction vote at that same rate that

humans perceive the “correct” winding direction; this agreement rate is about 97.1%. At

this point, the image inclusion rate is 41.78%, so for most images in our comparison set,

our agreement with the majority winding direction vote exceeds the rate at which humans

reliably perceive the winding direction.

Longo [42] also provided winding direction measurements for a set of galaxies, where each

galaxy was viewed only once by one of five student volunteers. Many of these galaxies

(about 52%) were also used in our comparisons with Galaxy Zoo, so for the galaxies in

this intersection we can compare our winding direction with those reported in Longo [42].

In Longo’s survey, each galaxy could be classified as Left (i.e., a “left-handed” winding

direction), Right, or Uncertain. The volunteers were instructed to use the latter category

unless winding direction was clear, leaving about 15% of the original sample in [42]. Thus,

this set is similar to a higher-discernibility subset of the Galaxy Zoo sample. As shown in

Table 5.3, our agreement rate is also similar; the arc-length-weighted vote achieves 95.4%

2 We repeat our earlier caveat: although a human vote for a non-winding-direction category indicates
difficulty perceiving a winding direction, human discernibility and our agreement are not exactly comparable
because our method is forced to choose a winding direction.
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Figure 5.4: As we include progressively more galaxies from our Galaxy Zoo comparison
sample in order of human discernibility, average human discernibility in winding direction
(green) initially exceeds our average agreement with the majority winding-direction vote
(blue), but average human discernibility decreases faster than our average agreement with
the majority human vote. The crossover point occurs at a 41.78% inclusion rate, so in most of
the sample, our agreement with the majority human vote exceeds the rate at which humans
reliably perceive the majority-vote winding direction.

All Longest Agree
Majority Vote 83.0 85.6
Longest Arc 91.7 98.5
Length-weighted Vote 95.4 98.3

Table 5.3: Agreement between our winding direction and that of Longo [42] for the 13,331
galaxies intersecting the set of 29,250 galaxies used for comparisons with Galaxy Zoo. The
last column uses the same arc-agreement criterion as Table 5.2.

agreement across cases where the human classifier decided that the winding direction was

clear. When requiring that our output had at least two fairly-long arcs with the two longest

agreeing in winding direction (which occurred about 76.3% of the time), agreement increases

to 98.3%, which matches what we found with the Galaxy Zoo classifications for a comparable

discernibility rate. Since each galaxy was only seen by one observer in Longo (2011) [42], we

cannot measure human agreement in Longo’s results.

100



5.2 Spiral Arm Tightness (Pitch Angle)

When spiral arm tightness is measured, it is generally given as the pitch angle, i.e., the

angle a spiral arm makes with a circle centered at the galaxy center. For each detected

arc in a spiral galaxy, our method readily provides a pitch angle: it is the arctangent of

the a parameter of the logarithmic spiral arc (Equation 3.1) fit to the arm segment. If two

or more spiral arms within the same galaxy have different pitch angles, the pitch angle of

the galaxy as a whole is not uniquely defined. In the pitch angle comparisons throughout

this section, we calculate the pitch angle of a galaxy as the arc-length-weighted mean of

all arcs that agree with the dominant winding direction. We use this measure for several

reasons. First, we have found arc length to be evidence of the arc’s importance to overall

galaxy structure (for example, consider the winding direction agreement rates in Table 5.1

for the arc-length-weighted vote as compared to a simple majority vote). Longer arcs are

also less likely to be due to noise (but we cannot eliminate all short arcs because flocculent

galaxies naturally have smaller, fragmentary arms). We only use arcs agreeing with the

dominant winding direction because arcs with the opposite winding direction are more likely

to be noise-induced, and even in cases where opposite-direction arm segments exist, their

tightness may not be directly comparable with arms of the dominant winding direction.

We first compare our pitch angles with arm tightness classifications given in Galaxy Zoo

2 [67]. Here, where human classifiers indicated that there was “any sign of a spiral arm

pattern,” they were asked whether the arms were tight, medium, or loose (see Figure 5.5).

Although examples and illustrations were given for each category, choices are not completely

precise, and the categories are too coarse for a direct correspondence with our measurements.

However, we can examine the distribution as a whole.

Figure 5.6 shows the relationship between our measured pitch angle and the proportion of

galaxies receiving a majority weighted human vote for Tight, Medium, or Loose (the vote

101



Figure 5.5: Reference icons presented to human classifiers when asked about spiral arm
tightness during the Galaxy Zoo 2 project, as seen on http://zoo2.galaxyzoo.org.

weights are determined by consistency with other humans; see [67]). As can be seen from the

dashed lines, galaxies where we measure a low pitch angle usually have majority human votes

for Tight, while most of the remaining galaxies in this range had majority votes for Medium.

As our measured pitch angle increases, we see progressively fewer galaxies classified as Tight,

and more galaxies classified as Loose. Designations as Medium are pervasive throughout.

In the top human agreement quartile (lowest Shannon entropy quartile), the association be-

tween our tightness measure and human classifications is even more pronounced, as shown in

the solid lines of Figure 5.6. Also, since majority votes for Medium were far less common with

increased human agreement (majority votes for Medium decreased from 49.3% to 17.2% when

using only the highest human agreement quartile, and the proportions of Medium-majority

votes are also much lower in Figure 5.6), it seems likely that this choice was frequently used to

indicate uncertainty, perhaps due to low galaxy resolution and galaxies with arms of varying

tightness. Consequently, it is reasonable that majority-Medium galaxies spread across a wide

range of our measured pitch angles. Even if Medium-majority galaxies are disfavored by the

entropy measure by having two neighbors (despite most galaxies likely appearing closer to

Tight or Loose), such willingness to put many galaxies in any of the three categories would

further suggest that much of the spread in classifications stems from human uncertainty. In

all, then, we see a clear association between Galaxy Zoo 2 tightness classifications and our

measurements, with this association strengthening as human agreement increases.
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Figure 5.6: Proportion of galaxies receiving a majority vote for Tight (blue), Medium (green)
or Loose (red) as a function of our measured pitch angle, over all images tested from Galaxy
Zoo (dashed) and for the top human agreement quartile (solid). Pitch angles are binned
with width 2 degrees from 0 to 40, with one more bin for pitch angles above 40 degrees (due
to low sample size). Overall, 35.7% of galaxies had a majority vote for Tight, 49.3% had
a majority vote for Medium, and 15.1% had a majority vote for Loose. In the top human
agreement quartile, these rates were 55.8%, 17.2%, and 27.0% for Tight, Medium, and Loose,
respectively.

Figure 5.7 gives the number of galaxies in each pitch angle bin for both the full set of 29,250

galaxies and for the top human agreement quartile (corresponding to the dashed and solid

lines of Figure 5.6, respectively). Comparing these distributions with Figure 5.6, we note

that the majority human votes for Tight and Loose have proportions closer to equal where

we measure “typical” pitch angles. The peak in our pitch angle frequencies occurs at a lower

pitch angle than the Tight/Loose crossover points in Figure 5.6, but this is likely because

there are fewer galaxies with a majority vote for Loose than for Tight, so a higher pitch angle

is required before Loose-majority-vote galaxies overtake Tight-majority-vote galaxies. From

visual inspection we can also observe that the pitch angle distribution of galaxies in the top

human agreement quartile is similar to the distribution of all galaxies used for comparison.

We also compare our measured pitch angles with values calculated using Fourier analysis

by Davis et al. [11] (no relation). Here, we perform the comparison using images from the

Carnegie-Irvine Galaxy Survey [25]; this allows inclusion of most of the galaxies measured by

Davis et al. [11]. We directly use PNG images where foreground-star-containing regions have
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Figure 5.7: The distribution of our measured pitch angles across all 29,250 galaxies used
in our comparison with Galaxy Zoo (top) and for the galaxies in the top human agreement
quartile (bottom). Note that all pitch angles above 40 are combined into the same bin.

been patched with substitute brightness values. We could instead use FITS images with our

own PNG conversion, with similar (but not identical) results, but we experienced difficulty

getting SExtractor output usable for the star removal discussed in Section 3.4 (getting such

output is likely possible by adjusting SExtractor parameters from their defaults in order to

better match the properties of this data set), and we also take the opportunity to demonstrate

the use of our method on non-FITS inputs. The left panel of Figure 5.8 compares our pitch

angles with those measured in [11] for the I (infrared) band. We see a reasonable agreement

in most cases (with some scatter, discussed below). The galaxy farthest from equality in

measured pitch angle, NGC 5054, has an extreme pitch angle measurement in Davis et al

[11]. We also measure a large pitch angle, but not to the same extent, and our agreement

with their B (blue) band pitch angle is much closer. This galaxy has a large pitch angle

difference among its arms, and is revisited later in this section and in Figure 5.10.
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Figure 5.8: Comparison of our measured pitch angles with those from Davis et al. (no
relation) [11] for the I band, left, and with those reported by Ma [44], right. The red
lines plot y = x. In both cases, the vertical axis is the pitch angle measured by the other
authors, and the horizontal axis is our measured pitch angle. Our error bars are the arc-
length-weighted standard deviation of all arcs agreeing with the dominant winding direction
(as determined by arc-length-weighted vote). Davis et al. describe their own method for
determining error values [11] which we include here; for the error from Ma [44] we take the
difference between the two measured arcs (when two measurements are available).

We perform a similar comparison with Ma [44], where pitch angles were determined by

manually selecting points along spiral arms, and then fitting one or two logarithmic spiral

arcs (depending on visual resolvability). For this comparison we ran our code on images

from the POSS II survey [53], since this was the image set used by Ma [44]. This survey

used photographic plates rather than CCD imaging. Like the Galaxy Zoo comparison set, we

applied a brightness transformation with the parameters discussed in Section 3.2. Since the

use of photographic plates had an effect similar to a logarithmic transformation of brightness

values, our brightness transformation did not have (and did not need to have) as strong of an

effect on extreme brightness values. However, the distribution of brightness values was more

concentrated toward the high end, so applying the unsharp mask (Section 3.5.2) created

more brightness clipping than normal. Thus, to cope with the use of photographic plates,
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Figure 5.9: Cumulative distribution of within-galaxy pitch angle discrepancies (ignoring
sign) from Ma [44] (in red) for galaxies where two arcs are measured, and between our
measurements and the measurements in [44] (blue for the full comparison set, and green for
the subset where two arc measurements are available from [44]). Larger values mean stronger
agreement; if all measured values were the same, the inclusion rate would have a constant
value of 1.0.

we reduce the unsharp mask amount parameter3 (Section 3.5.2) from 6 to 3. Using the

original unsharp mask amount degrades the results slightly, but not severely. The right

panel of Figure 5.8 compares our pitch angles with those in Ma [44]; like our comparison

with Davis et al. [11], there is a rough correspondence, but with some scatter. There are

two galaxies, NGC271 and NGC6956, where we disagree in winding direction; in these two

cases, our winding direction is incorrect. NGC271 has ring-like structure on each side of the

ends of its bar, producing plausible arcs of similar pitch angle in both winding directions;

the NGC6956 image is contaminated with stars, including several stars visually arranged

near one of the spiral arms.

Both quantitative pitch angle comparisons have some scatter. Although this scatter may

seem to be a concern, it is possible for the pitch angle to vary significantly between arms in

the same spiral galaxy. Since Ma [44] measured only one or two arms in each galaxy, and

since Davis et al. [11] measured only one dominant pitch angle, perhaps much of the scatter

could be explained by inter-arm differences in each galaxy, rather than by differences as a

3This manual tuning is at the level of the entire image set; per-image supervision is still entirely unnec-
essary.

106



24.4°

21.4°

38.7°

Figure 5.10: From our output we find that pitch angles can vary substantially within the
same galaxy, as shown here for NGC 5054. The left panel shows the image, obtained as a
PNG input from the Carnegie-Irvine Nearby Galaxy Survey [25] with star regions replaced
with substitute brightness values, after image standardization (Section 3.3) and unsharp
masking (Section 3.5.2). The right panel shows the arcs detected by our method, along
with pitch angles for the three longest arcs that agree with the dominant winding direction.
Compared to the other two arcs, the upper arc differs in pitch angle by about 15 degrees.
Even without the innermost region of the upper arc (a discontinuous region joined during the
secondary merging step described in Section 3.7.2), the pitch angle of the upper arc remains
similar — about 37.8 degrees.

function of method. To test this hypothesis, Figure 5.9 plots the cumulative distribution

of pitch angle discrepancies between the two arcs in one galaxy (when available) from Ma

[44], vs. discrepancies between Ma’s method and our method. All three curves are similar,

with between-method agreement often being higher than within-galaxy agreement. It is

thus likely that much (but not all) of the scatter in Figure 5.8 arises from within-galaxy arm

variation rather than between-method measurement variation. Figure 5.10 illustrates one

case of within-galaxy pitch angle variation. The three main arms are fit well, but one of the

arms differs in fitted pitch angle by about 15 degrees. We see pitch angle differences in other

galaxies as well (though usually not as severely as in this case).
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5.3 Spiral Arm Counts

As mentioned in Section 3.1, the concept of a “spiral arm” can be ambiguous. Consequently,

the notion of an arm count is often not well defined. Human viewers (including Galaxy Zoo

classifiers) may implicitly or explicitly have different criteria for what properties constitute

a spiral arm (e.g., shape, coherence, length, brightness), and how prominent a spiral arm

must be in terms of these properties. Differences in these criteria affect the number of arms

perceived in the image. At suspected junctions of spiral arms (for example, forks, bends,

and dust lanes), it can also be unclear which spiral arm, if any, is a continuation of another.

This situation, illustrated in Figure 5.11, can also affect the arm count. The instructions

given to Galaxy Zoo human classifiers4 also note the ambiguity in spiral arm count, stating

“How many distinct arms can you see? The correct answer is often not very clear — spiral

arms can be messy, so a little imagination helps. If you’re uncertain, say between 2 or 3,

just give your best guess. If you can see there are spiral arms, but you really can’t tell how

many, then you have the option of saying so.”

Due to the ambiguities in counting spiral arms, the task of reproducing human classifications

is related to, but distinct from, the task of tracing spiral arm structure. The former does not

require as much output detail, and can exploit correlations between image features (and/or

other signals) and the category labels, without ever needing to directly model spiral structure.

In contrast, our output attempts to capture the details and subtleties of spiral arm structure,

including ambiguity in the spiral arms; this is why we made the distinction between “spiral

arms” and “spiral arm segments” in Section 3.1. From our output the user can then define

and calculate structure measures appropriate to the task at hand. In the case of arm count,

if a researcher is only interested in spiral arms that start near the core and end near the

disk, they can apply this criterion, while a broader interpretation of spiral arms would be

4 See the section “Q: How many spiral arms are there?” from http://zoo2.galaxyzoo.org/how_to_

take_part
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(b) (c) (d) (e)

Figure 5.11: Three different interpretations of the spiral structure in M101. All comprise rea-
sonable interpretations of the structure. Part (a) gives the standardized image (as described
in Section 3.3). Part (b) displays the image after unsharp masking (Section 3.5.2); we have
labeled three arm segments. The joint between segments 1 and 2 may be what a human
would call a “fork,” although our code never explicitly refers to forks. The colored images
are from different stages in the development of our method. Part (c) gives output from an
old version of the code, where the three segments happen to be separated (blue, cyan, and
olive pixel clusters). Part (d) gives output from an intermediate (but still quite old) version
of the code, where segment 2 has been interpreted as a continuation of segment 3, jumping
over the gap between them. The single logarithmic spiral arc spanning the two arguably fits
reasonably well, suggesting perhaps that segments 2 and 3 are physically one arm with an
obscuring dust lane, while the apparent “fork” of segment 2 from segment 1 is an optical
illusion. The arc at the top of part (d) does not fit well due to an old bug (resolved long
ago) in setting up the least squares fitting for multi-revolution arcs; the “real” logarithmic
spiral arc fit matches much better. Part (e) gives output from the most recent version of the
code, in which the logarithmic spiral arcs more stringently fit (in the least-squares sense)
each cluster of pixels. Segment 3 has been split into two clusters, suggesting that a fork
exists at the split point.

more appropriate in other cases and can also be applied to our output. For the purpose of

reproducing human classifications of spiral arm count (e.g., from Galaxy Zoo 2), we expect

our output to produce useful information, but it is not immediately clear which mapping

from our output to human classifications would be best. Furthermore, given a fixed mapping,

it is not clear whether (or to what extent) arm count differences are due to limitations in

our method (or human classifications), or due to differences in how an arm was defined by

humans and by the mapping. Since we are primarily interested in quantitatively describing

spiral structure, and since we have already compared with other measures (especially winding

direction; see Section 5.1) that have a well-defined answer much more frequently, we leave

for future work the task of more precisely reproducing human arm-count classifications from
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Figure 5.12: Reference icons presented to human classifiers when asked about spiral arm
count during the Galaxy Zoo project, as seen on http://zoo2.galaxyzoo.org.

our output. However, despite the ambiguities of arm count definition (and thus in matches

and mismatches of arm count), we can still compute several simplistic measures of arm count

from our output and then examine the correspondence between these measures and human

classifications. It is likely that other measures (based on our output) could have improved

agreement rates with Galaxy Zoo 2 classifications, but we still expect these simple measures

to have some correspondence, especially for cases with higher human agreement.

During Galaxy Zoo 2, when human classifiers indicated that a spiral arm pattern was visible,

they were asked to determine the number of arms present in the galaxy, using categories for

1, 2, 3, 4, or more than 4 arms, along with a “Can’t tell” option. These options are displayed

in Figure 5.12. For each galaxy, we consider the arm count determined from Galaxy Zoo to

be the category with the highest fraction of weighted votes (the vote weights are determined

by consistency with other humans, as was the case with arm tightness, and as described

in [67]). In some cases, no category received more than 50% of the vote, so we use the

phrase “maximum vote” rather than “majority vote.” To produce arm count categories

from our output, we count the number of arms with length (in pixels) exceeding a threshold.
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For the same reasons discussed in Section 5.2, we only include arcs that agree with the

galaxy’s dominant winding direction, as determined by the arc-length-weighted vote. For

correspondence with Galaxy Zoo 2 categorizations, we group all counts above 4 within a

single “more than 4 arms” category. Our (simplistic) arm count calculation method can

place galaxies in a “0 arms” (really “all short arms”) category, which has no equivalent in

the Galaxy Zoo 2 classifications. Likewise, the Galaxy Zoo 2 “Can’t tell” category has no

equivalent in the categories computed from our output.

Among galaxies, the category for “2 arms” is much more popular (in terms of the Galaxy

Zoo 2 maximum vote) than the other categories, so we must make sure that indicators of

performance on other types of spiral galaxies are not overwhelmed by the relatively large

number of 2-armed spirals.5 To do so, we consider each Galaxy Zoo 2 arm count category

separately. We partition the Galaxy Zoo comparison set (the same one used in Sections 5.1

and 5.2 when comparing with Galaxy Zoo) according to the Galaxy Zoo 2 arm count category

receiving the maximum human vote for each galaxy. For each such group of galaxies (each

corresponding to a Galaxy Zoo 2 arm count category), we find the proportion of galaxies

our method assigns to each arm count category. These distributions are given in Figure

5.13. The rows correspond (from top to bottom) to arc length thresholds of 65 and 90. The

left column includes all galaxies in the Galaxy Zoo comparison set. The right column uses

only the galaxies in the highest quartile of human agreement (as measured by the Shannon

entropy across human arm-count votes).

Regardless of threshold on arc length (i.e., the minimum length needed to be counted as a

“spiral arm”) and whether or not we include all galaxies or just the top human-agreement

quartile, our method tends to give the lowest arm counts to galaxies classified as “1 arm”

by Galaxy Zoo 2 (the distribution of these galaxies is given in red), and for each subsequent

5 Incorporating a bias toward 2-arm galaxies would be appropriate when applying supervised machine
learning methods to reproduce Galaxy Zoo 2 classifications from our output, but to preserve generality in our
structure descriptions we do not wish to incorporate such a bias on the galaxy level, and for the comparison
here we are interested in behavior for all arm counts.
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Figure 5.13: Distributions across arm count categorizations (0, 1, 2, 3, 4, and more than
4 arms) determined by our method for galaxies with a maximum human vote for “1 arm”
(red), “2 arms” (green), “3 arms” (blue), “4 arms” (magenta), “More than 4 arms” (cyan),
and “Can’t tell” (black). We use the maximum human vote because some galaxies do not
have a majority human vote for any one category. In all of the arm counts produced from
our output for comparison here, we only consider arcs that agree with the dominant winding
direction, as determined by an arc-length-weighted vote. We then determine arm count
by counting arcs with length of at least 65 pixels (top) or 90 pixels (bottom). The left
column displays the distributions when all galaxies within our Galaxy Zoo comparison set
are included. The right column includes only galaxies within the top arm-count agreement
quartile (lowest Shannon entropy quartile).

Galaxy Zoo 2 arm-count category (ordered by number of arms and excluding “Can’t tell”

because it does not indicate an arm count), our method tends to give higher arm counts

(i.e., the distributions tend further to the right).

When including all galaxies in the Galaxy Zoo comparison sample, for some but not all “N

arms” categories (N ∈ {1, 2, 3, 4, >4}), our method also counts N arms in the majority of

cases (i.e., the distribution peaks at N arms). Smaller arc-length thresholds (e.g., the top row

of Figure 5.13) produce this matching for higher arm counts, and larger arc-length thresholds

(e.g., the bottom row of Figure 5.13) produce this matching for lower arm counts. Thus,

lower arc-length thresholds often over-count arms (relative to human counts) in galaxies were
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humans report few arms, and higher arc-length thresholds often under-count arms in galaxies

where humans report more arms. These mismatches are likely due to a combination of arm-

detection errors or other inherent differences between our method and human perception,

and subtleties in human classifications not captured by a simple arc-length threshold.

When small regions appear linear due to noise or other imaging artifacts, we may over-

count arms (especially at low arc-length thresholds). If the arm (or part of it) is too dim or

otherwise too poorly resolved to be picked up by the orientation filters (and thus the pixel

clustering), or if a dust lane obscures part of a spiral arm, then arms can be under-counted

(if the detected region of the arm is too short) or over-counted (if the non-detected part of

the arm causes a split into two segments that each pass the length threshold). Under- and

over-counts (relative to Galaxy Zoo 2 classifications) due to dim or obscured arms can be

valid interpretations in some cases, depending on how one defines a spiral arm.

Subtleties in human classification are more difficult to examine, but we speculate that some of

the mismatches (of distribution peaks and on a per-galaxy basis) may be due to an overshad-

owing effect in human classifications: some arms may be implicitly considered dominant by

being longer than other arms in the galaxy, and non-dominant if they are shorter than other

arms or are attached to another, longer arm (e.g., as a fork or bend). If human classifiers

consider the dominant arms to be the “real” arms, they may not count the non-dominant

ones, even if an arm of similar length would be counted in a galaxy without a dominance

pattern. If galaxies with more arms (of similar length) tend to have shorter arms and are

less likely to have a dominance pattern,6 then a shorter arc-length threshold will correctly

detect more of the shorter arms in many-armed galaxies, but will tend to over-count (with

respect to human classifications) arms in galaxies where humans perceive fewer arms, due

to differences in whether the minor (non-dominant) arms are counted. A larger arc-length

threshold would be more likely to “correctly” count only the dominant arms, but miss more

6 This is plausible in part because “grand design” spirals tend to have two long coherent arms, while
flocculent spirals tend to have a larger number of shorter arms.
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of the shorter arms characteristic of many-armed spiral galaxies. Additionally, human clas-

sifiers may consider other factors that are not captured by an arc-length threshold (but may

be available from our method already), such as the relative brightness of an arm.

Other reasons for arm-count mismatches may be a combination of human arm count decision

subtleties and the way our output represents spiral arms. For example, if an arm has a sharp

bend, our method may split it into two arm segments while humans may consider the two

sides of the bend to be the same arm. In many astronomical applications, it may be useful

to represent the arm as two separate segments with information (e.g., adjacency at the

ends) available from our output that could signal membership in the same arm under some

definitions. In cases like these, where increased optimality for one purpose (e.g., Galaxy Zoo

2 arm count agreement) could reduce available information, suitability, or flexibility for other

astronomical applications, we have chosen to keep our output suitable for a broader array of

purposes, and allow others to calculate application-oriented measures from our output. As

discussed at the beginning of this section, we are interested in arm count agreement to the

extent that it measures the suitability of our output for general astronomical purposes, and

consider application-specific optimizations using our output to be beyond the scope of the

current work.

Although it is currently difficult to measure the proportion of arm-count mismatches at-

tributable to errors in our method versus other factors such as subtleties in human classifi-

cations not captured by an arm count threshold, we can consider the changes we see when

only considering the galaxies in the top quartile of human agreement (as measured by Shan-

non entropy). As with the left column, the right column of Figure 5.13 shows distributions

across our arm-count values for galaxies partitioned according to which arm-count category

received the maximum Galaxy Zoo 2 vote, except that only the galaxies in the top human

agreement quartile are included. With this inclusion criterion, all distributions except for

“1 arm” peak at the matching arm count (for example, of the galaxies with a maximum hu-
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Figure 5.14: The distribution (across our Galaxy Zoo comparison set) of the weighted vote
that each galaxy received for the arm count category with the maximum human vote. The
instances within the top human agreement quartile (as measured by Shannon entropy) are
in green.

man vote for 4 arms, our method counts 4 arms in most cases, as shown in the distribution

displayed in magenta), regardless of the arc-length threshold used. The distributions are

also more concentrated around their peaks. There are still arm-count disagreements at the

galaxy level, and these can still be due to either errors in our method or nuances in human

classification not captured by the arc length threshold (but potentially captured by other

information included in our output), but it is interesting to note that our agreement with

humans increases substantially when the humans agree with each other.

Figure 5.14 assesses the extent to which humans agree with each other. We can see that

for some galaxies all humans agree on arm count, but in most cases human agreement is

lower, with the maximum-vote arm count receiving only about 25% of the total human vote

for some galaxies. This underscores the fact that arm count is ambiguous and disagreement

among humans (i.e., between perceptions of what constitutes an arm) is common. Table 5.4

gives the percentage of galaxies assigned to each arm count category by human classifiers

and by our three arc-length thresholds, for the full Galaxy Zoo comparison set and for the

top human agreement quartile. Both the human classifications and our methods assign the

most galaxies to the “2 arms” category, and both assign progressively fewer galaxies to

categories with progressively more or fewer arms. However, human classifications are more
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Measurement Top? 0 Arms 1 Arm 2 Arms 3 Arms 4 Arms >4 Arms ? Arms

DWD, ≥065px N 3.56 12.67 32.33 28.06 15.25 8.13 0.00
Y 5.62 13.71 42.45 24.91 10.06 3.24 0.00

DWD, ≥090px N 10.61 24.20 39.27 19.06 5.78 1.08 0.00
Y 14.32 22.37 45.86 14.03 3.19 0.25 0.00

GZ2 Max Vote
N 0.00 2.82 64.04 9.42 2.69 2.25 18.77
Y 0.00 0.71 97.32 1.39 0.12 0.14 0.31

Table 5.4: Percentages of galaxies assigned to each arm count category as a function of
measurement method (first column) and whether we only include the top human agreement
quartile (second column). In the arm counts produced from our output, we only include
arcs that agree with the dominant winding direction (DWD), and also require that the arcs
have a minimum length in pixels. Note that Galaxy Zoo 2 did not have an option to vote
for “0 arms” (i.e., “only short arms”), and our method does not produce classifications in
the “Can’t tell” (“? Arms”) category.

concentrated on two-arm spirals; we are uncertain as to whether humans are more accurately

detecting spiral arms, or if they have one or more biases toward perceiving two-arm spirals.

It is also interesting that the concentration in human maximum-votes for two armed spirals

becomes extreme (about 97%) for the highest human agreement quartile. However, since we

have a fairly large comparison sample, there are still enough galaxies to obtain meaningful

distributions for the rare categories. The number of galaxies with a maximum vote for

“Can’t tell” also decreases dramatically when only including the highest human-agreement

quartile, suggesting that arm count is not only ambiguous, but also elicits different responses

in different human classifiers (instead of agreeing that the arm count is ambiguous, they

distribute votes across different arm count categories).

It is likely that a better correspondence with Galaxy Zoo 2 classifications could be obtained

by training an automated classifier to reproduce these classifications. The simple addition

of a bias toward 2-arm classifications would likely be very helpful for classification accuracy,

and automated classifiers could include more information from our output (such as arm

brightness) that humans may use when counting arms. The classifier could also consist of

several one-versus all sub-classifiers (one for each arm count category) that detect patterns

characteristic of each arm count, or the classifier could learn a ranking function in order to
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determine, using our arm-level information, which arms are likely to be counted by a human.

However, even with a simple arc-length threshold, we find reasonable correspondence with

Galaxy Zoo classifications, suggesting that information from our output promises to be very

useful for reproducing human arm count classifications, even though a simple measure leaves

room for improvement as is. Since producing an unbiased description of spiral arm segment

structure (from which arm counts and other measures can be calculated using the definition

needed at the time) is different from finding a better mapping from our structure descriptions

to Galaxy Zoo 2 arm count classifications (and thus encoding a definition of what the human

classifiers consider to be an arm), we leave the latter for future work.
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Chapter 6

Sensitivity Analysis

We want the output of our method to vary with the structure of the input galaxy, and to

be as invariant as possible to non-meaningful differences in the galaxy images. In addition,

although we expect our output to change when modifying algorithm parameters that manage

structure-extraction tradeoffs (the parameters would not be useful otherwise), it is important

to understand which aspects of our output are and are not affected, and to understand the

degree and manner in which the affected output characteristics change. In this chapter, we

explore how our output is affected (and unaffected) by image mirroring and by changes to

algorithm parameters.

6.1 Image Mirroring

In human classifications of winding direction, it has been important to check for biases by

mirroring some of the images shown to the humans [34, 42]. When an image is mirrored, the

apparent winding direction should be reversed. In cases where the winding direction is not

reversed, if one winding direction is disproportionately retained to a significant extent, then
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Figure 6.1: Galaxy-level pitch angles reported by our method using unmirrored and left-to-
right mirrored input images across the Galaxy Zoo comparison set used in Chapter 5. These
galaxy-level pitch angles are calculated as the arc-length-weighted average of all arcs agreeing
with the dominant winding direction (as determined by an arc-length-weighted vote). The
diagonal line gives y = −x. Cases on this line are visually underrepresented due to overlap.

humans likely have a bias toward that winding direction (due to human perception, the layout

of the classification interface, or some other factor). As a fully computerized process, our

method is not susceptible to the many potential biases in human perception. Nevertheless,

it is useful to perform an image-mirroring test on our method. A computerized method

could still have a bias through some other means (even if this is considered less likely than

with humans), and an image-mirroring test provides a rare case where the exact expected

output of our method is known. Furthermore, this test has allowed us to detect small

imprecisions in our implementation that occasionally could affect our output (see below for

further discussion), and has provided a means to verify that these imprecisions have been

removed.

Figure 6.1 displays pitch angles determined by our implementation of the methods described

in Chapter 3, for unmirrored images and for the same images mirrored left to right. The

image set consists of the 29,250 images used for Galaxy Zoo comparisons throughout Chapter
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5. The pitch angle measure is the arc-length-weighted average of all arcs agreeing with the

arc-length-weighted dominant winding direction. This measure does not always consider all

arcs in the image, but it does (by definition) consider most of the detected arcs by length, and

we perform the flip test across a fairly large image sample (that results in a large number of

detected arcs). Additionally, this measure simultaneously looks for changes to our measured

winding direction and pitch angle,1 and was used in Sections 5.1 and 5.2 when comparing

with other measures of winding direction and arm tightness.

As seen from Figure 6.1, when images are mirrored, the vast majority of galaxies are given

the same pitch angle magnitude (within 10−4 degrees) as the unmirrored case, with the sign

properly flipped. Specifically, this occurred for 29,094 out of the 29,231 testable galaxies

(our method did not find any sufficiently-large arm segments (pixel clusters) in the other

19 galaxies, and this outcome was consistent with respect to whether these galaxies were

mirrored or not). Although reasonable to expect from an automated procedure, such a high

rate of exact correspondence is more demanding than it may originally appear because any

inconsistency or imprecision in any calculation for any pixel or cluster can affect the result,

even if only slightly. Of the 137 galaxies where the pitch angle differed by more than 10−4

degrees after an image flip, all but 5 reversed winding direction, so winding directions almost

always correctly flip when the image is flipped (exceptions occur for less than 0.02% of the

29,231 galaxies). There were 4 cases where the winding direction remained S-wise despite

the image flip, and 1 case where the winding direction remained Z-wise despite the image

flip. These results are consistent with each winding direction having equal probability of

remaining through an image flip. Furthermore, in earlier versions of the code (where there

were more cases of the measured winding direction “sticking,” and thus a larger sample

from which to test a balance between winding directions), the number of retained S-wise

and Z-wise winding directions was also about equal (sometimes exactly equal). Considering

1If the winding direction changes, the magnitude of the pitch angle may change dramatically because the
pitch angle measure would use the subset of arcs with the other winding direction.
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the extremely low prevalence of winding direction reversal failures in the current version of

our code, and the approximately balanced distribution of these failures, we find little or no

evidence of a preferred winding direction in our code.

We are uncertain as to the cause of the 137 cases (about 0.47% of our sample) where there was

at least a 10−4 degree difference in measured pitch angle. Based on previous experience, it

could be caused by an imprecision or inconsistency in our code, but it may be due to equality

between two or more pixel similarities (Equation 3.18). Compared to earlier versions of our

code, the largest reduction in galaxy-mirroring discrepancies came from tracking the fitted

galaxy center exactly during image standardization (Section 3.3); we had previously tracked

it only to the nearest pixel. Since logarithmic spiral arcs are defined in terms of the center of

their coordinate system, even a sub-pixel shift in the estimated center of the galaxy can result

in a slight change to some or all of the spiral arcs in the image. This affects the measured

pitch angle. In the case of low-pitch-angle arcs, the discrepancy in the image center can

spuriously flip the winding direction of the arc. If the total length of such arcs in an image

is large enough, such arcs flip the measured winding direction of the image.

Other implementation changes producing improved consistency across image flips affected

handling of clusters with an angular span of 360 degrees or more; if polar-coordinate θ-value

disambiguation fails, the result depends on the pixel(s) that the disambiguation began with,

and the selection of these starting pixels can depend on pixel ordering (as reversed by an

image flip). One implementation change fixed a rare bug that arose due to an interaction

of pixel quantization and certain micro-structures in the cluster boundaries (if these micro-

structures were in exactly the wrong place). The other case was the annular-cluster scenario

discussed in Section 3.7.2; the flip test aided the realization that such clusters do not have

well-defined endpoints. The flip test also led to a fix to a rare bug in the clustering procedure

where pixel similarities invalidated by a previous merge were occasionally not marked as

invalid.
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The remaining discrepancies may be due to a similar implementation issue,2 but these dis-

crepancies may be an inherent artifact of the clustering procedure itself. If two pixel similar-

ities (and later, two cluster similarities) are the same, as calculated from the orientation field

via Equation 3.18, then pixel ordering implicitly breaks the tie. If one similarity is between

clusters A and B, and the other similarity is between clusters A and C (with none of the

clusters equal to one of the others) then an image flip can affect whether A first merges

with B or C. If the fit-based merge checking allows the first merge but not the second, then

the cluster pattern can diverge from this point onward. Since pixel similarities are floating

point numbers, we expect ties to be rare, but they are still possible, especially due to the

sheer number of pixels (and pixel similarities). Additionally, pixel similarities only occupy a

fraction of the possible floating-point range (especially due to the brightness transformation

step from Section 3.2, which reduces variation in brightness and thus orientation vector mag-

nitude), and if the unsharp mask causes image clipping, variance is reduced in the affected

orientation vectors (and thus pixel similarities). Regardless of the mechanism for the flip

test discrepancies, these cases are very rare, and do not show a sign of a winding direction

bias.

6.2 Algorithm Parameter Changes

The algorithmic parameters discussed in Chapter 3 manage tradeoffs encountered during

spiral galaxy structure extraction. Changing these parameters will, by their nature, at

least slightly alter the behavior of our method. Here, we characterize the effects on our

output when varying six algorithmic parameters at the core of our procedure. For each

such parameter, we run our method on our Galaxy Zoo comparison set (used in Chapter

5 and Section 6.1) with five alternate parameter values.3 If output could not be produced

2Due to time constraints, this issue could not be completely eliminated.
3Due to CPU time constraints, we present results from a slightly old version of our code. The main

change relevant here is that the default unsharp mask was 10 instead of 6, but other than the difference in
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for at least one of these parameter values, the galaxy was dropped from the analysis for

that parameter.4 We then compare, on a per-galaxy basis, changes to several aspects of our

output. Specifically, we examine effects on the fragmentation and volume of arcs detected

by our method, as measured by the average arc length, total arc length, and total number of

arcs. We also measure effects on our detected winding direction and pitch angle. For the pitch

angle we again use the arc-length-weighted average of all arcs agreeing with the arc-length-

weighted winding direction, referred to here as the “signed pitch angle” (the sign determines

winding direction). To isolate the effect on the measured arm tightness, we also measure

changes in the absolute value of the pitch angle (higher absolute values indicate looser arms).

Lastly, we also consider changes to winding direction. Winding direction is expressed as 1 for

S-wise, −1 for Z-wise, and 0 for no winding direction (a galaxy-level pitch angle of exactly

zero). Consequently, a S-to-Z winding direction change has a winding direction difference of

−2 and a Z-to-S winding direction change has a winding direction difference of 2. Similarly,

changes to or from a non-winding-direction value of 0 are expressed as differences of −1

or 1, but this type of change is rare because almost all galaxies have a measured winding

direction.

Figure 6.2 illustrates the effects of varying the minimum cluster size (in pixels) needed for a

cluster (and its associated arc) to be included in our output. This parameter was discussed

in Section 3.7.2. The red lines give the median changes (in the measured aspects of our

output) resulting from each setting of this cluster size threshold (relative to the baseline

value of 150 used elsewhere in this work). The red error bars give the upper and lower

quartiles of this difference. Similarly, the green error bars give the 10th and 90th percentiles

of this difference, and the blue error bars give the 5th and 95th percentiles. Unsurprisingly,

the average arc length increases to the extent that we require larger cluster sizes. The typical

this default, we do not expect the minor code changes to substantially affect our results, especially since we
saw no substantial difference when performing these tests on a version of the code earlier than the one used
here.

4The number of affected galaxies was too small to substantially affect our plots, except in the case of the
unsharp mask amount. We investigate this potential change when examining the effect of this parameter.
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Figure 6.2: Changes in several measures computed from our output when varying the min-
imum size needed for a cluster to be included in our output (x axis). The median change
is given as the red line, with the red error bars giving the upper and lower quartiles. The
green error bars give the 10th and 90th percentiles of the changes to our output, and the
blue error bars give the 5th and 95th percentiles.

change in average arc length is about 10, but this difference can increase to about 40 in some

cases. Allowing fewer small clusters into the image also decreases the total arc length, as

expected. It is also obvious that a less permissive size threshold will reduce the number of

clusters; the degrees of change and variation indicate how many clusters tend to be discarded

in this manner. Finally, we note that changes to the measured pitch angle are minor, with

no (or negligible) change to the typical pitch angle measured, and fairly low scatter. The

use of arc-length weighting likely increases the stability of the measured pitch angle, but

all clusters (that agree with the dominant winding direction) nevertheless contribute to the

pitch angle measurements. Winding direction also tends to be unaffected; from the figure

(in particular, the absence of visible blue bars) we note that at least 90% of the images (and
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Figure 6.3: Changes in several measures computed from our output when varying the unsharp
mask amount (x axis). The median change is given as the red line, with the red error bars
giving the upper and lower quartiles. The green error bars give the 10th and 90th percentiles
of the changes to our output, and the blue error bars give the 5th and 95th percentiles.

probably more) are unaffected in winding direction.

Figure 6.3 is set up in the same way as Figure 6.2, but instead examines the effects of

varying the unsharp mask amount (Section 3.5.2).5 Increasing the unsharp mask amount

increases the contrast between bright and dark regions, increasing the magnitudes of arm-

aligned orientation vectors and thus increasing the pixel similarity scores within spiral arms

(since the similarity scores are computed by a dot product; see Equation 3.18). This, in

turn, increases the number of pixel and cluster merges, which means that clusters tend

to be larger (more pixels merge into the clusters) and have a higher tendency to merge

(since clusters are more likely to be adjacent to each other when they grow). Since larger

5As discussed earlier, the baseline unsharp mask amount is 10 instead of 6 because we use a slightly old
version of our code.
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clusters are more likely to reach the minimum size threshold, and since clusters are more

likely to be picked up by the orientation field when the unsharp mask is stronger (up to a

point), we see an increase in the total number of arcs. This trend overpowers the reduction

in cluster count caused by an increased number of merges, but the cluster-count increase

slows for larger unsharp mask amounts, suggesting that large-cluster merges accelerate for

larger unsharp mask amounts, or that incremental increases in the unsharp mask amount

have a stronger impact on orientation field sensitivity when increasing from a lower value of

the unsharp mask (both of these potential effects may play a role). The higher propensity

for cluster merges increases the average arc length, in spite of the decrease in this length

induced by the introduction of smaller clusters that meet the size threshold under a stronger

unsharp mask. The slowdown in the increase in average arc length could indicate that larger

numbers of smaller clusters are being introduced for higher unsharp mask amounts, or that

cluster growth becomes more width-wise for larger unsharp mask amounts. The total arc

length increases strongly and steadily for all increases in the unsharp mask, due to both the

introduction of new clusters and the growth of existing clusters.

Changes in the unsharp mask amount do not change the typical signed pitch angle measured

by our method, although the variance in pitch angle changes is relatively high. The measured

arm tightness does increase slightly (the absolute pitch angle decreases slightly) with a

stronger unsharp mask. The median change in typical arm tightness is relatively small

(about 0.99 and 1.34 degrees with unsharp mask amount decreases, and about 0.90 and 1.64

degrees with unsharp amount increases), but since it varies smoothly with unsharp mask

amount, the change in tightness might be a real effect. We are uncertain as to the cause,

but possibilities include: slightly looser arms (higher absolute pitch angles) at the brightest

parts of the spiral arms (which do not need a stronger unsharp mask to be picked up by

the orientation field); the possibility that “real” spiral arms are, on average, slightly looser

than noisy arcs (that are more prevalent with a stronger unsharp mask); a (slightly) elevated

risk of detecting the edge of the galaxy disk as a low-pitch-angle spiral arm (or increased
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sensitivity to legitimate ring patterns at the edge of the galaxy disk) when the unsharp mask

amount is increased; a slightly increased tendency to merge very-low-pitch-angle arcs into

a zero-pitch-angle ring when the unsharp mask amount is increased; a slight tendency for

pitch angle to be reduced when clusters are merged (but our later analysis of cluster-merge

leniency does not find this to be the case); and a possible tendency for brightness gaps to have

a sharper brightness decrease (to the point where the gap is exaggerated instead of reduced

by the unsharp mask) for arms with a higher pitch angle (e.g., arms with a high (or at least

not-extremely-low) pitch angle may have a higher chance of containing a severely-interfering

dust lane, in which case a stronger unsharp mask is more likely to fill gaps in low-pitch-

angle arcs). Winding direction is mostly unaffected, although there are some flips in both

directions for the severe unsharp mask values, since the unsharp mask can strongly affect

the prominence and inclusion of clusters (and thus the presence and strength of winding

direction votes).

At the lowest tested unsharp mask amount, the number of images where output could not be

produced (due to a lack of sufficiently-sized clusters) was much higher than normal, requiring

us to discard many more galaxies than normal (7094 out of 29250). If we remove the lowest

unsharp mask amount value from the analysis (so that the number of unavailable galaxies

is reduced to 755, which is still relatively high, but now only about 2.6% of the galaxies),

the results are almost the same, except that winding direction flips are visible in the “blue”

error bars (5% and 95% difference percentiles) for an unsharp mask amount of 15.

Next, we assess the impact of the scale of the unsharp mask (Section 3.5.2); the effects of

changes to this parameter are shown in Figure 6.4. The scale of the unsharp mask controls

the width of the Gaussian blur subtracted from the image. Consequently, smaller scales

emphasize contrast in smaller image features and larger scales emphasize contrast in larger

image features. The effect of the unsharp mask scale on the total number of arcs is unique

in that it is not monotonic; typical arc counts decrease with either an increase or decrease
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Figure 6.4: Changes in several measures computed from our output when varying the size
scale of the unsharp mask (i.e., the scale of the Gaussian blur subtracted from the image) (x
axis). The median change is given as the red line, with the red error bars giving the upper
and lower quartiles. The green error bars give the 10th and 90th percentiles of the changes
to our output, and the blue error bars give the 5th and 95th percentiles.

to the unsharp mask scale. This confirms that the unsharp mask scale is within a range

that emphasizes the typical size scales (widths) of spiral arms found in the standardized

images. Increasing the size scale of the unsharp mask increases the average arc length,

perhaps because larger-scale features are emphasized. The total arc length increases as a

function of the unsharp mask scale, but less so at the largest unsharp mask scales, perhaps

because the arc count and average arc length both decrease at unsharp mask scales smaller

than the baseline value of 25, but move in opposite directions at unsharp mask scales larger

than the baseline.

There is no substantial difference in the typical signed pitch angle, but the arm tightness

increases slightly (the absolute pitch angle decreases slightly) with larger values for the
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unsharp mask scale. The effect seen is very similar to the effect of increasing the unsharp

mask amount, so the underlying mechanism (or mechanisms) may be similar. We also note

that decreasing the unsharp mask amount and decreasing the unsharp mask scale may both

favor smaller portions of the spiral arms (due to the smaller portions’ higher contrast for the

unsharp mask amount and their smaller size for the unsharp mask scale). Additionally, both

algorithm parameters would be affected by the severity of brightness decreases between arm

segments that could plausibly be merged together; as discussed previously, this severity could

vary slightly by pitch angle, on average. These observations further support the hypothesis

that a common mechanism is present for the (slight) decrease in absolute pitch angle found

when increasing the unsharp mask amount or unsharp mask scale. The effect of the unsharp

mask scale on typical winding direction is simpler: typical winding directions are unaffected,

but some flips are noticeable at the smallest tested unsharp mask scale, likely because noise

is more prevalent at smaller scales.

Figure 6.5 displays the effect of varying the maximum allowed combined-cluster to separate-

cluster error ratio (i.e., Equation 3.19 in Section 3.7.2), which controls the stringency ap-

plied when checking cluster merges (higher values are less stringent). As the allowed ratio

increases, the average arc length increases; this is expected because clusters get larger when

more merges are allowed. Reduced merge stringency also decreases the total number of

arcs. This parameter change could also conceivably increase the number of arcs because

increased merge-check leniency could allow clusters to grow beyond the size-based output-

inclusion threshold, but since fit-based merge checks probably have a stronger tendency to

block merges of large clusters (there are more ways in which large clusters can deviate from

the logarithmic spiral model), it makes sense that the net effect of less stringent checks is to

reduce the number of arcs (since an arc merge decreases the count by one). Less stringent

checks also reduce the total arc length, although the impact of this parameter change on

total arc length is less than the effect of most other algorithm parameters. The reduction

in total length is sensible because the merged arcs can sometimes overlap slightly in their
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Figure 6.5: Changes in several measures computed from our output when varying the max-
imum allowed combined-cluster to separate-cluster error ratio (x axis). The median change
is given as the red line, with the red error bars giving the upper and lower quartiles. The
green error bars give the 10th and 90th percentiles of the changes to our output, and the
blue error bars give the 5th and 95th percentiles.

angular range. However, it is interesting that (for most galaxies) this effect is stronger than

the extra arc length gained when allowing more merges of non-contiguous clusters during

the secondary merging step (Section 3.7.2). The effects on the typical signed pitch angle and

arm tightness (absolute pitch angle) are negligible to nonexistent, suggesting that difficult

merge decisions do not, on average, change the typical pitch angle. Similarly, effects on

winding direction are rare or nonexistent.

As discussed in Section 3.7.2, this fit-based merge check is only used when both clusters

reach a minimum size. Figure 6.6 displays the effects of varying this minimum. For all of

the output measures considered, typical values do not change substantially; to the minimial

extent that values do change (examining the heights and asymmetries of the bars), the
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Figure 6.6: Changes in several measures computed from our output when varying the mini-
mum size each cluster must reach in order to trigger a fit-based merge check (x axis). The
median change is given as the red line, with the red error bars giving the upper and lower
quartiles. The green error bars give the 10th and 90th percentiles of the changes to our
output, and the blue error bars give the 5th and 95th percentiles.

effects of increasing this merge-check size threshold are similar to the effects of making the

fit-based merge checks more lenient. This is sensible because increasing the merge-check size

threshold also makes the merge checks more lenient, but in a more limited way: checks are

more important for large clusters, but this minimum is only relevant for very small clusters.

Since this minimum size was used in part to save computation time, it is good that changes to

its value do not result in any substantial changes to typical values of any of the measurements.

The other aim of this minimum was to avoid performing a merge check before the cluster

shape was known. The smallest tested minimum value (which starts merge checks earlier)

produces the most scatter, suggesting that this objective is being met. We also note that

scatter begins to increase again at the largest tested minimum value, which further supports
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Figure 6.7: Changes in several measures computed from our output when varying the min-
imum orientation similarity needed to continue clustering (x axis). The median change is
given as the red line, with the red error bars giving the upper and lower quartiles. The green
error bars give the 10th and 90th percentiles of the changes to our output, and the blue error
bars give the 5th and 95th percentiles.

the conclusion that the current parameter setting is a good one; the increased scatter may be

due to allowing clusters to grow too far before starting merge checks. In any case, however,

there appears to be little or no effect on pitch angle, tightness (absolute pitch angle), or

winding direction.

Finally, we investigate the effect of the stopping threshold applied to the pixel clustering

(recall from Section 3.7.2 that cluster similarities are determined by the maximum similarity

of inter-cluster pixel pairs, that pixel similarities are determined by the dot product of the

associated orientation vectors, and clustering continues in similarity order until the next

cluster similarity falls below the threshold value considered here). Comparing to Figure

6.3, which characterized the effect of the unsharp mask amount, we see that all trends
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are reversed, but less strong in terms of both the amount of scatter and the change in

median values. This correspondence in effect is sensible because both the clustering stopping

threshold and the unsharp mask amount control the extent to which clusters can expand

(with more expansion for a higher unsharp mask amount or a lower stopping threshold);

higher unsharp mask intensities increase many “good” cluster-to-cluster similarities, while

reducing the stopping threshold makes the pixel similarities larger relative to the stopping

threshold. Compared to changes in the unsharp mask amount, changes in the stopping

threshold may have a weaker effect due to the range of stopping threshold values tested

here, but it may also be because the stopping threshold uses more nuanced information

(the next merge depends on cluster merge history, where the best merges were tried first)

and is moderated by the fit-based merge checking. Examining the effects of the stopping

threshold on the individual measurements and keeping in mind that lower thresholds mean

more cluster growth, it is sensible that a lower stopping threshold slightly increases average

arc length (since existing clusters can grow by incorporating boundary pixels, and since

merges reduce the cluster count, with these two factors overpowering the introduction of

small clusters that newly exceed the size threshold), total arc length (as a straightforward

consequence of cluster growth, along with a greater chance for smaller clusters to reach

the minimum size threshold), and (to a slight extent) the total number of arcs (suggesting

that, on average, slightly more clusters are introduced by exceeding a size threshold than are

removed due to merging). As was seen with the unsharp mask intensity, there is no noticeable

effect on the typical signed pitch angle, but the arm tightness is increased somewhat (the

absolute pitch angle is decreased somewhat) with more cluster growth. Since this (weak)

trend is similar to the observed effect of increasing the unsharp mask amount, and due to the

previously-mentioned similarities of the stopping threshold and the unsharp mask amount,

the underlying mechanism behind the arm-tightness change is likely similar. Lastly, we find

that typical winding direction is unaffected, as usual.
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Chapter 7

Future Directions

7.1 Modifications to the Current Method

The spiral galaxy structure-extraction method described in Chapter 3 is capable of producing

useful information about any kind of spiral arm-segment structure, and has been shown to

agree well with previous measurements where such measurements are available (see Chapter

5). Due to the wide variation in spiral galaxy structure, caution is advised when considering

ideas for improving this method: even if a change is beneficial (or imagined to be beneficial)

to some galaxies, it is common for the same change to be detrimental in other cases. Each

change should thus be tested against an image set with “known” measures or classifications

of spiral galaxy structure; this will help identify situations that should be examined for

potential loss of accuracy, even if it is not desirable to fully tune results to match existing

structure measurements and classifications. We did so in the later developmental stages

of this work (where baseline accuracy was high enough to necessitate such comparisons),

primarily using a set of 29,250 images with corresponding Galaxy Zoo classifications; Chapter

5 describes this set and the comparisons made with it. Nevertheless, despite the possibility
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that a modification will be unexpectedly counterproductive, some changes to this method

could yield incremental improvements. Here, we list several possible changes that could be

explored.

Star masking (Section 3.4) has been helpful in avoiding disruptions to the ellipse fit used in

the image standardization procedure described in Section 3.3. Since SExtractor (the program

used to group pixels corresponding to the same light source [7]) does not always assign the

galaxy to exactly one pixel region, the star mask is removed after the image standardization

step in order to avoid the risk of removing part of the galaxy before spiral arm-segment

detection. However, star masking could still be useful after image standardization; when

foreground stars (or other objects) are close to the galaxy (close enough to be included

in the standardized image), they can produce spurious clusters if their brightness patterns

are picked up by the orientation field. It might be possible to use SExtractor in a more

sophisticated manner in order to more reliably determine which SExtractor objects are part of

the target galaxy and which are not. Potential ways to do so include training the SExtractor

star/galaxy classifier for the image set used (or building one’s own classifier), or tuning

the SExtractor parameters for the dataset of interest. Alternately, one could address some

problematic cases by defining heuristics that identify SExtractor regions that are almost

certainly not part of the galaxy (possible criteria include not being part of the primary or

extended regions discussed in Section 3.4, and/or having a large distance from the image

center). Once non-galaxy regions are known and a corresponding mask is produced, the

masked regions could be mapped to their locations in the standardized image (with nearest-

neighbor interpolation, rounding, weighting, or some other way of handling the lack of one-

to-one correspondence between original and standardized-image pixels), and then the mask

could be used to reduce or remove orientation vectors in the masked regions (it is probably

best to avoid applying the non-galaxy-region mask before the unsharp mask (Section 3.5.2),

in order to prevent unsharp mask artifacts). Removing these orientation vectors would

prevent creation of spurious clusters that may otherwise arise from objects other than the
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target galaxy.

SExtractor output could also be used to identify cases where the ellipse fit (used in image

standardization) may have “zoomed in” too far and cut off dim arms. This is rare, but as

mentioned in Section 5.1, it does happen occasionally. Since at least one of the SExtractor

regions (usually) corresponds to the galaxy image, the ellipse fit is suspicious if its contour

is too far inside the SExtractor region (or regions) corresponding to the galaxy. If such a

condition arises, a warning could be given, or (if confidence in the SExtractor region is high

enough) the ellipse fit could be stopped at the iteration before it shrank too far within the

SExtractor galaxy region (or regions). However, the success of such changes would depend

on the reliability of SExtractor output (or information computed from it).

If one assumes that input will always be available as FITS images, one could apply separate

brightness transformations (Section 3.2) for the image standardization step and the unsharp

mask step, since the ideal brightness-transformation parameters may not be the same for

both purposes. Specifically, the brightness transformation used for the image standardization

step would not need to preserve arm-disk contrast (it would only need to preserve the contrast

between the disk and the sky). By more aggressively increasing the brightness of inter-arm

regions, unusually dim arms would also be brightened, reducing the risk of cutting off low-

brightness arms. After using one brightness transformation to compute the ellipse parameters

for image standardization, the brightness transformation could be changed before the actual

image standardization (de-projection) operations.

In Section 3.6 we described a method for reducing interference from bars. Galaxy bulges

can also produce unwanted orientation vectors, and can thus interfere with pixel clustering.

Many galaxies do not have a bulge prominent enough for this to occur, and when there is

a prominent bulge, its cluster is often removed by the center-cluster deletion. However, in

the remaining cases, small low-pitch-angle arcs can be present near the galaxy bulge, or in

especially severe cases, an arm cluster can be merged with the bulge cluster, causing the arm
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cluster to be removed along with the (center-containing) bulge cluster it merged with. In

response, a bulge model (e.g., a centered ellipse that accounts for the fact that the spherical

bulge can appear ellipsoidal after the image standardization step) could be developed and

used in the same way as the bar model (i.e., the bulge model would replace a logarithmic

spiral arc if the former is a better fit to the cluster). Alternately, the bulge region could be

removed from the image or the orientation field, if the bulge region is known. As a crude way

to find the bulge region, the ellipse-fitting procedure (and its stopping criterion) from the

image standardization step (Section 3.3) could be continued past the point where the galaxy

disk outline is detected; the disk-fit stopping condition usually applies again when the ellipse

fits the bulge (when the condition is never triggered, the bulge is usually far too small to

be a concern for our clustering). The bulge region could then be traced through the image

standardization (de-projection) operations, and orientation vectors corresponding to this

region could be reduced or removed. An option to approximately fit the bulge already exists

in our code,1 and could be applied for this purpose (at the expense of increased computation

time, especially for high-resolution input images). Alternately, the bulge (and possibly also

the disk and bar) could be fitted using bulge-disk decomposition software (see Section 2.2

for some possibilities), and then subtracted from the image.

Fit-based merge checking (Section 3.7.2) usually does well in ensuring that clusters do not

encompass more than one spiral arm segment. However, since the merge criterion (Equation

3.19) is relative to the individual fit errors of the clusters involved in the proposed merge, it

is (at least in theory) possible for “runaway” merges to occur, where cluster fit error becomes

bad enough for almost any merge to be acceptable, and where such merges make even worse

merges acceptable, so that most or all contiguous arm segments are contained in the same

cluster, even if this cluster contains multiple arms. After reweighting the fit to the combined

cluster (during the merge check only) so that both clusters in the proposed merge have equal

1This fit is not intended to be precise enough to have a physical interpretation; if such information is
desired, it is still necessary to use a bulge-disk decomposition method.
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weight (see Section 3.7.2), we have not encountered this scenario, in large part because fit

error increases are usually severe when attempting to combine two distinct spiral arms into

one cluster (especially due to the use of the squared error, as discussed in Section 3.7.1),

with the weight balancing ensuring that clusters do not gradually accumulate poorly fitting

regions. Additionally, since Equation 3.19 uses the larger of the two individual-cluster error

increases, the runaway merge conditions (bad fit error before merging) must apply to both

clusters separately. However, if runaway merges occur after future changes, or if it becomes

desirable to apply additional cluster-quality conditions, one may wish to impose a maximum

fit error (per unit arc length or per pixel) by blocking merges that would exceed this limit.

The implementation of this condition would be simple, but one would need to be cautious

of its consequences on the clustering, especially since an absolute threshold would increase

reliance on the logarithmic spiral model.

If two low-pitch-angle arcs could conceivably be merged into an annular cluster (that may

or may not be a true ring), either a two-arm interpretation or a ring interpretation could

be valid (including in terms of the fit error). Since the two-armed interpretation occurs first

(clusters develop by merging), the two arcs would be merged into an annular cluster if the

resulting fit is acceptable. As described in Section 3.7.2, these clusters are given a pitch angle

of zero because arc endpoints are no longer well-defined. Figure 5.3 includes an example of

this scenario. Although the currently-allowed cluster merges are almost always informative

(a single spiral arm segment is traceable for a longer extent, and the arm segments are more

coherent), one may decide that, in the special case of merges into annular clusters, there is

a substantial risk of losing information (for example, the cluster does not have a winding

direction because the pitch angle is zero). In this case, it is reasonable to consider penalizing

(but not completely preventing) merges into annular clusters (for example, by using a stricter

merge-check threshold for this case). Such a penalty could reduce merges of low-pitch angle

arcs (the fit error would increase substantially where the two arms stick out at their ends),

while still allowing rings to pass the merge criterion. However, the existing merge criterion
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may already be sufficient in almost all cases, so one would need to determine if there are

enough problematic cases to warrant an attempted change, and make sure that such a change

does not inadvertently interfere with cluster quality in other ways.

In some galaxies, there may be more than one way to merge clusters into a plausible structure

description (for example, when arms have a fork, the “handle” can often be continued into

either of the prongs). In such cases, it may be useful to detect ambiguous merges, notify the

user that such a merge occurred, and possibly also provide other plausible merge sequences.

This would be possible to some extent by maintaining a merge history for each cluster, and

considering similarities and merges with these earlier clusters in addition to the current ones.

Doing so would require additional computation time, which could be controlled by limiting

the length of the merge history.

For many (perhaps all) galaxies, it would be useful to develop a measure of cluster quality.

Such a measure could be used as a weighting scheme more sophisticated than arc length

alone, and could help flag galaxies where manual review could be useful. Fit error would

also be a useful signal here, but since small noise-induced clusters (or other spurious clusters)

can sometimes have good fits, fit error does not always distinguish between “real” arms and

spurious clusters, especially for small arcs (where this distinction may be needed the most).

For longer arcs, somewhat-higher fit errors may be due to variations in arm width or due

to small deviations from the logarithmic spiral model (cluster merges allow some deviation),

rather than uncertainties about the arm or cluster itself.2 In addition to fit error and arc

length, other useful signals could include cluster brightness, arm-interarm contrast, and

the degree of pixel-level brightness variation relative to the total brightness range (perhaps

within the input image). This cluster-quality measure would need to be developed with

caution because many attributes are not as discriminative as they may first appear (for

example, noise-induced clusters are usually dimmer, but low-surface-brightness arms can

2 Cluster merging is much more resistant to this issue, since we only need to compare relative errors (of
merged and unmerged clusters), rather than producing an absolute measure (of cluster confidence).
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also be dim, and arm segments containing knots of bright stars may not necessarily be more

reliable than arm segments without these bright stars). It may be helpful to use supervised

machine learning techniques to find such a confidence measure; for example, one could use

the attributes of the arc-level CSV (Section 4.2) to try to predict whether an arc agrees with

the “correct” winding direction (as determined by our arc-length weighted vote, by Galaxy

Zoo, or by some other source).

Our spiral arm structure information is given in terms of a standardized image; if desired,

the ellipse-fit information we provide (Section 4.3) can be used to translate this information

to the view given in the original image.3 However, in some special cases, it may be useful

to perform our structure-extraction procedure directly on the given galaxy image, which

could have a resolution substantially different than the 256× 256 size used throughout this

work. This will likely require adjustment of algorithm parameters that depend on the image

resolution. In particular, it might be useful to increase the number of orientation field

levels (Section 3.5) by one for each doubling in image resolution (so that the resolution of

the coarsest orientation field level is approximately consistent), and the maximum cluster

distance allowed in secondary merging (Section 3.7.2) should probably increase linearly with

the (linear) image dimensions. It may also be useful to adjust the minimum cluster size in

proportion to the number of pixels in the image. Additionally, since the spiral arm widths

(in units of pixels) may no longer be within a constant range if the image standardization

step is bypassed completely, it would be necessary to adjust the unsharp mask scale on a

per-image basis. This could be done automatically, perhaps by performing the ellipse fit

that would have been used for image standardization, but using this ellipse fit to adjust

the unsharp mask scale rather than to de-project the image. The threshold on the fit error

ratio used in fit-based merge checks (Equation 3.19) would probably also require adjustment,

since squared error would increase quadratically with linear scaling in the image dimensions,

making merge checks stricter (for a fixed error ratio) when the image size is increased.

3Providing this capability in our own code is also a possibility for future work.
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Alternately, this arc-merge criterion (Equation 3.19) could be modified so that the square

root of the error ratio is taken before applying the threshold, although some image-size-

based adjustment may still be necessary. If it is worthwhile to perform spiral arm structure

extraction directly on input images (even though our output information can be re-projected

to the input image), the exact changes in these algorithm parameters could be determined.

However, one should note that it is not necessary to do so if one only wishes to use de-

projection (disk-fit) parameters from another method (e.g., a bulge-disk decomposition), as

one could simply compute a bounding ellipse using this external method and then apply the

rest of our image standardization procedure.

Our output assigns each pixel to exactly one arm segment (or the background). However,

many pixels may, to varying extents, be associated with multiple galaxy components (and

possibly also the background sky). Consequently, it may be useful to provide “soft” cluster

assignments instead of associating each pixel with exactly one arm segment (or the back-

ground). The most natural way to do so would likely be with a brightness fitting method

(discussed in Section 7.3). Each pixel brightness value would be modeled as the sum of

brightness values from all components, and so pixel membership could be naturally ex-

pressed as the proportion of brightness contributed by each component. Alternately and

more generally, any model that describes features (brightness, color, contrast, or other mea-

sures) of galaxy components could be used with an expectation maximization algorithm [17]

that iteratively alternates between estimating galaxy component parameters and degree of

galaxy component membership. Our output could provide a highly informative initialization

for such an algorithm.

Lastly, although not an integral part of our structure-extraction procedure, somewhat application-

dependent, and at least partially under the discretion of those using our code, it would be

interesting to use our output to develop additional measures of galaxy structure (e.g., lop-

sidedness), or create more sophisticated versions of existing measures. For information and
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further discussion related to this goal, see Chapter 4.

7.2 Spiral Arm Segment Extraction via Scale-Space

Ridge Detection

As discussed in Section 3.5, transforming pixel brightness values into orientation field vec-

tors (based on the values of nearby pixels and as originally described by Au [2]) provides

substantially more information about whether or how a pixel belongs to a spiral arm. Using

this information, we were able to devise a clustering scheme that determines which pixels

belong to the same spiral arm segment, and associate each cluster with a logarithmic spi-

ral arc. The orientation field is thus quite useful, but a more general observation is that,

when determining a galaxy’s spiral arm “skeleton,” local patterns of pixel brightness are

often more informative than the pixel brightness values themselves. It is thus reasonable to

consider other ways to look for these brightness patterns.

We have started building a new spiral arm structure-extraction system that also produces

a list of spiral arcs and associated pixel clusters, but determines this information through

different means, starting with a different way of finding brightness patterns characteristic

of spiral arms. This new method handles arm-size variation more naturally, both in terms

of the overall resolution of the galaxy and in terms of within-galaxy arm-width (and arm-

length) variation. It also does not require pixel-level clustering; instead, the new approach to

analyzing pixel brightness patterns naturally produces candidate pixel regions at different size

(arm-width) scales. The candidate regions are partially hierarchical; some candidate regions

contain or overlap substantially with one or more other candidate regions. Consequently,

the new method still performs cluster growth and merging, but these operations are only

needed when making decisions about cluster-to-arm-segment correspondence, not out of
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necessity in growing the clusters themselves. In addition, unused candidate regions can

provide information about ambiguous region layouts (arm-segment assignments), such as

decisions about which arm-fork prong to join with the “handle.” Furthermore, since the set

of possible regions is known at the start, our decisions can be more forward-looking while

still retaining the tractability of a greedy algorithm.

In this method we begin by noting that spiral arms have a ridge pattern in their brightness:

local maxima occur across the arms, and the brightness is somewhat consistent (and higher

than surrounding inter-arm regions) along the arm. Lindeberg [37] provides a means to

calculate pixel-level ridge strength as a function of the ridge scale. In our case, the ridge

scale corresponds to the approximate width of a spiral arm, so by using multiple scales, we

can detect arms of different width within each image. At the finest scale feasible under the

resolution of the given image I (after a reasonable amount of up-scaling, if desired), the ridge

strength of each pixel is calculated as

R = (∂xxI − ∂yyI)2 + 4(∂xyI)2 , (7.1)

where the partial derivatives are computed via finite differences of adjacent pixels. This

measure is one of multiple ridge-strength options discussed in Lindeberg [37]; we use this one

because (as discussed in Lindeberg [37]) it has the lowest response to Gaussian “blobs” (i.e.,

points that are local maxima in both directions), which correspond to unwanted non-arm

features such as stars and the galaxy core. This ridge-strength measure responds to both

positive and negative ridges (dips), but the sign can be calculated as well; see Lindeberg

[37] for details. To detect ridges at scales (widths) larger than about one pixel, a Gaussian

convolution (blur) can be applied to the image before computing the ridge strength; by doing

this for different Gaussian scales (widths), ridge strength can be obtained as a function of

both image position and ridge scale [37]. We can then perform this ridge detection on an

image where the brightness has been transformed using the same methods as Section 3.2,
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and where the image has been de-projected (but not necessarily resized to a standard size)

as described in Section 3.3.

Lindeberg [37] then finds ridge points by incorporating a normalizing factor that varies as a

function of scale, and then finding local maxima in the space of image positions and scales. It

is here that our method would likely diverge. We attempted to use this scale-normalized ridge

strength measure but found that it was not sufficiently reliable for our purposes, perhaps

due to correlations between scale and brightness found in galaxy images, interference due to

ridges occurring within ridges (e.g., an arm may have a narrow band of bright stars), and

interference from the galaxy core and from stars (within the target galaxy or within our

own).4 It may be possible to tune the scale normalization for our purposes, but we also want

to determine the entire region corresponding to each spiral arm segment, so we envision a

different route — especially since, in our case, we have another option for choosing (and

combining) scales, using the fact that image regions should approximately correspond to

logarithmic spiral arcs.

Our procedure uses the ridge-strength measure (Equation 7.1) to extract candidate arm

regions. To do so, we first choose a set of scale values, and then compute ridge strength (as

a function of image position) for each of these scale values. The range of these scale values

can vary according to the image size, so that all possible arm widths can be considered. The

spacing between scale values determines how densely one looks through the range of possible

arm widths. In situations where a scale value is close to the widths of one or more arms in the

image, we have found that ridge-strength values will be coherently high within these spiral

arms. In particular and most importantly, in our experiments so far we have found that for

each spiral arm with an approximately-matching scale there will be a range of ridge-strength

contour values that delineate the approximate boundary of the arm. Unfortunately, like arm

4 Even though these blob-like objects are supposed to be ignored by the ridge strength measure we chose,
they are often not perfectly isotropic, and are often very prominent, even after brightness transformation.
Consequently, they can still overpower spiral arms, especially when combining pixel-level information from
different scales.
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width, these contour values are not known in advance, so (also like arm width) we choose a

set of contour values. To robustly choose these contour values despite potentially nonlinear,

galaxy-dependent, and scale-dependent fluctuations in the ridge strengths, we choose the

contours via ridge-strength percentiles. For each scale, we then threshold the ridge-strength

values at each chosen percentile and record all connected components found at each percentile

threshold. We use the absolute value of the ridge strength because we have found that the

sign is not perfectly reliable. Using the absolute value will retain “negative ridges,” but we

can get rid of these negative ridges later. By recording the percentile-thresholded connected

components at each scale, we produce an “inventory” of pixel regions. On a small set of

images tried so far, we have found that a reasonable fraction of regions in this inventory

correspond to spiral arm segments. We have also found that arm segments are usually

represented in this inventory, but tests on much larger image sets will be needed in order to

confirm the generality of this finding. If needed, future work could also pursue improvements

to inventory coverage by investigating inventory-generation procedures more sophisticated

than thresholding.

With a sufficient range and granularity of scale values, spiral arms of all widths will be

represented in this inventory. We have also found that with a sufficient range and granularity

of the percentile values, we will capture various levels of the spiral arm hierarchy (e.g., a

contiguous group of spiral arms contains individual spiral arms, which may contain different

parts of a fork, with each arm segment in the fork potentially consisting of “mini-segments”

with slight brightness dips in between, which themselves may have mini-segments or a smaller

internal contour of stronger brightness). We do not know in advance which scales yield spiral

arms (especially since we want our methods to be robust to scale differences), nor do we

know in advance which percentile values correspond to which levels in the spiral-structure

hierarchy, and the needed scale and percentile values often vary by galaxy. However, if we

choose the right pixel regions from this inventory, then it is possible to accommodate all

potential spiral arm widths (and lengths) in a spiral arm-segment structure description (to
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the extent that these widths and lengths are included in the available inventory). Below, we

describe our current method for doing so, but this method should be considered a basis for

further development and experimentation, not a final procedure.

After generating the inventory, we can filter it to remove regions that obviously do not

correspond to spiral arms, as determined by several criteria. This reduces interference from

unwanted regions, and reduces the amount of computation needed later (e.g., for least-

squares fits). In our experiments so far we use three filtering criteria. First, the regions

cannot cover a very large or very small proportion of the image; regions that are too small

do not have meaningful structure, and regions that are too large cover galaxy-sized features

(e.g., the entire galaxy disk, or entire set of arms) rather than arm-sized features. These

minimum and maximum image proportions can be made reliable if an image standardization

step is applied (potentially the same one as Section 3.3, except that image resizing is not

necessary) so that galaxies occupy roughly consistent proportions of the image. One may

also consider making the minimum size an absolute size (in pixels) rather than a proportion.

Second, a sufficient proportion of region pixels must have a positive ridge strength (a nonzero

proportion cutoff is likely best because the ridge-strength sign can be noisy). Third, when

translating the region into polar coordinates, elliptical contours of the covariance matrix

should be sufficiently elongated (this filters out bulge and star regions, as well as many

regions that are a gross mismatch for a logarithmic spiral).

After this filtering, a logarithmic spiral arc can be fit to each region, in the manner described

in Section 3.7.1. We then sort the region inventory by fit quality (best first); we currently

use the root mean squared error for this purpose. This gives priority to regions with the

best fit. We have also found that the sort operation favors small clusters (to a lesser extent).

Next, we can initialize an image that assigns pixels to arm segments, with each pixel initially

assigned to the background (i.e., no arm segment). The regions from our inventory can then

be considered in sorted order. For each region, we examine all corresponding pixels in the
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assignment image; if all are background, then we assign all of the corresponding pixels to a

new arm segment. So far, we have found that sorting gives us the likely-best arm-segment

region occupying that space, so the main remaining concerns are avoiding placements of

bad regions, and avoiding interference with legitimate regions that could appear later in

the ordering and overlap slightly with previously placed regions. The earlier filtering step

removes many bad regions. The remaining bad regions appear later in the region ordering,

at which point it is very likely that at least some of the bad region’s pixels have already

been assigned to an existing arm segment (in which case we are more selective about using

the region). Interference with legitimate clusters (appearing later in the ordering) is unlikely

because the sorting favors small clusters over large ones (under similar correspondence to

a logarithmic spiral pattern), and small clusters represent inner contours of arms. In our

experiments so far we have found that overlaps occur at arm “fringes” that are not included

in the inner contours, and so the inner contours are unlikely to overlap with each other.

However, one could explore adding requirements that a region would need to satisfy in order

to create a new arm segment in the assignment image.

If the next region from our sorted inventory overlaps exactly one existing arm segment,

the overlap could be because (1) the new region represents a larger contour around the

existing arm segment, (2) the new region does not correspond to a spiral arm, or (3) the

overlap indicates spatial proximity of two spiral arms at their outer contour levels. In our

development so far, we do not make use of the third possibility (it is treated in the same

way as the second scenario). Experiments to date have indicated that handling this third

scenario is a lower priority. At sufficient granularity of the scale and ridge-strength percentile

values, regions are produced at different contours of the same spiral arm, and smaller regions

(i.e. inner contours, where between-arm overlap is much less likely) tend to be used first due

to the sorting criterion, so region overlaps appear unlikely to cause arm segment omissions.

However, further developments could consider adding an arm segment corresponding to the

non-overlapping part of the new region, under conditions that would need to be determined
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(if the conditions are not met, the region would be discarded, or added to supplemental

information about the existing arm segment). We then must decide if situation (1) has

occurred (in which case we expand the existing arm segment to include the new region) or

if situation (2) has occurred (in which case we currently discard the new region, but further

development could use this region to calculate supplemental information about the existing

arm segment). We currently make this decision based on degree of overlap and change in

fit quality, but the optimal details of these decision criteria (and possibly other criteria yet

to be considered) still need to be investigated. Our code allows different variations of these

criteria to be defined and used interchangeably (for performance comparison).

If the next region from our sorted inventory overlaps two or more existing arm segments, we

must decide if all of these arm segments plausibly belong to the same spiral arm. If they do,

we combine all existing arm segments overlapping the new region (along with the new region

itself) into a new spiral arm segment. We currently make these merge decisions based on the

relative fit quality of the original and combined clusters; the exact nature of this decision

(or additions or alternatives) still needs to be explored. Again, our code allows strategies

to be defined and used interchangeably, facilitating experiments. Regardless of the details

of this merge-decision strategy, however, we note that by having larger clusters that overlap

multiple smaller clusters (we have found that separate arm segments plausibly belonging

to the same spiral arm often appear as a unified arm at larger scales and/or a different

ridge-strength contour), we have a powerful way of finding potential merges, including long-

distance merges, since the larger cluster fills in gaps between the smaller clusters it overlaps.

By filling these gaps, we do not need to interpolate across large cluster gaps, which was the

main reason we needed to avoid long-distance cluster merges in Chapter 3.

Instead of only deciding whether to combine all arm segments overlapping a later region

from the inventory, other possibilities could be considered. For example, a “cluster buster”

strategy could divide the new region according to the nearest (or best-fitting) existing region
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for each pixel, decide which new pixels to keep for each existing region, and then decide

on a pairwise basis which existing regions should be merged. In any case, the arm-segment

assignment process terminates when the inventory has been exhausted.

Although many details of this plan still need to be determined, we believe that this method

is a promising new direction in spiral arm segment extraction. It not only eliminates the

assumption that arms within a galaxy have similar widths,5 but also uses scale variation

to its advantage when building and merging clusters. For example, by establishing smaller,

high-confidence arm segments first, we can check that larger regions are reasonable (despite

a potentially higher fit error that comes with their size and length) by making sure that they

agree with previously-established, higher-confidence smaller clusters. Additionally, ridge de-

tections at larger scales can provide the information needed to reliably merge smaller clusters

across larger gaps. Another benefit to this method is that it concentrates its computation

on logarithmic spiral correspondence rather than also on pixel-level cluster growth. Further-

more, precision/time tradeoffs can be controlled by adjusting the granularity of the scale

and percentile values, and one can also adjust the computation-time requirement according

to the range of arm scales one needs (or wants) to consider. This method also searches for

the best potential arm segment regions in advance, before committing to any assignments

of pixels to arm segments.6 Thus, even though this approach requires further development

in order to be usable, and even though this method is not “tried and true” like the one in

Chapter 3 (incurring a risk of unexpected problems arising during further development), it

is likely worth further exploration.

5The orientation field uses multiscale information, but the new method described in this section con-
siders more scales, and incorporates logarithmic spiral fit information (rather than pixel-level variance and
orientation strength) when combining different scales.

6This is currently done using a greedy algorithm, but other types of algorithms could also be explored.

149



7.3 Brightness Profile Fitting

The list of arm segments (and pixel clusters) produced by our method enables a wealth of

information and insights about spiral galaxy structure. However, it would be even better to

also obtain automatic fits to the brightness profiles of spiral galaxies, in the same way as

is available for the (simpler and less varied) structure of galaxy bulges and disks. Detailed

modeling of spiral galaxy brightness is already possible via GALFIT [50, 51], but choosing

the appropriate components (along with good initial parameters for these components) is

currently an arduous manual task for spiral galaxies. For some science goals, human insight

and judgment may be an integral part of modeling and fitting such galaxies, but in other

cases, it may be paramount to have impartial and/or large-scale spiral galaxy brightness-

pattern information.

Our list-of-arcs output (and the corresponding pixel clusters) could be extremely helpful in

facilitating automated fitting of spiral galaxy brightness patterns. Using our output, one

could address three main challenges facing automated GALFIT model fitting: interactions

between the model parameters, the need to choose model components, and the need to

provide an initial guess for the parameters of each component. Interactions between model

parameters are problematic where inaccuracies or changes in some parameters disrupt fits

of other parameters. Our output could allow increased independence between parameters of

different model components. Since the approximate backbone of the spiral arms is known,

the arm models would start close enough to the image arms to avoid interfering with fits

to other arms. It would also be possible to reduce the influence of the spiral arms on

elliptical components such as the galaxy disk; one could fit arm brightness models to the

corresponding pixel clusters and subtract this brightness before fitting the disk, or even just

down-weight arm-cluster regions during the disk fit. Similarly, our list-of-arcs output could

greatly facilitate selection of the model components because the set of arms would be known

to a substantial extent. GALFIT also requires good guesses for component parameters. Our
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output directly provides structural parameters for the spiral arms (these parameters may

need to be transformed to suit GALFIT’s model conventions), and the corresponding pixel

regions can facilitate fitting of the arm segment’s brightness parameters.

A system producing GALFIT fits (or initial conditions) from our output could begin by

fitting the elliptical (axisymmetric) components, such as the bulge and disk. Elliptical-

component fitting capabilities are already established; for example, GALFIT itself could

likely be used to automatically fit these components. The bar could likely also be handled

in this manner; one would probably be able to determine bar presence by attempting to

fit a bar (using a centered elliptical component) and then applying classic model-selection

criteria (e.g., the Akaike information criterion). Next, the spiral arms would be added. One

could optionally begin fitting the arms by looking for substantial symmetric arm structure

in our output; if it exists, the subset of symmetric arms could be fit together, and either used

as is or temporarily set aside and compared with the more general individual-arm model.7

After (possibly) fitting the symmetric arms, the remaining arms from our output (or all of

them, if comparing with the symmetric model instead of directly accepting it) would then be

introduced, likely one by one and ordered by brightness (using input FITS image brightness

values within the pixel cluster from our output) or by the fit quality reported in our output.

Since the approximate position and shape of the arm would already be known, along with

the pixels most likely to belong to the arm, the fit to the spiral arms’ brightness model

(including fits potentially made using GALFIT itself) may be greatly facilitated. After

fitting each spiral arm (and perhaps refitting previous components in order to make slight

updates to their fits) the arm could be accepted if it has sufficient brightness-fit quality

(within the arm-cluster region), adds at least a minimum amount of brightness to the overall

model, satisfies a model-selection criterion (like the Akaike information criterion), or meets

some other test. After fitting and testing all arms in our list-of-arcs output, the resulting

7 It is not necessary to explicitly fit symmetric arms, and the symmetric model is not always appropriate,
but it may be informative to look for symmetry and test a symmetric fit.
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galaxy brightness model could be used as is, or given to GALFIT as initial conditions.

Alternate means of using our output are, of course, possible. For example, our output likely

provides the information needed for a good initialization of an expectation-maximization

algorithm [17], which would iteratively alternate between determining the extent to which

each pixel is explained by each galaxy component (disk, bulge, bar, arm, etc.), and using

the result to perform a weighted fit of each component. Bayesian methods for galaxy fitting

(e.g., [52]) may also be promising, either as an intermediate step between our output and

GALFIT, or as an alternative to GALFIT.

When building a system for producing GALFIT models (or initial conditions) from our out-

put, some suggestions and insights about manual fitting would likely also apply to automated

fitting. A list of such suggestions and insights can be found in the GALFIT User’s Manual.8

These suggestions include: starting with a simple model and gradually adding more compo-

nents, avoiding most hard constraints on model parameters, and saving computation time

by performing an initial fit on a reduced-resolution image.

Once automatically-fitted spiral galaxy brightness models are available, an important ap-

plication would be to reconcile these observations with theories of spiral galaxy evolution.

It would be interesting to fit models that can both explain image brightness and incorpo-

rate theories about spiral galaxy formation and evolution. Dynamical grammars [45] likely

have the power to do so; these grammars can (among other things) include parameters for

the involved components, and can model discrete and continuous changes involving these

components and their parameters. As mentioned in Section 2.4, automatic fits have been

demonstrated on a few galaxies for a symmetric two-arm galaxy model derived from dynami-

cal grammar rules [70]. It could be very interesting to develop dynamical grammar inference

methods that can accommodate general spiral galaxy structure, and that can perform a

8This document is available at http://users.obs.carnegiescience.edu/peng/work/galfit/README.
pdf
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fit using the grammar rules themselves (producing a reaction path or set of reaction paths

leading to the observed galaxy image). Such a procedure could benefit from the informa-

tion given by an automatic fit to GALFIT (or similar) models of spiral galaxy structure

and brightness, and would also benefit (directly or indirectly) from our existing list-of-arcs

output.

In all, the spiral arm structure description produced by our method already expands the

information available about spiral galaxy structure, especially quantitatively and for large

image sets. The information newly available from our method also facilitates important fu-

ture developments in spiral galaxy structure extraction. We hope our method helps advance

astronomical knowledge by enabling large-scale sky surveys to provide the quantitative data

needed to address scientific questions about spiral galaxy structure.
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