UC San Diego UC San Diego Previously Published Works

Title

ATNPD to improve detection of concomitant Alzheimer's pathology in autopsyconfirmed Parkinson's disease

Permalink https://escholarship.org/uc/item/0fm550p5

Journal Alzheimer's & Dementia, 20(Suppl 2)

ISSN 1552-5260

Authors

Cousins, Katheryn AQ Bayram, Ece Galasko, Douglas R <u>et al.</u>

Publication Date

2024-12-01

DOI

10.1002/alz.091273

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at <u>https://creativecommons.org/licenses/by/4.0/</u>

Peer reviewed

BIOMARKERS POSTER PRESENTATION

BIOMARKERS (NON-NEUROIMAGING)

ATN_{PD} to improve detection of concomitant Alzheimer's pathology in autopsy-confirmed Parkinson's disease

Katheryn A Q Cousins¹ | Ece Bayram² | Douglas R. Galasko³ | Kristy S Hwang⁴ | Leslie M. Shaw⁵ | David J Irwin¹ | David G Coughlin³

¹Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA

²University of California San Diego Parkinson and Other Movement Disorders Center, Department of Neurosciences, La Jolla, CA, USA

³Department of Neurosciences, University of California San Diego, La Jolla, CA, USA

⁴Section of Neurology, Long Beach Veterans Administration Healthcare System, Long Beach, CA, USA

⁵Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Correspondence

Katheryn A Q Cousins, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA. Email:

katheryn.cousins@pennmedicine.upenn.edu

Abstract

Background: In Parkinson's disease (PD), concomitant Alzheimer's disease (AD) pathologic change (ADNC) is common and results in altered motor and cognitive phenotypes. However, detection of PD with AD (PD+AD) using biofluid markers is challenging. While decreased cerebrospinal fluid (CSF) β -amyloid 1-42 (A β_{42}) strongly reflects β -amyloid burden, PD subjects typically harbor lower CSF phosphorylated tau 181 (p-tau₁₈₁) and total tau (t-tau) levels than healthy controls, which complicates detection of tau tangles and neurodegeneration. We previously tested PD-specific application of the β -amyloid/tau/neurodegeneration framework (ATN_{PD}); combining CSF A β_{42} , CSF p-tau₁₈₁, and serum neurofilament light (NfL) in a living PD cohort. ATN_{PD}, using a lower CSF p-tau₁₈₁ cutpoint, predicted cognitive decline. However, ATN_{PD} cutpoints still must be validated against autopsy assessments of ADNC as gold-standard. Here, we compare biomarker strategies in all available autopsy-confirmed PD from the Parkinson's Progression Markers Initiative (PPMI).

Methods: Eighteen PD participants with autopsy-confirmed Lewy body disease and antemortem biofluid were available for analysis (Table 1). PD+AD included high/intermediate ADNC (n=9); PD without AD (PD; n=9) included not/low ADNC. Cerebral cortical atrophy determined neurodegeneration (mild/moderate vs. none). CSF was assayed for $A\beta_{42}$ (n=14), p-tau₁₈₁ (n=17), and t-tau (n=17) using Roche cobas e 601; p-tau₁₈₁/A β_{42} and t-tau₁₈₁/A β_{42} ratios were calculated. Serum NfL was assayed using Simoa Quanterix (n=18). Biofluid measurements closest to autopsy were selected. Receiver operating characteristic (ROC) analyses with bootstrapping tested discrimination of PD+AD from PD using CSF biomarkers, and of neurodegeneration from not using CSF t-tau and serum NfL.

Results: ROC cutpoints for CSF $A\beta_{42}$, p-tau₁₈₁, and serum NfL were equivalent to ATN_{PD} cutpoints, while p-tau₁₈₁ and t-tau were lower than published AD-cutpoints (Table 2). CSF p-tau₁₈₁/A β_{42} , t-tau₁₈₁/A β_{42} , A β_{42} and serum NfL had high area under the

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2024 The Alzheimer's Association. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.

curve (AUC>0.80; Table 2A,2B). In contrast, CSF p-tau₁₈₁ and t-tau demonstrated poor discrimination (Table 2A) and no difference between groups (Table 1), potentially due in part to low sample size. A chi-square test confirmed classification is improved using ATN_{PD} and AD-cutpoints (χ^2 =14, p=0.0015; Figure 1).

Conclusions: PD-specific biomarker strategies/cutpoints are needed to maximize detection of concomitant ADNC, but must be validated in larger autopsy cohorts.

Demographic Characteristics	Not	ADNC	р
n	9	9	
Age at CSF (years)	67.10 [61.55, 73.73]	71.80 [64.60, 73.70]	0.441
Age at serum (years)	70.90 [65.70, 76.50]	74.30 [68.90, 75.70]	0.627
Age at Onset (years)	66.65 [56.11, 70.92]	64.61 [61.17, 68.99]	1.000
Age at Death (years)	74.00 [69.00, 78.00]	75.00 [74.00, 80.00]	0.451
Survival (years)	10.10 [9.20, 10.91]	10.89 [6.32, 12.06]	0.674
MoCA	26.00 [24.00, 28.00]	26.00 [25.00, 27.00]	0.638
Sex = Male(%)	6 (66.7%)	6 (66.7%)	1.000
Race = White $(\%)$	9 (100.0%)	9 (100.0%)	
APOE $\varepsilon 4 = 1$ or 2 (%)	2 (22.2%)	4 (44.4%)	0.617
GBA+ (%)	2 (22.2%)	2 (22.2%)	1.000
LRRK2+ (%)	1 (11.1%)	1 (11.1%)	1.000
ADNC (%)			< 0.001
Not	3 (33.3%)	0 (0.0%)	
Low	6 (66.7%)	0 (0.0%)	
Intermediate	0 (0.0%)	6 (66.7%)	
High	0 (0.0%)	3 (33.3%)	
Braak Score (%)			0.007
0	1 (11.1%)	0 (0.0%)	
1	6 (66.7%)	0 (0.0%)	
2	2 (22.2%)	6 (66.7%)	
3	0 (0.0%)	3 (33.3%)	
Lewy Body Braak = $6(\%)$	7 (77.8%)	8 (88.9%)	1.000
CSF AB42	849.00 [743.00, 1116.00]	469.00 [402.50, 606.00]	0.025
CSF p-tau181	12.50 [11.75, 14.50]	13.00 [11.00, 19.00]	0.846
CSF t-tau	160.00 [138.25, 183.50]	164.00 [130.00, 225.00]	0.773
CSF p-tau/AB42	0.015[0.013, 0.016]	0.021[0.019, 0.038]	0.013
$CSF t$ -tau/A β 42	0.18 [0.16, 0.22]	0.27 [0.24, 0.43]	0.018
Serum NfL	18.00 [12.00, 27.00]	25.00 [18.00, 30.00]	0.101

Table 1: Demographics of PD with AD co-pathology (PD+AD; high/intermediate ADNC) and without (PD; not/low ADNC). For continuous variables, median and interquartile range (IQR) are reported; Wilcoxon tests performed group comparisons. For categorical variables, count (percentage [%]) are provided; chi-square tests performed frequency comparisons. *p*-values are reported for group comparisons.

Alzheimer's & Dementia[®] 3 of 3

A. PD+AD vs. PD	AUC	AUC 95% CI	Threshold	Threshold 95% CI	Sensitivity	Specificity	Accuracy
CSF p-tau/Aβ42	0.90	0.69 1.00	0.018	0.015 0.025	0.78	0.83	0.81
CSF t-tau/Aβ42	0.88	0.65 1.00	0.24	0.20 0.31	0.78	0.84	0.81
CSF Aβ42	0.86	0.61 1.00	656.41	515.04 852.90	0.82	0.85	0.83
CSF t-tau	0.54	0.26 0.82	173.44	125.81 205.02	0.53	0.66	0.59
CSF p-tau	0.53	0.24 0.81	14.36	9.91 17.24	0.50	0.70	0.59
B. Atrophy vs. none	AUC	AUC 95% CI	Threshold	Threshold 95% CI	Sensitivity	Specificity	Accuracy
Serum NfL	0.92	0.72 1.00	19.622	17.00 23.42	0.82	0.89	0.84
CSF t-tau	0.60	0.25 0.91	160.572	122.46 214.62	0.59	0.65	0.61

Table 2: ROC analyses. Testing biofluid markers (A.) of amyloid and tau to discriminate high/intermediate ADNC from not/low ADNC, and (B.) of neurodegeneration to discriminate mild/moderate cortical atrophy from none. ROC metrics were calculated using bootstrapping with 2000 iterations: AUC, threshold, 95% confidence intervals [95%CI]. Youden's index determined best threshold; sensitivity, specificity, and accuracy are calculated at threhold. ATN_{PD} cutpoints are CSF A β 42 \leq 683 (Weinshel *et al.*, 2022), CSF p-tau₁₈₁>=13 (Weinshel *et al.*, 2022), and serum NfL>=19.05 (Cousins *et al.*, 2024). AD-derived cutpoints are CSF A β 42 \leq 683 to account for PPMI analytical factors (Weinshel *et al.*, 2022), and p-tau₁₈₁ \geq 24 and t-tau \geq 266 (Blennow *et al.*, 2019).

Figure 1: Classifications of PD by biomarker strategies. Classification proportions of PD over time by (A.) AD-based ATN, (B.) modified ATN_{PD}, and (C.) PD-derived p-tau₁₈₁/A β_{42} ratio. Color indicates (A.) ATN and (B.) ATN_{PD} interpretation: Normal (white; A-T-N-), Amyloid (coral; A+T-N-), AD (A+T+N±), and suspected non-Alzheimer's pathology (SNAP) (blue; A-T±N±). For ATN, correct classification of PD is "SNAP" (blue), and of PD+AD is "AD" (red). For p-tau₁₈₁/A β_{42} ratio, correct classification of PD is "Not" (white), and of PD+AD is "AD+" (red).