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ARTICLE Communicated by Miguel Patricio Eckstein

Top-Down Priors Disambiguate Target and Distractor
Features in Simulated Covert Visual Search

Justin D. Theiss
theissjd@berkeley.edu
Michael A. Silver
masilver@berkeley.edu
University of California, Berkeley, CA 94720, U.S.A.

Several models of visual search consider visual attention as part of a
perceptual inference process, in which top-down priors disambiguate
bottom-up sensory information. Many of these models have focused on
gaze behavior, but there are relatively fewer models of covert spatial
attention, in which attention is directed to a peripheral location in vi-
sual space without a shift in gaze direction. Here, we propose a biologi-
cally plausible model of covert attention during visual search that helps
to bridge the gap between Bayesian modeling and neurophysiological
modeling by using (1) top-down priors over target features that are ac-
quired through Hebbian learning, and (2) spatial resampling of mod-
eled cortical receptive fields to enhance local spatial resolution of im-
age representations for downstream target classification. By training a
simple generative model using a Hebbian update rule, top-down priors
for target features naturally emerge without the need for hand-tuned or
predetermined priors. Furthermore, the implementation of covert spatial
attention in our model is based on a known neurobiological mechanism,
providing a plausible process through which Bayesian priors could lo-
cally enhance the spatial resolution of image representations. We validate
this model during simulated visual search for handwritten digits among
nondigit distractors, demonstrating that top-down priors improve accu-
racy for estimation of target location and classification, relative to bottom-
up signals alone. Our results support previous reports in the literature
that demonstrated beneficial effects of top-down priors on visual search
performance, while extending this literature to incorporate known neural
mechanisms of covert spatial attention.

1 Introduction

Due to various dynamic environmental factors (e.g., lighting, motion, occlu-
sion), humans frequently encounter noisy and/or ambiguous visual stimuli
in everyday life. For example, the same object viewed from different angles
can project widely varying geometries onto the retina. There is inherent
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uncertainty in visual perception of many natural stimuli, but humans of-
ten easily overcome this uncertainty when viewing complex environments.
For example, humans encode and account for uncertainty in making predic-
tions of object speed (Weiss et al., 2002) and size (Ernst & Banks, 2002). The
Bayesian coding hypothesis (Knill & Pouget, 2004) suggests that humans
represent sensory information probabilistically. Within this framework, the
cortex is hypothesized to encode the conditional probability of features,
given a set of sensory inputs.

Early computational models of perception introduced the notion of re-
ducing uncertainty in observations (Pelli, 1985; Dayan et al., 1995; Dayan &
Zemel, 1999; Lee & Mumford, 2003). In addition, work studying covert at-
tention with the Posner cueing paradigm (Posner, 1980) employed Bayesian
models to explain attentional effects on psychophysical performance in hu-
mans (Eckstein et al., 2002; Shimozaki et al., 2003) and proposed neuromod-
ulators that could implement uncertainty computations (Yu & Dayan, 2005).
Ma et al. (2011) later proposed a neural network model using biologically
plausible operations via divisive normalization to implement visual search
with probabilistic population coding, and this model could account for hu-
man performance on the same task. These and similar models (see Eck-
stein, 2017, for review) apply the Bayesian probabilistic framework (Knill &
Pouget, 2004; Geisler, 2011) to explain psychophysical and neurobiological
phenomena related to visual attention.

In line with these works, Rao (2005) proposed a probabilistic generative
model of attention in which the visual system uses Bayes’s rule to converge
to probable explanations of the visual environment by combining bottom-
up likelihoods of sensory information and top-down priors over spatial lo-
cations and features. In artificial experiments, the generative model was
trained to represent probability distributions of stimuli over location and
orientation dimensions. In the bottom-up direction, the posterior probabil-
ities of location and orientation were inferred from an image. In the top-
down direction, the prior probabilities over features or locations were used
to influence an intermediate level of representation of the stimulus and
to update the posterior probabilities. Importantly, the model of Rao (2005)
demonstrated that feedback of prior probabilities over spatial locations can
reproduce effects of top-down attention that have been well characterized
in neurophysiological studies.

Previous Bayesian models of attention have also successfully modeled
patterns of human eye movements during both visual search and free-
viewing of natural images. The contextual guidance model (Torralba et al.,
2006) combines bottom-up saliency that is computed by a local pathway
with scene priors that are computed by a global pathway. Impressively, the
model was able to predict humans’ eye movements during visual search for
people, paintings, and mugs in natural scenes. Chikkerur et al. (2010) used
a similar approach but instead modeled top-down attention during visual
search as a combination of both spatial and feature priors. This model was
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used to demonstrate how a Bayesian framework of attention can account for
multiple known effects: feature pop-out (Bravo & Nakayama, 1992), multi-
plicative modulation of response amplitude (McAdams & Maunsell, 1999),
and shifts and changes in gain of the contrast response function (Treue &
Martínez Trujillo, 1999; Martínez-Trujillo & Treue, 2002). Furthermore, the
model of Chikkerur et al. (2010) accounted for eye movements during both
visual search and free viewing of natural images.

Since eye movements are commonly used to study visual search, most
studies have focused on modeling overt as opposed to covert visual at-
tention (i.e., directing spatial attention to a particular peripheral location
without altering gaze position). Although the premotor theory of atten-
tion posits that covert and overt attention share many processes (Rizzolatti
et al., 1987), overt attention uses the structural advantages of central over
peripheral vision to improve spatial sampling at attended locations, while
sustained covert spatial attention directly enhances the representations of
encoded features. Specifically, during covert spatial attention, receptive
fields (RFs) in early visual cortex, which are smaller in central vision and
larger in the periphery, shift toward the attended location and decrease in
size (Womelsdorf et al., 2006; Klein et al., 2014). Previous visual search mod-
els have incorporated differences between central and peripheral vision in
spatial resolution: Zelinsky (2008) used a retina transform function to pro-
gressively blur the peripheral regions of the image, and Akbas and Eckstein
(2017) used a foveated visual field based on the feature pooling method de-
scribed in Freeman and Simoncelli (2011). However, these models studied
overt attention using static foveated image processing applied at different
locations in order to mimic eye movements and did not include covert spa-
tial attention.

Taking inspiration from the normalization model of attention (Reynolds
& Heeger, 2009), Theiss et al. (2022) described a computational model of cor-
tical RFs as a dynamic pooling array within a convolutional neural network.
This RF pooling array was updated by gaussian multiplication with an at-
tention field that was centered at the attended location, modeling known
effects of spatial attention on properties of neuronal and population-level
RFs in visual cortex (Womelsdorf et al., 2006; Klein et al., 2014). The valid-
ity of this model was demonstrated across multiple experiments that repli-
cated results from psychophysical studies of visual crowding in humans
(Bouma, 1970; Banks et al., 1977; Toet & Levi, 1992). For visual search, the
RF pooling array of Theiss et al. (2022) can be used to simulate allocation
of covert spatial attention to a predicted target location in order to enhance
local spatial processing at the attended location and improve downstream
target classification.

In this study, we describe a biologically plausible Bayesian model of at-
tention that learns priors over target features through Hebbian mechanisms
and employs top-down spatial attention in order to simulate covert visual
search. The model uses these feature priors to disambiguate bottom-up
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Figure 1: Model of covert attention during visual search using top-down pri-
ors and spatial resampling. Visual search for handwritten digits (approximately
20 × 20 pixels) among nondigit distractors within a 60 × 60 search array is eval-
uated for target location (Predict Location) and classification (Predict Label) ac-
curacy. During training, priors (comprising 40 feature maps) are learned over
digit features in the first layer (h1, 24 feature maps) and combined with bottom-
up signals (v) to generate the priority map (P(h1|v, h2)) during evaluation. The
location with the maximum value in the priority map is defined as the predicted
target location and is then used to spatially resample (see equation 2.5) the re-
ceptive field pooling array to enhance the spatial resolution of feature represen-
tations at the predicted target location to facilitate downstream classification via
a two-layer convolutional network.

signals that contain target and distractor features, simulating feature-based
attention that highlights the location of the target. This induces a spatial
prior at the predicted target location, which is then used to enhance the
encoded representation of the target features for classification. We test this
model using a search task for handwritten digits among nondigit distrac-
tors and evaluate both target location and classification accuracy. Although
we focus on visual search with artificial images, we also discuss how the
model could be extended to more complex tasks with natural images.

2 Method

2.1 Overview. In the following sections, we describe our model of
covert attention during visual search (shown in Figure 1). This model
comprises both top-down feature-based and spatial attention using biolog-
ically plausible mechanisms. Feature-based attention is implemented with
a hierarchical generative model that acquires top-down priors over target



Top-Down Priors in Simulated Covert Visual Search 2205

features during training via a Hebbian learning rule. Through feedback of
top-down priors, attention priority maps are updated to represent likely
target locations. Spatial attention within the model is then implemented
as an enhancement of the spatial resolution of sampled features at the
predicted target location, reflecting known effects of attention on cortical
receptive fields of populations of neurons.

We evaluate this model using a visual search task for handwritten digits
among nondigit distractors. Although the model is general and not specific
to a particular visual cortical area, we employ a task in which ambiguity is
expected between target and distractor features in the first-layer represen-
tations and therefore requires top-down feedback to accurately predict the
target. By using scrambled digits as distractors, we ensure that low-level
features within small receptive fields will be similar, while higher-level fea-
tures in larger receptive fields will be distinct (see Figure 2).

2.2 Model Description

2.2.1 Hierarchical Generative Model. We constructed a model that is con-
ceptually related to previous hierarchical Bayesian models (Rao, 2005; Tor-
ralba et al., 2006; Chikkerur et al., 2010), but unlike these models, it learns
priors over target features using a biologically plausible updating rule that
is based on Hebb’s theory of synaptic plasticity (Hebb, 1949). To implement
this model, we use a simple two-layer convolutional deep belief network
(CDBN) (Figure 1) (Lee et al., 2009) that is a hierarchical generative model
composed of multiple restricted Boltzmann machine (RBM) layers (Smolen-
sky, 1986). Each RBM layer models its input using a set of hidden units that
are active with the following probabilities:

P(h j = 1|v) = σ

(
b j +

∑
i

viwi j

)
, (2.1)

P(vi = 1|h) = σ

⎛
⎝ci +

∑
j

h jwi j

⎞
⎠ , (2.2)

where h j represents a single hidden unit from the set h, vi represents a vis-
ible unit of the input v, wi j represents the weight between vi and h j, b j rep-
resents the bias for hidden unit h j, ci represents the bias for visible unit vi,
and σ is the sigmoid function. During training, the model weights are up-
dated with new values that are proportional to the simultaneous activation
of the visible and hidden units, using an algorithm known as contrastive
divergence (CD; Hinton, 2002),

�wi j ∝ 〈vih j〉data − 〈vih j〉model, (2.3)
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Figure 2: Top: Weights in the first layer of the CDBN (h1 in Figure 1), follow-
ing unsupervised learning with handwritten digits. Bottom: Whereas first-layer
weights comprise oriented and curved lines that are characteristic of parts of
digits, second-layer weights (shown projected into image space) are combina-
tions of the first-layer weights that can resemble entire digits. Therefore, first-
layer responses do not reliably disambiguate targets and distractors.

where the expected values from the data distribution are compared to those
generated by the model. Choosing an update rule based on contrastive di-
vergence means that visible and hidden units that are simultaneously ac-
tive are given stronger weights, much like Hebbian learning for synaptic
connections.
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Once trained, the model can generate samples from the data distribu-
tion using Gibbs sampling (Geman & Geman, 1984), a sampling method in
which visible and hidden units are alternately sampled (Bernoulli sampling
using equations 2.1 and 2.2). After a single RBM layer is trained, its weights
are fixed, and additional layers can then be trained on the outputs of the
previous layer in a layer-wise manner, thereby constructing a deep belief
network (DBN; Hinton & Salakhutdinov, 2006). Since the first layer learns
to represent the probability of the data distribution, subsequent training of
a higher layer induces a prior over the first layer, P(h1|h2) (i.e., the likely
relationships among first-layer features).

In the context of digits, these priors represent the likely combinations
of low-level features (e.g., oriented line segments) that form the common
components of digits. The second-layer hidden units therefore represent
different parts of handwritten digits such that in the top-down direction,
full digits could be generated by combining first-layer features.

Within the CDBN, the convolution operation results in a set of feature
maps. Within each of these feature maps, each hidden unit has a receptive
field covering a specific portion of the input space. We designed the model
to represent digits using two layers, comprising smaller RFs (11 × 11) corre-
sponding to digit fragments (layer 1) and larger RFs (28 × 28) encompassing
entire digits (layer 2).

When trained on handwritten digits (MNIST; LeCun et al., 1998), the
first layer of the CDBN learns to represent oriented and curved lines that
are characteristic of parts of MNIST digits (Figure 2, top), while the second
layer represents more complex features that resemble entire digits (Figure 2,
bottom). Since our goal is to induce ambiguity among low-level target and
distractor features, we used a relatively small number of weights for each
layer (24 and 40, respectively) and a sparsity constraint during training to
prevent overfitting, thereby reducing the likelihood of first-layer feature re-
sponses being biased toward the target versus the distractors.

In order to obtain a vector representation of a digit in the second-layer
hidden units, a probabilistic max-pooling operation is performed at the first
layer to reduce the image size of its hidden units (Lee et al., 2009). Using
probabilistic max-pooling, blocks of hidden units (e.g., 2 × 2) are modeled
as multinomial units in which a single unit is “on” or all units within the
block are “off.” This provides a straightforward way of deriving the poste-
rior probability of hidden units, given the input and the top-down feedback
from the layer above:

P(hk
j = 1|v, h′) =

exp(I(hk
j ) + I(pk

α ))

1 + ∑
Bα

exp(I(hk
j ) + I(pk

α ))
(2.4)

where h′ represents the second-layer hidden units, Bα represents the block
(indexed by α) containing hidden unit hk

j (with feature map index k and
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Figure 3: Example search array and priority maps for simulated visual search.
The search array (left) contains a single target (here, “6”) among nondigit dis-
tractors. Comparing the bottom-up alone (middle) and top-down feedback
(right) priority maps demonstrates how top-down priors disambiguate first-
layer target and distractor features by assigning greater priority to the target
relative to distractors.

pixel index j), I(hk
j ) represents the bottom-up contribution (convolution of

first-layer weights with the input, plus bias), and I(pk
α ) represents the top-

down contribution (transposed convolution of the second-layer weights
with the second-layer hidden units).

2.2.2 Attention Priority Maps. Using equations 2.1 and 2.4, we computed
priority maps representing the bottom-up conditional probabilities over
first-layer features (i.e., P(h1|v); “bottom-up alone”) as well as the poste-
rior probabilities of those features, given top-down priors (i.e., P(h1|v, h2);
“top-down feedback”). Since the probabilities across first-layer features cor-
respond to a vector for each pixel location, we normalized the sum across
probabilities to the maximum value to generate priority maps for both
bottom-up alone and top-down feedback conditions. Allocation of spatial
attention to the predicted target location during visual search was modeled
as the location with the maximum value in the priority map (see Figure 1).

Visual search for digits should be facilitated by priority maps that rep-
resent relative probabilities of digit features that are present in an image.
However, since the first-layer features comprise digit fragments (see Fig-
ure 2), nondigit distractors will be confused with digits when using only a
priority map of bottom-up conditional probabilities. Therefore, use of the
priority map that incorporates top-down priors across first-layer features
should help disambiguate which regions of the image contain a digit ver-
sus nondigit distractor. This is demonstrated in Figure 3, where the rela-
tive priorities of the target digit and right-most distractor are similar in
the bottom-up–alone priority map (middle panel) but are more distinct
in the priority map incorporating top-down priors (right panel), highlight-
ing the digit over the distractor.
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2.2.3 Receptive Field Pooling Array. When attention is covertly directed
to a particular peripheral region of the visual field (without changing gaze
position), RFs in visual cortex shrink and shift toward the attended location
(Klein et al., 2014; Theiss et al., 2022; Womelsdorf et al., 2006), resulting in
local enhancement of the spatial resolution of feature representations at the
attended location. In order to model cortical RFs during visual search (but
not during training), we replace the pooling blocks described in equation 2.4
with receptive fields of variable size that can be dynamically updated. This
dynamic receptive field pooling array maintains a location and size for each
individual receptive field (see Theiss et al., 2022, for more details). The loca-
tions and distributions of RFs in the pooling array are selected to mimic gaze
that is fixed at the center of the image, with greater density and smaller RFs
at the center of the search array (see Figure 1). In order to simulate the ec-
centricity dependence of visual cortical RF properties, a scaling rate is used
to define the size and spacing of RFs as a function of eccentricity (Theiss
et al., 2022). For the current study, this scaling rate was set to 0.1, based on
the properties of voxel RFs estimated from fMRI measurements of human
visual cortical area V1 (Kay et al., 2013).

Before implementing probabilistic max-pooling, we first obtain the hid-
den unit outputs (I(hk

j ) in equation 2.4) for each RF using a masked array
(receptive fields × height × width), with values of 1 for pixels within the
RF and 0 for pixels outside the RF. A two-dimensional gaussian attention
field centered at the predicted target location is then multiplied with the RF
array to update the location and size of each RF:

μ = μRFσ 2
AF + μAFσ 2

RF

σ 2
AF + σ 2

RF

, σ 2 = σ 2
RFσ 2

AF

σ 2
RF + σ 2

AF

, (2.5)

where μRF and σRF represent the location and size of each gaussian RF, and
μAF and σAF represent the same parameters for the attention field. For the
current study, μAF is set to the predicted target location for each trial, and
σAF is set to eight pixels in the feature map space, with 2σAF approximating
the size of a MNIST digit in image space.

2.2.4 Predictor Network. In order to evaluate the effects of spatial atten-
tion on the first-layer feature representations, we train a predictor network
using the extracted features from the second layer of the CDBN. As shown
in Figure 1, the predictor network classifies the digit after the RF pooling
array in the first layer is updated via spatial attention that is centered at the
predicted target location (see equation 2.5). Unlike the CDBN, the predictor
network is a strictly feedforward neural network with two convolutional
layers (ReLU and softmax activation functions, respectively, as shown in
Table 1). The convolutional filter sizes are chosen such that the output for
the 60 × 60 search array is a 10-dimensional vector, corresponding to the
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Table 1: Model Architecture Used for Training.

Network Input Shape Output Shape Convolution Activation Pool

CDBN 1 × 60 × 60 24 × 50 × 50 11 × 11 None ProbMax 2 × 2
24 × 25 × 25 40 × 17 × 17 9 × 9 Sigmoid None

Predictor 40 × 17 × 17 64 × 10 × 10 8 × 8 ReLU Max 2 × 2
network 64 × 5 × 5 10 × 1 × 1 5 × 5 Softmax None

softmax values for each digit class (i.e., 0–9). Predictions of the target class
label are based on the index of the 10-dimensional vector containing the
maximum value.

2.2.5 Model Training. The complete model shown in Figure 1 and Table 1
is trained in two steps. First, the CDBN is trained layer-wise with unsuper-
vised learning to model the data distribution using the contrastive diver-
gence algorithm described above (Hinton, 2002). For this portion of train-
ing, the inputs to the model are 28 × 28 pixel images of a handwritten digit
(LeCun et al., 1998). Each layer is trained with a mini-batch size of one for
40 epochs (i.e., 40 passes through the training set of 60,000 images), using
an initial learning rate of 0.02 and initial momentum of 0.5 (increasing to
0.9 after four epochs). The learning rate is decayed after each epoch using
a time-based schedule and a decay rate of 0.01, as described in Lee et al.
(2009). In order to reduce overfitting and encourage sparsely active hidden
units, L2 weight-decay and sparsity constraints are used during training
(Hinton, 2012).

Next, the predictor network is trained for 10 epochs using supervised
learning for digit classification with backpropagation (stochastic gradient
descent with a learning rate of 0.001 and momentum of 0.9). In order to train
the predictor network to classify digits presented anywhere in the search ar-
ray, the 28 × 28 pixel MNIST digit is first padded on each side with zeros
to match the size of the search array (60 × 60 pixels). The digit is then ran-
domly translated horizontally and vertically up to a maximum of 15 pixels
in each direction (25% of the search array size).

The image is then passed through the CDBN, and the predictor network
is trained on the second-layer extracted features. The trained predictor net-
work achieved a classification accuracy of 81.26% on the held-out test set of
10,000 images padded to 60 × 60 pixels (chance-level accuracy is 10%). For
all additional experiments, the 2 × 2 pooling operation in the first layer of
the CDBN (see Table 1) was replaced with the RF pooling array, which per-
forms probabilistic max-pooling across each RF instead of on 2 × 2 blocks
of pixels.

2.2.6 Model Overview. In summary, the model shown in Figure 1 con-
tains three main components: a Bayesian attention model (CDBN), an RF
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pooling layer, and a predictor network. During visual search, features are
first extracted by the CDBN; then the target location is predicted from a pri-
ority map in order to update the RF pooling array, and finally, the enhanced
features are used to classify the target digit. Following Theiss et al. (2022),
we multiply a two-dimensional gaussian attention field with the RF pool-
ing array to model the effects of spatial attention on feature representations.
Similar to Chikkerur et al. (2010), we consider the gaussian attention field
to be a spatial prior over the predicted target location that is derived from
the priority map.

Two priority maps are evaluated for target location and classification ac-
curacy. The bottom-up priority map (see the middle panel of Figure 3) rep-
resents the conditional probability of first-layer features, given the visual
search array. The priority map with top-down feedback (see the right panel
of Figure 3) incorporates second-layer top-down priors over first-layer fea-
tures to help disambiguate features that could represent both targets and
distractors. These priors reflect the probability distribution over combina-
tions of curved and oriented features (see Figure 2) that constitute hand-
written digits. By comparing the differences in performance between these
two priority maps for both location and classification accuracy, we quantify
the effects of top-down feature priors on visual search performance.

2.3 Experimental Design and Statistical Analyses.

2.3.1 Visual Search Experiment. The visual search experiment for a digit
among non-digit distractors contains 10,000 search arrays using the held-
out MNIST test set (LeCun et al., 1998). Each 60 × 60 pixel search array
contains a single 28 × 28 target MNIST digit placed in a random location
among various distractors (see the left panel of Figure 3). In order to in-
crease ambiguity in first-layer feature representations, the distractors are
generated from fragments of digits (described in detail below). As shown in
the middle panel of Figure 3, this increases the uncertainty of target location
in the bottom-up alone priority map. For each trial and condition (bottom-
up alone versus top-down feedback), the location of the maximum value in
the respective priority map is selected as the predicted target location, and
this is then used to update the RF pooling array using equation 2.5, with μAF

set to the predicted target location. Following this update, the predictor net-
work classifies the target digit using the second-layer features, separately
for the two priority map conditions.

2.3.2 Nondigit Distractors. In order to generate distractors that contain
similar first-level features as target digits, we manipulate portions of four
randomly selected MNIST digits (per search array) from the test set of
10,000 digits. For each randomly-selected distractor digit, we crop the 28 ×
28 MNIST image to the central 14 × 14 pixels, randomly rotate the cropped
image by one of [0, 90, 180, 270] degrees, and randomly zero half of the
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resulting image along either the horizontal or vertical axis. As shown in the
left panel of Figure 3, the resulting distractors contain digit fragments but
are not identifiable as any particular digit. In order to avoid spatial overlap
with the target digit in the search array, each distractor is randomly placed
such that the center-to-center distance to the target digit was greater than
7.5 pixels (12.5% of the search array size) along both horizontal and verti-
cal axes. Note that this allows distractors to overlap with parts of the target
digit as well as with other distractors. However, as a result of the relative
size of the targets and distractors with respect to the size of the search array,
there is an inherent limitation regarding the number of distractors that can
be added to the array. This unfortunately prevents set size analysis in our
study, which is often included in psychophysical visual search studies in
humans.

2.3.3 Statistical Procedures. Target location accuracy is evaluated by com-
puting precision and recall (defined below) for each search array by vary-
ing the threshold of the priority map between 0 and 1 with a step size of
0.01. Although location accuracy could also be measured as the Euclidean
distance between the target center and predicted location (among other
metrics), we chose precision and recall in order to obtain a more complete
account of location accuracy performance. The method we describe has pre-
viously been used to evaluate saliency model performance for locations of
fixations (Wang et al., 2016) as well as for visual saliency detection (Xie &
Lu, 2011), which is relevant to our study.

For each threshold value between 0 and 1, pixels in the priority map
with values above the threshold are considered positive (i.e., target) pre-
dictions, whereas those below the threshold are considered negative (i.e.,
background) predictions. Above-threshold pixels are considered true posi-
tives if they overlap a 16 × 16 block of pixels centered at the target location
in the priority map (approximately the size of the MNIST digit in image
space).

Precision is defined as the proportion of above-threshold pixels overlap-
ping the target relative to all above-threshold pixels (quantifying the rela-
tive priority of target versus distractor locations). Recall is defined as the
proportion of above-threshold pixels overlapping the target relative to the
16 × 16 pixel target area (quantifying the sensitivity for detecting the target
within the priority map). Average precision (AP) is then computed for each
trial using the following equation,

AP =
∑

n

(Rn − Rn−1)Pn, (2.6)

where (Rn − Rn−1) represents the change in recall rates between thresholds
n and n − 1, and Pn represents the precision at threshold n (Zhu, 2004).
We then average across trials to calculate the AP for a given condition
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(bottom-up alone versus top-down feedback). Chance level for precision
is 0.1024 (i.e., the proportion of ground-truth target pixels).

Target classification accuracy is evaluated as the proportion of trials cor-
rectly classifying the target digit. We also evaluate a control condition of
classification accuracy for each trial without updating the RF pooling array
(no changes in RF location or size due to covert visual spatial attention).

In order to obtain 95% confidence intervals for our estimates, we use
1000 iterations of bootstrap resampling of the data with replacement. For
statistical comparisons between two distributions, we first center each dis-
tribution’s mean at the combined mean of the two distributions and then
bootstrap resample (again with 1000 iterations) from these centered distri-
butions. We report p-values as the proportion of observed mean differences
between conditions that are greater than the original mean difference (Efron
& Tibshirani, 1994).

2.3.4 Code/Software. We implemented all training and computation in
PyTorch (Paszke et al., 2017) as well as custom Python code. The code used
to produce the results described in this article is available on request.

3 Results

3.1 Top Down Feature Priors Improve Target Location Accuracy. To
evaluate the effects of top-down priors on visual search performance, we
tested both target location and classification accuracy for the bottom-up
alone (i.e., P(h1|v)) and the top-down feedback (i.e., P(h1|v, h2)) priority
maps. To quantify target location accuracy, we plotted the precision-recall
curve (see Figure 4), which displays performance for each of the two prior-
ity maps, relative to a random baseline (defined below). Greater area under
the curve (AUC) indicates better performance for predicting target location.

As described in section 2.3.3 above, the precision-recall curve is com-
puted by thresholding the priority map between 0 and 1, where a high
threshold preserves only the largest values in the priority map. Therefore,
high precision at low recall (as seen for the top-down feedback priority map
in Figure 4) indicates that the locations with the largest values in the priority
map are more likely to overlap with the target digit than with distractors.

In contrast, the precision-recall curve for the bottom-up alone priority
map indicates that as fewer above-threshold pixels overlapped with the tar-
get (low recall), the proportion of pixels that overlapped with distractors in-
creased (low precision). The “random” baseline (dotted line) can be viewed
as the performance of a model that predicts target locations with a probabil-
ity equal to the proportion of ground-truth target pixels (i.e., 0.1024). Both
the bottom-up alone and top-down feedback priority maps clearly surpass
baseline performance.

Average precision (see equation 2.6) is a summary metric of the
precision-recall curve that is equivalent to the area under the curve. High
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Figure 4: Precision-recall curve (left) and average precision (right) quantify
target location accuracy for bottom-up alone and top-down feedback priority
maps. The precision-recall curve is based on binarizing the priority maps at
various thresholds and reflects the relative proportion of pixels assigned to the
target versus the distractors (precision) as a function of overlap with the target
(recall) in each thresholded priority map. Average precision (see equation 2.6)
is a summary metric of the precision-recall curve that is equivalent to the area
under the curve. Together, these results demonstrate that top-down priors dis-
ambiguate bottom-up signals by highlighting regions associated with the target
relative to the distractors. Chance performance is indicated by the dashed line
(i.e., proportion of ground-truth target pixels). Error bars are bootstrapped 95%
confidence intervals. *Bootstrapped p-value (1000 samples) = 0.

average precision therefore indicates greater priority for target versus dis-
tractor locations across all recall levels. As shown in the right panel of
Figure 4, incorporating top-down priors in the priority map substantially
improves target location accuracy relative to using the bottom-up condi-
tional probabilities alone (0.69 versus 0.44).

3.2 Top Down Priors Disambiguate among Target and Distractor Fea-
tures. In order to evaluate the effect of spatial attention on encoded fea-
tures at the predicted target location, we use a predictor network to classify
the target digit based on the updated features from the second layer of the
CDBN (see Figure 1). As shown in the middle panel of Figure 3, the bottom-
up alone priority map can confuse distractor and target features, generat-
ing strong predictions for both locations. Under the assumption of a single
spotlight of attention, the bottom-up conditional probabilities would then
often lead to spatial attention being directed toward the distractor instead of
the target. However, if top-down priors disambiguate target and distractor
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Figure 5: Classification accuracy during simulated visual search using spatial
resampling of RFs at locations predicted by bottom-up alone or top-down feed-
back priority maps. “No attention” indicates classification accuracy without up-
dating the RF array based on attention. Spatial attention to predicted locations
improves classification accuracy, with top-down feedback priority maps result-
ing in greater performance relative to bottom-up alone. Chance performance is
0.1 (1 out of 10 possible digit classes). Error bars are bootstrapped 95% confi-
dence intervals. *Bootstrapped p-value (1000 samples) = 0.

features, the resulting priority map would be more likely to direct spatial
attention to the target location (see the right panel of Figure 3).

As for our analysis of target location accuracy, we compare target clas-
sification accuracy to chance-level performance of a random classifier. For
MNIST digits, a random classifier would be expected to have an accuracy
level of 0.1 (i.e., the probability of selecting 1 out of 10 digit classes). How-
ever, since the predictor network is trained to classify digits anywhere in
the image and distractors should have poor representation in the output
of the CDBN, the RF pooling array is the primary bottleneck for digit in-
formation passing to the predictor network. Indeed, as shown in Figure 5,
performance is well above chance (0.1 proportion correct) for all three con-
ditions. It is therefore more informative to compare the effects of spatial
attention on classification accuracy relative to a “no-attention” condition.
For this condition, we obtain target classification predictions for each trial
without updating the RF pooling array based on spatial attention.

Although performance is better in both attention conditions compared
to the no-attention condition (0.67 and 0.63 versus 0.60), classification ac-
curacy is greater for the priority map with top-down priors that enhance
the encoded feature representations (0.67 versus 0.63). To provide further
intuition for this result, we note that digits placed in the center of the search
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array should have equal performance in all three conditions, whereas spa-
tial attention will influence performance for digits placed at the periphery.
Attention to target digits or even nearby distractors in the bottom-up alone
condition could lead to greater spatial resolution and therefore improved
classification compared to the no-attention condition. More accurate selec-
tion of the target digit by attention results in better classification in the top-
down feedback condition compared to the bottom-up alone condition (see
Figure 4).

Finally, it is worth noting that performance of the predictor network on
the test set is relatively low (0.81) at full spatial resolution (i.e., no RF pool-
ing array) in the absence of any distractors. Spatial attention using the top-
down feedback priority map in the presence of distractors achieves 82% of
this maximal classification accuracy.

4 Discussion

In this study, we present a simple Bayesian model of covert visual attention
and evaluate the model using a visual search task with handwritten dig-
its among nondigit distractors. In contrast to previous models, our model
learns priors over target features using an update rule that is similar to Heb-
bian learning, and it enhances representations of features at attended spatial
locations using a neurobiologically plausible mechanism.

Comparing the average precision for predicting target locations between
priority maps with or without top-down priors, we observed that Bayesian
priors over target features significantly improve target location accuracy.
Furthermore, by modeling spatial attention as an interaction of an RF pool-
ing array with an attention field centered at the predicted target location
(Theiss et al., 2022), we demonstrate that top-down priors disambiguate
distractor and target features, resulting in the target being more likely to
be attended. The study provides further support for a Bayesian conceptual
framework to explain covert visual search.

The enhancing effects of covert spatial attention on local spatial resolu-
tion of visual stimuli has been well known for over two decades (Yeshu-
run & Carrasco, 1998; Carrasco et al., 2000). Although other models have
implemented eccentricity-dependent processing to emulate the foveated
sampling observed in the retina and visual cortex (Zelinsky, 2008; Akbas
& Eckstein, 2017), the dynamic RF pooling array in our model implements
known changes in populations of neuronal receptive fields due to spatial
attention (Womelsdorf et al., 2006; Klein et al., 2014). These changes in RF
position and size have been observed across the visual cortical hierarchy
(Klein et al., 2014), which suggests that there is not a single biological sub-
strate that underlies the attentional field that is centered at the attended
location. It further suggests that our proposed model is not dependent on
a particular visual cortical area and can be extended to represent various
areas across the visual processing hierarchy.
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Whereas other previous Bayesian models have altered top-down priors
to demonstrate attentional effects (Rao, 2005; Torralba et al., 2006; Chikkerur
et al., 2010) or accumulated priors through Bayesian updates trial-by-trial
(Droll et al., 2009; Itti & Baldi, 2009), our model acquires priors through
pretask experience (i.e., training) and then uses top-down priors to disam-
biguate feature representations and deploy spatial attention to a selected
location. This approach shares some similarities with the model described
in Chalk et al. (2013), which also takes inspiration from the normalization
model of attention (Reynolds & Heeger, 2009). However, in Chalk et al.
(2013), the task is solely detection of simple binary stimuli, while we have
characterized the effects of attention on classification in our model. More
important, whereas their model is trained to optimize task rewards, ours
acquires top-down priors through a biologically plausible update rule that
is similar to Hebbian learning.

Several Bayesian models of overt attention during free viewing and vi-
sual search of natural images have been described over the past two decades
(Torralba et al., 2006; Itti & Baldi, 2009; Chikkerur et al., 2010), while others
similar to Chalk et al. (2013) have studied covert attention with simple arti-
ficial stimuli (see Vincent, 2015; Eckstein, 2017, for reviews). A common as-
sumption in studies of overt attention is that highly overlapping networks
underlie both eye movements and covert attention, as posited by the pre-
motor theory of attention (Rizzolatti et al., 1987). However, recent studies
have investigated the degree to which humans dissociate overt and covert
attention, finding that doing so improved performance for change detection
(Chetverikov et al., 2018) but not visual search (MacInnes et al., 2020). Inter-
estingly, participants actively tried to uncouple overt and covert attention
during the visual search task even though it hindered performance.

It is important for the field to develop models of visual search that can
account for both overt and covert attention, including the ability to model
dissociated overt and covert attention. By using a foveated RF pooling array,
our model treats covert attention as a spatial resampling of RFs (Theiss et al.,
2022) and overt attention as a translation of the pooling array that directs
the “fovea” to a different part of the image (Cheung et al., 2016; Larochelle
& Hinton, 2010). Instead of always maintaining central fixation, as we have
done in this study, our model can be extended to systematically evaluate the
contributions of covert and overt attention to task-dependent performance
in psychophysical experiments with human subjects.

One component of many visual search models that was not addressed
in our study is bottom-up saliency. In most computational models of visual
attention, saliency is defined as a contrast of local features (Itti et al., 1998)
or, in the Bayesian framework, as the difference between prior and poste-
rior distributions (Itti & Baldi, 2009). Torralba et al. (2006) specifically fit
hyperparameters to the combination of bottom-up and top-down attention
to optimize eye movement predictions. However, for this study, it is unclear
how bottom-up attention should be weighted relative to top-down priors.
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Indeed, how bottom-up and top-down attention are weighted across tasks
is generally an open question. For example, Chikkerur et al. (2010) assumed
uniform priors to model eye movements during free viewing. However,
since it is unlikely that all priors (e.g., a light-from-above prior; Stone et al.,
2009) would be uniform during free viewing, the combination of bottom-up
and top-down attention is likely dynamic and task-dependent.

Other recent studies have used more complex neural network models in
order to study covert attention in tasks with natural stimuli. These methods
take advantage of the fact that features learned in deep neural networks ap-
proximate those represented in visual cortex (Yamins et al., 2014). Nicholson
and Prinz (2022) used pretrained neural networks to study whether set size
effects observed in human psychophysical experiments could be explained
by a mismatch between the feature statistics of the simplistic images used
in common visual search tasks and those of natural images that the visual
system has been optimized to perceive through evolution and experience.
The authors indeed observed set size effects typical of human visual search
when using a model that had been trained using a different domain from the
one used in the task (e.g., natural versus synthetic images), but not when
the model was trained on the task images. However, this difference was
also observed for two different data sets of natural images, which suggests
that other factors besides feature statistics could contribute to these differ-
ences. Our model, though tested on simplistic search arrays, is informed
by known biological mechanisms, and the generality of our conclusions ex-
tends beyond the feature statistics of handwritten digits.

In another study, Lindsay and Miller (2018) used deep neural networks
to study the feature similarity gain model of attention by enhancing net-
work activity at different layers within a classification model. The authors
demonstrated that applying attention did improve classification perfor-
mance, although the effects were smaller at earlier model layers compared
to later layers. Interestingly, the authors provided an alternative type of
attentional modulation by using the gradients of the network’s prediction
error. In doing so, the authors observed similar effects as with the tuning ap-
proach in later layers but greater effects in earlier layers. This is not surpris-
ing from a machine learning perspective, but it does provide a novel view
of how attention might be implemented across the visual cortex by mini-
mizing some objective function related to the task at hand. In the context
of our study, new theoretical directions and predictions could arise from
exploring other classes of generative models commonly used in machine
learning literature, even if they are not biologically plausible (Goodfellow
et al., 2014; Dinh et al., 2014; Sohl-Dickstein et al., 2015; Devlin et al., 2018;
Radford et al., 2019).

Recent developments in both machine learning and fMRI research have
provided insights into the relationship between features learned in convo-
lutional neural networks and patterns of activity in visual cortex (Devereux
et al., 2018; O’Connell & Chun, 2018; St.-Yves & Naselaris, 2018). Combined
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with the known effects of attention on RFs (Womelsdorf et al., 2006; Klein
et al., 2014), as well as the distributed nature of attention across many corti-
cal areas (Serences & Yantis, 2007; Melloni et al., 2012; Sprague & Serences,
2013; Bressler et al., 2020), the model we have proposed is well suited to
further investigate the Bayesian brain hypothesis with neuroimaging data
and natural images.

When extended to multiple levels of feature complexity, our model of
Bayesian priors is dynamic and local. This allows investigations of the dy-
namics of top-down attention by updating priors across trials and at multi-
ple levels of the visual processing hierarchy. Under free-viewing conditions
with natural images (i.e., without an explicit task), we predict that the re-
spective influences of spatial and feature priors on gaze behavior should be
reflected at the level of feature encoding that best accounts for the statis-
tical regularities across similar scenes (Yang et al., 2016). However, during
visual search, we predict that task-based attention will act as a hyperprior,
giving stronger weight to task-relevant priors across the visual processing
hierarchy.

Although the model described in this study is relatively simple and was
evaluated with artificial stimuli, it can easily be extended to more complex
features and visual tasks. The main challenge when using a CDBN is the
amount of training time required to model natural images with many RBM
layers, since each layer is trained sequentially. Furthermore, the definition
of the restricted Boltzmann machine as a bipartite graph precludes the ad-
dition of more complex intralayer connections (i.e., connections between
hidden units are “restricted”). However, we can instead train a single RBM
at multiple layers of a pretrained neural network in parallel, with each RBM
learning priors over local features and spatial locations. Not only does this
substantially reduce the training time, but it also allows for studying rel-
ative effects of priors at different levels of feature complexity and spatial
scale.
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