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Reversal of trends in global fine particulate
matter air pollution

Chi Li 1 , Aaron van Donkelaar 1, Melanie S. Hammer 1,
Erin E. McDuffie 1,11, Richard T. Burnett2,3, Joseph V. Spadaro4,5,
Deepangsu Chatterjee1, Aaron J. Cohen 6,2, Joshua S. Apte 7,8,
Veronica A. Southerland9, Susan C. Anenberg 9, Michael Brauer 10,2 &
Randall V. Martin 1

Ambient fine particulate matter (PM2.5) is the world’s leading environmental
health risk factor. Quantification is needed of regional contributions to chan-
ges in global PM2.5 exposure. Here we interpret satellite-derived PM2.5 esti-
mates over 1998-2019 and find a reversal of previous growth in global PM2.5 air
pollution, which is quantitatively attributed to contributions from 13 regions.
Global population-weighted (PW) PM2.5 exposure, related to both pollution
levels and population size, increased from 1998 (28.3 μg/m3) to a peak in 2011
(38.9μg/m3) and decreased steadily afterwards (34.7μg/m3 in 2019). Post-2011
change was related to exposure reduction in China and slowed exposure
growth in other regions (especially SouthAsia, theMiddle East andAfrica). The
post-2011 exposure reduction contributes to stagnation of growth in global
PM2.5-attributable mortality and increasing health benefits per µg/m3 marginal
reduction in exposure, implying increasing urgency and benefits of PM2.5

mitigation with aging population and cleaner air.

Global ambient fine particulate matter (PM2.5) air pollution is respon-
sible for millions of annual premature deaths1–5, ~1 year of reduced life
expectancy6, and trillions of US dollars of social costs7–9. Global
population exposure to PM2.5 is skewed by the broad co-existence of
high population density and high PM2.5 concentration

10–12, especially in
South and East Asia. Nearly half (47%) of current global PM2.5-attribu-
table deaths are due to traditional sources of air pollution exposure
such as fossil and solid biofuel combustion13, which can be mitigated.
High-income countries in Europe and North America have for decades
regulated emissions from major air pollution sources14–16. Ambient
PM2.5 levels across the US and Canada, for example, have decreased by
64% from 1981 to 201617. Meanwhile PM2.5 exposure deteriorated in

Asia following rapid industrialization and urbanization, as inferred
mainly by satellite observations18–22. Both the increasing PM2.5 expo-
sure and rapid population growth in Asia have led to a steady increase
of the global PM2.5-associated health burden over at least 1990-
20103,23,24.

Since the early 2010s, China implemented increasingly rigorous
measures to alleviate its severe air pollution25–27, resulting in sub-
stantial population-weighted (PW) PM2.5 reductions (in excess of
15μg/m3 within 8 years) as determined by nationwide ground mon-
itoring, satellite-derived estimates and air quality modeling25,28,29. The
consequent national health benefits (e.g., a reduction of ~0.4 million
attributable annual deaths) are substantial25,26. Additionally, evidence
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is emerging that the growth rate of the PM2.5 and total aerosol bur-
den is slowing in other key regions including India23,28,30, North
Africa31,32, the Middle East32–34, Central Africa31, and the Amazon35,36.
There is need to comprehensively interpret, within a global context,
how these regional changes affect global PM2.5 air pollution and its
health impacts.

Here, we quantify how PW PM2.5 air pollution and health burdens
have changed during 1998-2019, both globally and in 13 regions, with a
quantification of regional contribution to changes in global exposure.
We use a combination of high-resolution (0.01°, approximately 1 km2)
satellite-derived global PM2.5 data, territory-, age- and disease-specific
mortality data, and a concentration-response model linking PM2.5

outdoor concentrations to adverse health impacts. We present a
comprehensive analysis revealing a timely reversal of global trends in
PW PM2.5, largely driven by reductions in China and bolstered by
mitigation efforts across different regions. The declining trend in
recent years points toward a possible path of continuing and sustained
improvements in global air quality and reductions in the associated
health burdens.

Results and discussion
Reversal in global population-weighted PM2.5 trends
We use recently updated monthly global PM2.5 data gridded at ~1 km2

resolution over 1998-2019, as derived from satellite observations of
aerosol optical depth, chemical transport modeling, and ground
monitoring data28 (“Methods” section). Annual mean estimates are

consistent (e.g., R2 = 0.90 in 2017) with ground-based observations
(Fig. 1 and Supplementary Section S1).

Annual mean PW PM2.5 exposure changed substantially across
204 global territories (defined by theWorld Health Organization) over
1998–2019. Before 2011 (Fig. 2a), significant (p <0.05) growth in PM2.5

exposure occurred widely across 87 territories (population 4.4 billion)
mainly in Asia, Africa and South America, while only 15 territories
(population 0.4 billion) exhibited significant reductions. Instead, dur-
ing 2011–2019 (Fig. 2b), the breadth of areas with significant decreases
expanded substantially (58 territories, population 3.0 billion) to
include Europe, Asia Pacific, Southeast Asia, Russia, Sub-Saharan
Africa, and most notably, China. Other regions whose PW PM2.5 levels
were clearly increasing before 2011, including South Asia, North Africa,
and South America, also exhibited decreases in the upward trends.
Only five territories (in the Caribbean and Pacific, population 14.3 mil-
lion) exhibited significant positive trends during 2011–2019. Overall, at
the global level there has been a reversal in the pre-2011 increase of PW
PM2.5. The regional trends are largely connected with local air quality
management policies in each region (Supplementary Section S2).

Consequently, global annual mean PW PM2.5 peaked in 2011
(38.9μg/m3, Fig. 3a), with trends ±95% confidence intervals (CI) of
0.8 ± 0.2μg/m3/year during 1998–2011 and -0.5 ± 0.1μg/m3/year dur-
ing 2011-2019. Trends before 2011 were driven (Fig. 3d) by marked
increases in India (1.6 ± 0.2μg/m3/year), China (1.5 ± 0.4μg/m3/year),
and other areas of South Asia (1.3 ± 0.3μg/m3/year), and after 2011 by
marked decreases in China (−2.4 ± 0.8μg/m3/year), Eastern Europe

Fig. 1 | Validation of estimated PM2.5. a Definition of 13 regions (consistent color-
coding throughout the paper) and the distribution ofmonitoring sites (black dots).
b Scatter plot (color-coded for the 13 regions) of annual mean PM2.5 from ground-
basedmonitors (X-axis) and the 1 km satellite-drived estimates (Y-axis) in 2017, with
overall statistical metrics indicated at the upper-left. c Regional distribution of R2

(size) and normalized rootmean square difference (NRMSD, color, Eqs. 1, 2) for the
annual mean PM2.5 through 2015-2019. Number of available sites for evaluation are
indicated in the brackets following the region names. d Bootstrapped NRMSD of
regional population-weighted PM2.5 as a function of sample size in 2017. Themap is
created using packages cartopy56 and matplotlib57 in Python.
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(−0.6 ± 0.2μg/m3/year), and Western Europe (−0.4 ±0.1μg/m3/year).
Although these absolute trends are useful for comparing rates of
change in pollution levels in each region, regional contributions to
global net trends can be compared by also considering their relative
population size.

Wedefine andusenormalized PWPM2.5 (“Methods” section, Eq. 8)
to quantify the regional contributions to global PW PM2.5 in each year
(Fig. 3a,b). In 1998, PW PM2.5 in China was 36.9μg/m3, contributing to
27.8% (7.9μg/m3) of global PW PM2.5 (28.3μg/m

3) after accounting for
the 21.4% of global population fromChina. This contribution increases
moderately to a peakvalue of 30.2%of global PWPM2.5 in 2006, weakly
declines over 2006-2013, and then decreases substantially to 20.1% in
2019. Concurrently, the contribution from India increases rapidly from
22.4% in 1998 to 31.3% in 2019, driven by rapid increases in PW PM2.5

over 1998-2011 (Fig. 3d) and in population throughout 1998-2019
(Fig. 4a). The contribution of the entire South Asia region to global PW
PM2.5 was 29.9% in 1998, greater than of China by just 2 percentage
points, while increased to 40.9% in 2019, twice that of China. Another
region with noteworthy increase in its contribution to global PM2.5

exposure is Sub-Saharan Africa, from 11.7% in 1998 to 13.1% in 2019.
This region has the strongest growth rate in population (Fig. 4a), which
led to reversal of the post-2011 decrease in PW PM2.5 (−2.5μg/m

3) to an
increase (0.2μg/m3, comparable to the decrease in India) in normal-
ized PW PM2.5 (Fig. 3c). Conversely, regional contributions decreased
by a factor of 2 or more over 1998-2019 for the US (2.1% to 0.9%),
Western Europe (3.6% to 1.8%), Eastern Europe (2.7% to 1.2%), and
Russia (1.5% to 0.7%). The latter two regions have population loss
during 1998–2019 (Fig. 4a) which accelerated the reduction of this
contribution.

Global mean PW PM2.5 increased by 10.5 μg/m3 from 1998 to
2011 (69% of this change coming from India and China),
and decreased by 4.2 μg/m3 from 2011 to 2019 (3.8μg/m3 fromChina)
(Fig. 3c). Linearly fitting the regional time series of normalized
PW PM2.5 (Fig. 3e) identifies India (0.31 ± 0.04 μg/m3/year) and
China (0.24 ± 0.09 μg/m3/year) as the strongest contributors to
the pre-2011 increase, followed by Sub-Saharan Africa (0.09 ±
0.04 μg/m3/year) and the rest of South Asia (0.08 ± 0.01 μg/m3/year).

For the post-2011 decrease, China (−0.5 ± 0.1μg/m3/year) alone is
the dominant driver (Fig. 3c, e), followed by Western Europe
(-0.03 ± 0.01 μg/m3/year), Southeast Asia (Other) (-0.02 ± 0.01 μg/m3/
year) and Eastern Europe (−0.02 ± 0.01 μg/m3/year). Seasonal trends
are further discussed in Supplementary Section S3 and Fig. S1, which
reveal global trends and regional contributions that are overall
consistent with the annual trends.

The analysis of yearly changes (Fig. 3c) and linearly fitted trends
(Fig. 3e) quantitatively offer compelling evidence that the post-2011
decreasewas largely drivenby thedecreasing PWPM2.5 exposure trend
in China, and that since 2015 India has become the leading contributor
to global ambient PM2.5 exposure. The different trajectories of
population-weighted trends in China and India offer examples of how
different air qualitymanagement strategies can induce pronounced air
pollution changes within a short (<10 year) period. Nonetheless, the
slowing growth of PM2.5 exposure in tropical regions should not be
ignored. If the pre-2011 trends of PM2.5 exposure in each region had
been sustained through 2019, the global PW PM2.5 would have
increased by 6.5μg/m3. In reality, global PW PM2.5 is 10.7μg/m3 less
relative to this crude “business as usual” case, with 5.5μg/m3 con-
tributed by China, 2.9μg/m3 reduced in South Asia (including India),
1.1μg/m3 alleviated in the Middle East and Africa, and 0.4μg/m3 attri-
butable to the two Southeast Asian regions. Relative to the scenario in
which their PW PM2.5 concentrations remain stable at the 2011 level,
the US and Europe contribute collectively to a 0.5 μg/m3 reduction of
global PW PM2.5 in 2019.

Overall, using the decomposed regional contribution to global
PM2.5 exposure, we find a determinant role of China as well as sub-
stantial contributions from tropical regions to the recent global
reversal of trends in PM2.5 exposure.

Stagnation of growth in PM2.5-attributable mortality
What are the associated health impacts of the changes in PW PM2.5

pollution presented above? We derive for each territory long-term
changes of annual PM2.5-attributable mortality using the PW PM2.5

estimates, a concentration-response function (GEMM), and age- and
disease-specificmortality data from theGlobal Burden ofDisease (GBD)

Fig. 2 | General reversal of trends in PM2.5 air pollution around the world.Maps
show trends in population-weightedPM2.5 for 204 territories over (a) 1998-2011 and
(b) 2011-2019. Trends with lower level of statistical significance (i.e., higher p-

values) are plotted with more transparent colors. The maps are created using
packages cartopy56 and matplotlib57 in Python.
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Fig. 3 | Reversal of global PM2.5 exposure growth dominated by China. Time
series of absolute (a) and relative share (b) of global population-weighted (PW)
PM2.5 concentrations in 13 regions (colored) from 1998 to 2019. c Contribution of
each region to the changes in global PWPM2.5 among 1998, 2011, and 2019. The two
large black numbers define the total differences from global exposures indicated
by black bars (and numbers above them), and the colored bars and numbers
attribute the differences into regional contributions (numbers in bracket indicates

the absolute change before normalized to global population). Trends (filled bars
indicate significant trends with p-values < 0.05 and empty bars indicate insignif-
icant trends) in population-weighted PM2.5 before (d) and after (e) normalization to
global population over each region for 1998-2011 (i.e., the left bar for each colored
region) and 2011–2019 (right). Error bars in d and e indicate the 95% confidence
intervals of the trends.

Fig. 4 | Changes in three factors alteringPM2.5-attributablemortality over each
region. a population (normalized to multi-year mean), (b) average age, (c) attri-
butable fraction of baselinemortality to PM2.5 exposure. Colors represent different

regions in each panel. In panel c, deaths from the six relevant diseases and ages <5
or ≥25are considered, size of each marker represents the regional population, and
more recent years are indicated by more transparent colors.
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2019 study (Methods). Figure 5 shows global and regional changes in
annual PM2.5-attributable mortality during 1998–2019. Global annual
attributable mortality increased steadily from 4.04 (95% CI: 2.59–5.33)
million in 1998 to 5.70 (95% CI: 3.98–7.18) million in 2011. The pace
slowed afterwards, peaking at 5.83 million (95% CI: 4.05–7.38) in 2015
and then decreasing slightly to 5.74 million (95% CI: 3.92–7.35) in 2019.

Relative to the pivot year of 2011, we use an order-based and year-
by-year decomposition approach (Methods) to quantify the role of
PM2.5 exposure and three other relevant demographic factors in driv-
ing the changes in annual PM2.5-attributable deaths. We extend pre-
vious decomposition studies that focused primarily on earlier time
periods or differences between representative years3,20 to present
contemporary global and regional time series of annual contributions

to the changing mortality, especially those from changing PM2.5

exposure. A recent stagnation of global PM2.5-attributable deaths is
identified and attributed to specific drivers by this continuous
decomposition. Globally, annual PM2.5-attributable deaths increased
by 0.97 million (0.78 million increase in India and China) from 1998 to
2011 and decreased by 0.70 million (0.50 million reduction in China)
afterwards, due to changing PM2.5 exposure (dark red in Fig. 5, see also
Supplementary Fig. S2a). Reductions in global PM2.5 exposure accu-
mulatedduring 2012–2019 contribute to 2.65million postponedPM2.5-
attributable deaths, with 1.66 million (63%) from China. The larger
contribution of other regions (e.g., theUS and Europe) to reductions in
mortality than to reductions in exposure reflect the increasing benefits
of PW PM2.5 reduction at low PM2.5 concentrations and among older

Fig. 5 | Trends in global and regional PM2.5 health burden, showing exposure
and mortality mitigation counteracting population growth and aging. In each
panel, gray points and lines indicate the time series of annual PM2.5-attributable
mortalities (error bars represent the 95% confidence intervals), and colored bars
represent changes (relative to 2011) attributed to exposure (dark red), baseline

mortality rate (orange), population aging (light blue), and population growth (dark
blue). Numbers inset at the right of each panel indicate the accumulated changes in
mortality during 2012–2019 vs. 2011, colored by each of the four driving factors.
Values following the region name at the top of each panel are the net changes
during 2012–2019 summed from the four driving factors.
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populations, as discussed in the next section. Western Europe (0.30
million), Eastern Europe (0.23 million), and the US (0.13 million) have
the next highest exposure-driven reduced deaths after 2011 (25% in
total), which are stronger than their contributions to the post-2011
reduction of global exposure (e.g., 15% in Fig. 3c).

In addition to exposure, three other factors also make sizable
contributions to the changes in global PM2.5-attributable mortality
(Supplementary Section S4). Globally, the 2.65 million reduced deaths
by exposure reductions after 2011 are bolstered by those from reduced
baseline mortality rates (3.90 million), to nearly offset the additional
deaths due to population increases (2.15 million) and aging (4.74 mil-
lion), yielding the net plateauing of growth observed in Fig. 5 (top left
panel). Again, the achievement in China is noteworthy, with 1.10 million
net reduced PM2.5-attributable deaths as accumulated since 2011 (1.20
million if benchmarked to 2013). The national reductions in China of
annual PM2.5-attributable mortality and the determinant role of expo-
sure reductions are consistent with findings of Geng et al.26 for
2012–2017. Here we further illustrate their driving role in the stagnation
of growth in global PM2.5-attributable mortality. US and Europe con-
tribute to an additional reduction of 0.61 million PM2.5-attributable
deaths. Oppositely, strong net growth in annual mortality is found
for India and the rest of SouthAsia (1.38millionexcessdeaths after 2011),
followed by North Africa and theMiddle East, Indonesia &Malaysia, and
Latin America, due to insufficient reductions in PM2.5 exposure to
counteract the increased mortality from population growth and aging.

Overall, our analysis reveals that globally, the slowing growth in
PM2.5 exposure after 2011 critically offsets the effects on PM2.5-attri-
butablemortality of a growing and aging global population, plateauing
the previous growth in estimated global annual mortality caused by
PM2.5 exposure.

Increasing health benefits of PM2.5 reduction
What level of health benefits does each region achieve by reducing the
same amount of PW PM2.5, and how has this sensitivity changed as air
quality and demography both evolve over time? Such insight from a
global and long-term perspective is lacking while is particularly
important to customize strategic mitigation policies at various levels
of PM2.5 exposure. We derive a numeric representation of the changes

in annual PM2.5-attributable deaths per 1μg/m3 marginal reduction in
PM2.5 exposure for each region and year, using a finite-difference
approach (“Methods” section, Eqs. 12 and 13). China experienced the
greatestmarginal health benefits (i.e., reducing 21–36 thousand annual
deaths) by mitigating 1μg/m3 PM2.5 exposure among all regions
(Fig. 6a), followed by Western Europe (13–16 thousand, with the
highest average age, Fig. 4b) and India (12–16 thousand, with the sec-
ond highest population). Large local population sizes contribute to
these expected high benefits in these areas, as also suggested in pre-
vious studies3,37. In contrast, the per capita reduced deaths (Fig. 6b) are
relatively higher (i.e., than the global mean level in black) over the US
and Europe due to themore aged population (Fig. 4b), and over Russia
due to the substantially higher baseline mortality rates (Supplemen-
tary Figs. S3a and S4).

Globally, the per capita (for ages <5 or ≥25) health benefits per
1μg/m3 marginal reduction (Fig. 6b, black) reduced from 39 to 30
annual deaths/million during 1998–2011, and then reversed to 32
annual deaths/million in 2019. All regions except Russia also experi-
enced significantly (p < 0.05) increasing marginal health benefits since
2011 (Fig. 6a), because reductions in baseline mortality rates alone
cannot offset the other three forces that largely enhanced the health
benefits (Fig. 7 and Supplementary Section S5). Notably, the exposure-
driven changes (Fig. 7a) were inversely related (R2 > 0.93) with PM2.5

exposure (dotted) in all of 13 regions, i.e., increasing PW PM2.5 leads to
decreasing sensitivity of its attributablemortality and vice versa. These
globally universal strong correlations were driven by the increasing
sensitivity of the overall population attributable fraction (PAF) to PW
PM2.5 changes at lower PWPM2.5 levels (Fig. 4c)

2,4,38. Such a supra-linear
exposure-response relationship has previously been discussed to elu-
cidate greater health benefits from equally mitigated PW PM2.5 in less
polluted regions of the world10, and in the cleaner future over the US39.
This studyprovides a globally complete and long-termsynthesis of this
anti-correlation. The changes in PAF sensitivity are particularly strong
at high PW PM2.5 before it stops increasing following lower PW PM2.5.
Therefore, for most of the global population (e.g., 80% exposed to
PM2.5 > 15μg/m3 in 2019), mitigation of PW PM2.5 will continuously
increase its health benefits at lower concentrations, and among older
populations in the future.

Fig. 6 | Global and regional changes in themarginalhealth benefits ofPM2.5mitigation. aChangeof PM2.5-attributable deathswith 1μg/m3 change in PM2.5 exposure in
each region and year; (b) similar to a but normalized by relevant population (ages <5 or ≥25).
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Implications
We were able to observe the worldwide reversal of exposure to PM2.5

air pollution, and quantify regional contributions to this long-term
change, due to a > 15-year sustained effort to develop long-term high-
resolution seamless observation-based global PM2.5 data. The esti-
mates bridge the gap between groundmonitoring of spatially discrete
surface PM2.5 measurements and satellite observations of spatially
continuous columnar aerosol optical depth (AOD), by leveraging state-
of-science model representation of the PM2.5-AOD relationship and a
powerful statistical tool to spatially propagate measurement
information28,40–42. These satellite-derived PM2.5 estimates offer valu-
able data for vast global regions and population without regular
monitoring of PM2.5 (over a billion persons inmore than 100 territories
worldwide43). Many poorly monitored areas (e.g., in Africa) exhibit
dynamically varying changes in PM2.5 exposure (Fig. 2) and increasing
contribution to global PM2.5 exposure (Fig. 3b), thus satellite-based
estimates will need to be sustained in the future, apart from expansion
of surface monitoring. Our analysis reports initial effects of recent
environmental policies over South Asia, and cessation of growth in
natural (e.g., dust and open fire) sources over the Middle East and
Africa. Additional satellite-based and ground-level measurements in
these regions are critical to monitoring future progress. A particular
region of interest is Africa, where rapid population growth and
industrialization are expected to pose stronger challenges to envir-
onmental regulations44 and potentially enhance its contribution to
global PM2.5 pollution.

The normalized PW PM2.5 developed here defines the contribu-
tion to large-scale PM2.5 exposure from a specific location or region,
enabling quantification of the importance of each region to the dis-
covered global reversal. This metric is proportional to the product of
(positively correlated) PM2.5 exposure and population, highlighting
the significance and urgency of mitigating PM2.5 pollution over
populous regions from another unique perspective. China was and
India is now associated with >30% of global PM2.5 exposure, evidence
of the critical roles played by population size and national air quality
management strategies. The normalized PW PM2.5 metric is applicable

to other underexploited studies, e.g., ranking the contribution to
global PM2.5 pollution by populous cities, or comparisonbetween rural
vs. urban regions. Besides the global and regional insights in this paper,
data of annual mean PM2.5 exposure, PM2.5-attributable mortality and
marginal benefits, and their decompositions into drivers for all 204
territories are provided in an open-access data repository (see “Data
Availability” Section) to support further analysis at smaller scales.

Two important findings in this comprehensive study support the
need for additional futuremeasures to furthermitigate PM2.5 exposure
worldwide: (1) the recent PW PM2.5 reductions globally and in many
territories did not completely counteract the increase in global PM2.5-
attributable mortality due to the growth and aging of population
(Fig. 5), and (2) future health benefits are expected to increase more
rapidly than in the past due to the globally universal stronger sensi-
tivity of PAF at lower PW PM2.5 and the compounding effect of an ever-
increasing and older population (Figs. 6 and 7). The latter perspective
is timely especially considering the recent WHO update of the annual
mean PM2.5 guideline45 (from 10 to 5μg/m3). Emerging studies38,46,47

indicated even stronger and steeper concentration-response functions
at low PW PM2.5 levels (<10μg/m3), further strengthening the greater
benefits at reduced PM2.5 exposure. However, future mitigation of
PM2.5 air pollution at lower PM2.5 concentrations will be increasingly
challenging, due to growing importance of aerosols arising from cli-
mate change (e.g., wildfire and dust)32,36,48, and as more readily mitig-
able anthropogenic sources are reduced49,50.

Based on available ground monitors, random uncertainties in
the PM2.5 exposure estimates were found regionally variable while no
systematic biases were identified (i.e., Fig. 1 and Supplementary
Section S1), supporting the comparison of (normalized) PW PM2.5

and trends among regions. Supplementary Sections S6 and S7 (Figs.
S5 and S6) further verified that our assessments and interpretations
of trends in PM2.5 health impacts are overall insensitive to the choice
of concentration response functions or decomposition approaches,
although the estimated mortality numbers can significantly differ.
This work also assumes equitoxicity of aerosol mass regardless of
chemical mixture, the current approach employed by the GBD and

Fig. 7 | Decomposition of changes in marginal health benefits of PM2.5 miti-
gation. The sensitivity of PM2.5 attributablemortality to 1μg/m3 difference in PM2.5

(normalized to 2011) over each region during 1998–2019 are decomposed to

changes from (a) PM2.5 exposure, (b) population age structure, (c) baseline mor-
tality rate, and (d) population growth. Dotted lines are the time series of
population-weighted PM2.5 (also normalized to 2011) on a flipped Y-axis.
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WHO. This assumption may under- or over-estimate PM2.5-attribu-
table mortality and its trends if such uniform toxicity were formally
revised according to emerging evidence. Future advances in obser-
vational information and model capabilities to improve the accuracy
of PM2.5 estimates, as well as updated PM2.5-health association from
epidemiological studies, will reduce these uncertainties and support
tracking the global evolution of PM2.5 air quality in response to air
quality management and other emission changes, and the implica-
tions on human health.

Methods
Datasets
We use global satellite-derived PM2.5 estimates (V5.GL.03) available at
monthly and annual temporal resolution over 1998-2019 and
0.01° ×0.01° (~1 × 1 km2) spatial resolution as described by van Donke-
laar et al.28. Briefly, daily retrievals of columnar aerosol optical depth
(AOD) were obtained from seven algorithms and four satellite instru-
ments (Dark Target and Deep Blue for Terra- and Aqua-MODIS, MAIAC
for combined Terra- and Aqua-MODIS, the Standard Aerosol algorithm
for Terra-MISR, and Deep Blue for SeaStar-SeaWiFS). Each of these
satellite AOD products and a chemical transport model (GEOS-Chem)
simulation were compared with ground-based measurements of AOD
from the global Aerosol Robotic Network (AERONET) to infer their
biases anduncertainties. These daily AODswere thenmonthly averaged
and combined using spatially resolved weights based on evaluation
metrics, yielding best estimates of globalmonthly AODon 0.01° × 0.01°
grids through 1998-2019. The merged satellite observations comprise
91-96% of global population-weighted AOD for every month, with
simulated GEOS-Chem AOD primarily used to fill the remaining grid
cells (mostly snow covered) and produce the seamless AOD surface.

The best estimate AODs were then related tomonthly PM2.5 using
the GEOS-Chem simulation to account for the spatial and temporal
variation of their relationship (η). η describes the state-of-science
model representation of the processes affecting the AOD to PM2.5

relation including aerosol chemical composition, sampling time,
hygroscopicity and vertical profile. These geophysical PM2.5 estimates
explain about 80% of the variance in globally measured annual mean
PM2.5 at surface monitoring sites collected by the World Health
Organization (WHO)42,51.

To further improve the representation and fidelity of the PM2.5

estimates, ground-based observations of PM2.5 were collected and
compiled from over 11,000 sites worldwide (e.g., Fig. 1a)28. Biases of
geophysical PM2.5 estimates against these measured were interpreted
as uncertainty sources of η from several relevant predictor variables,
which were further parameterized and propagated to all grid cells
using a geographically weighted regression28,42. These predicted biases
were then applied to geophysical PM2.5 to provide the final hybrid
estimates, which further increase the coefficient of determination (R2)
of global annual PM2.5 measurements collected by the WHO
(4409 sites) to 94%28. We use these hybrid estimates in this study.

We mainly use coefficient of determination (R2) and root mean
square difference (RMSD, Eq. 1) to evaluate the estimates (xsest) using
collocated in situ (xsobs) measurements (e.g., Extended Data Fig. 1b,c)
across a total of n observational sites. RMSD is further normalized to
the mean of monitor data to derive the normalized root mean square
difference (NRMSD) in Eq. 2.

RMSD=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
s = 1 xs

est � xsobs
� �2

n

2

s
, ð1Þ

NRMSD=
RMSDPn
s = 1x

s
obs=n

ð2Þ

We use age- and disease-specific number of deaths (i.e.,
baseline mortality) in 204 global countries and territories (col-
lectively called “territories” in the paper) during 1998-2019, from
the Global Burden of Disease (GBD) 2019 study. Six relevant dis-
eases that contribute to PM2.5-attributable deaths are considered,
including mortality from adult (25 years and older) with ischemic
heart disease (IHD), Stroke, chronic obstructive pulmonary dis-
ease (COPD), lung cancer (LC), type-2 diabetes mellitus (DM), and
childhood and adult (under 5 years and 25 years and older) acute
lower respiratory infections (LRI). Deaths due to other non-
communicable diseases are not considered in this study, which
account for ~20% of total global PM2.5-attributable deaths2.

Age-specific population (P) counts for the 204 global territories
are available for each year during 1998–2019 in the GBD 2019 dataset,
which are combined with the age- and disease-specific deaths (D) to
derive mortality rate (MR) and mean ages (Agem) for a region using
Eqs. (3) and (4).

MR=

Pi
age

Pj
disease

Pk
territoryDi, j, kPi

age

Pk
territoryPi, k

, ð3Þ

Agem =

Pi
age

Pk
territoryAgei, k ×Pi, kPi

age

Pk
territoryPi, k

, ð4Þ

The GBD population data for each territory contains 96 age bins,
with population number for ages with <1, 1, 2,…, 94, and 95+ years. We
assign an age of 0 to the <1 year group, and of 95 to the 95+
years group.

Spatially resolved population estimates at 30-s resolution (~1 km)
are from theGriddedPopulationof theWorld (GPWv4) database. GPW
is available every five years for 2000–2020. For each year during
1998–2019, we extract the GPW population in the closest year and
regridded the data into regular 0.01° × 0.01° grids. These regridded
population distributions are further scaled for each of the 204 terri-
tories to match their total populations for that year in the GBD 2019
population data.

Population-weighted PM2.5 and its normalization
The high-resolution GPW population estimates (P) are used with the
PM2.5 estimates (both 0.01° × 0.01°) to derive PW PM2.5 exposure (E)
for each territory (region) and year based on the gridded PM2.5 (PMl)
from each grid cell location (l).

E =
Pl

locationPMl ×PlPl
locationPl

ð5Þ

We evaluate the PW PM2.5 estimates using a bootstrapping
approach (e.g., Fig. 1d). For each region with a total of N ground sites,
we randomly selectn sites to calculate PWPM2.5 fromboth the ground-
based observations and the collocated estimates (n varies from 10 to
110). We repeat the random sampling m times, where m=N=n× 200,
and thus get m collocated pairs of observed and estimated PW PM2.5,
which are then used to calculate the NRMSD in Fig. 1d.

It can be inferred from Eq. 5 that the global PW PM2.5 can be
calculated as in Eq. 6.

Eglobal =

Pk
regionEk ×PkPk

regionPk

ð6Þ
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Therefore, contributions from each region to the global PW PM2.5

can be expressed as the sum of normalized PW PM2.5 (NE).

Eglobal =
Xk

region

NEk ð7Þ

NEk =
Ek ×PkPk
regionPk

, ð8Þ

Increases in normalized PW PM2.5 of a region thus can be from
increases in either its PM2.5 exposure or its population share of
the world.

Trend estimates
We estimate linear trends in the (normalized) PW PM2.5 time series for
each territory (Fig. 2) and region (Fig. 3d, e), based on a linear least
square fitting approach. We report the linear slope (concentration
trend in μg/m3/year), its 95% confidence interval (CI), as well as the
p-value (two-tailed Student’s t test). In our analysis, slopes with p-value
of <0.05 are associated with their 95% CIs not enveloping the zero
point and vice versa, therefore the p-values and 95% CIs have equiva-
lent indications on the significance of derived trends. Thesemulti-year
slopes are less sensitive to abnormal years, relative to differences
between two benchmark years. We also confirmed that the derived
trends in PWPM2.5 of the 204 territories are highly consistent (R2 > 0.9)
with those from non-parametric (Mann-Kendall52,53) trend estimation
approach.

PM2.5-attributable mortality and its sensitivity to PM2.5

mitigation
For each territory, we calculate its annual PM2.5-attributable deaths
(DPM) based on Eqs. (9) and (10) and the changing baseline mortality
data and PW PM2.5 in each year.

DPM =
Xi

age

Xj

disease

Di, j ×PAFi, jðEÞ ð9Þ

PAFi, jðEÞ= ð1�
1

RRi, jðEÞ
Þ ð10Þ

In this study, the relative risk (RR) as the concentration response
function (CRF) of PM2.5 exposure (E) is adopted for each age group and
disease from the Global Exposure Mortality Model (GEMM)2, to derive
the population attributable fraction (PAF) as in Eq. 10. GEMMprovides
age-specific CRFs for IHD and stroke (i.e., 25 and over at 5-year interval
steps), and age-independent CRFs for COPD, LC, DM (≥25 years) and
LRI (all ages). All the GEMM CRFs are derived directly from studies of
health impacts of outdoor exposure to PM2.5, and are applied after
dividing by the RR at Theoretical Minimum Risk Exposure Level, con-
sistent with McDuffie et al.13.

We obtain the GEMM CRFs and their 95% CIs from a public
accessible repository54. We follow the conventional approach1,2,13 to
calculate 95% CIs of PM2.5-attributable deaths, by applying the upper
and lower bounds in the 95%CIs of the CRFs to Eq. 10. We verified that
these derived uncertainty bounds encompass the uncertainty ranges
due to the 95% CIs of the baseline mortality, or of the PW PM2.5

(assumed 40% for Africa and the Middle East and 20% for other
regions, roughly 2 times the NRMSD in Fig. 1d). As the 95% CIs in the
baseline mortality, CRFs and PW PM2.5 are all estimated from a boot-
strapping approach, quadratically propagating the uncertainties from
these variables likely leads to anoverestimate in the breadth of the 95%
CI for the total attributable disease burden if these error sources are
correlated.

We examined the sensitivity of our results to the choice of mor-
tality relative risk model by re-estimating attributable mortality with
the Meta Regression-Bayesian, Regularized, Trimmed (MR-BRT) CRFs
used by the GBDCollaboration1,20,55. We found that the results from the
GEMM-based analyses (Fig. 5), e.g., the cessation of growth of the
health burdens in recent years, the dominant reductions from China,
and competition of the four drivers were largely consistent when the
MR-BRT function was used (see Supplementary Section S6 and Fig. S5)
despite differences in model assumptions and applicability.

It is instructive to derive the overall PAF (PAFa) for a territory or
region that accounts for all relevant ages and diseases (e.g., Fig. 4c):

PAFa =

Pi
age

Pj
diseaseDi, j ×PAFi, jPi

age

Pj
diseaseDi, j

, ð11Þ

We further derive the sensitivity of DPM to changes in PW PM2.5

(e.g., Fig. 6) as Eq. 12.

ΔDPM

ΔE
=
Xi

age

Xj

disease

Di,j ×
ΔPAFi, j
ΔE

ð12Þ

We use a finite-difference approach (Eq. 13) to calculate the sen-
sitivity of PAF to PM2.5 (

ΔPAFi,j
ΔE ), in which the PW PM2.5 is varied by 5%

(ΔE = 5%E) in positive and negative directions to calculate the changes
in PAF:

ΔPAFi, j
ΔE

=
PAFi, jðE +ΔEÞ � PAFi, jðE � ΔEÞ

2ΔE
ð13Þ

The finite-difference of exposure (2ΔE) is constrained to be at
least 1μg/m3, and atmost 5μg/m3. Our sensitivity tests (e.g.,ΔE = 10%E
or changing the stratified values) verified that the derived ΔDPM

ΔE are not
sensitive to the choice of finite-differences.

Attribution of changes in PM2.5-attributablemortality to drivers
For each territory k, age i and disease j, the corresponding PM2.5

attributable deathsDPM (Eq. 9) can be expanded to the product of four
parameters:

DPM ði, j, kÞ=Di, j, k � PAFi, j =Pk ×AFi, k ×MRi, j, k ×PAFi, jðEkÞ ð14Þ

wherePk is the total population, AFi,k is its fraction of populationwithin
age i (representing age structure), MRi,j,k is mortality rate of disease j
within age i for territory k, and PAF is a monotonic function of PM2.5

exposure (E). For two neighboring years (y and y + 1), the changes in
annual deaths can be attributed to changes in these four factors.

Following Geng et al.26, the differences in DPM between year and
year+1 can be expanded as fractional differences by gradually varying
the four factors from year to year+1:

Dyr + 1
PM � Dyr

PM =DPM Pyr + 1,AFyr + 1,MRyr + 1,PAFyr+ 1
� �

� D
PM

Pyr,AFyr,MRyr,PAFyr
� �

=DPM Pyr + 1,AFyr + 1,MRyr + 1,PAFyr+ 1
� �

� DPM Pyr,AFyr + 1,MRyr + 1,PAFyr+ 1
� �

+DPM Pyr,AFyr+ 1,MRyr+ 1,PAFyr+ 1
� �

� DPM Pyr,AFyr,MRyr + 1,PAFyr + 1
� �

+DPM Pyr,AFyr,MRyr + 1,PAFyr + 1
� �

� DPM Pyr,AFyr,MRyr,PAFyr + 1
� �

+DPM Pyr,AFyr,MRyr,PAFyr+ 1
� �

� DPM Pyr,AFyr,MRyr,PAFyr
� �

= δD1
PMðPÞ+ δD1

PMðAFÞ+ δD1
PMðMRÞ+ δD1

PM ðPAFÞ
ð15Þ

The superscript 1 indicate that this is 1 of 24 (=4 × 3 × 2 × 1) pos-
sible pathways (as altering the order of changing the four factors) that
the fractional differences due to each factor can be derived. The final
attributed differences due to population change is the ensemblemean
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of the 24 scenarios:

δDPM ðPÞ=
P24

t = 1δD
t
PM ðPÞ

24
ð16Þ

The attribution to the other three factors is similarly performed.
We apply this method to every pair of neighboring years to

minimize the effects of nonlinearity. These attributed differences are
then summed across diseases, ages, and territories, and finally all
accumulated referenced to 2011, to derive the regional attributions
(e.g., Fig. 5). We verify that the decomposition approach is robust as
exhibiting a high degree of consistency with an alternative method
(e.g., Supplementary Section S7 and Fig. S6).

The attribution of changes in ΔDPM
ΔE is similarly performed (e.g.,

Fig. 7), with the PAF in Eq. 15 replaced with ΔPAF
ΔE which also represents

the changes due to PM2.5 exposure.

Data availability
Source data are provided with this paper. All input data necessary to
replicate the analysis results are deposited to a Zenodo repository:
10.5281/zenodo.7618789, with detailed supporting documentation.

Code availability
All analyses and visualizations in this manuscript are facilitated by
codes and data deposited to 10.5281/zenodo.7618789, with detailed
supporting documentation. All the maps in this manuscript are gen-
erated using open-access python packages cartopy (https://scitools.
org.uk/cartopy/) and matplotlib (https://matplotlib.org).
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