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Introduction

A complex abelian variety 𝐴 is a compact complex algebraic group, or equivalently a

complex torus which admits an embedding in some projective space. Such embeddings are

determined by an ample line bundle 𝐿 on 𝐴. When 𝐿 has a unique nonzero global section up

to scaling, we say that 𝐴 is principally polarised by 𝐿 (or, to be precise, by c1(𝐿) ∈ 𝐻2(𝐴, 𝐙)).

This section vanishes on a codimension one subscheme 𝛩 ⊂ 𝐴 called a theta divisor. See

[BL04] and [Mum08] for more information about (polarised) abelian varieties.

Suppose that 𝐴 has dimension 𝑔 ≥ 3 and that 𝛩 is a nonsingular variety. The singular

cohomology of 𝛩 is inherited from𝐴, with the exception of themiddle piece𝐻𝑔−1(𝛩, 𝐙), which

has an extra sub-Hodge structure 𝐊, called the primal cohomology of 𝛩. From the point of

view of Hodge theory,𝐊 is interesting because the Hodge decomposition

𝐊⊗𝐙 𝐂 ≅ ⊕𝑔−2
𝑝=1𝐊𝑝,𝑔−1−𝑝

has fewer pieces than expected. Grothendieck’s general version of the Hodge conjecture says

that (roughly speaking) 𝐊 ⊗𝐙 𝐐 should come from the cohomology of a codimension one

subscheme of 𝛩. This conjecture is known when 𝑔 = 3 (by the Lefschetz (1, 1)-theorem),

𝑔 = 4 [IvS95] and 𝑔 = 5 [ITW17]. In the 𝑔 = 5 case the ordinary Hodge conjecture for𝐊⊗𝐙𝐐

follows from this (via the Lefschetz (1, 1)-theorem), i.e., everyHodge class 𝛼 ∈ 𝐊2,2∩(𝐊⊗𝐙 𝐐)

is algebraic. Our main result is an effective version of this statement.

Theorem 1. Let 𝛩 be a theta divisor for a very general abelian fivefold 𝐴. There are 27

smooth surfaces 𝑆1, … , 𝑆27 ⊂ 𝛩whose classes generate𝐻2,2(𝛩) ∩𝐻4(𝛩,𝐐). Moreover, given a

smooth cubic 𝑋 ⊂ 𝐏3, there is a bijection between the 𝑆𝑖 and the lines on 𝑋 which induces an

isometry between𝐻2
pr(𝑋, 𝐙)(−2) and the sublattice of𝐊 generated by the differences [𝑆𝑖]−[𝑆𝑗].

Each surface is defined (up to translation) as a Brill-Noether locus inside a Prym variety
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isomorphic to𝐴. There are 27 different ways to construct a Prym variety isomorphic to𝐴, and

hence 27 different surfaces. Apart from smoothness, which was proven by Welters [Wel85],

everythingweknowabout these surfaces follows from the fact that they are special subvarieties

of 𝐴 in the sense of Beauville [Bea82]. This description is enough to deduce a formula for the

intersection numbers ⟨[𝑆𝑖], [𝑆𝑗]⟩ for 𝑖 ≠ 𝑗 in terms of the self-intersections ⟨[𝑆𝑘], [𝑆𝑘]⟩.

To compute the latter, wemimic [IW19] and degenerate𝐴 to a natural compactification

of a 𝐂×-extension of an abelian fourfold 𝐵, polarised by 𝛯 ⊂ 𝐵. The limit surface turns out

to be birational to 𝛯 ∩ 𝛯𝛼 for some 𝛼 ∈ 𝐵 (recall that 𝛯𝛼 ≔ 𝛯 + 𝛼). There are 27 Prym-

embedded curves in 𝛯 ∩ 𝛯𝛼, which were studied in [Iza95] and [Krä15]. We use properties of

these curves to compute the self-intersection numbers. Once we understand how the surfaces

intersect, the rest of the proof is straightforward.

We begin chapter 1 by defining𝐊more carefully and calculating its Hodge numbers by

an Euler characteristic argument. In the next section we compute the Hodge numbers of the

invariant sublattice using a similar, but more involved, argument. Finally we determine the

discriminant of 𝐊 and some related properties, using some combinatorial tricks. It would be

interesting to also work out the discriminant of the invariant sublattice, as this would tell us

its isometry type. However, this seems to be substantially more difficult than it was for𝐊.

Chapter 2 summarises the results we will need concerning Prym varieties and their

subvarieties. Very little of this material is new, but all of it is important in later chapters.

In chapter 3 we review some symmetry properties of the lines on a cubic surface. Using

these, and some facts from chapter 2, we compute ⟨[𝑆𝑖], [𝑆𝑗]⟩ for 𝑖 ≠ 𝑗 in terms of the self-

intersection numbers. After that, a proof for theorem 1 is given under the assumption that

⟨[𝑆𝑘], [𝑆𝑘]⟩ = 16 for all 𝑘. The last section proves a stronger result for the Prym-embedded

curves in 𝛯 ∩ 𝛯𝛼, since their self-intersection numbers were already known. Apart from the

self-intersection numbers, nothing in the final section is needed later on.

Chapter 4 constructs families of abelian varieties and surfaces, in order to set up the

degeneration argument. The first section uses the relative Prym construction of [AFS15] to
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define the family of abelian varieties and describe the limit theta divisor. Having this modular

description of the families is essential when it comes to proving that the total space of theta

divisors is smooth. The following section defines the family of surfaces, making several base

changes in order to canonically embed it in the family of theta divisors. This has to be done

with care, so that the total space of theta divisors remains smooth after each base change.

In chapter 5, the self-intersection numbers are finally computed, using intersection

theory to move the calculation to a resolution of the limit theta divisor. The key is to express

the classes of surfaces in the resolution in terms of Prym-embedded curves in 𝛯 ∩ 𝛯𝛼, which

are better understood. The first section builds up to this by working out a description of the

limit surfaces, using a Hilbert polynomial argument to rule out any extra components.

The appendix consists of known results for which we could not find a reference, and

the long part of the Hilbert polynomial calculation, which is needed in chapters 4 and 5.
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Chapter 1: The primal cohomology lattice

(1.0.1) Let 𝐴 be a principally polarised abelian variety (ppav) of dimension 𝑔 ≥ 3, with

a smooth symmetric theta divisor 𝛩 𝜄↪−→ 𝐴. The primal part of 𝐻∗(𝛩, 𝐙) is

𝐊 ≔ Ker(𝜄∗∶ 𝐻𝑔−1(𝛩, 𝐙) → 𝐻𝑔+1(𝐴, 𝐙)).

Since 𝛩 is symmetric, the negation map 𝜎 ≔ −𝟏𝐴 induces an involution of 𝛩, which we also

call 𝜎. The cyclic group 𝐺 ≔ ⟨𝜎⟩ acts on𝐻∗(𝛩, 𝐙) and𝐻∗(𝛩, 𝐙) via 𝜎∗ and 𝜎∗, and the Poincaré

duality isomorphism is 𝐺-equivariant. For any 𝐙[𝐺]-module 𝐿, let 𝐿± ⊆ 𝐿 be the submodule

on which 𝜎 acts as ±1. Our goal is to compute the numerical properties of 𝐊 and𝐊+.

(1.0.2) In order to say anything about 𝐊+, we want to view 𝐻𝑔−1(𝛩,𝐐)+ as the coho-

mology of the quotient 𝛩+ ≔ 𝛩/𝐺. This leads to technical difficulties because 𝛩+ is singular.

To work around this, let 𝛩
𝛽
−→ 𝛩 be the blowup of 𝛩 at its 2-torsion points. The action of 𝐺

lifts to𝛩 and is free away from the exceptional divisor 𝛥 ⊂ 𝛩, on which it acts trivially. Since 𝛥

is Cartier, the quotient 𝛩+ ≔ 𝛩/𝐺 is nonsingular [Wat76, (2.13)]. Moreover, the quotient map

𝜋∶ 𝛩 → 𝛩+ induces an isomorphism𝐻∗(𝛩+, 𝐐) ⥲ 𝐻∗(𝛩,𝐐)
+
[Mac62, (1.2)].

(1.0.3) Throughout this chapter 𝜃 ∈ 𝐻2(𝐴, 𝐙) is the class of 𝛩 ⊂ 𝐴.

1.1. Primal Hodge numbers

(1.1.1) Lemma. If 𝑘 < 𝑔−1, then 𝜄∗∶ 𝐻𝑘(𝐴, 𝐙) → 𝐻𝑘(𝛩, 𝐙) is an isomorphism. When

𝑘 = 𝑔 − 1, 𝜄∗ is injective and 𝐻𝑘(𝛩, 𝐙) is torsion-free. Moreover, if 𝑘 > 𝑔 − 1 then the Gysin

map 𝜄∗∶ 𝐻𝑘(𝛩, 𝐙) → 𝐻𝑘+2(𝐴, 𝐙) is an isomorphism. It is surjective when 𝑘 = 𝑔 − 1.

Proof. The statements about 𝜄∗ and 𝜄∗ follow from the Lefschetz hyperplane theorem [Laz04,

Theorem 3.1.17]. By the universal coefficient theorem and Poincaré duality, the torsion part
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of 𝐻𝑔−1(𝛩, 𝐙) comes from

𝐻𝑔−2(𝛩, 𝐙) ≅ 𝐻𝑔(𝛩, 𝐙) ≅ 𝐻𝑔+2(𝐴, 𝐙),

which is torsion-free. ©

(1.1.2) Proposition. The rank of 𝐊 is 𝑔! − 1
𝑔+1(

2𝑔
𝑔 ), and its Hodge numbers are

ℎ𝑝,𝑔−1−𝑝(𝐊) = ⟨𝑔𝑝⟩ − (𝑔𝑝)(
𝑔 − 1
𝑝 ) + ( 𝑔

𝑝 + 1)(
𝑔 − 1
𝑝 − 1),

where ⟨𝑔𝑝⟩ ≔ ∑𝑝
𝑘=0 (

𝑔+1
𝑘 )(−1)𝑘(𝑝 + 1 − 𝑘)𝑔 is an eulerian number (see [GKP94, (6.38)]).

Proof. The Hodge number ℎ𝑝,𝑔−1−𝑝(𝐊) appears in

𝜒(𝛺𝑝
𝛩) =

𝑔−1
∑
𝑘=0

(−1)𝑘ℎ𝑝,𝑘(𝛩)

=
𝑔−1−𝑝
∑
𝑘=0

(−1)𝑘ℎ𝑝,𝑘(𝐴) + (−1)𝑔−1−𝑝ℎ𝑝,𝑔−1−𝑝(𝐊) +
𝑔−1
∑

𝑘=𝑔−𝑝
(−1)𝑘ℎ𝑝+1,𝑘+1(𝐴).

Using a standard identity [GKP94, (5.16)], the first sum simplifies to

𝑔−1−𝑝
∑
𝑘=0

(−1)𝑘(𝑔𝑝)(
𝑔
𝑘) = (−1)𝑔−1−𝑝(𝑔𝑝)(

𝑔 − 1
𝑝 ),

and similarly∑𝑔−1
𝑘=𝑔−𝑝(−1)

𝑘ℎ𝑝+1,𝑘+1(𝐴) = (−1)𝑔−𝑝( 𝑔
𝑝+1)(

𝑔−1
𝑝−1). Next we will compute 𝜒(𝛺

𝑝
𝛩).

The conormal bundle sequence for 𝛩 ⊂ 𝐴 induces exact sequences

0 → 𝛺𝑝−1
𝛩 (−𝛩) → 𝛺𝑝

𝐴||𝛩 → 𝛺𝑝
𝛩 → 0

for all 𝑝 ∈ {1, … , 𝑔}, so by induction (and the triviality of 𝛺𝐴)

ch(𝛺𝑝
𝛩) =

𝑝
∑
𝑘=0

(𝑔𝑘)(−𝑒
−𝜃)

𝑝−𝑘|
|𝛩
.

Moreover td(𝛩) = td(𝒪𝛩(𝛩))
−1 = 1−𝑒−𝜃

𝜃
||𝛩. It follows that

𝜒(𝛺𝑝
𝛩) = ∫

𝛩
ch(𝛺𝑝

𝛩) td(𝛩)
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= ∫
𝐴

𝑝
∑
𝑘=0

(𝑔𝑘)(−𝑒
−𝜃)

𝑝−𝑘
(1 − 𝑒−𝜃)

= ∫
𝐴
(

𝑝
∑
𝑘=0

(𝑔 + 1
𝑘 )(−𝑒−𝜃)

𝑝+1−𝑘 + (𝑔𝑝))

=
𝑝
∑
𝑘=0

(𝑔 + 1
𝑘 )(−1)𝑝+1−𝑘(𝑘 − 𝑝 − 1)𝑔,

since ∫𝐴
𝜃𝑔
𝑔! = 𝜒(𝒪𝐴(𝛩)) = 1 [BL04, Theorem 3.6.1]. Putting everything together gives the

result.

The rank of 𝐊 can be computed directly from these Hodge numbers (using [GKP94,

Table 169]), or by a similar argument using the fact that 𝜒(𝛩) = ∫𝛩 c(𝛩). ©

1.2. Invariant Hodge numbers

(1.2.1) The methods of the previous section can also be used to compute the Hodge

numbers of 𝐊+. In order to do so, we first establish the following results, with the goal of

understanding 𝛺𝛩̃+ and its exterior powers.

(1.2.2) Lemma. Let 𝑋 be a nonsingular variety, and 𝐶 ⊂ 𝑋 a smooth subscheme. If

𝑋
𝛽
−→ 𝑋 is the blowup of 𝑋 along 𝐶, with 𝐸 ⊂ 𝑋 the exceptional divisor, then there is an exact

sequence

(1.2.3) 0 → 𝛽∗𝛺𝑋 → 𝛺𝑋̃ → 𝛺𝐸/𝐶 → 0.

Proof. The kernel of 𝛽∗𝛺𝑋 → 𝛺𝑋̃ is supported on 𝐸, but 𝛽
∗𝛺𝑋 is torsion-free, so (1.2.3) is exact

on the left. To get exactness in the other two spots, we need to show that

𝛺𝑋̃/𝑋 → 𝛺𝑋̃/𝑋||𝐸 ⥲ 𝛺𝐸/𝐶

is an isomorphism, or equivalently that 𝛺𝑋̃/𝑋(−𝐸) → 𝛺𝑋̃/𝑋 is zero.

This is a straightforward but somewhat technical check. Let Spec(𝐴) ⊆ 𝑋 be an open

affine and 𝐼 ⊆ 𝐴 the ideal of 𝐶. By definition 𝛽−1(Spec(𝐴)) = Proj(𝐵), where 𝐵 is the Rees
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algebra of 𝐼. Thus 𝑋 is covered by open affines of the form Spec(𝐵(𝑎)), where 𝑎 ∈ 𝐵1 = 𝐼 and

𝐵(𝑎) is the homogeneous localisation of 𝐵with respect to 𝑎. On Spec(𝐵(𝑎)) the homomorphism

𝛺𝑋̃/𝑋(−𝐸) → 𝛺𝑋̃/𝑋 corresponds to the derivation

𝐵(𝑎)
d−→ 𝛺𝐵(𝑎)/𝐴

𝑎⋅−−−−→ 𝛺𝐵(𝑎)/𝐴.

Since 𝐵(𝑎) is generated by
1
𝑎𝐵1 over 𝐴, and

𝑎d(𝑏𝑎) = 𝑎d(𝑏𝑎) +
𝑏
𝑎d(𝑎) = d(𝑎𝑏𝑎) = d(𝑏) = 0

for all 𝑏 ∈ 𝐼, the Leibniz rule implies that 𝛺𝑋̃/𝑋(−𝐸) → 𝛺𝑋̃/𝑋 is zero on Spec(𝐵(𝑎)). ©

(1.2.4) Corollary. In the setting of (1.2.2), there is an exact sequence

0 → 𝑇𝑋̃ → 𝛽∗𝑇𝑋 → 𝑇𝐸/𝐶(𝐸) → 0

Proof. See [Ful98, Lemma 15.4]. ©

(1.2.5) Amore general version of the following result is unfortunately somewhat harder

to state. Since we only need it for the case 𝑋 ≔ 𝛩, with 𝐶 the 2-torsion points, we decided to

simplify the discussion.

(1.2.6) Corollary. In the setting of (1.2.2), if dim(𝐶) = 0, then for each 𝑝 ∈ 𝐍 there is

an exact sequence

(1.2.7) 0 → (𝛽∗𝛺𝑝
𝑋)((𝑝 − 1)𝐸) → 𝛺𝑝

𝑋̃ → 𝛺𝑝
𝐸 → 0.

Proof. If 𝑝 = 0 then (1.2.7) is just the ideal sheaf sequence for𝐸. The case𝑝 = 1 is (1.2.2). Now

suppose𝑝 > 1. The injectivemap in (1.2.7) corresponds to amorphism 𝛽∗𝛺𝑝
𝑋 → 𝛺𝑝

𝑋̃((1 − 𝑝)𝐸).

To define one, we will show that the natural embedding 𝛽∗𝛺𝑝
𝑋 ↪ 𝛺𝑝

𝑋̃ factors through the

subsheaf 𝛺𝑝
𝑋̃((1 − 𝑝)𝐸). Let 𝑛 ∈ 𝐍 be the smallest number such that 𝛽∗𝛺𝑝

𝑋 does not belong

to 𝛺𝑝
𝑋̃(−𝑛𝐸). Since 𝛽

∗𝛺𝑝
𝑋 embeds in 𝛺

𝑝
𝑋̃((1 − 𝑛)𝐸), the ideal sheaf sequence for 𝐸 gives us the

7



following morphism of short exact sequences:

(1.2.8)

0 (𝛽∗𝛺𝑝
𝑋)(−𝐸) 𝛽∗𝛺𝑝

𝑋 (𝛽∗𝛺𝑝
𝑋)||𝐸 0

0 𝛺𝑝
𝑋̃(−𝑛𝐸) 𝛺𝑝

𝑋̃((1 − 𝑛)𝐸) 𝛺𝑝
𝑋̃((1 − 𝑛)𝐸)||𝐸 0.

𝜑𝑛

Our choice of 𝑛 ensures that 𝜑𝑛 ≠ 0. Note that (𝛽∗𝛺𝑝
𝑋)||𝐸 = 𝜌∗(𝛺𝑝

𝑋||𝐶), where 𝜌∶ 𝐸 → 𝐶 is the

projection. The morphism

𝛺𝑝
𝑋||𝐶 → 𝜌∗(𝛺

𝑝
𝑋̃((1 − 𝑛)𝐸)||𝐸)

corresponding to 𝜑𝑛 is also nonzero. The conormal bundle sequence for 𝐸 ↪ 𝑋 induces the

following exact sequence of vector bundles on 𝐸:

(1.2.9) 0 → 𝛺𝑝−1
𝐸 (−𝐸) → 𝛺𝑝

𝑋̃
||𝐸 → 𝛺𝑝

𝐸 → 0.

By twisting and applying 𝜌∗, it follows that one of 𝜌∗(𝛺
𝑝−1
𝐸 (−𝑛𝐸)) or 𝜌∗(𝛺

𝑝
𝐸((1 − 𝑛)𝐸)) is

nonzero. One can compute the ranks of these bundles using the Bott formula [OSS11, §1.1].

For instance, if 𝑑 ≔ dim(𝑋) then the fibres of the former bundle are isomorphic to

𝐻0(𝐏𝑑−1, 𝛺𝑝−1
𝐏𝑑−1(𝑛)),

which is zero for 𝑛 < 𝑝. Similarly, the latter bundle is zero when 𝑛 < 𝑝 + 2. Therefore 𝑛 ≥ 𝑝,

which gives us the required factorisation.

The Euler sequence induces the following exact sequence on 𝐸 = 𝐏(𝑁𝐶/𝑋) = 𝐏(𝑇𝑋|𝐶):

(1.2.10) 0 → 𝛺𝑝
𝐸(−𝑝𝐸) → 𝜌∗(𝛺𝑝

𝑋||𝐶) → 𝛺𝑝−1
𝐸 (−𝑝𝐸) → 0.

Twisting (1.2.9) gives an embedding 𝛺𝑝−1
𝐸 (−𝑝𝐸) ↪ 𝛺𝑝

𝑋̃((1 − 𝑝)𝐸)||𝐸, and one can check (e.g.

fibrewise) that 𝜑𝑝 is the composition

𝜌∗(𝛺𝑝
𝑋||𝐶) ↠ 𝛺𝑝−1

𝐸 (−𝑝𝐸) ↪ 𝛺𝑝
𝑋̃((1 − 𝑝)𝐸)||𝐸.
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Set 𝒞 ≔ Coker(𝛽∗𝛺𝑝
𝑋 → 𝛺𝑝

𝑋̃((1 − 𝑝)𝐸)). There is an exact sequence

0 → 𝛺𝑝
𝐸(−𝑝𝐸) → 𝒞(−𝐸) → 𝒞 → 𝛺𝑝

𝐸((1 − 𝑝)𝐸) → 0,

which comes from the snake lemma applied to (1.2.8). It remains to show that 𝒞(−𝐸) → 𝒞 is

zero, or equivalently that 𝛺𝑝
𝑋̃(−𝑝𝐸) ↪ 𝛺𝑝

𝑋̃ factors through 𝛽∗𝛺𝑝
𝑋. This follows from the case

𝑝 = 1, which is an easy consequence of (1.2.2). Indeed𝛺𝑋̃ → 𝛺𝐸 factors through𝛺𝑋̃ → 𝛺𝑋̃||𝐸,

so the composition 𝛺𝑋̃(−𝐸) → 𝛺𝑋̃ → 𝛺𝐸 is zero. ©

(1.2.11) We now switch back to our specific situation; see (1.0.2) for notation. To avoid

ambiguity (as 𝛥 is a subscheme of both 𝛩 and 𝛩+), we set 𝒪𝛩̃(1) ≔ 𝒪𝛩̃(−𝛥).

(1.2.12) Lemma. For each positive integer 𝑝 there is an exact sequence

0 → 𝜋∗𝛺𝑝
𝛩̃+ → 𝛺𝑝

𝛩̃ → 𝛺𝑝−1
𝛥 (1) → 0.

Proof. Since 𝜋∗𝛺𝑝
𝛩̃+ is locally free, the kernel of 𝜋∗𝛺

𝑝
𝛩̃+ → 𝛺𝑝

𝛩̃ (which is supported on 𝛥) must

be zero. It remains to identify 𝒞 ≔ Coker(𝜋∗𝛺𝑝
𝛩̃+ → 𝛺𝑝

𝛩̃) with 𝛺
𝑝−1
𝛥 (1). For starters

𝒞|𝛥 = Coker(𝛺𝑝
𝛩̃+
||𝛥 → 𝛺𝑝

𝛩̃
||𝛥).

Note that 𝛺𝛩̃+||𝛥 and 𝛺𝛩̃||𝛥 are extensions of 𝛺𝛥 by the conormal bundles of 𝛥 ⊂ 𝛩+ and

𝛥 ⊂ 𝛩, which are 𝒪𝛥(1) and 𝒪𝛥(2) respectively. Indeed, if 𝛿𝑖 ∈ CH(𝛩) is the class of a

component 𝛥𝑖 ⊆ 𝛥, then 𝜋∗𝛿𝑖 is its class in 𝛩+, and since 𝜋−1(𝛥𝑖) = 𝛥𝑖 set-theoretically

(𝜋∗𝛿𝑖)|𝛥𝑖
= (𝜋∗𝜋∗𝛿𝑖)|𝛥𝑖

= (𝑛𝛿𝑖)|𝛥𝑖

for some 𝑛 ∈ 𝐍. The projection formula says that 𝜋∗𝜋∗ = 2, so 𝑛 = 2.

Since 𝛺𝛩̃+||𝛥 → 𝛺𝛩̃||𝛥 is a morphism of extensions, taking exterior powers gives the
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following commutative diagram with exact rows:

0 𝛺𝑝−1
𝛥 (2) 𝛺𝑝

𝛩̃+
||𝛥 𝛺𝑝

𝛥 0

0 𝛺𝑝−1
𝛥 (1) 𝛺𝑝

𝛩̃
||𝛥 𝛺𝑝

𝛥 0

𝜑𝑝

SinceHom(𝒪𝛥(2), 𝒪𝛥(1)) ≅ 𝐻0(𝛥,𝒪𝛥(−1)) = 0 and hence 𝜑𝑝 = 𝟏⊗𝜑1 = 0, the snake lemma

implies that 𝒞|𝛥 ≅ 𝛺𝑝−1
𝛥 (1).

It remains to show that 𝒞 → 𝒞|𝛥 is an isomorphism, or equivalently that 𝒞(−𝛥) → 𝒞

is zero. This is obvious away from 𝛥, so it suffices to check that, given 𝑥 ∈ 𝛥, the image of

𝛺𝑝
𝛩̃+,𝑥 ↪ 𝛺𝑝

𝛩̃,𝑥 contains the submodule 𝑓𝛺
𝑝
𝛩̃,𝑥, where 𝑓 ∈ 𝒪𝛩̃,𝑥 generates 𝒪𝛩̃(−𝛥)𝑥 ⊂ 𝒪𝛩̃,𝑥.

Let𝔪 be themaximal ideal of𝒪𝛩̃,𝑥. Since 𝜎 acts trivially on 𝛺𝛥|𝑥 and by−𝟏 on 𝛺𝛩|𝛽(𝑥),

(1.2.2) implies that there is a basis (𝑓𝑖 +𝔪2) for𝔪/𝔪2 = 𝛺𝛩̃||𝑥 such that

𝜎(𝑓1) ≡ −𝑓1 and 𝜎(𝑓𝑖) ≡ 𝑓𝑖 (mod 𝔪2)

for 1 < 𝑖 < 𝑔. Moreover, we can pick 𝑓1 = 𝑓, according to the local arguments of (1.2.2). Since

𝛥 is 𝐺-invariant 𝜎(𝑓) = 𝑢𝑓 for some unit 𝑢 ∈ 𝒪𝛩̃,𝑥, and

(1 − 𝑢)𝑓 = 𝑓 − 𝜎(𝑓) ≡ 2𝑓 (mod 𝔪2)

so 1−𝑢 ∉ 𝔪, which means we can replace 𝑓 by another lift of 𝑓+𝔪2, namely 1−ᵆ
2 𝑓, which is

𝜎-antiinvariant and also generates the ideal of 𝛥. Similarly, by replacing the 𝑓𝑖 by 1
2(𝑓𝑖 + 𝜎(𝑓𝑖)),

we may assume that 𝜎(𝑓𝑖) = 𝑓𝑖. By Nakayama’s lemma 𝛺
𝑝
𝛩̃,𝑥 is generated by the forms

d𝑓𝑖1 ∧⋯ ∧ d𝑓𝑖𝑝

where 1 ≤ 𝑖1 < ⋯ < 𝑖𝑝 < 𝑔. These come from 𝛺𝑝
𝛩̃+,𝑥 unless 𝑖1 = 1, in which case only

𝑓d𝑓𝑖1 ∧⋯ ∧ d𝑓𝑖𝑝 =
1
2d(𝑓

2) ∧ d𝑓𝑖2 ∧⋯ ∧ d𝑓𝑖𝑝

does. This is enough to conclude that the image of 𝛺𝑝
𝛩̃+,𝑥 contains 𝑓𝛺

𝑝
𝛩̃(1)𝑥, as required. ©
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(1.2.13) Corollary. There is an exact sequence

0 → 𝑇𝛩̃ → 𝜋∗𝑇𝛩̃+ → 𝒪𝛥(−2) → 0.

Proof. This sequence is dual to the 𝑝 = 1 case of (1.2.12). Indeed, we can compute that

Ext1(𝒪𝛥(1), 𝒪𝛩̃) ≅ Coker(𝒪𝛩̃(−1) → 𝒪𝛩̃(−2)) ≅ 𝒪𝛥(−2).

using the locally free resolution 0 → 𝒪𝛩̃(2) → 𝒪𝛩̃(1) → 𝒪𝛥(1) → 0. ©

(1.2.14) Proposition. The rank of 𝐊+ is

𝑔!
2 + (−1)𝑔(2𝑔−2(2𝑔 + 1) − ( 2𝑔

𝑔 + 𝜀𝑔+1
)),

and its Hodge numbers ℎ𝑝,𝑔−1−𝑝(𝐊+) are

1
2⟨

𝑔
𝑝⟩ + (−1)𝑔((𝑔𝑝)

𝑔−1−𝑝
∑
𝑞=0

(𝑔𝑞)𝜀𝑝+𝑞 + ( 𝑔
𝑝 + 1)

𝑔−1
∑

𝑞=𝑔−𝑝
( 𝑔
𝑞 + 1)𝜀𝑝+𝑞 − (𝑔 − 1

𝑝 )2
𝑔 − 1
2 ),

where 𝜀𝑘 ≔ 1
2(1 + (−1)𝑘) is one (resp. zero) if 𝑘 is even (resp. odd).

Proof. By Hirzebruch-Riemann-Roch and the preceding results

2𝜒(𝛺𝑝
𝛩̃+) = 2∫

𝛩̃+
ch(𝛺𝑝

𝛩̃+) td(𝛩+)

= ∫
𝛩̃
𝜋∗(ch(𝛺𝑝

𝛩̃+) td(𝛩+))

= ∫
𝛩̃
(ch(𝛺𝑝

𝛩̃) − ch(𝛺𝑝−1
𝛥 (1))) td(𝛩) td(𝒪𝛥(−2))

= ∫
𝛩̃
(ch(𝛽∗𝛺𝑝

𝛩) ch(𝒪𝛩̃(1 − 𝑝)) + ch(𝛺𝑝
𝛥) − ch(𝛺𝑝−1

𝛥 (1))) td(𝛩) td(𝒪𝛥(−2)).

The first term can be computed on 𝛩. To be specific:

𝜒1 ≔∫
𝛩̃
ch(𝛽∗𝛺𝑝

𝛩) ch(𝒪𝛩̃(1 − 𝑝)) td(𝛩) td(𝒪𝛥(−2))

= ∫
𝛩
ch(𝛺𝑝

𝛩) td(𝛩) ⋅ 𝛽∗(ch(𝒪𝛩̃(1 − 𝑝))
td(𝒪𝛥(−2))
td(𝑇𝛥(−1))

)
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The Euler sequence and the ideal sheaf sequence for 𝛥 ⊂ 𝛩 imply that

td(𝑇𝛥(−1)) =
td(𝒪𝛥)

𝑔−1

td(𝒪𝛥(−1))
=
td(𝒪𝛩̃(1))

1−𝑔

td(𝒪𝛩̃(−1))
,

and similarly td(𝒪𝛥(−2)) = td(𝒪𝛩̃(−2)) td(𝒪𝛩̃(−1))
−1, so

𝜒1 = ∫
𝛩
ch(𝛺𝑝

𝛩) td(𝛩) ⋅ 𝛽∗(ch(𝒪𝛩̃(1 − 𝑝)) td(𝒪𝛩̃(1))
𝑔−1 td(𝒪𝛩̃(−2))).

Everything inside 𝛽∗ is a polynomial in ℎ ≔ c1(𝒪𝛩̃(1)). Since 𝛽 contracts 𝛥 the only powers of

ℎ which survive are ℎ0 and ℎ𝑔−1. Therefore

𝜒1 = 𝜒(𝛺𝑝
𝛩) − (𝑔 − 1

𝑝 )∫
𝛩̃
𝑒(1−𝑝)ℎ( ℎ

1 − 𝑒−ℎ
)
𝑔−1 2ℎ

1 − 𝑒2ℎ
.

Since −ℎ is the class of 𝛥 ⊂ 𝛩, which has 2𝑔−1(2𝑔 − 1) components,

𝜒1 = 𝜒(𝛺𝑝
𝛩) − (𝑔 − 1

𝑝 )2𝑔−1(2𝑔 − 1)𝜒2,

where, by (A.1.1),

𝜒2 ≔ −[𝑒(1−𝑝)𝑡( 𝑡
1 − 𝑒−𝑡)

𝑔−1 2
1 − 𝑒2𝑡 ]𝑡𝑔−2

= −[( 𝑡
1 − 𝑒−𝑡)

𝑔2𝑒(1−𝑝)𝑡(1 − 𝑒−𝑡)
(1 − 𝑒𝑡)(1 + 𝑒𝑡) ]

𝑡𝑔−1

= [( 𝑡
1 − 𝑒−𝑡)

𝑔 2𝑒−𝑝𝑡
1 + 𝑒𝑡 ]𝑡𝑔−1

= (−1)𝑝

2𝑔−1
.

Grothendieck-Riemann-Roch allows us to compute the remaining terms on 𝛥:

𝜒3 ≔∫
𝛩̃
(ch(𝛺𝑝

𝛥) − ch(𝛺𝑝−1
𝛥 (1))) td(𝛩)

td(𝒪𝛩̃(−2))
td(𝒪𝛩̃(−1))

= ∫
𝛥
(ch(𝛺𝑝

𝛥) − ch(𝛺𝑝−1
𝛥 (1))) td(𝛥)

td(𝒪𝛥(−2))
td(𝒪𝛥(−1))
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Recall from (1.2.10) that ch(𝛺𝑝
𝛥) = (𝑔−1𝑝 ) ch(𝒪𝛥(−𝑝)) − ch(𝛺𝑝−1

𝛥 ), so by induction

ch(𝛺𝑝
𝛥) =

𝑝
∑
𝑘=0

(−1)𝑝−𝑘(𝑔 − 1
𝑘 )𝑒−𝑘ℎ,

where ℎ ≔ c1(𝒪𝛥(1)). Since

td(𝒪𝛥(−2))
td(𝒪𝛥(−1))

= 2ℎ
1 − 𝑒2ℎ

1 − 𝑒ℎ
ℎ = 2

1 + 𝑒ℎ
,

it follows by (A.1.1) and (A.1.4) that 21−𝑔
2𝑔−1𝜒3 is

[( 𝑡
1 − 𝑒−𝑡)

𝑔−1
(

𝑝
∑
𝑘=0

(−1)𝑝−𝑘(𝑔 − 1
𝑘 ) 2𝑒

−𝑘𝑡

1 + 𝑒𝑡 +
𝑝−1
∑
𝑘=0

(−1)𝑝−𝑘(𝑔 − 1
𝑘 )2𝑒

(1−𝑘)𝑡

1 + 𝑒𝑡 )]
𝑡𝑔−2

=
𝑝
∑
𝑘=0

(−1)𝑝

2𝑔−2
(𝑔 − 1

𝑘 ) −
𝑝−1
∑
𝑘=0

(−1)𝑝

2𝑔−2
(𝑔 − 1

𝑘 ) + 2(−1)𝑝𝛿𝑝

= (−1)𝑝

2𝑔−2
(𝑔 − 1

𝑝 ) + 2(−1)𝑝𝛿𝑝,

where 𝛿0 ≔ 0, 𝛿𝑔−1 = 0 and 𝛿𝑝 ≔ 1 for 0 < 𝑝 < 𝑔 − 1. Therefore

2𝜒(𝛺𝑝
𝛩̃+) = 𝜒1 + 𝜒3

= 𝜒(𝛺𝑝
𝛩) − (−1)𝑝(𝑔 − 1

𝑝 )(2𝑔 − 1) + (−1)𝑝(𝑔 − 1
𝑝 )2(2𝑔 − 1) + (−1)𝑝2𝑔(2𝑔 − 1)𝛿𝑝

= 𝜒(𝛺𝑝
𝛩) + (−1)𝑝(2𝑔 − 1)((𝑔 − 1

𝑝 ) + 2𝑔𝛿𝑝).(1.2.15)

The description of 𝐻∗(𝛩,𝐐) in terms of 𝐻∗(𝛩,𝐐) [Voi02, Theorem 7.31] says that

𝜒(𝛺𝑝
𝛩̃+) =

𝑔−1
∑
𝑞=0

(−1)𝑞 dim(𝐻𝑝,𝑞(𝛩,𝐐)
+
)

=
𝑔−1
∑
𝑞=0

(−1)𝑞 dim(𝐻𝑝,𝑞(𝛩,𝐐)+) + (−1)𝑝2𝑔−1(2𝑔 − 1)𝛿𝑝.(1.2.16)

Combining (1.2.15) and (1.2.16) allows us to express (−1)𝑔−1−𝑝ℎ𝑝,𝑔−1−𝑝(𝐊+) as

1
2𝜒(𝛺

𝑝
𝛩) + (−1)𝑝2

𝑔 − 1
2 (𝑔 − 1

𝑝 ) −
𝑔−1−𝑝
∑
𝑞=0

(−1)𝑞ℎ𝑝,𝑞(𝐴)𝜀𝑝+𝑞 −
𝑔−1
∑

𝑞=𝑔−𝑝
(−1)𝑞ℎ𝑝+1,𝑞+1(𝐴)𝜀𝑝+𝑞,

as required. The rank of 𝐊+ is easy to compute from its Hodge numbers, since the terms

13



coming from 𝐴 add up to (−1)𝑔(∑𝑔
𝑘=0 ℎ

2𝑘(𝐴) − ℎ𝑔+𝜀𝑔+1(𝐴)). ©

1.3. Lattice properties

(1.3.1)When 𝑔 is odd, the intersection form on𝐻𝑔−1(𝛩, 𝐙) is symmetric. We determine

some of its properties in this section. See §A.2 for background, and notation.

(1.3.2) Proposition. If 𝑔 is odd, the signature of the intersection form on𝐊 is

(

𝑔−1
2

∑
𝑝=0

ℎ2𝑝,𝑔−1−2𝑝(𝐊),

𝑔−1
2

∑
𝑝=1

ℎ2𝑝−1,𝑔−2𝑝(𝐊)).

Proof. If 𝛼 ∈ 𝐊 ⊗𝐙 𝐂 then 𝜄∗(𝛼𝜄∗𝜃) = 𝜄∗(𝛼)𝜃 = 0 and hence 𝛼𝜄∗𝜃 = 0. This shows that

𝐊⊗𝐙 𝐂 belongs to the primitive cohomology 𝐻4
pr(𝛩, 𝐂). It follows that the intersection form

on (𝐊 ⊗𝐙 𝐑)∩(𝐊𝑝,𝑔−1−𝑝 ⊕𝐊𝑔−1−𝑝,𝑝) is positive (resp. negative) definitewhen𝑝 is even (resp.

odd) [Voi02, Theorem 6.32]. ©

(1.3.3) Corollary. If 𝑔 = 5, then the intersection form on 𝐊 (resp. 𝐊+) has signature

(46, 32) (resp. (6, 0)). ©

(1.3.4) Lemma. The subgroups 𝐊 and 𝜄∗𝐻𝑔−1(𝐴, 𝐙) of 𝐻𝑔−1(𝛩, 𝐙) are the orthogonal

complements of each other.

Proof. If 𝛼 ∈ 𝐊 and 𝛽 ∈ 𝐻𝑔−1(𝐴, 𝐙) then ⟨𝛼, 𝜄∗𝛽⟩ = ⟨𝜄∗𝛼, 𝛽⟩ = 0, so 𝐊 ⊆ (𝜄∗𝐻𝑔−1(𝐴, 𝐙))⟂.

Conversely, if 𝛼 ∈ (𝜄∗𝐻𝑔−1(𝐴, 𝐙))⟂ then the above equation shows that 𝜄∗𝛼 ∈ 𝐻𝑔−1(𝐴, 𝐙)⟂.

Since 𝐻𝑔−1(𝐴, 𝐙) is torsion-free, it follows by Poincaré duality that 𝜄∗𝛼 = 0. This means that

𝐊 = (𝜄∗𝐻𝑔−1(𝐴, 𝐙))⟂.

To show that 𝐊⟂ = 𝜄∗𝐻𝑔−1(𝐴, 𝐙), let 𝛼 ∈ 𝐊⟂. By the hard Lefschetz theorem, there

is a positive integer 𝑛 and a class 𝛽 ∈ 𝐻𝑔−1(𝐴, 𝐙) such that 𝑛𝜄∗𝛼 = 𝜃𝛽 = 𝜄∗𝜄∗𝛽. In particular

𝑛𝛼−𝜄∗𝛽 ∈ 𝐊 is orthogonal to𝐊⊕𝜄∗𝐻𝑔−1(𝐴, 𝐙). The hard Lefschetz argument also shows that

this direct sum has finite index in 𝐻𝑔−1(𝛩, 𝐙), so 𝑛𝛼 − 𝜄∗𝛽 = 0. In other words, the image of

𝛼 in Coker(𝜄∗) is torsion. However, the latter is always torsion-free [Laz04, Example 3.1.18]; in
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our situation this follows from the fact that𝐻∗(𝛩, 𝐙) and𝐻∗(𝐴, 𝐙) are torsion-free and hence

Ext1(Coker(𝜄∗), 𝐙) ≅ Coker(𝐻𝑔−1(𝛩, 𝐙)∨
(𝜄∗)∨
−−−→ 𝐻𝑔−1(𝐴, 𝐙))∨) ≅ Coker(𝜄∗),

which is zero by theweakLefschetz theorem. In particular𝛼 ∈ 𝜄∗𝐻𝑔−1(𝐴, 𝐙), as required. ©

(1.3.5) Lemma. The torsion subgroup of Coker(𝐻𝑘(𝐴, 𝐙) 𝜃∪−−−−→ 𝐻𝑘+2(𝐴, 𝐙)) has order

𝑑𝑔𝑘 ≔

⎧
⎪⎪

⎨
⎪⎪
⎩

⌊𝑘2 ⌋

∏
𝑖=1

(1 + 1
𝑖 )
( 2𝑔
𝑘−2𝑖)

if 0 ≤ 𝑘 ≤ 𝑔 − 1,

⌊ 2𝑔−2−𝑘2 ⌋

∏
𝑖=1

(1 + 1
𝑖 )
( 2𝑔
𝑘+2𝑖+2)

if 𝑔 − 1 ≤ 𝑘 ≤ 2𝑔 − 2.

Proof. Since 𝛩 gives a principal polarisation, there is a basis 𝜉1, … , 𝜉2𝑔 for 𝐻1(𝐴, 𝐙) such that

𝜃 = 𝜎1 +⋯ + 𝜎𝑔, where 𝜎𝑖 ≔ 𝜉2𝑖−1𝜉2𝑖 [BL04, §3.1 and §4.1]. This extends in the obvious way

to a basis 𝛯 for 𝐻∗(𝐴, 𝐙). Given a pair (𝐴, 𝐵) of disjoint subsets of 𝑆 ≔ {1, … , 𝑔}, let 𝜉𝐴,𝐵 ∈ 𝛯

correspond to (2𝐴 − 1) ⊔ 2𝐵 ⊆ 𝑇 ≔ {1, … , 2𝑔}, and set

𝐿𝑘𝐴,𝐵 ≔ 𝑅𝜉𝐴,𝐵 ∩ 𝐻𝑘(𝐴, 𝐙),

where 𝑅 ⊆ 𝐻∗(𝐴, 𝐙) is the subring generated by the 𝜎𝑖. Note that 𝜃𝐿𝑘𝐴,𝐵 ⊆ 𝐿𝑘+2𝐴,𝐵. For each

𝜉 ∈ 𝛯 there is a unique pair (𝐴, 𝐵) such that 𝜉 ∈ 𝑅𝜉𝐴,𝐵, so there is a direct sum decomposition

𝐻𝑘(𝐴, 𝐙) = ⨁
𝐴⊔𝐵⊆𝑆

𝐿𝑘𝐴,𝐵.

If 𝑘 − |𝐴 ⊔ 𝐵| = 2𝑐 for some 𝑐 ∈ 𝐍 then 𝑅2𝑐
−∪𝜉𝐴,𝐵
−−−−−→ 𝐿𝑘𝐴,𝐵 induces a bijection

(𝑆 ⧵ (𝐴 ⊔ 𝐵)
𝑐 ) → 𝛯 ∩ 𝐿𝑘𝐴,𝐵;

otherwise 𝐿𝑘𝐴,𝐵 = 0. In the former case, the bijection identifies the matrix of 𝐿𝑘𝐴,𝐵
𝜃∪−−−−→ 𝐿𝑘+2𝐴,𝐵

with𝑀𝑔−𝑘+2𝑐
𝑐,𝑐+1 from (A.2.5). If 𝑘 ≤ 𝑔 − 1 then 𝑐 + (𝑐 + 1) ≤ 𝑔 − 𝑘 + 2𝑐, and for each integer
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0 ≤ 𝑐 ≤ ⌊𝑘2 ⌋ there are (
𝑔

𝑘−2𝑐)2𝑘−2𝑐 pairs (𝐴, 𝐵) such that 𝑘 − |𝐴 ⊔ 𝐵| = 2𝑐, so

𝑑𝑔𝑘 =
⌊𝑘2 ⌋

∏
𝑐=0

(𝑑𝑔−𝑘+2𝑐𝑐,𝑐+1 )
( 𝑔
𝑘−2𝑐)2𝑘−2𝑐

=
⌊𝑘2 ⌋

∏
𝑐=0

𝑐
∏
𝑖=1

(1 + 1
𝑖 )
(𝑔−𝑘+2𝑐𝑐−𝑖 )( 𝑔

𝑘−2𝑐)2𝑘−2𝑐

=
⌊𝑘2 ⌋

∏
𝑖=1

⌊𝑘2 ⌋

∏
𝑐=𝑖

(1 + 1
𝑖 )
(𝑔−𝑘+2𝑐𝑐−𝑖 )( 𝑔

𝑘−2𝑐)2𝑘−2𝑐

=
⌊𝑘2 ⌋

∏
𝑖=1

(1 + 1
𝑖 )

∑
⌊ 𝑘−2𝑖2 ⌋
𝑐=0 (𝑔−𝑘+2𝑖+2𝑐𝑐 )( 𝑔

𝑘−2𝑖−2𝑐)2𝑘−2𝑖−2𝑐

=
⌊𝑘2 ⌋

∏
𝑖=1

(1 + 1
𝑖 )
( 2𝑔
𝑘−2𝑖)

,

where the last equality follows from the direct sum decomposition for𝐻𝑘−2𝑖(𝐴, 𝐙). Otherwise

𝑑𝑔𝑘 =
⌊𝑘2 ⌋

∏
𝑐=𝑘−𝑔+1

(𝑑𝑔−𝑘+2𝑐𝑐,𝑐+1 )
( 𝑔
𝑘−2𝑐)2𝑘−2𝑐

=
⌊ 2𝑔−2−𝑘2 ⌋

∏
𝑐=0

(𝑑𝑘−𝑔+2𝑐+2𝑐+𝑘−𝑔+1,𝑐+𝑘−𝑔+2)
( 𝑔
2𝑔−2−𝑘−2𝑐)22𝑔−2−𝑘−2𝑐

= 𝑑𝑔2𝑔−2−𝑘

since 𝐿𝑘+2𝐴,𝐵 = 0 whenever 𝑐 + 1 > 𝑔 − 𝑘 + 2𝑐 (or equivalently 𝑐 < 𝑘 − 𝑔 + 1). ©

(1.3.6) Proposition. If 𝑔 is odd, the discriminant of 𝜄∗𝐻𝑔−1(𝐴, 𝐙) ⊆ 𝐻𝑔−1(𝛩, 𝐙) is

±
⌊𝑔−12 ⌋

∏
𝑖=1

(1 + 1
𝑖 )
( 2𝑔
𝑔−1−2𝑖)

.

Moreover𝐊 has the same discriminant up to a sign.

Proof. The composition𝐻𝑔−1(𝐴, 𝐙) ↪ 𝐻𝑔−1(𝐴, 𝐙)∨ ⥲ 𝐻𝑔+1(𝐴, 𝐙) is multiplication by 𝜃, as

⟨𝜄∗𝛼, 𝜄∗𝛽⟩ = ∫
𝐴
𝜄∗𝜄∗(𝛼𝛽) = ∫

𝐴
𝜃𝛼𝛽

for all 𝛼, 𝛽 ∈ 𝐻𝑔−1(𝐴, 𝐙). If we fix a basis for 𝐻∗(𝐴, 𝐙) as in (1.3.5), the induced basis for
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𝐻𝑔+1(𝐴, 𝐙) agreeswith the induceddual basis for𝐻𝑔−1(𝐴, 𝐙)∨. Thematrix𝑀which represents

multiplication by 𝜃with respect to these bases is therefore the Grammatrix of the intersection

form on 𝜄∗𝐻𝑔−1(𝐴, 𝐙). Moreover |det(𝑀)| is the product of the diagonal entries of the Smith

normal form of 𝑀, which coincides with the order of Coker(𝐻𝑔−1(𝐴, 𝐙) 𝜃∪−−−−→ 𝐻𝑔+1(𝐴, 𝐙)).

The result now follows from (1.3.5) and (A.2.3b). ©

(1.3.7) Corollary. If 𝑔 = 5 then |det(𝐊)| = 244 × 3. ©

(1.3.8) Proposition. If 𝑔 = 5 then𝐻4(𝛩, 𝐙) is even.

Proof. Following Krämer, it suffices to show that 𝛼2 = 0 for all 𝛼 ∈ 𝐻4(𝛩, 𝐙/2) [Krä15,

Lemma 5.2]. In characteristic 2 squaring is linear, so it defines (by Poincaré duality) a class in

𝐻4(𝛩, 𝐙/2), which we claim is zero. More generally, the Steenrod squares [Hat02, §4.L]

Sq𝑖∶ 𝐻∗(𝛩, 𝐙/2) → 𝐻∗+𝑖(𝛩, 𝐙/2)

extend the squaring maps 𝐻𝑖 → 𝐻2𝑖, and restrict to forms on 𝐻8−𝑖 which correspond to the

Wu classes 𝑣𝑖 ∈ 𝐻𝑖. These classes are determined by theWu formula𝑤 = Sq(𝑣), where𝑤 is the

total Stiefel-Whitney class of 𝛩 [MS74, Theorem 11.14]. This class is just the imagemodulo 2 of

the total Chern class of 𝛩 [MS74, Problem 14-B]. The normal bundle sequence for𝛩 ↪ 𝐴 gives

c(𝛩) = c(𝐴)
1 + 𝜃

|||𝛩
= (1 + 𝜃)−1||𝛩 = (1 − 𝜃 + 𝜃2 −⋯)||𝛩,

so 𝑤 = 1 + 𝛼 + 𝛼2 + ⋯ where 𝛼 ∈ 𝐻2(𝛩, 𝐙/2) is the image of 𝜃 ∈ 𝐻2(𝐴, 𝐙). In particular

𝑣0 = 1 and 𝑣1 = 𝑤1 − Sq1(𝑣0) = 0, since Sq0 = 1 and Sq𝑖 vanishes on 𝐻𝑘 for 𝑘 < 𝑖. Similarly

𝑣2 = 𝑤2 − Sq1(𝑣1) = 𝛼, and 𝑣3 = 𝑤3 − Sq1(𝑣2) = Sq1(𝛼) = 𝛽(𝛼), where 𝛽 is the 𝐙/2 Bockstein

homomorphism [Hat02, §3.E]. Since 𝛽2 = 0

𝑣4 = 𝑤4 − Sq1(𝑣3) − Sq2(𝑣2) = 𝛼2 + 𝛽2(𝛼) + 𝛼2 = 0,

which is what we wanted. ©
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Chapter 2: Prym varieties and subvarieties

(2.0.1) Elliptic curves are the simplest abelian varieties. More generally, given a curve𝑋

of genus 𝑔, its jacobian Pic0(𝑋) is a ppav of dimension 𝑔. These are also very well-understood,

but not every abelian variety of dimension 𝑔 > 3 is a jacobian (since the moduli spaceℳ𝑔 of

curves has fewer dimensions than the moduli space𝒜𝑔 of ppavs). Prym varieties form a larger

class of abelian varieties, but they are understood almost as well as jacobians are. The main

references are [Mum74], [Bea77a] and [BL04]. This chapter summarises some properties of

Prym varieties and their subvarieties.

(2.0.2) The Prym construction applies to any stable curve 𝑋 ∈ ℳ𝑔+1, together with a

double cover 𝑋 𝜋−→ 𝑋 such that 𝑋 ∈ ℳ2𝑔+1, but only produces an abelian variety if 𝜋 satisfies

certain conditions [Bea77a, (5.1)]. There is a (coarse)moduli schemeℛ𝑔+1 parametrising such

covers, and the Prym map 𝒫∶ ℛ𝑔+1 → 𝒜𝑔 is surjective for 𝑔 ≤ 5 [DS81, Theorem 1.1].

(2.0.3) The upshot for us is that every ppav 𝐴 of dimension 𝑔 ∈ {4, 5} can be realised

as the Prym variety of some 𝑋 ∈ ℛ𝑔+1. Such an 𝑋 is called a Prym-curve for 𝐴 (and the cover

will always be denoted by 𝑋 𝜋−→ 𝑋). To simplify various arguments, we will typically work

with a cover which is good, meaning 𝑋 is smooth, 𝜋 is étale and 𝑋 is not hyperelliptic, trigonal

or bielliptic. Since proper push-forward of divisors preserves linear equivalence, this implies

that 𝑋 is not hyperelliptic or trigonal.

(2.0.4) We denote the covering involution of 𝑋 by 𝜎, and if 𝑥 ∈ 𝑋 then 𝑥′ ≔ 𝜎(𝑥).

2.1. Prym varieties

(2.1.1) The Prym variety 𝒫(𝑋) of a good cover 𝑋 𝜋−→ 𝑋 is the identity component of

(2.1.2) Ker(Pic(𝑋)
c1−−→ CH0(𝑋)

𝜋∗−−→ CH0(𝑋)).
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It has a principal polarisation inherited from Pic0(𝑋) [Mum74, §3].

(2.1.3) It is easy to show that𝒫(𝑋) = {𝜎∗𝐿 ⊗ 𝐿−1 || 𝐿 ∈ Pic0(𝑋)} [Mum74, §3]. The other

component of (2.1.2) is the 𝒫(𝑋)-torsor 𝒫−(𝑋) ≔ {𝜎∗𝐿 ⊗ 𝐿−1 || 𝐿 ∈ Pic1(𝑋)} [Bea77a, (3.3)].

Note that there is a canonical map 𝜄∶ 𝑋 → 𝒫−(𝑋): it sends 𝑥 ↦ 𝒪𝑋̃(𝑥 − 𝑥′), with 𝑥′ as in

(2.0.4). Since 𝑋 is not hyperelliptic, 𝜄 is an embedding. A Prym-embedding of 𝑋 in 𝒫(𝑋) is a

translate of 𝜄 by a point of 𝒫−(𝑋).

(2.1.4) Following [BD87], given 𝑥, 𝑦 ∈ 𝑋 we define

[𝑥, 𝑦] ≔ 𝜄(𝑥) + 𝜄(𝑦) = 𝒪𝑋̃(𝑥 + 𝑦 − 𝑥′ − 𝑦′) ∈ 𝒫(𝑋).

Note that [𝑥, 𝑦] = 𝜅(𝑥) − 𝜅(𝑦′) for any Prym-embedding 𝜅∶ 𝑋 ↪ 𝒫(𝑋).

(2.1.5) There are twomore canonically-defined𝒫(𝑋)-torsors: 𝒫𝜔(𝑋) (resp.𝒫−
𝜔 (𝑋)) is the

component of the fibre of 𝜋∗ c1 over 𝜔𝑋 where ℎ0 is even (resp. odd) [Mum74, (6.1)].

2.2. Brill-Noether loci

(2.2.1) For each positive integer 𝑟, let𝒫𝑟
𝜔 (𝑋) be the locus in𝒫𝜔(𝑋)⊔𝒫−

𝜔 (𝑋)where ℎ0 > 𝑟

and ℎ0 ≢ 𝑟 (mod 2). Of course 𝒫𝑟
𝜔 (𝑋) ⊆ 𝒫𝜔(𝑋) if 𝑟 is odd; otherwise 𝒫𝑟

𝜔 (𝑋) ⊆ 𝒫−
𝜔 (𝑋). These

subspaces have scheme structures inherited from classical Brill-Noether loci 𝑊 𝑟
2𝑔 ⊆ Pic(𝑋)

[Wel85, (1.2)]. If 𝑋 → 𝑋 is a good cover of a general curve 𝑋 ∈ ℳ𝑔+1, then 𝒫𝑟
𝜔 (𝑋) is smooth

of dimension 𝑔 − (𝑟+12 ) [Wel85, (1.11)].

(2.2.2) The locus 𝛩𝜔(𝑋) ≔ 𝒫1
𝜔 (𝑋) ⊂ 𝒫𝜔(𝑋) defines a theta divisor in the sense that, for

each 𝐿0 ∈ 𝒫𝜔(𝑋), the translate 𝛩𝜔(𝑋) ⊗ 𝐿−10 is a theta divisor for 𝒫(𝑋) [Mum74, §6]. This

is useful because there is no canonical choice of theta divisor for 𝒫(𝑋) itself. Choosing 𝐿0

determines a group structure on 𝒫𝜔(𝑋): addition is given by (𝐿,𝑀) ↦ 𝐿⊗𝑀⊗𝐿−10 and hence

negation is given by 𝐿 ↦ 𝐿20 ⊗ 𝐿−1. In particular, if 𝐿0 is a theta characteristic (meaning

𝐿20 ≅ 𝜔𝑋̃), then 𝛩𝜔(𝑋) ⊗ 𝐿−10 is symmetric by Serre duality.
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(2.2.3) The second Brill-Noether locus 𝒫2
𝜔 (𝑋) is also interesting. According to [Iza95,

Proposition 3.11] it parametrises Prym-embeddings of 𝑋 in 𝛩𝜔(𝑋), in the sense that each 𝐿 ∈

𝒫−
𝜔 (𝑋) belongs to 𝒫2

𝜔 (𝑋) if and only if 𝜄(𝑋) ⊗ 𝐿 ⊂ 𝛩𝜔(𝑋). Similarly, if 𝑥 ∈ 𝑋 then

𝑊𝑥 ≔ 𝒫2
𝜔 (𝑋) + 𝜄(𝑥) = {𝐿 ∈ 𝒫𝜔(𝑋) || ℎ0(𝐿(−𝑥)) > 1} ⊂ 𝛩𝜔(𝑋).

defines an embedding of 𝒫2
𝜔 (𝑋) in 𝛩𝜔(𝑋).

(2.2.4) By Serre duality, the involution 𝜌∶ 𝐿 ↦ 𝜔𝑋̃ ⊗ 𝐿−1 preserves 𝒫2
𝜔 (𝑋). The map

which sends 𝑋 → 𝑋 to the cover 𝒫2
𝜔 (𝑋) → 𝒫2

𝜔 (𝑋)/⟨𝜌⟩ induces an involution 𝜆 of the fibres of

𝒫∶ ℛ5 → 𝒜4 [Iza95, Proposition 3.13]. Following loc. cit., we set 𝑋𝜆 ≔ 𝜆(𝑋), in which case

𝑋𝜆 = 𝒫2
𝜔 (𝑋).

(2.2.5) If 𝐴 ∈ 𝒜5 and 𝑋 is a good Prym-curve for 𝐴, then 𝑆𝑋 ≔ 𝒫2
𝜔 (𝑋) is one of the

surfaces we will use to generate𝐊+.

2.3. Special subvarieties

(2.3.1) Given linear system 𝑔𝑟𝑑 on 𝑋 of dimension 𝑟 ≥ 1 and degree 2𝑟 < 𝑑 < 2𝑔+2, the

associated special subvarieties of the symmetric power 𝑋(𝑑) are the connected components 𝑆𝑖

of the fibre product
𝑆1 ⊔ 𝑆2 𝑆 𝑋(𝑑)

𝐏𝑟 𝑔𝑟𝑑 𝑋(𝑑).∼

If the base locus of 𝑔𝑟𝑑 is reduced, then 𝑆 is too [Bea82, §1]. When 𝑑 ≤ 𝑟 + 𝑔, we also consider

the special subvarieties 𝑇𝑖 ⊂ 𝑋(2𝑔−𝑑) associated to the residual linear system 𝑔𝑟+𝑔−𝑑2𝑔−𝑑 . After

choosing the indices appropriately, for each 𝐷 ∈ 𝑇𝑖 the image of 𝑆𝑖 + 𝐷 ⊂ 𝑋(2𝑔) under the

Abel map𝑋(2𝑔) → Pic2𝑔(𝑋) is a subvariety𝑉𝐷 ⊆ 𝛩𝜔(𝑋). On the other hand 𝑆3−𝑖+𝐷maps into

𝒫−
𝜔 (𝑋). The 𝑉𝐷 are called special subvarieties of 𝛩𝜔(𝑋) (and 𝒫𝜔(𝑋)).
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(2.3.2) If 𝜃 ∈ 𝐻2(𝒫𝜔(𝑋), 𝐙) denotes the class of 𝛩𝜔(𝑋) ⊂ 𝒫𝜔(𝑋), then

2𝑑−2𝑟−1 𝜃𝑔−𝑟
(𝑔 − 𝑟)!

is the class of 𝑉𝐷 ⊆ 𝒫𝜔(𝑋) [Bea82, Théorème 1].

(2.3.3) For a (base-point-free) 𝑔14 this procedure is called the tetragonal construction.

Each special subvariety𝑋𝑖 ≔ 𝑆𝑖 of 𝑋(4) is a smooth curve, assuming the fibres of 𝑋 → 𝑔14
∨ ≅ 𝐏1

have at most one ramification point, with index at most 3 [Bea82, §2]. The quotients 𝑋𝑖 → 𝑋𝑖

induced by the covering involution 𝑋(4) 𝜍∗−−→ 𝑋(4) have the same Prym variety as 𝑋 → 𝑋

[Don92, Theorem 2.16]. For each 𝑖, the projection 𝑆1 ⊔ 𝑆2 → 𝐏1 (which has degree 24 = 16)

induces a morphism 𝑋𝑖 → 𝐏1 which factors through 𝑋𝑖 → 𝑋𝑖. This determines a 𝑔14 on 𝑋𝑖 for

which the associated special subvarieties of 𝑋(4)
𝑖 are𝑋 and𝑋3−𝑖 [Don92, Lemma 2.13]. We say

that the 𝑋𝑖 → 𝑋𝑖 are tetragonally related to 𝑋 → 𝑋 (and each other), or that (𝑋, 𝑋1, 𝑋2) is a

tetragonal triple. The tetragonal relation is denoted by 𝑋 ⋄∼ 𝑋𝑖.

(2.3.4) Suppose𝑋 ⋄∼ 𝑌 and 𝜅∶ 𝑋 ↪ 𝒫(𝑋) is a Prym-embedding. According to the proof

of [BL04, Theorem 12.8.2], each embedding 𝑉𝐷 ⊂ 𝒫𝜔(𝑌) of 𝑋 ⊂ 𝑌(4) as a special subvariety

determines an isomorphism 𝜑∶ 𝒫(𝑋) ⥲ 𝒫(𝑌) and a line bundle 𝐿𝜑 ∈ 𝒫𝜔(𝑌) such that the

following diagram commutes:

𝑋 𝑉𝐷

𝒫(𝑋) 𝒫(𝑌).
𝜑

𝜅 −⊗ 𝐿−1𝜑

(2.3.5) Lemma. Suppose 𝑋 ⋄∼ 𝑌. If 𝜑∶ 𝒫(𝑋) ⥲ 𝒫(𝑌) and 𝜓∶ 𝒫(𝑌) ⥲ 𝒫(𝑋) are con-

structed as in (2.3.4), then 𝜑 = 𝜓−1. In particular, 𝜑 is independent of 𝜅 and 𝐷.

Proof. Let 𝑝 ∈ 𝑌, and pick 𝑞, 𝑟, 𝑠 ∈ 𝑌 so that 𝐴 ≔ 𝑝 + 𝑞 + 𝑟 + 𝑠 ∈ 𝑌(4) belongs to 𝑋. This is

possible because every point of 𝑌 appears in some divisor of the 𝑔14. Also set

𝐵 ≔ 𝑝 + 𝑞 + 𝑟′ + 𝑠′, 𝐶 ≔ 𝑝 + 𝑞′ + 𝑟 + 𝑠′, 𝐷 ≔ 𝑝 + 𝑞′ + 𝑟′ + 𝑠.
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These divisors belong to𝑋 (as opposed to the other curve of the triple), because they differ from

𝐴 by the sum of two points in 𝜄(𝑌) ⊂ 𝒫−(𝑌). To reduce ambiguity in the notation, we denote

the points of 𝑋 corresponding to these divisors by 𝑎, 𝑏, 𝑐 and 𝑑 respectively. If 𝜅∶ 𝑋 ↪ 𝒫(𝑋)

and 𝑉𝐸 ⊂ 𝒫𝜔(𝑌) are the embeddings used to define 𝜑 then (2.3.4) implies that

(2.3.6) 𝜑([𝑎, 𝑏]) = 𝜑(𝜅(𝑎) − 𝜅(𝑏′)) = 𝐿−1𝜑 (𝐴 + 𝐸) ⊗ 𝐿𝜑(−𝐵′ − 𝐸) = 𝒪𝑌̃(𝐴 − 𝐵′).

Since 𝐴 − 𝐵′ = 𝑝 + 𝑞 + 𝑟 + 𝑠 − 𝑝′ − 𝑞′ − 𝑟 − 𝑠 it follows that 𝜑([𝑎, 𝑏]) = [𝑝, 𝑞]. Similarly

𝜑([𝑐, 𝑑]) = [𝑝, 𝑞′]. The upshot is that

(2.3.7) 𝜑([𝑎, 𝑏] + [𝑐, 𝑑]) = [𝑝, 𝑞] + [𝑝, 𝑞′] = 2𝜄(𝑝).

Now we switch perspectives and think of 𝑌 as a subvariety of 𝑋(4). The divisor on 𝑋

corresponding to 𝑝 is none other than 𝑃 ≔ 𝑎 + 𝑏 + 𝑐 + 𝑑. Indeed 𝐴, 𝐵, 𝐶 and 𝐷 are the only

elements of 𝑋 ⊂ 𝑌(4) in which 𝑝 appears. From this point of view (2.3.7) says that

𝜑(𝒪𝑋̃(𝑃 − 𝑃′)) = 2𝜄(𝑝).

On the other hand (2.3.6) implies that

𝜓(2𝜄(𝑝)) = 𝜓([𝑝, 𝑝]) = 𝒪𝑋̃(𝑃 − 𝑃′).

Therefore 𝜑𝜓 = 𝟏 on 2𝜄(𝑌). This set generates 𝒫(𝑌) = {𝜎∗𝐿 ⊗ 𝐿−1 || 𝐿 ∈ Pic0(𝑌)}. ©

2.4. Comparing Prym subvarieties

(2.4.1) The results in this section describe relationships between the Brill-Noether loci

and special subvarieties of 𝒫𝜔(𝑋). Most of them appeared in some form in [BD87] and [Iza95];

the proofs are the same, but in some cases the statements are a little stronger. Everything else

is joint work with Edward Dewey and Elham Izadi.

(2.4.2) Lemma. Let 𝑋 → 𝑋 be a good cover and set 𝛩 ≔ 𝛩𝜔(𝑋). If 𝑝, 𝑞, 𝑟 ∈ 𝑋 are such

22



that 𝑝, 𝑝′, 𝑞 and 𝑟 are distinct, then:

(a) 𝛩 ∩ 𝛩[𝑝,𝑞] = 𝑉𝑝+𝑞.

(b) 𝛩 ∩ 𝛩[𝑝,𝑞] ∩ 𝛩[𝑝,𝑟] = 𝑊𝑝 ∪ 𝑉𝑝+𝑞+𝑟.

(c) 𝛩[𝑝,𝑞] ∩ 𝛩[𝑝,𝑟] ∩ 𝛩[𝑞,𝑟] = (𝑊𝑝 + [𝑞, 𝑟]) ∪ 𝑉𝑝+𝑞+𝑟.

(d) 𝑊𝑝 and𝑊𝑝 + [𝑞, 𝑟] are algebraically equivalent in 𝛩[𝑝,𝑞] ∩ 𝛩[𝑝,𝑟].

Moreover, if 𝑠 ∈ 𝑋 is such that 𝜋∗(𝑝 + 𝑞 + 𝑟 + 𝑠) ∈ 𝑋(4) moves in a pencil, then:

(e) 𝑉𝑝+𝑞+𝑟 = 𝑉𝑝+𝑞+𝑟+𝑠 ∪ 𝑉𝑝+𝑞+𝑟+𝑠′.

Proof. See the proof of [BD87, Proposition 1] for (2.4.2a) and (2.4.2b), and [Iza95, Proposition

2.4.1] for (2.4.2e). According to (2.4.2b)

(2.4.3) 𝛩[𝑝,𝑞] ∩ 𝛩[𝑝,𝑟] ∩ 𝛩[𝑞,𝑟] = (𝛩[𝑝,𝑟′] ∩ 𝛩[𝑝,𝑞′] ∩ 𝛩) + [𝑞, 𝑟] = (𝑊𝑝 ∪ 𝑉𝑝+𝑞′+𝑟′) + [𝑞, 𝑟].

By definition 𝑉𝑝+𝑞′+𝑟′ + [𝑞, 𝑟] consists of line bundles 𝐿 ∈ 𝒫𝜔(𝑋) such that

ℎ0(𝐿(−𝑞 − 𝑟 − 𝑝)) = ℎ0(𝐿(−𝑞 − 𝑟 + 𝑞′ + 𝑟′ − 𝑝 − 𝑞′ − 𝑟′)) > 0,

so 𝑉𝑝+𝑞′+𝑟′ + [𝑞, 𝑟] = 𝑉𝑝+𝑞+𝑟 and (2.4.2c) follows from (2.4.3). The algebraic equivalence

𝛩 ∼ 𝛩[𝑞,𝑟] on 𝒫𝜔(𝑋) restricts to

𝛩 ∩ 𝛩[𝑝,𝑞] ∩ 𝛩[𝑝,𝑟] ∼ 𝛩[𝑞,𝑟] ∩ 𝛩[𝑝,𝑞] ∩ 𝛩[𝑝,𝑟]

on 𝛩[𝑝,𝑞] ∩ 𝛩[𝑝,𝑟]. Now (2.4.2d) follows from (2.4.2b) and (2.4.2c). ©

(2.4.4) Lemma. Suppose 𝑋 ⋄∼ 𝑌 are good Prym-curves for some ppav 𝐴. If 𝑝 ∈ 𝑋

corresponds to 𝑃 ∈ 𝑌(4), then 𝜓(𝑊𝑝) = 𝑉𝑃 for some isomorphism 𝜓∶ 𝒫𝜔(𝑋) → 𝒫𝜔(𝑌).

Proof. Choose a theta characteristic 𝐿𝑋 ∈ 𝒫𝜔(𝑋) and an isomorphism 𝜑∶ 𝒫(𝑋) → 𝒫(𝑌) as in

(2.3.4). There is a unique theta characteristic 𝐿𝑌 ∈ 𝒫𝜔(𝑌) such that the isomorphism

𝜓∶ 𝐿 ↦ 𝜑(𝐿 ⊗ 𝐿−1𝑋 ) ⊗ 𝐿𝑌
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maps 𝛩𝜔(𝑋) onto 𝛩𝜔(𝑌). Indeed, any two symmetric theta divisors differ by a point of order

two [BL04, Lemma 4.6.2]. If 𝐿 ∈ 𝑉𝑃, and 𝑞 ∈ 𝑋 corresponds to 𝑄 ∈ 𝑌(4), then

𝜑(𝜄(𝑞) − 𝜄(𝑝)) ⊗ 𝐿 = 𝜑([𝑞, 𝑝′]) ⊗ 𝐿 = 𝐿(𝑄 − 𝑃) ∈ 𝛩𝜔(𝑌)

by (2.3.6) and the fact that ℎ0(𝐿(−𝑃)) > 0. It follows that 𝛩𝜔(𝑋) contains

𝜓−1(𝜑(𝜄(𝑞) − 𝜄(𝑝)) ⊗ 𝐿) = (𝜄(𝑞) − 𝜄(𝑝)) ⊗ 𝜓−1(𝐿) = 𝜄(𝑞) ⊗ (𝜓−1(𝐿) − 𝜄(𝑝))

for all 𝑞 ∈ 𝑋, so 𝜓−1(𝐿) − 𝜄(𝑝) ∈ 𝒫2
𝜔 (𝑋) and hence 𝜓−1(𝐿) ∈ 𝑊𝑝. This shows that 𝜓(𝑊𝑝) ⊆ 𝑉𝑃.

By (2.3.2) (and the fact that |𝜔𝑋(−𝑃)| is a 𝑔
𝑔−3
2𝑔−4), the class of 𝑉𝑃 is

1
3𝜃

3 ∈ 𝐻6(𝐴, 𝐙).

On the other hand 𝑉𝑝+𝑞+𝑟 has class 2
3𝜃

3 whenever 𝑞, 𝑟 ∈ 𝑋. It follows from (2.4.2b) that

[𝜓(𝑊𝑝)] = [𝑉𝑃], and hence 𝜓(𝑊𝑝) = 𝑉𝑃. ©

(2.4.5) Corollary. Let (𝑋, 𝑌, 𝑍) be a tetragonal triple of good Prym-curves for some

ppav. Also choose isomorphisms 𝜑∶ 𝒫𝜔(𝑌) → 𝒫𝜔(𝑋) and 𝜓∶ 𝒫𝜔(𝑍) → 𝒫𝜔(𝑋) as in (2.4.4).

If 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 and 𝑧 ∈ 𝑍 then, up to algebraic equivalence,

[𝑊𝑥] + 𝜑∗[𝑊𝑦] + 𝜓∗[𝑊𝑧] = [𝛩𝜔(𝑋)]
2.

Proof. If 𝑑 ≔ 𝑝 + 𝑞 + 𝑟 + 𝑠 ∈ 𝑌 ⊂ 𝑋(4) lifts a reduced divisor of the 𝑔14 on 𝑋, then

𝛩 ∩ 𝛩[𝑝,𝑞] ∩ 𝛩[𝑝,𝑟] = 𝑊𝑝 ∪ 𝑉𝑝+𝑞+𝑟+𝑠 ∪ 𝑉𝑝+𝑞+𝑟+𝑠′ = 𝑊𝑝 ∪ 𝜑(𝑊𝑑) ∪ 𝜓(𝑊𝑒),

where 𝑒 ≔ 𝑝+𝑞+ 𝑟 + 𝑠′ ∈ 𝑍, by (2.4.2b) and (2.4.2e) and (2.4.4). Since𝑊𝑝 and𝑊𝑥 belong to a

family of subvarieties of 𝛩𝜔(𝑋) parametrised by𝑋, they are algebraically equivalent. Similarly

[𝑊𝑑] = [𝑊𝑦] and [𝑊𝑒] = [𝑊𝑧]. ©

Chapter 2, in part, is currently being prepared for submission for publication. Jonathan

Conder, Edward Dewey, and Elham Izadi.
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Chapter 3: 27 subvarieties

(3.0.1) In this chapter we consider only the cases 𝑔 = 5 and 𝑔 = 4, which allows us

to say more about the special subvarieties of interest. Each ppav of dimension five has only

27 Prym-curves 𝑋, and the tetragonal relation between them is isomorphic to the incidence

correspondence for the lines on a smooth cubic surface [Don92, Theorem 4.2]. Consequently

we are able to compute the intersection pairing between the surfaces 𝑆𝑋 ≔ 𝒫2
𝜔 (𝑋) ⊂ 𝛩𝜔(𝑋) in

terms of their self-intersection numbers.

(3.0.2) Each ppav (𝐵, 𝛯) of dimension four has a two-parameter family of Prym-curves,

but for most points 𝛼 ∈ 𝐵, only 27 of them admit Prym-embeddings in the surface 𝛯 ∩ 𝛯𝛼

[Iza95]. In this case the self-intersection numbers are known [Krä15], and again they deter-

mine the rest of the pairing. We record the calculation for completeness, but apart from the

self-intersection numbers this pairing will not be used later on.

(3.0.3) Everything in this chapter is joint work with Edward Dewey and Elham Izadi.

3.1. Lines

(3.1.1)We begin by summarising some of the useful properties of the lines on a smooth

cubic surface. One way to obtain such a surface is to blow up six points 𝑝1, … , 𝑝6 ∈ 𝐏2 in

general position (with respect to lines and conics) [Har77, V, Corollary 4.7]. The lines on the

resulting surface can be described as follows:

• The exceptional divisor 𝐸𝑖 over each point 𝑝𝑖.

• The proper transform 𝐹𝑖𝑗 of the line joining 𝑝𝑖 to 𝑝𝑗, for 𝑖 < 𝑗. If 𝑖 > 𝑗 we set 𝐹𝑖𝑗 ≔ 𝐹𝑗𝑖.

• The proper transform 𝐺𝑗 of the conic containing 𝑝𝑖 for 𝑖 ≠ 𝑗 but not 𝑝𝑗.
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Two lines meet if and only if they both belong to a triple of the form (𝐸𝑖, 𝐹𝑖𝑗, 𝐺𝑗) with 𝑖 ≠ 𝑗, or

(𝐹𝑖𝑗, 𝐹𝑘𝑙, 𝐹𝑚𝑛) with {𝑖, … , 𝑛} = {1, … , 6} [Har77, V, Remark 4.10.1].

(3.1.2)Lemma. If 1 ≤ 𝑛 ≤ 4 or 𝑛 = 6, the automorphism group𝑊(𝖤6) of the incidence

correspondence between the lines acts transitively on 𝑛-tuples of mutually skew lines.

Proof. The case 𝑛 = 6 is well-known [Har77, V, Remark 4.10.1]. Every line belongs to a sixer

(i.e., a sextuple of mutually skew lines) of the form (𝐸1, … , 𝐸6), (𝐸𝑖, 𝐸𝑗, 𝐸𝑘, 𝐹𝑙𝑚, 𝐹𝑙𝑛, 𝐹𝑚𝑛) or

(𝐺1, … , 𝐺6), which proves the case 𝑛 = 1.

Thus, any pair of skew lines is conjugate to one containing, say, 𝐸𝑖. Such a pair looks

like one of (𝐸𝑖, 𝐸𝑗), (𝐸𝑖, 𝐹𝑗𝑘) or (𝐸𝑖, 𝐺𝑖). The first two extend to one of the above sixers, while

the last extends to a sixer of the form (𝐸𝑖, 𝐺𝑖, 𝐹𝑗𝑘, 𝐹𝑗𝑙, 𝐹𝑗𝑚, 𝐹𝑗𝑛). This proves the case 𝑛 = 2.

The case 𝑛 = 3 is similar: each skew triple is conjugate to one of the form (𝐸𝑖, 𝐸𝑗, 𝐸𝑘)

or (𝐸𝑖, 𝐸𝑗, 𝐹𝑘𝑙), which both extend to sixers as above. Finally, each skew quadruple is conjugate

to either (𝐸𝑖, 𝐸𝑗, 𝐸𝑘, 𝐸𝑙) or (𝐸𝑖, 𝐸𝑗, 𝐸𝑘, 𝐹𝑙𝑚), which are easy to extend.

The result is false for 𝑛 = 5 because (𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐹56) does not extend to a sixer, so it

cannot be conjugate to a quintuple that does extend. ©

3.2. Surfaces

(3.2.1) In this section𝐴 ∈ 𝒜5 is a very general ppavwith a fixed symmetric theta divisor

𝛩 ⊂ 𝐴. Since the Prym varieties of (covers of) hyperelliptic, trigonal and bielliptic curves

are special (see [Mum74, §7], [Rec74] and [Don92, §3]), we may assume all the Prym-curves

for 𝐴 are good. It is well-known that the automorphisms of a very general ppav are just ±𝟏

[BL04, Exercise 8.11.1].

(3.2.2) For each Prym-curve𝑋, fix an isomorphism 𝜑𝑋∶ 𝒫𝜔(𝑋) ⥲ 𝐴whichmaps𝛩𝜔(𝑋)

onto𝛩. If 𝜑 is another such isomorphism, then 𝜑𝑋𝜑−1 is an automorphism of 𝐴 followed by a

translation [Mum08, §4, Corollary 1], but no two translates of 𝛩 are the same [Mum08, §16],

so 𝜑𝑋 is unique up to ±𝟏. Since Serre duality preserves the Brill-Noether loci, and hence takes
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each translate𝑊𝑝 to𝑊𝑝′, the action of −𝟏 on 𝛩 preserves 𝜑𝑋(𝑊𝑝). The algebraic equivalence

class of 𝜑𝑋(𝑊𝑝) ⊂ 𝛩 is therefore independent of 𝜑𝑋 (and 𝑝), so we denote it simply by [𝑆𝑋].

(3.2.3) Theorem. Suppose that ⟨[𝑆𝑋], [𝑆𝑋]⟩ = 16 whenever 𝑋 is a Prym-curve for 𝐴. If

𝑋 and 𝑌 are non-isomorphic Prym-curves, then

⟨[𝑆𝑋], [𝑆𝑌]⟩ =
⎧
⎨
⎩

12 if 𝑋 ⋄∼ 𝑌,

14 otherwise.

Proof. First, suppose that𝑋 ⋄∼ 𝑌 and form the tetragonal triple (𝑋, 𝑌, 𝑍). Using (2.4.4), choose

isomorphisms 𝜑∶ 𝒫𝜔(𝑌) → 𝒫𝜔(𝑋) and 𝜓∶ 𝒫𝜔(𝑍) → 𝒫𝜔(𝑋). Since 𝜑𝑋𝜑 = ±𝜑𝑌 and likewise for

𝜓, it follows from (2.4.5) that

[𝑆𝑋] + [𝑆𝑌] + [𝑆𝑍] = [𝛩]2.

Combining this with (2.3.2) gives

(3.2.4) ⟨[𝑆𝑊], [𝑆𝑋] + [𝑆𝑌] + [𝑆𝑍]⟩ = ⟨[𝑆𝑊], [𝛩]
2⟩ = 1

3⟨𝜃
3, 𝜃2⟩ = 5!

3 = 40

for all Prym-curves𝑊, and hence

⟨[𝑆𝑋], [𝑆𝑌] + [𝑆𝑍]⟩ = ⟨[𝑆𝑌], [𝑆𝑍] + [𝑆𝑋]⟩ = ⟨[𝑆𝑍], [𝑆𝑋] + [𝑆𝑌]⟩ = 40 − 16 = 24.

It easily follows that ⟨[𝑆𝑋], [𝑆𝑌]⟩ = ⟨[𝑆𝑌], [𝑆𝑍]⟩ = ⟨[𝑆𝑍], [𝑆𝑋]⟩ = 12.

For the case 𝑋 ⋄≁ 𝑌, suppose 𝑋1, 𝑌1, 𝑋2 and 𝑌2 are mutually unrelated Prym-curves

for 𝐴. We claim that ⟨[𝑆𝑋1], [𝑆𝑌1]⟩ = 28 − ⟨[𝑆𝑋2], [𝑆𝑌2]⟩. To prove this, fix a correspondence-

preserving bijection 𝜑 from the 27 lines onto 𝒫−1(𝐴). By (3.1.2) we may assume that 𝜑 sends

(𝐸1, 𝐸2, 𝐸3, 𝐸4) to (𝑋1, 𝑌1, 𝑋2, 𝑌2). Consider the following incidence diagrams:

𝐺4

𝐸1 𝐸2

𝐹14 𝐹24

𝐹56

𝐹14

𝐹24

𝐹23

𝐺2

𝐹23 𝐹24

𝐸3 𝐸4.
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For notational simplicity set 𝑒𝑖 ≔ [𝑆𝜑(𝐸𝑖)] and likewise for 𝑓𝑖𝑗 and 𝑔𝑗. Applying (3.2.4) to the

curves corresponding to the leftmost diagram gives

⟨𝑒1, 𝑒2 + 𝑓24 + 𝑔4⟩ = 40 = ⟨𝑒1 + 𝑓14 + 𝑔4, 𝑓24⟩,

and since ⟨𝑒1, 𝑔4⟩ = 12 = ⟨𝑔4, 𝑓24⟩ it follows that ⟨𝑒1, 𝑒2⟩ = ⟨𝑓14, 𝑓24⟩. Similarly

⟨𝑓14 + 𝑓23, 𝑓24⟩ = 40 − ⟨𝑓56, 𝑓24⟩ = 28,

according to the middle diagram. The rightmost diagram, by analogy with the leftmost one,

implies that ⟨𝑓23, 𝑓24⟩ = ⟨𝑒3, 𝑒4⟩. Combining all three proves the claim:

⟨𝑒1, 𝑒2⟩ = ⟨𝑓14, 𝑓24⟩ = 28 − ⟨𝑓23, 𝑓24⟩ = 28 − ⟨𝑒3, 𝑒4⟩.

Now choose 𝜑 so that 𝜑(𝐸1) = 𝑋 and 𝜑(𝐸2) = 𝑌 (this is possible by (3.1.2)). According

to the leftmost diagram ⟨𝑒1, 𝑒2⟩ + ⟨𝑒1, 𝑓24⟩ = 28. On the other hand

⟨𝑒1, 𝑒2⟩ = 28 − ⟨𝑒5, 𝑒6⟩ = ⟨𝑒1, 𝑓24⟩,

by the claim. Therefore ⟨[𝑆𝑋], [𝑆𝑌]⟩ = ⟨𝑒1, 𝑒2⟩ = 14, as required. ©

(3.2.5) The main theorem can be deduced from the conclusion of (3.2.3), as follows.

Proof of theorem 1. Label the Prym-curves for 𝐴 as 𝑋1, … , 𝑋27, and set 𝑆𝑖 ≔ 𝑆𝑋𝑖
. The differ-

ences [𝑆𝑖] − [𝑆𝑗] all belong to𝐊+ by (2.3.2) and the invariance of the [𝑆𝑖] under −𝟏.

We may assume that 𝑋1, … , 𝑋7 correspond to the lines 𝐸1, … , 𝐸6, 𝐹12. Let 𝐿 ⊆ 𝐊+ be

the subgroup generated by [𝑆𝑖] − [𝑆7] for 𝑖 ∈ {1, … , 6}. The associated morphism 𝜑∶ 𝐙6 ↠ 𝐿

induces a bilinear form on 𝐙6 which has the following Gram matrix (by (3.2.3)):

⎛
⎜
⎜
⎜
⎜
⎜
⎝

8 6 4 4 4 4
6 8 4 4 4 4
4 4 4 2 2 2
4 4 2 4 2 2
4 4 2 2 4 2
4 4 2 2 2 4

⎞
⎟
⎟
⎟
⎟
⎟
⎠

= 2

⎛
⎜
⎜
⎜
⎜
⎜
⎝

4 3 2 2 2 2
3 4 2 2 2 2
2 2 2 1 1 1
2 2 1 2 1 1
2 2 1 1 2 1
2 2 1 1 1 2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.
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This matrix has determinant 26 × 3 ≠ 0 and represents the composition

𝐙6
𝜑
−→ 𝐿 → 𝐿∨

𝜑∨
−−→ (𝐙6)∨ ⥲ 𝐙6,

which forces 𝐿 to have rank 6. Therefore 𝐿 ⊗𝐙 𝐐 = (𝐊⊗𝐙 𝐐)
+.

Themain result of [IW19] implies that (𝐊 ⊗𝐙 𝐐)
− has noHodge classes. Since the only

Hodge classes in𝐻4(𝐴,𝐐) are multiples of 𝜃2 [BL04, Theorem 17.4.1],

𝐻2,2(𝛩) ∩ 𝐻4(𝛩,𝐐) = (𝐊⊗𝐙 𝐐)
+ ⊕𝐐[𝛩]2

is generated by the [𝑆𝑖] (which live outside𝐊⊗𝐙 𝐐 by (2.3.2)).

If 𝑋 is a smooth cubic surface, it is easy to check that theGrammatrix of the intersection

form on𝐻2
pr(𝑋, 𝐙) with respect to the basis ([𝐸1] − [𝐹12], … , [𝐸6] − [𝐹12]) is

−

⎛
⎜
⎜
⎜
⎜
⎜
⎝

4 3 2 2 2 2
3 4 2 2 2 2
2 2 2 1 1 1
2 2 1 2 1 1
2 2 1 1 2 1
2 2 1 1 1 2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

as required. For every difference [𝑆𝑖] − [𝑆𝑗], the corresponding class in 𝐻2
pr(𝑋, 𝐙) is a 𝐙-linear

combination of the [𝐸𝑘] − [𝐹12]. The same coefficients can be used to write [𝑆𝑖] − [𝑆𝑗] in terms

of our basis for 𝐿, because the intersection form on𝐊+ is nondegenerate. ©

(3.2.6) If 𝐴 ∈ 𝒜5 is just general (as opposed to very general), then theorem 1 can be false

if 𝐻4(𝐴,𝐐) has more Hodge classes than usual. However, (3.2.3) still holds and hence the

classes [𝑆𝑖] − [𝑆𝑗] generate a full rank sublattice of 𝐊+ isometric to 𝐻2
pr(𝑋, 𝐙)(−2). To prove

this, one can deform 𝐴 to a very general ppav and use the fact that intersection numbers are

constant in smooth families [Ful98, Corollary 10.2.2].
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3.3. Curves

(3.3.1) In this section 𝐵 ∈ 𝒜4 is a very general ppav with a fixed symmetric theta divisor

𝛯 ⊂ 𝐵. The fibre of 𝒫 over 𝐵 is two-dimensional: it is a double cover of the Fano surface of

lines on some cubic threefold [Don92, Theorem 5.1; Iza95, Theorem 6.11, Lemma 6.27]. The

covering involution is the map 𝜆∶ ℛ5 → ℛ5 defined in (2.2.4) [Iza95, Proposition 5.6].

(3.3.2) A general point 𝛼 ∈ 𝐵 determines a smooth hyperplane section of the cubic, and

for each line on this cubic surface, 𝛼 picks out one of the two Prym-curves 𝑋 ∈ ℛ5 lying over

it [Iza95, Lemma 5.12, Corollary 4.9]. Such an 𝑋 is called an 𝛼-curve. These are precisely the

Prym-curves such that 𝜑(𝑊𝑝) ⊂ 𝛯 ∩ 𝛯𝛼 for some 𝑝 ∈ 𝑋 and an isomorphism 𝜑∶ 𝒫𝜔(𝑋) ⥲ 𝐵

which maps 𝛩𝜔(𝑋) onto 𝛯. An 𝛼-curve is good if 𝑋 and 𝑋𝜆 are good Prym-curves for 𝐵.

(3.3.3) Set 𝐿0 ≔ 𝜑−1(0) and define a group structure on𝒫𝜔(𝑋) by (𝐿,𝑀) ↦ 𝐿⊗𝑀⊗𝐿−10 .

By rigidity 𝜑 is a group isomorphism [Mum08, §4, Corollary 1]. In particular

𝜑−1(𝛯𝛼) = 𝛩𝜔(𝑋) ⊗ 𝜑−1(𝛼) ⊗ 𝐿−10 .

Since 𝑋𝜆 parametrises Prym-embeddings of 𝑋 in𝛩𝜔(𝑋) and 𝜆2 = 𝟏, each 𝐿 ∈ 𝒫−(𝑋) such that

𝑋𝜆 + 𝐿 ⊂ 𝜑−1(𝛯 ∩ 𝛯𝛼) belongs to 𝜄(𝑋) ∩ (𝜄(𝑋) ⊗ 𝜑−1(𝛼) ⊗ 𝐿−10 ). In other words 𝜑−1(𝛼) ⊗ 𝐿−10

can be written as [𝑝, 𝑞] for some 𝑝, 𝑞 ∈ 𝑋. The embeddings 𝑋𝜆 ↪ 𝜑−1(𝛯 ∩ 𝛯𝛼) are then𝑊𝑝

and𝑊𝑞 [Iza95, Proposition 3.16].

(3.3.4) These curves enjoy similar properties to the surfaces of the previous section.

After establishing some of these, we prove an analogue of (3.2.3) for the curves in 𝛯 ∩ 𝛯𝛼. As

before we fix an isomorphism 𝜑𝑋∶ 𝒫𝜔(𝑋) ⥲ 𝐵 with 𝜑𝑋(𝛩𝜔(𝑋)) = 𝛯 for each 𝛼-curve 𝑋; it is

unique up to a sign. The only fact we will use later is the following result of Krämer.

(3.3.5) Proposition (Krämer). If 𝑋 is a good 𝛼-curve and 𝑝 ∈ 𝑋 is such that 𝜑𝑋(𝑊𝑝) ⊂

𝛯 ∩ 𝛯𝛼, then ⟨[𝜑𝑋(𝑊𝑝)], [𝜑𝑋(𝑊𝑝)]⟩ = 0.

Proof. Since 𝛼 is general 𝛯 ∩ 𝛯𝛼 is smooth. Its canonical class is [𝛯] + [𝛯𝛼] by adjunction.
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Moreover𝑊𝑝 ≅ 𝑋𝜆 has genus 9, and its class in 𝐵 is 1
3[𝛯]

3 by (2.3.2). Therefore

⟨[𝜑𝑋(𝑊𝑝)], [𝜑𝑋(𝑊𝑝)]⟩ = 2(9) − 2 − 2
3 ∫𝐵

[𝛯]4 = 16 − 16 = 0,

by adjunction again (see [Krä15, Lemma 7.2] for the original calculation). ©

(3.3.6) Lemma. If 𝑋 is a good 𝛼-curve, then the two embeddings of 𝑋𝜆 in 𝛯 ∩ 𝛯𝛼 are

algebraically equivalent.

Proof. Pick 𝑞, 𝑟 ∈ 𝑋 such that 𝜑−1𝑋 (𝛼) ⊗ 𝜑−1𝑋 (0)−1 = [𝑞′, 𝑟]. The embeddings of 𝑋𝜆 in 𝛯 ∩ 𝛯𝛼

correspond to𝑊𝑞′,𝑊𝑟 ⊂ 𝛩 ∩ 𝛩[𝑞′,𝑟], where 𝛩 ≔ 𝛩𝜔(𝑋). Given 𝑝 ∈ 𝑋 ⧵ {𝑞, 𝑞′, 𝑟, 𝑟′}, it follows

that the embeddings of 𝑋𝜆 in

(𝛩 ∩ 𝛩[𝑞′,𝑟]) + [𝑝, 𝑞] = 𝛩[𝑝,𝑞] ∩ 𝛩[𝑝,𝑟]

are 𝑊𝑞′ + [𝑝, 𝑞] = 𝑊𝑝 and 𝑊𝑟 + [𝑝, 𝑞] = 𝑊𝑝 + [𝑞, 𝑟], which are algebraically equivalent by

(2.4.2d). Now translate back by [𝑝, 𝑞] (and apply 𝜑𝑋). ©

(3.3.7) Consequently, there is a well-defined class [𝑋𝜆] ∈ 𝐻2(𝛯 ∩ 𝛯𝛼, 𝐙). It is invariant

with respect to the involution 𝛽 ↦ 𝛼 − 𝛽 on 𝛯 ∩ 𝛯𝛼. Since

𝛾𝑋 ≔ [𝑋𝜆] −
1
3[𝛯] ∈ 𝐻2(𝛯 ∩ 𝛯𝛼, 𝐐)

pushes forward to 0 in 𝐵, it belongs to (𝐖⊗𝐙 𝐐)
+, where𝐖 ⊂ 𝐻2(𝛯 ∩ 𝛯𝛼, 𝐙) is the analogue

of 𝐊 for the embedding 𝛯 ∩ 𝛯𝛼 ↪ 𝐵. Krämer showed that𝐖+ ≅ 𝖤6(−2) [Krä15, Proposition

5.1], and that 𝛾𝑋 corresponds to a norm-minimising element of the dual lattice 𝖤6(−2)
∨ [Krä15,

Lemma 7.2]. From this it is straightforward to deduce some information about the pairing

between the [𝑋𝜆]. Our approach takes us one step further, by completely determining the

pairing in terms of the tetragonal correspondence.

(3.3.8) In order to apply the argument of (3.2.3), we want to use the correspondence

between 𝛼-curves and lines on a cubic surface [Iza95, Lemma 5.9, Lemma 5.12, Corollary 6.8].

31



Unfortunately not every 𝛼-curve is good (in general), which could create some difficulties. The

next two results show that we can we can work around this issue.

(3.3.9) Lemma. If 𝐵 and 𝛼 are sufficiently general, then every 𝛼-curve is good.

Proof. Since 𝐵 is general, the fibre of 𝒫 over 𝐵 contains a dense open subset of smooth Prym-

curves [Iza95, Theorem 3.3, Remark 3.10]. As worked out above, a smooth Prym-curve 𝑋 is a

𝛽-curve if and only if the image of 𝛽 in 𝒫(𝑋) belongs to the surface

(3.3.10) 𝛴(𝑋) ≔ {[𝑝, 𝑞] || 𝑝, 𝑞 ∈ 𝑋};

this also holds for singular Prym-curves, but one has to take more care in defining [𝑝, 𝑞], as 𝑋

is no longer locally factorial [Iza95, Proposition 3.16]. It follows that the correspondence

{(𝑋, 𝛽) ∈ 𝒫−1(𝐵) × 𝐵 || 𝑋 or 𝑋𝜆 is a singular 𝛽-curve}.

is at most three-dimensional (by considering the projection to 𝒫−1(𝐵)), so its image in 𝐵 has

positive codimension. Since𝛼 ∈ 𝐵 is general, and no Prym-curve for𝐵 is hyperelliptic, trigonal

or bielliptic, we may therefore assume that every 𝛼-curve is good. ©

(3.3.11) Lemma. For good 𝛼-curves 𝑋 ⋄∼ 𝑌, the other curve in the tetragonal triple

(𝑋, 𝑌, 𝑍) is also an 𝛼-curve, and [𝑋𝜆] + [𝑌𝜆] + [𝑍𝜆] = [𝛯] in 𝛯 ∩ 𝛯𝛼.

Proof. By the argument of (2.4.5), it suffices to exhibit a reduced divisor

𝑝 + 𝑞 + 𝑟 + 𝑠 ∈ 𝑌 ⊂ 𝑋(4)

such that 𝛼 = [𝑝, 𝑞]. When such a divisor exists we say (𝑋, 𝑌) is good for 𝛼. The fibre of

{(𝑍1, 𝑍2, 𝛽) ∈ 𝒫−1(𝐵)2 × 𝐵 || 𝑍1
⋄∼ 𝑍2 are 𝛽-curves}

over a pair (𝑍1, 𝑍2) of related Prym-curves is the one-dimesional space 𝛴(𝑍1) ∩ 𝛴(𝑍2) (see

(3.3.10)). On the other hand, the projection to 𝐵 is generically finite. It is known that (𝑍1, 𝑍2)
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is good for almost all 𝛽 ∈ 𝛴(𝑍1) ∩ 𝛴(𝑍2) [Iza95, Lemma 5.9], so the subcorrespondence

{(𝑍1, 𝑍2, 𝛽) ∈ 𝒫−1(𝐵)2 × 𝐵 || 𝑍1
⋄∼ 𝑍2 are bad 𝛽-curves}

has positive codimension. Since 𝛼 ∈ 𝐵 is general, it follows that every pair of related 𝛼-curves

is good. ©

(3.3.12) Proposition. If 𝑋 and 𝑌 are 𝛼-curves, then

⟨[𝑋𝜆], [𝑌𝜆]⟩ =

⎧
⎪

⎨
⎪
⎩

0 if 𝑋 = 𝑌,

4 if 𝑋 ⋄∼ 𝑌,

2 otherwise.

Proof. Same as (3.2.3) with different numbers. ©

(3.3.13)Corollary. The classes 𝛿𝑖 ≔ [(𝑋𝑖)𝜆]−[𝑌𝜆] freely generate𝐖
+ for any collection

of 𝛼-curves 𝑋1, … , 𝑋6, 𝑌 such that the 𝑋𝑖 are mutually tetragonally unrelated and 𝑌 is related

to exactly two of the 𝑋𝑖.

Proof. If 𝑋 and 𝑌 are 𝛼-curves, with 𝐸 and 𝐹 the associated lines on a cubic surface, then

(3.3.12) says that ⟨[𝑋𝜆], [𝑌𝜆]⟩ = 2(⟨𝐸, 𝐹⟩ + 1). Thus, the matrix with entries ⟨𝛿𝑖, 𝛿𝑗⟩ is a Gram

matrix for 𝖤6(−2), so its determinant is the discriminant of 𝐖+, namely 26 × 3. The map

𝐙6 →𝐖+ defined by the 𝛿𝑖 has to be invertible for this to hold. ©

Chapter 3, in full, is currently being prepared for submission for publication. Jonathan

Conder, Edward Dewey, and Elham Izadi.
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Chapter 4: Degenerating Prym varieties

(4.0.1) In order to complete the proof of theorem 1, we still need to compute the self-

intersection numbers of the surfaces in (3.2.3). To do so, we adapt the rank one degeneration

in [IW19], which takes a very general abelian fivefold to a singular variety that is birational to

a 𝐏1-bundle over an abelian fourfold [Mum83, §1]. This allows us to compare the surfaces of

§3.2 to the curves of §3.3.

(4.0.2) The construction employs the relative Prym variety of [AFS15], which has a

modular interpretation in terms of sheaves on K3 surfaces. This can be used to show that

the total space of the family of theta divisors is nonsingular, which simplifies the intersection

theory in the next chapter. The idea of parametrising Prym-curves using the K3 cover of an

Enriques surface goes back to [MM83].

(4.0.3) Everything in this chapter is joint work with Edward Dewey and Elham Izadi.

The main difference from [IW19] is that our families parametrise line bundles of degree 10 as

opposed to degree 0. Since (for our purposes) the base of these families need not be complete,

we can show that their total spaces are smooth without using [IW19, Lemma 2.4].

4.1. Relative Prym torsors

(4.1.1) Let 𝑅 be a very general Enriques surface and 𝜌∶ 𝑅 → 𝑅 the associated K3 double

cover. Fix a very ample line bundle 𝐻 on 𝑅 such that ⟨c1(𝐻), c1(𝐻)⟩ = 10, and set 𝐻̃ ≔ 𝜌∗𝐻.

Let𝑀𝐻̃ be the moduli space of 𝐻̃-semistable sheaves 𝐹 of pure dimension one on 𝑅 such that

c1(𝐹) = 𝐻̃ and 𝜒(𝐹) = 0 [AFS15, (3.6)]. It is a 22-dimensional projective variety. There is a

morphism𝑀𝐻̃ → ||𝐻̃|| ≅ 𝐏11, which sends a sheaf to its (Fitting) support [AFS15, (3.8)].
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(4.1.2) Pick a general pencil 𝑇 ⊂ |𝐻|. Each 𝐶 ∈ 𝑇 is integral of genus 6, has at most

one node, and the cover 𝐶 ≔ 𝜌−1(𝐶) is integral of genus 11 [IW19, Proposition 1.2]. Let

𝒞 → 𝒞 → 𝑇 be the family of such covers, and pick a point 0 ∈ 𝑇 for which 𝐶 ≔ 𝒞0 is singular.

If 𝑋 𝜈−→ 𝐶 is the normalisation, with 𝑥, 𝑦 ∈ 𝑋 lying over the node 𝑧 ∈ 𝐶, then the normalisation

𝑋 𝜈−→ 𝐶 identifies each 𝑝 ∈ 𝜋−1(𝑥) with a point 𝑞 ∈ 𝜋−1(𝑦), and 𝑋 → 𝑋 is a nontrivial étale

double cover [IW19, Corollary 1.3]. In order to avoid pathologies, we will assume that 𝑋 is not

hyperelliptic.

(4.1.3) Let ||𝐻̃||
∘
⊂ ||𝐻̃|| be a neighbourhood of 𝐶 consisting of integral curves. We may

assume that ||𝐻̃||
∘
is preserved by the covering involution 𝜎 of 𝑅. The set𝑀∘

𝐻̃ ⊂ 𝑀𝐻̃ of sheaves

with support in ||𝐻̃||
∘
belongs to the stable locus [AFS15, §3.1], and is therefore nonsingular

[AFS15, §3.2]. If 𝐹 ∈ 𝑀∘
𝐻̃ is supported on 𝐷, then

𝜏(𝐹) ≔ Ext1𝑅(𝜎
∗𝐹,𝒪𝑅) ≅ Hom𝜍∗𝐷(𝜎∗𝐹, 𝜔𝜍∗𝐷)

is supported on 𝜎∗𝐷 [AFS15, §3.5]. This shows that 𝜏 is an involution of 𝑀∘
𝐻̃. Its fixed locus

𝑀𝜏
𝐻̃ is smooth [CGP15, Proposition A.8.10].

(4.1.4) The fibre 𝑀0 of 𝑀𝐻̃ → ||𝐻̃|| over 𝐶 compactifies Pic10(𝐶); specifically it is the

moduli space of torsion-free sheaves on 𝐶 with rank one and degree 10 [AFS15, §3.2]. Over a

smooth curve 𝑌 ∈ 𝜌∗|𝐻| this moduli space is just Pic10(𝑌), and the fibre of 𝑀𝜏
𝐻̃ → |𝐻| over

𝑌 has four components, two of which are 𝒫𝜔(𝑌) and 𝒫−
𝜔 (𝑌) (the others differ by the 2-torsion

point of Pic(𝑌) corresponding to 𝑌) [AFS15, (3.11)]. Our goal is to understand the limit of the

𝒫𝜔(𝑌) as 𝑌 approaches 𝐶, which we describe in (4.1.10) as one of the components of 𝑀𝜏
0.

(4.1.5) There is a resolution 𝑀̃0 → 𝑀0 which parametrises presentations [OS79, §12].

A presentation of 𝐹 ∈ 𝑀0 is a line bundle 𝐺 ∈ Pic10(𝑋) together with a short exact sequence

(4.1.6) 0 → 𝐹 → 𝜈∗𝐺 → 𝐂𝑟 ⊕𝐂𝑟′ → 0,

where 𝑟, 𝑟′ ∈ 𝐶 are the nodes. If 𝜈−1(𝑟) = {𝑝, 𝑞}, then this sequence is determined by maps

𝐺|𝑝 ⊕ 𝐺|𝑞 ↠ 𝐂 and 𝐺|𝑝′ ⊕ 𝐺|𝑞′ ↠ 𝐂. Two presentations are isomorphic if and only if the
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corresponding maps have the same kernel, so 𝑀̃0 ≅ 𝐏(𝐸𝑝 ⊕𝐸𝑞) ×Pic10(𝑋̃) 𝐏(𝐸𝑝′ ⊕𝐸𝑞′), where

𝐸𝑠 is the line bundle with fibre 𝐺|𝑠 over𝐺 ∈ Pic10(𝑋). These bundles can be constructed using

a Poincaré line bundle on 𝑋 × Pic10(𝑋) [OS79, Proposition 12.1].

(4.1.7) We define more involutions, all denoted by 𝜏. The first sends 𝐺 ∈ Pic10(𝑋) to

𝜈∗𝜔𝐶⊗𝜎∗𝐺−1. Note that 𝜏(𝐺)|𝑠 ≅ Hom(𝐺|𝑠′, 𝜔𝐶||𝜈(𝑠)). This lifts to an involution of 𝑀̃0, which

sends a pair of lines 𝐿 ⊂ 𝐺|𝑝 ⊕ 𝐺|𝑞 and 𝐿
′ ⊂ 𝐺|𝑝′ ⊕ 𝐺|𝑞′ to the lines in

𝜏(𝐺)|𝑝 ⊕ 𝜏(𝐺)|𝑞 = Hom(𝐺|𝑝′ ⊕ 𝐺|𝑞′, 𝜔𝐶||𝑟)

and 𝜏(𝐺)|𝑝′ ⊕ 𝜏(𝐺)|𝑞′ = Hom(𝐺|𝑝 ⊕ 𝐺|𝑞, 𝜔𝐶||𝑟′)which vanish on 𝐿
′ and 𝐿 respectively. There

is also a natural involution of Pic8(𝑋), which sends 𝐿 ↦ 𝜔𝑋̃ ⊗ 𝜎∗𝐿−1.

(4.1.8) Lemma. The fixed locus 𝑀̃𝜏
0 is a 𝐏1-bundle over Pic

10(𝑋)
𝜏
. This bundle has two

canonical sections, corresponding to the subbundle pairs (𝐸𝑝, 𝐸𝑞′) and (𝐸𝑞, 𝐸𝑝′) of 𝐸𝑝 ⊕ 𝐸𝑞

and 𝐸𝑝′ ⊕ 𝐸𝑞′, which are contracted by 𝑀̃𝜏
0 → 𝑀𝜏

0 after translation by ±[𝑝, 𝑞′]. Away from

these sections and their image, 𝑀̃𝜏
0 →𝑀𝜏

0 is an isomorphism.

Proof. Fix a presentation as in (4.1.6) corresponding to 𝐿 ⊂ 𝐺|𝑝 ⊕ 𝐺|𝑞 and 𝐿
′ ⊂ 𝐺|𝑝′ ⊕ 𝐺|𝑞′,

and suppose that 𝜏(𝐺) ≅ 𝐺. It fits into the following diagram with exact rows and columns:

0

𝜈∗(𝐺(−𝑝 − 𝑞 − 𝑝′ − 𝑞′))

𝐹

𝐿𝑟 ⊕ 𝐿′𝑟′

0

0

𝜈∗(𝐺(−𝑝 − 𝑞 − 𝑝′ − 𝑞′))

𝜈∗𝐺

𝜈∗(𝐺|𝑝 ⊕ 𝐺|𝑞 ⊕ 𝐺|𝑝′ ⊕ 𝐺|𝑞′)

0

0

𝐂𝑟 ⊕𝐂𝑟′

𝐂𝑟 ⊕𝐂𝑟′

0.

0

0

0

0

0
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It follows that 𝜏(𝐹) = Hom𝐶(𝜎
∗𝐹, 𝜔𝐶) is the kernel of

Hom𝐶(𝜎
∗𝜈∗(𝐺(−𝑝 − 𝑞 − 𝑝′ − 𝑞′)), 𝜔𝐶) → Ext1𝐶(𝜎

∗(𝐿|𝑟 ⊕ 𝐿′|𝑟′), 𝜔𝐶).

Since 𝜈 is an affine morphism, 𝜈∗ commutes with 𝜎∗. By Grothendieck duality

Hom𝐶(𝜎
∗𝜈∗(𝐺(−𝑝 − 𝑞 − 𝑝′ − 𝑞′)), 𝜔𝐶) → Ext1𝐶(𝜎

∗𝜈∗(𝐺|𝑝 ⊕ 𝐺|𝑞 ⊕ 𝐺|𝑝′ ⊕ 𝐺|𝑞′), 𝜔𝐶)

is the direct image (up to twisting) of the evaluation map of 𝜏(𝐺) at 𝑝, 𝑞, 𝑝′ and 𝑞′. Moreover

𝜏(𝐹) consists of those sections of 𝜈∗𝜏(𝐺) which vanish on 𝐿 and 𝐿′. In particular, if 𝜏 fixes the

presentation then 𝐹 ≅ 𝜏(𝐹).

If 𝐹 ∈ 𝑀0 is locally free, then it has a unique presentation determined by 𝐹 → 𝜈∗𝜈∗𝐹

[AK90, Lemma 13]. When 𝐹 is fixed by 𝜏, so is 𝜈∗𝐹 since 𝜏(𝐹) = 𝜔𝐶 ⊗ 𝜎∗𝐹−1. The image of

the presentation by 𝜏 is a presentation of 𝜏(𝐹), so it is also fixed by 𝜏.

Given a presentation as in (4.1.6), 𝐹 is invertible at 𝑟 if and only if the associated map

𝐺|𝑝⊕𝐺|𝑞 ↠ 𝐂 is nonzero on both summands [OS79, Proposition 12.3]. The locus in 𝑀̃0where

𝐹 is locally free is therefore a (𝐂× × 𝐂×)-torsor over Pic10(𝑋)which maps isomorphically onto

Pic10(𝐶). It follows from the above that the corresponding locus in 𝑀̃𝜏
0 is a 𝐂×-torsor over

Pic10(𝑋)
𝜏
which maps isomorphically onto Pic10(𝐶)

𝜏
.

If 𝐹 ∈ 𝑀𝜏
0 is not locally free, then it is invertible at neither 𝑟 nor 𝑟′. Each presentation

of 𝐹 can be obtained by applying the exact functor 𝜈∗ to the twisted ideal sheaf sequence

(4.1.9) 0 → 𝐺(−𝑠 − 𝑡) → 𝐺 → 𝐺|𝑠 ⊕ 𝐺|𝑡 → 0

for some 𝐺 ∈ Pic10(𝑋), 𝑠 ∈ {𝑝, 𝑞} and 𝑡 ∈ {𝑝′, 𝑞′} (see [AK90, Theorem 16] for details). Note

that 𝜏(𝐺) ≅ 𝐺: by Grothendieck duality

𝜏(𝜈∗(𝐺(−𝑠 − 𝑡))) ≅ 𝜈∗Hom𝑋̃(𝜎
∗(𝐺(−𝑠 − 𝑡)), 𝜔𝑋̃) ≅ 𝜈∗(𝜔𝑋̃ ⊗ 𝜎∗𝐺−1(𝑠′ + 𝑡′)),

and 𝜈∗∶ Pic8(𝑋) → 𝑀0 is an embedding [AK90, §15].

There are exactly four such presentations. Two of them, namely those for which (𝑠, 𝑡)
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is (𝑝, 𝑞′) or (𝑝′, 𝑞), are fixed by 𝜏. Indeed 𝜏(𝐺)|𝑠 is the subspace of 𝜏(𝐺)|𝑝 ⊕ 𝜏(𝐺)|𝑞 which

vanishes on 𝐺|𝑡. The other two presentations are not important for our purposes. Note that

(4.1.9) belongs to the section of 𝑀̃0 → Pic10(𝑋) determined by (𝐸𝑡′, 𝐸𝑠′). The other 𝜏-invariant

presentation of 𝐺(−𝑠 − 𝑡) is determined by

𝐺(−𝑠′ − 𝑡′) ⊗ [𝑠′, 𝑡′] ↪ 𝐺 ⊗ [𝑠′, 𝑡′],

so 𝑀̃𝜏
0 →𝑀𝜏

0 glues the two sections after translating one of them by ±[𝑠, 𝑡]. ©

(4.1.10) Corollary. There is a canonical bijection between the connected components

of 𝑀𝜏
0 and the four components of Pic

8(𝑋)
𝜏
. Each component of 𝑀𝜏

0 can be obtained from a

𝐏1-bundle over the corresponding component of Pic8(𝑋)
𝜏
, by gluing two sections together

after translation. If 𝐹 ∈ 𝑀𝜏
0 and 𝐿 ∈ Pic8(𝑋)

𝜏
belong to corresponding components, then

𝜋∗ c1(𝐹) = 𝜔𝐶 if and only if 𝜋∗ c1(𝐿) = 𝜔𝑋. Moreover, if 𝐿 ∈ 𝒫𝜔(𝑋) ⊔ 𝒫−
𝜔 (𝑋) then

ℎ0(𝐹) ≡ ℎ0(𝐿) (mod 2).

Proof. Given a presentation as in (4.1.6), its image in Pic8(𝑋) is defined to be 𝐺(−𝑝′ − 𝑞). The

first two statements follow from (4.1.8). Indeed, even if 𝐹 ∈ 𝑀𝜏
0 has multiple presentations,

they belong to the same component because [𝑝′, 𝑞] ∈ 𝒫(𝑋).

If 𝐹 ∈ 𝑀𝜏
0 is locally free, then 𝐿 ≔ 𝜈∗𝐹(−𝑝′ − 𝑞) is the corresponding element of

Pic8(𝑋)
𝜏
. Set 𝑥 ≔ 𝜋(𝑝) and 𝑦 ≔ 𝜋(𝑞), so that 𝜈∗𝜔𝐶 ≅ 𝜔𝑋(𝑥 + 𝑦). Since 𝜋∗ c1(𝐿) is either

𝜔𝑋 ≅ 𝜈∗𝜔𝐶(−𝑥 − 𝑦) or 𝜔𝑋 ⊗ 𝜈∗𝜂, where 𝜂 ∈ Pic0(𝐶) defines the cover 𝐶 → 𝐶,

𝜋∗ c1(𝐹) = 𝜋∗𝜈∗𝜈∗ c1(𝐹) = 𝜈∗𝜋∗ c1(𝐿(𝑝′ + 𝑞))

is either 𝜔𝐶 or 𝜔𝐶 ⊗ 𝜂. For every presentation with middle term 𝜈∗(𝐿(𝑝′ + 𝑞)), the first term

has the same Chern classes as 𝐹, so 𝜋∗ c1(𝐹) agrees with 𝜋∗ c1(𝐿) even if 𝐹 is not locally free.

For the parity check, set 𝐺 ≔ 𝐿(𝑝′ + 𝑞) and suppose that ℎ0(𝐺) ≡ ℎ0(𝐿) (mod 2). This

forces ℎ0(𝐺(−𝑝 − 𝑞)) = ℎ0(𝐺) − 1 = ℎ0(𝐺(−𝑝′ − 𝑞′)), so the images of 𝐻0(𝑋, 𝐺) in 𝐺|𝑝⊕ 𝐺|𝑞

and 𝐺|𝑝′ ⊕ 𝐺|𝑞′ are lines. The corresponding presentation is uniquely determined by the
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property that ℎ0(𝐹) = ℎ0(𝐺) (where 𝐹 is the first term). It is also 𝜏-invariant, by an argument

similar to the start of (4.1.8) but withHom and Ext replaced byHom and Ext. The 𝜏-invariant

presentations with middle term 𝜈∗𝐺 correspond to different lines, so

(4.1.11) 𝐻0(𝐶, 𝜈∗𝐺) → 𝐻0(𝐶, 𝐂𝑟 ⊕𝐂𝑟′)

is surjective, in which case ℎ0(𝐹) = ℎ0(𝐺) − 2.

Now suppose that ℎ0(𝐺) ≢ ℎ0(𝐿) (mod 2). At least one of ℎ ≔ ℎ0(𝐺(−𝑝 − 𝑞)) or

ℎ′ ≔ ℎ0(𝐺(−𝑝′ − 𝑞′)) is smaller than ℎ0(𝐺), because ℎ0(𝐺(−𝑝 − 𝑞′)) = ℎ0(𝐺) − 1. If only one

of them is, then the image of (4.1.11) is one-dimensional, which implies that ℎ0(𝐹) = ℎ0(𝐺)−1

for any presentation involving 𝐹 ↪ 𝜈∗𝐺. When ℎ = ℎ′ = ℎ0(𝐺) − 2 this can fail, but only for

presentations which are not 𝜏-invariant. ©

(4.1.12) Let𝑀𝜏
𝑇 ⊂ 𝑀𝜏

𝐻̃ be the fibre of 𝑀𝜏
𝐻̃ → ||𝐻̃||

𝜍
over 𝜌∗𝑇 ∩ ||𝐻̃||

∘
. By (4.1.10) it has a

unique component 𝐴 on which ℎ0 is even and 𝜋∗ c1 gives the canonical class. Let 𝛩 ⊂ 𝐴 be

the locus where ℎ0 ≥ 2. Note that 𝐴 is a family of Prym torsors degenerating to a component

𝐴0 ⊂ 𝑀𝜏
0. The theta divisor of this component has the following description, which comes

from [IW19, Proposition 1.5]. We give a slightly different proof.

(4.1.13)Lemma (Izadi-Wang). Let 𝐵 → 𝐵 be the blowup of 𝐵 ≔ 𝒫𝜔(𝑋) along𝛯∩𝛯[𝑝,𝑞′],

where 𝛯 ≔ 𝛩𝜔(𝑋). The central fibre 𝛩0 of 𝛩 → 𝑇 is obtained from 𝐵 by gluing the proper

transforms of 𝛯 and 𝛯[𝑝,𝑞′] after translation by ±[𝑝, 𝑞′].

Proof. If 𝐿 ∈ 𝐵 ⧵ 𝛯 then ℎ0(𝐿) = 0. On the other hand ℎ0(𝐺) ≥ 2 for 𝐺 ≔ 𝐿(𝑝′ + 𝑞) by

Riemann-Roch. It follows that ℎ0(𝐺) = 2, and the proof of (4.1.10) says that there is a unique

presentation with middle term 𝜈∗𝐺 such that the first term belongs to 𝛩0.

Moreover, if 𝐿 ∈ 𝛯 ⧵ 𝛯[𝑝,𝑞′] then ℎ0(𝐺(−𝑝 − 𝑞′)) = 0, which means ℎ0(𝐺) = 2 again,

so ℎ0(𝐿) = 2 and the uniqueness statement holds again. In this case, since 𝑝′ and 𝑞 are base

points of 𝐺, the presentation belongs to the section determined by (𝐸𝑝, 𝐸𝑞′). Similarly, the

presentations lying over 𝛯[𝑝,𝑞′] ⧵ 𝛯 belong to the section determined by (𝐸𝑞, 𝐸𝑝′).
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Finally, if 𝐿 ∈ 𝛯 ∩ 𝛯[𝑝,𝑞′] then ℎ0(𝐺) ≥ 3, because (for parity reasons) 𝑝, 𝑞, 𝑝′ and 𝑞′

cannot all be base points of 𝐺, so the kernel of (4.1.11) is always positive-dimensional. The

result now follows by the universal property of blowing up and Zariski’s main theorem. ©

(4.1.14) The last result in this section is strictly weaker than [IW19, Proposition 2.5],

but much easier to prove.

(4.1.15) Lemma (Izadi-Wang). If 𝐹 ∈ 𝛩0 then 𝛩 is smooth at 𝐹.

Proof. If 𝛩0 is smooth at 𝐹 then the exact sequence of Zariski tangent spaces

0 → 𝑇𝐹𝛩0 → 𝑇𝐹𝛩 → 𝑇0𝑇

reveals that dim(𝑇𝐹𝛩) ≤ dim(𝑇𝐹𝛩0) + 1 = 5 and hence 𝛩 is smooth at 𝐹. Otherwise 𝑇𝐹𝛩0

is 5-dimensional [AK90, Proposition 17], so it remains to check that 𝑇𝐹𝛩 → 𝑇0𝑇 vanishes.

Since𝑀𝜏
𝐻̃ is smooth, but 𝑀𝜏

0 is singular at 𝐹, the map 𝑇𝐹𝑀𝜏
𝐻̃ → 𝑇𝐶|𝐻| is not surjective. This

implies that 𝛩 is smooth at 𝐹 provided that 𝑇0𝑇 ⊂ 𝑇𝐶|𝐻| avoids the image of 𝑇𝐹𝑀𝜏
𝐻̃. Since the

singular locus of 𝛩0 is only 3-dimensional, this holds for every 𝐹 (assuming 𝑇 is sufficiently

general). ©

4.2. Families of surfaces

(4.2.1) Our next task is to construct families of special surfaces in the fibres of 𝛩 → 𝑇.

Given a 𝑔26 on 𝐶, i.e., a net of degree 6, one can define special surfaces 𝑆𝑖 ⊂ 𝐶(6) as in chapter 2.

The relative version of this does notwork over𝑇, because the fibres of 𝒞 → 𝑇have no canonical

choice of 𝑔26. We will fix this by passing to a cover 𝑈 → 𝑇 which parametrises curves together

with a 𝑔26. Ideally, the cover should be unramified, in order to preserve the smoothness of 𝛩.

Note that a general (smooth) curve of genus six has exactly five nets of degree 6 [ACGH85, V].

(4.2.2) Lemma. If 𝐶 ∈ ℳ6 is general within the boundary component whose general

member is an irreducible curve, then it has exactly five nets of degree 6.

40



Proof. Recall that Pic6(𝐶) 𝜈∗−−→ Pic6(𝑋) is a 𝐂×-torsor with fibre

𝐏(𝐿|𝑥 ⊕ 𝐿|𝑦) ⧵ {𝐿|𝑥, 𝐿|𝑦}

over 𝐿 ∈ Pic6(𝑋), where 𝑥, 𝑦 ∈ 𝑋 lie over the node 𝑧 ∈ 𝐶 [OS79, Corollary 12.4]. Given

𝐿′ ∈ Pic6(𝐶)with 𝜈∗𝐿′ ≅ 𝐿, the corresponding line in 𝐿|𝑥⊕ 𝐿|𝑦 is the kernel of the subtraction

map 𝐿|𝑥⊕ 𝐿|𝑦 → 𝐿′|𝑧. This map corresponds to the surjection in the following presentation:

(4.2.3) 0 → 𝐿′ → 𝜈∗𝐿 → 𝐿′|𝑧 → 0.

If ℎ0(𝐿′) = 3 then (4.2.3) forces ℎ0(𝐿) = 3 by Clifford’s theorem and the generality of

𝑋. Thus we may identify the maps 𝐻0(𝑋, 𝐿) → 𝐿|𝑤 and 𝐻0(𝐶, 𝐿′) → 𝐿′|𝜈(𝑤) for each 𝑤 ∈ 𝑋.

In particular 𝐻0(𝑋, 𝐿(−𝑥 − 𝑦)) = 𝐻0(𝑋, 𝐿(−𝑥)) = 𝐻0(𝑋, 𝐿(−𝑦)) is two-dimensional (as 𝑋 is

neither hyperelliptic nor trigonal, it has no 𝑔25).

Conversely, if ℎ0(𝐿) − 1 = ℎ0(𝐿(−𝑥 − 𝑦)) = 2, then exactly one 𝐿′ lying over 𝐿 has

ℎ0(𝐿′) = 3. Indeed, if ℎ0(𝐿′) = ℎ0(𝐿) then by (4.2.3) the following composition is zero:

𝐻0(𝑋, 𝐿) → 𝐿|𝑥 ⊕ 𝐿|𝑦 → 𝐿′|𝑧.

Since ℎ0(𝐿(−𝑥 − 𝑦)) ≠ ℎ0(𝐿) the above sequence must be exact, so the line corresponding to

𝐿′ is unique (and it is neither of the summands, because 𝑋 has no 𝑔25).

It remains to show that exactly five 𝐿 ∈ 𝑊 2
6 (𝑋) satisfy ℎ0(𝐿(−𝑥 − 𝑦)) = 2. On a general

smooth curve 𝑌 of genus five, every 𝑔26 has the form |𝜔𝑌(−𝐷)| for a unique 𝐷 ∈ 𝑌(2). In

particular, the pair (𝑋, 𝜔𝑋(−𝑥 − 𝑦)) must be general, so the image of 𝑋 in |𝜔𝑋(−𝑥 − 𝑦)|∨ is

a nodal sextic [ACG11, XXI, §10]. By the genus formula it has five nodes, so there are five

𝐷 ∈ 𝑋(2) such that ℎ0(𝜔𝑋(−𝐷 − 𝑥 − 𝑦)) = 2, giving five choices for 𝐿 ≔ 𝜔𝑋(−𝐷). ©

(4.2.4) It is well-known that a general cover inℛ6 arises from a very ample linear system

on an Enriques surface [MM83]; together with (4.1.2) this allows us to assume that 𝐶 satisfies

(4.2.2). We may also assume without loss of generality that each pair (𝑋, 𝜈∗𝑔26) is general. Let

𝑇∘ ⊂ 𝑇 be a neighbourhood of 0 such that the curves in 𝑇∘ ⧵ {0} are smooth and have exactly
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five nets of degree 6. The space𝑈 ≔ 𝒢26(𝒞𝑇∘)which parametrises nets of degree 6 on the curves

in 𝑇∘ is clearly étale of degree 5 over 𝑇∘.

(4.2.5) Each fibre of the family 𝒞𝑈 ≔ 𝒞 ×𝑇 𝑈 → 𝑈 has a canonical 𝑔26. These linear

systems form a 𝐏2-bundle 𝒫 → 𝑈 which naturally embeds in the relative symmetric power

𝒞(6)𝑈 . The family of surfaces in 𝒞(6)𝑈 is defined by the cartesian diagram

𝒮

𝒫

𝒞(6)𝑈

𝒞(6)𝑈 .

(4.2.6) Themap 𝒮 → 𝑈 naturally factors as 𝒮 → 𝑈 → 𝑈, where𝑈 is the double cover of

𝑈 parametrising the connected components of the fibres of 𝒮 → 𝑈. The following fact ensures

that 𝑈 → 𝑈 is unramified, so that 𝛩𝑈̃ is nonsingular:

(4.2.7) Lemma. For each 𝑢 ∈ 𝑈0, i.e., each 𝑔26 on 𝐶, 𝒮ᵆ has two components.

Proof. One checks (e.g. using (4.2.3)) that 𝒮ᵆ is the image of the special subvariety of 𝑋(6)

determined by 𝜈∗𝑔26, which has two connected components. These components are smooth,

and their images in 𝐶(6) are disjoint, provided that the image of 𝐶 → 𝑔26
∨ is admissible in the

sense of Welters [Wel81, (9.2), (9.6)]. It is easy to see that a general plane sextic of geometric

genus five is admissible [DH88, 1(c)]. Since the five pairs (𝑋, 𝜈∗𝑔26) are general, the result

follows (see [ACG11, XXI, §10] for details). ©

(4.2.8) Lemma. There is a neighbourhood𝑈∘ ⊆ 𝑈 of 𝑈0 such that 𝒮ᵆ is irreducible for

all 𝑢 ∈ 𝑈∘ (and smooth unless 𝑢 ∈ 𝑈0). Moreover 𝒮𝑈̃∘ is integral.

Proof. There is a criterion for a special surface in 𝑋(6) to be smooth, due to Welters [Wel81,

(8.13)]. Again it suffices to show that the image of 𝑋 → 𝑔26
∨ is admissible, which we know

from the proof of (4.2.7). The same argument applies to a general curve of genus 6 together

with a 𝑔26, so 𝒮ᵆ is smooth for most 𝑢 ∈ 𝑈 provided that 𝑇 and 𝑅 are sufficiently general.
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Since 𝒮 → 𝒫 is finite, flat and generically étale, 𝒮 satisfies Serre’s conditions 𝑅0 and

𝑆1 (in fact it is Cohen-Macaulay), so 𝒮 is reduced. The previous paragraph shows that 𝒮𝑈̃∘ is

irreducible. ©

(4.2.9) Taking the 𝑔14 residual to each 𝑔26 determines, in a completely analogous way,

a family 𝒟 → 𝑈 of 1-dimensional special subvarieties in 𝒞(4)𝑈̃ . If 𝑢 ∈ 𝑈0 then 𝒟ᵆ → 𝑔14 is

generically unramified (since 𝐶 → 𝑔14
∨ is too), so 𝒟ᵆ is generically smooth. Given a general

divisor 𝐷 ∈ 𝒟ᵆ, there is a curve 𝑇 ⊂ 𝒟𝑈̃∘ containing 𝐷 such that 𝑇 → 𝑈∘ is étale. Such a

curve can be obtained, for instance, by choosing a hyperplane section of 𝒟 (in some projective

embedding) whichmeets the smooth locus of𝒟ᵆ transversely, then removing the ramification

locus from a component which contains 𝐷.

(4.2.10) The natural embedding of 𝒮𝑇 ≔ 𝒮 ×𝑈̃ 𝑇 in 𝒞(10)𝑇 induces a rational map 𝒮𝑇 →

𝛩𝑇, defined on the open subset 𝒮
∘ ⊂ 𝒮𝑇 of divisors avoiding the nodes. Note that 𝒮

∘
𝐸 ≠ ∅ for

all 𝐸 ∈ 𝑇, and 𝒮∘𝐸 = 𝒮𝐸 unless 𝐸 lies over 0 ∈ 𝑇. By (B.2.9), the image of 𝒮∘ → 𝛩𝑇 is flat over

some dense open set 𝑇∘ ⊂ 𝑇. Since 𝒮∘ is integral, the (scheme-theoretic) closure𝒱 of its image

in 𝛩𝑇 agrees with that of 𝒮𝑇∘. In particular 𝒱 → 𝑇 is flat [Har77, III, 9.8].

Chapter 4, in full, is currently being prepared for submission for publication. Jonathan

Conder, Edward Dewey, and Elham Izadi.
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Chapter 5: Limit surfaces

5.1. The central fibre of the family of surfaces

(5.1.1) In this section we determine the fibre𝑉 ⊂ 𝛩0 of 𝒱 over𝐷 ∈ 𝑇. There is a unique

divisor in the pencil |𝜋∗𝐷| passing through the node of 𝐶; the corresponding divisor on the

normalisation 𝑋 can be written as 𝜋∗𝐸 where 𝐸 = 𝑝 + 𝑞′ + 𝑢+ 𝑣 for some 𝑢, 𝑣 ∈ 𝑋. Since 𝐷 is

general it can be identified with a divisor on 𝑋. Replacing 𝑣 by 𝑣′ if necessary, we may assume

that 𝐷 and 𝐸 belong to the same curve 𝑌 ⊂ 𝑋(4) (among the two curves tetragonally related to

𝑋 via |𝜋∗𝐷|). The divisor 𝐹 ≔ 𝑝 + 𝑞′ + 𝑢′ + 𝑣′ also belongs to 𝑌.

(5.1.2) Lemma. If 𝑑, 𝑒, 𝑓 ∈ 𝑌 correspond to 𝐷, 𝐸, 𝐹 ∈ 𝑋(4), then 𝑉𝑑+𝑒+𝑓 is smooth.

Proof. Set 𝑔15 ≔ |𝜔𝑌(−𝜋∗(𝑑 + 𝑒 + 𝑓))|, and suppose for a moment that 𝑌 → 𝑔15
∨ is a well-

defined morphism with only simple ramification. By Welters’ criterion [Wel81, (8.13)], the

associated special subvarieties 𝑆1, 𝑆2 ⊂ 𝑌(5) are smooth. We may assume that 𝑉𝑑+𝑒+𝑓 is the

image of 𝑆1. If some pencil in 𝑌(5)meets 𝑆1, its image in 𝑌(5)must be 𝑔15, so the pencil must be

all of 𝑆1. This is is absurd: (B.2.3) and the formula for the class of a pencil [ACGH85, VIII, §3]

imply that 𝑆1 → 𝑔15 has degree 1 or 2, but the degree is 24 by definition. Alternatively, note that

𝑆1 has genus 21 because 𝑆1 → 𝑔15 is ramified at 72 points (4 for each of the 18 branch points).

Therefore 𝑆1 maps isomorphically onto 𝑉𝑑+𝑒+𝑓.

It remains to show that 𝑌 → 𝑔15
∨ has simple ramification. For this, we just need the

pair (𝑌, 𝑔15), or equivalently (𝑌, 𝜋∗(𝑑 + 𝑒 + 𝑓)), to be sufficiently general [ACG11, XXI, (11.9)].

Given (𝑋, 𝜋∗(𝑝 + 𝑞)), there is a one-dimensional family parametrising the data of:

• a 𝑔26 on 𝑋 with 𝑔26(−𝜋∗(𝑝 + 𝑞)) a pencil,

• a component (namely 𝑌 ⊂ 𝑋(4)) of the special subvariety associated to the residual 𝑔14,
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• a divisor 𝑢 + 𝑣 ∈ 𝑋(2) lying over 𝜔𝑋(−𝑔26), and

• a point 𝑑 ∈ 𝑌 (this is the one-dimensional part).

On the other hand, for a general pair (𝑌, 𝜋∗(𝑑 + 𝑒 + 𝑓)) the divisor 𝜋∗(𝑒 + 𝑓) belongs to only

five pencils of degree 4 (this follows from (4.2.2) by taking residual pencils). Since 𝑒 and𝑓 are in

the same fibre of 𝑌 → 𝑔14, this means there are at most finitely many choices for (𝑋, 𝜋∗(𝑝 + 𝑞))

and the extra data giving rise to (𝑌, 𝜋∗(𝑑 + 𝑒 + 𝑓)). For dimension reasons, it follows that a

general pair (𝑌, 𝜋∗(𝑑 + 𝑒 + 𝑓)) can be obtained from the construction of (5.1.1). ©

(5.1.3) We will show that 𝑉 is birational to

𝑊 ≔ 𝛯[𝑑,𝑒] ∩ 𝛯[𝑑,𝑓] = (𝛯 ∩ 𝛯[ᵆ,𝑣]) + [𝑑, 𝑓] ⊂ 𝐵,

where 𝐵 ≔ 𝒫𝜔(𝑋) and 𝛯 ≔ 𝛩𝜔(𝑋). Since 𝑋 is general, we may assume that [𝑢, 𝑣] ∈ 𝒫(𝑋)

and 𝛽 ≔ [𝑝, 𝑞′] ∈ 𝒫(𝑋) are as well [Iza95, 4.6]. This implies that𝑊 and 𝛯 ∩ 𝛯𝛽 are smooth

[Krä15, 2.1]. Recall from (4.1.13) that 𝐵 → 𝐵 is the blowup of 𝐵 along 𝛯 ∩ 𝛯𝛽.

(5.1.4) Lemma. The projection 𝐵 → 𝐵 induces isomorphisms

𝑊̃ → 𝑊,

𝛥 ∩ 𝑊̃ → 𝑉𝑑+𝑒+𝑓,

𝛯 ∩ 𝑊̃ → 𝑊𝑑,

𝛯𝛽 ∩ 𝑊̃ → 𝑊𝑑 + 𝛽,

where 𝛥 ⊂ 𝐵 is the exceptional divisor and 𝑍 ⊂ 𝐵 is the proper transform whenever 𝑍 ⊂ 𝐵.

Proof. By (2.3.6) and (3.3.6) 𝛽 = [𝑒, 𝑓], so 𝑊𝑑 and 𝑊𝑑 + 𝛽 are the embeddings of 𝑌𝜆 in 𝑊.

According to (3.3.5)𝑊𝑑 ∩ (𝑊𝑑 + 𝛽) = ∅. It follows by (2.4.2b) and (2.4.2c) that

𝛯 ∩ 𝛯𝛽 ∩𝑊 = 𝛯 ∩ 𝛯[𝑒,𝑓] ∩ 𝛯[𝑑,𝑒] ∩ 𝛯[𝑑,𝑓] = 𝑉𝑑+𝑒+𝑓.

If 𝛼 ∈ 𝑉𝑑+𝑒+𝑓 then 𝛼 ∉ 𝑊𝑑 or 𝛼 ∉ 𝑊𝑑+𝛽, so 𝛯∩𝛯𝛽∩𝑊 is isomorphic to 𝛯∩𝑊 or 𝛯𝛽∩𝑊 near
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𝛼. This implies that 𝛯 ∩ 𝛯𝛽 ∩𝑊 is a Cartier divisor in𝑊, giving the first two isomorphisms.

Moreover (𝛯 ∩ 𝑊̃) ⧵𝛥 → (𝛯 ∩𝑊)⧵ (𝛯 ∩ 𝛯𝛽) = 𝑊𝑑 ⧵𝑉𝑑+𝑒+𝑓 is an isomorphism. Since

𝑉𝑑+𝑒+𝑓 is smooth, 𝛯 intersects𝑊 transversely along 𝑉𝑑+𝑒+𝑓 ⧵ 𝑊𝑑, which means 𝛯 ∩ 𝑊̃ = 𝑊̃𝑑

set-theoretically. This also holds scheme-theoretically because 𝛯∩𝑊̃ is a Cartier divisor in the

smooth variety 𝑊̃, in particular 𝑆1, so it is reduced. The fourth isomorphism is similar. ©

(5.1.5) Lemma. 𝑉 contains the image𝑊 ⊂ 𝛩0 of 𝑊̃ ⊂ 𝐵.

Proof. First note that𝑊 = (𝛯 ∩ 𝛯[ᵆ,𝑣]) + [𝑑, 𝑓] = 𝑉 +𝑣 + 𝒪𝑋̃(𝐷 − 𝐹′) by (2.4.2a) and (2.3.6).

Thus, a general point 𝐿 ∈ 𝑊 corresponds to exactly one 𝐿 ∈ 𝑊 ⧵ 𝑉𝑑+𝑒+𝑓, which can be

represented by

𝐺 + 𝑢 + 𝑣 + 𝐷 − 𝐹′ = 𝐺 + 𝐷 − 𝑝′ − 𝑞

for some divisor 𝐺 ∈ 𝑋(6) supported away from the nodes with 𝜋∗𝐺 ∈ 𝜈∗𝑔26. By abuse of

notation we can think of 𝐺 as a divisor on 𝐶, in which case 𝜋∗𝐺 ∈ 𝑔26 and 𝐺 + 𝐷 ∈ 𝒮∘.

According to (4.1.10) 𝒪𝐶(𝐺 + 𝐷) = 𝐿. This shows that 𝑉 contains an open subset of 𝑊, and

hence all of𝑊. ©

(5.1.6) Proposition. 𝑉 = 𝑊.

Proof. Since𝑊 ⊆ 𝑉, it suffices to show that 𝑉 and𝑊 have the same Hilbert polynomial with

respect to 𝛩0. By (B.2.9), the former is 20𝑛2 − 40𝑛 + 22.

Recall that 𝐵 → 𝐵 factors through the 𝐏1-bundle 𝑃
𝜑
−→ 𝐵 parametrising 𝜏-invariant

presentations as in (4.1.10). The divisor 𝐵, as described in (4.1.13), moves in a pencil spanned

by 𝐵0∪𝜑−1(𝛯𝛽) and 𝐵∞∪𝜑−1(𝛯), where 𝐵0, 𝐵∞ ⊂ 𝑃 are the distinguished sections [IW19, 1.2].

Therefore 𝐵 is polarised by

(𝐵0 ∪ 𝜑−1(𝛯𝛽))||𝐵̃ = 𝛯 ∪ (𝛯𝛽 ∪ 𝛥).

This restricts to a divisor on 𝑊̃, which can (by (5.1.4)) be identified with

𝛷 ≔ 𝑊𝑑 ∪ (𝑊𝑑 + 𝛽) ∪ 𝑉𝑑+𝑒+𝑓 = 𝑊𝑑 ∪ (𝛯𝛽 ∩𝑊) ⊂ 𝑊.
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Write 𝜉 for the restriction of the algebraic equivalence class [𝛯] to𝑊, and let 𝛿 be the class of

a point. Note that ⟨𝜉, 𝜉⟩ = 4!𝛿 = 24𝛿. The normal bundle sequence for𝑊 ↪ 𝐵 gives

td(𝑊) = td(𝒪𝐵(𝛯))
−2 = (1 + 𝜉

2 + 2𝛿)
−2

= 1 − 𝜉 + 14𝛿.

Up to algebraic equivalence [𝛷] = 𝜉 + 𝜔, where 𝜔 ≔ [𝑊𝑑]. Therefore

⟨𝛷, 𝛷⟩
2 = 1

2(24𝛿 + 2𝜉𝜔) = 12𝛿 + 𝜉𝜔 = 20𝛿

by Beauville’s formula (2.3.2). It follows that

ch(𝒪𝑊(𝑛𝛷)) td(𝑊) = (1 + (𝜉 + 𝜔)𝑛 + 20𝛿𝑛2)(1 − 𝜉 + 14𝛿).

The coefficient of 𝛿 in this expression is

𝜒(𝒪𝑊(𝑛𝛷)) = 20𝑛2 − (𝜉 + 𝜔)𝜉𝑛 + 14 = 20𝑛2 − 32𝑛 + 14.

The quotient map𝑊
𝜓
−→ 𝑊 identifies the disjoint curves𝑊𝑑 and𝑊𝑑+𝛽. There is a short exact

sequence

0 → 𝒪𝑊 → 𝜓∗𝒪𝑊 → 𝜓∗𝒪𝑊𝑑
→ 0.

Twisting by 𝛹 ≔ 𝛩0|𝑊 and using the projection formula gives

0 → 𝒪𝑊(𝑛𝛹) → 𝜓∗𝒪𝑊(𝑛𝛷) → 𝜓∗𝒪𝑊𝑑
(𝑛𝛷) → 0.

Since 𝑛𝛷 has degree 8𝑛 on the genus 9 curve𝑊𝑑, the Hilbert polynomial of𝑊 is

20𝑛2 − 32𝑛 + 14 − (8𝑛 − 8) = 20𝑛2 − 40𝑛 + 22,

as required. ©
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5.2. Completing the proof of the main theorem

(5.2.1) Lemma. If 𝜉 ≔ [𝛯] and 𝜔 ≔ [𝑊𝑑], then

[𝑊̃] = (𝜉2, 𝜉 − 𝜔) in𝐻4(𝐵, 𝐙) = 𝐻4(𝐵, 𝐙) ⊕ 𝐻2(𝛯 ∩ 𝛯𝛽, 𝐙).

Consequently ⟨[𝑊̃], [𝑊̃]⟩ = 16.

Proof. Let 𝜑∶ 𝐵 → 𝐵 be the blowup and 𝜓∶ 𝛥 → 𝛯 ∩ 𝛯𝛽 its restriction to 𝛥. By standard

properties of the cohomology of a blowup [Bea77b, Proposition 0.1.3(ii)]

[𝑊̃] = (𝜑∗[𝑊̃], 𝜓∗([𝑊̃]||𝛥)) = ([𝑊], [𝑉𝑑+𝑒+𝑓]) = (𝜉2, 𝜉 − 𝜔).

Therefore, by (3.3.5)

⟨[𝑊̃], [𝑊̃]⟩ = ∫
𝐵
𝜉4 +∫

𝛥
c1(𝒪𝛥(𝛥))𝜓∗(𝜉 − 𝜔)2 = 4! −∫

𝛯∩𝛯𝛽

𝜉2 − 2𝜉𝜔 + 𝜔2 = 2∫
𝐵

𝜉4
3 = 16,

as required. ©

(5.2.2) Proposition. If 𝑡 ∈ 𝑇 and 𝛩𝑡 is smooth, then ⟨[𝒱𝑡], [𝒱𝑡]⟩ = 16.

Proof. The class [𝒱] ∈ CH3(𝛩𝑇) defines a family of 0-cycle classes [𝒱]
2 ∈ CH1(𝛩𝑇) over 𝑇,

and ⟨[𝒱𝑡], [𝒱𝑡]⟩ is the degree of the specialisation of [𝒱]
2 at 𝑡 [Ful98, 10.1]. Since 𝛩𝑇 → 𝑇 is

flat, specialisation at 𝑡 is the same as restricting to 𝛩𝑡, for any 𝑡 ∈ 𝑇. We can specialise [𝒱]2 to

the central fibre, but since 𝛩0 is singular the meaning of ⟨[𝑉], [𝑉]⟩ is not clear.

To rectify this, we pass to the operational Chow ring CH∗(𝛩𝑇), which acts on CH∗(𝛩𝑇)

via cap product. There is a unique “Poincaré dual” 𝜈 ∈ CH2(𝛩𝑇) such that 𝜈 ∩ [𝛩𝑇] = [𝒱]

[Ful98, 17.4]. Using the cap product on Chow groups [Ful98, 8.1] for the inclusion

𝜄∶ 𝛩0 = 𝛩𝐷 ↪ 𝛩𝑇,
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one checks that 𝜄∗𝜈 ∩ [𝛩𝐷] = [𝑉] and 𝜄∗𝜈2 ∩ [𝛩𝐷] = 𝜄∗[𝒱]2. It follows that

∫
𝛩𝑡

[𝒱𝑡]
2 = ∫

𝛩𝐷

𝜄∗[𝒱]2 = ∫
𝛩𝐷

𝜄∗𝜈 ∩ [𝑉] = ∫
𝛩𝐷

𝜄∗𝜈 ∩𝜓∗[𝑊̃] = ∫
𝐵̃
𝜓∗𝜄∗𝜈 ∩ [𝑊̃] = ∫

𝐵̃
(𝜄𝜓)∗[𝒱] ⋅ [𝑊̃],

where 𝜓∶ 𝐵 → 𝛩0 is the usual resolution. If 𝛿 ≔ (𝜄𝜓)∗[𝒱] − [𝑊̃] then

𝜓∗𝛿 = 𝜓∗(𝜓∗𝜄∗𝜈 ∩ [𝐵]) − 𝜓∗[𝑊̃] = 𝜄∗𝜈 ∩ [𝛩𝐷] − [𝑉] = 0.

This means 𝛿 is supported away from the smooth locus𝑈 ≔ 𝐵 ⧵ (𝛯 ⨿ 𝛯𝛽) of 𝛩0. By a diagram

chase around the localisation sequences

CH(𝑈, 1) CH(𝛯 ⨿ 𝛯𝛽) CH(𝐵) CH(𝑈) 0

CH(𝑈, 1) CH(𝛯) CH(𝛩0) CH(𝑈) 0,

𝜓∗

one can find a class 𝛾 = (𝛾1, 𝛾2) ∈ CH2(𝛯)
2 ≅ CH2(𝛯 ⨿ 𝛯𝛽) which maps to 𝛿 ∈ CH2(𝐵) and

0 ∈ CH2(𝛯) (here CH(𝑈, 1) is one of Bloch’s higher Chow groups [Blo94], but all we need is a

group depending only on𝑈, which is easy to construct with a little thought). Since 𝛾1+𝛾2 = 0,

∫
𝐵̃
𝛿 ⋅ [𝑊̃] = ∫

𝛯
𝛾1 ⋅ [𝑊𝑑] +∫

𝛯
𝛾2 ⋅ [𝑊𝑑] = 0

by (5.1.4). Therefore ⟨[𝒱𝑡], [𝒱𝑡]⟩ = ⟨(𝜄𝜓)∗[𝒱], [𝑊̃]⟩ = ⟨[𝑊̃], [𝑊̃]⟩ = 16, as required. ©

Chapter 5, in full, is currently being prepared for submission for publication. Jonathan

Conder, Edward Dewey, and Elham Izadi.

49



Appendix A: Combinatorics

A.1. Generating functions

(A.1.1) Lemma. If 𝑔, 𝑝 ∈ 𝐍 and 𝑝 < 𝑔, then

[( 𝑡
1 − 𝑒−𝑡)

𝑔 2𝑒−𝑝𝑡
1 + 𝑒𝑡 ]𝑡𝑔−1

= (−1)𝑝

2𝑔−1
.

Proof. It is well-known [GKP94, (7.52)] that

( 𝑡
1 − 𝑒−𝑡)

𝑔
=

∞
∑
𝑘=0

[ 𝑔
𝑔 − 𝑘](

𝑔 − 1
𝑘 )

−1
𝑡𝑘
𝑘! ,

where [ 𝑔
𝑔−𝑘] is a Stirling number of the first kind [GKP94, §6.1]. Moreover

2𝑒−𝑝𝑡
1 + 𝑒𝑡 =

∞
∑
𝑘=0

𝐸𝑘(−𝑝)
𝑡𝑘
𝑘!

is one definition of the Euler polynomials 𝐸𝑘 [Dil10, 24.2.8]. Adding up the terms of degree

𝑔 − 1, our goal is to prove that

(A.1.2)
𝑔−1
∑
𝑘=0

𝐸𝑘(−𝑝)
(𝑔 − 1)![

𝑔
𝑘 + 1] =

(−1)𝑝

2𝑔−1
.

There is an explicit formula for the Euler polynomials [GS08, Example 2.5], namely

𝐸𝑘(𝑡) =
𝑘
∑
𝑖=0

1
2𝑖

𝑖
∑
𝑗=0

(−1)𝑗(𝑖𝑗)(𝑡 + 𝑗)𝑘.

When 𝑡 = 0 this means

(A.1.3) 𝐸𝑘(0) =
𝑘
∑
𝑖=0

(−1)𝑖

2𝑖
𝑖!{𝑘𝑖 },
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where {𝑘𝑖 } is a Stirling number of the second kind [GKP94, (6.19)]. If 𝑘 > 0 then

𝑘+1
∑
𝑖=1

(−1)𝑖

2𝑖−1
(𝑖 − 1)!{𝑘 + 1

𝑖 }.

simplifies to (A.1.3) after applying the relation [GKP94, (6.3)]

{𝑘 + 1
𝑖 } = 𝑖{𝑘𝑖 } + { 𝑘

𝑖 − 1}.

It follows from the vanishing of 𝐸𝑘(0) for even 𝑘 > 0 [Dil10, 24.4.6] that

𝐸𝑘(0) =
𝑘
∑
𝑖=0

(−1)𝑖−𝑘

2𝑖
𝑖!{𝑘 + 1
𝑖 + 1},

which also holds when 𝑘 = 0. By the Stirling inversion formula [GKP94, Table 264]

𝑔−1
∑
𝑘=0

𝐸𝑘(0)
(𝑔 − 1)![

𝑔
𝑘 + 1] =

𝑔−1
∑
𝑘=0

𝑘
∑
𝑖=0

(−1)𝑖−𝑘

2𝑖
𝑖!

(𝑔 − 1)![
𝑔

𝑘 + 1]{
𝑘 + 1
𝑖 + 1}

=
𝑔−1
∑
𝑖=0

(−1)𝑖+1−𝑔

2𝑖
𝑖!

(𝑔 − 1)!

𝑔−1
∑
𝑘=𝑖

(−1)𝑔−𝑘−1[ 𝑔
𝑘 + 1]{

𝑘 + 1
𝑖 + 1}

=
𝑔−1
∑
𝑖=0

(−1)𝑖+1−𝑔

2𝑖
𝑖!

(𝑔 − 1)!𝛿𝑔,𝑖+1

= 1
2𝑔−1

,

as required. Since 𝐸𝑘(−𝑝) = 2(−𝑝)𝑘 − 𝐸𝑘(1 − 𝑝) [Dil10, 24.4.2], it follows by induction that

𝑔−1
∑
𝑘=0

𝐸𝑘(−𝑝)
(𝑔 − 1)![

𝑔
𝑘 + 1] =

𝑔−1
∑
𝑘=0

2(−𝑝)𝑘

(𝑔 − 1)![
𝑔

𝑘 + 1] +
(−1)𝑝

2𝑔−1
.

It is well-known [GKP94, (6.11)] that

𝑔
∑
𝑘=1

(−𝑝)𝑘[𝑔𝑘] = (−𝑝)(1 − 𝑝)⋯ (𝑔 − 1 − 𝑝),

so (A.1.2) holds provided that 0 ≤ 𝑝 ≤ 𝑔 − 1. ©

(A.1.4) Corollary. If 𝑔 is a positive integer then

[( 𝑡
1 − 𝑒−𝑡)

𝑔 2𝑒𝑡
1 + 𝑒𝑡 ]𝑡𝑔−1

= 2 − 1
2𝑔−1

and [( 𝑡
1 − 𝑒−𝑡)

𝑔 2𝑒−𝑔𝑡
1 + 𝑒𝑡 ]𝑡𝑔−1

= (−1)𝑔

2𝑔−1
− 2(−1)𝑔.
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Proof. The argument is similar to (A.1.1), but this time (−𝑝)(1 − 𝑝)⋯ (𝑔 − 1 − 𝑝) ≠ 0. Note

that 𝐸𝑘(1) = 2𝛿0𝑘 − 𝐸𝑘(0) [Dil10, 24.4.2] and [
𝑔
1] = (𝑔 − 1)! [GKP94, (6.5)]. ©

A.2. Lattices

(A.2.1) Given an abelian group 𝐿, define 𝐿∨ ≔ Hom(𝐿, 𝐙). A lattice is a free abelian

group 𝐿 of finite rank, together with a symmetric bilinear form ⟨−,−⟩∶ 𝐿 ⊗ 𝐿 → 𝐙 which

is nondegenerate, meaning that the associated map 𝐿 → 𝐿∨ is injective. If this map is also

surjective, then 𝐿 is unimodular. The Gram matrix 𝑄𝐿 for 𝐿 with respect to a basis (𝛼𝑖) has

entries ⟨𝛼𝑖, 𝛼𝑗⟩, and the discriminant of 𝐿 is det(𝐿) ≔ det(𝑄𝐿). Since automorphisms of 𝐿 have

determinant ±1, the latter is independent of the chosen basis. The signature of 𝐿 is the pair

(𝑝, 𝑛) ∈ 𝐍2 such that the 𝐑-bilinear extension of the form to 𝐿 ⊗𝐙 𝐑 has Gram matrix

(
𝐼𝑝 0
0 −𝐼𝑛

)

with respect to some basis; it is well-defined by Sylvester’s law [Art91, Theorem 2.11]. If

⟨𝛼, 𝛼⟩ ∈ 2𝐙 for all 𝛼 ∈ 𝐿, then 𝐿 is even; otherwise 𝐿 is odd.

(A.2.2) Lemma. If 𝐿 is a lattice, then its image in 𝐿∨ has index |det(𝐿)|.

Proof. Given a basis (𝛼𝑖) for 𝐿, let (𝛼∨𝑖 ) be the dual basis for 𝐿
∨. Since ∑𝑖 𝛼𝑖𝛼

∨
𝑖 (−) = 𝟏𝐿, the

image of 𝛼𝑘 in 𝐿∨ is∑𝑖⟨𝛼𝑘, 𝛼𝑖⟩𝛼
∨
𝑖 . In other words, 𝑄𝐿 is the matrix of 𝐿 ↪ 𝐿∨ with respect to

our bases. By changing both bases, we may assume 𝑄𝐿 is in Smith normal form (in particular,

diagonal). This only modifies the determinant of 𝑄𝐿 by a factor of ±1. It follows easily that

[𝐿∨ ∶ 𝐿] = [𝐙dim(𝐿) ∶ Im(𝑄𝐿)] = |det(𝑄𝐿)|. ©

(A.2.3) Lemma. Let𝑀 ↪ 𝐿 be an embedding of lattices.

(a) If [𝐿 ∶ 𝑀] < ∞, then

|det(𝑀)| = |det(𝐿)|[𝐿 ∶ 𝑀]2.
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(b) If 𝐿 is unimodular and𝑀 is primitive (i.e. 𝐿/𝑀 is torsion-free), then

||det(𝑀⟂)|| = |det(𝑀)|,

where𝑀⟂ = Ker(𝐿 ⥲ 𝐿∨ →𝑀∨) is the orthogonal complement of 𝑀.

Proof. Both statements follow from the starred formulae on [Mar03, p. 28]. Alternatively,

suppose that [𝐿 ∶ 𝑀] < ∞, so that 𝐿/𝑀 is a finite abelian group. There is an exact sequence

0 → 𝐿∨ →𝑀∨ → Ext1(𝐿/𝑀, 𝐙) → 0

and hence [𝑀∨ ∶ 𝐿∨] = [𝐿 ∶ 𝑀]. Part (A.2.3a) now follows from (A.2.2) by viewing𝑀 ↪ 𝑀∨

as the composition𝑀 ↪ 𝐿 ↪ 𝐿∨ ↪𝑀∨.

For (A.2.3b), 𝐿/𝑀 is a projective 𝐙-module, so the dual sequence becomes

0 → (𝐿/𝑀)∨ → 𝐿∨ →𝑀∨ → 0.

In particular 𝐿 ⥲ 𝐿∨ ↠𝑀∨ ↠𝑀∨/𝑀 is surjective. Its kernel is clearly𝑀 ⊕𝑀⟂, so

[𝐿 ∶ 𝑀 ⊕𝑀⟂] = [𝑀∨ ∶ 𝑀] = |det(𝑀)| < ∞.

Aneasy consequence is that𝐿∨ embeds in (𝑀 ⊕𝑀⟂)∨, andhence𝑀⊕𝑀⟂ is a lattice. Applying

(A.2.3a) to𝑀 ⊕𝑀⟂ gives

||det(𝑀) det(𝑀⟂)|| = ||det(𝑀 ⊕𝑀⟂)|| = [𝐿 ∶ 𝑀 ⊕𝑀⟂]2 = det(𝑀)2.

The result follows by cancelling |det(𝑀)|. ©

(A.2.4) The following statement seems like it should be known, but we were unable

to find a reference for it. When 𝑎 + 𝑏 = 𝑛 the numbers involved grow quickly, e.g. 𝑑73,4 =

47775744, 𝑑83,5 = 9760764780783360 and 𝑑94,5 = 703337226073392018752445307944960.
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(A.2.5) Proposition. Let 0 ≤ 𝑎 ≤ 𝑏 ≤ 𝑛 be integers, and set 𝑆 ≔ {1, … , 𝑛}. Write

(𝑆𝑎) = {𝐴1, … , 𝐴(𝑛𝑎)} and (
𝑆
𝑏) = {𝐵1, … , 𝐵(𝑛𝑏)}.

Let𝑀 = 𝑀𝑛
𝑎,𝑏 be the (

𝑛
𝑎) × (

𝑛
𝑏)matrix with entries

𝑀𝑖
𝑗 ≔

⎧
⎨
⎩

1 if 𝐴𝑖 ⊆ 𝐵𝑗,

0 otherwise.

The product of the diagonal entries of the Smith normal form of 𝑀 is

𝑑𝑛𝑎,𝑏 ≔

⎧
⎪

⎨
⎪
⎩

𝑎
∏
𝑖=1

(1 + 𝑏 − 𝑎
𝑖 )

( 𝑛
𝑎−𝑖)

if 𝑎 + 𝑏 ≤ 𝑛,

𝑛−𝑏
∏
𝑖=1

(1 + 𝑏 − 𝑎
𝑖 )

( 𝑛
𝑏+𝑖)

if 𝑎 + 𝑏 ≥ 𝑛.

In particular, the torsion subgroup of Coker(𝑀∶ 𝐙(
𝑛
𝑏) → 𝐙(

𝑛
𝑎)) has order 𝑑𝑛𝑎,𝑏.

Proof. The cases where 𝑎 + 𝑏 > 𝑛 follow from those with 𝑎 + 𝑏 < 𝑛, because 𝐴𝑖 ⊆ 𝐵𝑗 iff

𝑆 ⧵ 𝐵𝑗 ⊆ 𝑆 ⧵ 𝐴𝑖 and hence 𝑀⊤ = 𝑀𝑛
𝑛−𝑏,𝑛−𝑎. If 𝑎 = 0 (resp. 𝑏 = 𝑛) then 𝑀 has a single row

(resp. column) consisting only of ones, and 𝑑𝑛𝑎,𝑏 = 1 by convention. Moreover, if 𝑎 = 𝑏 then

𝑀 = 𝟏, and again 𝑑𝑛𝑎,𝑏 = 1. Thus, we may assume that 0 < 𝑎 < 𝑏 < 𝑛. By sorting the subsets

of 𝑆 which belong to 𝑇 ≔ 𝑆 ⧵ {𝑛} before those which do not,𝑀 decomposes as

(
𝑀𝑛−1

𝑎,𝑏 𝑀𝑛−1
𝑎,𝑏−1

0 𝑀𝑛−1
𝑎−1,𝑏−1

) .

In particular, we have the following commutative diagram of short exact sequences:

0 𝐙(
𝑛−1
𝑏 ) 𝐙(

𝑛
𝑏) 𝐙(

𝑛−1
𝑏−1) 0

0 𝐙(
𝑛−1
𝑎 ) 𝐙(

𝑛
𝑎) 𝐙(

𝑛−1
𝑎−1) 0.

𝑀𝑛−1
𝑎,𝑏 𝑀 𝑀𝑛−1

𝑎−1,𝑏−1

If 𝑎 + 𝑏 < 𝑛, then𝑀 has more columns than rows, and the same holds for𝑀𝑛−1
𝑎−1,𝑏−1.

Moreover 𝑀𝑛−1
𝑎,𝑏 has at least as many columns as rows. By induction on 𝑛, the cokernels of
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the latter two matrices have orders 𝑑𝑛−1𝑎−1,𝑏−1 and 𝑑
𝑛−1
𝑎,𝑏 respectively. Since Ker(𝑀𝑛−1

𝑎−1,𝑏−1) is

torsion-free, it follows from the snake lemma that Coker(𝑀) has order

𝑑𝑛−1𝑎,𝑏 𝑑
𝑛−1
𝑎−1,𝑏−1 =

𝑎
∏
𝑖=1

(1 + 𝑏 − 𝑎
𝑖 )

(𝑛−1𝑎−𝑖)
⋅
𝑎−1
∏
𝑖=1

(1 + 𝑏 − 𝑎
𝑖 )

( 𝑛−1
𝑎−1−𝑖)

= (1 + 𝑏 − 𝑎
𝑎 )

𝑎−1
∏
𝑖=1

(1 + 𝑏 − 𝑎
𝑖 )

( 𝑛−1
𝑎−1−𝑖)+(𝑛−1𝑎−𝑖)

= 𝑑𝑛𝑎,𝑏.

It remains to consider the case 𝑎 + 𝑏 = 𝑛. Since matrices invertible over 𝐙 are unimodular, it

suffices to show that |det(𝑀)| = 𝑑𝑛𝑎,𝑏. We may assume (by induction) that𝑀
𝑛−1
𝑎,𝑏−1 is invertible

over 𝐐. Changing our basis for 𝐙(
𝑛
𝑏) gives

(A.2.6) 𝑀𝑛
𝑎,𝑏 = (

𝑀𝑛−1
𝑎,𝑏−1 𝑀𝑛−1

𝑎,𝑏
𝑀𝑛−1

𝑎−1,𝑏−1 0
) = (

𝑀𝑛−1
𝑎,𝑏−1 0

𝑀𝑛−1
𝑎−1,𝑏−1 𝐼(𝑛−1𝑎−1)

) (
𝐼(𝑛−1𝑏−1) (𝑀𝑛−1

𝑎,𝑏−1)
−1
𝑀𝑛−1

𝑎,𝑏

0 −𝑁
) ,

where 𝑁 ≔ 𝑀𝑛−1
𝑎−1,𝑏−1(𝑀

𝑛−1
𝑎,𝑏−1)

−1
𝑀𝑛−1

𝑎,𝑏 . To prove that 𝑁 = 𝑏−𝑎+1
𝑏−𝑎 𝑀𝑛−1

𝑎−1,𝑏, fix 𝐴 ∈ ( 𝑇
𝑎−1) and

𝐵 ∈ (𝑇𝑏). Let 𝑁𝐴
𝐵 be the entry of 𝑁 corresponding to 𝐴 and 𝐵, and likewise for the other

matrices. Since there are |𝐵 ⧵ 𝐴′| = 𝑏 − 𝑎 sets in ( 𝐵
𝑏−1) containing a given 𝐴′ ∈ (𝐵𝑎),

𝑁𝐴
𝐵 = ∑

𝐴⊆𝐵′∈( 𝑇
𝑏−1)

∑
𝐴′∈(𝐵𝑎)

((𝑀𝑛−1
𝑎,𝑏−1)

−1
)
𝐵′

𝐴′

= 1
𝑏 − 𝑎 ∑

𝐴⊆𝐵′∈( 𝑇
𝑏−1)

∑
𝐵″∈( 𝐵

𝑏−1)
∑

𝐴′∈(𝐵″𝑎 )
((𝑀𝑛−1

𝑎,𝑏−1)
−1
)
𝐵′

𝐴′
.

On the other hand, for each 𝐵′ and 𝐵″ the equation (𝑀𝑛−1
𝑎,𝑏−1)

−1
𝑀𝑛−1

𝑎,𝑏−1 = 𝟏 gives

∑
𝐴′∈(𝐵″𝑎 )

((𝑀𝑛−1
𝑎,𝑏−1)

−1
)
𝐵′

𝐴′
= 𝟏𝐵′

𝐵″.

Therefore (𝑏 − 𝑎)𝑁𝐴
𝐵 counts the number of sets 𝐵″ ∈ ( 𝐵

𝑏−1) which contain 𝐴. If 𝐴 ⊈ 𝐵 then

there are no such sets, so 𝑁𝐴
𝐵 = 0. Otherwise there are |𝐵 ⧵ 𝐴| = 𝑏 − 𝑎 + 1 choices, so
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𝑁𝐴
𝐵 = 𝑏−𝑎+1

𝑏−𝑎 . It follows that 𝑁 = 𝑏−𝑎+1
𝑏−𝑎 𝑀𝑛−1

𝑎−1,𝑏, as claimed. Finally (A.2.6) gives

|det(𝑀)| = |||det(𝑀
𝑛−1
𝑎,𝑏−1) det(

𝑏 − 𝑎 + 1
𝑏 − 𝑎 𝑀𝑛−1

𝑎−1,𝑏)
|||

= (𝑏 − 𝑎 + 1
𝑏 − 𝑎 )

(𝑛−1𝑎−1)
𝑑𝑛−1𝑎,𝑏−1𝑑

𝑛−1
𝑎−1,𝑏

= (𝑏 − 𝑎 + 1
𝑏 − 𝑎 )

(𝑛−1𝑎−1) 𝑎
∏
𝑖=1

(𝑖 + 𝑏 − 𝑎 − 1
𝑖 )

(𝑛−1𝑎−𝑖)
⋅
𝑎−1
∏
𝑖=1

(𝑖 + 𝑏 − 𝑎 + 1
𝑖 )

( 𝑛−1
𝑎−1−𝑖)

= 1
𝑎
𝑎−1
∏
𝑖=1

(1𝑖 )
(𝑛−1𝑎−𝑖)+( 𝑛−1

𝑎−1−𝑖)
⋅

𝑎
∏
𝑖=2

(𝑖 + 𝑏 − 𝑎 − 1)(
𝑛−1
𝑎−𝑖) ⋅

𝑎−1
∏
𝑖=0

(𝑖 + 𝑏 − 𝑎 + 1)(
𝑛−1
𝑎−1−𝑖)

=
𝑎
∏
𝑖=1

(1𝑖 )
( 𝑛
𝑎−𝑖)

⋅
𝑎−1
∏
𝑖=1

(𝑖 + 𝑏 − 𝑎)(
𝑛−1
𝑎−𝑖−1) ⋅

𝑎
∏
𝑖=1

(𝑖 + 𝑏 − 𝑎)(
𝑛−1
𝑎−𝑖)

=
𝑎
∏
𝑖=1

(𝑖 + 𝑏 − 𝑎
𝑖 )

( 𝑛
𝑎−𝑖)

= 𝑑𝑛𝑎,𝑏,

as required. ©
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Appendix B: Algebraic geometry

B.1. Cohomology of symmetric powers of curves

(B.1.1) Given a smooth curve 𝑋 of genus 𝑔 and a positive integer 𝑑, the cohomology

ring 𝐻∗(𝑋(𝑑), 𝐐) of the symmetric power 𝑋(𝑑) ≔ 𝑋𝑑/𝑆𝑑 is identified (via pullback) with the

invariant subring 𝐻∗(𝑋𝑑, 𝐐)
𝑆𝑑 ⊂ 𝐻∗(𝑋𝑑, 𝐐) [Mac62, (1.2)]. Let 𝛼1, … , 𝛼2𝑔 be a symplectic

basis for𝐻1(𝑋,𝐐), in the sense that

⟨𝛼2𝑖−1, 𝛼2𝑖⟩ = −⟨𝛼2𝑖, 𝛼2𝑖−1⟩ = 1

and ⟨𝛼𝑖, 𝛼𝑗⟩ = 0 for all other indices 𝑖 and 𝑗. Also let 𝛽 ∈ 𝐻2(𝑋,𝐐) be the class of a point.

The invariant classes 𝜉𝑖 ≔ 𝜋∗1𝛼𝑖 + ⋯ + 𝜋∗𝑑𝛼𝑖 and 𝜂 ≔ 𝜋∗1𝛽 + ⋯ + 𝜋∗𝑑𝛽 generate 𝐻
∗(𝑋(𝑑), 𝐐)

[Mac62, (3.1)]. In fact, the monomials 𝜂𝑝𝜉𝑖1 ⋯𝜉𝑖𝑞 of degree 𝑟 ≔ 2𝑝 + 𝑞 for which 𝑖1 < ⋯ < 𝑖𝑞

and 𝑝 ≥ 𝑟 − 𝑑 form a basis for 𝐻𝑟(𝑋(𝑑), 𝐐) [Mac62, (3.2)]. The remaining monomials can be

expressed in this basis using the following relation. In order to easily state the relation and

deduce it from well-known relations, we first introduce some notation.

(B.1.2) An index 𝐼 = (𝑝𝐼, 𝑄𝐼) for 𝑋(𝑑) consists of 𝑝𝐼 ∈ 𝐍 and a subset 𝑄𝐼 ⊆ {1, … , 2𝑔}. If

𝑖1 < ⋯ < 𝑖𝑞 are the elements of 𝑄𝐼, we write

𝜉𝐼 ≔ 𝜂𝑝𝐼𝜉𝑖1 ⋯𝜉𝑖𝑞

and set 𝑟𝐼 ≔ Deg(𝜉𝐼) = 2𝑝𝐼 + 𝑞. If 𝑝𝐼 ≥ 𝑟𝐼 − 𝑑, we say 𝐼 is basic (because then 𝜉𝐼 belongs to our

basis for 𝐻𝑟𝐼(𝑋(𝑑), 𝐐)). Let 𝐵𝐼 ⊆ {1, … , 𝑔} be the set of indices 𝑖 such that 2𝑖 − 1, 2𝑖 ∈ 𝑄𝐼, and

𝐴𝐼 ⊆ 𝑄𝐼 the set of “unpaired” indices, i.e. those 𝑖 such that 𝑖−(−1)
𝑖 ∉ 𝑄𝐼. Finally, set 𝑎𝐼 ≔ |𝐴𝐼|

and 𝑏𝐼 ≔ |𝐵𝐼|. If 𝐽 is another such pair, then 𝐽 ≤ 𝐼means that 𝑟𝐽 = 𝑟𝐼, 𝐴𝐽 = 𝐴𝐼 and 𝐵𝐽 ⊆ 𝐵𝐼. In

other words, 𝜉𝐽 can be obtained from 𝜉𝐼 by replacing factors of the form 𝜎𝑖 ≔ 𝜉2𝑖−1𝜉2𝑖 by 𝜂.
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(B.1.3) Proposition. If 𝐼 is an index which is not basic then

𝜉𝐼 = ∑
𝐽≤𝐼 basic

(𝑝𝐼 − 𝑟𝐼 + 𝑑
𝑝𝐽 − 𝑟𝐼 + 𝑑)𝜉𝐽.

Proof. The relation 𝜉(𝑝𝐼,𝐴𝐼)(𝜎𝑖1 − 𝜂)⋯(𝜎𝑖𝑏 − 𝜂) = 0, where 𝑖1 < ⋯ < 𝑖𝑏 are the elements of

𝐵𝐼, is well-known [Mac62, (6.31)]. Since 𝜂 and the 𝜎𝑖 are central in 𝐻∗(𝑋𝑑, 𝐐), it expands to

give

∑
𝐽≤𝐼
(−1)𝑝𝐽−𝑝𝐼𝜉𝐽 = 0.

By (reverse) induction on 𝑝𝐼, the coefficient of a basic index 𝐽 < 𝐼 in 𝜉𝐼 = −∑𝐽<𝐼(−1)
𝑝𝐽−𝑝𝐼𝜉𝐽

is (−1)𝑝𝐽−𝑝𝐼+1 + 𝑐𝐽, where

𝑐𝐽 ≔∑
𝐾
(−1)𝑝𝐾−𝑝𝐼+1(𝑝𝐾 − 𝑟𝐾 + 𝑑

𝑝𝐽 − 𝑟𝐾 + 𝑑)

and the sum is taken over nonbasic indices 𝐽 < 𝐾 < 𝐼. Each such 𝐾 corresponds to a set

𝐵𝐽 ⊂ 𝐵𝐾 ⊂ 𝐵𝐼 such that |𝐵𝐼 ⧵ 𝐵𝐾| = 𝑝𝐾 − 𝑝𝐼. There are (𝑝𝐽−𝑝𝐼𝑝𝐾−𝑝𝐼) such sets (and 𝑟𝐾 = 𝑟𝐼), so

𝑐𝐽 =
𝑟𝐼−𝑑−1
∑

𝑝=𝑝𝐼+1
(−1)𝑝−𝑝𝐼+1( 𝑝 − 𝑟𝐼 + 𝑑

𝑝𝐽 − 𝑟𝐼 + 𝑑)(
𝑝𝐽 − 𝑝𝐼
𝑝 − 𝑝𝐼

).

The identity (𝑛𝑘) = (−1)𝑘(𝑘−𝑛−1𝑘 ) gives

(B.1.4) (𝑛𝑘) = (−1)𝑘(𝑘 − 𝑛 − 1
𝑘 ) = (−1)𝑘(𝑘 − 𝑛 − 1

−𝑛 − 1 ) = (−1)𝑘−𝑛−1(−𝑘 − 1
−𝑛 − 1)

for all integers 𝑘 > 𝑛. It follows that

𝑐𝐽 = (−1)𝑝𝐽−𝑝𝐼
𝑟𝐼−𝑑−1
∑

𝑝=𝑝𝐼+1
(𝑟𝐼 − 𝑝𝐽 − 𝑑 − 1
𝑟𝐼 − 𝑝 − 𝑑 − 1 )(

𝑝𝐽 − 𝑝𝐼
𝑝 − 𝑝𝐼

)

= (−1)𝑝𝐽−𝑝𝐼
𝑟𝐼−𝑝𝐼−𝑑−1

∑
𝑝=1

( 𝑟𝐼 − 𝑝𝐽 − 𝑑 − 1
𝑟𝐼 − 𝑝𝐼 − 𝑝 − 𝑑 − 1)(

𝑝𝐽 − 𝑝𝐼
𝑝 ).

The sum can be simplified using the Chu-Vandermonde identity [GKP94, (5.22)]:

(−1)𝑝𝐼−𝑝𝐽𝑐𝐽 = (𝑟𝐼 − 𝑝𝐼 − 𝑑 − 1
𝑟𝐼 − 𝑝𝐼 − 𝑑 − 1) − (𝑟𝐼 − 𝑝𝐽 − 𝑑 − 1

𝑟𝐼 − 𝑝𝐼 − 𝑑 − 1)(
𝑝𝐽 − 𝑝𝐼

0 ) = 1 − (𝑟𝐼 − 𝑝𝐽 − 𝑑 − 1
𝑟𝐼 − 𝑝𝐼 − 𝑑 − 1).
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Applying (B.1.4) again gives

𝑐𝐽 = (−1)𝑝𝐽−𝑝𝐼 + (𝑝𝐼 − 𝑟𝐼 + 𝑑
𝑝𝐽 − 𝑟𝐼 + 𝑑)

and hence (𝑝𝐼−𝑟𝐼+𝑑𝑝𝐽−𝑟𝐼+𝑑) is the coefficient of 𝜉𝐽 in 𝜉𝐼, as required. ©

(B.1.5) Let𝜋∶ 𝑋 → 𝑋 be a finitemorphismof degree𝑚, with𝑋 a smooth curve of genus

̃𝑔. If 𝜋(𝑑)∶ 𝑋(𝑑) → 𝑋(𝑑) is induced by 𝜋, then 𝜋(𝑑)
∗
∶ 𝐻∗(𝑋(𝑑), 𝐐) → 𝐻∗(𝑋(𝑑), 𝐐) is easily

computed given 𝜋∗. The Gysin push-forward 𝜋(𝑑)∗ ∶ 𝐻∗(𝑋(𝑑), 𝐐) → 𝐻∗(𝑋(𝑑), 𝐐) is likewise

determined by 𝜋∗, but in a more complicated way, which we work out below. In the following

̃𝛽 and 𝛼̃1, … , 𝛼̃2𝑔 are the analogues of 𝛽 and the 𝛼𝑖 for 𝑋, and likewise for ̃𝜂, etc.

(B.1.6) Proposition. Let 𝑎𝑄𝑄̃ be the matrix of

⋀∗ 𝜋∗∶ ⋀∗𝐻1(𝑋,𝐐) → ⋀∗𝐻1(𝑋,𝐐),

with 𝑄 ⊆ {1, … , 2𝑔} indexing our basis for⋀∗𝐻1(𝑋,𝐐), and likewise for 𝑄. If 𝐼 is a basic index

for 𝑋(𝑑), then

𝜋(𝑑)∗ ̃𝜉𝐼 = ∑
𝐽≤𝐼

∑
𝐾 basic

𝑐𝐾𝐽 ∑
𝐿≤𝐾

(−1)𝑝𝐿−𝑝𝐾𝜉𝐿,

where

𝑐𝐾𝐽 ≔
⎧
⎨
⎩

𝑚𝑑−𝑟𝐽+𝑝𝐽𝑎𝑄𝐾
𝑄𝐽

if 𝑝𝐾 = 𝑝𝐽 (and 𝑟𝐾 = 𝑟𝐽),

0 otherwise,

for each basic index 𝐾 for 𝑋(𝑑).

Proof. In order to continueworkingwith invariant classes, we need to check that the following

diagram commutes. The leftmost map is well-defined because the Gysin pushforward is 𝑆𝑑-

equivariant.

𝐻∗(𝑋𝑑, 𝐐)
𝑆𝑑 𝐻∗(𝑋(𝑑), 𝐐)

𝐻∗(𝑋𝑑, 𝐐)
𝑆𝑑 𝐻∗(𝑋(𝑑), 𝐐)

∼

𝜋𝑑∗

∼

𝜋(𝑑)∗
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This can be accomplished by composing with the pushforward 𝐻∗(𝑋𝑑, 𝐐)
𝑆𝑑 → 𝐻∗(𝑋(𝑑), 𝐐),

which is (up to a factor of 𝑑!) the inverse of the pullback (by the projection formula).

If 𝐼 is a basic index for 𝑋(𝑑), with 𝑝 ≔ 𝑝𝐼 and 𝑖1 < ⋯ < 𝑖𝑞 the elements of 𝑄𝐼, then by

definition

̃𝜉𝐼 =
𝑑
∑
𝑗1=1

𝜋∗𝑗1
̃𝛽 …

𝑑
∑
𝑗𝑝=1

𝜋∗𝑗𝑝
̃𝛽
𝑑
∑
𝑘1=1

𝜋∗𝑘1𝛼̃𝑖1 …
𝑑
∑
𝑘𝑞=1

𝜋∗𝑘𝑞𝛼̃𝑖𝑞.

The terms for which the indices 𝑗𝑖 and 𝑘𝑖 are pairwise distinct are essentially cross products

of classes in𝐻∗(𝑋,𝐐). The cross product is natural for morphisms of even relative dimension

(up to a sign in general) [Spa95, 5.3.10, 5.6.21]. To evaluate 𝜋𝑑∗ on such a term, first apply

a permutation so that the indices are in order (this may introduce a factor of −1). For each

missing index 𝑖 ∈ {1, … , 𝑑}, insert 𝜋∗𝑖 1 in the appropriate spot. Now push forward, and undo

the permutation (which cancels the −1 we may have picked up before). The resulting class is

(B.1.7) 𝑚𝑑−𝑝−𝑞𝜋∗𝑗1𝛽⋯𝜋∗𝑗𝑝𝛽 ⋅ 𝜋
∗
𝑘1(𝜋∗𝛼̃𝑖1)⋯𝜋∗𝑘𝑞(𝜋∗𝛼̃𝑖𝑞),

because 𝜋∗ ̃𝛽 = 𝛽 and there are 𝑑 − 𝑝 − 𝑞 copies of 1, which pushes forward to Deg(𝜋) = 𝑚.

The other terms in ̃𝜉𝐼 are typically zero, because𝐻𝑘(𝑋,𝐐) = 0 for 𝑘 ≥ 3, while 𝛼̃𝑖𝛼̃𝑗 = 0

unless 𝑗 = 𝑖 − (−1)𝑖. Since 𝜋∗𝑖 𝛼̃2𝑗−1𝜋∗𝑖 𝛼̃2𝑗 = 𝜋∗𝑖 ̃𝛽, we can remove repeated indices from the

nonzero terms (thereby increasing 𝑝𝐼, and removing the pairs {2𝑗 − 1, 2𝑗} from 𝑄𝐼). This gives

an expression

̃𝜉𝐼 = ∑
𝐽≤𝐼

̃𝜀𝐽,

where each ̃𝜀𝐽 is the sum of the terms in ̃𝜉𝐽 for which the indices 𝑗𝑖 and 𝑘𝑖 are distinct.

Given a basic index 𝐾 for 𝑋(𝑑), define 𝜀𝐾 in the same way (using 𝜉𝐾 instead of ̃𝜉𝐾). It is

not hard to show (by reverse induction on 𝑝 and the binomial theorem) that

𝜀𝐾 = ∑
𝐿≤𝐾

(−1)𝑝𝐿−𝑝𝐾𝜉𝐿.

Thus, it remains to show that

𝜋𝑑∗ ̃𝜀𝐼 = ∑
𝐾 basic

𝑐𝐾𝐼𝜀𝐾.
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Using (B.1.7), we compute that

𝜋𝑑∗ ̃𝜀𝐼 = 𝑚𝑑−𝑝−𝑞 ∑
𝑗1,…,𝑗𝑝,𝑘1,…,𝑘𝑞

𝜋∗𝑗1𝛽⋯𝜋∗𝑗𝑝𝛽 ⋅ 𝜋
∗
𝑘1(𝜋∗𝛼̃𝑖1)⋯𝜋∗𝑘𝑞(𝜋∗𝛼̃𝑖𝑞)

= 𝑚𝑑−𝑝−𝑞 ∑
𝑗1,…,𝑗𝑝,𝑘1,…,𝑘𝑞

𝜋∗𝑗1𝛽⋯𝜋∗𝑗𝑝𝛽 ∑
𝑙1,…,𝑙𝑞

𝜋∗𝑘1(𝑎𝑙1𝑖1𝛼𝑙1)⋯𝜋∗𝑘𝑞(𝑎𝑙𝑞𝑖𝑞𝛼𝑙𝑞)

= 𝑚𝑑−𝑝−𝑞 ∑
𝑙1,…,𝑙𝑞

𝑎𝑙1𝑖1 ⋯𝑎𝑙𝑞𝑖𝑞 ∑
𝑗1,…,𝑗𝑝,𝑘1,…,𝑘𝑞

𝜋∗𝑗1𝛽⋯𝜋∗𝑗𝑝𝛽 ⋅ 𝜋
∗
𝑘1𝛼𝑙1 ⋯𝜋∗𝑘𝑞𝛼𝑙𝑞,(B.1.8)

where 𝑗1, … , 𝑗𝑝, 𝑘1, … , 𝑘𝑞 ∈ {1, … , 𝑑} are required to be distinct but 𝑙1, … , 𝑙𝑞 ∈ {1, … , 2𝑔} are

arbitrary. If 𝑙𝑖 = 𝑙𝑗 then the transposition (𝑘𝑖 𝑘𝑗) acts on

𝜋∗𝑗1𝛽⋯𝜋∗𝑗𝑝𝛽 ⋅ 𝜋
∗
𝑘1𝛼𝑙1 ⋯𝜋∗𝑘𝑞𝛼𝑙𝑞

as multiplication by −1, so the terms with 𝑘𝑖 < 𝑘𝑗 cancel with those for which 𝑘𝑖 > 𝑘𝑗. Hence,

wemay assume the 𝑙𝑖 are distinct in (B.1.8). Collecting the terms in (B.1.8) which share a given

subset {𝑙1, … , 𝑙𝑞} ⊆ 𝑅 ≔ {1, … , 2𝑔} gives

𝜋𝑑∗ ̃𝜀𝐼 = 𝑚𝑑−𝑝−𝑞 ∑
𝑄∈(𝑅𝑞)

∑
𝜍∈𝑆𝑞

𝑎𝑙𝜍(1)𝑖1 …𝑎𝑙𝜍(𝑞)𝑖𝑞 ∑
𝑗1,…,𝑗𝑝,𝑘1,…,𝑘𝑞

𝜋∗𝑗1𝛽…𝜋
∗
𝑗𝑝𝛽 ⋅ 𝜋

∗
𝑘1𝛼𝑙𝜍(1) …𝜋

∗
𝑘𝑞𝛼𝑙𝜍(𝑞)

= 𝑚𝑑−𝑝−𝑞 ∑
𝑄∈(𝑅𝑞)

∑
𝜍∈𝑆𝑞

(−1)𝜍𝑎𝑙𝜍(1)𝑖1 …𝑎𝑙𝜍(𝑞)𝑖𝑞 ∑
𝑗1,…,𝑗𝑝,𝑘1,…,𝑘𝑞

𝜋∗𝑗1𝛽…𝜋
∗
𝑗𝑝𝛽 ⋅ 𝜋

∗
𝑘1𝛼𝑙1 …𝜋

∗
𝑘𝑞𝛼𝑙𝑞

= 𝑚𝑑−𝑝−𝑞 ∑
𝑄∈(𝑅𝑞)

∑
𝜍∈𝑆𝑞

(−1)𝜍𝑎𝑙𝜍(1)𝑖1 …𝑎𝑙𝜍(𝑞)𝑖𝑞𝜀(𝑝,𝑄)

= 𝑚𝑑−𝑝−𝑞 ∑
𝑄∈(𝑅𝑞)

𝑎𝑄𝑄𝐼
𝜀(𝑝,𝑄)

= ∑
𝐾 basic

𝑐𝐾𝐼𝜀𝐾,

as required (note that 𝑝 + 𝑞 = 𝑟𝐼 − 𝑝). ©

B.2. Algebraic cycles on symmetric powers of curves

(B.2.1) It is well-known that 𝜂 ∈ 𝐻2(𝑋(𝑑), 𝐐) is algebraic, being the class of 𝑝 +𝑋(𝑑−1)

for any 𝑝 ∈ 𝑋 [Mac62, (14.4)]. There is another algebraic class 𝜃 ∈ 𝐻2(𝑋(𝑑), 𝐐), namely the
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pullback of a theta divisor on Pic𝑑(𝑋). In our notation

𝜃 =
𝑔
∑
𝑖=1

𝜎𝑖.

The above formulae can be simplified by working in the subring of 𝐻∗(𝑋(𝑑), 𝐐) generated by

𝜂 and 𝜃. For general 𝑋 this is equal to the algebraic part of 𝐻∗(𝑋(𝑑), 𝐐) [ACGH85, VIII, §5].

(B.2.2) Corollary. If 𝑝, 𝑞 ∈ 𝐍 and 𝑝 + 2𝑞 > 𝑑 then

𝜂𝑝𝜃𝑞 =
𝑑−𝑝−𝑞
∑
𝑗=0

(𝑔 − 𝑗
𝑞 − 𝑗)(

𝑑 − 𝑝 − 2𝑞
𝑑 − 𝑝 − 𝑞 − 𝑗)

𝑞!
𝑗! 𝜂

𝑝+𝑞−𝑗𝜃𝑗.

Proof. Note that 𝜃𝑞 = 𝑞!∑𝐵∈(𝐺𝑞) 𝜎𝐵, where 𝐺 ≔ {1,… , 𝑔} and 𝜎𝐵 ≔ ∏𝑏∈𝐵 𝜎𝑏. If we define

𝐼𝐵 ≔ (𝑝, (2𝐵 − 1) ∪ 2𝐵) for 𝐵 ⊆ 𝐺, then by (B.1.3)

𝜂𝑝𝜃𝑞 = 𝑞! ∑
𝐵∈(𝐺𝑞)

𝜉𝐼𝐵 = 𝑞! ∑
𝐵∈(𝐺𝑞)

∑
𝐽≤𝐼𝐵 basic

( 𝑑 − 𝑝 − 2𝑞
𝑑 + 𝑝𝐽 − 2𝑝 − 2𝑞)𝜉𝐽.

A basic index 𝐽 with 𝐴𝐽 = ∅ appears in the sum (𝑔−𝑏𝐽𝑞−𝑏𝐽) times, because this is the number of

sets 𝐵 ∈ (𝐺𝑞)which contain 𝐵𝐽. The result now follows from the equation 𝑝𝐽+𝑏𝐽 = 𝑝+𝑞. ©

(B.2.3) Corollary. If 𝜋∶ 𝑋 → 𝑋 is an étale double cover, then

𝜋(𝑑)∗ ( ̃𝜂𝑝 ̃𝜃𝑞) = 2𝑑−𝑝−𝑞
𝑞
∑
𝑙=0

(𝑔 − 1
𝑞 − 𝑙)

𝑞!
𝑙! 𝜂

𝑝+𝑞−𝑙𝜃𝑙,

where 𝜃 ∈ 𝐻2(𝑋,𝐐) is the class of a theta divisor coming from Pic𝑑(𝑋) and likewise for ̃𝜃.

Proof. Let 𝛼1, … , 𝛼2𝑔 be a symplectic basis for 𝐻1(𝑋,𝐐). The topological space underlying 𝑋

can be constructed from 𝑋 by cutting it along a loop representing (the Poincaré dual of) 𝛼2

and gluing two copies along the resulting boundaries [BL04, Proposition 12.4.2]. This gives a

symplectic basis for𝐻1(𝑋,𝐐), which consists of a loop 𝛼̃1 lying over both copies of 𝛼1 (which

were glued together after cutting at a point), a loop 𝛼̃2 lying over one copy of 𝛼2, and two loops
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𝛼̃𝑖, 𝛼̃𝑖+2𝑔−2 lying over 𝛼𝑖 for each 𝑖 ∈ {3, … , 2𝑔}. In this basis 𝜋∗ has a simple description:

(B.2.4) 𝜋∗𝛼̃𝑖 =

⎧
⎪

⎨
⎪
⎩

2𝛼1 if 𝑖 = 1,

𝛼𝑖 if 1 < 𝑖 ≤ 2𝑔,

𝛼𝑖−2𝑔+2 otherwise.

It follows that for each 𝑄 ⊆ {1, … , 2 ̃𝑔} there is at most one 𝑄 ⊆ {1, … , 2𝑔} such that

𝑎𝑄𝑄̃ ≠ 0 (using notation from (B.1.6)). Specifically

𝑄 = {𝑖 ∈ {1, … , 2𝑔} || 𝑖 ∈ 𝑄 or 2𝑔 < 𝑖 + 2𝑔 − 2 ∈ 𝑄},

and 𝑎𝑄𝑄̃ = 0 only if 𝑄 contains both 𝑖 and 𝑖 + 2𝑔 − 2 for 𝑖 > 2. For each 𝑄 there are therefore

2|𝑄|−𝛿1𝑄−𝛿2𝑄

choices for 𝑄 with 𝑎𝑄𝑄̃ ≠ 0, where

𝛿𝑖𝑄 =
⎧
⎨
⎩

1 if 𝑖 ∈ 𝑄,

0 otherwise.

Moreover 𝑎𝑄𝑄̃ = ±2𝛿1𝑄 in these cases.

Setting 𝐼𝐵 ≔ (𝑝, (2𝐵 − 1) ∪ 2𝐵) for 𝐵 ⊆ 𝐺 ≔ {1,… , ̃𝑔}, a similar argument shows that

each basic index 𝐾 with 𝐴𝐾 = ∅ (and 𝑏𝐾 ≤ 𝑞) appears

2𝑏𝐾−𝛿1𝐵𝐾( ̃𝑔 − 𝑏𝐾
𝑞 − 𝑏𝐾

)

times in

𝜋(𝑑)∗ ( ̃𝜂𝑝 ̃𝜃𝑞) = 𝑞! ∑
𝐵∈(𝐺𝑞)

∑
𝐽≤𝐼𝐵

∑
𝐾 basic

𝑐𝐾𝐽 ∑
𝐿≤𝐾

(−1)𝑝𝐿−𝑝𝐾𝜉𝐿.

Moreover 𝑐𝐾𝐽 = +2𝑑−2𝑝−2𝑞+𝑝𝐾+𝛿1𝐵𝐾 every time, essentially because the 𝜎𝑖 commute with each

63



other. It follows that

𝜋(𝑑)∗ ( ̃𝜂𝑝 ̃𝜃𝑞) = 𝑞!∑
𝐾
2𝑑−2𝑝−2𝑞+𝑝𝐾+𝑏𝐾( ̃𝑔 − 𝑏𝐾

𝑞 − 𝑏𝐾
) ∑
𝐿≤𝐾

(−1)𝑝𝐿−𝑝𝐾𝜉𝐿,

where the first sum is taken over basic indices 𝐾 with 𝐴𝐾 = ∅. Collecting these indices for a

fixed basic 𝐿 gives the following equation (again the sum is over basic 𝐿 with 𝐴𝐿 = ∅)

𝜋(𝑑)∗ ( ̃𝜂𝑝 ̃𝜃𝑞) = 𝑞!2𝑑−𝑝−𝑞∑
𝐿

𝑞
∑
𝑘=𝑏𝐿

( ̃𝑔 − 𝑘
𝑞 − 𝑘)(

𝑔 − 𝑏𝐿
𝑘 − 𝑏𝐿

)(−1)𝑘−𝑏𝐿𝜉𝐿.

This can be rewritten in terms of 𝜂 and 𝜃, as follows.

𝜋(𝑑)∗ ( ̃𝜂𝑝 ̃𝜃𝑞) = 2𝑑−𝑝−𝑞
𝑞
∑
𝑙=0

𝑞
∑
𝑘=𝑙

( ̃𝑔 − 𝑘
𝑞 − 𝑘)(

𝑔 − 𝑙
𝑘 − 𝑙)(−1)

𝑘−𝑙𝑞!
𝑙! 𝜂

𝑝+𝑞−𝑙𝜃𝑙

= 2𝑑−𝑝−𝑞
𝑞
∑
𝑙=0

𝑞−𝑙
∑
𝑘=0

( ̃𝑔 − 𝑘 − 𝑙
𝑞 − 𝑘 − 𝑙)(

𝑔 − 𝑙
𝑘 )(−1)𝑘

𝑞!
𝑙! 𝜂

𝑝+𝑞−𝑙𝜃𝑙

= 2𝑑−𝑝−𝑞
𝑞
∑
𝑙=0

𝑞−𝑙
∑
𝑘=0

(𝑞 − ̃𝑔 − 1
𝑞 − 𝑘 − 𝑙)(

𝑔 − 𝑙
𝑘 )(−1)𝑞−𝑙

𝑞!
𝑙! 𝜂

𝑝+𝑞−𝑙𝜃𝑙

= 2𝑑−𝑝−𝑞
𝑞
∑
𝑙=0

(𝑞 − 𝑙 + 𝑔 − ̃𝑔 − 1
𝑞 − 𝑙 )(−1)𝑞−𝑙

𝑞!
𝑙! 𝜂

𝑝+𝑞−𝑙𝜃𝑙

= 2𝑑−𝑝−𝑞
𝑞
∑
𝑙=0

( ̃𝑔 − 𝑔
𝑞 − 𝑙)

𝑞!
𝑙! 𝜂

𝑝+𝑞−𝑙𝜃𝑙,

where the penultimate line follows from the Chu-Vandermonde identity [GKP94, (5.22)]. ©

(B.2.5) Let 𝑋 be a smooth curve of genus 6 and 𝑋 → 𝑋 an étale double cover, with

(𝐴,𝛩) the associated Prym variety. Fix a 𝑔26 on𝑋 and suppose the associated special subvariety

𝑆 ⊂ 𝑋(6) is smooth. We name the morphisms involved as below.

𝑆 𝑋(6)

𝑔26 𝑋(6).

̃𝜄

𝜄

𝜌 𝜋(6)

(B.2.6) Proposition. If 𝑛 ∈ 𝐙 then 𝜒(𝒪𝑆(𝑛𝛩)) = 40𝑛2 − 80𝑛 + 44.

Proof. We will compute 𝜒(𝒪𝑆(2𝑛𝛩)) = 𝜒(𝒪𝑆(𝑛𝛩)) for all 𝑛 ∈ 𝐍, where 𝛩 is a theta divisor
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for Pic6(𝑋). It suffices to show that 𝜒(𝒪𝑆(𝑛𝛩)) = 160𝑛2 − 160𝑛 + 44.

Since 𝜋(6) is an affinemorphism, 𝜋(6)∗ commutes with arbitrary base change. Therefore

𝜄∗𝜋(6)∗ 𝐻 = 𝜌∗ ̃𝜄∗𝐻 for𝐻 ≔ 𝒪𝑋̃(6)(𝑛𝛩). Since 𝑅𝑖𝜌∗ = 0 for 𝑖 > 0

(B.2.7) 𝜒(𝒪𝑆(𝑛𝛩)) = 𝜒(𝜄∗𝜋(6)∗ 𝐻) = ∫
𝑔26

ch(𝜄∗𝜋(6)∗ 𝐻) td(𝑔26) = ∫
𝑔26

𝜄∗ ch(𝜋(6)∗ 𝐻) td(𝑔26).

By Grothendieck-Riemann-Roch

(B.2.8) ch(𝜋(6)∗ 𝐻) = 𝜋(6)∗ (ch(𝐻) td(𝑋(6))) ⋅ td(𝑋(6))
−1
.

The Chern classes of symmetric products are well-known [ACGH85, VII, (5.4)]. In particular

c(𝑋(6)) = 1 − 4 ̃𝜂 − ̃𝜃 + 10 ̃𝜂2 + 5 ̃𝜂 ̃𝜃 + 1
2
̃𝜃2 +⋯,

and hence

td(𝑋(6)) = 1 − 2 ̃𝜂 − 1
2
̃𝜃 + 13

6 ̃𝜂2 + 13
12 ̃𝜂 ̃𝜃 + 1

8
̃𝜃2 +⋯ .

Since

ch(𝐻) = 1 + 𝑛 ̃𝜃 + 1
2𝑛

2 ̃𝜃2 +⋯,

it follows that

ch(𝐻) td(𝑋(6)) = 1 − 2 ̃𝜂 + (𝑛 − 1
2)

̃𝜃 + 13
6 ̃𝜂2 + (−2𝑛 + 13

12) ̃𝜂 ̃𝜃 + (12𝑛
2 − 1

2𝑛 +
1
8)

̃𝜃2 +⋯,

so by (B.2.3)

𝜋(6)∗ (ch(𝐻) td(𝑋(6))) = 64 + (160𝑛 − 144)𝜂 + (32𝑛 − 16)𝜃 + (160𝑛2 − 320𝑛 + 484
3 )𝜂2

+ (80𝑛2 − 112𝑛 + 112
3 )𝜂𝜃 + (8𝑛2 − 8𝑛 + 2)𝜃2 +⋯ .

Again a general formula gives

c(𝑋(6)) = 1 + 𝜂 − 𝜃 + 1
2𝜃

2 +⋯,
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and hence

td(𝑋(6))
−1

= 1 − 1
2𝜂 +

1
2𝜃 +

1
6𝜂

2 − 1
3𝜂𝜃 +

1
8𝜃

2 +⋯ .

Using (B.2.8)

ch(𝜋(6)∗ 𝐻) = 64 + (160𝑛 − 176)𝜂 + (32𝑛 + 16)𝜃 + (160𝑛2 − 400𝑛 + 244)𝜂2

+ (80𝑛2 − 48𝑛 − 48)𝜂𝜃 + (8𝑛2 + 8𝑛 + 2)𝜃2 +⋯ .

The class of a linear series in 𝑋(𝑑) can be computed using a special case of the secant plane

formula [ACGH85, VIII, (3.2)]. In particular, the class of 𝑔26 in 𝑋(6) is

10𝜂4 − 4𝜂3𝜃 + 1
2𝜂

2𝜃2.

It follows that the degree of 𝜄∗ ch(𝜋(6)∗ 𝐻) is 160𝑛2 − 400𝑛 + 244. The class of a pencil in 𝑔26 is

−5𝜂5 + 𝜂4𝜃,

so the intersection of 𝜄∗ ch(𝜋(6)∗ 𝐻) with a line has degree 160𝑛 − 176. The class of a point is

obviously 𝜂6, so the codimension 0 term of 𝜄∗ ch(𝜋(6)∗ 𝐻) has degree 64. Therefore

𝜄∗ ch(𝜋(6)∗ 𝐻) = 64 + (160𝑛 − 176)ℎ + (160𝑛2 − 400𝑛 + 244)ℎ2,

where ℎ ≔ c1(𝒪𝑔26
(1)). Finally (B.2.7) gives

𝜒(𝒪𝑆(𝑛𝛩)) = ∫
𝑔26

(64 + (160𝑛 − 176)ℎ + (160𝑛2 − 400𝑛 + 244)ℎ2)(1 + 3
2ℎ + ℎ2)

= ∫
𝑔26

64 + (160𝑛 − 80)ℎ + (160𝑛2 − 160𝑛 + 44)ℎ2

= 160𝑛2 − 160𝑛 + 44,

as required. ©

(B.2.9) Corollary. If (𝐴,𝛩) is a general ppav, 𝑆𝑖 ⊂ 𝑆 one of the components and 𝑉𝑖 ⊂ 𝛩

any of its images in 𝛩, then 𝜒(𝒪𝑆𝑖(𝑛𝛩)) = 20𝑛2 − 40𝑛 + 22, and the latter is the Hilbert
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polynomial of 𝑉𝑖 with respect to 𝛩.

Proof. Since 𝐴 has only 27 Prym-curves, each of which has five nets of degree 6 by (4.2.2),

we may assume that 𝑆𝑖 and 𝑉𝑖 are smooth (see (4.2.8)). It follows that 𝑅𝜑∗𝒪𝑆𝑖 = 𝒪𝑉𝑖
, where

𝜑∶ 𝑆𝑖 → 𝑉𝑖. Therefore 𝜒(𝒪𝑆𝑖(𝑛𝛩)) = 𝜒(𝒪𝑉𝑖
(𝑛𝛩)) for all 𝑛 ∈ 𝐙.

If (𝑋, 𝑌, 𝑍) is a tetragonal triple, then (B.2.6) (together with the fact that translates of

𝛩 are algebraically equivalent) says that the Hilbert polynomials of any embeddings 𝑆𝑌 ↪ 𝛩

and 𝑆𝑍 ↪ 𝛩 add up to 40𝑛2 − 80𝑛 + 44. The result follows by permuting the triple. ©
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