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Abstract 

Structures of evolving populations are traditionally derived from traits of its 

members. An alternative approach uses network metrics to define groups that 

evolve jointly. This supposes that selection acts not only on who members are (i.e., 

traits) but also on to whom they are connected (i.e., interdependent relationships). 

This paper presents a method to meaningfully quantify differences in evolutionary 

forces over multiple levels of population taxonomies and tests almost 1,000 

multilevel partitions of 8 empirical networked populations evolving over time. It 

shows that multilevel network metrics as selection criteria identifies stronger 

evolutionary natural selection than trait based population taxonomies.  

 

Keywords: network evolution, network dynamics, natural selection, network 

partition, population taxonomy. 
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Introduction 

“Strictly speaking, neither genes, nor cells, nor organisms, nor ideas evolve. Only populations can 

evolve” (Nowak, 2006, p. 14). The concept of a population implicitly implies a criterion to separate the 

whole into exclusive and exhaustive parts. In evolutionary theory, these parts are often referred to as 

species or ‘types’. Given the difference in growth rate among different types (i.e., the types’ fitness) some 

increase and others decrease in share, changing the population constitution in relative terms. As a result, 

the population evolves over time.  

Biologists and other taxonomists have long used traits, characteristics, or properties of individuals 

to define types. For example, Darwin famously used beak length to classify finches. In biology, fields such 

as phylogenetics, cladistics, and systematics have taken different and sometimes contradictory 

approaches to the question of what constitutes those shared traits that define a type, including 

morphological, physiological, molecular, behavioral, ecological, and geographic characteristics. Much 

more in question are meaningful population definitions in the social sciences. For example, some scholars 

have suggested that it is important to differentiate among different organizational forms (Hannan and 

Freeman, 1977; Aldrich and Ruef, 2006), others to generate a taxonomy to classify human routines 

(Nelson and Winter, 1985), and still others to classify social dynamics according to cultural norms and 

institutionalized habits (Boyd and Richerson, 2005). Unlike the beak length of finches, however, the traits 

of social populations—organizational forms, routines, cultures, etc.—are often not immediately 

quantifiable. Furthermore, there has been neither agreement norm systematic investigation about which 

traits should be considered. Indeed, many “official” taxonomies of social populations are rather the result 

of a political compromise in statistical committees than the result of a substantive discussion. For 

example, the United Nations Statistical Commission reports working on the basis of 870 different national 

classifications from 154 countries (UNSD, 2014). As a result, the evolving population of the global economy 

is classified into different co-evolving types not necessarily because of any substantive argument, but 

rather because of a compromise among different classification systems.  

It is important to note that the interpretation of evolutionary dynamics of a population heavily 

depends on the choice of traits for defining types, and more generally, on how to partition a population 

into distinctive parts. To illustrate, consider the evolution of the global export economy, where countries 

are classified into three types—the United States, BRIC (Brazil, Russia, India, and China), and the rest of 

the words (Figure 1).  The share of the BRIC countries has grown faster than the other two types, meaning 

that the BRIC type is fitter than the others (BRIC has tripled, while the other two have grown by a factor 

of 1.5).  This has evolved the constitution of the global export economy. Further, it suggests the 

outstanding economic growth of the BRIC type.  

What if the countries were classified in a different way? An easy answer is that the constitution 

would have changed differently and suggested a different interpretation, although the overall change of 

the global total remained the same. In short, the classification criteria that defines the types of any social 

population also defines the kinds of evolutionary dynamics that can be detected and interpreted. As such, 

the definition of types has traditionally been subject to “context, intellectual goal and subjective bias 

about what is ultimately meaningful” (Frank, 2012a, p. 230). Then, the question becomes: What 

classification criterion should be adopted, that is, how should a social population should be grouped in 

order to detect and analyze the evolutionary dynamics in meaningful ways? 
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Figure 1: Schematization of evolutionary selection among three types of the global export economy (a) 

historical data for U.S., BRIC (Brazil, Russia, India, and China), and Rest of the world (of a total of 118 countries); (b) 

schematization among three corresponding illustrative types (for more on the data, see Supporting Information). 

 

Adding a new perspective to this longstanding debate, Monge, Heiss, and Margolin (2008) have 

suggested that it would be beneficial to switch focus from traits of types to their network properties as 

the basis for defining evolving populations: “Traditionally, evolutionary theorists and researchers have 

examined organizational populations that comprise organizational communities by focusing on their 

properties rather than on the networks that link them. However, a full understanding of the evolution of 

organizational communities requires insight into both organizations and their networks.” (p. 449). Studies 

have started to explore the evolutionary role of network structures in biology (e.g. Kossinets and Watts, 

2006; Palla, Barabási, and Vicsek, 2007; Cantor et al., 2015) and in social evolution (e.g. Hausmann et al. 

2011; Lee and Monge, 2011).This implies that evolutionary selection does not only favor or disfavor 

certain population types because of who they are, but also because of who they are with. In terms of 

Darwin’s finches, some finches, despite having the same beak length as others, could outbreed because 

of the relationships in their network. Similarly, could it be that some groups of countries achieve higher 

fitness in the context of global economy, not just because of their traits like the number of inhabitants or 

income level, but because of how they connect with others? This article asks if there are differences in 

the strength of evolutionary forces between when a population is classified according to some common 

trait and according to network metrics. 

Research Question 

Increasingly, longitudinal network data have become more available, which has led to different 

research venues related to dynamics in network analysis (Stokman and Doreian, 1997; 2001; Snijders, 

2001). Much attention has been paid to modelling the formation and/or resolution of network ties over 

time, such as in stochastic actor‐oriented models (Snijders, 1996; Snijders et al. 2010), relational event 

frameworks (Butts, 2008) or economic incentives mechanisms (Jackson and Watts, 2002; Jackson 2010). 

A major goal of these approaches is to estimate the likelihood of network ties among nodes, p(xij = 1), 

given either the endogenous or exogenous characteristics of the nodes, or both, and thereby, to identify 

significant characteristics that contribute to tie formation/resolution.  
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This study also works with longitudinal networks, but does not ask about tie formation. We explore 

the structure of networks to create groups of nodes that are defined by network links and then use these 

groups to define types. We then apply these networked types to the analysis of evolutionary dynamics in 

terms of changes in population fitness. We compare the network-based classification (i.e., to whom they 

are connected) with the traditional trait-based classification (i.e., who they are) and contrast differences 

in the involved evolutionary forces of change. In short, we do not ask how the network ties evolve, but—

following the traditional literature of evolutionary dynamics—we ask about the fitness of the population 

and how different types contribute to it (given a certain network structure or node trait 

Ever since the first versions of a “mathematical theory of natural and artificial selection” (Haldane 

1924; 1934), the formal evolutionary analysis in biology, ecology, anthropology, economics and other 

social sciences has defined fitness in terms of the growth factor of the population. Biologists often refer 

to it as “the number of offsprings” or the “rate of reproduction”, while game theorists refer to it as a 

“payoff”, and economists as a “return on investment” (e.g., Nowak, 2006, pp. 14 & 55). We follow this 

“growth factor” interpretation of fitness and use �̅� to denote the fitness of the entire population. It is 

defined as the number of offspring at the time 𝑡 + 1 divided by the number of ancestors at time 𝑡, �̅� =

[
𝑢𝑛𝑖𝑡𝑠𝑡+1

𝑢𝑛𝑖𝑡𝑠𝑡 ]. For example, suppose that a population with 8 units at time t grows in size and comes to have 

18 offspring units at time t + 1 (Figure 2). Then, the overall fitness �̅� is equal to 2.25 (= 18/8).  

What drives the evolution of the population constitution are differences in type fitness. Types with 

superior relative fitness gain population share, and will dominate the population in the long run, while 

types with inferior fitness will be selected against and decline over time. The fitness of each type is 

denoted by 𝑤. For example, the type with the trait ‘white’ in Figure 2a has a type fitness of 3 (growing 

from a total value of 4 to 12), while the shaded type has a fitness of 1.5. selection favored white and as a 

result the new population is two thirds white. That is, the group of white units multiplies by a growth 

factor of 3 on average, while the group of shaded units multiplies by an average fitness of 1.5.  A type with 

a fitness of 𝑤 = 0 would die out and go extinct. 

Based on this common logic, the different versions of Figure 2 visualize the basic idea behind this 

article. All four images show the same population, but the population is classified in four different ways. 

The Figure visualizes that different ways of classifying populations also changes the respective type fitness 

𝑤. This is what leads to different strengths in the underlying evolutionary selection pressures. For 

example, the grouping according to ‘shape’ in Figure 2b does not imply any selection, as it exhibits a 

uniformly distributed 50 % - 50 % population both before and after updating. Type fitness is equal to 2.25 

for both types. Note that the overall fitness �̅� remains the same, regardless of how the population is 

classified. The population grew, but it did not evolve, as no selection occurred. 

In Figures 2a and 2b, the traits that define types  are color and shape. In Figure 2c the population is 

classified in terms of a network partition (grouping those who are more connected to each other and less 

connected to the others), and Figure 2d defines the population structure in terms of the network metric 

of degree centrality (grouping those with three degrees or more in one group, and those with less degrees 

in another). As a result of these different population classifications, the involved fitness levels of the 

identified types are again distinct, which affects the degree of selection.  

The question of the effects of population classification on evolutionary dynamics hinges on the 

identification of meaningful evolutionary forces. Fisher’s fundamental theorem (Fisher, 1930) equates the 
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variance in type fitness with the strength of natural selection (Ewens, 1989; Fisher, 1930; Frank, 1997; 

Price, 1972b). The  greater the observed  variance in growth rate among the types, the greater the change 

in the population constitution (as the fitter gain in share), which in turn implies  and therefore  stronger 

selection pressures. In Figure 2, the population definition based on the trait color leads to the strongest 

force of natural selection among the presented cases, as it distinguishes between growing white types 

and rather stagnating shaded types (Figure 2a). Therefore, it can be concluded that the trait ‘shaded’ is 

most receptive to environmental incentives. In terms of the evolutionary interpretation of fitness it is 

taken as a sign that the trait ‘color’ reveals something about the fit of the population relative to its 

environment, which is materialized by its ‘fitness’. On the contrary, the distinction between round and 

square types in Figure 2b does not identify any distinction between type fitness. Both types have  the 

same reproduction rate of 2.25. The trait ‘shape’ seems not to capture or reflect anything important about 

the environment. 

Therefore, while the overall population fitness is the same in all four cases, the strength of natural 

selection varies depending on the definition of types and how individuals are grouped. This article 

provides a quantitative criterion to compare evolutionary forces on populations defined differently, and 

therefore, it provides a method to evaluate the effects of the choice of population structure on 

evolutionary forces. Eight growth variables of 5 empirically evolving populations are tested. This includes 

data about the evolution of news, online videos, entrepreneurial fundraising, and whole economies. 
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Figure 2: Schematization of alternative population definitions according to (a) the trait color; (b) the trait 

‘shape’; (c) a network partition; (d) network positions. Each of the cases (a), (b), (c), (d) adds up to the same 

population fitness (population growth factor of �̅� =
18

8
= 2.25), but represents different evolutionary forces 

involved in updating. The corresponding forces of natural selection (𝑁𝑆), defined as the mean-normalized variance 

of type fitness 
𝑉𝑎𝑟(𝑤(𝑔))

�̅�
, are (a) 𝑁𝑆(3 , 1.5) = 0.25; (b) 𝑁𝑆(2.25 , 2.25) = 0; (c) 𝑁𝑆(2.5 , 2) ≈ 0.03; and (d) 

𝑁𝑆(2.75 , 1.75) ≈ 0.11.  

 

Methods 

This section presents the derivation of a formula that allows us to compare the strength of 

evolutionary forces for different population partitions. As Fisher himself reminded us with the first 

sentence of his influential 1930 book: “Natural Selection is not Evolution” (Fisher, 1930, p. vii), it is merely 

part of evolutionary change. A commonly used complete descriptive decomposition of all evolutionary 

forces has been proposed by Price (1970, 1972a). It contains natural selection as an important part, but 

additionally considers possible environmental changes (Frank, 1995; 1998; 2012b). Being a mathematical 

identity, it necessarily holds true. It decomposes the change in population fitness in terms of variances 

and covariances. With fitness being a growth rate, the change in fitness is essentially the acceleration / 

deceleration of the population dynamics, ∆�̅� = 𝑊𝑡+1̅̅ ̅̅ ̅̅ ̅ − 𝑊𝑡̅̅ ̅̅ , where delta ∆ refers to the difference by 

subtraction in time. The decomposition includes a multilevel recursion. We work with a modified version 

of the Price equation1 (see Supporting Information for the derivation):  

 

𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 
𝑝𝑜𝑝. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠

 =   
𝑁𝑎𝑡𝑢𝑟𝑎𝑙 
𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛

 + 
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 + 

𝑀𝑢𝑙𝑡𝑖𝑙𝑒𝑣𝑒𝑙
𝑇𝑒𝑟𝑚

 

∆�̅̅̅� =  
𝑉𝑎𝑟(𝑤)

�̅�
+ 𝐶𝑜𝑣 (

𝑤

�̅�
, ∆𝑤) + 𝐸[∆𝒘] = 𝑁𝑆 + 𝑅𝐴 + 𝑀𝐿𝑇      (1) 

=
𝐶𝑜𝑣(𝑤𝑡, 𝑤𝑡+1)

�̅�
+ 𝐸[∆𝒘] = 𝑆𝑆 + 𝑀𝐿𝑇.      (2) 

In agreement with Fisher’s theorem, we refer to the mean-normalized variance in equation (1) as 

the force of natural selection (𝑁𝑆) (Price, 1972b; Ewens, 1989; Frank, 1997). Being a variance, it has a 

non-negative value, meaning that it monotonically contributes to changes in population fitness. The 

second term in (1) is the covariance between the relative current fitness and future change in these 

growth factors. It represents the change of the types’ growth factor in relation to the relative type fitness. 

It therefore represents the relative acceleration (RA) of types. This acceleration (or deceleration, if 

negative) can stem from changes in the external environment, can be endogenously produced by changes 

within the population, or be the result of an interaction between the types and its environment (such as 

in the case of density dependence with an environmental carrying capacity reference?). If current relative 

                                                           
1 Replacing the freely selectable parameter 𝑧 of Price’s setup with fitness 𝑤. 



Hilbert, Oh & Monge (2016) SON 

8 
 

fitness of types (
𝑤

�̅�
) covaries positively with the change in fitness of types (∆𝑤), it contributes positively to 

the increase in population fitness. Empirically, it is usually a negative counterpart to the positive 

contributions of natural selection (Hilbert, 2013; 2016).  

The sum of these two counterbalancing evolutionary forces (𝑁𝑆 + 𝑅𝐴) adds up to the mean-

normalized covariance between current and future fitness of each type (see equation (2)). This covariance 

is typically close to 0, implying constant population fitness on average. If negative, types that increase 

their share at time t decrease their share at time t + 1 on average, contributing to a decrease in population 

fitness. With ongoing deceleration, such population would quickly go extinct. If positive, the growing 

shares sustain their superiority in the future and therefore sustainably increase population fitness over 

both periods. With ongoing acceleration, such population would quickly overrun the planet. In practice, 

both usually balance each other out. This shows that both evolutionary forces, natural selection (𝑁𝑆) and 

relative acceleration (𝑅𝐴), are equally important determinants of the change in long term fitness. In the 

short term, one might dominate the other, but in order to achieve sustainable fitness over the long-term, 

both are necessary. Therefore, we call the two forces combined Sustainable Selection as represented by 

the following equation:  𝑆𝑆 = 𝑁𝑆 + 𝑅𝐴 (see equations (1) and (2)). 

We refer to the last term 𝐸[∆𝒘] in equations (1) and (2) as the multilevel term (𝑀𝐿𝑇). It pays 

tribute to the fact that evolutionary dynamics consist of an “indefinite number of wavelike fluctuations 

which will roll on simultaneously” (Schumpeter, 1939, p. 169) on multiple levels over “hierarchic complex 

systems” (Simon, 1962, p. 473). The change in fitness of a certain type (∆𝒘) can be decomposed with the 

same manner the change in population fitness (∆�̅̅̅�) was decomposed on the higher population level. 

What can be applied to the entire population, can also be applied within a specific type. This results in a 

recursive multilevel equation. The shares on lower levels are conditional on group membership on higher 

levels. This results in a hierarchic taxonomy. On the lowest level are indivisible units as defined by the 

most fine-grained level permitted by the available database (see Supporting Information for an 

application of such multilevel decomposition to Fig. 1).  

We group the resulting terms of natural selection and relative acceleration over all levels in a 

multilevel taxonomy 𝑙 = [1,2,3, … 𝐿], from the entire population on the highest level (𝑙 = 1), down to the 

lowest possible level of fine-graining permitted by the database (𝑙 = 𝐿). This results in a multilevel sum of 

variances from each level, 𝑁𝑆𝑇𝑜𝑡𝑎𝑙, and a multilevel sum of covariances from each level, 𝑅𝐴𝑇𝑜𝑡𝑎𝑙  (see 

equation (3)).  

 

∆�̅� = ∑ 𝑁𝑆𝑙

𝐿

𝑙=1

+ ∑ 𝑅𝐴𝑙

𝐿

𝑙=1

+ 𝑀𝐿𝑇𝑙=𝐿 = 𝑁𝑆𝑇𝑜𝑡𝑎𝑙 + 𝑅𝐴𝑇𝑜𝑡𝑎𝑙 + 𝑀𝐿𝑇𝑙=𝐿.                       (3) 

 

For our comparative purposes, it is useful to realize that the multilevel sum of the variance (𝑁𝑆𝑇𝑜𝑡𝑎𝑙) 

and covariance terms (𝑅𝐴𝑇𝑜𝑡𝑎𝑙) add up to the same combined sustainable selection (𝑆𝑆𝑇𝑜𝑡𝑎𝑙) effect for 

all different possible ways to identify type membership, as long as this multilevel logic is pursued until the 

lowest possible level of fine-graining (see Supporting Information). This allows for direct comparisons 

among quantified evolutionary forces of different structures of the same population, independent from 

the chosen number of levels 𝐿 and from the number and size of groups on a chosen level:  
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𝑁𝑆𝑇𝑜𝑡𝑎𝑙 + 𝑅𝐴𝑇𝑜𝑡𝑎𝑙 = 𝑆𝑆𝑇𝑜𝑡𝑎𝑙 = 𝐾,          (4) 

where K is constant for all possible multilevel partitions. 

The number of possible multilevel hierarchies to partition the total population is very large. It is 

defined by the Bell number (Bell, 1938), which is the sum of all possible Stirling numbers of the second 

kind. For example, for a population of only 56 individuals, there are about 1055 possible multilevel 

partitions, while a population of 139 individuals can create about 10172 hierarchical taxonomies (Calcul, 

2012). In comparison, there are estimated to be 1050 atoms on earth, and some 1080 atoms in the 

observable universe. Despite this unfathomable magnitude, we know that all of these possible partitions 

of a population add up to the same total sustainable selection effect (𝑆𝑆𝑇𝑜𝑡𝑎𝑙), resulting in the same total 

change in population fitness. However, some ways to assign type membership result in more extreme 

forces of natural selection 𝑁𝑆𝑇𝑜𝑡𝑎𝑙 and counterbalancing relative acceleration 𝑅𝐴𝑇𝑜𝑡𝑎𝑙, while other 

hierarchical taxonomies result in less extreme evolutionary forces. In terms of equation (4), the positive 

𝑁𝑆𝑇𝑜𝑡𝑎𝑙 term and the negative 𝑅𝐴𝑇𝑜𝑡𝑎𝑙 differ in their magnitude, while their sum 𝑆𝑆𝑇𝑜𝑡𝑎𝑙 is constant for 

all different ways the multilevel group membership can be constructed. 

This gives us a meaningful way to compare the strength of evolutionary forces over multiple levels. 

We, therefore, decompose a population over different hierarchies until the lowest level and compare the 

strength of the evolutionary forces. We then work with the time average of the forces over a time series. 

For example, when working with an evolutionary trajectory over 24 points in time, we calculate equation 

(3) for each of the 23 sliding windows2 and then build the arithmetic mean of the resulting forces 𝑁𝑆𝑇𝑜𝑡𝑎𝑙 

and 𝑅𝐴𝑇𝑜𝑡𝑎𝑙 over the 23 periods. This gives us the time average of the population level evolutionary forces 

over this period.  

Summing up, our method evaluates changes in fitness, which are changes in the population’s 

growth rate. The accelerating or decelerating population dynamic is decomposed into short-term 

selection (which types grow faster at a certain instance?), quantified by natural selection 𝑁𝑆, and  the 

ongoing trend in fitness (do the fit or the unfit increase fitness?), quantified by relative acceleration 𝑅𝐴. 

Together they tell us if the ones that are fit right now, will also be the fit in the future, quantified by 

sustainable selection 𝑆𝑆. If we decompose a certain population classification with different groups until 

the lowest level of individuals, it turns out that this last quantity 𝑆𝑆 is equal for any possible multilevel 

taxonomy. However the two counterbalancing terms that create this total (equation (4)) can have 

different values. This allows us to both compare different population taxonomies (they all add up to the 

same total), while studying differences in the involved evolutionary forces (i.e. natural selection 𝑁𝑆 and 

relative acceleration 𝑅𝐴). 

We apply this method to different ways of structuring the population. Following the logic outlined 

in Figure 2, we test for multilevel partitions that follow different node traits (see Figure 2a and 1b); 

different network partitions (Figure 2c); and different network position metrics (Figure 2d). We 

hypothesize that network approaches to population clasification result in statistically significant different 

evolutionary forces across all tests than when traits are used to define multilevel populations.  

 

                                                           
2 The calculation of ∆�̅� spans 3 consecutive points in time: ∆�̅� = 𝑊𝑡+1̅̅ ̅̅ ̅̅ ̅ − 𝑊𝑡̅̅ ̅̅ = [

𝑎𝑙𝑙 𝑢𝑛𝑖𝑡𝑠𝑡+2

𝑎𝑙𝑙 𝑢𝑛𝑖𝑡𝑠𝑡+1] − [
𝑎𝑙𝑙 𝑢𝑛𝑖𝑡𝑠𝑡+1

𝑎𝑙𝑙 𝑢𝑛𝑖𝑡𝑠𝑡 ]. 
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Materials and Data 

To investigate the effects of different population classification systems, we used diverse social 

network data, including media-, organizational-, and country-level networks (Table 1). The current data 

set includes two hyperlink networks of YouTube videos—one is the network of news clips (Democracy 

Now); the other is that of scientific documentaries (Nova PBS)--two organizational networks from the 

microcredit crowdsourcing platform Kiva, and the international trade network among 118 countries (see 

Supporting Information for details). The number of nodes ranged from 56 to 120 (see Table 1). Each 

network includes evolutionary dynamics over different time periods, from 6 days to 24 years. During these 

periods each network was recorded at 24 points in time. Each longitudinal network was aggregated, with 

edges representing the average strengths of connections over the entire time period. As summarized in 

Table 1, the structural properties of the five networks varied: weighted network density ranged from .034 

to .915, and clustering coefficient from .114 to .929. In order to test for sensitivity to the choice of the 

growth variable, we tested two different growth variables for the Kiva and Trade network. This means 

that we run our exercise twice in these cases. For example, for international trade, we analyze the 

evolution of the growth of trade volume in terms of the absolute amount of trade on the national levels 

of all 118 countries, and we also analyze it in terms of per capita trade for the 24 years between 1987 and 

2010. 

 

Network 

Name 
Nodes 

Evolutionary 

Growth Variable 
Links Kind of links 

Number of 

nodes & 

links 

Network 

Density 

Network 

Clustering 

Coefficient 

Time 

period 

# of Traits & 

Network Position 

& Network 

Partitions 

Democracy 

Now 

YouTube 

videos 
Number of views 

Hyperlinks to 

other videos 
Directed 

56 

& 105 0.034 0.283 12 days 10 & 10 & 2 

NOVA PBS 
YouTube 

videos 

Number of 

views 

Hyperlinks to 

other videos 
Directed 

86 

& 171 0.023 0.114 12 days 10 & 11 & 2 

KIVA indiv. 

lenders 

Fundraising 

enterprises 

Money raised: 

- % of credit goal 

- in absolute USD 

Lenders in common 

(individuals) 
Undirected 

120 

& 1,779 0.249 0.661 6 days 9 & 16 &2 

KIVA teams 
Fundraising 

enterprises 

Money raised: 

- % of credit goal 

- in absolute USD 

Teams of lenders in 

common 
Undirected 

118 

& 4,512 0.654 0.823 6 days 10 & 17 & 2 

Internat. 

Trade 
Countries 

GDP in const. USD: 

- national total 

- per capita 

International trade 

of goods 
Directed 

118 

& 12,745 0.9153 0.9288 24 years 30 & 12/14 & 2 

Table 1: Summary of empirical databases (for details and sources, see Supporting Information). 

 

The last column in Table 1 shows the number of traits and networks metrics we used to produce 

different population classifications. The different traits and network metrics were chosen due to their 

availability, ease of access, and feasibility of creating multilevel hierarchies. Traits were specific to each 

case. For example, of the population of YouTube videos can be classified by the number of “Likes” 
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received, forming subgroups of “popular” and “unpopular” types of videos. The population of microcredit 

fundraising entrepreneurs can be structured according to the default rate of their partner organization 

(distinguishing between more and less trustworthy partnerships), among others while the evolution of 

international trade can distinguish between economies with fast- and slow-growing Gross Domestic 

Product, among others. For each case, we sorted all members according to these criteria and then 

grouped those that are similar. 

The employed network position metrics are more similar among our cases and include the most 

important centrality metrics (degree, eigenvector, closeness, etc.) and other standard metrics like triad 

count and Burt’s (1992) constraint measure. Additionally, we execute two network partitions, namely 

Fiedler’s spectral partitioning method (Fiedler, 1973; see also Newman, 2010) and the Kernighan-Lin 

algorithm (Kernighan and Lin, 1970). These partitioning algorithms allow us to predefine group size at 

each level. 

This is important, because if group size would differ among different cases, this change in structure 

can affect the variance in fitness and can, therefore, confound the magnitude of natural selection with 

the choice of group size. Therefore, we use a rigid rules-based approach to creating the same multilevel 

hierarchy for each case. We use four different rules. Rule 1 refers to a binary split on each level, resulting 

in a binary tree structure (Rule 1: 2 x 2 x 2 x …). For example, this means that the 56 nodes of the 

‘Democracy Now’ network require 6 levels of bisection until the lowest level.3 Rule 2 splits the first level 

into 5 equal sized groups on the first level (uneven cases are decided at random), 4 on the second level, 3 

on the third, etc. For example, the 120 nodes of the ‘Kiva individual lenders’ network results in exactly 

four levels (Rule 2: 5 x 4 x 3 x 2 = 120). Rule 3 goes the other way around from less to more groups on 

subsequent lower levels (Rule 3: 2 x 3 x 4…), and Rule 4 refers to an equal-sized quaternary tree structure 

(Rule 4: 4 x 4 x 4…). It is important to underline that this rigid rule-based population structure puts an 

artificial constraint on the population structure. However, it puts the same constraint on all population 

structures (i.e. trait-based and network-based) and allows us to focus on the strength of natural selection 

and relative acceleration while controlling for the potentially confounding effects of variations in group 

size. 

 

Results 
As a result of the combination of the different traits and network metrics with the four different 

hierarchies, we obtained 988 different population structures. Given equation (4), it is meaningful to 

directly compare the evolutionary forces of the same network. As the resulting variances vary in absolute 

terms among networks, for comparative reasons we rank them as equidistant percentiles from the lowest 

to the highest 𝑁𝑆𝑇𝑜𝑡𝑎𝑙 and 𝑅𝐴𝑇𝑜𝑡𝑎𝑙, with percentiles closer to zero representing smaller forces. Figure 3 

compares the average rankings, distinguishing between population structures made of (1) trait-based 

                                                           
3 𝑙𝑜𝑔2(56) ≈ 5.8. In detail, we have 2 groups on the 1st (population) level, 4 on the 2nd, 8 on the 3rd, 16 on the 4th, 
32 on the 5th, and 56 nodes on the lowest (most fine-grained) 6th level. 
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group memberships, (2) network position based group memberships, and (3) network partitions. It shows 

that population classifications according to trait metrics generally result in less extreme evolutionary 

forces than multilevel taxonomies based on network metrics.  This finding naturally accounts for both 

𝑁𝑆𝑇𝑜𝑡𝑎𝑙 (network metrics result in larger forces of Natural Selection) and its negative counterpart 𝑅𝐴𝑇𝑜𝑡𝑎𝑙  

(network metrics result in more negative Relative Acceleration). The exception to this general tendency 

is the Nova PBS network (see Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Average percentile rankings of evolutionary forces per multilevel population. Relative Accelerations 

(RA) are represented as negative percentiles as they are the negative counterpart of the positive forces of natural 

selection. Number of partitions: N = 988 consisting of DemNow (88), KivaLeader% (108), KivaLeader$ (108), 

KivaTeam% (116), KivaTeam$ (116), TradeNat (176), TradeCap (184), Nova (92).  

 

As one of our trait metrics, we used the growth rate of the types themselves. This means that we 

looked at the 24 periods, and then grouped those types that grew fastest and those types that grew 

slowest (on average over 24 periods). If growth rates would be stationary over the 24 periods, this should 

clearly identify the fittest and the least fit and, therefore, lead to strong forces of selection. However, type 

fitness varies between the periods and, therefore, the arithmetic mean of the mean-normalized variance 

over 24 periods is not automatically maximized. The force of natural selection of the resulting multilevel 
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structure is on average within the 64 % of the strongest forces of average natural selection. This is within 

the range of the evolutionary force that results when creating group memberships according to network 

position metrics (see Figure 3). In other words, network position metrics identify fitter and less fit types 

on average over longer periods of time just as well as a posthoc grouping of the average fittest.  

In addition to this descriptive analysis, we were also interested in whether the different trait and 

network partitions would be significantly different from random multilevel group memberships. This 

requires the creation of random partitions. Since the number of possible random partitions is very large 

(Bell number, see above), we first generated a total of 500,000 random partitions and then increased the 

sample size 20-fold to 10,000,000 random partitions. Figure 4 shows the resulting sampling distribution 

for 𝑁𝑆𝑇𝑜𝑡𝑎𝑙 of the 56 members of the ‘Democracy Now’ network according to division hierarchy Rule 1 

(binary split over 6 levels). The resulting distribution is not intuitive, but given that both distributions 

appear almost identical (see Figure 4), we consider a sampling size of 10,000,000 to be sufficient 

(equivalent results are obtained for all other networks). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Sampling distribution of 𝑁𝑆𝑇𝑜𝑡𝑎𝑙 of the 56 members of the ‘Democracy Now’ network according to 

hierarchy Rule 1 (binary split over 6 levels) for 50,000 (blue dashed line) and 10,000,000 (black solid line) random 

partitions. 

 

Now, we checked if the 𝑁𝑆𝑇𝑜𝑡𝑎𝑙 values obtained from our non-random trait and network 

partitioning were statistically significant from this random partitioning. Testing for significance at alpha = 

.05 (two-tailed), some 16.8 % of all ‘trait-based types’ are significantly different from random, 19.7 % of 

all ‘network position based types’, and 23.5 % of the ‘network partitions’. It is important to notice that in 

this two-tailed test 𝑁𝑆𝑇𝑜𝑡𝑎𝑙 values can be significantly higher or significantly lower than random partitions. 

Figure 5 shows a striking pattern with regard to the significance on the high and low end. Among all ‘trait 

based types’ that show a 𝑁𝑆𝑇𝑜𝑡𝑎𝑙 significantly different from random, more have significantly smaller 

𝑁𝑆𝑇𝑜𝑡𝑎𝑙, while the pattern turns around for network metrics. This reconfirms our previous finding that 
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network metrics tend to identify population structures that exhibit a relatively high force of natural 

selection. This accounts especially for network position metrics. Some 18.4 % of the population structures 

based on network position metrics show 𝑁𝑆𝑇𝑜𝑡𝑎𝑙 that are significantly higher than any random type 

membership, while only 1.3 % of them are significantly lower than random partitioning. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Percentage of population structures with 𝑁𝑆𝑇𝑜𝑡𝑎𝑙 significantly different from random (at alpha -.05, 

two-tailed) of all partitions of that sort. Total number of partitions: N=988 consisting of 472 trait based; 452 network 

position based, and 64 network partitions.  

 

Finally, we ask if the difference between the 𝑁𝑆𝑇𝑜𝑡𝑎𝑙 of a pair of two structures is significantly 

different from random (also from 10,000,000 simulations). This tests whether or not a partitioning 

method significantly reduces or increases 𝑁𝑆𝑇𝑜𝑡𝑎𝑙 compared to another. We randomly choose 31,832 

pairs from the possible 61,552 pairs and test against their respective sampling distributions.  The result is 

in line with our previous finding. Figure 6 shows that in more than 20 % of the comparisons between ‘trait 

based types’ and a ‘network position based types’, the network metric produces a 𝑁𝑆𝑇𝑜𝑡𝑎𝑙 that is 

significantly higher than the ‘trait based’ approach. The contrary is true only 3.4 % of the time. Something 

similar holds for ‘network partitions’. Comparing ‘network partition’ and ‘network position’ metrics (see 

schematizations in Figure 2c and 2d), it turns out that ‘network position’ metrics lead more than 4 times 

more often to significantly higher multilevel forces of natural selection.  
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Figure 6: Pairwise differences of 𝑁𝑆𝑇𝑜𝑡𝑎𝑙 that are significantly different from random (at the 0.1 level) as 

percentage of all pairwise comparisons of the indicated sort. 

 

Conclusions 

We linked network structure of the populations in question and evolutionary dynamics of those 

populations and presented a method to meaningfully compare the magnitude of evolutionary forces over 

multiple levels. We found that evolutionary forces were more extreme when we structured a multilevel 

population according to network metrics in comparison to using traits of the population members as 

criteria. This implies that network metrics are well suited to identify who of the population members are 

fitter and who are less fit (over changing environmental fitness landscapes). This provides a justification 

for using network metrics as a basis for the grouping of individuals into types in an evolving population. 

This perspective on population dynamics suggests that selection might not merely act on who individuals 

are, but also with whom they are connected. Instead of selecting for a trait, selective pressures acts on 

groups of individuals that occupy a certain position in the network of the population relative to other 

members of the population (network position based). Selection also seems to act on groups of individuals 

that are linked to each other (network partitions).  

The reasons behind these findings are not well understood. It is likely that the reason for the 

strength of evolutionary forces is different when network position metrics are used and when network 

partitions are used. Network position metrics identify nodes that play a special role in the network 

structure. These nodes are not necessarily closely connected to each other. Grouping them together often 

joins nodes from different parts of the network, but with similar network characteristics. In contrast, 

network partitions join a group of nodes that might be rather diverse, but more closely connected among 

each other. It might be that network partitions join nodes with complementary characteristics, which are 

well adapted to varying environmental conditions (more like teams with complementary roles in different 
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environments). Group members that are specialized to specific environmental states might assure that 

their group achieves a high average fitness over time through these varying environments (some team 

members help the group thrive in some environments or time periods while others are champions in other 

environments and time periods). However, these are mere speculations and more in-depth research will 

be required to understand the reason for our quite pervasive finding. 

The presented approach has several limitations that are worth noting.  First, one limitation is that 

we only tested for two network partition algorithms (Fiedler’s spectral and Kernighan-Lin), while we test 

for 30 different trait based types and up to 17 different network position based types per network. This 

makes our results with regard to network partitions less solid than our results about trait and network 

position metrics.  A related issue that we do not understand yet is the limiting choice to work with rigid 

network partitions in our multilevel taxonomies. We chose this method to avoid confounding results in 

the descriptive analysis of the variance in fitness. However, it is very unlikely that natural and social 

hierarchies employ such mechanistic partitioning logic. It is much more likely that some kind of 

asymmetrical community structure is employed by evolutionary dynamics. Community structure 

algorithms (e.g. Girvan and Newman, 2002; Clauset et al. 2004; Bondel et al. 2008) detect more natural 

groups within a network than rigid partition algorithms. However, the result is groups of varying size, 

which makes them trickier for comparative exercises. We have not yet tested the effects of working with 

more flexible community detection algorithms to identify network structure.   

Digging deeper it would also be interesting to see if different kinds of network metrics seem 

particularly apt at identifying large evolutionary forces and why. While we have shown that there is a 

statistically significant difference when thinking about evolutionary selection in terms of network metrics, 

the details of why which ones have what effect are far from being understood. For example, we find that 

closeness centrality metrics consistently produce notably extreme evolutionary forces. It might be that 

nodes that are on average close to all other nodes play a special role in evolutionary dynamics and are 

therefore subject to more selective pressure. More systematic work will need to be done to confirm and 

understand such indicative findings. This leads to an open research agenda on the analysis of traditional 

population dynamics from the perspective of network metrics with the aims of deepening our 

understanding of both evolutionary dynamics of social networks and the networked nature of evolution. 
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Supporting Information 

(A) Notation 
We are aware that our notation is rather idiosyncratic, which is the result of deriving our notations from 
the equations of evolutionary population biology (i.e. Frank, 2012) and standard probability theory (to 
express multilevel hierarchies through nested conditioning). It is our hope that this compromise spreads 
the burden of adjustment among readers from different disciplines. At the same time, we are aware that 
this inevitably also results in the spread of discontent, for which we apologize in advance.  

Figure S.1 is a more detailed version of Figure 1a from the main text aimed at illustrating our notation. 
The example tracks evolutionary updating between times 𝑡 and 𝑡 + 1. We have a random variable 𝐺 (for 
“groups”) with two realizations (‘𝑒𝑚𝑝𝑡𝑦’ and ‘𝑓𝑖𝑙𝑙𝑒𝑑’), which has distribution 𝑃𝑡(𝐺) at time 𝑡 and 

𝑃𝑡+1(𝐺) at time 𝑡. For example, we have 𝑝𝑡(𝑔 = 𝑒𝑚𝑝𝑡𝑦) = 0.5 and 𝑝𝑡+1(𝑔 = 𝑒𝑚𝑝𝑡𝑦) =
2

3
.  The letter 

𝑤 refers to the growth factor of fitness, 𝑤 = [
𝑢𝑛𝑖𝑡𝑠𝑡+1

𝑢𝑛𝑖𝑡𝑠𝑡 ]. The ‘empty’ type triples during updating, while 

the ‘filled’ type grows by 50 %: 𝑤(𝑔 = 𝑒𝑚𝑝𝑡𝑦) = 3 and 𝑤(𝑔 = 𝑓𝑖𝑙𝑙𝑒𝑑) = 1.5. The resulting population 
fitness �̅� is the expected value of the types’ fitness: �̅� = ∑ 𝑝(𝑔) ∗𝑔 𝑤(𝑔) = 𝐸𝑔[𝑤] = 0.5 ∗ 3 + 0.5 ∗

1.5 = 2.25. We can now calculate the mean-normalized variance in fitness on this first level (natural 
selection 𝑁𝑆).  

 

𝑉𝑎𝑟(𝑤)

�̅�
=

𝐸[𝑤]2 − (𝐸[𝑤])2

�̅�
=

(0.5 ∗ 32 + 0.5 ∗ 1.52) − (0.5 ∗ 3 + 0.5 ∗ 1.5)2

2.25
= 0.25 = 𝑁𝑆 

 

Figure S.1. Illustrative example of notation. 
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(B) Multilevel application 

Following the multilevel logic outlined in equation (3) of the main article, we now calculate evolutionary 

forces within each of these groups on the second (more fine-grained) level. We redefine the random 

variable of the first level as 𝐺𝑙=1 (referring to ‘filling’) and introduce the additional random variable 

𝐺𝑙=2 (referring to ‘color’). We then work with conditional probabilities (the lower level conditioned on 

the higher level in which it is nested). Figure S. 2 shows that the proportion of the red subtype on the 

second level 𝑙 = 2 at time 𝑡 represents one quarter of the empty types: 𝑝𝑡(𝑟𝑒𝑑𝑙=2|𝑒𝑚𝑝𝑡𝑦𝑙=1) = 0.25 

and that it multiplies by a factor of 5 during updating.  

The type fitness on the higher level (aggregate coarse-grained) level is the expected value of the 

conditioned type fitness on the lower (more fine-grained) level. For the empty types: 𝑤(𝑒𝑚𝑝𝑡𝑦𝑙=1) =

∑ 𝑝𝑡(𝑔𝑙=2|𝑒𝑚𝑝𝑡𝑦𝑙=1)𝑔𝑙=2
∗ 𝑤(𝑔𝑙=2|𝑒𝑚𝑝𝑡𝑦𝑙=1) =

1

4
∗ 5 +

1

4
∗ 2 +

1

4
∗ 2 +

1

4
∗ 3 = 3. 

 

We can now calculate the force of natural selection on the second level within the higher first level group:  

𝑉𝑎𝑟(𝑤(𝑔𝑙=2|𝑔𝑙=1))

𝑤(𝑔𝑙=1)
 

For the variance among colors within the empty types, this results in: 

𝑉𝑎𝑟(𝑤(𝑔𝑙=2|𝑒𝑚𝑝𝑡𝑦𝑙=1))

𝑤(𝑒𝑚𝑝𝑡𝑦𝑙=1)

=
∑ 𝑝(𝑔𝑙=2|𝑒𝑚𝑝𝑡𝑦𝑙=1) ∗ [𝑤(𝑔𝑙=2|𝑒𝑚𝑝𝑡𝑦𝑙=1)]2 − (∑ 𝑝(𝑔𝑙=2|𝑒𝑚𝑝𝑡𝑦𝑙=1) ∗ 𝑤(𝑔𝑙=2|𝑒𝑚𝑝𝑡𝑦𝑙=1))2

𝑤(𝑒𝑚𝑝𝑡𝑦𝑙=1)

=
(0.25 ∗ 52 + 0.25 ∗ 22 + 0.25 ∗ 22 + 0.25 ∗ 32) − (0.25 ∗ 5 + 0.25 ∗ 2 + 0.25 ∗ 2 + 0.25 ∗ 3)2

3
= 0.5. 

Coincidentally it turns out that likewise 
𝑉𝑎𝑟(𝑤(𝑔𝑙=2|𝑓𝑖𝑙𝑙𝑒𝑑𝑙=1))

𝑤(𝑓𝑖𝑙𝑙𝑒𝑑𝑙=1)
= 0.5. In this case, the second level 𝑙 = 2 

within each of the two groups on the higher level 𝑙 = 1 is already the lowest level 𝐿 permitted by the 

illustrative ‘database’ of our example. In our notation, this means 𝐿 = 2. We can therefore calculate our 

metric of 𝑁𝑆𝑇𝑜𝑡𝑎𝑙 (for details see Supporting Information C.3 below).  

𝑁𝑆𝑇𝑜𝑡𝑎𝑙 = {𝑁𝑆𝑙=1 + 𝑁𝑆𝑙=2} =
𝑉𝑎𝑟(𝑤(𝑔𝑙=1))

�̅�
+ 𝐸𝑙=1 [

𝑉𝑎𝑟(𝑤(𝑔𝑙=2|𝑔𝑙=1))

𝑤(𝑔𝑙=1)
]

= 0.25 + [0.5 ∗ 0.5 + 0.5 ∗ 0.5] = 0.75 
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Figure S.2. Illustrative example of a second level decomposition of Figure S.1. 

 

  

 
 

 

 

 

(C) Derivation of the multilevel decomposition 

We use a three-part decomposition of evolutionary population change inspired by the Price equation 

(Price, 1970; 1972a; Frank, 1995; 1997; 2012). This kind of decomposition is useful in the quantitative 

comparison of different multilevel population partitions. The traditional Price equation (Price, 1970; 1972; 

Frank, 2012) keeps track of a chosen character (often represented by 𝑧, such as allele, genotype, 

phenotype, kind of individual or enterprise, etc.) and regresses this characteristic on the growth rate 𝑤. 

The selected character 𝑧 has to be a scalar variable and is often subjectively defined by established 

scientific custom and/or current data availability. Since network groups do not have a quantitative scale 

and since we question the very nature of this choice of variable (what variable defines groups in 

populations?), we use the more fundamental version of Price’s logic and set the character equal to fitness 

𝑧 = 𝑤. In this form, our decomposition is similar to the formulations used by evolutionary economists 

(Baily, et al., 1992; Foster, et al., 1998; Metcalfe and Ramlogan, 2006). 

 

C.1 Three part decomposition: natural selection 

We define delta ∆ to be a difference by subtraction in a time series: ∆𝑤 = 𝑤𝑡+1 − 𝑤𝑡 and ∆𝑝 = 𝑝𝑡+1 −

𝑝𝑡. We decompose the change in population fitness ∆�̅� (on the highest level). In the following 

reformulation, we make use of the fact that  𝑝(𝑔)𝑡+1 =  𝑝(𝑔)𝑡 ∗
𝑤(𝑔)

�̅�
 (which is known as the ‘replicator 

equation’ in economics and game theory). For reasons of simplicity, the superscript 𝑡 is omitted in the 
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following derivation when the variable refers to the initial generation, e.g. 𝑝 = 𝑝𝑡. Likewise, in one-level 

decompositions the reference to the random variable is omitted, 𝑝 = 𝑝(𝑔). 

∆�̅�  =  �̅�𝑡+1 −  �̅�𝑡 =  ∑ 𝑝(𝑔)𝑡+1 ∗ 𝑤(𝑔)𝑡+1

𝑔

− ∑ 𝑝(𝑔) ∗ 𝑤(𝑔)

𝑔

=  ∑(𝑝 + ∆𝑝) ∗ (𝑤 + ∆𝑤)

𝑔

−  ∑ 𝑝 ∗ 𝑤

𝑔

= ∑[(𝑝 ∗ 𝑤) + (∆𝑝 + 𝑤) + (𝑝 + ∆𝑤) + (∆𝑝 + ∆𝑤)] − ∑ 𝑝 ∗ 𝑤 = 

=  ∑ ∆𝑝 ∗ 𝑤 + ∑ 𝑝 ∗ ∆𝑤 + ∑ ∆𝑝 ∗ ∆𝑤                                          (𝑆. 1)  

=  ∑(𝑝 ∗
𝑤

�̅�
− 𝑝) ∗ 𝑤 + ∑ 𝑝 ∗ ∆𝑤 + ∑(𝑝𝑡+1 − 𝑝) ∗ ∆𝑤 =  

 =  [∑ 𝑝 ∗
(𝑤)2

�̅�
− ∑(𝑝 ∗ 𝑤) ∗

�̅�

𝑊
] + [∑ 𝑝 ∗ ∆𝑤] + [∑ 𝑝𝑡+1 ∗ ∆𝑤 − 1 ∗ ∑ 𝑝 ∗ ∆𝑤] =  

=  
1

�̅�
[∑ 𝑝 ∗ 𝑤2 − (∑ 𝑝 ∗ 𝑤)

2

] + [∑ 𝑝 ∗ ∆𝑤] + [∑ 𝑝
𝑤

�̅�
∗ ∆𝑤 − ∑ 𝑝𝑡+1 ∗ ∑ 𝑝 ∗ ∆𝑤] =  

=  
1

�̅�
𝑉𝑎𝑟(𝑤) + [∑ 𝑝

𝑤

�̅�
∗ ∆𝑤 − ∑ 𝑝

𝑤

�̅�
∗ ∑ 𝑝 ∆𝑤] + [∑ 𝑝 ∗ ∆𝑤] 

∆�̅� =  
𝑉𝑎𝑟(𝑤)

�̅�
+ 𝐶𝑜𝑣 (

𝑤

�̅�
, ∆𝑤) + ∑ 𝑝 ∗ ∆𝑤 = 𝑁𝑆 + 𝑅𝐴 + 𝑀𝐿𝑇                   (𝑆. 2) 

While the simplicity of equation (S.1) makes it most useful for empirical calculations, the equivalent 

reformulation of equation (S.2) facilitates meaningful interpretation of the three parts. The first 

component, 
𝑉𝑎𝑟(𝑤)

�̅�
, refers to natural selection (𝑁𝑆), in line with Fisher’s fundamental theorem of 

natural selection (Fisher, 1930; Price, 1972b; Ewens, 1989; Lessard, 1997; Frank, 1997; Edwards, 2002). 

The theorem states that the change in average fitness caused by natural selection is proportional to the 

variance in fitness. Since both, the variance and its normalizing population fitness can only be positive, 

the corresponding contribution to change in population fitness (left hand side) can only be positive:   
𝑉𝑎𝑟(𝑤)

�̅�
≥ 0             (𝑆. 3);  Fisher′s fundamental theorem of natural selection 

Since Fisher’s fundamental theorem only refers to the part of the total change that is caused by natural 

selection, it has been referred to as a “partial change” in fitness by biologists (Frank, 1998). Economists 

have referred to this incomplete modeling of evolutionary dynamics as a restricted model of “pure 

selection” (Nelson and Winter; 1985; p. 243).  

 

C.2 Two part decomposition: sustainable selection 

Adding up the variance and the covariance terms, we can derive equation (2) from the main article: 
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∆�̅� =
𝑉𝑎𝑟(𝑤)

�̅�
+ 𝐶𝑜𝑣 (

𝑤

�̅�
, ∆𝑤) + {∑ 𝑝 ∗ ∆𝑤} =  𝑎𝑐𝑐𝑟𝑑. 𝑡𝑜 (𝑆. 1)

= ∑ ∆𝑝 ∗ 𝑤 + [∑ ∆𝑝 ∗ ∆𝑤] + {∑ 𝑝 ∗ ∆𝑤} = 

= ∑ ∆𝑝 ∗ 𝑤 + [∑ ∆𝑝 ∗ 𝑤𝑡+1 − ∑ ∆𝑝 ∗ 𝑤] + {∑ 𝑝 ∗ ∆𝑤}       (𝑆. 4.1)  

= ∑ 𝑝𝑡+1 ∗ 𝑤𝑡+1 − ∑ 𝑝 ∗ 𝑤𝑡+1 + {∑ 𝑝 ∗ ∆𝑤} = ∑ 𝑝
𝑤

�̅�
∗ 𝑤𝑡+1 − 1 ∗ ∑ 𝑝 ∗ 𝑤𝑡+1 + {∑ 𝑝 ∗ ∆𝑤}

= ∑ 𝑝
𝑤

�̅�
𝑤𝑡+1 − ∑ 𝑝

𝑤

�̅�
∗ ∑ 𝑝 ∗ 𝑤𝑡+1 + {∑ 𝑝 ∗ ∆𝑤}

= 𝐶𝑜𝑣 (
𝑤

�̅�
, 𝑤𝑡+1) + {∑ 𝑝 ∗ ∆𝑤} =

𝐶𝑜𝑣(𝑤𝑡 , 𝑤𝑡+1)

�̅�
 + {∑ 𝑝 ∗ ∆𝑤}

= 𝑆𝑆 + 𝑀𝐿𝑇       (𝑆. 4)   𝑆𝑢𝑠𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 

As shown by the canceling terms in equation (S.4.1), the Relative Acceleration (𝑅𝐴) term incorporates a 

negative counterpart of the positive contributions of Natural Selection (𝑁𝑆) to increases in fitness. This 

is why we see the “mirror result” between these two terms when applied to empirical data (Hilbert, 

2013), with the Relative Acceleration (𝑅𝐴) being a negative counterpart to Natural Selection (𝑁𝑆).  

 

C.3 Multilevel decomposition: nesting as conditional proportions  

We now decompose the multilevel-term (𝑀𝐿𝑇) of equation (S.2) through recursion with the same logic, 

just one level lower. In order to be able to work with an arbitrary number of level, we introduce a 

scalable notation for levels which is indexes with the subscript 𝑙. Population fitness on the highest 

possible level (which is traditionally expressed with an overbar �̅�) is found on level 𝑙 = 0 in terms of 

this scalable multilevel notation: �̅� = 𝑤(𝑔𝑙=0). The types of the first level are indexed with the 

subscript 𝑙 = 1. Therefore, 𝑝(𝑔𝑙=1) represents a proportion on a first level group within the population 

(more precise: 𝑝(𝑔𝑙=1|𝑔𝑙=0), proportion of type, conditioned on the entire population). We define 

𝑃(𝑔𝑙=2|𝑔𝑙=1) as the conditional distribution of a subpopulation on level 𝑙 = 2 conditioned on the higher 

level group at 𝑙 = 1, which has the same properties as conditional probabilities, with 

∑ 𝑝(𝑔𝑙=2|𝑔𝑙=1)𝑔𝑙=2
= 1. In other words, the index (𝑔𝑙=2|𝑔𝑙=1) tracks the number of subtypes on level 

𝑙 = 2 within a specific higher level type on level on level 𝑙 = 1 (which is implicity understood to be part 

of the total population on level 𝑙 = 0). Expressing equation (S.2) in this more detailed notation we get: 

 

∆𝑊(𝑔𝑙=0) =  
𝑉𝑎𝑟(𝑤(𝑔𝑙=1))

𝑤(𝑔𝑙=0)
+ ∑ 𝑝(𝑔𝑙=1) ∗ [∆𝒘(𝒈𝒍=𝟏)]

𝑔𝑙=1

+ 𝐶𝑜𝑣 (
𝑤(𝑔𝑙=1)

𝑤(𝑔𝑙=0)
, ∆𝑤(𝑔𝑙=1)) = 
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=
𝑉𝑎𝑟(𝑤(𝑔𝑙=1))

𝑤(𝑔𝑙=0)

+ ∑ 𝑝(𝑔𝑙=1) [
𝑽𝒂𝒓(𝒘(𝒈𝒍=𝟐|𝒈𝒍=𝟏))

𝒘(𝒈𝒍=𝟏)
+ ∑ 𝒑(𝒈𝒍=𝟐|𝒈𝒍=𝟏) ∗ [∆𝒘(𝒈𝒍=𝟐|𝒈𝒍=𝟏)]

𝑔𝑙=2𝑔𝑙=1

+ 𝑪𝒐𝒗 (
𝒘(𝒈𝒍=𝟐|𝒈𝒍=𝟏)

𝒘(𝒈𝒍=𝟏)
, ∆𝒘(𝒈𝒍=𝟐|𝒈𝒍=𝟏))] + 𝐶𝑜𝑣 (

𝑤(𝑔𝑙=1)

𝑤(𝑔𝑙=0)
, ∆𝑤(𝑔𝑙=1)) = 

= {
𝑉𝑎𝑟(𝑤(𝑔𝑙=1))

𝑤(𝑔𝑙=0)
+ ∑ 𝑝(𝑔𝑙=1|𝑔𝑙=0) ∗

𝑽𝒂𝒓(𝒘(𝒈𝒍=𝟐|𝒈𝒍=𝟏))

𝒘(𝒈𝒍=𝟏)
𝑔𝑙=1

}

+ {∑ 𝑝(𝑔𝑙=1|𝑔𝑙=0) ∑ 𝒑(𝒈𝒍=𝟐|𝒈𝒍=𝟏) ∗ [∆𝒘(𝒈𝒍=𝟐|𝒈𝒍=𝟏)]

𝑔𝑙=2𝑔𝑙=1

}

+ {𝐶𝑜𝑣 (
𝑤(𝑔𝑙=1)

𝑤(𝑔𝑙=0)
, ∆𝑤(𝑔𝑙=1)) + ∑ 𝑝(𝑔𝑙=1|𝑔𝑙=0) ∗ 𝑪𝒐𝒗 (

𝒘(𝒈𝒍=𝟐|𝒈𝒍=𝟏)

𝒘(𝒈𝒍=𝟏)
, ∆𝒘(𝒈𝒍=𝟐|𝒈𝒍=𝟏))

𝑔𝑙=1

} 

= {
𝑉𝑎𝑟(𝑤(𝑔𝑙=1))

𝑤(𝑔𝑙=0)
+ 𝐸𝑙=1 [

𝑽𝒂𝒓(𝒘(𝒈𝒍=𝟐))

𝒘(𝒈𝒍=𝟏)
]}

+ {𝐶𝑜𝑣 (
𝑤(𝑔𝑙=1)

𝑤(𝑔𝑙=0)
, ∆𝑤(𝑔𝑙=1)) + 𝐸𝑙=1 [𝑪𝒐𝒗 (

𝒘(𝒈𝒍=𝟐)

𝒘(𝒈𝒍=𝟏)
, ∆𝒘(𝒈𝒍=𝟐))]}

+ {∑ 𝑝(𝑔𝑙=2) ∗ ∆𝒘(𝒈𝒍=𝟐)

𝑔𝑙=2

}          (𝑆. 5) 

∆𝑊(𝑔𝑙=0) = {𝑁𝑆𝑙=1 + 𝑁𝑆𝑙=2} + {𝑅𝐴𝑙=1 + 𝑅𝐴𝑙=2} + {𝑀𝐿𝑇𝑙=2} 

This logic can be continued over further levels of fine-graining, indexed by 𝑙, with 𝑙 = [1,2,3, … 𝐿], until 

the lowest level 𝐿 permitted by the available data.4 This makes the conditional logic scalable. At the end 

we are left with three terms (the three terms in the {braces}). The terms within the braces can be 

summed up from the first to the lowest level, always leaving the multilevel term on the lowest level 

permitted by the database. This is represented by: 

∆𝑤(𝑔𝑙=0) = 𝑁𝑆𝑇𝑜𝑡𝑎𝑙 + 𝑅𝐴𝑇𝑜𝑡𝑎𝑙 + 𝑀𝐿𝑇𝑙=𝐿 

For example, in case there are only two levels (such as in the example of Figure S.2 from above), the 

content of the three terms inside {braces} in equation (S.5) equation provide the details of this 

representation in totals. We can expand this logic to an arbitrary number of levels until level 𝐿. The 

multilevel total of each evolutionary force essentially results in a sum of (variance or covariance) terms 

over the consecutive levels, while these terms are weighted with the product of conditional proportions 

over the respective levels (which, according to the chain rule, essentially results ‘joint porbabilities’ on 

the corresponding level):  

                                                           
4 With L ≤ log2(number of smallest units in database), since the smallest possible group consists of two 
members. 
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∆𝑊(𝑔𝑙=0) = 

= ∑ ∏ 𝑝(𝑔𝑙+1|𝑔𝑙)

𝑙

𝑙=0

∗
𝑉𝑎𝑟(𝑤(𝑔𝑙+1))

𝑤(𝑔𝑙)

𝑙=𝐿

𝑙=0

+                  (𝑆. 6.1; 𝑁𝑆𝑇𝑜𝑡𝑎𝑙) 

+ ∑ ∏ 𝑝(𝑔𝑙+1|𝑔𝑙)

𝑙

𝑙=0

∗ 𝐶𝑜𝑣 (
𝑤(𝑔𝑙+1)

𝑤(𝑔𝑙)
, ∆𝑤(𝑔𝑙+1))

𝑙=𝐿

𝑙=0

+                   (𝑆. 6.2; 𝑅𝐴𝑇𝑜𝑡𝑎𝑙) 

+ ∑ 𝑝(𝑔𝑙=𝐿) ∗ ∆𝑤(𝑔𝑙=𝐿)

𝑔𝑙=𝐿

                  (𝑆. 6.3; 𝑀𝐿𝑇𝑙=𝐿) 

The same holds for the 𝑆𝑆𝑇𝑜𝑡𝑎𝑙 term. 

∆𝑊(𝑔𝑙=0) = 𝑆𝑆𝑇𝑜𝑡𝑎𝑙 + 𝑀𝐿𝑇𝑙=𝐿

= ∑ ∏ 𝑝(𝑔𝑙+1|𝑔𝑙)

𝑙

𝑙=0

∗
𝐶𝑜𝑣(𝑤(𝑔𝑙+1)𝑡, 𝑤(𝑔𝑙+1)𝑡+1)

𝑤(𝑔𝑙)
+ 𝐸𝐿[∆𝑤(𝑔𝐿)]

𝑙=𝐿

𝑙=0

      (𝑆. 7) 

 

(D) Proof of applicability of comparative method 

Here we show the proof of equation (4) from the main article, namely that the sum of the variance 

(𝑁𝑆𝑇𝑜𝑡𝑎𝑙) and covariance terms (𝑅𝐴𝑇𝑜𝑡𝑎𝑙) add up to the same combined sustainable selection (𝑆𝑆𝑇𝑜𝑡𝑎𝑙) 

effect for all different possible ways to structure group membership, given the condition that this 

multilevel logic is pursued until the lowest possible level of fine-graining 𝐿. The proof follows directly 

from equation (S.7) from above. Saying that [𝑁𝑆𝑇𝑜𝑡𝑎𝑙 + 𝑅𝐴𝑇𝑜𝑡𝑎𝑙 = 𝑆𝑆𝑇𝑜𝑡𝑎𝑙 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡] for all possible 

partitions is equivalent to saying that the remaining multilevel term on the lowest level 𝑀𝐿𝑇𝐿 is constant 

for all possible partitions. This is always the case, because partitions on the lowest level have equal 

proportions. Shares on the lowest level, 𝑝(𝑔𝑙=𝐿), are defined by the permitted level of fine-graining of 

the database, which is independent from different ways of higher level grouping of this lowest level 

granularity. For example, in our example of Figure S.2, the lowest (second level) distribution of the 

updated period at 𝑡 + 1 is 𝑃𝑡+1(𝑔𝑙=2=𝐿) consists of the proportions {
5

18
;

2

18
;

2

18
;

3

18
;

1

18
;

1

18
;

1

18
;

3

18
} 

(corresponding to the colored second level subtypes from Figure S.2), which is independent from 

different ways to create first level types, such as done in Figure S.1. In formal terms of our notation: 

𝑀𝐿𝑇𝐿 = ∑ ∏ 𝑝(𝑔𝑙+1|𝑔𝑙)

𝐿

𝑙=0

∗ [∆𝑤(𝑔𝐿)]

𝐿

= ∑ 𝑝(𝑔𝐿) ∗ [∆𝑤(𝑔𝐿)]

𝐿

= 𝐸𝐿[∆𝑤(𝑔𝐿)]

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 

 

 

(E) Summary of datasets 
The following Table list the different attribute and network metrics used to partition populations.  
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 Democracy Now 
  

Nova PBS  Kiva Leader Kiva Team Intern. Trade 
Growth variable:     

- national total 
- per capita    

Growth variable:     
- % of total raised  
- abs. USD raised 

Growth variable:     
- % of total raised 
- abs. USD raised 

# Nodes 56 86 120 118 118 

# Attributes 10 10 9 10 30 

# Netw.metr. 10 11 16 17 12 (nat.); 14 (per cpita) 

C
la

ss
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n
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tt
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b

u
te

 

Likes Likes NoBorrowers #ofBorrowers Population 

LikesPerView Dislikes PartnerDefaultRate RepaymentTerm Total natural resources rents (%GDP) 

Dislikes Likes-Dislikes PartnerDelinquencyRate PartnerTotLoans School enrollment, tertiary (% gross) 

DislikesPerView Data Published Partner#Entrepre PartnerTimeOnKiva School enrollment, primary (% gross) 

Likes-Dislikes Comment PartnerLoansAtRisk Partner#Entrepr Scientific&technical journal articles 

Likes-DislikesPerView CommentPERview PartnerTimeOnKiva PartnerAvgLoanSize Govmn.consumpt. exp. (const.'05$) 

DatePublished LikesPERview PartnerTotalLoans PartnerDelinquRate Govmn.consumpt. exp. (%GDP) 

Comments DislikesPERview RepaymentTermMonths PartnerLoansAtRisk Export-Import 

CommentsPerView Likes-DislikesPERview GrowthOfGrowthVar PartnerDefaultRate Extrn.balance goods&serv.(%GDP) 

GrowthOfGrowthVar GrowthOfGrowthVar  GrowthOfGrowthVar Avg. precipitation in depth (mm/year) 

    Arable land (hectares) 

    Arable land (hectares/person) 

     consumpt. exp. (const.'05$) 

     consumpt. exp. (%GDP) 

    Exports goods&serv. (const.'05$) 

    Exports goods&serv. (%GDP) 

    Imports goods&serv. (const.'05$) 

    Imports goods&serv. (%GDP) 

    Fertility rate (births/woman) 

    Gross capital formation (const.'05$) 

    Gross capital formation (%GDP) 

    Life expectancy at birth (years) 

    Mobile cellular subscriptions 

    Mobile cellular subscriptions (/capita) 

    Net migration 

    Rural population 

    Rural population (%pop.) 

    Trade (%GDP) 

    GrowthRate GDP 

    GrowthRate GDPperCAPITA 

C
la

ss
if

ic
at

io
n

 N
et

w
o

rk
 M

et
ri

c 

EigenvectorCentrality Centr.Eigenvector Capability Capability Centr.Authority 

Centr.Eigenv.PerComp. Centr.Eigenv.PerComp. Centr.Authority Centr.Authority Centr.Closeness/inv.=1/[unscl.] 

CentralityAuthority Centr.Authority Centr.Bonacich Power Centr.Betweenness Centr.Eigenvector 

CognitiveDemand Centr.In-Closeness Centr.Closeness Centr.Bonacich Power Centr.Eigenv.PerComp. 

CentralityTotalDegree Cognitive Demand Centr.Eigenvector Centr.Closeness Centr.Hub 

Centr.Column Degree Centr.Total Degree Centr.Information Centr.Eigenvector Centr.In Degree/[unscl.] 

ColumnGiniMeansDiff. Centr.Column Degree Centr.Total Degree Centr.Hub Centr.In-Closeness/inv.=1 

CentralityInDegree Column Gini Means Diff. Clique Count Centr.Total Degree Centr.Information 

DensityClusteringCoef. Centr.In Degree Cognitive Demand Clique Count Centr.Information/[unscl.] 

CliqueCount Clique Count Column Gini Means Diff. Cognitive Demand Centr.Inverse Closeness/inv.=1 

 Density Clustering Coef. Constraint Burt Column Gini Means Diff. Centr.Out Degree/[unscl.] 

  Correlation Similarity Constraint Burt Centr.Total Degree/[unscl.] 

  Density Clustering Coef. Correlation Similarity Centr.In Degree (only PerCapita) 

  Effective Netw. Size Burt Density Clustering Coef. Centr.Inv. Closeness (only PerCapita) 

  Simmelian Ties Effective Netw. Size Burt  

  Triad Count Simmelian Ties  

   Triad Count  

Network 
Partition 

Kernighan–Lin 
partition 

Kernighan–Lin partition Kernighan–Lin partition Kernighan–Lin partition Kernighan–Lin partition 

Fiedler’s Spectral 
partition 

Fiedler’s Spectral 
partition 

Fiedler’s Spectral 
partition 

Fiedler’s Spectral 
partition 

Fiedler’s Spectral partition 
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DemocracyNow: YouTube video views of news videos 

A webscraper was programmed to obtain this dataset from the YouTube.com video news outlet of the 

nonprofit and independently syndicated news program “Democracy Now!” (hosted by Amy Goodman and 

Juan Gonzalez):  http://www.youtube.com/user/democracynow/videos?sort=p&flow=list&view=0 . The 

program is funded entirely through contributions from listeners, viewers, and foundations, and does not 

accept advertisers, corporate underwriting, or government funding. The 29 “most popular” (most viewed) 

videos were selected on July 24, 2013 and tracked every 12 hours for the consecutive 12 days at 5am and 

5pm, until August 5, 2013, resulting in 24 time steps. Clicking on each of these 29 videos, the YouTube 

platform provides links to some 20 additional videos at the right-hand side of the screen. We collected 

several attributes of the 29 videos + the linked videos. The nodes of the resulting network are the videos 

and directed links are established by the hyperlinks to other videos provided at the right-hand side of the 

video display. We eliminated those videos (nodes) that did not appear at each of the 24 periods. The result 

was a network with 165 nodes. We summed up the resulting 24 networks to create one union network (a 

tie-strength of 24 would mean that those two videos are linked at each of the 24 periods5). After testing 

for several cut-off points, we eliminated those links that did not achieve a tie-strength of 15 and above 

(the number of nodes in the resulting network stayed the same until a tie-strength of 21 = 87.5 % of the 

periods, which justifies this cut-off). The resulting network of 148 nodes contains many pendants (nodes 

only connected to one other node), which leads to confounding results in our evolutionary dynamics, since 

those video views are influenced by references to videos outside of our sample. After eliminating the 

pendants we are left with one directed union network of 56 nodes, and reintroduced the full tie-strength 

between 1 and 24 for those nodes. This includes the 29 most popular videos on the channel (our primary 

source) + 27 videos that were regularly linked to those popular videos (these videos might or might not 

be from the DemocracyNow channel and include videos from other news channels, individuals and 

bloggers, and entertainment provides, among others).  The main evolutionary growth variable consists of 

the number of views of the video. We also collected the number of Likes and Dislikes, the date published 

and the number of comments. We sum these indicators up for the 24 periods and ranked them from 

lowest to highest to create one attribute scale for the attribute partitioning.  

Figure S-1: DemocracyNow union network (56 nodes) 

 
Source: own elaboration, display with ORA software, CASOS, Carnegie Mellon University.  

                                                           
5 Tie-strengths above 24 sometimes occur and indicate that the same video was posted more than once for one 
time-instance as a link by the YouTube algorithm. 

http://www.youtube.com/user/democracynow/videos?sort=p&flow=list&view=0
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KIVA individual lenders: crowed-sourced entrepreneur fundraising  

A webscraper was programmed to obtain this dataset from Kiva Microfunds (Kiva.org), a non-profit 

organization that allows people to lend money via the Internet to underserved entrepreneurs and 

students in 70 countries: http://www.kiva.org/lend?sortBy=amountLeft  . On August 6, 2013 the 189 

entrepreneurs with the “largest amount left” (in % of total amount = minimum raised) were selected and 

the evolution of their fundraising efforts were recorded every 6 hours for the consecutive 6 days at 1am, 

7am, 1pm and 7pm, until August 12, 2013, resulting in 24 time steps. The nodes in the networks are the 

entrepreneurs and we establish an undirected link between two entrepreneurs if the same borrower has 

lent funds to both entrepreneurs. Each shared lender adds an additional tie-strength of 1. We summed 

up the resulting 24 networks to create one union network. We kept the nodes that made part of the 

resulting giant component (largest connected subgraph) and removed pendants, leaving us with a 

connected subgraph of 120 nodes for the “Kiva lender network”. We realize the exercise for two different 

growth variables: (A) the amount raised as percentage of total fundraising goal; (B) the amount raised in 

total US$. We collect different attributes of the (teams of) entrepreneurs (for example on the number of 

borrowers that teamed up for one project and on the characteristics of the field partner of the 

entrepreneurs, which can be microfinance institutions, social businesses, schools or non-profit 

organizations). We sum these indicators up for the 24 periods and rank them from lowest to highest to 

create one attribute scale for the attribute partitioning.  

Figure S-3: Kiva lender network (120 nodes) 

 
Source: own elaboration, display with ORA software, CASOS, Carnegie Mellon University. 

 

KIVA teams: crowed-sourced entrepreneur fundraising 

Lenders on Kiva.org can also join a team. There are local areas teams (with members from the same 

country or region), business teams (with members from the same company), religious congregations, 

sports clubs, or simply friends, etc. We also collected those and created a second Kiva network. In this 

network the nodes have the same attributes as in the “Kiva lender network”, but the network ties are 

teams, and not individual donors. After removing the pendants we are left with 118 nodes for the “Kiva 

http://www.kiva.org/lend?sortBy=amountLeft
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team network”. We summed up the resulting 24 networks to create one union network. The attribute 

measures are the same as in the KIVA individual lenders network. 

 

Trade: international total trade of goods 

The evolutionary growth variable of this dataset consists of Gross National Product (GDP) in constant US 

$ (of 2005) and for another test in GDP per capita of importing country in constant US $ (of 2005) (World 

Bank, 2011). We created a network of the sum of all international trade flows for each year between 1987 

and 2010 (in current US dollars) (based on UN Comtrade SITIC4rev2, which was cleaned and kindly shared 

with us by Hausmann, Hidalgo, Bustos, et al., 2011). We summed up the resulting 24 networks to create 

one union network.  As classifying attribute measures we used several World Development indicators 

(World Bank, 2011). We sum them up for the 24 periods and rank them from lowest to highest to create 

one attribute scale for the attribute partitioning. Given the limitation in available time series for World 

Development Indicators, we had to reduce the network to 118 country nodes, which represent 97 % of 

global GDP and 91 % of the global population. 

Figure S-6: International trade in USD (118 nodes) 

 

Source: own elaboration, display with ORA software, CASOS, Carnegie Mellon University. 

 

NOVA: YouTube video views of science videos 

The dataset preparation follows the same procedure as for the above described DemocracyNow dataset, 

being scraped from the YouTube.com video outlet of the program NOVA of U.S.’s Public Broadcasting 

Service (PBS), during the same period, but collected at 6am and 6pm: 

http://www.youtube.com/user/NOVAonline/videos?flow=list&view=0&sort=p . Since the link structure 

was more volatile in this case, we only counted links with a tie-strength of and above 22 (out of 24) in the 

http://www.youtube.com/user/NOVAonline/videos?flow=list&view=0&sort=p
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summed union network.5 Before the elimination of pendants, the result was a union network of 156 

nodes, and we worked with the directed network of 86 nodes that was the result after the elimination of 

pendants. We then reintroduced the full tie-strength of 1-24 for the identified 86 nodes. 

Figure S-2: NOVA PBS union network (86 nodes) 

 
Source: own elaboration, display with ORA software, CASOS, Carnegie Mellon University. 

 

References 

Baily, M. N., Hulten, C., Campbell, D., Bresnahan, T., & Caves, R. (1992). Productivity Dynamics in 
Manufacturing Plants. Brookings Papers on Economic Activity. Microeconomics, 1992, 187–267. 

Calcul. (2012). Bell Number Approximation Calculator. Retrieved from http://www.calcul.com/bell-number-
approximation 

Edwards, A. W. F. (2002). The Fundamental Theorem of Natural Selection. Theoretical Population Biology, 
61(3), 335–337. http://doi.org/10.1006/tpbi.2002.1570 

Ewens, W. J. (1989). An interpretation and proof of the fundamental theorem of natural selection. Theoretical 
Population Biology, 36(2), 167–180. http://doi.org/10.1016/0040-5809(89)90028-2 

Fisher, R. A. (1930). The Genetical Theory of Natural Selection (1st ed.). Clarendon Press, Oxford. 

Foster, L., Haltiwanger, J., & Krizan, C. J. (1998). Aggregate Productivity Growth:  Lessons from Microeconomic 
Evidence. National Bureau of Economic Research Working Paper Series, No. 6803. Retrieved from 
http://www.nber.org/papers/w6803 

Frank, S. A. (1995). George Price’s contributions to evolutionary genetics. Journal of Theoretical Biology, 
175(3), 373–388. http://doi.org/10.1006/jtbi.1995.0148 

Frank, S. A. (1997). The Price Equation, Fisher’s Fundamental Theorem, Kin Selection, and Causal Analysis. 
Evolution, 51(6), 1712–1729. 

Frank, S. A. (1998). Foundations of Social Evolution. Princeton University Press. Retrieved from 
http://stevefrank.org/foundations/foundations.html 



  

32 
 

Frank, S. A. (2012). Natural selection. IV. The Price equation. Journal of Evolutionary Biology, 25(6), 1002–
1019. http://doi.org/10.1111/j.1420-9101.2012.02498.x 

Frank, S. A. (2013). Natural selection. VI. Partitioning the information in fitness and characters by path 
analysis. Journal of Evolutionary Biology, 26(3), 457–471. http://doi.org/10.1111/jeb.12066 

Hilbert, M. (forthcoming). Linking Information, Knowledge and Evolutionary Growth: A multilevel interplay 
between natural selection and informed intervention. Preprint Version, Presented at “Advances in 
Dynamic Economics and Development: Economic and Complexity”, Nov. 2013. Retrieved from 
http://www.economia.ufpr.br/Eventos/Complexity2013/Hilbert%20-
%20Linking%20information%20,knowlege%20and%20evolutionary%20Growth.pdf 

Lessard, S. (1997). Fisher’s Fundamental Theorem of Natural Selection Revisited. Theoretical Population 
Biology, 52(2), 119–136. http://doi.org/10.1006/tpbi.1997.1324 

Metcalfe, J. S., & Ramlogan, R. (2006). Creative Destruction and the Measurement of Productivity Change. 
Revue de l’OFCE, 97 bis(5), 373–397. 

Nelson, R. R., & Winter, S. G. (1985). An Evolutionary Theory of Economic Change. Belknap Press of Harvard 
University Press. 

Price, G. R. (1970). Selection and Covariance. Nature, 227(5257), 520–521. http://doi.org/10.1038/227520a0 

Price, G. R. (1972a). Extension of covariance selection mathematics. Annals of Human Genetics, 35(4), 485–
490. http://doi.org/10.1111/j.1469-1809.1957.tb01874.x 

Price, G. R. (1972b). Fisher’s “fundamental theorem” made clear. Annals of Human Genetics, 36(2), 129–140. 

Schumpeter, J. (1939). Business Cycles: A Theoretical, Historical, And Statistical Analysis of the Capitalist 
Process. New York: McGraw-Hill. Retrieved from 
http://classiques.uqac.ca/classiques/Schumpeter_joseph/business_cycles/schumpeter_business_cycles.
pdf 

Simon, H. A. (1962). The Architecture of Complexity. Proceedings of the American Philosophical Society, 
106(6), 467–482. 

Wikipedia. (2013). Bell number. Retrieved from http://en.wikipedia.org/wiki/Bell_number 

 

 




