
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Symmetry and Equivalence in The Constrained Hamiltonian Formalism

Permalink
https://escholarship.org/uc/item/0fk067v3

Author
Bradley, Clara

Publication Date
2024

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0fk067v3
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA,
IRVINE

Symmetry and Equivalence in The Constrained Hamiltonian Formalism

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Philosophy

by

Clara Bradley

Dissertation Committee:
Chancellor’s Professor James Owen Weatherall, Chair

Chancellor’s Professor Jeffrey A. Barrett
Professor JB Manchak

2024



Chapter 3 © 2023 Clara Bradley
All other materials © 2024 Clara Bradley



DEDICATION

To my parents Richard and Shura and my husband Carver, for always being my rocks.

ii



TABLE OF CONTENTS

Page

LIST OF FIGURES v

ACKNOWLEDGEMENTS vi

VITA viii

ABSTRACT OF THE DISSERTATION ix

INTRODUCTION 1

1 Do First-Class Constraints Generate Gauge Transformations? A
Geometric Resolution. 8

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Dirac’s Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 An Argument Against Dirac . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 Where The Disagreement Lies . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5 A Response to Pitts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.6 Geometric Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.7 Geometric Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.7.1 Motivating the Extended Hamiltonian . . . . . . . . . . . . . . . . . 29
1.7.2 State Gauge Transformations . . . . . . . . . . . . . . . . . . . . . . 30
1.7.3 Solution Gauge Transformations . . . . . . . . . . . . . . . . . . . . . 32

1.8 Possible Counterarguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.8.1 Triviality Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.8.2 Against the Constraint Surface . . . . . . . . . . . . . . . . . . . . . 46

1.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2 The Relationship between Lagrangian and Hamiltonian Mechanics:
The Irregular Case 51

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2 The Regular Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3 The Irregular Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.4 Inequivalence Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

iii



2.5 Lagrangian Constraint Formalism . . . . . . . . . . . . . . . . . . . . . . . . 64
2.6 Relationship between Final Constraint Surfaces . . . . . . . . . . . . . . . . 67
2.7 Reduction and Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.8 Upshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3 The Representational Role of Sophisticated Theories 84
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.2 Removing Excess Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2.1 Dewar’s Two Claims . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.3 The Representational Benefit of Sophistication . . . . . . . . . . . . . . . . . 91
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4 The Physical Significance of Partial Observables: Connecting Gauge and
Surplus Structure 100

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2 Argument for Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3 Partial Observables Approach to Gauge . . . . . . . . . . . . . . . . . . . . . 105
4.4 The Physical Significance of Partial Observables . . . . . . . . . . . . . . . . 109
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Bibliography 124

Appendices 129
A Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.1 Proposition 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
B Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B.1 Proposition 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
B.2 Proposition 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
B.3 Proposition 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
B.4 Proposition 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

C Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
C.1 Proposition 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
C.2 Proposition 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
C.3 Proposition 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
C.4 Proposition 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

iv



LIST OF FIGURES

Page

2.1 The irregular case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.2 Relationship between final constraint surfaces. . . . . . . . . . . . . . . . . . 70
2.3 Relationship between reduced spaces. . . . . . . . . . . . . . . . . . . . . . . 76

v



ACKNOWLEDGEMENTS

My first thanks go to my supervisor, Jim. From the day I met Jim in 2016, he has inspired
me, supported me, and advocated for me beyond compare. Jim has taught me to be a
clearer writer, speaker, and thinker, to believe in myself, and to have fun while doing it. I
am forever grateful for Jim’s generosity and assurance, and I feel very lucky to have had him
as my supervisor.

Thank you to my other committee members Jeff Barrett and JB Manchak. Jeff and JB’s
feedback has helped me to better motivate and present the work in this dissertation, and I
have learnt a lot from them on how to do technical philosophy precisely and clearly.

Thank you to all the members of PPRG over the last 5 years. PPRG has been a source of
accountability, but also of friendship. Special thanks to those who have given feedback on
drafts of papers and practice talks, including Jingyi Wu, Helen Meskhize, Ellen Shi, Aidan
Carter, and India Bhalla-Ladd.

Thank you to Thomas Barrett for inviting me to Santa Barbara to talk about some of the
ideas in this dissertation. Thank you to David Wallace for several conversations and for
sending me drafts of papers that have been extremely helpful. Thank you to Neil Dewar for
inviting me to be part of a PSA symposium that led to Chapter 3 of this dissertation. Thank
you to James Ladyman, Karim Thébault, Henrique Gomes, Sean Gryb, Jeremy Butterfield,
and Brian Pitts for conversations and for support.

Thank you to my parents and my brother. I am indebted to your love, kindness, and
commitment. Dad, thank you for all the walks where we chatted about philosophy, for
all the times you have read my work or given me advice, and for keeping my expectations
realistic. Despite your best attempts, I am a philosopher because of you. Mum, thank you
for always picking up the phone with the same excitement every time; speaking to you every
few days has made being so far from home bearable. Adrian, thank you for being the type
of brother who keeps me in check but who also keeps an eye out for me.

Thank you to my extended family, both on the Bradley side and the Sorensen side. I know
that you all wonder to some extent why I am doing this, and I am grateful that despite this,
you have all supported me and my career choice.

Thank you to all of my amazing, supportive friends who remind me why I pursued a PhD as
well as what is important outside of academia, especially Ellen Muller, Nick Clanchy, Nick
Daultry-Ball, Caroline Jones, Ben Genta, Margaret Farrell, and Rebecca Korf.

Thank you to my husband, Carver. Meeting you and getting married to you has made
writing my PhD feel like part of a romantic movie. You have made me a better person, and
a happier one. Thank you for your unconditional love and support and for all the sacrifices
you make to let me pursue my goals. Going through life with you is greater than anything
else.

vi



This dissertation is partly made possible through generous support from the Social Sci-
ence Merit Fellowship, the Provost PhD Fellowship, and the Graduate Dean’s Recruitment
Fellowship. Materials from this dissertation were presented at PSA 2022 in Pittsburgh,
Foundations of Physics 2021 in Paris, Foundations of Physics 2023 in Bristol, New Direc-
tions in the Foundations of Physics 2024 in Slovenia, the Foundations of Physics @ Harvard
seminar, the University of Bristol Philosophy of Science Seminar, the Quantum Spacetime in
the Cosmos Conference at Perimeter Institute, and the Symmetry and Structure Workshop
in Irvine.

Chapter Three is published Open Access under license CC BY 4.0 in Philosophy of Science:
‘The Representational Role of Sophisticated Theories’ by Clara Bradley, 2023. The published
version is accessible at https://doi.org/10.1017/psa.2023.131. Minor changes were made.

vii

doi:10.1017/psa.2023.131
https://doi.org/10.1017/psa.2023.131


VITA

Clara Bradley

Ph.D in Philosophy 2024
University of California, Irvine Irvine, California

M.Sci. in Physics and Philosophy 2019
University of Bristol Bristol, United Kingdom

PUBLICATIONS

The Representational Role of Sophisticated Theories 2023
Philosophy of Science

Mathematical Responses to the Hole Argument: Then and Now (with
James Owen Weatherall)

2022

Philosophy of Science

The Non-Equivalence of Einstein and Lorentz 2021
The British Journal for the Philosophy of Science

On Representational Redundacy, Surplus Structure, and the Hole Ar-
gument (with James Owen Weatherall)

2020

Foundations of Physics

viii



ABSTRACT OF THE DISSERTATION

Symmetry and Equivalence in The Constrained Hamiltonian Formalism

By
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Doctor of Philosophy in Philosophy
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Chancellor’s Professor James Owen Weatherall, Chair

How do we characterize the symmetries of a theory? How should we respond to the presence

of ‘excess structure’ in a theory? When are two theories equivalent? This dissertation is an

exploration of these questions in the context of a particular formulation of classical theories

known as the constrained Hamiltonian formalism.

A theme running through the dissertation is that progress can be made on these questions

by making precise the geometric structure of a constrained Hamiltonian theory. I argue

that this geometric structure can (1) be used to resolve a debate about how to correctly

characterize the relationship between constraints and gauge transformations, (2) shed light

on the relationship between the constrained Hamiltonian formalism and the Lagrangian

formalism, and (3) provide an avenue for formulating a constrained Hamiltonian theory that

resolves an apparent tension between gauge variables being ‘excess structure’ and playing an

ineliminable role.
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Introduction

The topic of this dissertation is the mathematical foundations of the constrained Hamiltonian

formalism and its connection to philosophical questions concerning theoretical equivalence,

excess structure, and the interpretation of symmetries. Most philosophical papers on the

constrained Hamiltonian formalism are centered around a puzzle known as ‘The Problem of

Time’.1 The Problem of Time is multi-faced, but the core issue can be stated as follows:

in theories where the Hamiltonian that generates the evolution of a system is a constraint,

the natural interpretation of the theory is that there is no physical change with respect to

time. Unpacking this problem highlights several subtleties concerning the construction and

interpretation of the constrained Hamiltonian formalism, and therefore provides a helpful

starting point for setting up the theses of this dissertation.

The history can be traced back to Dirac (1964), who presents the first account of the con-

strained Hamiltonian formalism. A crucial part of Dirac’s account is the definition of a

“gauge transformation” as a transformation generated by arbitrary combinations of the first-

class constraints, where the first-class constraints are those constraints that have vanishing

Poisson bracket with any constraint. The presence of gauge transformations indicates that

there is non-uniqueness in the solutions to the equations of motion, in that there are mul-

tiple mathematically distinct evolutions from an initial state. In other words, the presence

1For some examples, see Earman (2002a); Maudlin (2002); Thébault (2012); Thébault (2021); Belot
(2007); Gryb and Thébault (2023, 2016); Gryb and Thébault (2016a); Pitts (2014a).
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of gauge transformations indicates that there is indeterminism in the theory. However, this

indeterminism is regarded as only apparent; gauge transformations are interpreted as sym-

metries that connect physically equivalent descriptions of the same state or history of a

system.

In theories where the Hamiltonian is itself a first-class constraint, this definition and inter-

pretation of gauge transformations leads to the conclusion that the states along the solutions

to the equations of motion of a theory are precisely the states that are physically equivalent.

This is one of the expressions of the Problem of Time, which Thébault (2012) has dubbed

the problem of representing change. Around the same time as Dirac, Bergmann (1961) pro-

vided the definition of an ‘observable’ as a phase space function that has a weakly vanishing

Poisson bracket with the first-class constraints, and thus along with Dirac’s notion of a gauge

transformation, the observables are those functions that are gauge-invariant. A consequence

of Dirac’s definition of a gauge transformation in theories where the Hamiltonian is a first-

class constraint is that the observables do not change over time. Therefore, it seems that the

quantities that are naturally regarded as the physical ones, since they are gauge-invariant,

do not have any dynamical evolution. This is another expression of the Problem of Time;

the problem of representing observables (again, following Thébault (2012)).

The Problem of Time becomes even more prominent when translated into a geometric for-

mulation of the constrained Hamiltonian formalism. In the geometric formulation, there is

a natural way to ‘remove’ the gauge degrees of freedom by quotienting the state space by

the points connected by gauge transformations (the ‘gauge orbits’) to give what is known as

the ‘reduced phase space’. On the reduced phase space, only the observables are definable

as functions on this space. In the case of a Hamiltonian constraint, this process leads to a

reduced phase space with trivial dynamics in the sense that we cannot describe the evolution

of a system since the points of the reduced phase space are entire solutions.

2



There are several reasons why the Problem of Time is seen as a significant challenge for

modern physics. First, a theory for which the Hamiltonian is a first-class constraint is the

canonical formulation of General Relativity, the most successful theory of space and time.

Second, the constrained Hamiltonian formalism is the basis for a standard technique of

quantizing a classical theory, known as Dirac or canonical quantization. Using this technique

to quantize General Relativity leads to the Wheeler-DeWitt equation “Hψ = 0”, which is

naturally interpreted as saying that the wavefunction of the universe, which encodes the

physical degrees of freedom, has no evolution. In other words, the Problem of Time manifests

itself when attempting to formulate a quantum theory of gravity, one of the central programs

in modern physics. Thus, it appears that our best theories of physics provide a picture that

is incompatible with our experience of time and change.

The Problem of Time is also connected to philosophical debates concerning when a theory

should be characterized as having redundancy or “surplus structure”, and how one ought to

respond to the presence of surplus structure. One common view is that surplus structure

exists when there is a particular kind of symmetry between models of a theory, and that

removing surplus structure requires equivocating between symmetry-related models. Inas-

much as gauge transformations are a candidate symmetry of this kind, the Problem of Time

can be seen as situated in this wider debate about how to characterize the symmetries that

indicate surplus structure and what it would mean to equivocate between symmetry-related

models in a way that preserves the empirical content of the theory.

There have been several ‘solutions’ to the Problem of Time in the literature. One response

in the physics literature is to accept the timeless formalism but provide a picture where

time ‘emerges’ from the fundamentally timeless picture.2 Another response is to argue that

the Dirac definition of gauge transformations does not apply to the Hamiltonian first-class

constraint, since the Hamiltonian constraint has a distinct formal and interpretational role

2For an overview of this response, see Anderson (2012).
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in comparison to other constraints.3 Both responses agree that the standard definition

and interpretation of gauge transformations in the constrained Hamiltonian formalism is

unproblematic in general but argue that there is something special about the case of time;

either we should see it as an emergent feature of our theory or prevent it from being lost in

the first place.

In this dissertation, I approach the problem from another angle: I ask whether the standard

way of formulating and interpreting the constrained Hamiltonian formalism is correct. In-

deed, there have been some recent challenges put forward against the orthodox view. For

one, some authors have argued that it is not the case that arbitrary combinations of first-class

constraints generate gauge transformations, against the Dirac definition.4 Second, the claim

that gauge variables do not correspond to anything ‘physical’ has been disputed; a prominent

response of this kind is the partial observables approach pioneered by Carlo Rovelli, which

provides a picture where the gauge variables have an interpretation as the measurable quan-

tities.5 Therefore, there are reasons to think that the orthodoxy is in trouble even outside

of cases that fall under the Problem of Time, and it is these troubles with which we concern

ourselves here.

In more detail, this dissertation asks the following questions: (1) What is the correct char-

acterization of the gauge transformations in the constrained Hamiltonian formalism? (2)

Does this characterization ‘match’ the characterization given in the Lagrangian formalism?

(3) Should we regard gauge transformations as indicating ‘redundancy’ in the mathematical

formalism? A theme running through the dissertation is that progress can be made on these

questions by making precise the geometric structure of a constrained Hamiltonian theory. I

3For responses of this kind, see Kuchař (1991), Barbour (1994), Barbour and Foster (2008), Gryb and
Thébault (2016b).

4See, for example, Pons (2005); Pitts (2014a,b). Henneaux and Teitelboim (1994) §1.2.2, §1.6.3 also
present supposed counterexamples to the claim that secondary first-class constraints generate gauge trans-
formations.

5For an overview of this approach, see Rovelli (2004, 2002, 2014). For more details, see Dittrich (2006,
2007).
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argue that this precise characterization can (1) be used to resolve a debate about how to

correctly characterize the relationship between constraints and gauge transformations, (2)

shed light on the relationship between the constrained Hamiltonian formalism and the La-

grangian formalism, and (3) provide an avenue for formulating a constrained Hamiltonian

theory that resolves an apparent tension between gauge variables being ‘excess structure’

and playing an ineliminable role.

This dissertation will therefore not directly answer the question of how to resolve the Prob-

lem of Time. However, I think that exploring the foundations of the constrained Hamiltonian

formalism in the ‘orthodox’ cases/cases where the Problem of Time does not arise, provides

progress on the question of how the Problem of Time should be characterized and under-

stood. In particular, the picture provided in this dissertation will suggest the following.

First, one part of the special status of the Hamiltonian first-class constraint is that one

cannot clearly distinguish the notion of a gauge transformation on states and the notion

of a gauge transformation on solutions generated by it.6 Second, the Problem of Time is

not the only case where moving to the reduced phase space comes with interpretational

issues. Finally, inasmuch as the Problem of Time is a problem in the constrained Hamilto-

nian formalism, it is equally a problem in the corresponding Lagrangian formalism. These

suggest that considering the Problem of Time in the broader framework of how to correctly

characterize the constrained Hamiltonian formalism, its symmetries, and its relationship to

the Lagrangian formalism provides new perspectives on the issue that are worth exploring

further.

There are effectively two parts to the dissertation. The first part (Chapters 1 and 2) considers

the definition of the gauge transformations. The second part (Chapters 3 and 4) considers the

interpretation of gauge transformations. These two parts are intertwined with one another;

my argument for what the correct definition of the gauge transformations is will depend

6The bearing of the distinction between gauge transformations on states and gauge transformations on
solutions for the Problem of Time is discussed further in Gryb and Thébault (2023).
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partly on my views about how to interpret physical theories more generally. Similarly, my

argument for how to interpret the gauge transformations will make use of my views about

the correct definition of the gauge transformations. However, I take these projects to be

distinct: one could be convinced of my argument for what the correct definition of the gauge

transformations is without being convinced of my argument for the interpretation of gauge

transformations, and vice versa.

In Chapter 1, I consider whether the standard definition of a gauge transformation in the

constrained Hamiltonian formalism is correct. On the basis of the definition that a gauge

transformation is a transformation generated by an arbitrary combination of first-class con-

straints, Dirac argued that one should extend the form of the Hamiltonian in order to

include all of the gauge freedom. However, there have been some recent dissenters of Dirac’s

view. Notably, Pitts (2014b) argues that a first-class constraint can generate “a bad phys-

ical change" and therefore that extending the Hamiltonian in the way suggested by Dirac

is unmotivated. In this chapter, I use a geometric formulation of the constrained Hamil-

tonian formalism to argue that there is a flaw in the reasoning used by both sides of the

debate, but that correct reasoning supports the standard definition and the extension to the

Hamiltonian. In doing so, I clarify two conceptually different ways of understanding gauge

transformations, and I pinpoint what it would take to deny that the standard definition is

correct.

In Chapter 2, I consider a possible counterargument to the argument of Chapter 1: that the

standard definition in the constrained Hamiltonian formalism is at odds with the definition

provided by the Lagrangian formalism, and therefore that this renders them inequivalent

theories. I argue that this argument relies on a particular formulation of the Lagrangian

formalism, and that just as one can motivate the extension to the form of the Hamiltonian

in the context of the geometric formulation of Hamiltonian mechanics, one can motivate a

similar extension to the Lagrangian in the geometric formulation of the Lagrangian formal-

6



ism. I show that this reformulation of the Lagrangian formalism is equivalent to the extended

Hamiltonian formalism under a particular characterization of the structure of these theories.

In Chapter 3, I turn to the interpretational question of when one should regard a theory as

having “excess structure”. I present a distinction between two kinds of structure that I call

theoretical structure and auxiliary structure, and I argue that understanding the distinctive

role that each structure plays helps to discriminate between different ways of removing excess

structure.

In Chapter 4, I consider how the argument in Chapter 3 bears on the constrained Hamiltonian

formalism. I argue that the literature regarding the interpretation of gauge transformations

conflates the distinction between theoretical structure and auxiliary structure, and that

this leads to mistakenly thinking that the only option for removing excess structure in the

constrained Hamiltonian formalism is moving to the reduced phase space. Moreover, I argue

that one can reconstruct the partial observables approach to gauge variables as providing

an argument in favor of an alternative way of removing excess structure in the constrained

Hamiltonian formalism.

Together, these chapters can be understood as showing that part of formulating precisely the

mathematical structure of a physical theory is an interpretational task. This is not a new

idea; indeed, much of this dissertation is inspired by work on the use of formal tools to spell

out notions such as ‘theoretical equivalence’ and ‘excess structure’.7 However, what sets this

dissertation apart is that (1) these tools have not been put to work explicitly in the context

of the constrained Hamiltonian formalism and (2) I argue that there is an underappreciated

way in which interpretation plays a role in determining how to remove excess structure from

a theory that the constrained Hamiltonian formalism and its associated puzzles helps to

draw out.

7A (not comprehensive) list of some of the work on the use of formal tools to spell out notions of
equivalence and excess structure that has inspired this dissertation are Barrett (2015a,b, 2019); Weatherall
(2016a,b, 2018, 2019a,b); Halvorson (2012, 2016); Dewar (2019, 2022).

7



Chapter 1

Do First-Class Constraints Generate

Gauge Transformations? A Geometric

Resolution.

1.1 Introduction

Gauge transformations represent local symmetries in physics that are often taken to indicate

arbitrariness in the mathematical formalism of a theory. How to interpret this arbitrariness

is widely disputed and is connected to a wider literature on “surplus structure" in physics.1

However, there is a different kind of dispute about gauge transformations that will be the

focus here: if gauge transformations are conceptualized as transformations that indicate

arbitrariness, what is the correct formal definition of a gauge transformation?

1For more on the notion of surplus structure and its connection to symmetries of a theory, see, for
example, Ismael and Van Fraassen (2003); Earman (2004); Baker (2010).
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There is a longstanding tradition of using a formalism known as the “constrained Hamilto-

nian formalism" to establish the gauge transformations of a theory. The standard definition

arising from this formalism is attributed to Dirac (1964): a gauge transformation is a trans-

formation generated by an arbitrary combination of first-class constraints, which are the

constraints on the dynamically allowed states that have vanishing Poisson bracket with all

of the constraints. This definition is taken to have important consequences for the formu-

lation of a Hamiltonian theory. In particular, Dirac argued on the basis of this definition

that the Hamiltonian function that generates the dynamics should be understood as an

equivalence class of Hamiltonians called the “Extended Hamiltonian".

However, there have been several recent dissenters of Dirac’s account of gauge transfor-

mations. For example, using the case of Electromagnetism, Pitts (2014b) argues that a

first-class constraint can generate “a bad physical change". Similarly, Pons (2005) argues

that Dirac’s analysis of gauge transformations is “incomplete" since it does not provide an

accurate account of the symmetries between solutions to the equations of motion. Both

authors conclude that formulating a theory in terms of the Extended Hamiltonian is un-

motivated. If correct, these arguments could have implications for other issues in the foun-

dations of the constrained Hamiltonian formalism. Notably, there is a puzzle called the

“Problem of Time" that arises in the constrained Hamiltonian formalism for theories that

are time-reparameterization invariant when one adopts the standard definition of a gauge

transformation. If gauge transformations are not given by the standard definition, then this

could be an avenue to avoiding the Problem of Time.2

More recently, Pooley and Wallace (2022) argue, contra Pitts (2014b), that one can vindicate

Dirac’s orthodoxy in the case of Electromagnetism by showing that if one formulates the the-

ory by starting with the Extended Hamiltonian, then this formulation of the theory has the

same empirical predictions as the alternative and arbitrary combinations of first-class con-

2See Pitts (2014a) for a response of this kind. For an introduction to the Problem of Time and its
philosophical implications, see Thébault (2021).
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straints generate gauge transformations. In this chapter, I extend the observations of Pooley

and Wallace (2022) by arguing the stronger and more general claim that the formulation of a

gauge theory that treats the Extended Hamiltonian as the equivalence class of Hamiltonians

is motivated on theoretical grounds. In more detail, I use a standard geometric formulation

of the constrained Hamiltonian formalism to show that the Extended Hamiltonian can be

motivated independently from consideration of the gauge transformations, and, under the

dynamics generated by the Extended Hamiltonian, the standard account of gauge transfor-

mations as being generated by arbitrary combinations of first-class constraints is correct.

In doing so, I argue that there is a common assumption made in the literature about the

relationship between gauge transformations and the form of the Hamiltonian that is unnat-

ural in the geometric framework. This leads to a revised account of the definition of gauge

transformations in the constrained Hamiltonian formalism that sheds light on a particular

source of contention: what the relationship is between gauge transformations on states and

gauge transformations on solutions.

The chapter will go as follows. In Section 1.2, I present Dirac’s version of the constrained

Hamiltonian formalism and his argument that arbitrary combinations of first-class constraint

generate gauge transformations. In Section 1.3, I spell out the example that Pitts (2014b)

gives as a counterexample to Dirac’s view. In Section 1.4, I discuss where the disagreement

lies between Dirac and Pitts’ views, and I highlight a crucial assumption made on both sides

of the debate. In Section 1.5, I consider the response to Pitts (2014b) given by Pooley and

Wallace (2022) and pinpoint the way in which it fails to provide a complete response. In

Section 1.6, I present the geometric formulation of the constrained Hamiltonian formalism,

and I use this formulation in Section 1.7 to argue that the issue in the debate lies in the way

that gauge transformations are both understood and motivated. In Section 1.8, I consider

two possible counterarguments, before concluding.
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1.2 Dirac’s Theory

Dirac’s version of the constrained Hamiltonian formalism is constructed by starting with

the Lagrangian formalism. In the Lagrangian framework, one has a finite N number of

degrees of freedom qn, n = 1, ..., N , with corresponding velocities dqn
dt

= q̇n, where we assume

an independent time variable t.3 The dynamics are given by specifying a Lagrangian L =

L(qn, q̇n) with corresponding action I =
∫
L(qn, q̇n)dt, from which one derives the equations

of motion called the Euler-Lagrange equations:

d

dt

∂L(qn, q̇n)

∂q̇n
=
∂L(qn, q̇n)

∂qn

To move to the Hamiltonian framework, one introduces “canonical momenta” variables pn =

∂L
∂q̇n

. When these momenta are not independent of each other, there are constraints of the

form ϕm(qn, pn) ≈ 0 for m = 1, ...,M where M is the number of constraints and the equality

is weak equality, indicating that the constraints only hold on a subspace of phase space (the

state space given by the collection of points (qn, pn)). Constraints of this kind are called the

primary constraints.

The Hamiltonian is defined as H(qn, pn) = pnqn − L where the upper and lower indices

indicates a sum over n. However, it is not uniquely defined when the system is constrained,

since one can add a linear combination of primary constraints and it will weakly be the same

Hamiltonian. We call the addition of this linear combination of primary constraints the Total

Hamiltonian, HT = H + umϕm where um are arbitrary functions of the canonical variables

and again we implicitly have a sum over m. The Total Hamiltonian should therefore be

thought of as an equivalence class of Hamiltonians, differing over the choices of um. From

the variation in HT , one can derive Hamilton’s equations of motion with constraints:

3In order to consider the Problem of Time, it is useful to drop this assumption and treat the time variable
as an additional dynamical variable, but we keep this assumption for the purposes here.
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q̇n =
∂H

∂pn
+ um

∂ϕm

∂pn

ṗn = −∂H
∂qn

− um
∂ϕm

∂qn

More generally, for any dynamical variable g, ġ ≈ {g,H} + um{g, ϕm} = {g,HT} where {}

is the Poisson bracket.4

In order for the solutions to the equations of motion to be consistent with the primary

constraints, in the sense that the primary constraints hold at all times along a solution to

the equations of motion, it ought to be the case that ϕ̇m ≈ 0. In other words, it ought to

be the case that {ϕm, H}+um
′{ϕm, ϕm′} ≈ 0. For each m, this equation either is identically

satisfied with the primary constraints, reduces to an equation independent of the u’s of the

form χk(qn, pn) ≈ 0, or it imposes conditions on the u’s.

In the second case, we say that χk(qn, pn) ≈ 0 are secondary constraints, since they arise

from applying the equations of motion to the primary constraints. If we have a secondary

constraint, then we get new consistency conditions by requiring χ̇k ≈ 0, which is again one of

the three kinds above. One can continue this process until one has found all of the secondary

constraints and one is left with the consistency conditions of the third kind. We can combine

the primary and secondary constraints, writing them as ϕj ≈ 0 for j = 1, ...,M +K where

K is the number of secondary constraints.

For the remaining consistency conditions that do not reduce, we find solutions um = Um +

vaV m
a where va is arbitrary and V m{ϕj, ϕm} ≈ 0. Substituting into the Total Hamiltonian,

we get

4The Poisson bracket satisfies the following properties: 1. If k is a constant, then for any function f ,
{k, f} = 0. 2. Leibniz rule: for any functions f, g, h, {fg, h} = f{g, h}+ g{f, h}. 3. Jacobi identity: for any
functions f, g, h, {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.
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HT = H ′ + vaϕa

where H ′ = H + Umϕm and ϕa = V m
a ϕm. Notice that we have satisfied all the consistency

conditions but still have coefficients va that are arbitrary functions of the canonical variables.

A dynamical variable R(qn, pn) is said to be first-class if {R, ϕj} ≈ 0. In other words, a

dynamical variable is first-class if the Poisson bracket with any constraint equals a linear

function of the constraints. If it is not first-class, it is called second-class. Importantly, H ′

and ϕa are first-class. This means that HT is an equivalence class of Hamiltonians given by a

sum of a first-class Hamiltonian and a linear combination of primary, first-class constraints.

Given some initial state (qn(t0), pn(t0)), the q’s and p’s at later times are underdetermined

because of the arbitrariness in the coefficients va. One might take this to be a mark of

indeterminism in the theory: there are multiple possible evolutions from an initial state.

However, we might also think that this indeterminism is an artifact of our mathematical

description, in that it indicates that our theory contains “redundancy”. It is this direction of

thought that led Dirac to propose the following definition of a gauge transformation:

State Gauge Transformation: A gauge transformation relates any two states

that are possible evolutions from an initial state under the dynamics generated

by the Total Hamiltonian at some fixed (infinitesimal) interval δt.

In other words, Dirac proposes that physically equivalent states as precisely those that result

from the arbitrariness in va in evolving the state of a system.

We can determine these transformations in the following way. For a given dynamical vari-

able g with initial value g0, its value after some infinitesimal δt under a specified choice of

coefficients va is:
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g(δt) = g0 + ġδt = g0 + {g,HT}δt = g0 + δt[{g,H ′}+ va{g, ϕa}] (1.1)

However, one could have made different choices for va. Call another set of choices v′a. The

difference between the two values for g at δt under these two choices of coefficients is given

by:

∆g(δt) = δt(va − v′a){g, ϕa} = εa{g, ϕa} (1.2)

where εa is an arbitrary small number. This change will describe the same physical state,

since it corresponds to a change from one state to another that arises merely from a different

choice of arbitrary coefficient in the evolution from some initial state. Since ϕa are just the

primary first-class constraints, Dirac concludes:

All primary first-class constraints generate gauge transformations.

However, this isn’t the end of the story. Take some value for g(δt) and transform it by

εa{g, ϕa} twice. This new value for g(δt) is related to the previous value by some amount

generated by {ϕa, ϕa′}. The ϕa’s are first-class constraints, and the Poisson bracket of two

first-class quantities is first-class, so this generating function is a first-class constraint. How-

ever, it need not be a primary first-class constraint; it could be a secondary first-class con-

straint. Observing this, Dirac presents the following conjecture:

Dirac Conjecture: All secondary first-class constraints generate gauge trans-

formations.
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We therefore conclude that:

Arbitrary combinations of first-class constraints generate a State Gauge Trans-

formation.

However, we are now in a situation where the dynamics are given by the Total Hamiltonian,

which includes the arbitrariness associated with the primary first-class constraints. On the

other hand, we also have arbitrariness associated with the secondary first-class constraints.

This mismatch between the dynamics and the arbitrariness led Dirac to suggest that one

should also add the first-class secondary constraints to the Total Hamiltonian, giving rise to

the Extended Hamiltonian, HE = HT+w
bχb where χb are the first-class secondary constraints

and wb are arbitrary functions of the canonical variables. The equations of motion then read:

ġ = {g,HE}.

Finally, we define an observable as a function f that has the property that {f, φj} ≈ 0 for all

first-class constraints φj. Observables are functions that are gauge-invariant, in the sense that

they take the same value under the transformations generated by the first-class constraints.

On the other hand, the gauge variables are the functions that are not observables.

The final picture of Dirac’s theory is:

1. The symmetries of the theory are “State Gauge Transformations" that are generated

by arbitrary combinations of first-class constraints.

2. The dynamics are generated by an equivalence class of Hamiltonians represented by

the Extended Hamiltonian.

Whether this picture is correct will be the subject of the rest of the chapter.
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1.3 An Argument Against Dirac

Although Dirac’s account of the gauge transformations in the constrained Hamiltonian for-

malism has been widely accepted as the standard framework, there are recent arguments

that Dirac’s account is flawed.5 Here, I focus on the argument by Pitts (2014b) that classical

Electromagnetism provides a counterexample to Dirac’s account.

The Lagrangian for classical Electromagnetism can be written in observer-dependent form

as

L(A⃗, V ;
˙⃗
A, V̇ ) =

∫
1

2
(
˙⃗
A−∇V )2 − 1

2
(∇× A⃗)2 − (V ρ+ A⃗ · J⃗)

where A⃗ and V are time-dependent functions on R3 and the integral is over R3. The conjugate

momenta are pA⃗ = δL

δ
˙⃗
A
=

˙⃗
A −∇V and pV = δL

δV̇
= 0. This means that there is one primary

constraint, ϕ0 = pV . The Total Hamiltonian is:

HT =

∫
1

2
(p2

A⃗
+ B⃗2) + λpV + pA⃗ · ∇V + (V ρ+ A⃗ · J⃗) (1.3)

where the integral is over R3 and λ is an arbitrary function of the canonical coordinates.

Integrating by parts with appropriate boundary conditions, we can rewrite the Total Hamil-

tonian as:

HT =

∫
1

2
(p2

A⃗
+ B⃗2) + A⃗ · J⃗ + λpV − V (∇ · pA⃗ − ρ) (1.4)

5See in particular Pitts (2014a,b) and Pons (2005) but also Pons et al. (1997) and Barbour and Foster
(2008).
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We can then find the evolution of the primary constraint:

{pV , HT} =
δH

δV
= ∇ · pA⃗ − ρ. (1.5)

So there is a secondary constraint given by ϕ1 = ∇ · pA⃗ − ρ. The evolution of the secondary

constraint is zero, so there are two constraints in total, and both constraints are first-class.

The equations of motion for A⃗ and V are given by:6

∂A⃗

∂t
= {A⃗,HT} =

∂HT

∂pA⃗
= pA⃗ +∇V

∂V

∂t
= {V,HT} =

∂HT

∂pV
= λ

(1.6)

The question that Pitts (2014b) asks is whether the arbitrary combinations of the primary

and secondary constraint generate gauge transformations for these equations. In other words,

we want to know whether, if (A⃗(t), V (t); pA⃗(t), pV (t)) satisfies these equations of motion,

then transforming this solution by an arbitrary combination of the first-class constraints,∫
αϕ0 + βϕ1, also satisfies the equations of motion, where α and β are arbitrary functions of

the canonical coordinates and time.

We have that:

6We leave out the equations of motion for pA⃗ and pV for convenience, since they aren’t important for
the argument.
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{A⃗,
∫
αϕ0 + βϕ1} = {A⃗,

∫
αpV + β(∇ · pA⃗ − ρ)}

= {A⃗,
∫
αpV }+ {A⃗,

∫
β(∇ · pA⃗ − ρ)}

(1.7)

The first term vanishes. Since
∫
β∇ · pA⃗ = −

∫
pA⃗ · ∇β by integration by parts (with

appropriate boundary conditions), the second term is equal to {A⃗,−
∫
pA⃗ ·∇β+βρ)} = ∇β.

Therefore, the transformed quantity is given by A′ = A+∇β.

Similarly:

{V,
∫
αϕ0 + βϕ1} = {V,

∫
αpV }+ {V,

∫
β(∇ · pA⃗ − ρ)} (1.8)

The second term here vanishes, and the first term is equal to α. Thus, the transformed

potential is given by V ′ = V + α.

We also have that {pA⃗,
∫
αpV + β(∇ · pA⃗ − ρ)} = {pV ,

∫
αpV + β(∇ · pA⃗ − ρ)} = 0 and so

the conjugate momenta do not change under the transformation generated by an arbitrary

combination of the constraints. We can therefore write the transformed equations of motion

for A⃗ and V as:

∂A⃗′

∂t
=
∂A⃗

∂t
+
∂∇β
∂t

= pA⃗ +∇(V + α)

∂V ′

∂t
=
∂V

∂t
+
∂α

∂t
= λ

(1.9)
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Since we assumed that ∂A⃗
∂t

= pA⃗+∇V , the first equation is satisfied only when ∂∇β
∂t

−∇α = 0.

In particular, in the case where either α or β is zero (where one considers the transformation

generated by only one of the primary or secondary constraints), the first equation is not

satisfied.

On the basis of this argument, Pitts (2014b) concludes that arbitrary combinations of first-

class constraints do not generate gauge transformations. Rather, only a particular combi-

nation of first-class constraints generates a gauge transformation. So, the argument goes,

Dirac was wrong about what the gauge transformations are.

Remember also that the motivation for Dirac to move to the Extended Hamiltonian was that

all secondary first-class constraints generate gauge transformations in addition to primary

first-class constraints. But the above argument suggests that this is not true. In fact, it

suggests there are only as many arbitrary functions of time as there are primary first-class

constraints. To see this, notice that since ∇α = ∂∇β
∂t

, we can write the gauge transformations

as being generated by
∫
ϵ̇ϕ0+ ϵϕ1. In other words, we only need one arbitrary function (and

its time derivative) to specify the gauge transformations. Therefore, one might also take

this argument to show that the Extended Hamiltonian is not motivated. More strongly, it

suggests that the Extended Hamiltonian is the wrong equivalence class of Hamiltonians since

the Extended Hamiltonian gives rise to “more" arbitrariness in the dynamics than there in

fact is, while the Total Hamiltonian captures exactly the arbitrariness in the dynamics.

1.4 Where The Disagreement Lies

There is an immediate sense in which the above argument fails on its own to show that

Dirac was wrong. In Section 2, we interpreted Dirac as giving an account of what I called

“State Gauge Transformation": transformations relating two states that are possible evo-
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lutions from some initial state. However, the argument I just ran, following Pitts (2014b),

doesn’t consider whether two states are equivalent; it considers whether two solutions are

equivalent. That is, it considers whether arbitrary combinations of first-class constraints

generate a transformation that takes one from a solution to the equations of motion to an-

other solution. We might alternatively call this notion of a gauge transformation “Solution

Gauge Transformation":

Solution Gauge Transformation: A gauge transformation relates any two

curves that are possible evolutions from an initial state under the dynamics

generated by the Total Hamiltonian.

What Pitts’ argument demonstrates is that the Solution Gauge Transformations are not

generated by arbitrary combinations of first-class constraints in the context of classical Elec-

tromagnetism. Indeed, arbitrary combinations of first-class constraints do generate State

Gauge Transformations in classical Electromagnetism. To see this, recall that we can write

the Solution Gauge Transformations as
∫
ϵ̇ϕ0 + ϵϕ1. At a particular fixed time, ϵ and ϵ̇ be-

come independent of each other. And so, we can write the State Gauge Transformations as∫
αϕ0+βϕ1, as would be the case if arbitrary combinations of first-class constraints generate

gauge transformations. So what Pitts (2014b) shows is that Solution Gauge Transformations

do not always match the State Gauge Transformations.

At this point one might want to say: what this shows is that we really have two distinct

notions of a gauge transformation, ‘State Gauge Transformation’ and ‘Solution Gauge Trans-

formation’, and it turns out that these notions do not coincide. This would suggest that

there is not really a debate here at all; different parties in the debate are just focusing on

different notions, and we can accept that both are right.

Although formally this thought seems correct, there is a conceptual issue with accepting

both notions of a gauge transformation, since it would mean accepting that individual states
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along two curves can be gauge-equivalent without it being the case that if one curve is a

solution, then the other also is. The reason is that the transformations that generate Solution

Gauge Transformations are more restrictive than (are a subset of) those that generate State

Gauge Transformations. But if gauge equivalence is supposed to mean physical equivalence,

then this would be to say that two curves can be such that each individual state along one

curve is physically equivalent to a state along the other curve but the curves as a whole are

not physically equivalent to one another. Conceptually, this is not coherent: solutions just

consist of a series of states, and so if all of these states are physically equivalent to some

other series of states, then the solutions ought to also be physically equivalent.

Therefore, it seems that if one wants to accept that “Solution Gauge Transformation” is

the right definition of gauge transformations on solutions and that gauge equivalence is a

notion of physical equivalence, one has to accept that there is no independent notion of a

gauge transformation on states. That is, any notion of a state gauge transformation must be

derivative to that of the solution gauge transformations: a state gauge transformation must

be the special case of the solution gauge transformations where the solutions are considered

to be infinitesimally short in terms of time.

This helps to set up the rest of the chapter: I will argue that one can maintain separate

notions of state and solution gauge transformations as notions of physical equivalence, but it

means that one has to deny that “State Gauge Transformation” and “Solution Gauge Trans-

formation" as I defined them above are the right characterizations of gauge transformations

on states and solutions respectively. In particular, one common part of the definition “State

Gauge Transformation” and “Solution Gauge Transformation" is the commitment to gauge

transformations being determined by considering curves that are generated by the Total

Hamiltonian. I will argue that 1. gauge transformations on states do not require a com-

mitment to a particular form of the Hamiltonian and 2. gauge transformations on solutions

ought to be determined by considering curves that are generated by the Extended Hamilto-
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nian rather than the Total Hamiltonian. This second argument bears a close resemblance to

a recent response to Pitts (2014b) by Pooley and Wallace (2022), so it will be helpful to spell

out their argument first and pinpoint the way in which it falls short of providing a complete

resolution to the debate before detailing the two arguments.

1.5 A Response to Pitts

Pooley and Wallace (2022) show that in the example of classical Electromagnetism, if one

starts with the Extended Hamiltonian, arbitrary combinations of first class constraints gen-

erate gauge transformations of solutions. Their argument can be summarised as follows.

Consider the Extended Hamiltonian for classical Electromagnetism, where we add to the

Total Hamiltonian the secondary constraint multiplied by an arbitrary function µ:

HE =

∫
1

2
(p2

A⃗
+ B⃗2) + A⃗ · J⃗ + λpV − (V + µ)(∇ · pA⃗ − ρ) (1.10)

With this Hamiltonian, the equations of motion become:

∂A⃗

∂t
=
∂HE

∂pA⃗
= pA⃗ +∇(V + µ)

∂V

∂t
=
∂HE

∂pV
= λ

(1.11)

When we now consider the transformation generated by an arbitrary combination of primary

and secondary constraints,
∫
αϕ0 + βϕ1, we find:
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∂A⃗′

∂t
=
∂A⃗

∂t
+
∂∇β
∂t

= pA⃗ +∇(V + µ+ α)

∂V ′

∂t
=
∂V

∂t
+
∂α

∂t
= λ

(1.12)

We can rewrite the first equation as ∂A⃗′

∂t
= ∂A⃗

∂t
= pA⃗ +∇(V + µ + α − β̇). Notice that µ, α

and β̇ are all arbitrary functions, so we can write this equation as

∂A⃗′

∂t
=
∂A⃗

∂t
= pA⃗ +∇(V + µ′)

where µ′ is arbitrary. This is just the untransformed equation of motion, with µ′ in place

of µ. In other words, if (A⃗(t), V (t); pA⃗(t), pV (t)) is a solution to ∂A⃗
∂t

= pA⃗ +∇(V + µ), then

(A⃗(t)+∇β, V (t)+α; pA⃗(t), pV (t)) is also a solution. Therefore, arbitrary combinations of first-

class constraints generate gauge transformations on solutions, for the dynamics generated

by the Extended Hamiltonian.

Although this argument shows that when we start with the Extended Hamiltonian, the gauge

transformations are generated by arbitrary combinations of first-class constraints, it leaves

open the question of what the justification is for starting with the Extended Hamiltonian.

Indeed, it seems that the proponents of “Solution Gauge Transformation" will deny that this

is the right starting point; they would say that it is the Total Hamiltonian that one should

use to determine the gauge transformations.

Pooley and Wallace (2022) do provide one kind of response: the dynamics generated by

the Extended Hamiltonian is empirically equivalent to the dynamics generated by the Total

Hamiltonian, in the sense that the predictions regarding gauge-invariant quantities (the

observables) are the same. In particular, what they notice is that the difference between the

solutions of the Total and Extended Hamiltonian lies in what quantity plays the role of the
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electric field: when the Total Hamiltonian is used to generate the dynamics, it is ˙⃗
A − ∇V

that plays the role of the electric field, but when the Extended Hamiltonian is used, it is

pA⃗. And so, given that our access to these quantities is through the role they play in the

equations of motion, there is no empirical difference between these choices of Hamiltonian.

Although I take this response to be both convincing and informative, I will argue that we can

go further: the Extended Hamiltonian can be motivated purely on mathematical grounds,

and therefore there are theoretical reasons for using the Extended Hamiltonian to determine

the gauge transformations.

To make this argument, I will use a standard geometric way of expressing the constrained

Hamiltonian formalism since it provides a neutral framework for illuminating the issues of

concern. In particular, the geometric framework allows us to see clearly what the role of the

first-class constraints is within the structure of the formalism. This will help to make clear

the sense in which there are theoretical motivations for particular definitions of state and

solution gauge transformations.

1.6 Geometric Formulation

The constrained Hamiltonian formalism can be expressed naturally in a geometric way using

the theory of symplectic manifolds.7 A symplectic manifold consists of a pair (M,ω) whereM

is a smooth manifold and ω is a symplectic form: it is a two-form (a smooth, anti-symmetric

tensor field of rank (0,2)), that satisfies the following conditions:

1. ω is non-degenerate, i.e. if ω(Xi, Xj) = 0 for all Xj ∈ TM and some Xi ∈ TM , then

Xi = 0.

7This formalism is widely used to express the constrained Hamiltonian formalism. For further details of
this formalism, see Henneaux and Teitelboim (1994); Butterfield (2006).
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2. ω is closed, i.e., dω = 0, where d is the exterior derivative operator, which is such

that df = df , the differential of a function f , d(dα) = 0 where α is a k-form, and

d(fα) = df ∧ α + fdα.

There is a sense in which every symplectic manifold comes equipped with “Poisson structure”:

Let (M,ω) be a symplectic manifold and C∞(M) the space of smooth maps on M . In

addition, let ω′ be the inverse of ω (a smooth, anti-symmetric tensor field of rank (2, 0)).8

Then the map {·, ·} : C∞(M)×C∞(M) → C∞(M) defined by f, g 7→ {f, g} = ω′(df)(dg) is

a Poisson bracket on M .

A constrained Hamiltonian theory can be defined as a symplectic manifold in the following

way. The manifold is the cotangent bundle of configuration space (otherwise known as phase

space), T ∗Q, whose points can be written as {(qn, pn), n = 1, ..., N}. T ∗Q comes equipped

with a one-form, the Poincaré one-form, given by θ = pidq
i. The corresponding two-form is

given by ω = dθ = dpb ∧ dqb, which is symplectic.

Given a function f , one can uniquely define a smooth tangent vector field Xf through:

ω(Xf , ·) = df (1.13)

where {·} represents any vector field tangent to T ∗Q. In particular, one can uniquely define

a vector field corresponding to the Hamiltonian H = piqi − L through ω(XH , ·) = dH.

This provides an alternative way to write Hamilton’s equations. In particular, {f,H} =

ω(Xf , XH) = df(XH) = LXH
(f). If we define the flow parameter of XH to be time, then

this says that {f,H} = df
dt

, which is Hamilton’s equation.

8This is well-defined because ω is non-degenerate.
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We can understand the primary constraints ϕm(qn, pn) = 0 for j = 1, ..,M where M is the

total number of constraints as giving rise to a smooth, embedded sub-manifold of phase

space of dimension N −M , which we call the primary constraint surface, given by Σp =

{(qn, pn) ∈ Γ|∀m : ϕm(qn, pn) = 0}. The first-class primary constraints are those constraints

whose associated vector field is tangent to Σp, while the second-class primary constraints are

those constraints whose associated vector field is not tangent to Σp. For the purposes here,

we will restrict ourselves to the case where we just have first-class constraints, since these

are the relevant ones for defining the gauge transformations.

We can define an induced two-form on the primary constraint surface ω̃p as the pullback

along the embedding i : Σp → Γ of ω. This induced two-form is in general degenerate

i.e. it is not invertible. In particular, it possesses M linearly independent null vector fields

that form the null space of ω̃p. These are the vector fields that satisfy ω̃(Xm, ·) = 0 where

{·} is any vector field tangent to Σp. But these are precisely the vector fields that off the

constraint surface satisfy ω(Xm, ·) = dϕm where ϕm are the primary first-class constraints,

since dϕm|Σp = 0. Thus, we will write Xϕm for these null vector fields to indicate that

they are the tangent vector fields associated with the primary first-class constraints. The

degeneracy of ω̃p means that one cannot associate a unique vector field with any smooth

function on the constraint surface through the equation ω̃p(Xf , ·) = df , since if Xf satisfies

this equation (if it is tangent to the primary constraint surface), then so does Xf + Xϕm

since the two-form acts linearly.

We can write the equations of motion on the primary constraint surface as ω̃p(XH , ·) = dH|Σp .

However, this equation of motion may not have solutions everywhere, since XH may not

be tangent to the primary constraint surface. In order for the solutions to be tangent

to the primary constraint surface, it must be that ω̃p(XH , Xϕm) = dH(Xϕm) = 0. This

is geometrically what gives rise to the secondary constraints, and we can think of these

secondary constraints as leading to the specification of a further submanifold.
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Continuing this process of requiring the solutions to be tangent to the constraint surface

terminates in some final constraint surface Σf , defined by the satisfaction of a collection

of constraints φj(qn, pn) = 0 for j = 1, ..., J where J is the total number of constraints.

We can also define an induced two-form on Σf , ω̃f , whose null vector fields are the vector

fields associated with all of the first-class constraints, which we will write as Xφj
(since we

are just considering the case where all the constraints are first-class, although it is easy to

extend to the case where there are second-class constraints). The equations of motion are

ω̃f (XH , ·) = dH|Σf
, which has (non-unique) solutions everywhere on Σf .

The integral curves of the null vector fields are called the gauge orbits. Equivalently, the

gauge orbits consist of the set of points that can be joined by a curve with null tangent

vectors. The gauge orbits on the final constraint surface coincide with the notion of a gauge

transformation in the Dirac formalism in the following sense: it is the null vector fields that

generate the gauge orbits on the final constraint surface, and these coincide with the vector

fields Xφj
corresponding to the first-class constraints. And so, arbitrary combinations of

first-class constraints effectively generate a transformation that takes one along the gauge

orbits at each point.

We can also understand the observables in the geometric formulation as the functions that

are constant along the gauge orbits. In other words, the observables are the functions f for

which ω(Xf , Xφj
) = 0 on Σf , since ω(Xf , Xφj

) = LXφj
(f) i.e. ω(Xf , Xφj

) gives the flow of

f along the gauge orbit.

1.7 Geometric Resolution

We have seen that geometrically, it is natural to formulate the theory on the final constraint

surface. The reason is that it captures the dynamically accessible points of phase space, and
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one can specify the dynamics on this surface such that there exist solutions at every point.

So let us now consider whether, by formulating the theory on the final constraint surface, we

can resolve the issues raised earlier. Recall that at issue is the question of how to reconcile

the notion of gauge transformations of states and gauge transformations of solutions. Both

Dirac (1964) and Pitts (2014b) take gauge transformations to be determined through the

dynamics generated by the Total Hamiltonian, but this leads to different definitions in the

case of states and of solutions, and consequently different opinions about whether one should

extend the Hamiltonian or not. We can summarize the reasoning common to Dirac (1964)

and Pitts (2014b) as follows:

1. First, one determines the gauge transformations using the Total Hamiltonian.

2. Then, one uses the gauge transformations to say whether one should extend the Hamil-

tonian or not.

I will argue that this reasoning is flawed in three parts. First, I argue that Extended Hamilto-

nian is motivated independently from consideration of the gauge transformations, and so (2)

is wrong: the gauge transformations do not determine the correct form of the Hamiltonian.

Second, I argue that the gauge transformations on states arise naturally from the structure

of the final constraint surface, without considering the solutions to the equations of motion,

and so (1) is wrong: the gauge transformations on states are not simply a special case of

the gauge transformations on solutions. Finally, I use these two arguments to show that

the gauge transformations on solutions (properly understood) are generated by arbitrary

combinations of first-class constraints.
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1.7.1 Motivating the Extended Hamiltonian

First, let’s start with why the Extended Hamiltonian is motivated. It is clear that on

the final constraint surface, Hamiltonians related by an arbitrary combination of first-class

constraints are equivocated; they correspond to the same Hamiltonian function on the final

constraint surface. This immediately provides one motivation for the Extended Hamiltonian,

if one is convinced that we ought to formulate the theory on the final constraint surface.

However, what we want to capture is the non-uniqueness of the solutions to the equations

of motion. On the final constraint surface, this is captured by the fact that the vector fields

corresponding to solutions to the equations of motion for some Hamiltonian are defined only

up to arbitrary combinations of vector fields associated with the first-class constraints. Take

a (first-class) Hamiltonian vector field XH and transform it to XH+ajXφj
where Xφj

are the

null vector fields associated with the first-class constraints φj and aj are arbitrary functions.

We have that

ω̃f (XH + ajXφj
, ·) = ω̃f (XH , ·) = dH|Σf

since Xφj
are null vector fields. But this means that transforming XH by an arbitrary

linear combination of the vector fields associated with the first-class constraints preserves

the dynamical equations on the final constraint surface. In other words, the structure of

the final constraint surface is such that the evolution generated by XH and that generated

by XH + ajXφj
is not distinguished: if f satisfies ω̃f (Xf , XH) = df

dt
|Σf

, then it satisfies

ω̃f (Xf , XH +ajXφj
) = df

dt
|Σf

. Therefore, we can think of the vector fields XH +ajXφj
on the

final constraint surface as characterizing the equivalence class of vector fields that generate

solutions to the equations of motion. Let us call this equivalence class of vector fields the

“Extended Hamiltonian vector fields". This provides a second motivation for the Extended

Hamiltonian: on the final constraint surface, there is an equivalence class of vector fields
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associated with the Hamiltonian defined up to the vector fields associated with all of the

first-class constraints.

Notice that in such reasoning, we have not made any assumptions about the Xφj
being

associated with primary or secondary first-class constraints, nor about what the gauge-

transformations are; each first-class constraint constitutes a null direction on the final con-

straint surface, and it is this property that is important in determining which transformations

of the Hamiltonian vector field are dynamically equivalent. In particular, notice that the

sense of dynamical equivalence here is just that these Hamiltonian vector fields form an

equivalence class, relative to the structure of the constraints surface. Inasmuch as this struc-

ture is how one makes predictions in the theory, these Hamiltonian vector fields generate the

same predictions.

This provides one argument for why restricting to the Total Hamiltonian is unnatural in

the geometric framework: it distinguishes a class of null vectors (those that correspond to

primary first-class constraints) that cannot be distinguished from other null vectors in terms

of the structure of the final constraint surface.9

1.7.2 State Gauge Transformations

Second, let’s consider the notion of a gauge transformation on states. Consider the functions

that vary along the gauge orbits on Σf . These are the functions g for which ω(Xg, Xφj
) ̸= 0

when restricted to Σf . Notice that this means that Xg defined via ω(Xg, ·) = dg is not

tangent to Σf . But the induced two-form ω̃f only acts on vector fields that are tangent

to Σf , and so one cannot write ω̃f (Xg, ·) = dg|Σf
. This means that one cannot define the

change in g along the gauge orbits using the structure of Σf i.e. in terms of ω̃f . Therefore,

9One can distinguish the secondary constraints through the fact that they correspond to time derivatives
of the primary constraints, but this is not the relevant kind of difference in determining the equivalence class
of Hamiltonians.
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there is a sense in which the structure of the final constraint surface does not distinguish the

value of a function at different points along the gauge orbits.

We can make this more precise. Consider the transformation h that takes one along the

gauge orbits by an arbitrary amount each point on Σf . Then the following is true:

Proposition 1.1: h is an automorphism of the structure (Σf , ω̃f ) i.e. h is a

diffeomorphism h : Σf → Σf such that h∗(ω̃f ) = ω̃f .

Proof : Since h takes each point on Σf to another arbitrary point along the gauge

orbit associated with the first-class constraints φj at that point, we can represent

h as the flow of the vector field associated with αjdφj where αj are arbitrary

functions. Since dφj = 0 on Σf , αjdφj = 0. This means that αjdφj is closed i.e.

d(αjdφj) = 0. But this means that one can (locally) associate a vector field Y

with αjdφj via ω̃f (Y, ·) = αjdφj. It follows that the flow of Y on Σf consists of

maps that preserve ω̃f .10 So h is a diffeomorphism that takes ω̃f to itself.

Therefore, the structure of the final constraint surface is such that it does not depend on the

value that functions take along the gauge orbits; we can move the points along the gauge

orbits around arbitrarily and preserve the structure of the the final constraint surface. This

provides a precise sense in which the gauge orbits naturally characterize the equivalence

classes of states on the final constraint surface.

Notice that this reasoning does not make reference to the dynamics. In particular, it doesn’t

make reference to the Total Hamiltonian, since it relies only on the structure of the constraint

surface. This suggests a revision to the definition of the state gauge transformations:

10This follows from Abraham and Marsden (1987) Proposition 3.3.6. (when we extend the proposition to
presymplectic manifolds).
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State∗ Gauge Transformation: A (state) gauge transformation is a trans-

formation that relates any two states on the constraint surface that cannot be

distinguished by the induced two-form.

This emphasizes that what makes states along a gauge orbit equivalent has to do with their

role in the structure of the constraint surface. Notice that on this definition, arbitrary

combinations of first-class constraints generate gauge transformations precisely because they

give rise to the gauge orbits. We therefore have a definition of the gauge transformations

on states that is motivated independently from the gauge transformations on solutions, but

which agrees with both sides of the debate about the generators of gauge transformations

on states.

We can also use this argument to oppose a claim made by Henneaux and Teitelboim (1994)

(one of the standard textbooks on the constrained Hamiltonian formalism). They say:

“The identification of the gauge orbits with the null surfaces of the induced two-

form relies strongly on the postulate made throughout the book that all first-class

constraints generate gauge transformations." (p. 54)

In other words, they suggest that one must independently maintain that first-class constraints

generate gauge transformations in order to interpret the null surfaces as the gauge-equivalent

points. But the argument above shows that this interpretation is motivated from within the

geometric formulation.

1.7.3 Solution Gauge Transformations

Finally, let us consider the gauge transformations on solutions. We have determined that

on Σf , Hamiltonian vector fields that differ by some combination of null vector fields are
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not distinguished by the structure of Σf . The integral curves of these vector fields differ

only with regard to where on the gauge orbit they lie at each point in time. Therefore,

transforming a solution by an arbitrary amount along the gauge orbit at each point gives

rise to another solution generated by a Hamiltonian vector field with a different combination

of null vectors. Moreover, we have determined that the states along a gauge orbit form an

equivalence class of states. Therefore, we have a natural reason to think that solutions that

differ just in terms of where each point lies along the gauge orbit are physically equivalent

since the Hamiltonian vector fields that generate these solutions form an equivalence class,

and the states along a gauge orbit form an equivalence class.

To see this more precisely: take a curve s(t) defined on the final constraint surface whose

tangent vector is a solution to the equations of motion ω̃f (Xs, XH + ajXφj
) = ds

dt
. Now take

another curve s′(t) = h(t) · s(t) where h(t) is a smooth function that “moves" s(t) by some

arbitrary amount along the gauge orbit at each point. Then Xs′ will also be a solution to

ω̃f (Xs′ , XH+ajXφj
) = ds′

dt
, since this equation of motion determines the tangent vector to the

dynamical trajectory only up to the addition of an arbitrary (time-dependent) combination

of null vectors. Therefore, an arbitrary combination of first-class constraints generates a

transformation that takes solutions to equivalent solutions on Σf .

This motivates the following characterization of the solution gauge transformations:

Solution∗ Gauge Transformation: A (solution) gauge transformation relates

any two curves that are possible evolutions from an initial state under the dy-

namics generated by the Extended Hamiltonian vector fields.

Notice that this definition is supported on two fronts. First, we have independently moti-

vated the Extended Hamiltonian vector fields as the correct equivalence class. Second, we

have independently motivated the equivalence class of states as given by the gauge orbits.
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This provides another sense in which restricting to the Total Hamiltonian is unnatural geo-

metrically: it would be to say that the dynamics can distinguish states along a gauge orbit,

even though the structure of the final constraint surface is such that it cannot distinguish

these states. So we shouldn’t think that gauge transformations on states are a special case

of those on solutions; rather, they characterize two independent notions that are coherent

with each other.

In summary, we can diagnose the conflict between Dirac (1964) and Pitts (2014b) about the

correct characterization of a gauge transformation as follows: they both take for granted

that the gauge transformations are determined by the evolution generated by the Total

Hamiltonian. This leads to a disagreement about the generators of gauge transformations,

and consequently the right equivalence class of Hamiltonians. What I have argued here

is that this reasoning is flawed: the Extended Hamiltonian can be motivated as the right

equivalence class of Hamiltonians before determining the gauge transformations, and the

gauge transformations on states can be determined without directly considering the evolution

generated by the equivalence class of Hamiltonians. This allows one to maintain a clear

conceptual difference between gauge transformations on states and gauge transformations on

solutions, and it allows one to maintain that both of these notions capture a notion of physical

equivalence without conceptual tension. It also provides support for the position held by

Pooley and Wallace (2022): we ought to use the Extended Hamiltonian to determine the

gauge transformations on solutions because it is the correct equivalence class of Hamiltonians

from the perspective of the geometric formulation.

1.8 Possible Counterarguments

Let us now consider how one might respond to the argument given in the previous sec-

tion; in particular, how one might defend “Solution Gauge Transformation” over “Solution∗
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Gauge Transformation”, since it is these notions that lead to different characterizations of the

transformations that generate gauge transformations. First, I will consider a recent argument

given by Pitts in response to Pooley and Wallace (2022) that the Extended Hamiltonian is

a trivial reformulation of a theory, and therefore that it is not a physically interesting alter-

native. Then, I will turn to an objection that we should not commit to the geometry of the

constraint surface as a guide to the symmetries of the theory.

1.8.1 Triviality Argument

Given Pooley and Wallace’s response to Pitts (2014b), there seem to be two possible re-

actions. First, one could maintain that the question of whether arbitrary combinations of

first-class constraints generate gauge transformations or not comes down to whether the

Total or Extended Hamiltonian is considered the right equivalence class of Hamiltonians.

Second, one could maintain that what the debate shows is that there is no Hamiltonian-

independent way to characterize the gauge transformations but that we can think of these

different forms of the Hamiltonian as equivalent and so there is no conflict. This second reac-

tion is the approach that Pitts (2022, 2024) takes: he argues that the Extended Hamiltonian

can be seen as a trivial kind of reformulation of the theory. Moreover, he argues that we

can construct similar kinds of reformulation that allow one to conclude that quantities other

than the first-class constraints generate gauge transformations, which is not maintained by

either side of the debate. So we haven’t gained insight into the gauge transformations by

making this move; rather, we have stated the same thing in a different (more complicated)

form.

To see what Pitts means by a trivial reformulation, let us consider a simple example presented

in Pitts (2022). Take a Lagrangian given by:
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L =
1

2
q̇2 (1.14)

This describes a particle moving in a straight line with uniform velocity; the equation of

motion is d2q
dt2

= 0. The symmetries of this equation of motion are spatial translations and

boosts. Now consider the Lagrangian:

L =
1

2
(q̇ − µ̇)2 (1.15)

where µ is either an arbitrary function of time or a dynamical variable. This Lagrangian is

invariant under the transformation q → q + ϵ, µ→ µ+ ϵ where ϵ is an arbitrary function of

time. So, Pitts argues, we have ‘added’ a symmetry. Moreover, this Lagrangian gives rise

to the equation of motion d2(q−µ)
dt2

= 0, which says that q − µ represents a particle moving in

a straight line with uniform velocity. Therefore, the new Lagrangian has the same physical

content as the previous Lagrangian.

More precisely, we can see in the Hamiltonian formulation that the first Lagrangian does

not have any gauge freedom since there are no constraints. However, treating µ as a dy-

namical variable, we find that the Hamiltonian formulation of the second Lagrangian has a

constraint, namely pq + pµ, which is first-class. So, there is a new gauge transformation in

the Hamiltonian formulation: it is the transformation q → q + ϵ, µ → µ + ϵ generated by

the first-class constraint.

Pitts calls this process of revising a Lagrangian by adding a new variable (or “splitting one

quantity into two") and thereby adding new symmetries “de-Ockhamization". In the above

36



sense, Pitts argues it is trivial: it doesn’t change the physical content of the theory, and

therefore it is just a more complex redefinition of the original theory.

To further push this point, Pitts shows that we can do the same thing to reach the conclusion

that second-class constraints generate gauge transformations, which is arguably a reductio

ad absurdum. Take the Lagrangian for Electromagnetism, but add a photon mass term

−1
2
m2(A⃗2 − V 2). This is called “Proca Electromagnetism". The primary constraint is the

same, but the secondary constraint has an additional term of m2V . This has the consequence

that both constraints are second-class: {pV ,∇ · pA⃗ +m2V − ρ} = m2.

The time derivative of the secondary constraint fixes the value of λ: one gets λ = ∇ · A⃗.

Therefore, one can remove the arbitrariness in the Total Hamiltonian. In particular, the

primary second-class constraint generates a transformation that takes V → V + α where α

is an arbitrary function of time, as in ordinary Electromagnetism, but it does not generate

a gauge transformation. Consider the equations of motion for pv:

∂pV
∂t

= ∇ · pA⃗ − ρ+m2V (1.16)

The right-hand side is just the secondary constraint and so is equal to 0. But if we transform

V → V + α, the right-hand side is equal to m2α ̸= 0.

However, let’s consider “de-Ockhamizing" this theory by replacing V with V + µ in the

equations of motion where µ is arbitrary. Now the above equation of motion is satisfied

when we transform V → V + α, since the right-hand side is just equal to an arbitrary

function. Moreover, we can think of the de-Ockhamized equations of motion as resulting

from an “extended Hamiltonian", where V is replaced by V + µ.
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Although extending the Hamiltonian in this way isn’t to add a linear combination of con-

straints, Pitts suggests that it is analogous to what Pooley and Wallace (2022) do in order

to recover the claim that arbitrary combinations of first-class constraints generate gauge

transformations in Electromagnetism: one redefines a quantity by adding a new variable.

In doing so, one introduces new symmetries, but these should not be regarded as “genuine"

gauge transformations; if they were, then one would have to conclude that second-class

constraints generate genuine gauge transformations as well. Therefore, Pitts concludes, we

should not think that the Extended Hamiltonian supports the claim that gauge transfor-

mations are generated by arbitrary combinations of first-class constraints in a non-trivial

sense.

Response to the Triviality Argument

Let us look more closely at the first example presented by Pitts. Recall that the claim is

that the Lagrangian L = 1
2
(q̇− µ̇)2 has more symmetries than the Lagrangian L = 1

2
q̇2 even

though they have the same empirical content. The sense in which it has more symmetries is

supposed to be that if we just consider the variable q, then for the original Lagrangian, we

can only transform q by spatial translations and boosts and preserve the equations of motion,

while for the “de-Ockhamized" Lagrangian, we can transform q by an arbitrary function of

time and preserve the equations of motion (with a corresponding change to µ).

There are two kinds of comparison here: First, there is a comparison regarding empirical

content. Second, there is a comparison regarding symmetries. In order to maintain si-

multaneously that the Lagrangians are empirically equivalent and that they have different

symmetries, it must be that we are comparing the Lagrangians in the same way when we

make this claim. So, let us consider under what standard of comparison one can make these

claims.
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Starting with the claim that the two Lagrangians are empirically equivalent, this seems to

rely on taking q to represent the position of the particle in the first Lagrangian and q−µ to

represent the position of the particle in the second Lagrangian, since these quantities satisfy

the same equations of motion, namely that the second derivative is equal to 0.

However, if we identify q in the first Lagrangian with q − µ in the second Lagrangian, then

we also should compare the transformations of q that preserve the E-L equations for the first

Lagrangian with the transformations of q−µ that preserve the E-L equations for the second

Lagrangian. But these transformations are the same: the only transformations of q − µ

that preserve the equations of motion for the second Lagrangian are spatial translations

and boosts. Indeed, all we have done is effectively change the label of the variable that

represents position. This is clearly a trivial kind of reformulation. However, it does not

support Pitts’ position that the second Lagrangian has additional gauge symmetries, since

under the standard of comparison where q is identified with q − µ, the Lagrangians are

empirically equivalent and also have the same symmetries.

One might try to respond by saying the following: the transformation q → q+ ϵ, µ→ µ+ ϵ,

where ϵ is an arbitrary function of time, is a symmetry of the second Lagrangian that is not

a symmetry of the first Lagrangian and that preserves the same form of the equations of

motion. But under the identification of q with q − µ, this transformation is a symmetry of

the first Lagrangian – it is the identity transformation on q. If instead, one said that the

transformation q − µ → q − µ + ϵ is a symmetry of the second Lagrangian by taking µ to

be arbitrary, then this would be an ‘additional’ symmetry, but it would also mean that the

Lagrangians are not empirically equivalent via identification of q with q − µ; one describes

a particle moving in a straight line and the other describes a particle whose dynamics is

arbitrary. Either way, one cannot simultaneously claim that one has added a new symmetry

and preserved the empirical content under the identification of q in the first Lagrangian with

q − µ in the second Lagrangian.
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Another way to compare the Lagrangians is to identify the quantity q as representing the

position of the particle in both Lagrangians and take µ in the second Lagrangian to represent

an additional (perhaps arbitrary) variable. On this standard of comparison, there is a sense

in which one has added a symmetry of q by moving to the second Lagrangian: we can

transform q by an arbitrary function of time and preserve the equations of motion. But

now, we have that the equation of motion for q is: d2q
dt2

= d2µ
dt2

. This is a different equation

of motion for q compared to the original Lagrangian since it describes a situation where the

position of the particle is either an arbitrary function of time, when µ is arbitrary, or where

the particle moves in the same way as µ, when µ is a dynamical variable. Therefore, under

this standard of comparison, the two Lagrangians are not empirically equivalent, and so it

is not a trivial reformulation.

The upshot is that one cannot simultaneously maintain that the two Lagrangians are empir-

ically equivalent and that one has more symmetries than the other. The same is true of the

second example in Section 1.8.1 of Proca Electromagnetism. For V → V + α to be a gauge

transformation, V must be arbitrary in the equations of motion. But V is not arbitrary in

the original equations of motion; the equations of motion for V are:

∂V

∂t
= λ

where λ satisfies λ = ∇ · A⃗, and so is not arbitrary. Therefore, if the de-Ockhamization

involves replacing V with an arbitrary function of time µ′ = V + µ, the two equations

of motion are not empirically equivalent.11 If instead one wants to maintain that V + µ

plays the same role as V in the original equation of motion, then the equations would be

empirically equivalent but they would also have the same symmetries: the transformation

11Indeed, if we replace V everywhere in the Total Hamiltonian with an arbitrary function µ′, then we
would not have any secondary constraints and there would be one first-class constraint that generates a
gauge transformation that shifts V by an arbitrary function of time, as one would expect if V is decoupled
from the equations of motion. This would be a different theory from Proca Electromagnetism.
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V + µ → V + µ+ α would not be a symmetry if V + µ is understood to be a relabelling of

V .

Consequently, there is a kind of trivial reformulation that one can invoke in the examples

that Pitts provides, but it isn’t the kind where we add new symmetries. Indeed, we should

not be surprised that changing the symmetries of the theory in general has new empirical

consequences: symmetries tell us which physical situations are equivalent according to a

theory, and so theories with different symmetries will disagree about the physical possibilities.

Is the Extended Hamiltonian Trivial?

We have established that there is a kind of reformulation of a theory that is trivial but does

not correspond to adding new symmetries to a theory. On the other hand, there is a kind of

reformulation that does change the symmetries of a theory, but in the examples that Pitts

gives, this reformulation leads to a Lagrangian that is physically distinct. So the natural

question is: What kind of reformulation is going on in the case where one moves from the

Total Hamiltonian to the Extended Hamiltonian?

Let us consider this question in the context of classical Electromagnetism. Again, we need

to consider what the standard of comparison is supposed to be. If the replacement of V

with V + µ corresponds to a mere relabeling, then the move to the Extended Hamiltonian

appears trivial. But this would mean that we understand V in the Total Hamiltonian and

V + µ in the Extended Hamiltonian to have the same symmetries. This does not seem to

be what is going on; the Extended Hamiltonian is supposed to come with the addition of

new symmetries, namely, the transformations generated by an arbitrary combination of the

first-class constraints (that go past the transformations generated by the specific combina-

tion of first-class constraints). This suggests that the move to the Extended Hamiltonian

corresponds to the second kind of reformulation: one that changes the physical content of
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the theory. But then, how is this compatible with the claim of Pooley and Wallace (2022)

that the Extended Hamiltonian doesn’t come with a change in empirical content?

I think that the geometric formulation presented in Section 1.6 allows us to see what is

going on. Recall that the Total Hamiltonian is the equivalence class of Hamiltonians defined

up to arbitrary combinations of primary (first-class) constraints. These Hamiltonians are

equivocated when we move to the submanifold of T ∗Q defined by the satisfaction of the

primary constraints. We call this submanifold the primary constraint surface. Therefore,

we can think of the theory described by the Total Hamiltonian geometrically as the object

(Σp, ω̃p, H, φi) where Σp is the primary constraint surface, ω̃p is the presymplectic two-form

defined intrinsically on the primary constraint surface, H is the Hamiltonian restricted to

the primary constraint surface, and φi are the secondary constraints. The dynamics is

given by two equations, ω̃p(XH , ·) = dH and φi = 0. Notice that on the primary constraint

surface, the solution to ω̃p(XH , ·) = dH is unique only up to arbitrary combinations of vector

fields associated with the primary first-class constraints (the null vector fields of ω̃p), which

characterizes the sense in which there are multiple, equivalent solutions to the equation of

motion using the Total Hamiltonian.

Similarly, the Extended Hamiltonian is the equivalence class of Hamiltonians defined up to

arbitrary combinations of all the first-class constraints, which are equivocated on the sur-

face defined by the satisfaction of the primary and secondary constraints. We call this the

final constraint surface. Therefore, we can think of the theory described by the Extended

Hamiltonian as the object (Σf , ω̃f , H) where Σf is the final constraint surface, ω̃f is the

presymplectic two-form defined intrinsically on the final constraint surface, and H is Hamil-

tonian restricted to the final constraint surface. The solution to ω̃f (XH , ·) = dH on the final

constraint surface is unique only up to arbitrary combinations of vector fields associated with

the first-class constraints.
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This characterization naturally provides a sense in which the Extended Hamiltonian theory

regards more solutions as equivalent compared to the Total Hamiltonian theory: there are

solutions that the Total Hamiltonian theory distinguishes between that the Extended Hamil-

tonian theory does not distinguish between (when we consider these solutions on the final

constraint surface). More generally, we can now give a precise characterization of the fact

that the Extended Hamiltonian theory has more symmetries than the Total Hamiltonian

theory: the null vector fields of the two-form on the primary constraint surface are a subset

of the null vector fields of the two-form on the final constraint surface, and so the gauge

transformations – the transformations along the gauge orbits – of the Total Hamiltonian

theory are a subset of the gauge transformations of the Extended Hamiltonian theory (when

considered on the final constraint surface).

However, restriction to the final constraint surface does not come with a change in empirical

content. One way to put the reason for this is that the solutions to the equations of motion

on the final constraint surface correspond precisely to the solutions to the equations of

motion on the unconstrained symplectic manifold that satisfy the constraints (equivalently,

the solutions to the equations of motion on the primary constraint surface that satisfy the

secondary constraints); they are the solutions projected to the final constraint surface. And

the symmetries of these solutions, i.e. the solutions defined on the final constraint surface,

are just the symmetries given by the Extended Hamiltonian theory. Therefore, as long

as constraints are considered a physical requirement, the Extended Hamiltonian theory is

empirically equivalent to the Total Hamiltonian theory.

Indeed, I think that the geometric framing helps to see exactly what the move to the Ex-

tended Hamiltonian formalism corresponds to: it corresponds to moving to a theory with

less structure, since it is a theory with more symmetries, that nonetheless has the same em-

pirical content. In other words, it shows that the theory defined by the Total Hamiltonian

has a kind of ‘excess structure’: there are points and solutions distinguished by the theory
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formulated on the primary constraint surface that are not distinguished by a theory that

maintains the same physical content and yet has less structure. In particular, the points

that lie along the integral curves of the vector fields associated with the secondary first-class

constraints are symmetry-related in the Extended Hamiltonian formalism, but not in the To-

tal Hamiltonian formalism. We have reason to think that they should be symmetry-related

precisely because the differences between these points do not seem to be playing any role in

the empirical content of the theory.

To spell out the sense in which the Extended Hamiltonian formalism has less structure

than the Total Hamiltonian formalism more precisely, let us define the theories in category-

theoretic terms.12 Take the category TotHam to have as objects the models (Σp, ω̃p, H, φi),

and let us take the arrows between objects (Σp, ω̃p, H, φi), (Σp, ω̃
′
p, H

′, φ′
i) to be the diffeo-

morphisms f : Σp → Σp such that f ∗(ω̃′
p) = ω̃p, f ∗(H ′) = H and f ∗(φ′

i) = φi i.e. the

symmetries are taken to be the symplectomorphisms that preserve the Hamiltonian and the

secondary constraints. Similarly, let us take the category ExtHam to have as objects the

models (Σf , ω̃f , H) and as arrows between objects (Σf , ω̃f , H), (Σf , ω̃
′
f , H

′) the diffeomor-

phisms g : Σf → Σf such that g∗(ω̃′
f ) = ω̃f and g∗(H ′) = H.

Relations between theories are described by functors between the categories representing

those theories. A functor F : C → D from the category C to the category D is said to be full

if for every pair of objects A,B of C the map F : hom(A,B) → hom(F (A), F (B)) induced by

F is surjective, where hom(A,B) is the collection of arrows from A to B. Similarly, F is said

to be faithful if for every pair of objects the induced map on arrows is injective. Finally, F is

said to be essentially surjective if for every object X of D, there is some object A of C such

that F (A) is isomorphic to X. Using this terminology, we say (following Weatherall (2016b))

that a theory represented by category C has more structure than a theory represented by

12Category theory has been used in several places to give a precise sense in which one theory has less
structure than another. See, for example, Weatherall (2016b); Nguyen et al. (2020); Bradley and Weatherall
(2020). For a defense of using category theory to represent theories more generally, see Halvorson (2012,
2016); Halvorson and Tsementzis (2017); Weatherall (2016a, 2017).
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category D if a functor F : C → D is not full (but is faithful and essentially surjective). In

this case, we say that F forgets (only) structure.13

Consider the functor F : TotHam → ExtHam that takes each model (Σp, ω̃p, H, φi) to

its restriction to the points that satisfy the constraints φi = 0, i.e. the associated model

(Σf , ω̃f , H), and that takes the arrow f to its action on Σf (since f preserves the secondary

constraints, f preserves Σf , and so this is well-defined). Then:

Proposition 1.2: F : TotHam → ExtHam forgets (only) structure.14

Inasmuch as forgetting structure in category-theoretic terms captures what it is for one the-

ory to have less structure than another, this proposition gives a precise characterization of

the sense in which the Extended Hamiltonian formalism has less structure than the Total

Hamiltonian formalism. Therefore, contra Pitts, the move to the Extended Hamiltonian

should not be thought of as simply redefining a theory in terms of new quantities. Rather, it

defines a new theory that removes structure from the Total Hamiltonian theory. This means

that there is a genuine disagreement about the gauge transformations between the two the-

ories. But even further, it suggests that the standard view that arbitrary combinations of

first-class constraints is correct, by Pitts’ own lights: moving to the Extended Hamiltonian

is the opposite of “de-Ockhamization", in the sense that it is a simpler theory (in terms of

structure) than the Total Hamiltonian theory. So Pitts was right that simplicity considera-

tions matter in the debate between the Total and Extended Hamiltonian, but rather than

these considerations pushing one towards the Total Hamiltonian, they push one towards the

theory that captures all of the symmetries that the theory is naturally understood as having:

the theory characterized by the Extended Hamiltonian.

13The terminology of forgetful functors originates with Baez et al. (2004).
14See A.1 for proof.
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1.8.2 Against the Constraint Surface

Let’s consider two objections one might have to taking the geometry of the constraint surface

as a guide to the symmetries of the theory: First, the objection that we shouldn’t restrict to

the constraint surface. Second, the objection that we shouldn’t think that the geometrical

formulation of the constrained Hamiltonian formalism is adequate.

Let’s start with the first objection. Inasmuch as constraints are understood to provide

the “physically allowed states", it seems natural to think that the points off the constraint

surface are unnecessary for describing the dynamics of the theory. However, one might want

to maintain that these points still have importance as “kinematically possible" states. That

is, one might want to maintain that we ought to consider states off the constraint surface as

important for describing the physical theory as a whole, even if the dynamics is restricted to

the constraint surface. In particular, the secondary constraints are fixed by thinking about

the consistency of the primary constraints with the dynamics. And so it might seem that at

least when it comes to secondary constraints, there is no logical inconsistency with specifying

a theory in terms of points where the secondary constraints do not hold. And the vector

fields associated with the secondary constraints are not null vectors of the two-form on the

full phase space (nor on the primary constraint surface); the full phase space is symplectic,

and so it is non-degenerate by definition. So, the counterargument goes, we cannot use the

fact that these vector fields are null to argue that they generate gauge transformations.

One natural response is that the points off of the constraint surface are a kind of ‘excess

structure’: although there is nothing inconsistent about including them, the content of the

theory is given by the constraint surface. We already gave a response of this kind in Section

1.8.1. However, I think another response is to point out that the idea that we start with

the primary constraints and then generate the secondary constraints through the dynamics

is somewhat an accident of the way that the Hamiltonian formalism is usually set up. As I
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presented Dirac’s version of the theory, one starts with a Lagrangian function, from which

one derives the primary constraints. Only once we have the primary constraints and the

Hamiltonian in hand do we determine the secondary constraints. But we could have set

up the Hamiltonian formalism in a different way: we could say that our theory is given by

specifying a Hamiltonian function, a symplectic two-form, and a collection of constraints.

In this way of setting up the formalism, although there is a functional relationship between

the primary and secondary constraints, there is no clear difference in the role that they play.

In particular, the only relevant difference seems to be which constraints are first-class; these

are the ones that generate transformations that keep one along the constraint surface, and

which are null vectors of the induced two-form on the constraint surface.

In order to push back on this response, one would have to argue that there is something

wrong with setting up the Hamiltonian formalism in this way. This leads to the second ob-

jection: that the geometric formulation of the Hamiltonian formalism is not adequate. The

first thing to note here is that the geometric formulation is a natural extension of a widely

accepted formulation of Hamiltonian mechanics without constraints using symplectic mani-

folds. That is, this formulation takes the standard geometric way of expressing Hamiltonian

mechanics and considers what changes when one adds constraints, and so in this sense is

well motivated. But one might want to argue that it is inadequate in a different way. In

particular, one might want to argue that the Hamiltonian formalism is necessarily derivative

from the Lagrangian formalism; the Lagrangian formalism is the “fundamental” one, and

the Hamiltonian formalism is just an alternative way of expressing this formalism. On this

view, there is a difference between the primary and secondary constraints that originates

with the Lagrangian viewpoint and that isn’t captured purely by considering the geometry

of the Hamiltonian formalism. The difference is that the primary constraints are necessary

to ensure that the Hamiltonian formalism is equivalent to the Lagrangian formalism, while

the secondary constraints are ‘extra’ constraints on the Hamiltonian side that are not mo-

tivated from the Lagrangian perspective. In particular, it is only the primary constraints
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that are imposed in order for the map from the Lagrangian to Hamiltonian state spaces to

be invertible.15

Therefore, this argument goes, restricting to the secondary constraint surface – and conse-

quently having the view that arbitrary combinations of first-class constraints generate gauge

transformations – leads to a theory that is inequivalent to the Lagrangian theory, and so is

not the right theory to consider. Indeed, one can show that the Total Hamiltonian formal-

ism, understood as relying on the primary constraint surface, gives rise to solutions that are

equivalent to the solutions to the Euler-Lagrange equations (Batlle et al. (1986)). Therefore,

it seems that restricting to the constraint surface (including the secondary constraints) gives

rise to a theory that is empirically equivalent to the Lagrangian formalism but is not strictly

the same. And so, if one takes the view that the Lagrangian formalism is more fundamen-

tal, this might motivate one to say that our definition of a gauge transformation should be

inherited from this formalism, and thus not the definition motivated by the geometry of the

constraint surface.

Responding to this argument requires us to consider deep and subtle questions about what

makes one theory more “fundamental” than another and how to characterize the equivalence

of theories. This will be the task of Chapter 2.

1.9 Conclusion

To summarize, I have argued that the debate about the correct characterization of the

gauge transformations in the constrained Hamiltonian formalism rests on assumptions about

the relationship between gauge transformations and the form of the Hamiltonian that are

unnatural from the perspective of the geometric formulation of the constrained Hamiltonian

15The transformation taking points (x, ẋ) to (x, ∂L
∂ẋ ) is called the Legendre transformation, and in the

case where it is non-invertible, its image is the primary constraint surface.
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formalism. Using the geometric formulation, I showed that we can distinguish between

gauge transformations on states and gauge transformations on solutions in a conceptually

clear way and that both are generated by arbitrary combinations of first-class constraints,

thereby supporting the orthodox view. However, this allowed us to pinpoint more clearly

where disagreement can be found. In particular, I suggested that there are crucial questions

about the relationship between Lagrangian and Hamiltonian theories in the presence of gauge

symmetry, where different answers to these questions can lead to different views regarding

the correct form of the Hamiltonian, and thus to what the correct characterization of the

gauge transformations is.

One important topic that I have not discussed in this chapter is the “Problem of Time".

Recall: for theories that are time-reparameterization invariant, the standard account of

gauge transformations implies that time evolution is itself a gauge transformation since

the Hamiltonian is a first-class constraint. In supporting the standard account of gauge

transformations as being generated by arbitrary combinations of first-class constraints, it

might appear that we are also left with the issues surrounding the Problem of Time. That is,

we haven’t seemed to do anything to deny that a Hamiltonian first-class constraint generates

a gauge transformation. However, I think that the distinctions drawn out here highlight what

is interesting about the case of a Hamiltonian first-class constraint. In particular, the claim

that we can conceptually distinguish the gauge transformations on states and the gauge

transformations on solutions does not seem to be true in the case where the Hamiltonian is a

first-class constraint: the gauge orbits are just the solutions to the equations of motion, and

so the states along a gauge orbit cannot be understood independently from the dynamics.

Thus, it is less clear whether one can distinguish two notions of physical equivalence as well.

This suggests that the puzzle surrounding the Problem of Time at least partly comes down

to the fact the transformation generated by a Hamiltonian first-class constraint doesn’t fall

neatly into the categories defined here. But more work needs to be done to say what exactly

is distinct about this case, inasmuch as when the Hamiltonian is a first-class constraint, it
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seems to play the same role geometrically as any other first-class constraint since it is a

null vector of the induced two-form on the constraint surface. To answer this would require

a more careful consideration of the role of the Hamiltonian and whether there is a more

fine-grained distinction between different kinds of constraints. I hope that the work here

has at least provided support for the claim that the Problem of Time is not the result of an

incorrect definition of the gauge transformations in the constrained Hamiltonian formalism;

rather, it must be treated on its own terms.
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Chapter 2

The Relationship between Lagrangian

and Hamiltonian Mechanics: The

Irregular Case

2.1 Introduction

Lagrangian and Hamiltonian mechanics are widely held to be two distinct but equivalent

ways of formulating classical theories. Although some philosophers have recently challenged

this view1, Barrett (2019) makes precise the sense in which one can maintain that Lagrangian

and Hamiltonian mechanics are equivalent: as long as one characterizes the structure of these

theories in a certain natural way, one can show that they are theoretically equivalent, where

the standard of theoretical equivalence is categorical equivalence.

However, Barrett’s equivalence result is restricted in an important way: he only shows equiv-

alence between “hyperregular" models of Lagrangian and Hamiltonian mechanics. While hy-

1See in particular, North (2009) and Curiel (2014).
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perregularity characterizes a large class of theories, it does not characterize the class of gauge

theories : theories that have local, time-dependent symmetries. The question of whether La-

grangian and Hamiltonian mechanics are equivalent in the context of gauge theories is one

that has not been discussed directly in the philosophical literature, despite the fact that it

bears on other debates that are prominent in the literature. In particular, there has been a

recent debate about the correct characterization of the gauge transformations in the Hamil-

tonian formalism. Several authors have criticized the standard view on the basis that the

resulting theory is inequivalent to the Lagrangian formalism.2 However, one fails to find

a clear exposition of which formulations of Lagrangian and Hamiltonian mechanics in the

presence of gauge symmetries are equivalent, and in what sense.

In this chapter, I aim to fill this gap. I demonstrate that the relationship between Lagrangian

and Hamiltonian mechanics is made significantly more complicated when the assumption of

hyperregularity is dropped, and that claims that are made about equivalence in the literature

have so far failed to establish more than a notion of dynamical equivalence in the non-

hyperregular context. However, I show that one can extend Barrett’s result to prove an

equivalence result in the irregular case by constructing hyperregular models of Lagrangian

and Hamiltonian gauge theories through a process known as ‘symplectic reduction’. In

doing so, I argue that the claims in the literature that the standard approach to gauge

transformations renders Hamiltonian mechanics inequivalent to Lagrangain mechanics are

false: there is a natural formulation of Lagrangian mechanics in the irregular context that

is equivalent to the formulation of Hamiltonian mechanics under the standard definition of

gauge transformations.

While ultimately the chapter supports the equivalence between Lagrangian and Hamiltonian

mechanics in the context of gauge theories, exploring this question will highlight several

interesting questions about the way that one can construct models of Lagrangian mechanics

2See in particular Pitts (2014b,a); Gracia and Pons (1988).
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from models of Hamiltonian mechanics and vice versa, about the role that constraints play

in relating the kinematics and dynamics of a theory, as well as the interpretation of gauge

transformations.

In Section 2.1, I spell out the equivalence result in Barrett (2019), paying particular attention

to the parts of the result that require the assumption of hyperregularity. In Section 2.2,

I discuss how the situation changes when one considers gauge theories, and present the

standard Hamiltonian approach to determining the gauge transformations in terms of a

constraint formalism. In Section 2.3, I consider the arguments in the literature regarding

equivalence between Lagrangian and Hamiltonian gauge theories, and I discuss why they fall

short of providing an account of theoretical equivalence. In Sections 2.4 and 2.6, I show that

one can reformulate Lagrangian mechanics as a constraint theory in a way that is analogous

to formulating a Hamiltonian constraint theory, drawing from the work of Gotay and Nester

(1979), and I show that the models of the reformulated Lagrangian gauge theory are related

to the models of the Hamiltonian constraint theory in a natural way. In Section 2.7, I

prove an equivalence result that extends the result in Barrett (2019) to the context of gauge

theories. Finally, in Section 2.8 I discuss the upshots of this equivalence result and some

possible responses.

2.2 The Regular Case

The relationship between Lagrangian and Hamiltonian mechanics in the ‘regular’ case has

been widely discussed. On the one hand, North (2009) defends the view that Hamiltonian

mechanics has less structure than Lagrangian mechanics. On the other hand, Curiel (2014)

agrees that Hamiltonian and Lagrangian mechanics ascribe different structure, but argues

that Lagrangian mechanics is a better representation of the structure of classical systems.

More recently, Barrett (2019) argues that this debate hinges on how one defines the structure
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of the two theories: while one can maintain that they are inequivalent by defining the

structure of the two theories in a particular way, there is also a natural way of spelling

out the structure of the two theories that renders them equivalent under a widely defended

account of theoretical equivalence, namely, categorical equivalence.3

In light of this debate, let us distinguish three views that one might hold regarding the

equivalence between Lagrangian and Hamiltonian mechanics in the ‘regular’ case:

Lagrangian-first View: Lagrangian mechanics better represents physical sys-

tems than Hamiltonian mechanics.

Hamiltonian-first View: Hamiltonian mechanics better represents physical

systems than Lagrangian mechanics.

Equivalence View: Lagrangian and Hamiltonian mechanics are (categorically)

equivalent, and so equally well represent physical systems.

Our focus here will be whether the Equivalence View can also be maintained in the irregular

case, and so it will be important for our purposes to see how the Equivalence View is defended

in the regular case.

Lagrangian mechanics has state space given by the tangent bundle of configuration space,

T∗Q, whose points consist of the pair (qi, q̇i) encoding the positions and velocities of the

particles. The dynamics are given by specifying a Lagrangian function L, with dynamical

equations given by the Euler-Lagrange equations, which in coordinate-dependent form are

given by:
d

dt

∂L

∂q̇
=
∂L

∂q
.

The fiber derivative of L is called the Legendre transformation and it is the map FL :

T∗Q→ T ∗Q from the tangent to cotangent bundle that is defined as taking the point (qi, q̇i)

3See Halvorson (2012, 2016), Weatherall (2016a,b, 2019b) for discussion of categorical equivalence as the
standard for theoretical equivalence.
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to (qi,
∂L
∂q̇i

). We say that L is regular if FL is a local diffeomorphism. When FL is a global

diffeomorphism i.e. it is also invertible, we say that the model (T∗Q,L) is hyperregular.

Hamiltonian mechanics has as its state space the cotangent bundle of configuration space,

T ∗Q, whose points consist of the pair (qi, pi) encoding the positions and canonical momenta

of the particles. The dynamics are given by specifying a Hamiltonian function H, with

dynamical equations given by Hamilton’s equations:
dq

dt
=
∂H

∂p
,
dp

dt
= −∂H

∂q
.

The fiber derivative of H is the map FH : T ∗Q→ T∗Q from the cotangent to tangent bundle

that is defined as taking the point (qi, pi) to (qi,
∂H
∂pi

). When FH is a (global) diffeomorphism,

we say that the model (T ∗Q,H) is (hyper)regular.

The cotangent bundle naturally comes equipped with a symplectic (closed, non-degenerate)

two-form ω. We can write the equations of motion in terms of this two-form: ω(XH , ·) = dH

where XH is the vector field associated with the Hamiltonian, which is unique by the non-

degeneracy of the symplectic two-form. The integral curves of XH correspond to solutions.

We can also use this symplectic structure to define a two-form on the tangent bundle, Ω =

FL∗(ω). Ω is symplectic when FL is a (local or global) diffeomorphism. We can then show

that the Euler-Lagrange equations are equivalent to Ω(XE, ·) = dE where XE is the vector

field associated with the energy function E = FL(q̇i)q̇
i − L. The integral curves of XE

correspond to solutions.

The structure-preserving maps of tangent space are given by point∗ transformations T∗f ,

defined as follows: given a diffeomorphism f : M1 → M2, T∗f : (q, v) → (f(q), f∗(v)). Simi-

larly, the structure-preserving maps on cotangent space are given by point∗ transformations:

given a diffeomorphism f :M1 →M2, T ∗f : (q, p) → (f−1(q), f ∗(p)).

Let us restrict ourselves to hyperregular models of Lagrangian and Hamiltonian mechan-

ics. Define the functor F between a hyperregular model of Lagrangian mechanics and
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a hyperregular model of Hamiltonian mechanics as F : (T∗Q,L) → (T ∗Q,E ◦ FL−1),

F : T∗f → T ∗(f−1).

Similarly, define the functor G between a hyperregular model of Hamiltonian mechanics and

a hyperregular model of Lagrangian mechanics as G : (T ∗Q,H) → (TQ, (θa(XH)
a − H) ◦

FH−1), G : T ∗f → T∗(f
−1) where θa is the canonical one-form such that ωab = −daθb. These

translation maps preserve empirical content, in the sense that they preserve the base integral

curves.4

Define the categories Lag and Ham in the following way:

1. An object in the category Lag is a hyperregular model (T∗Q,L). An arrow (T∗Q1, L1) →

(T∗Q2, L2) is a point∗ transformation T∗f : T∗Q1 → T∗Q2 that preserves the Lagrangian

in the sense that L2 ◦ T∗f = L1.

2. An object in the category Ham is a hyperregular model (T ∗Q,H). An arrow (T ∗Q1, H1) →

(T ∗Q2, H2) is a point∗ transformation T ∗f : T ∗Q1 → T ∗Q2 that preserves the Hamil-

tonian in the sense that H2 ◦ T ∗f = H1.

Theorem (Barrett (2019)): F : Lag → Ham and G : Ham → Lag are equiva-

lences that preserve solutions.

The upshot is that as long as one is concerned with hyperregular Lagrangian and Hamiltonian

models, there is a clear sense in which these theories are equivalent in terms of categorical

equivalence. Indeed, the proof of the above theorem relies on hyperregularity in several

ways. First, notice that the functors F and G rely on the maps FL−1 and FH−1 in order to

define a Hamiltonian model in terms of a Lagrangian model and vice versa. These maps are

only well-defined functions (globally) if FL and FH are (global) diffeomorphisms. Second,

4See Abraham and Marsden (1987) for more details.
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Barrett proves the above theorem by showing that F and G are inverses in the sense that

GF (T∗Q,L) = (T∗Q,L) and FG(T ∗Q,H) = (T ∗Q,H) (and similarly are inverses on arrows).

This relies on the fact that FL−1 = FH and FH−1 = FL, which is only true in the

hyperregular context.

Given the importance of hyperregularity in reaching the conclusion that the categories of

Lagrangian and Hamiltonian models are equivalent, one might conclude that the class of

irregular Lagrangian and Hamiltonian theories cannot be categorically equivalent.5 However,

there are several physically important theories that do not have hyperregular, or even regular,

models; most notably, gauge theories are such that the Legendre transformation defines a

submanifold of T ∗Q. It would be surprising, and significant, if the class of Lagrangian

gauge theories and the class of Hamiltonian gauge theories were not equivalent. Therefore,

it is worthwhile to consider whether one could set up an equivalence result as strong as

categorical equivalence in the context of gauge theories. But to do this, we first need to

define the models of the corresponding Lagrangian and Hamiltonian gauge theories. So let

us start by considering the way that gauge theories are usually formulated.

2.3 The Irregular Case

We say that the Lagrangian is irregular when the Hessian Wij =
∂L

∂q̇iq̇j
is not invertible i.e.

when it is singular. A class of irregular Lagrangian theories can be characterized by the

fact that the Legendre transformation FL(T∗Q) is a submanifold of T ∗Q called the primary

constraint surface Σp, defined by the satisfaction of a collection of (primary) constraints

ϕa(qi, pi) = 0. It is this class of irregular Lagrangian theories that we will take to constitute

the gauge theories.

5Indeed, in a footnote, Barrett (2019) says: “One can, of course, consider the more general case, but I
conjecture that there the theories will be inequivalent according to any reasonable standard of equivalence.”
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Given that the Legendre transformation defines a submanifold of the cotangent space in

the context of gauge theories, it seems natural that we should formulate the Hamiltonian

theory on this submanifold if we want to relate the two theories. Indeed, if we start with

a Hamiltonian theory on T ∗Q, then one can specify the theory on the primary constraint

surface. First, we can define an induced presymplectic two-form ω̃ = i∗ω where i : Σp → T ∗Q

is the inclusion map. The null vector fields of ω̃ are the vector fields corresponding to the

primary first-class constraints, which geometrically correspond to the primary constraints

whose vector field is tangent to the constraint surface.

Using this presymplectic two-form, the equations of motion on this submanifold can be

written as ω̃(XH , ·) = dH where H is the Hamiltonian on T ∗Q restricted to the constraint

surface. Notice that since ω̃ is degenerate, the solutions to this equation of motion are not

unique; we can think of this fact as related to the gauge nature of the theory.

This provides a well-defined theory on the primary constraint surface. However, as Dirac

(1964) and others noticed, there are inconsistencies that might arise with this theory. In par-

ticular, it may not be that the primary constraints hold at all points along a solution, which

corresponds to the fact that the vector fields XH that define the solutions to this equation

may not be tangent to the constraint surface. In order for the solutions to be tangent to

the constraint surface, it must be that ω̃(XH , Z) = dH(Z) = 0 for vector fields Z associated

with the primary constraints. But this may define a further collection of constraints that we

call secondary constraints, and we can think of these additional constraints as leading to the

specification of a further submanifold.

Continuing this process of requiring that the solutions to the equations of motion are tangent

to the constraint surface terminates in a final constraint surface, (Σf , ω̃f , Hf ), defined by the

satisfaction of a collection of constraints, where the null vector fields of ω̃f are those M

vector fields associated with the M first-class constraints. The integral curves of the null

vector fields are called the gauge orbits. They are M -dimensional surfaces on the constraint
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surface spanned by the null vectors. In this way, on the final constraint surface, the gauge

transformations are given by transformations along the integral curves of the null vector

fields associated with first-class constraints.

The equations of motion ω̃(XH , ·) = dH only defines XH up to arbitrary combinations of

null vectors when ω̃ is presymplectic. So following standard usage, let us define the ‘Total

Hamiltonian’ as the equivalence class of Hamiltonians defined up to arbitrary combinations

of primary first-class constraints i.e. the equivalence class of Hamiltonians on the primary

constraint surface. Similarly, we define the ‘Extended Hamiltonian’ as the equivalence class

of Hamiltonians defined up to arbitrary combinations of primary and secondary first-class

constraints i.e. the equivalence class of Hamiltonians on the final constraint surface.

Going forward, we will use the term ‘Total Hamiltonian formalism’ to refer to the formu-

lation of irregular Hamiltonian mechanics on the primary constraint surface and ‘Extended

Hamiltonian formalism’ to refer to the formulation of irregular Hamiltonian mechanics on

the final constraint surface.

2.4 Inequivalence Argument

In the previous section, we showed that a Hamiltonian gauge theory is naturally formulated

on the final constraint surface with the Extended Hamiltonian as the equivalence class of

Hamiltonians. However, we also pointed out that if we start with a Lagrangian theory, the

Legendre transformation defines the primary constraint surface, which corresponds to the

Total Hamiltonian being the right equivalence class of Hamiltonians. This fact has led some

authors to conclude that Extended Hamiltonian formalism is inequivalent to the Lagrangian

formalism, and that this is reason to think that the Extended Hamiltonian formalism is

mistaken.
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Figure 2.1: The irregular case.

For example, Gracia and Pons (1988) state that:

“No “extended hamiltonian” is needed, since it would introduce new solutions of

the equations of motion that would break the equivalence between Lagrangian

and Hamiltonian formalisms”.

Similarly, Pitts (2014b) argues that

“The extended Hamiltonian breaks Hamiltonian-Lagrangian equivalence. Requir-

ing Hamiltonian-Lagrangian equivalence fixes the supposed ambiguity permitting

the extended Hamiltonian”.

Such claims have been used to argue that the right definition of a gauge transformation in the

Hamiltonian formalism is not given by the transformation relating solutions to the Extended

Hamiltonian, but rather it is the transformation relating solutions to the Total Hamiltonian.

And one can show that the transformations relating solutions to the Total Hamiltonian

are not given by arbitrary combinations of first-class constraints but rather by a particular

combination of first-class constraints, contrary to the standard definition.6 Therefore, the

claim that the Lagrangian formalism is equivalent only to the Total Hamiltonian formalism

has significant implications not only for how one formulates Hamiltonian gauge theories but

also for the characterization of the gauge transformations themselves.
6For more discussion on this debate, see Pitts (2014b); Pons (2005); Pooley and Wallace (2022).
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However, to evaluate these claims, we ought to understand the sense of (in)equivalence that

is at stake. This hasn’t been discussed in detail in the literature; indeed, what one finds are

references to certain results that are taken to show that the solutions to the Euler-Lagrange

equations are equivalent to the solutions to the Hamilton-Dirac equations on the primary

constraint surface. One particular result that is widely cited is found in Batlle et al. (1986),

so let us spell out this result and consider the notion of equivalence that it supports.

Theorem (Batlle et al. (1986)): If (qi(t), q̇i(t)) satisfies the Euler-Lagrange

equations, then FL(qi(t), q̇i(t)) satisfies the Hamilton-Dirac equations on the pri-

mary constraint surface. Similarly, if (qi(t), pi(t)) satisfies the Hamilton-Dirac

equations on the primary constraint surface, then FL−1(qi(t), pi(t)) satisfies the

Euler-Lagrange equations, where FL−1(qi(t), pi(t)) is constructed via:

q̇i =
∂H

∂pi
+ va(qi, q̇i)

∂ϕa

∂pi

−∂L

∂qi
=
∂H

∂qi
+ va(qi, q̇i)

∂ϕa

∂qi

where ϕa are the primary constraints and va(qi, q̇i) is arbitrary.

The theorem shows that the solutions to the Euler-Lagrange equations map to the solutions

to the Hamilton-Dirac equations on the primary constraint surface and vice versa. But notice

that the inverse Legendre transformation maps one point on the primary constraint surface

to multiple points on the tangent space since it is defined in terms of arbitrary functions

va. It therefore maps one solution on the primary constraint surface to multiple solutions

on tangent space. If these solutions are not considered equivalent from the perspective of

the Lagrangian formalism, then this result cannot establish that a Lagrangian gauge theory
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defined on tangent space and its corresponding Hamiltonian theory defined on the primary

constraint surface have equivalent solutions.

Moreover, even if we do interpret these points/solutions as equivalent, it seems that the most

that this theorem can tell us is that there is a dynamical equivalence between Lagrangian

mechanics and Hamiltonian mechanics on the primary constraint surface. One cannot use

Barrett’s result to establish categorical equivalence since we do not have a way of translating

the models and symmetries of one theory to those of the other. In particular, it was im-

portant for Barrett’s result that FL−1 = FH, which followed from these maps being global

diffeomorphisms. The maps between tangent space and the primary constraint surface do

not satisfy this property. Therefore, the results in Batlle et al. (1986) are not sufficient

to infer theoretical equivalence between Lagrangian gauge theories and Hamiltonian gauge

theories defined on the primary constraint surface.

However, this theorem does provide the tools to infer that there is a dynamical, and therefore

theoretical, inequivalence between Lagrangian gauge theories and the Extended Hamiltonian

formalism: what the theorem shows is that the equivalence class of solutions to the Euler-

Lagrange equations on tangent space are in one-to-one corresponds to the equivalence class

of solutions to Hamilton’s equations on the primary constraint surface. That is, once we

take into account the symmetries of the equations of motion, then the two formalisms agree

about which solutions are distinct from one another. On the other hand, the symmetries of

Hamilton’s equations on the final constraint surface, i.e. using the Extended Hamiltonian,

are wider than symmetries of Hamilton’s equations on the primary constraint surface (there

are distinct solutions on the primary constraint surface that are equivalent on the final

constraint surface). Therefore, the Lagrangian formalism and the Extended Hamiltonian

formalism are inequivalent because their equivalence classes of solutions are different.

Indeed, it is this dynamical inequivalence that seems to be the core of the arguments that

the Extended Hamiltonian gets the gauge transformations wrong, from the perspective of
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the Lagrangian formalism: there is a mismatch of the symmetries of the equations of motion.

However, there are some lingering puzzles.

First, there is a sense in which the Total Hamiltonian formalism is empirically equivalent

to the Extended Hamiltonian formalism: if we take secondary constraints to be a physical

requirement in the Total Hamiltonian formalism, then the solutions one gets when one takes

the solutions to the Total Hamiltonian and restricts to the final constraint surface are just the

solutions to the Extended Hamiltonian on the final constraint surface.7 Therefore, the fact

that the equivalence classes of solutions are different doesn’t seem to allow for the inference

that the Extended Hamiltonian formalism is wrong, without some further reason to think

that the Lagrangian equivalence class of solutions is the right one. Another way to put this

worry is that without an account of theoretical equivalence, one cannot fully evaluate the

claim that the Total Hamiltonian formalism is the right formulation from the perspective of

the Lagrangian formalism.

Second, given that we have motivated two formulations of Hamiltonian mechanics in the

presence of gauge symmetry – the Total Hamiltonian formalism and the Extended Hamilto-

nian formalism – it is natural to ask whether, in the context of gauge theories, one could also

motivate a new formulation of Lagrangian mechanics whose equivalence class of solutions

matches the Extended Hamiltonian formalism. If we could, then this would suggest that

the dynamical inequivalence that we find between Lagrangian mechanics and the Extended

Hamiltonian formalism is an accident of the way we set up the Lagrangian formalism in the

first place.

These puzzles lead to the following questions: First, is there some empirically equivalent

formulation of Lagrangian mechanics that is dynamically equivalent to the Extended Hamil-

tonian formalism? Second, can one provide a stronger account of theoretical equivalence

between formulations of Lagrangian and Hamiltonian gauge theories?

7For a more detailed argument of this kind, see Pooley and Wallace (2022).
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In what follows, I will argue that the answer to both questions is yes, and that this refutes the

claim that from the perspective of (equivalence with) the Lagrangian formalism, the Total

Hamiltonian formalism is motivated over the Extended Hamiltonian formalism: we can both

reformulate Lagrangian mechanics such that the resulting theory is dynamically equivalent to

the Extended Hamiltonian formalism, and one can set up a categorical equivalence between

precisely these formulations of Lagrangian and Hamiltonian gauge theories.

More carefully, I will first demonstrate, drawing from Gotay and Nester (1979), that one

can formulate Lagrangian mechanics as a constraint theory such that its models are related

to models of the final Hamiltonian constraint surface in just the same way that the usual

Lagrangian models are related to models of the primary Hamiltonian constraint surface. This

will suffice to show that the equivalence class of solutions of this reformulated Lagrangian

theory match the equivalence class of solutions of the Extended Hamiltonian formalism. I

will then argue that there is a way to redefine the models of these theories using a process

known as reduction such that one can set up a categorical equivalence result between classes

of models of the reduced theories. This will demonstrate that there is a sense in which

Lagrangian and Hamiltonian gauge theories are theoretically equivalent, but that this doesn’t

support the view that the Extended Hamiltonian formalism is wrong; to the contrary, it

demonstrates that there is a natural formulation of Lagrangian mechanics that is theoretically

equivalent to the Extended Hamiltonian formalism.

2.5 Lagrangian Constraint Formalism

To see how we can think of constraints in the Lagrangian formalism, let us start by writing

the Euler-Lagrange equations as:
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Wij q̈
j +Ki = 0 (2.1)

where Wij =
∂2L

∂q̇i∂q̇j
is the Hessian and Ki =

∂2L
∂q̇i∂qj

q̇j − ∂L
∂qi

. The singular case is characterized

by the vanishing of the determinant of Wij. Let us say that the rank of Wij is n−m1 so that

Wij has m1 null vectors, φµ, such that Wijφ
j
µ = 0. We call these “gauge identities" because

they hold at all points in T∗Q.

Contracting the equations of motion with the null vectors, we get:

χ(1)
µ = Kiφ

i
µ = 0 (2.2)

We call these the first m1 “Lagrangian constraints". We now require for consistency that

these constraints are preserved under time evolution i.e. d
dt
χ
(1)
µ = 0. This gives rise to new

Lagrangian constraints χ(2)
µ′ . We can continue this process until we are left with all of the

Lagrangian constraints. As in the Hamiltonian case, there are certain constraints whose time

evolution allows one to determine some of the undetermined accelerations; as we will see,

these constraints correspond to the second-class constraints on the Hamiltonian side.

It will be helpful to consider the picture more geometrically.8 We can define, as in the regular

case, the Lagrangian state space to be endowed with a two form Ω = FL∗ω that is given

in coordinate form by Ω = ∂2L
∂q̇i∂qj

dqi ∧ dqj + ∂2L
∂q̇i∂q̇j

dqi ∧ dq̇j. When the Hessian Wij =
∂2L

∂q̇i∂q̇j

is non-invertible, Ω is degenerate and so it is a pre-symplectic two-form. We call this the

irregular case.

8For details, see Gotay and Nester (1979).
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The geometric equations of motion can be written as before as:

Ω(XE, ·) = dE (2.3)

Because Ω is not symplectic in the irregular case, there will not be a unique solution to the

equations of motion; indeed there may not be any solution at some points. However, the

null vectors of Ω allow us to define a submanifold where one can solve the equations at every

point, in the following way. The null vectors Z of Ω are such that Ω(Z, ·) = 0. So, in order

for the equations of motion to hold, and be tangent to T∗Q, we must have that dE(Z) = 0.

This motivates restricting to the submanifold P1 defined by dE(Z) = 0 for null vectors Z.

We can therefore think of dE(Z) as constraints.

Now we require that the solutions to the equations of motion everywhere lie tangent to P1

i.e. that the constraints hold at all points along a solution. But this is just to require that

dE(Y ) = 0 where Y is in the kernel of Ω restricted to P1, which we can write as Ω1. So we

should restrict to a submanifold where in addition dE(Y ) = 0. Therefore, we can think of

dE(Y ) as further constraints.

Reiterating this process, we find a constraint surface Pk for k constraints where the solutions

of the equations of motion Ωk(XE, ·) = dE are tangent to the constraint surface.9 The null

vector fields of Ωk correspond to the null vector fields of Ω and the vector fields associated

with the constraints. Therefore, we can think of this formalism as providing a way on

the Lagrangian side to associate constraints with gauge transformations: the vector fields

associated with the constraints generate (a subset of) the gauge transformations, understood

as transformations along the integral curves of the null vector fields.

9Here, the energy function E should be thought of as the energy function on T∗Q restricted to the points
of the constraint surface Pk.
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However, there are some constraints Kiφ
i
µ = 0 that are not accounted for by this geometric

procedure. These are the constraints that do not correspond to null vector fields of the

(induced) presymplectic two-forms. As Gotay and Nester (1980) show, these constraints are

determined by requiring that the equation of motion is second-order, which corresponds to

requiring that a solution to the equation of motion, written in coordinate-dependent form as

X = αi ∂
∂qi

+βi ∂
∂q̇i

, is such that αi = q̇i (this follows from the two-form written in coordinate

form above). If constraints of this kind arise, we can find their time derivative and thereby

determine potentially new constraints. So take the final constraint surface to be given by

Pk+l with l being the number of constraints arising from the second-order condition.

2.6 Relationship between Final Constraint Surfaces

We have seen that we can construct submanifolds of the tangent bundle in a similar way

to the construction of submanifolds in the Hamiltonian formalism through constraints, and

that we can write the equations of motion intrinsically on these submanifolds. So the natural

question is whether the theory defined on the final constraint submanifold on the Lagrangian

side is equivalent to the theory defined on the final Hamiltonian constraint manifold. To

present an equivalence result of this kind, we will start by using the results in Gotay and

Nester (1979) to show that the relationship between the models on the final constraint

manifolds is the same as the relationship one finds between the original Lagrangian model

and the model on the primary constraint surface.10

We will restrict ourselves, following Gotay and Nester (1979), to almost regular Lagrangian

models. An almost regular Lagrangian model is associated with two assumptions. First,

FL is a submersion onto its image i.e. its differential is surjective. Second, the fibers

10Although the results in this section can be found in Gotay and Nester (1979), they do not discuss in
detail the kind of equivalence that these results imply, nor do they draw the implications that we do here
for the debate about the Total vs. Extended Hamiltonian.

67



FL−1(FL(q, q̇)) are connected submanifolds of T∗Q. These two assumptions guarantee that

FL∗H = E defines a single-valued Hamiltonian, since they imply that the energy function E

is constant along the fibers FL−1(FL(q, q̇)).11 We can think of the almost regular Lagrangian

models as characterizing the Lagrangian gauge theories: they are the models of Lagrangian

mechanics for which there is a well-defined corresponding Hamiltonian theory on the primary

constraint surface with the Hamiltonian related to the energy function via FL∗H = E.

We also assume that we have no ineffective constraints12, which means that there is a clear

separation between first-class and second-class constraints i.e. a first-class constraint does

not become second-class when considering its time derivative and vice versa. To start, we

will assume that we just have first-class constraints on the Hamiltonian side and constraints

that correspond to null vector fields on the Lagrangian side.

Let us first consider the relationship between T∗Q and the primary Hamiltonian surface

Σp. Take ip to be the inclusion map ip : Σp → T ∗Q. Then we can define the Legendre

transformation between T∗Q and Σp, FLp : T∗Q → Σp via ip ◦ FLp = FL. Since FL

is assumed to be a submersion onto its image and its image is precisely Σp, FLp is also a

submersion and is surjective (but not injective nor an immersion). Moreover, take FLp∗ is the

pushforward map associated with Flp. The kernel of FLp∗ (or Ker(FLp∗)) is the collection

of vector fields Z on T∗Q such that FLp∗(Z) is the zero vector at all points x ∈ Σp.

Proposition 2.1: Every distinct null vector field on Σp corresponds to a dis-

tinct null vector field on T∗Q and there are additional null vector fields on T∗Q

corresponding to the vector fields in the kernel of FLp∗.13

11Proof can be found in Gotay and Nester (1979).
12An ineffective constraint is one whose gradient vanishes weakly. For discussion, see Gotay and Nester

(1984).
13See B.1 for proof.
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Proposition 2.1 tells us for every null vector field on tangent space, there is a corresponding

null vector field on the primary Hamiltonian constraint surface (and vice versa), but that the

relationship is many to one, with the difference in dimension of null vector fields being given

by the dimension of the kernel of FLp∗, which is equal to the number of primary first-class

constraints.

It turns out that the same relationship holds between the final constraint surfaces Pf and

Σf . Define the induced Legendre transformation between these spaces as follows. Define

iL : Pf → T∗Q as the inclusion map from the final Lagrangian constraint surface to the

tangent space and iH : Σf → T ∗Q as the inclusion map from the final Hamiltonian constraint

surface to the cotangent space. Then FLf : Pf → Σf is given implicitly by iH◦FLf = FL◦iL.

Proposition 2.2: Every distinct null vector field on Σf corresponds to a dis-

tinct null vector field on Pf and there are additional null vector fields on Pf

corresponding to the vector fields in the kernel of FLf∗.14

Proposition 2.2 tells us that the relationship between null vector fields on the final constraint

surfaces is such that the number of null vector fields on Pf is equal to the number of null

vector fields on Σf plus the dimension of Ker(FLf∗). One can also show that Ker(FLf∗) =

Ker(FLp∗), and so Ker(FLf∗) has dimension equal to the number of primary first-class

constraints.

Finally, we can show that the solutions to the equations of motion are related in a similar

way, using the fact that FL∗
f (H) = E on the final constraint surfaces:

Proposition 2.3: Every distinct solution to ω̃f (XH , ·) = dH on Σf corresponds

to a distinct solution to Ωf (XE, ·) = dE on Pf and there are additional solutions

to Ωf (XE, ·) = dE related by vector fields in the kernel of FLf∗
15

14See B.2 for proof.
15See B.3 for proof.
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Proposition 2.3 implies that every solution to the Lagrangian equations of motion on the final

constraint surface corresponds to a solution to the Hamiltonian equations of motion on the

final constraint surface and vice versa. Moreover, there is not a one-to-one correspondence

of solutions in the same way that there is no one-to-one correspondence of null vector fields.

This shows that the relationship between the Lagrangian and Hamiltonian theories defined

on the final constraint surfaces is the same as the relationship between the theory defined

on T∗Q and the theory defined on the primary constraint surface: we can map solutions

to solutions, but only up to symmetries on the Lagrangian side, where the symmetries

are generated by null vector fields. Therefore, we can say that the theories formulated on

the final constraint surfaces are dynamically equivalent, in the sense that they agree on

the equivalence class of solutions. This provides a partial response to the claim that the

Extended Hamiltonian formalism is inequivalent to the Lagrangian formalism: there is in

fact an alternative formulation of Lagrangian gauge theories that is dyanmically equivalent

to the Extended Hamiltonian formalism in the same way that the original formulation of

Lagrangian mechanics is dynamically equivalent to the Total Hamiltonian formalism.

Figure 2.2: Relationship between final constraint surfaces.

However, we do not yet have a way to provide a stronger, theoretical equivalence result. In

particular, we need a way of characterizing the claim that XE is equivalent to XE + Yi for

Yi ∈ Ker(FLf∗), or more generally, we need a way of characterizing the structure of the

theories that includes the transformations generated by the null vectors. Moreover, although

we have defined a map from the final Lagrangian constraint surface to the final Hamiltonian
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constraint surface, and we can use this to pull back structures from the Hamiltonian model

to the Lagrangian model, we do not yet have the tools to set up a categorical equivalence

result analogous to the result in Barrett (2019) since FLf is not a diffeomorphism and so

it is not related to the fiber derivative of the Hamiltonian on the constraint surface in the

right way.

Before turning to how we might set up a categorical equivalence result, let us consider how

the situation changes when we also have second-class constraints on the Hamiltonian side.

Since we assumed that there are no ineffective constraints, this means that we only need to

consider the case where we have primary second-class constraints, since the time derivative

of these constraints will generate any additional second-class constraints.

We have shown that we can relate the first-class constraints to null vector fields on the La-

grangian side. But since second-class constraints do not correspond to null vector fields, we

cannot relate them to a Lagrangian constraint in the same way. However, it turns out that

for every (distinct) primary second-class Hamiltonian constraint, there is a corresponding

(distinct) Lagrangian constraint whose associated vector field is not null. In particular, the

additional Lagrangian constraints are the pullback under the (induced) Legendre transfor-

mation of the time derivative of a second-class Hamiltonian constraint.16 Generalizing, the

final Lagrangian constraint surface will be reduced by the number of second-class constraints

on the Hamiltonian side.

2.7 Reduction and Equivalence

Although we now have a picture under which both the Lagrangian formalism and the Hamil-

tonian formalism can be written intrinsically on constraint manifolds that are systemically

related, we do not yet have a theoretical equivalence result. Recall that the barrier is that
16For details, see Batlle et al. (1986); Pons (1988).
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we do not have a way to define a translation from Lagrangian to Hamiltonian models and

vice versa via the relationship between FL, FL−1, FH and FH−1 since the final constraint

submanifolds are not of the same dimension.

However, there is an indication that we should be able to set up an equivalence result:

while the dimensions of the final constraint surfaces are different, the difference seems to be

due to arbitrariness in the Lagrangian formalism coming from the null vector fields in the

kernel of FLf∗. Indeed, if we take null vector fields to generate symmetries, then there is

an argument that once we have accounted for all of the symmetries, the two formalisms are

in complete agreement. One way of thinking about ‘accounting for the symmetries’ is to

consider whether there is a way to characterize the theories in terms of the equivalence class

of states along the integral curves of the null vector fields. In fact, there is a well-known

construction for specifying a Hamiltonian theory in terms of the equivalence class of states

called reduction: the process of reduction defines a manifold that “quotients out” the gauge

transformations. This is not a construction that one often finds discussed for a Lagrangian

theory.17 However, we have shown that we can think of a Lagrangian gauge theory in an

analogous way to the Hamiltonian formalism as defined on a pre-symplectic manifold. This

suggests that we should be able to equally construct a reduced space for the final Lagrangian

constraint surface. The question then becomes: are the reduced versions of Lagrangian and

Hamiltonian gauge theories categorically equivalent?

The reason that reduction will help us to set up a categorical equivalence result is that one

can show that reduction induces a symplectic two-form on the reduced space. Recall that

being symplectic means that the Lagrangian/Hamiltonian models are regular : the two-form

is non-degenerate and so we can, at least locally, define the inverse of the fiber derivatives.

Therefore, if we can show that the Legendre transformation of a reduced Lagrangian model

gives rise to a reduced Hamiltonian model and vice versa, then this suggests that we can set

17An exception is Pons et al. (1999).
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up an equivalence result in an exactly analogous way to Barrett (2019), if we restrict to the

hyperregular reduced models.

In order to show that this is indeed possible, we will show that the dimensions of the re-

duced spaces related by FLf are the same, that the structures defined on this space can be

inherited from the final constraint surface in a natural way, and that the image of the Legen-

dre transformation of the reduced Lagrangian space is precisely the corresponding reduced

Hamiltonian space. These will provide the tools to prove categorical equivalence between

classes of models of the reduced theories.

Consider first a presymplectic Hamiltonian manifold (Σ, ω̃, H) that is foliated by the gauge

orbits at each point. We can define a smooth, differentiable manifold Σ̄ by taking the quotient

of Σ by the kernel of ω̃ i.e. the null vector fields of ω̃. Recall that the integral curves of

the null vector fields define the gauge orbits, and so the points of the quotient manifold are

just the equivalence class of points along the gauge orbits. This is well-defined since the

gauge orbits foliate the constraint surface in such a way that one can define a transverse

manifold that meets each leaf of the foliation in at most one point i.e. through each point

there is only one gauge orbit.18 Recall that on the final constraint surface, the dimension

of the gauge orbits is the number of first-class constraints Mf and the dimension of Σf is

2N −Ms −Mf where N is the dimension of configuration space and Ms is the number of

second-class constraints. So the quotient manifold of the final Hamiltonian constraint surface

Σ̄ has dimension 2N −Ms − 2Mf .

Define an open, surjective projection map π : Σf → Σ̄ such that we define the reduced

two-form ω̄ via ω̃f = π∗(ω̄), which acts according to ω̄(X̄, Ȳ ) = ω̃f (X, Y ). One can show

that ω̄ is well-defined and is symplectic.19 We can also define a reduced Hamiltonian H̄ as

18See Souriau (1997) §5 ans §9 for details.
19It is well-defined since the value of ω̃f doesn’t depend on which point along the gauge orbit one considers.

It is closed since ω̃f is closed and π is a surjective submersion, and it is non-degenerate since Ker(ω̄) =
Ker(ω̃f )/Ker(ω̃f ) = 0.
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the value of H on the equivalence class of points along the gauge orbits i.e. H = π∗(H̄).

This is well-defined because H is constant along the gauge orbits on the final constraint

surface (since the solutions to the equations of motion are tangent to the final constraint

surface). We can therefore write the equations of motion on the reduced space in terms of

the reduced Hamiltonian H̄ as ω̄(XH̄ , ·) = dH̄, and the solutions are just the projection of

the solutions to the equations of motion on Σf to Σ̄: they are just the solutions defined for

the gauge-invariant quantities.

To summarize, there is a well-defined Hamiltonian theory on the reduced space of the final

Hamiltonian constraint surface in terms of a symplectic two-form and a reduced Hamiltonian

function. However, this only required that we had a presymplectic manifold with a foliation

induced by the null vector fields of the associated two-form and that the Hamiltonian function

was constant along the gauge orbits. Given that the same is true for the Lagrangian final

constraint surface, we can do the same reduction procedure on the Lagrangian side to produce

a reduced Lagrangian space. This will have dimension 2N − 2La − Lb where La is the

number of Lagrangian constraints associated with null vector fields and Lb is the number of

additional Lagrangian constraints. As in the Hamiltonian case, because the energy function

E is constant along gauge orbits on the final constraint surface, the reduced Lagrangian

function L̄ will be well-defined as well. We can therefore write the equations of motion

as Ω̄(XĒ, ·) = dĒ where Ē is the energy function associated with L̄ and Ω̄ is the reduced

symplectic two-form.

Let us now turn to the relationship between the models of the reduced theory. First, let

us consider the relationship between the dimensions of the reduced spaces corresponding to

models on the final constraint surfaces Pf ,Σf that are related via FLf . Recall that the

dimension of the Lagrangian final constraint surface Pf is equal to the dimension of the

Hamiltonian final constraint surface Σf plus the number of primary first-class constraints.

But recall also that the dimension of the kernel of Ωf is equal to the number of first-class
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constraints plus the number of primary first-class constraints. Therefore, the dimension of

the reduced Lagrangian space P̄ is equal to the dimension of the Hamiltonian constraint

surface Σf minus the number of first-class constraints. But this is just the dimension of the

reduced Hamiltonian space, Σ̄. Therefore, the dimensions of the reduced Lagrangian final

constraint surface and the reduced Hamiltonian final constraint surface are equal.

Now define an induced transformation F̄ : P̄ → Σ̄ that satisfies πH ◦ FLf = F̄ ◦ πL where

πH : Σf → Σ̄ and πL : Pf → P̄ are the projection maps. This provides a way to map from

the reduced Lagrangian space to the corresponding reduced Hamiltonian space. Moreover,

notice that since L̄ is regular (since the induced two-form is symplectic), the Legendre

transformation on P̄ will be a local diffeomorphism. And since P̄ and Σ̄ have the same

dimension, the induced transformation F̄ is precisely the Legendre transformation on P̄ , FL̄.

That is, F̄ : P̄ → Σ̄ is the Legendre transform on T∗Q, FL, projected to the reduced space.

Similarly, since H̄ is regular, the fiber derivative of H̄, FH̄, will be a local diffeomorphism

and it will map Σ̄ to P̄ . Using the reduced Legendre transformation, one can also show that

the reduced symplectic two-forms are related via FL̄∗(ω̄) = Ω̄ and the reduced Hamiltonian

and energy function are related via FL̄∗(H̄) = Ē.20

Finally, since (Pf , Lf ) is, by assumption, an almost regular system, (P̄ , L̄) will also be almost

regular. This implies that FL̄ is injective 21. Moreover, the image of FL̄ is Σ̄ by construction

so FL̄ is surjective. But this means that FL̄ is a global diffeomorphism, and so (P̄ , L̄) is in

fact a hyperregular system. Therefore, we can define the inverse FL̄−1 : Σ̄ → P̄ . This allows

us to define H̄ = Ē ◦ FL̄−1.

Therefore, for an almost regular Lagrangian model defined on the final constraint surface, we

can construct a reduced model such that this model is hyperregular and its Legendre trans-

20To see this, notice that π∗
L(F̄L

∗
ω̄) = FL∗

f (π
∗
H ω̄) = FL∗

f ω̃f = Ωf . Since πL is a surjective submersion,
this implies that FL̄∗(ω̄) = Ω̄. The second follows by similar reasoning.

21The reason is that for an almost regular system the image of the Legendre transformation is the leaf
space of the foliation generated by the kernel of the pushforward of the Legendre transformaiton. When a
system is regular, this kernel is zero, and so it must be injective.
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formation is precisely the (hyperregular) reduced model of the corresponding Hamiltonian

final constraint surface. This implies that as long as we are concerned with almost regular

Lagrangian models and their corresponding Hamiltonian models, the reduced formulations

of these theories bear exactly the same relationship as hyperregular models of Lagrangian

and Hamiltonian mechanics.

Figure 2.3: Relationship between reduced spaces.

We are now at the point where we can set up an equivalence result. Recall that in order

to do so, we need to define the models and symmetries of the associated theories. In the

hyperregular case given by Barrett (2019), the symmetries were the point-transformations

that preserved the Lagrangian/Hamiltonian. However, in order for the point-transformations

to be well-defined for the reduced theories, we need that the reduced state space has the

form of a (co)tangent bundle. This is not guaranteed by the above; at least, it will de-

pend upon the particular nature of the constraints and the gauge transformations.22 On

the other hand, we do have that the reduced spaces are symplectic manifolds. Therefore, it

seems that the natural notion of symmetry is rather given by symplectomorphisms: diffeo-

22Moreover, even if one could think of the reduced state space as having the structure of (co)tangent
space, it isn’t clear that one would want the symmetries to be given by point-transformations. As Barrett
(2015b) shows, there are point∗-transformations that don’t preserve an arbitrary symplectic two-form on
T∗Q. One might conclude from this that point∗-transformations are not the relevant symmetries to consider
for the reduced Lagrangian models, since the symplectic two-form is an integral part of the construction of
these reduced models.
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morphisms that preserve the symplectic two-form on the reduced space (and preserve the

Lagrangian/Hamiltonian).

So let us define the category LagR as having objects (P̄ , Ω̄, L̄) and take the arrows between

objects (P̄1, Ω̄1, L̄1) and (P̄2, Ω̄2, L̄2) to be given by symplectomorphisms i.e. diffeomorphisms

f : P̄1 → P̄2 such that f ∗(Ω̄2) = Ω̄1, that preserve the Lagrangian in the sense that f ∗L̄2 =

L̄1.

Similarly, define the category HamR as having objects (Σ̄, ω̄, H̄) and take the arrows be-

tween objects (Σ̄1, ω̄1, H̄1) and (Σ̄2, ω̄2, H̄2) to be given by symplectomorphisms g : Σ̄1 → Σ̄2

such that g∗(ω̄2) = ω̄1, that preserve the Hamiltonian in the sense that g∗H̄2 = H̄1.

Define the functor J that takes the object (P̄ , Ω̄, L̄) to (Σ̄, Ω̄ ◦ FL̄−1, Ē ◦ FL̄−1) and that

takes the arrow f : P̄1 → P̄2 to FL̄2 ◦ f ◦ FL̄−1
1 . Similarly, define the functor K that takes

models (Σ̄, ω̄, H̄) to (P̄ , ω̄ ◦FH̄−1, (θ̄a(XH̄)
a − H̄) ◦FH̄−1) where θ̄ is the reduced one form,

and arrows g : Σ̄1 → Σ̄2 to FH̄2 ◦ g ◦ FH̄−1
1 .

Proposition 2.4: J : LagR → HamR and K : HamR → LagR are equiva-

lences that preserve solutions.23

2.8 Upshots

Proposition 2.4 tells us that there is a formulation of irregular Lagrangian mechanics that is

theoretically equivalent to a formulation of irregular Hamiltonian mechanics. More precisely,

it tells us that the categories of hyperregular reduced models of the final constraint surfaces

are equivalent. This is significant for several reasons.

23See B.4 for proof.
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First, we discussed in Section 2.3 the view that the correct Hamiltonian formulation is the

Total Hamiltonian formalism on the basis that it is equivalent to the Lagrangian formalism

in the context of gauge theories. But our arguments have suggested that in fact the Ex-

tended Hamiltonian formalism can be motivated in a similar, and even stronger, way: there

are reasons to move to the final Lagrangian constraint surface from the perspective of the

Lagrangian formalism, and not only can the models formulated on the Lagrangian final con-

straint surface be said to be dynamically equivalent to models of the Extended Hamiltonian

formalism, one can also give a stronger, theoretical equivalence result between the reduced

versions of such models.

In order to deny that such results provide support for the Extended Hamiltonian formalism,

one would have to maintain that there is something mistaken about the Lagrangian constraint

formalism that we presented. One avenue might be to argue that we shouldn’t think of

Lagrangian constraints as imposing a restriction on the state space of Lagrangian mechanics:

they should be thought of as dynamical constraints and not kinematical constraints, and

therefore they should place a restriction only on the dynamically possible models and not

the kinematically possible models. In this view, the correct formulation of the kinematically

possible models is given by the usual tangent bundle formulation and the formulation on

the Hamiltonian primary constraint surface. In further support for this view, one might

point to the fact that the categorical equivalence result that we presented goes through for

this characterization of irregular Lagrangian and Hamiltonian models: it corresponds to the

special case where there are no Lagrangian/secondary constraints.24

Although this response highlights interesting questions about the role of kinematics vs. dy-

namics in evaluating constraints, I think that there are good reasons to think that this

distinction is not significant. For one, the dynamical solutions that we get are the same

24However, such an equivalence result is complicated by the fact that the solutions to the equations of
motion are not tangent to the constraint surface in the case where there are Lagrangian/secondary constraints
that are not represented in the structure of the state space, and so the reduced equations of motion are not
well-defined. See Pons et al. (1999) for further discussion.
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whether we define the equations of motion intrinsically on the final constraint surface or

we consider the equation of motion on the tangent bundle and then impose the constraints.

Therefore, there isn’t any clear empirical difference between these formulations. Second,

there is a natural sense in which the formulations on the final constraint surfaces have less

structure: there are more symmetries of the theories formulated on the final constraint sur-

faces than on the tangent bundle/primary constraint surface since there are more null vector

fields.25 And so, if one is motivated by parsimony considerations, it is natural to think that

the final constraint surface is the right intrinsic formulation of the theory.

Second, showing that there is an equivalence between Lagrangian and Hamiltonian gauge

theories suggests that it is wrong to view one formulation as more fundamental than the other

since they have the same underlying structure. This is interesting because the usual way

of setting up the Hamiltonian formalism in the presence of constraints is by starting with a

Lagrangian formulation and using it to define the primary constraints and Total Hamiltonian,

which suggests that the Lagrangian formulation is more fundamental. On the other hand,

the equivalence result suggests that one can instead start with a Hamiltonian theory with

constraints, reduce the final constraint surface, and use this to define the corresponding

Lagrangian theory.

Moreover, it is often assumed that in order to find the gauge-invariant degrees of freedom, one

ought to use the Hamiltonian formulation. For example, Earman (2002b) says: “Is there then

some non-question begging and systematic way to identify gauge freedom and to characterize

the observables? The answer is yes, but specifying the details involves a switch from the

Lagrangian to the constrained Hamiltonian formalism." The reason is that the constrained

Hamiltonian formulation draws out the connection between constraints and gauge symmetry:

the gauge transformations are those transformations generated by arbitrary combinations

of first-class constraints, and we can define the observables as just those quantities whose

25cf. Section 1.8.1.
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Poisson bracket with the first-class constraints is zero. In the usual way of expressing the

Lagrangian formulation, we find the symmetries by using Noether’s second theorem, which

doesn’t directly connect the idea of constraints and observables. The geometric formulation

shows that if the focus is on the null vector fields of the associated two-form, then the

Lagrangian formulation draws out the gauge transformations in the same way.

However, there are several subtleties with the equivalence result given by Proposition 2.4.

For one, we restricted to a subset of the Lagrangian models, the ‘almost regular’ ones,

and then considered the corresponding Hamiltonian models defined via the Legendre trans-

formation. While we were able to show that the almost regular Lagrangian models have

hyperregular reduced models, and therefore that the Hamiltonian models defined from these

models also have hyperregular reduced models, we did not show that this exhausts the class

of hyperregular reduced models. It would therefore be interesting to consider whether there

are hyperregular reduced models that cannot be thought of as coming from a ‘gauge theory’

in the sense of being an almost regular Lagrangian model or its corresponding Hamiltonian

model. Moreover, ‘almost regularity’ referred to the Lagrangian model, but there doesn’t

seem to be a clear Hamiltonian analogue: the fiber derivative of the Hamiltonian on the

primary/final constraint surface does not construct an almost regular Lagrangian model.

Therefore, it seems that we need some alternative way to characterize the relevant class of

gauge theories in Hamiltonian terms.26 These subtleties suggest that there is more work to be

done in motivating the physical reasonableness of restricting to hyperregular reduced models

to show equivalence between irregular models of Lagrangian and Hamiltonian mechanics.

Another subtlety of the equivalence result is that symplectic reduction can lead to counter-

intuitive conclusions, which has led several authors to argue that one should not reduce

gauge theories (at least in certain contexts). The most notable example of this is the Problem

26For example, is it the case that any regular Hamiltonian theory with the addition of constraints give
rise to a constraint surface model that is the Legendre transformation of some almost regular Lagrangian
model?
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of Time: when one reduces theories that are time reparameterization invariant, one ends

up with a theory with no meaningful notion of evolution. If one finds these arguments

convincing, then one might think that the equivalence result given by Proposition 2.4 is

irrelevant; what matters is not whether the reduced theories are equivalent, but whether the

unreduced theories are.

I take this to be an important limitation of the arguments presented here. However, one

response is to point out that all one has done by moving to the theory formulated on the

reduced space is to equivocate between states/solutions that are symmetry-related in the

theory formulated on the final constraint surface. Therefore, if we interpret symmetry-related

states/solutions as equivalent, then arguably the theories defined on the final constraint

surface and on the reduced space have the same (symmetry-invariant) content. This suggests

that even if one doesn’t have a categorical equivalence result directly between classes of

models on the final constraint surface, one can infer that they are equivalent from the fact

that the reduced theories are equivalent.27

There is an interesting connection here to another strand of literature: the difference be-

tween ‘reduction’ and ‘sophistication’ (Dewar (2019)). A sophisticated version of a theory is,

broadly, one where all the transformations that we take to be symmetries are isomorphisms

of the models of the theory. Dewar (2019) conjectures that the sophisticated and the reduced

versions of a theory are categorically equivalent. Here, we have defined and compared the

reduced versions of Lagrangian and Hamiltonian gauge theories. But what do the corre-

sponding sophisticated versions of the theories look like? Arguably, the theories formulated

on the final constraint surfaces are ‘sophisticated’, in the sense that the symmetries – the

gauge transformations – are isomorphisms of the models of the final constraint surface. This

will be explored further in Chapter 4.

27Indeed, I think one could spell out a categorical equivalence result directly between classes of models
on the final constraints surface. However, setting up such a functor is less clear than it is for the reduced
theories, which is why this was not the approach taken in this chapter.
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2.9 Conclusion

To conclude, I have argued that there is a sense in which Lagrangian and Hamiltonian gauge

theories are equivalent by showing that one can formulate these theories geometrically on

a presymplectic constraint manifold such that the hyperregular class of reduced models of

these constraint models are categorically equivalent and agree dynamically. This provides

an extension to the result in Barrett (2019) that hyperregular Lagrangian and Hamiltonian

theories are categorically equivalent. Moreover, this extension sheds light on philosophical

debates regarding the definition and interpretation of gauge transformations. In particu-

lar, in showing that one could motivate a formulation of Lagrangian gauge theories that is

equivalent to Extended Hamiltonian formalism, we thereby demonstrated that the Extended

Hamiltonian can be motivated from the perspective of the Lagrangian formalism, contrary

to claims found in the literature.

However, this equivalence result relied on several important assumptions that are not relevant

in the case considered by Barrett (2019). First, it depended on how we understand the role

of constraints in the construction of the models of the theories. Second, it depended upon an

interpretation of the null vector fields of a presymplectic two-form as generating the (gauge)

symmetries of the theory. Finally, it depended upon reduction, and restricting to the class

of hyperregular reduced models, being justified. Inasmuch as all of these assumptions are

disputable, there remain interesting questions regarding the relationship between Lagrangian

and Hamiltonian gauge theories.

Moreover, while categorical equivalence suggests that we can move back and forth inter-

changeably between Lagrangian and Hamiltonian gauge theories, there were several subtleties

regarding the way that we defined the categories of the models of these theories that suggest

possible avenues for maintaining that one framework is a more natural expression of gauge

theories than the other. For example, the (pre)symplectic structure of Lagrangian mechanics
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was motivated by thinking about the Hamiltonian (pre)symplectic structure, and the class of

Hamiltonian models for which categorical equivalence held were defined in terms of the La-

grangian models that they were related to. Whether one should think that (pre)symplectic is

faithful to the structure of Lagrangian mechanics, and whether one can motivate the class of

Lagrangian gauge theories in terms of Hamiltonian quantities, are open questions that would

further deepen the understanding of the relationship between Lagrangian and Hamiltonian

gauge theories.
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Chapter 3

The Representational Role of

Sophisticated Theories

3.1 Introduction

How should one remove “excess structure” from a physical theory? Dewar (2019) presents two

ways to undertake such a task: first, one could move to a reduced version of the theory, where

the models of the reduced theory are specified only in terms of structure that is invariant

under the symmetries of the original theory. Second, one could move to a sophisticated

version of the theory, where one defines additional maps between models of the original theory

that preserve the structure invariant under the relevant symmetries such that symmetry-

related models can be regarded as isomorphic. Dewar argues that despite these alternatives

attributing the same structure to the world, the sophisticated version can have explanatory

benefits over the reduced version.

Here, I provide a different argument in favour of sophistication: there are concrete cases where

distinct physical situations are more naturally represented by the sophisticated theory than
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the reduced theory. The reason, I argue, is that the models of a sophisticated theory have

further resources than the models of a reduced theory for representing additional detail about

physical situations such that the sophisticated theory can draw more physical distinctions

than the reduced theory. While it has been argued elsewhere that isomorphic models can be

used to represent distinct situations,1 these arguments do not directly show that the reduced

version of a theory is representationally lacking. Indeed, if the reduced version of a theory

posits the same structure as the sophisticated alternative, how can the sophisticated version

represent a greater number of physical distinctions?

I will argue that this tension can be resolved by considering more carefully the ways that

isomorphic models can be used to represent distinct situations. I present a division between

two kinds of structure in the context of a theory that I call theoretical structure and auxiliary

structure, and I demonstrate that auxiliary structure can be used to play a representational

role in the sophisticated theory in a way that is absent in the reduced theory. In particular, I

will argue that the sense in which isomorphic models of a sophisticated theory can represent

distinct situations is that one has the freedom to define auxiliary structure within these

models that can be used to represent a physical standard of comparison. It is the ability

to fix this additional structure that in certain cases is lacking in the reduced version of the

theory, since one may not have the same representational freedom associated with auxiliary

structure within the models of the reduced theory. This will provide support for the claim

that the sophisticated version of a theory can be representationally advantageous to its

reduced version, without rejecting the claim that the sophisticated and reduced versions of

a theory ascribe the same structure, when this structure refers to theoretical structure.

1For instance, Belot (2018); Fletcher (2020); Roberts (2020).
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3.2 Removing Excess Structure

The background situation is that we have a theory that we believe has excess structure,

in the following sense: there are models of the theory that are distinct, or more precisely,

non-isomorphic, that nonetheless are related by a symmetry.2 The symmetry between these

distinct models is such that we think these models ought to be taken to represent a single

physical situation. And yet, in being distinct models, the natural interpretation of the theory

is that these models represent distinct physical situations. Therefore, the theory attributes

structure to the world that we do not believe corresponds to anything physical.

There are several interpretive assumptions in the background of this argument for the pres-

ence of excess structure.3 For one, there is an assumption that when models are non-

isomorphic, they cannot be interpreted as representing the same physical situation. This

relies on taking seriously the claims of the theory in the sense that differences between the

models of the theory are taken to correspond to differences in the physical situations rep-

resented by such models. Inasmuch as we take the aim of physical theories to be that they

capture the structure that the world and its parts have, this seems to be a natural assump-

tion. Notice, however, that the argument does not seem to require that we take our theory to

be a full description of all the structure of the world; only that the structure it does describe

corresponds to structure in the world. We will return to this point later on.

Given that we find ourselves in such a situation, the aim is to find a way to adapt the theory

such that it no longer has excess structure. In a recent paper, Dewar (2019) presents two

ways to do this.

The first is reduction. Reduction alters the syntax of a theory by defining the theory in terms

of quantities that are invariant under the relevant symmetries. This effectively equivocates

2Precisely how to characterize this symmetry is debatable. Broadly, the symmetry is such that it preserves
the dynamics of the theory. See Belot (2013) for discussion.

3For further discussion, see Earman (2004); Ismael and Van Fraassen (2003); Dasgupta (2016).
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between the non-isomorphic models related by the relevant symmetries in the original theory

such that they correspond to identical models in the reduced theory. This is arguably the

standard method for removing excess structure from a theory.

The second is sophistication. Sophistication keeps the syntax of the theory the same but

instead alters the semantics of the theory with respect to which the theory is interpreted so

that the relevant symmetries act as isomorphisms under the new semantics.4 Inasmuch as

isomorphisms preserve the structure of the models of a theory, the natural interpretation of

isomorphic models is that they correspond to a single physical situation. Therefore, one has

removed excess structure not by redefining the models of the theory, but by redefining the

symmetries of the theory.5

To see this distinction in action, we will consider an example from Dewar (2019) of a theory

that describes physical situations in which every object is ‘handed’. Call this theory TH in

the signature Σ = {L,R} and take it to be described by the following axioms, which say

that every object is (excusively) either ‘left’ or ‘right’ handed:

∀x(Lx ∨Rx)

∀x¬(Lx ∧Rx)

This theory has excess structure in the following sense. Consider, for example, two models

of the theory with the same domain where in one model all objects have the property L

while in the second model all objects have the property R. These models are non-isomorphic

4One can spell out sophistication as introducing additional maps (‘arrows’) into the category of models
of the theory and specifying their inverse and compositions with other maps. This procedure is described in
Weatherall (2016a), although Dewar (2019) coins the term ‘sophistication’ for this procedure.

5There is a more fine-grained distinction that Dewar gives between ‘internal’ and ‘external’ sophistication,
where the difference is whether one uses new mathematical tools to define the models of the theory such that
there is a natural isomorphism between them, or whether one stipulates what counts as an isomorphism.
This distinction will not be crucial for the purposes of this chapter.
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within TH ; the map taking L to R and vice versa doesn’t preserve the extension of these

properties. And yet, these models are symmetry-related: intuitively, if we imagine the

physical situation represented by one of these models, it is indistinguishable from the physical

situation represented by the other model; both models correspond to a situation where

everything is handed in the same way. More generally, any two models that are related by

‘flipping’ the handedness for each object are symmetric in this way. Therefore, there are

distinct models in the theory that are symmetry related, and this indicates that TH has

excess structure.

To describe a reduced version of the theory, TR, we need to define the theory in terms

of quantities that are invariant under the relevant symmetry. An obvious candidate is a

congruence relation, Cxy, that specifies whether two objects have the same handedness or

not. It can be defined via:

∀x∀y(Cxy⇐⇒((Lx ∧ Ly) ∨ (Rx ∧Ry)))

We can then specify TR in terms of axioms for Cxy that say that this relation is an equivalence

relation with two equivalence classes.

To define a sophisticated version of the theory, TS, we need to alter the semantics of TH such

that the symmetry-related but non-isomorphic models of TH are treated as isomorphic. We

can do this by defining an invertible homomorphism h from a model m to a model n that

consists of a map h1 : |m| → |n| and a bijection h2 : {L,R} → {L,R} such that:
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h1[L
m] = (h2(L))

n

h1[R
m] = (h2(R))

n

This homomorphism is such that it can map ‘left’ hands to ‘right’ hands across models

(and vice versa).6 In this way, the homomorphism need not preserve the extension of the

properties given by L and R and so there is no longer a well-defined notion of trans-model

identity for the terms ‘left’ and ‘right’. Thus, while models related by a change in handedness

for all objects were non-isomorphic in TH , they are isomorphic in TS.

3.2.1 Dewar’s Two Claims

There are two central claims that Dewar (2019) makes regarding the comparison between

the reduced and sophisticated versions of a physical theory:

1. The reduced and sophisticated versions of a theory are theoretically equivalent.

2. The sophisticated version of a theory has explanatory benefits compared to the reduced

version.

To unpack the first claim, we need a better grasp on what it is for two versions of a theory

to be “theoretically equivalent". Dewar (2019) argues that the reduced and sophisticated

versions of a theory are equivalent in the sense of categorical equivalence:

Take the category of models of the reduced theory to be Mod(TR) and the cate-

gory of sophisticated models to be mod(T ). Then, there is a (reasonable) functor

F : mod(T ) →Mod(TR) that is full, faithful, and essentially surjective.
6Following footnote 5, this is the external way of defining the sophisticated theory.
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Categorical equivalence as a notion of theoretical equivalence has been defended elsewhere,7

but the important feature of categorical equivalence here is that it captures the relationship

between models; in particular, the equivalence between models that are stipulated to be

isomorphic in a sophisticated theory.

Turning to the second claim, Dewar (2019) says that:

“The reduced theory treats the invariant quantities Q as primitives; this means

that if some q ∈ Q obeys some non-trivial condition as a result of its definition

(in the unreduced theory), it must be asserted to obey that condition (in the

reduced theory) as a simple posit." (p.496)

In other words, the reduced theory comes at an explanatory loss in the sense that the reduced

theory must stipulate certain conditions that fall out naturally from the unreduced theory.

Since the sophisticated version of the theory does not change the syntax of the theory, it

does not come with the same loss.

In the handedness theory, for example, there is a fact in the sophisticated theory that must

be assumed in reduced theory: the claim that the congruence relation Cxy is symmetric.

In the reduced theory, this claim is one of the axioms, while in the sophisticated theory, it

follows automatically from the axioms. Therefore, on the above account, the sophisticated

theory explains this claim better.

There are some immediate worries regarding the explanatory account. First, one might

question the significance of some fact being a posit in a theory rather than a consequence

of a theory’s axioms for the purpose of assessing the overall quality of some theory. Second,

one might argue that the reduced theory also has explanatory benefits. For example, while

the equivalence between certain models is stipulated in the sophisticated theory, it follows

7See Weatherall (2019b) for an overview and references therein.
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automatically if one takes the physical structure to be that given by the reduced theory. If

both the reduced and sophisticated versions of a theory have explanatory benefits, how do

we weigh them up to determine which theory is “better"?8

In what follows, I will not aim to resolve these worries. Instead, I will provide an alternative

reason to prefer sophisticated theories and suggest that it is a more robust argument in

favor of sophistication by being less susceptible these worries. One might see this alternative

reason as supporting a version of the explanatory account; I will discuss this possibility

briefly at the end of Section 3.3.

3.3 The Representational Benefit of Sophistication

The alternative reason to prefer sophisticated theories is that they can have representational

benefits: Isomorphic models in a sophisticated theory that correspond to identical models

in a reduced theory can be used to represent physical situations for which we have a prior

commitment to them being distinct in a way that the corresponding reduced models cannot.

Varieties of this point have been made previously. For one, there is a strand of literature on

the empirical significance of symmetries that aligns closely with the idea that for represent-

ing subsystems, symmetry-related models can characterize empirically distinct situations.9

Meanwhile, Belot (2018) and Fletcher (2020) argue that there is a sense in which isomorphic

models can be said to generate distinct possibilities through the maps that relate them.

Finally, the partial observables approach to gauge variables pioneered by Rovelli (2004)

presents a picture under which symmetry-variant features of a theory can be representa-

8Dewar (2019, fn. 27) notes that his point is only that reduction has some explanatory deficiency, but
the question of whether there is a stronger way to argue for sophistication still stands. See also Martens and
Read (2021).

9See in particular Wallace (2022).
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tionally useful. However, I take the novelty of my approach to be the focus on solving the

following puzzle:

Puzzle: How can a sophisticated theory have representational advantages com-

pared to a reduced theory if they are theoretically equivalent, and so have the

same content?

My resolution to this puzzle draws on a distinction between two kinds of structure that

one can define in the context of a theory, which I call ‘theoretical structure’ and ‘auxiliary

structure’ respectively.

Theoretical Structure is the structure that a theory attributes to the world in virtue

of its “invariant” content; the content that is invariant under isomorphisms of the models

of the theory. In other words, when models are isomorphic, they are equivalent in terms

of theoretical structure. Moreover, one can exemplify the theoretical structure through the

equivalence classes of the theory. This is indeed the standard way of explicating mathematical

structure, and it is the structure that notions such as ‘categorical equivalence’ aim to capture.

Auxiliary Structure is the structure that one can define in the models of a theory in

virtue of the way that one characterizes the theoretical structure. The auxiliary structure

goes beyond the theoretical structure in that the mathematical tools one uses to characterize

the theoretical structure may have further resources, such that one can differentiate more

structure than simply the theoretical structure. In particular, it is only through auxiliary

structure that one can talk about differences between isomorphic models. Of interest here

is precisely the auxiliary structure that goes past the theoretical structure in this way.

To see this distinction in the handedness theory example, consider a model M of TH con-

sisting of two objects labelled a and b where RM = a and LM = b. Now consider a second

model N of the theory that consists of permuting the domain of the first model and pushing
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forward the properties such that RN = b and LN = a. These two models agree on theoretical

structure since they agree on how many objects have each handedness property. However,

there is a difference between the models that one can describe using auxiliary structure: in

model M object “a" is right-handed, while in model N , “a" is left-handed (and vice versa

for object “b").

While reference to the domain of the models is one place where auxiliary and theoretical

structure can diverge, the importance of these two kinds of structure in the handedness

theory example arises when thinking about how they differ between the original, reduced,

and sophisticated theory. In TH , the theoretical structure and the auxiliary structure both

include handedness structure i.e. structure through which one can define ‘left’ and ‘right’

hands as distinct. In TR, neither the theoretical structure nor auxiliary structure include

handedness structure; while one can say whether hands are congruent or not, one cannot say

which are ‘left’ or ‘right’.10 In TS, the theoretical structure and auxiliary structure diverge

in a special way: the theoretical structure does not include handedness structure but the

auxiliary structure does, since unlike in the reduced theory, one has access to the properties

L and R in describing the models of the theory.

Usually, theoretical structure is understood to give the content of a theory and auxiliary

structure is regarded as mere descriptional redundancy; it has to do with one’s pragmatic

choice of representation. On this understanding, isomorphic models have equivalent content

and any differences between them described by auxiliary structure do not have any bearing

on the representational capabilities of these models. However, I will argue against this view:

auxiliary structure is not just descriptional redundancy but can have a representational role,

and this is true even if one understands the theoretical structure to give the content of the

theory. This will provide support for the claim that the sophisticated version of a theory

10In addition, one cannot reintroduce L and R in the reduced theory by fixing an element and saying any
other element is L if it is congruent with the fixed element and R otherwise, since the theory doesn’t allow
one to identify a specific element.
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can have representational benefits over the reduced version. I argue for this position through

three claims:

Claim 1: Isomorphic models can equally well represent a single physical situation

in virtue of being equivalent in terms of theoretical structure.

This claim captures one made elsewhere that isomorphic models have the same “represen-

tational capacities” (Weatherall (2018); Fletcher (2020)). However, the emphasis here is on

the role of theoretical structure – it is the theoretical structure that determines the extent

to which models are able to represent some physical situation. The reason is that it is the

theoretical structure that captures the physical content of the models of the theory, in the

sense of being the structure attributed by the theory to the world.

The second claim is that there is an importantly different sense in which isomorphic models

in a sophisticated theory can be physically distinguished:

Claim 2: Auxiliary structure can be used to provide physically relevant distinc-

tions between isomorphic models in a sophisticated theory.

In order to unpack this claim, let us return to the models of the sophisticated theory that

consist of only ‘left-handed’ objects and only ‘right-handed’ objects respectively. One might

argue that there is a natural sense in which they can represent distinct situations: they can

represent two physical situations where the objects are in different congruence classes. But

how is this compatible with the fact that these models have the same invariant structure

that captures the physical content of the theory?

One response is to say that one could simply stipulate the interpretation of the models to

be different, or, following Wallace (2022):
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“symmetry-related configurations can be understood as representing different pos-

sible configurations if we hold fixed the choice of representational convention.”

(p.337)

So in the above example, one might say that one could stipulate a standard of “left” across

the models such that they represent different physical situations relative to this standard.

But where does this representational convention come from, physically? In particular, since

the theoretical structure is not sensitive to such choice, in what sense can one impose it on

the models in order to distinguish the interpretation of these models?

Here is where auxiliary structure comes into play: the sense in which one can impose a phys-

ical representational convention across isomorphic models of a sophisticated theory, I argue,

is that one can use the auxiliary structure of the theory, through which one can distinguish

these models descriptionally, to represent further details about the physical situations rep-

resented by these models. When one can use auxiliary structure to represent an additional

system that acts as a reference frame, one can distinguish the situations represented by

isomorphic models that differ relative to the fixed auxiliary structure. For example, in the

sophisticated models discussed above, one can use the auxiliary structure corresponding to

the ability to define left and right handed objects to define a new object that is stipulated

to be ‘left-handed’ in both models, such that relative to this hand, the models are distinct;

one corresponds to the world where everything is congruent to this new hand, and the other

corresponds to the world where everything is not congruent to the new hand. This use of

auxiliary structure as defining a reference frame allows one to impose a representational

convention that has a physical interpretation.11

11This argument bears several similarities with Fletcher (2020), who argues that we can understand the
differences between isomorphic models in terms of the non-trivial maps that relate them. I take the view
presented here to be to complementary to Fletcher’s in that the reason auxiliary structure can be used to
distinguish isomorphic models is related to the fact that the isomorphisms act non-trivially on this structure.
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However, this would be of no interest if auxiliary structure could play the same role in the

reduced theory. This leads to the final claim:

Claim 3: Compared to the sophisticated theory, auxiliary structure in a reduced

theory is unable to provide the same physically relevant distinctions between

isomorphic models.

The reasoning is as follows. The reduction process equivocates between isomorphic models

in the sophisticated theory that are non-isomorphic in the original theory; they correspond

to identical models in the reduced theory. Therefore, while one could say that certain

isomorphic models in the sophisticated theory correspond to distinct physical situations

by using auxiliary structure to define a reference system, one cannot say the same of the

corresponding identical models in the reduced theory.

To see this clearly, consider the same models as before and consider adding a new object that

is handed in some way. We do not have the resources to stipulate that it represents a “left” or

“right” hand in the reduced theory; we can only stipulate that it represents, for example, some

hand congruent to all the hands in a model. But now, inasmuch as the models are identified

in the reduced theory, the additional structure will not be able to distinguish these models

by fixing its interpretation across them; if it is congruent to the hands in the first model,

it is congruent in an identical model. Therefore, while physically relevant distinctions could

be drawn between isomorphic models in the sophisticated theory using auxiliary structure,

one cannot draw such distinctions in the corresponding reduced models.

To say that the additional hand is congruent to the objects in one model but not in an iden-

tical model, one would need to stipulate some additional fact about the difference between

the two models, namely that all the hands in one model are in a different equivalence class

to those of the other. But this fact can only be specified when talking about the models

as subsets of a ‘larger’ model that includes the objects of both models, where the difference
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between the congruence of the objects can be specified in terms of theoretical structure. But

this move is something that can also be made in the sophisticated theory; what is lacking in

the reduced theory is the ability to distinguish these models without stipulating additional

inter-model relations that rely on theoretical structure.

The combination of these three claims highlights that isomorphic models in a sophisticated

theory play a multi-faceted role: they can be used to represent a single physical situation

(Claim 1), and they can be used to represent distinct situations through a physical interpre-

tation of the auxiliary structure as, for example, a fiducial system (Claim 2).12 Inasmuch as

this multi-faceted role is beneficial, Claim 3 demonstrates that the sophisticated version of

a theory can have a representational advantage over the reduced version. Moreover, these

three claims are compatible with the sophisticated and reduced theories being theoretically

equivalent in the sense of attributing the same theoretical structure. We therefore have

solved the puzzle stated earlier: there is no tension between a sophisticated theory having

representational benefits while also being theoretically equivalent to a reduced theory.

This representational argument for sophistication is arguably more robust that the explana-

tory argument given by Dewar (2019), for the following reasons. First, one can point to

precisely why a theory is superior if its models have the resources to represent a greater

number of physical distinctions than the models of another theory: inasmuch as these phys-

ical distinctions are ones that one thinks a theory ought to capture, a theory whose tools

prevent one from representing them is lacking. Second, unlike the fact that one can point

to explanatory benefits of the reduced theory, there is not a corresponding representational

benefit that can attributed to the reduced theory, inasmuch as reduction always constrains

auxiliary structure. Therefore, the two worries raised previously for the explanatory account

are bypassed.

12The fact that a physical interpretation is given to auxiliary structure does not imply that it should be
promoted to theoretical structure. If one did so, one would no longer be able to use the models to represent
a single situation, and one would return to the issue of a theory with excess structure.
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However, the representational argument is aligned with the explanatory argument in the

sense that part of the explanatory benefit of sophistication might be seen to come from

its representational benefits. For example, consider the fact that two subsystems that each

consist only of congruent hands can be such that their combined system does not consist

only of congruent hands. This fact can be explained in the sophisticated theory through the

difference in auxiliary structure between the representation of the subsystems: using auxiliary

structure as a physical representational convention distinguishes the subsystems even though

the models are equivalent in terms of theoretical structure. In the reduced theory, there are no

relevant differences in auxiliary structure between the models representing these subsystems,

and so the difference can only be given by asserting further statements about the relation

between the subsystems. Therefore, one might argue, this fact falls out naturally from the

sophisticated theory but must be stipulated the reduced theory. And so, the representational

power of sophisticated theories lends itself to explanatory benefits.

3.4 Conclusion

We began with discussing the question of how to get rid of excess structure. The idea was

that we should care only about what is invariant under certain symmetry transformations,

and so we should remove any features of the theory that are not invariant. But in fact, we

have seen that what varies under a symmetry transformation can be representationally useful,

when it is part of the auxiliary structure of a theory. And so, while it might be true that

what we care about when talking about theoretical structure are the features invariant under

symmetry transformations, we have shown that what might be regarded as ‘surplus’ from this

perspective need not be surplus from a wider perspective that includes the representational

role of auxiliary structure.
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In discussions on theory building and excess structure, it is often assumed that the only con-

sideration is that of determining theoretical structure, where the way that one characterizes

this structure is something that has only pragmatic value. This obscures the role of auxiliary

structure and leads to confusion regarding cases where some structure appears ‘surplus’ and

yet also seems to play an essential role. If we consider theory building to not just be about

correctly characterizing theoretical structure, but also auxiliary structure, then this suggests

that closer attention ought to be paid to the choices of auxiliary structure and the physical

implications these choices have.

In light of this, arguments about excess structure do require consideration of whether one

takes a theory to be a full description of all of the structure in the world: if one wants

to allow for a theory to represent incomplete physical situations such as subsystems or

situations relative to some reference frame, then certain kinds of auxiliary structure may be

indispensable in a way that they are not if the theory is only used to represent the whole

universe. We have discussed one example in this chapter; however, further work is necessary

to characterize precisely the choices of auxiliary structure for some theory and the way that

one associates representational aims with these choices.
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Chapter 4

The Physical Significance of Partial

Observables: Connecting Gauge and

Surplus Structure

4.1 Introduction

In Chapter 3, I presented a division between two kinds of structure that I called theoretical

structure and auxiliary structure, and I demonstrated that auxiliary structure can be used

to play a representational role in the sophisticated version of a theory in a way that is absent

in the reduced version of a theory. In this Chapter, I consider how this argument plays out

in the context of the constrained Hamiltonian formalism.

In the constrained Hamiltonian formalism, the gauge variables are often regarded as the

source of excess structure, since they are variables whose value is underdetermined by the

dynamics. On the other hand, the gauge-invariant features, or the ‘observables’, are seen as

the physically meaningful quantities. In light of this distinction, reduction is often argued
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to be the right approach to removing excess structure, since it redefines the theory in terms

of the gauge-invariant quantities.

However, it is also well-known that reduction in the constrained Hamiltonian formalism

can have puzzling conclusions. Most notably, for theories that are time-reparameterization

invariant, reduction leads to a strong version of the ‘Problem of Time’: there is no meaningful

notion of evolution on the reduced space since the points of the reduced space are entire

solutions. This suggests that closer consideration ought to be paid to the kind of redundancy

that is being characterized by the notion of a gauge variable.

One influential approach that argues that the gauge variables should not be removed from

a theory is called the ‘partial observables’ program, pioneered by Carlo Rovelli. In this

Chapter, I connect Rovelli’s approach to the arguments I gave in Chapter 3 by showing

that one can reconstruct the partial observables approach as presenting a view according to

which sophistication in the context of the constrained Hamiltonian formalism comes with

representational benefits.

In more detail, I will argue that the literature regarding the interpretation of gauge transfor-

mations conflates the distinction between theoretical structure and auxiliary structure, and

that this leads to confusion in the literature regarding the role of gauge variables. I will then

argue that one can understand the partial observables program as providing an account of

the representational role that a particular kind of auxiliary structure plays, and that this

motivates a sophisticated version of the constrained Hamiltonian formalism.

4.2 Argument for Reduction

In Dirac’s presentation of the constrained Hamiltonian formalism, there is a clear sense in

which there is arbitrariness when there are first-class constraints present: the dynamics are
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defined in terms of the Total (or Extended) Hamiltonian, which includes arbitrary functions

in their definition.1 This means that given some initial state (q0, p0), there can be multiple

possible evolutions and multiple possible values for a dynamical variable at later times. As

Dirac (1964) presents it, this is a kind of indeterminism in the mathematical formalism that

doesn’t correspond to any physical indeterminism: the multiple evolutions from some fixed

initial state should be regarded as physically equivalent because they arise from arbitrariness

in the Hamiltonian.

An alternative way to present the arbitrariness in the constrained Hamiltonian formalism

is in terms of underdetermination, which is seen most naturally in the geometric way of

presenting the constrained Hamiltonian formalism on the constraint surface: there is an

underdetermination of states and of solutions arising from the fact that the induced two-form

has null vector fields. In particular, states along the gauge orbits cannot be distinguished

by the induced two-form, and solutions are only defined up to vector fields associated with

the first-class constraints.2

In light of such arbitrariness in the constrained Hamiltonian formalism, it is tempting to

make the following interpretive move: one should interpret gauge-related states/solutions,

and in turn, variables that vary between gauge-related states/solutions, as being equiva-

lent.3 Therefore, only the quantities that are gauge-invariant (the “observables”) should be

interpreted as physically meaningful, while the gauge-dependent quantities (the “gauge vari-

ables”) should be interpreted as not having physically meaningful values, since their value

varies between states/solutions that are regarded as equivalent.

1cf. Section 1.2.
2cf. Section 1.6.
3One can distinguish the view that gauge-related states should be identified and the view that gauge-

related solutions should be identified. Indeed, these views might lead to importantly distinct options both
mathematically and conceptually. However, for the purposes here, these two views will be considered to-
gether. The reason is that in the geometric way of presenting the constrained Hamiltonian formalism, the
same transformations generate state gauge-transformations and solution gauge-transformations, and so at
least mathematically the same identification takes place. For further discussion of the conceptual differences,
see, for example, Wallace (2002) and Gryb and Thébault (2023).
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However, there are arguments in the literature suggesting that merely making this inter-

pretational move is not sufficient to remove the arbitrariness present in the constrained

Hamiltonian formalism; rather, one should change the mathematical formalism itself such

that gauge-related states/solutions are identified. Recall from Chapter 2 that we can refor-

mulate a constrained Hamiltonian theory as a reduced theory: a theory whose state space

is given by the reduced version of the constraint surface and whose dynamics are given in

terms of a Hamiltonian function and a symplectic two-form defined on the reduced space.

Several authors have argued that only the move to the reduced phase space is sufficient to

remove the arbitrariness present in the constrained Hamiltonian formalism. For example,

Thébault (2012) says that one could interpret a theory in the constrained Hamiltonian for-

malism by “instituting a many-to-one relationship between gauge related sequences of points

on the constraint surface and the unique sequences of instantaneous states they represent”

but that this “does nothing about removing what would seem like superfluous mathematical

structure – to dispense with this surplus structure we need to move to the reduced phase

space.” Similarly, Belot (2003) says that “because the points of such orbits are dynamically

indifferent, the xi [the gauge variables] are dynamically irrelevant – any way of setting their

value leads to the “same” evolution. This suggests in turn that it may be possible to drop

the xi from our theory altogether”.4 Both authors agree that it is not enough to interpret the

gauge-dependent variables in such a way that trajectories on which they differ are regarded

as equivalent – one must remove them from the theory in order to remove the redundancy

present. The reduced theory provides such an option since the points of the reduced space

are just the equivalence class of points along the gauge orbits.

Let us call the following the Reduction Argument:

(1) States and solutions related by gauge transformations are mathematically

inequivalent in the constrained Hamiltonian formalism.

4For another expression of this view, see Belot and Earman (2001).
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(2) States and solutions related by gauge transformations are physically equiva-

lent, and so the gauge variables should not be regarded as physically significant.

(3) In an ideal theory, mathematical equivalence should align with physical equiv-

alence and there should be no definable quantities that lack physical significance.5

(Conclusion) Therefore, we should remove the gauge variables and the differ-

ences between gauge-related states/solutions by reformulating the theory on the

reduced space.

In the rest of this Chapter, we will consider whether this argument holds up. In particular,

there are two parts of the argument that need further clarification. First, to say whether cer-

tain states/solutions are mathematically inequivalent, we need an account of mathematical

equivalence in the context of the constrained Hamiltonian formalism. There is a naive sense

in which gauge-related states/solutions are mathematically inequivalent: they correspond

to/are composed of different points of the state space. However, mathematical equivalence

is usually cashed out in terms of isomorphism. Whether a non-trivial transformation on

state space gives rise to mathematically inequivalent states depends upon whether it is an

isomorphism or not, which in turn depends on the mathematical structure that we take to

represent the constrained Hamiltonian formalism.

Second, an important step in this argument is the claim that the gauge variables are not phys-

ically significant on the basis that their value differs between gauge-related states/solutions.

In order for this claim to have the consequence that one ought to remove the gauge variables

from the theory by moving to the reduced phase space, it must be that a gauge variable

not having physical significance means that it plays no role in a theory. However, merely

differing in value between points/curves that one takes to represent physically equivalent

5These two things – alignment between mathematical and physical equivalence, and no quantities without
physical significance – are interrelated. However, we will see that they can come apart depending on what
one means by physical significance.
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states/evolutions does not necessarily imply that it cannot be used to represent a physical

quantity. Therefore, there is room to argue that although the value of a gauge variable

is underdetermined by the theory, one should not remove gauge variables from the theory

altogether. The most influential response of this kind is the partial observables program, to

which we now turn.

4.3 Partial Observables Approach to Gauge

The partial observables approach was pioneered by Carlo Rovelli as a way to resolve the

Problem of Time, as well as explain the ineliminable role that gauge variables seem to

play more generally.6 The basic idea of the partial observables approach is the following:

gauge-dependent quantities, despite not being predictable within a theory (since their value

is underdetermined), are still important because it is the couplings between certain gauge-

dependent quantities (the ‘partial observables’) that give rise to the gauge-independent quan-

tities (the ‘complete observables’). Therefore, partial observables play a role in providing the

physical content of a theory through their role in making up the gauge-invariant quantities.

In addition, one can measure the partial observables when they couple by using the invari-

ant relationship to determine the value of one partial observable when another takes a fixed

value. In this way, they can be “measured but not predicted" (Rovelli (2014)). Consequently,

partial observables are not redundant to a theory.

To motivate this view, let us consider an example adapted from Rovelli (2014). Take a

system of two spaceships in Euclidean space represented by the Lagrangian:

6See, for example, Rovelli (2002, 2014, 2004). Extensions to Rovelli’s approach have been given, for
example, by Dittrich (2006, 2007); Thiemann (2008).
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Lx =
1

2
(ẋ2 − ẋ1)

2 (4.1)

Moving to the Hamiltonian framework, we have that p1 = ẋ1 − ẋ2 and p2 = ẋ2 − ẋ1. This

gives rise to a single primary constraint ϕ1 ≈ 0 where ϕ1 = p1 + p2. The Total Hamiltonian

is given by:

HT =
1

2
(p2)

2 + µ(p1 + p2) (4.2)

where µ is arbitrary. There are no secondary constraints since {ϕ1, HT} = 0. This implies

that ϕ1 is first-class and generates a gauge transformation, meaning that the evolution of

the system is underdetermined. In particular, we find that x1 and x2 are not observables,

while x2 − x1 is an observable. This suggests if we follow the Reduction Argument that one

should remove the quantities x1 and x2 from the theory and rewrite the theory in terms of

the quantity a = x2 − x1 via HR = 1
2
p2a, which has no gauge freedom.

Consider also a second system composed of two spaceships, represented by the Lagrangian:

Ly =
1

2
(ẏ2 − ẏ1)

2 (4.3)

The Hamiltonian analysis of this system is the same; we can rewrite the theory in terms of

the quantity b = y2 − y1 via HR = 1
2
p2b in order to remove the gauge freedom.
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But now consider bringing the two systems together so that the combined system is repre-

sented by the Lagrangian:

Lc =
1

2
(ẋ2 − ẋ1)

2 +
1

2
(ẏ2 − ẏ1)

2 +
1

2
(ẏ1 − ẋ2)

2 (4.4)

where we have an interaction term that goes past simply the sum of the two individual

systems’ Lagrangian. In the Hamiltonian analysis, we find that the four canonical momenta

give rise to a single primary constraint ϕc ≈ 0 where ϕc = px1 + px2 + py1 + py2 . The Total

Hamiltonian is given by:

Hc =
1

2
p2x1

+
1

2
p2y2 +

1

2
(py1 + py2)

2 + µ(px1 + px2 + py1 + py2) (4.5)

Again, none of the individual variables x1, x2, y1, y2 are observables, while x2−x1 and y2−y1

are. However, we also have that y1−x2 and all other such combinations of x and y variables

are also observables. This joint system therefore has more gauge-invariant quantities than

the sum of the two individual systems.

The fact that one has more gauge-invariant quantities than the sum of the two individual sys-

tems leads Rovelli (2014) to conclude that gauge variables are crucial when systems interact,

since one could not form this combined system using just the gauge-invariant quantities of

the individual systems. In other words, if one ‘got rid’ of the gauge variables when modelling

the individual systems by defining these systems only in terms of the invariant quantities

a and b, one wouldn’t be able to describe the coupled system without introducing a new

variable that is defined in terms of the relation between the gauge variables of the individual
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systems, since one cannot define the quantity ẏ1− ẋ2 (or similarly py1 + py2) merely in terms

of a and b.

Rovelli (2002) argues that something similar can be done to avoid the Problem of Time. One

way of stating the problem is that when the Hamiltonian is itself a first-class constraint, there

is no change over time for any physical variable since the observables are invariant under

time evolution. Rovelli argues that this rests on confusion regarding the notion of evolution:

there is evolution in coordinate time, and there is physical evolution. Physical evolution can

be maintained if one drops the requirement that evolution must be in coordinate time, and

rather takes evolution to be a relative notion between partial observables. For example, in

General Relativity, proper times depend on the coordinate time and therefore are gauge vari-

ables; they are not invariant under time evolution. However, the relative evolution between

two different proper times representing two different observers is a complete observable, since

it is independent of coordinate time and so is invariant under evolution in coordinate time.

Therefore, we can regard proper times as being partial observables in the same way that the

positions of the spaceships were partial observables: there is a complete observable that can

be understood as the relation between these partial observables. If one considers this ob-

servable to define physical evolution, then physical change does not disappear, even though

one does not have an independent time coordinate.

These examples, despite giving insight into Rovelli’s program, still leave open some philo-

sophical questions. The crucial question of importance for the purposes here is what the

physical significance of the partial observables is meant to be, in contrast to the complete

observables. Rovelli (2002) says that “in a sense, they are the quantities with the most di-

rect physical interpretation in the theory”. However, their physical interpretation needs to

be squared with the fact that the partial observables are not predictable, in the sense that

their value is not fixed by the theory. Rovelli suggests that this tension is resolved through

the fact that partial observables are still “measurable”. However, one might respond that
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the value of a partial observable is only determined through a measurement of a complete

observable that results from the coupling of partial observables, and thus it is ultimately

only the complete observables that are measurable.7 This suggests that one cannot rely on

the measurability of partial observables to explain their physical significance. Moreover, the

fact that partial observables are not predictable means that one cannot think of a theory as

providing a full account of them since the theory does not specify their dynamics uniquely.

So we are left with the question: how can a quantity that is not fully specified by a theory

have a direct physical interpretation in that theory?

A different way of phrasing this question is the following: how does the partial observables

program resolve the fact that the constrained Hamiltonian formalism appears to have excess

structure in the sense given by the Reduction Argument, namely, that gauge transformations

relate mathematically inequivalent but seemingly physically equivalent situations? Although

the partial observables program provides an account under which gauge variables can be

physically meaningful, it doesn’t say that the situations related by a gauge transformation

are physically distinct: such a transformation changes the value of the gauge variables, but

not their relative value, and so inasmuch as one measures the complete observables a gauge

transformation doesn’t give rise to a physically distinct situation. Therefore, the partial

observables program seems to have a tension between the physical role attributed to partial

observables and the apparent excess structure in the theory.

4.4 The Physical Significance of Partial Observables

In this section, I will argue that the tension between the physical interpretation of partial

observables and their lack of full specification can be resolved if we understand the partial

observables program in terms of the distinction between theoretical structure on the one

7This is the view taken by Thiemann (2008).
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hand, and auxiliary structure on the other hand, and the kind of physical significance that

can be attributed to both. In doing so, I will provide my own account of why the Reduction

Argument fails.

Recall from Chapter 3 that the distinction is as follows:

Theoretical Structure is the structure that a theory attributes to the world in virtue

of its “invariant” content; the content that is invariant under isomorphisms of the models

of the theory. In other words, when models are isomorphic, they are equivalent in terms

of theoretical structure. Moreover, one can exemplify the theoretical structure through the

equivalence classes of the theory. This is indeed the standard way of explicating mathematical

structure, and it is the structure that notions such as ‘categorical equivalence’ aim to capture.

Auxiliary Structure is the structure that one can define in the models of a theory in

virtue of the way that one characterizes the theoretical structure. The auxiliary structure

goes past the theoretical structure in that the mathematical tools one uses to characterize

the theoretical structure may have further resources, such that one can differentiate more

structure than simply the theoretical structure. In particular, it is only through auxiliary

structure that one can talk about the differences between isomorphic models. Of interest

here is precisely the auxiliary structure that goes past the theoretical structure in this way.

In Chapter 3, I argued that auxiliary structure can play a representational role, and that

this provides an argument in favor of sophistication over reduction since auxiliary structure

in the sophisticated theory can be lost when moving to the reduced theory.

In order to use the distinction between theoretical structure and auxiliary structure in the

context of the constrained Hamiltonian formalism, we need to spell out the models and

symmetries of the theory.8 More precisely, we are going to characterize different formulations

8Here we follow the category-theoretic perspective of characterizing theories, where theories are not just
given as a collection of models or a collection of sentences; rather, they come structured, which means that
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of the theory as categories of models, where we specify not only the objects of the category as

models of the theory, but also specify the isomorphisms of the theory as (invertible) arrows

of the category. There are many ways to do this.

First, we could define the objects of the theory as models (T ∗Q,H,φi), a cotangent space

equipped with a Hamiltonian function and a collection of constraints. The equations of mo-

tion would then be Hamilton’s equations ω(XH , ·) = dH along with the constraints φi = 0,

which tell one the collection of dynamically-allowed points of cotangent space. The ar-

rows of such a theory between models (T ∗Q,H, φi), (T ∗Q,H ′, φ′
i) are naturally given by

point∗-transformations that preserve H and φi. Recall from Chapter 2 that the point∗-

transformations T ∗f are such that given by diffeomorphism f : T ∗Q→ T ∗Q, T ∗f : (q, p) →

(f−1(q), f ∗(p)). So preserving H and φi just means that H ′ ◦ T ∗f = H and φ′
i ◦ T ∗f = φi.

Alternatively, we might want to take the state space to be given more generally by a sym-

plectic manifold, such that the models consist of (T ∗Q,ω,H, φi). Then, the arrows between

models (T ∗Q,ω,H, φi), (T ∗Q,ω′, H ′, φ′
i) are naturally taken to be symplectomorphisms that

also preserve H and φi. That is, f is a symmetry between models if f : T ∗Q → T ∗Q is a

diffeomorphism such that f ∗(ω′) = ω, f ∗(H ′) = H and f ∗(φ′
i) = φ.

The difference between these two options – whether we take the state space to be given by

the structure of cotangent space or a symplectic manifold – is not crucial here. But since all

point∗-transformations are symplectomorphisms, we will focus on the second option.9 Let

us call this theory ConHam1. Importantly, arbitrary gauge transformations (transforma-

tions generated by arbitrary combinations of the first-class constraints) do not in general

correspond to symmetries of the models of ConHam1.

they also come along with a standard of equivalence. For more discussion, see in particular Halvorson (2012,
2016); Weatherall (2016a, 2019a,b).

9See Barrett (2015b) for proof that this only goes in one direction; not all symplectomorphisms are
point∗-transformations.
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Proposition 4.1: Gauge transformations are not, in general, arrows in Con-

Ham1.10

.

This shows that if we take the structure of constrained Hamiltonian mechanics to be given

by ConHam1, then there is a sense in which gauge variables are part of the theoretical

structure: models that differ regarding their value are distinct according to the theory.

However, given that gauge variables appear to be ‘excess structure’ for the reasons given

earlier, it seems natural that we might want to formulate a theory such that gauge vari-

ables are not part of the theoretical structure. In particular, we find that on the above

characterization, the dynamics are such that the Hamiltonian function H and the function

H + vaφa are equivalent: they correspond to equivalent trajectories, once we take into ac-

count the constraints. Therefore, we want a way of writing down the theory that renders

these Hamiltonians equivalent.

We might interpret this as saying that we want models (T ∗Q,ω,H, φi) and (T ∗Q,ω,H +

vaφa, φi) to be symmetry-related. But this runs into difficulties. For one, it is not clear how

to define this symmetry as an action on phase space, inasmuch as gauge transformations are

not symplectomorphisms. Second, it isn’t clear that this really captures what we are after,

since although it categorizes models with different evolutions as equivalent, we might want

to characterize the claim that particular states are equivalent.

Alternatively, we might say that models (T ∗Q,ω,H, φi) and (T ∗Q,ω′, H ′, φi) are symmetry-

related when a diffeomorphism f : T ∗Q→ T ∗Q is such that f ∗ω′
c = ωc and f ∗H ′

c = Hc where

ωc and Hc represent the two-form and Hamiltonian restricted to the constraint surface. That

is, f is a symmetry when it preserves the structures on the constraint submanifold. The rea-

son for this definition is that the constraint submanifold is taken to represent the dynamically
10See C.1 for proof.
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allowed states, and so if the structures on the constraint submanifold are preserved, then this

would naturally give rise to the same physical situation. But while such an option improves

on the former in that we can both understand the symmetry as an action on phase space and

it provides a sense in which certain states are equivalent, there is something still unnatural

about it. In particular, inasmuch as what one cares about is the preservation of structure on

the constraint surface, it is not clear what role the points outside of the constraint surface

are playing.

Instead, it seems that the natural way to define the theory would be to define the models as

(Σf , ω̃f , H) where Σf is the final constraint surface, ω̃f is the presymplectic two-form on Σf ,

and H is the Hamiltonian restricted to the points of Σf , with arrows as symplectomorphisms

that preserve H.11 Call this ConHam2.

Proposition 4.2: Arbitrary gauge transformations are arrows in ConHam2.12

The upshot is that in ConHam2, models that differ regarding the value of the gauge vari-

ables are equivalent according to the theory. That is, if we consider models to have additional

structure corresponding to a collection of gauge variables Ai, then models (Σf , ω̃f , H,Ai),

(Σf , ω̃f , H,A
′
i) where A′

i are the gauge transformed version Ai are equivalent according to

ConHam2, even though A′
i and Ai differ in value at the same point on Σf . Indeed, I think

that it is natural to regard ConHam2 as capturing the (internally) sophisticated theory:

it is a theory where the isomorphisms correspond precisely to the transformations that we

regard as symmetries of the theory, which includes the gauge transformations.13

11Recall that this is how we defined the Extended Hamiltonian theory in Section 1.8.1.
12See C.2 for proof.
13There is a disanalogy with sophistication as presented in Dewar (2019) since the move from ConHam1

to ConHam2 not only alters the isomorphisms of the theory, but it also alters the state space by removing
the points off the constraint surface. I comment on this further in the Conclusion.
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Another way to remove the ‘excess structure’ coming from the gauge variables is to define

the models on the reduced space. This would be to take the models to consist of (Σ̄, ω̄, H̄)

with symmetries being symplectomorphisms that preserve H̄. Call this ConHamRed

Proposition 4.3: Arbitrary gauge transformations are arrows in ConHam-

Red.14

We therefore have that different ways of characterizing the models and symmetries of a

constrained Hamiltonian formalism lead to different conclusions regarding whether some

quantity is part of the theoretical structure or not i.e. whether it is agreed upon under

the isomorphisms of the theory or not. If one takes ConHam1 to represent constrained

Hamiltonian theories, then gauge variables are part of the theoretical structure, since there

are models where their value differs that are distinct according to the theory. However, if

one takes ConHam2 or ConHamRed to represent constrained Hamiltonian theories, then

the gauge variables are not part of the theoretical structure, since models related by a gauge

transformation are isomorphic, and recall that the theoretical structure is given by structure

preserved under isomorphism.

Turning now to auxiliary structure, it is clear that in ConHam1, gauge variables count as

auxiliary structure, inasmuch as auxiliary structure always includes the theoretical structure.

More interesting is that gauge variables are auxiliary structure in ConHam2, but not in

ConHamRed. The reason that gauge variables are auxiliary structure in ConHam2 is

just that they are well-defined functions on Σf : they are just the functions whose value

varies along the gauge orbits. The reason that gauge variables are not auxiliary structure

in ConHamRed is that one cannot define the gauge variables as functions on Σ̄, since by

definition Σ̄ equivocates between points where the value of gauge functions differ.

14See C.3 for proof.
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It is these distinctions between ConHam2 and ConHamRed that I think have been con-

flated in the literature. Let us return to the Reduction Argument. Premise 1 of the argument

was:

(1) States and solutions related by gauge transformations are mathematically

inequivalent in the constrained Hamiltonian formalism.

We can now see that there is an ambiguity in this premise since there are different ways

to characterize the models and symmetries of the constrained Hamiltonian formalism that

lead to different conclusions regarding whether gauge transformations are mathematically

inequivalent. In particular, if we take the theory to be ConHam2 i.e. the theory formulated

on the final constraint surface, then gauge transformations are symmetries of the theory,

and therefore states/solutions related by gauge transformations are naturally regarded as

mathematically equivalent in this theory.

There are also ambiguities with the other premises of the argument:

(2) States and solutions related by gauge transformations are physically equiva-

lent, and so the gauge variables should not be regarded as physically significant.

If we take for granted the first clause of the premise, then one can infer that gauge variables

are not physically significant in the sense of not being structure we want our theory to

attribute to the world through the theoretical structure. However, one cannot infer that

gauge variables play no physically significant role as auxiliary structure without some further

claim that gauge variables do not have any representational role.15 Therefore, this premise

doesn’t tell us on its own whether gauge variables should be part of the auxiliary structure

of a theory or not.
15cf. Chapter 3
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(3) In an ideal theory, mathematical equivalence should align with physical equiv-

alence and there should be no definable quantities that lack physical significance.

In light of the distinction between theoretical and auxiliary structure, we can see that the

two parts of this premise come apart: mathematical equivalence and physical equivalence

can be aligned while it also being the case that there are definable quantities (from auxiliary

structure) that lack physical significance, in the sense of not being structure we want our

theory to attribute to the world through theoretical structure. In particular, we have argued

that one may want definable quantities that lack physical significance in terms of theoretical

structure but do have physical significance in terms of auxiliary structure.

(Conclusion) Therefore, we should remove the gauge variables and the differ-

ences between gauge-related states/solutions by reformulating the theory on the

reduced space.

From the above, we can see that this conclusion only follows if we take gauge variables

to lack physical significance as part of auxiliary structure as well as as part of theoretical

structure, since the reduced theory changes the auxiliary structure of the theory by removing

the ability to define the gauge variables. If we take gauge variables to play a role as part

of auxiliary structure, then the argument only shows that we ought to formulate a theory

such that gauge variables are not part of the theoretical structure. But we have a way to

do this that doesn’t involve moving to the reduced theory: the sophisticated option given

by ConHam2. This formulation allows one to remove gauge variables from the theoretical

structure without removing them from the auxiliary structure.

To summarize, filling out the ambiguities of the Reduction Argument gives us the following:

(1) States and solutions related by gauge transformations are mathematically

inequivalent in the theory characterized by ConHam1.
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(2) States and solutions related by gauge transformations are physically equiva-

lent, and so the gauge variables should not be part of the theoretical structure

of the theory.

(3) In an ideal theory, mathematical equivalence should align with physical equiv-

alence and there should be no definable quantities that play no representational

role (as part of theoretical or auxiliary structure).

(Conclusion) Therefore, we should remove the gauge variables and the differences

between gauge-related states/solutions from ConHam1 by reformulating the

theory as ConHamRed.

On this framing, we can see that the argument is not valid without a further premise:

(4) Gauge variables play no representational role as part of auxiliary structure.

It is this premise that one can interpret the partial observables program as arguing is false,

such that the Reduction Argument is not sound. In other words, one can reconstruct the

partial observables program as showing that the Reduction Argument is misguided precisely

because gauge variables can play a physical role as part of the auxiliary structure, and

therefore they should not be removed by moving to the reduced theory. Their role as auxiliary

structure is that they represent a system that can be measured through its coupling with

other partial observables, and which combine with other partial observables to form the

complete observables. This is not in conflict with the claim that partial observables should

not be part of the theoretical structure; indeed, one might view this as being the crucial

difference between the partial and complete observables.

In light of such a view, we can see that the conclusion that the Reduction Argument allows

us to reach is only the following:
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(Conclusion, revised) We should remove the gauge variables and the differences

between gauge-related states/solutions from ConHam1 by reformulating the

theory as ConHam2.

In other words, we can see the partial observables program as providing an argument in favor

of sophistication, by the lights of the premises of the Reduction Argument: commitment to

premises 1 through 3 and the negation of premise 4 leads to the revised conclusion, which

is precisely to say that the right formulation of the theory is the sophisticated one, rather

than the reduced one.

Although this is not the characterization that Rovelli gives of the partial observables pro-

gram, I think it helps to make sense of the claim that partial variables are “measurable but

not predictable". The sense in which they are not predictable is just that their value is

underdetermined by the theory, and so we should formulate the theory such that models

where the value of the partial observables differ ought to be isomorphic i.e. they should not

be part of the theoretical structure. The sense in which they are measurable is that they can

be used as auxiliary structure to represent quantities whose value can be determined when

coupled with other quantities.

To further push the point, let us connect the argument made in Chapter 3 regarding the

handedness theory example and the spaceship example that Rovelli gives. In the handedness

theory, the role played by auxiliary structure was that it could act as a reference system

relative to which one can distinguish the situations represented by isomorphic models. But

there is another way that we can view the situation. Take the models related by the fact

that the handedness of each object is ‘swapped’. Instead of taking the reference to ‘left’ or

‘right’ to fix some auxiliary structure relative to which these models are distinguished, let us

imagine that these models represent two subsystems of some larger system. Then, the relative

handedness between objects across the models becomes important, inasmuch as it leads to
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different physical situations represented by the larger system. Moreover, one cannot represent

the sense in which these models represent subsystems with different relative handedness in

the reduced theory, since the reduced versions of these models are identical: there is no

auxiliary structure that distinguishes the reduced models. To capture the differences in the

reduced theory, one would have to stipulate additional information about whether objects

across the models are congruent or not, which changes the description of the situation. But

this is just what Rovelli argues is the case in the spaceship example: if we reduce the theories

representing the individual systems, then we cannot talk about the coupling between them

without introducing a new variable. On the other hand, in the unreduced theories, there is

a way to describe the coupling in terms of auxiliary structure: the coupling is given by the

relation between gauge variables.

This suggests that the spaceship example can be seen as picking out the same kind of

representational significance as that highlighted in Chapter 3: auxiliary structure can be

stipulated to represent some physical structure that can be used to distinguish physical situ-

ations modelled by the theory. The partial observables approach can be seen as providing a

way to pick out the auxiliary structure that plays this role within the constrained Hamilto-

nian formalism: the partial observables are a collection of functions definable on phase space

whose value is freely specifiable, but whose relationships with one another jointly suffice to

characterize the complete observables.

There is a sense in which this view might be seen to deflate the role of partial observables:

it takes partial observables to still be ‘excess structure’ in the theory given by ConHam1,

since they distinguish non-isomorphic but symmetry-related models. Moreover, this view

takes the physical role of partial observables to be dependent on the kinds of situations

that a practitioner wants to represent. That is, partial observables are taken to only be

physically meaningful inasmuch as they have a practical role in modelling subsystems and

their relationships or additional physical systems that aren’t contained in the theoretical
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structure; they are not taken to be structure that the theory itself attributes to the world.

However, I take this flexibility to be a benefit of the account: it highlights that consideration

needs to be paid to the use and interpretation of a theory in characterizing the theoretical

and auxiliary structure of a theory.

4.5 Conclusion

In this Chapter, I have argued that we can reconstruct the partial observables program as

providing an argument in favor of sophistication in the context of the constrained Hamil-

tonian formalism. This view reconciles the apparent tension that the partial observables

program considers gauge variables to both not be predictable within a theory and to play an

ineliminable role, since it highlights that gauge variables can be removed from the theoretical

structure of the theory while still playing a role as part of the auxiliary structure. The notion

of a partial observable provides a way to discriminate the gauge variables that play precisely

this role.

While the focus in this chapter was on the way that one can motivate the partial observables

program, exploring this issue highlighted several other interesting features of the constrained

Hamiltonian formalism. Importantly, it highlighted that the theory formulated on the final

constraint surface essentially comes “sophisticated": gauge transformations are isomorphisms

of the mathematical structure of the final constraint surface. Therefore, on the understanding

that excess structure comes from the presence of non-isomorphic but physically equivalent

models, the theory formulated on the final constraint surface does not have any excess

structure. However, the way we got to the sophisticated theory was not by starting with

the unsophisticated theory formulated on cotangent space T ∗Q (ConHam1) and using new

mathematical/semantic tools such that the non-isomorphic but symmetry-related models

are rendered isomorphic. Instead, we get to the sophisticated theory from ConHam1 by
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simply removing certain points from T ∗Q and thinking about the structures projected to

this submanifold (with the same notion of isomorphism as ConHam1). This might in fact

be seen as a form of reduction since it effectively equivocates between all models that vary

only outside of the constraint surface.

One way to understand the difference between the constrained Hamiltonian formalism and

the cases that Dewar (2019) considers is in terms of the role that constraints play in the kine-

matics vs. dynamics of the theory. In ConHam1, the constraints pick out the dynamically

accessible points of the cotangent space, and therefore the dynamically possible models lie

only on a submanifold of the state space of the kinematically possible models. On the other

hand, in ConHam2 the constraints are effectively built into the kinematically possible mod-

els, and so the dynamically possible models have the same state space as the kinematically

possible models. Indeed, in ConHam2, the dynamically possible models arguably coin-

cide with the kinematically possible models. Therefore, removing excess structure involves

changing the relationship between the kinematical and dynamical state space. Indeed, one

way of thinking about the ‘excess structure’ contained in ConHam1 is just that it treats as

kinematically important points of cotangent space that play no role in the physical content

of the theory. On the other hand, in cases that Dewar (2019) considers, the change from

the original theory to the sophisticated theory keeps the kinematics/dynamics division the

same. This suggests that the way that reduction and sophistication are distinguished in

Dewar (2019) in terms of how they are constructed from some unsophisticated/unreduced

does not capture all cases that we might characterize as examples of ‘sophistication’ and

‘reduction’.

A second difference with the cases that Dewar discusses arises when considering the question

of whether the sophisticated and reduced versions of a theory are equivalent. Dewar (2019)

argues via examples that the sophisticated and reduced versions of a theory will be categor-

ically equivalent. In the case of ConHam2 and ConHamRed, one might be inclined to
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think that these theories are equivalent, since one constructs ConHamRed by equivocating

between mathematically equivalent state space points of objects in ConHam2. However,

non-trivial gauge transformations correspond to non-trivial automorphisms of the models of

ConHam2, and these transformations act trivially on the corresponding reduced model.

This suggests that any suitable functor between the categories will not be injective on ar-

rows. More precisely, take the functor F that takes the object (Σf , ω̃f , H) to (Σ̄, ω̄, H̄) and

that takes an arrow g : Σf → Σf to ḡ : Σ̄ → Σ̄ where ḡ(x̄) = g(x̄) i.e. ḡ is the action of g on

the gauge orbits, such that whenever g acts by moving points of Σf along the gauge orbits,

ḡ acts as the identity on F (Σf ). Then, the following is true:

Proposition 4.4: F : ConHam2 → ConHamRed is full and essentially

surjective but not faithful i.e. F forgets stuff.16

This suggests that the difference between ConHam2 and ConHamRed is not merely that

they differ in auxiliary structure; they also differ in terms of how many ways a model is

equivalent to itself. The significance of this property is discussed in Bradley and Weatherall

(2020); we suggest that theories with less stuff are often associated with more (theoreti-

cal) structure. Whether this is the right interpretation of what is going on in the case of

ConHam2 and ConHamRed is something I hope to consider in future work.

There are two further sets of questions that this chapter raises. First, we saw in Chapter 2

that there is a many-to-one relationship between points of the Lagrangian final constraint

surface and points of the Hamiltonian final constraint surface. This means that there are

functions that one can define on the final Lagrangian constraint surface that are not pro-

jectable to the Hamiltonian final constraint surface, namely, those that vary between the

points that are equivocated when moving to the Hamiltonian constraint surface. Are such

functions plausible candidates for partial observables? And if so, does this provide a way

16See C.4 for proof.

122



to distinguish the interpretation of Lagrangian and Hamiltonian mechanics formulated on

the final constraint surface, even if there is a sense in which they are structurally the same?

Second, what does the sophisticated theory look like in the quantized version of a constrained

Hamiltonian theory? Can we reconstruct the distinction between a reduced and sophisticated

theory in a natural way, and how does it relate to the classical versions? These questions

will also be left for future work.
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Appendices

A Chapter 1

A.1 Proposition 1.2

We want to show that F is not full i.e. that it fails to be surjective on arrows, but that it is

faithful and essentially surjective.

To show that F is not full, we need to show that there is an arrow g : (Σf , ω̃f , H) →

(Σf , ω̃
′
f , H

′) such that g ̸= F (f) for any arrow f in TotHam. To do this, we will show

that there are transformations along the vector fields associated with the secondary first-

class constraints that are not arrows in TotHam, but their restriction to Σf are arrows in

ExtHam. Consider the diffeomorphism f : Σp → Σp that takes each point on Σp to another

point along the vector field associated with the secondary first-class constraints at that point.

Recall that ω̃p(Xφj
, ·) = dφj ̸= 0 for the secondary first-class constraints φj, which tells one

the change of a function along the vector fields associated with the secondary first-class

constraints. So let us consider f to be the flow of the vector field associated with αjdφj

where α is an arbitrary function of the canonical coordinates. In order to associate a vector

fieldX with αjdφj via ω̃p(X, ·) = αjdφj, it must be that αjdφj is exact i.e. can be represented

as dγ for some scalar field γ. Therefore, it must be that d(ω̃p(X, ·)) = d(αjdφj) = 0. But
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db(α
jdaφj) = αjdbdaφj + d[aφjdb]α

j. The first term vanishes since d(dφj) = 0 by Poincaré’s

Lemma. However, the second term does not necessarily vanish, since αj is an arbitrary

function of the canonical coordinates (so dαj is not necessarily zero). In such cases, one

cannot associate with f a vector field via ω̃p(X, ·) = αjdφj. This means that in these cases

the flow of the vector field associated with αjdφj does not consist of symplectomorphisms17,

and so f ∗(ω̃p) ̸= ω̃p. Therefore, f is not an arrow in TotHam (for every choice of αj).

However, let us consider the transformations along the vector fields associated with the

secondary first-class constraints on Σf . That is, consider the (gauge) transformation g :

Σf → Σf that is a diffeomorphism that takes each point on Σf to another arbitrary point

along the gauge orbit associated with the secondary first-class constraints φj at that point.

Since dφj = 0 on the final constraint surface, αjdφj = 0 where αj is an arbitrary function.

But this means that one can associate a vector field Y with αjdφj via ω̃f (Y, ·) = αjdφj since

d(αjdφj) = 0 on Σf . Therefore, the flow of Y consists of symplectomorphisms. Moreover,

g∗H = H because H is gauge-invariant on the final constraint surface. Therefore, g is an

arrow in ExtHam (for all choices of αj). This implies that there are arrows g of ExtHam

such that g ̸= F (f) for any arrow f in TotHam. Therefore, we can conclude that F is not

full.

That F is essentially surjective follows from the fact that every object of ExtHam is the

restriction of some object (Σp, ω̃p, H, φi) to the surface defined by φi = 0. Finally, to show

that F is faithful, we need to show that if two arrows f, g between objects (Σp, ω̃p, H, φi),

(Σp, ω̃
′
p, H

′, φ′
i) of TotHam are distinct, then their action on Σf is distinct. In other words,

we want to show that if f |Σf
= g|Σf

, then f = g. So suppose that f |Σf
= g|Σf

. If f, g are

arbitrary gauge transformations, then the only way that f and g could differ is if they move

points off of Σf by differing amounts along the vector fields associated with the primary

first-class constraints. But H is not constant along the vector fields associated with the

17See Abraham and Marsden (1987) Proposition 3.3.6.
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primary first-class constraints off of Σf . Since f, g must preserve H by definition, f must

be equal to g. If f, g are symplectomorphisms that are flows along vector fields other than

the vector fields associated with the primary first-class constraints, then the only way that

f and g could differ is if at least one changes the secondary constraints. But since f, g must

preserve φi by definition, f must be equal to g. So F is faithful.

B Chapter 2

B.1 Proposition 2.1

Suppose that ω̃p(X, ·) = 0 i.e. X is a null vector field on Σp. This implies that ω̃p(X, ·) ◦

FLp = FL∗
p(ω̃p(X, ·)) = 0 since FLp is a submersion. If X is of the form FLp∗(Z) for

Z on T∗Q, then we can write this as FL∗
p(ω̃p(FLp∗(Z), ·)) = 0, which is equivalent to

(FL∗
pω̃p)(Z, ·) = 0 by Malament (2012, Proposition 1.5.1). Since FL∗

pω̃p = Ω, this im-

plies that Z is a null vector field of Ω. But every distinct vector field X on Σp can be written

as FLp∗(Z) for distinct vector fields Z on T∗Q. In particular, we think of Z as a vector

field whose action at all points in the inverse image of some point in Σp, FL−1
p (FLp(x)), on

smooth maps of the form FL∗
p(f) is given by the action of X on f at FLp(x). This shows

that every distinct null vector field on Σp corresponds to a distinct null vector field on T∗Q.

Next, we want to show that the only additional null vector fields of Ω are the vector fields

in Ker(FLp∗). First, we will show that if Z is a null vector field of Ω, then when FLp∗(Z) is

well-defined, FLp∗(Z) is a null vector field on Σp i.e. there does not exist a null vector field

of Ω whose pushforward along FLp defines a vector field on Σp that is not null with respect

to ω̃p. Then, we will show that Ker(FLp∗) ⊆ Ker(Ω) i.e. the vector fields in Ker(FLp∗)

are null vector fields of Ω.
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For the first, suppose that Ω(Z, ·) = 0. By the definition of Ω, this means that at all points

x ∈ T∗Q, (FL∗
pω̃p)(Z, ·) = 0. This is equivalent to ω̃p(FLp∗(Z), ·) = 0 at the point FLp(x)

i.e. FL∗
p(ω̃p(FLp∗(Z), ·)) = 0 for all points x ∈ T∗Q. Since FLp is a submersion, this means

that ω̃p(FLp∗(Z), ·) = 0 at all points FLp(x) ∈ Σp. This means that for points x ∈ T∗Q such

that FLp∗(Z) is a well-defined vector field on Σp, FLp∗(Z) is a null vector field of ω̃p.

For the second, suppose that Y ∈ Ker(FLp∗). Then, from the above, Ω(Y, ·) = (FL∗
pω̃p)(Y, ·) =

ω̃p(FLp∗(Y ), ·). But FLp∗(Y ) is the zero vector at every point, and so Ω(Y, ·) = 0. This

means that Ker(FLp∗) ⊆ Ker(Ω) and so there are multiple distinct null vector fields on

T∗Q that correspond to the trivial (zero) null vector field on Σp.

Therefore, the number of null vector fields on T∗Q is equal to the number of null vector fields

on Σp plus the dimension of Ker(FLp∗), where the dimension of Ker(FLp∗) is equal to the

number of primary first-class constraints.

B.2 Proposition 2.2

In order to use the same proof that was used for Proposition 2.1, we need to show that FLf

is a (surjective) submersion. To see why FLf is a submersion, notice that Proposition 2.1

implies that if dE(Z) is a Lagrangian constraint where Z is a null vector field on T∗Q, then

dH(FLp∗(Z)) is a Hamiltonian constraint. Similarly, if dH(X) is a Hamiltonian constraint

where X is a null vector field on Σp, then dE(Z) is a Lagrangian constraint where X =

FLp∗(Z). Moreover, dE(Y ) for Y ∈ Ker(FLp∗) is automatically zero, since by assumption

of almost regularity E is constant along the fibers FL−1(FL(q, q̇)). This means that there

will be a one to one correspondence between Lagrangian constraints of this kind and the first

generation of secondary Hamiltonian (first-class) constraints. Reiterating, the same will be

true of all further constraint submanifolds, and so since each constraint reduces the dimension

by one, the relationship between Pf and Σf will be the same relationship as between T∗Q
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and Σp: the induced Legendre transformation FLf will be a surjective submersion, where

Ker(FLf∗) = Ker(FLp∗).

Therefore, we can use the same proof as the proof for Proposition 2.1 to show that distinct

null vector fields on Σf correspond to distinct null vector fields on Pf , and that there are

additional null vector fields on Pf corresponding toKer(FLf∗) = Ker(FLp∗). So the number

of null vector fields on Pf is equal to the number of first-class constraints plus the dimension

of Ker(FLp∗), which recall is the number of primary first-class constraints.

B.3 Proposition 2.3

Similar to the proof of Proposition 2.1, suppose that ω̃f (XH , ·) = dH. This implies that

FL∗
f (ω̃f (XH , ·)) = FL∗

f (dH) since FLf is a submersion. If XH is of the form FLf∗(XE) for

some vector field XE on Pf , then we can write this as FL∗
f (ω̃f (FLf∗(XE), ·)) = FL∗

f (dH),

which is equivalent to (FL∗
f ω̃f )(XE, ·) = FL∗

f (dH). Since FL∗
f ω̃f = Ωf and FL∗

f (dH) =

d(FL∗
fH) = dE , this implies that XE is a solution to Ωf (XE, ·) = dE, which is the equations

of motion on Pf . Since every (distinct) vector field XH on Σf can be written as FLf∗(XE) for

(distinct) vector fields XE on Pf , this shows that every distinct solution on Σf corresponds

to a distinct solution on Pf .

Now suppose that Ωf (XE, ·) = dE. By the definition of Ωf and E, this means that

(FL∗
f ω̃f )(XE, ·) = FL∗

f (dH). This is equivalent to ω̃f (FLf∗(XE), ·) = FL∗
f (dH) at the

point FLf (x) i.e. FL∗
f (ω̃f (FLf∗(XE), ·)) = FL∗

f (dH) for all points x ∈ Pf . Since FLf is a

submersion, this means that ω̃f (FLf∗(XE), ·) = dH for all points FLf (x) ∈ Σf . This shows

that when FLf∗(XE) is a well-defined vector field on Σf , FLf∗(XE) is a solution on Σf .

Finally, we want to show that the relationship between solutions is many to one. This

follows from the fact that if XE is a solution to Ωf (XE, ·) = dE, then so is XE + αiYi where
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Yi ∈ Ker(FLf∗) and αi is an arbitrary function on Ωf since Ker(FLf∗) ⊆ Ker(Ωf ). But

FLf∗(XE+α
iYi) = FLf∗(XE). Therefore, there are distinct solutions on Pf that correspond

to the same solution on Σf .

B.4 Proposition 2.4

To show that J is a functor, we need to to show that J takes objects of LagR to objects

of HamR and arrows to arrows. The first is trivial. To show the second, take an arrow f

between objects (P̄1, Ω̄1, L̄1) and (P̄2, Ω̄2, L̄2). Since f is a symplectomorphism, f ∗Ω̄2 = Ω̄1.

Since Ω̄ = FL̄∗ω̄ by construction, this means that f ∗(FL̄2
∗
ω̄2) = FL̄1

∗
ω̄1. We want to show

that FL̄2◦f◦FL̄−1
1 is an arrow in HamR. That is, we want to show that (FL̄2◦f◦FL̄−1

1 )∗ω̄2 =

ω̄1 and (FL̄2 ◦ f ◦ FL̄−1
1 )∗(Ē2 ◦ FL̄2

−1
) = Ē1 ◦ FL̄−1

1 . The first follows from the fact that

f ∗(FL̄2
∗
ω̄2) = FL̄1

∗
ω̄1. The second follows from the fact that f ∗Ē2 = Ē1 since f ∗L̄2 = L̄1.

Similar reasoning can be used to show that K is a functor.

Since FL̄ and FH̄ are global diffeomorphisms, one can define the inverse FL̄−1 = FH̄ and

FH̄−1 = FL̄. This implies that the functors J and K are inverses on objects and similarly on

arrows. That J and K preserve solutions follows from the fact that FLf preserves solutions

(from Proposition 2.3), and that the solutions that are equivocated through reduction are

just the gauge-related solutions.

C Chapter 4

C.1 Proposition 4.1

It is easy to show by example that there are gauge transformations that do not preserve

the two-form ω =
∑

i dq
i ∧ dpi in coordinate form. For example, consider the infinitesi-
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mal transformation q′i = qi + ϵaj(qi, pi){qi, φj} where we set aj(qi, pi) such that p′i = pi.

In general, this will fail to preserve ω. In particular, it will fail to preserve ω when

d(aj(qi, pi){qi, φj}) ̸= 0, which is just when d(aj(qi, pi)) ̸= 0 since dω = 0 (it is closed).

Since all point∗-transformations are symplectomorphisms, this means that arbitrary gauge

transformations will also not be point∗-transformations.

More generally, we can show that arbitrary gauge transformations, namely, diffeomorphisms

g : T ∗Q→ T ∗Q that act by moving points of cotangent space an arbitrary amount along the

vector fields associated with the first-class constraints at each point, are such that g∗ω′ ̸= ω

where ω′ is the two-form under the transformation generated by g. The proof has the

same structure as the first part of the proof for Proposition 1.1, except we now do not

need to restrict to secondary first-class constraints: Take the gauge transformations to be

represented by the flow of the vector field associated with αidφi where α is an arbitrary

function of the canonical coordinates and φi are the first-class constraints. Then because

ω(Xφi
, ·) = dφi ̸= 0, it follows that one cannot associate with αidφi a vector field via

ω(Y, ·) = αidφi unless d[aφidb]α
i = 0. This means that the flow of the vector field associated

with αidφi does not consist of symplectomorphisms for all gauge transformations g and so

g∗ω′ ̸= ω in general.

C.2 Proposition 4.2

This follows the same structure as the second part of the proof of Proposition 1.1: Take

the gauge transformations on the final constraint surface to be represented by the flow of

the vector field associated with αidφi. Since dφi = 0 for all first-class constraints on the

final constraint surface, αidφi = 0. This means that one can associate a vector field Y with

αidφi via ω̃f (Y, ·) = αidφi since d(αidφi) = 0 on Σf . Therefore, the flow of Y consists

of symplectomorphisms, and so gauge transformations are symplectomorphisms on the final

135



constraint surface. Moreover, g∗H = H because H is gauge-invariant on the constraint

surface. Therefore, gauge transformations are arrows in ConHam2 (in fact, this shows that

they are automorphisms).

C.3 Proposition 4.3

Since reduction equivocates between points along the gauge orbits, this proposition follows

trivially, since gauge transformations are just the identity transformation on the reduced

space, which are arrows in ConHamRed.

C.4 Proposition 4.4

That F is essentially surjective follows from the fact that every model of the reduced theory

is the reduction of some model on the final constraint surface by definition. That F is

full follows from the fact that all arrows ḡ between F (Σf , ω̃f , H), F (Σ′
f , ω̃

′
f , H

′) are arrows

between (Σf , ω̃f , H), (Σ′
f , ω̃

′
f , H

′) defined on the equivalence class of points along the gauge

orbits.

That F is not faithful can be shown by demonstrating that there are two distinct arrows in

ConHam2 that map to the same arrow in ConHamRed. Consider some model (Σf , ω̃f , H)

where ω̃f has at least one null vector field and consider two arrows g1, g2 from (Σf , ω̃f , H) to

itself corresponding to distinct gauge transformations i.e. two different ways of moving the

points of Σf to other points along the gauge orbits (as long as ω̃f has at least one null vector

field, one can find such distinct g1, g2). Then F (g1) = F (g2) = Id since g1 and g2 preserve

the gauge orbits. So F is not faithful.
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