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Abstract

Loop group actions on categories and Whittaker invariants

by

Dario Beraldo

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Constantin Teleman, Chair

We develop some aspects of the theory of D-modules on schemes and indschemes of pro-
finite type. These notions are used to define D-modules on (algebraic) loop groups and,
consequently, actions of loop groups on DG categories. We also extend the Fourier-Deligne
transform to Tate vector spaces.
Let N be the maximal unipotent subgroup of a reductive group G. For a non-degenerate
character χ : N((t))→ Ga, and a category C acted upon by N((t)), there are two possible no-
tions of the category of (N((t)), χ)-objects: the invariant category CN((t)),χ and the coinvariant
category CN((t)),χ. These are the Whittaker categories of C, which are in general not equiva-
lent. However, there is always a family of functors Tk : CN((t)),χ → CN((t)),χ, parametrized by
k ∈ N.
We conjecture that each Tk is an equivalence, provided that the N((t))-action on C is the
restriction of a G((t))-action. We prove this conjecture for G = GLn and show that the
Whittaker categories can be obtained by taking invariants of C with respect to a very explicit
pro-unipotent group subscheme (not indscheme) of G((t)).
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Chapter 1

Introduction

Categorical (or higher) representation theory is the study of symmetries of categories.
In mathematical terms, such symmetries are encoded by the notion of group action on a
category.

To clarify our geometric context, we work within the world of complex algebraic geometry,
so that our groups are group prestacks over C. As for the categorical context, we only
consider actions of such groups on stable presentable C-linear∞-categories. In other words,
our categories are co-complete differential graded (DG) categories and functors among them
are required to be continuous (i.e. colimit preserving). The foundational basis of these
notions is contained in the books [L0], [L1]. For succinct reviews, we recommend [G0] and
[BZFN].

1.1 Some higher algebra

The above set-up, i.e. the ∞-category DGCat of co-complete DG categories and con-
tinuous functors, is extremely convenient for performing algebraic operations on categories,
directly generalizing standard operations of classical algebra. For instance,

1. one can form colimits and limits of categories.

2. there is a tensor product that makes DGCat into a symmetric monoidal ∞-category.
It commutes with colimits separately in each variable and the monoidal unit is Vect,
the category of (complexes of) C-vector spaces.

3. the monoidal structure is closed, i.e. there exists an “internal hom functor”,
Hom(C,D): the category of continuous functors from C to D.

4. there is a notion of dualizable category; if C is dualizable, its dual C∨ is equivalent to
Hom(C,Vect).
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5. monoidal categories are precisely algebra objects in the symmetric monoidal
∞-category DGCat. They admit ∞-categories of modules: if A is a monoidal
category, we denote by A-mod the ∞-category of its (left) modules. Roughly
speaking, this consists of categories M equipped with a functor A⊗M→M satisfying
the natural compatibility conditions. Right A-modules are defined similarly.

6. combining (3) and (5), given two A-modules M and N, one can form the category of
A-linear functors HomA(M,N).

7. there is a well-defined notion of relative tensor product: one can tensor a right and a
left A-module over A; the output is a plain DG category.

Coming back to higher representation theory, we would like to add one more item to the
above list: given an affine algebraic groupG of finite type, we wish to defineG-representations
on objects of the ∞-category DGCat. To do so, let us mimic the classical setting: the
structure of a G-representation on a vector space V consists of a coaction on V of the
coalgebra Γ(G,OG) of functions on G with convolution coproduct (i.e., pull-back along the
multiplication).

In our context, one has to replace functions of the group with sheaves: there are thus at
least two possible notions of group action, accounting for the two standard sheaf-theoretic
contexts of quasi-coherent sheaves and D-modules on G, both equipped with convolution.

Thus, categories with a weak action are comodules for (QCoh(G),m∗), whereas categories
with a strong action (or infinitesimally trivialized action) are comodules for (D(G),m!). We
occasionally denote them by G - repweak and G - rep, respectively. Here m∗ (resp., m!) is the
quasi-coherent (resp., D-module) pull-back along the multiplication m : G×G→ G.

However, for G of finite type, QCoh(G) and D(G) are canonically self-dual; under this
duality, the coproducts specified above get sent to the convolution products in the context
of quasi-coherent sheaves or D-modules. Thus, we have

G - repweak ' (QCoh(G), ?)-mod G - rep ' (D(G), ?)-mod.

The main source of examples of categorical G-representations comes from geometry. In-
deed, let X be a scheme of finite type with an action of G; then D(X) is a module category
for (D(G), ?), via push-forward along the action map G × X → X. Likewise, QCoh(X)
carries a weak G-action.

Several standard operations with ordinary G-representations generalize immediately to
this categorical context.

First, Rep(G) is a symmetric monoidal category: this follows from the fact that Γ(G,OG)
is a co-commutative Hopf algebra. The same holds true for G - repweak and G - rep, since
QCoh(G) and D(G) are co-commutative Hopf monoidal categories.
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Secondly, given an ordinary G-representation V , we can take its invariants and coinvari-
ants, V G and VG. By definition, V G = HomG(C, V ) and VG = C ⊗G V . In our categorical
framework, we have the notions of weak invariants and coinvariants for C ∈ G - repweak,

CG,w := HomQCoh(G)(Vect,C), CG,w := Vect ⊗
QCoh(G)

C,

as well as strong invariant and coinvariants, for C ∈ G - rep,

CG := HomD(G)(Vect,C), CG := Vect ⊗
D(G)

C.

The difference between weak and strong invariants is controlled by the monoidal category
of Harish-Chandra bimodules, the category of endomorphisms of g-mod as a strong G-
representation (the action of D(G) on g-mod is induced by the adjoint action of G on g):

HC := HomD(G)(g-mod, g-mod).

Precisely, if G is an affine algebraic complex group and C ∈ G - rep, then CG,w carries an
action of HC and the invariant category CG is the category of HC-linear functors from Rep(G)
to CG,w.

If X is a G-scheme of finite type, then D(X)G ' D(X/G), the category of D-modules
on the quotient stack X/G. This follows immediately from fppf descent for D-modules. It
turns out that D(X)G ' D(X/G) as well. (The very same statements hold for QCoh in
place of D.)

1.2 Sheaves of categories

It is worthwhile to introduce one more generalization of a classical algebro-geometric
concept to the categorical world, that of quasi-coherent sheaf.

First of all, recall that quasi-coherent sheaves are defined on any prestack. A prestack is
the most general “space” of algebraic-geometry, that is, an arbitrary contravariant functor
from affine DG schemes to ∞-groupoids. Given a prestack Y, we have

QCoh(Y) := lim
S∈(DGSchaff

/Y)op
QCoh(S).

Informally, a quasi-coherent sheaf on Y is a collection of a Γ(S,OS)-module MS, for any affine
DG scheme S → Y, together with compatibilities along restrictions S → S ′ → Y.

In striking analogy with the above, we introduce the notion of quasi-coherent sheaf of
categories over a prestack Y. We will omit the adjective “quasi-coherent” for brevity. Thus,
the ∞-category of sheaves of categories over a prestack Y is given by

ShvCat(Y) := lim
S∈(DGSchaff

/Y)op
QCoh(S)-mod.
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Informally, a sheaf of categories on Y is a collection, for any affine DG scheme S → Y, of a
QCoh(S)-module category MS, together with compatibilities along restrictions S → S ′ → Y.

We say that a prestack Y is 1-affine if the functor of global sections

Γ : ShvCat(Y)→ QCoh(Y)-mod

is an equivalence. In other words, sheaves of categories over a 1-affine Y can be reconstructed
from their global sections.

Ordinary G-representations are quasi-coherent sheaves over BG = pt/G, the stack clas-
sifying G-bundles. Likewise, categorical G-representations ought to be sheaves of categories
over BG: in other words, a weak action of G on C is the datum of a sheaf of categories C̃

over BG, whose restriction along pt→ BG is the original C.

If G is an affine group of finite type, then the two definitions coincide ([G7]). Furthermore,
D. Gaitsgory shows that BG is 1-affine, so that

G - repweak ' Rep(G)-mod.

In the same optic, a strong G-action on C ought to be given by a sheaf of categories over
BGdR that restrict to C along the inclusion pt → BG. As above, for groups of finite type,
this matches the definition given above in terms of the group algebra (loc. cit.). However,
one easily shows that BGdR is not 1-affine.

1.3 D-modules on loop groups

In this paper, we adopt the group-algebra definition, as we are interested in strong actions
by the loop group G((t)) of a reductive group. This is an ind-scheme of infinite type; for
such prestacks, it is not clear at the time of writing what the appropriate notion of de Rham
functor is. The definition of the DG category D(G((t))) has not been fully discussed either.
The two issues are related, as the interpretation of D-modules as crystals prescribes that
D(Y) := QCoh(YdR) for any prestack Y.

More precisely, the de Rham functor is defined on any prestack ([GR0]), but it may need
to be adapted to capture the correct notion of D-modules on loop groups. In fact, D-modules
on G((t)) can be defined in an ad hoc way directly from the finite-type case.

A detailed construction will be given in the main body of the text, where we also discuss
the theory of D-modules on schemes of pro-finite type. Nevertheless, let us briefly hint at it
here: G := G((t)) comes with the canonical “decreasing” sequence of congruence subgroups
Gr shrinking to the identity element. For each r, let π : G/Gr+1 → G/Gr be the projection.
Since G/Gr are ind-schemes on ind-finite type, D-modules on them make sense according
to the theory developed in the published literature. Then, one puts

D∗(G) := lim
r,π∗

D(G/Gr) ' colim
r,π∗

D(G/Gr).



5

Remark 1.3.1. One of the reasons why we privilege strong actions comes from our interest in
the local Langlands correspondence (reviewed later), which explicitly involves strong actions
of loop groups on categories. Hereafter, unless specified otherwise, by the term “action” we
shall mean “strong action”.

1.4 Fourier transform

In our effort to generalize classical notions of algebra and representation theory to the
categorical world, let us revisit the classical Fourier transform.

An ordinary representation of a vector group A can be decomposed according to char-
acters of A, which are by definition linear maps χ : A → C, that is elements of A∨. More
fundamentally, once the appropriate function-theoretic context is assumed, Fourier transform
gives an equivalence

FT : (Fun(A), ?)
'−−→ (Fun(A∨), ·)

between the algebra of functions on A with convolution and the algebra of functions of
A∨ with pointwise multiplication. The spectral decomposition of an A-representation cited
above follows by looking at categories of modules for both algebras:

A -rep := (Fun(A), ?)-mod
'−−→ (Fun(A∨), ·)-mod.

Moreover, if V is an A-representation, the vector space of its invariant V A is equivalent to
the fiber of V at 0 ∈ A∨, where V is now, via Fourier transform, a sheaf over A∨.

The fiber of V over a nonzero character χ ∈ A∨ corresponds to V A,χ: the vector space
of A-invariants against the character χ. Explicitly, if plain A-invariants are those elements
v ∈ V for which a · v = v, then (A,χ)-invariants are those v ∈ V for which

a · v = eχ(a)v.

A categorification of the above situation, in case A = An is the n-dimensional affine space,
is provided by the Deligne-Fourier transform, [La]: an equivalence of monoidal categories

FT : (D(A), ?)
'−−→ (D(A∨),

!
⊗), (1.4.1)

which yields

A -rep = (D(A), ?)-mod
'−−→ (D(A∨),

!
⊗)-mod. (1.4.2)

The kernel of this transform is no longer a function on A × A∨, but a sheaf: precisely, the
pull-back of exp ∈ D(Ga) via the duality pairing Q : A × A∨ → Ga. The substitute of
“exponential function” exp is the D-module encoded by the defining differential equation for
exp. Its homomorphism property corresponds to the isomorphism m!(exp) ' exp � exp.
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Invariants and coinvariants of C ∈ A -rep, correspond to fiber and cofiber of C over
0 ↪→ A∨, respectively. The fiber at non-zero χ ∈ A∨ is identified with the category of (A,χ)-
invariants of C: objects c ∈ C for which the coaction (dual to the action) is isomorphic
to

coact(c) ' χ!(exp)⊗ c ∈ D(A)⊗ C.

In the main body of the paper, we extend (1.4.1) and thus (1.4.2) to A = An((t)) (the
ind-scheme of formal loops in An), or, more generally, to an ind-pro-finite dimensional vector
space.

1.5 Local geometric Langlands duality

The importance of categorical representation theory in mathematics became first evident
in the framework of the local geometric Langlands correspondence, a conjecture put forward
by E. Frenkel and D. Gaitsgory in the course of several papers (primarily, [FG0], [FG1],
[FG2]). See also the book [F] for a review.

The local Langlands conjecture predicts the existence of an equivalence

D(G((t)))-mod ' ShvCat(LocSysǦ(D×)),

where LocSysǦ(D×) is the stack of local systems on the punctured disk D× = Spec(C((t))),
for the Langlands dual group Ǧ.

This is, philosophically, a kind of Fourier transform: assuming that LocSysǦ(D×) is
1-affine, so that

ShvCat(LocSysǦ(D×)) ' QCoh(LocSysǦ(D×))-mod,

categorical representations of G((t)) would admit a spectral decomposition over the stack
LocSysǦ(D×).

According to [FG0], such a correspondence ought to be implemented by a universal
kernel Cuniv: a category lying over LocSysǦ(D×) and acted on by G((t)) fiberwise. In loc.
cit., the authors did not identify Cuniv, but described its “base-change” along various maps
Y→ LocSysǦ(D×). For instance, one of the main results of [FG0] determines the base-change
of Cuniv along the forgetful map from opers OpǦ on the punctured disk to LocSysǦ(D×):

Cuniv ⊗
QCoh(LocSysǦ(D×))

QCoh(OpǦ) ' ĝcrit-mod.

In [FG1], the category of G[[t]]-invariant objects of Cuniv is argued to be equivalent to
Rep(Ǧ). This actually gives a clue as to what Cuniv is: we will identify a conjectural candidate
below, after introducing the procedure C CN((t)),χ of Whittaker invariants.
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1.6 Whittaker actions

Let G = GL2 and C be a category with an action of G((t)). Since N = Ga is abelian,
N((t))-invariants of C can be studied via Fourier transform, as explained above.

The dual of Ga((t)) is itself, the duality being the residue pairing. In particular, the
canonical element 1 ∈ Ga((t)) yields the residue character

Res : Ga((t))→ Ga, f(t) =
∑

fnt
n 7→ f−1.

The Whittaker invariant category of C is, by definition Whit(C) := C|1 the fiber of C at
1 ∈ Ga((t))

∨. Alternatively,
Whit(C) := CGa((t)),Res.

It is the latter expression that admits a generalization to any reductive groupG. Indeed, if
G has rank greater than one, the maximal unipotent subgroup N ⊂ G is no longer abelian,
hence Fourier transform is not available. However, N((t)) still admits a non-degenerate
character χ, defined as follows. Denote by {α1, . . . , αr} be the simple roots of G, thought of
as maps N → Ga. We let

χ : N((t))→ Ga n(t) 7→ Res
( r∑
j=1

αj(n(t))
)
. (1.6.1)

Such character is non-degenerate (i.e., nonzero on any root space) and of conductor zero
(i.e., null on N [[t]]).

If C is acted upon by G((t)), we set the Whittaker invariant category of C to be

Whit(C) := CN((t)),χ.

We conjecture that Cuniv 'Whit(D(G((t)))). It is immediately clear that the latter G((t))
admits an action of G((t)). However, the very fact that the proposed candidate for Cuniv lives
over LocSysǦ(D×) has not been yet estabilished. We will partially address this question in
another publication.

There is a parallel theory of coinvariants and Whittaker coinvariants. One could propose
that Cuniv ' D(G((t)))N((t)),χ, the coinvariant Whittaker category of D(G((t))), leading to
a different local geometric Langlands correspondence. After Gaitsgory, we re-propose the
following conjecture:

Conjecture 1.6.1. If C is a category acted on by G((t)), then CN((t)),χ ' CN((t)),χ.

The statement makes sense if C is endowed just with an N((t))-action, and not with a G((t))-
action. However, in this case the conjecture is false. It is also false if χ is degenerate, e.g.
χ = 0; in other words, the conjecture is special to the Whittaker categories.
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1.7 Overview of the results

In this paper we prove the above conjecture for G = GLn. Actually, we do a little more.
Following ideas of Gaitsgory, we construct a functor, for any G,

T : CN((t)),χ −→ CN((t)),χ.

(Rather, we construct a sequence of such, indexed by an integer k ≥ 1.) Our main theorem
reads:

Theorem 1.7.1. If G = GLn, the natural functor T : CN((t)),χ → CN((t)),χ is an equivalence.

To prove this, we introduce an explicit group-scheme Hk, depending on k ≥ 1, endowed
with a character ψ. For n = 2 and n = 3, Hk looks like

Hk =

(
1 + tkO t−kO

0 1

)
, Hk =

 1 + tkO t−kO t−2kO

t2kO 1 + tkO t−kO
0 0 1

 ,

and the generalization to any n is straightforward (here O denotes the ring of formal Taylor
series). The character ψ computes the sum of the residues of the entries in the over-diagonal.

We shall relate (N((t)), χ)-invariants and coinvariants to (Hk, ψ)-invariants. Namely, we
first produce natural functors

CN((t)),χ ←− CHk,ψ ←− CN((t)),χ.

Secondly, we show that both functors are equivalences. The proof of that uses induction
on n and Fourier transform: indeed, N is the a semi-direct product N ′ n An−1, where N ′

refers to the maximal unipotent subgroup of GLn−1.

Thirdly, the composition of the inverse functors is shown to be our functor T, for the
chosen value of k.

1.8 Notation and detailed contents

Let G be a complex reductive group, B a chosen Borel subgroup and N ⊆ B its unipotent
radical. We indicate by G := G((t)) the loop group of G and, for r ≥ 0, by Gr ⊆ G[[t]] the
congruence subgroups. Similar notations hold for B and N . As noted above, N is equipped
with an additive character, χ.

Let us describe how this paper is organized. In Sect. 2, we discuss some foundations
of the theory of D-modules on schemes (and ind-schemes) of pro-finite type. The main
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examples of such are G, N and variations thereof. There are two categories of D-modules
on G, dual to each other. The first, D∗(G), carries a convolution monoidal structure; its
dual D!(G) is hence comonoidal and also carries a symmetric monoidal structure via the
diagonal. It turns out that D∗(G) ' D!(G), but we will never use this fact.

We proceed in Sect. 3 to define loop group actions on categories and the concept of
invariants and coinvariants. Since N is exhausted by its compact open group sub-schemes,
we analyze group actions by pro-unipotent group schemes in great detail. For instance, we
define and study natural functors among the original category, the invariant category and
the coinvariant category. We show that the latter two are equivalent. A noteworthy feature
of out set-up is that any category with a G-action is smoothly generated, that is, generated
by objects each of which is invariant for a high congruence subgroup Gr ⊂ G.

In Sect. 4, we take up Whittaker actions of N on categories: this is a special case of the
above theory that accounts for the presence of the character χ : N→ Ga. For any category
acted on by N, we construct a functor (denoted by T, as above) from Whittaker coinvariants
to Whittaker invariants. We conjecture that this functor is an equivalence, provided that
the N-action is the restriction of a G-action.

We discuss the abelian theory in Sect. 5. We first review the theory of the Fourier-Deligne
transform for finite dimensional vector spaces (in schemes) and then extend it to D-modules
on An((t)) (more generally, to D-modules on an ind-pro-vector space). We prove that it still
gives a monoidal equivalence. Finally, we re-interpret the concepts of the previous sections
(invariants, coinvariants, averaging) in Fourier-transformed terms.

The material of Sect. 6 is technical: we first analyze how actions by a semi-direct
product HnK can be understood in terms of the actions of H and K. Secondly, we discuss
categories fibering over a K-space X and acted on by the group K in a compatible fashion.
In this situation, we study how the operations of taking the fiber of C at x ∈ X and taking
K-invariants interact.

In Sect. 7, we take up the proof of Theorem 1.7.1. We discuss some combinatorics of
GLn and define some group schemes of GLn((t)) that will play a central role. Our proofs are
on induction on n, for which the tools of Sect 6 are essential.
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Chapter 2

D-modules on schemes and
ind-schemes of infinite type

Leaving aside the notion of sheaves of categories, we wish to say that a group prestack
(G,m) acts strongly on a category C if the latter is endowed with an action of the monoidal
category (D(G), ?). Similarly, we say that G acts weakly on C is the latter is a module for
(QCoh(G), ?). We mostly focus on strong actions. For such, the above definition makes sense
whenever we can provide a construction of D(G) as a dualizable category endowed with the
convolution monoidal functor m∗.

The ultimate goal of this section is to supply this definition in our cases of interest:
G = G((t)) and G = N((t)). To address this, we proceed in two steps. First, we identify the
kind of algebraic structure that G((t)) and N((t)) possess: the answer is that they are ind-pro
schemes. Roughly speaking, these are (0-)prestacks constructed from schemes of finite type
out of affine smooth projections and closed embeddings. Secondly, we develop the theory of
D-modules on ind-pro schemes. However, in the treatment below we present these two steps
in opposite order, namely we start from the abstract theory.

2.1 D-modules on pro-schemes

We adopt the convention of [GR1]: a (classical) ind-scheme is a prestack that can be
presented as a filtered colimit of quasi-compact and quasi-separated schemes along closed
embeddings. A frequently used subcategory of such prestacks is that of ind-schemes of
ind-finite type: it consists of those ind-schemes formed out of schemes of finite type.

We shall need the intermediate set-up of ind-pro-schemes1: ind-schemes written as colim-
its of schemes, each of which can be further written as a filtered limit of schemes of finite type

1These definitions appeared in the seminar note [Ba].
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under affine, smooth and surjective maps. Later we shall see that G((t)) and N((t)) fall under
this rubric and discuss two dual (and equivalent) theories of D-modules on ind-pro-schemes.

Let Schqc,qs be the ordinary category of quasi-compact quasi-separated schemes and Schft

its full subcategory of schemes of finite type. Between the two lies the ordinary category
Schpro := Proaff,sm,s Schft of schemes of pro-finite type: schemes that can be written as filtered
limits of schemes of finite type along affine smooth surjective maps. To shorten the termi-
nology, we refer to objects of Schpro just as pro-schemes. The existence of the embedding
Schpro ↪→ Schqc,qs is shown in Appendix C of [TT].2

We define D∗-modules on pro-schemes as follows: we let

D∗ : Schpro → DGCat

be the right Kan extension of D : Schft → DGCat along the inclusion Schft ↪→ Schpro. Here,
D : Schft → DGCat is the usual functor that assigns S  D(S) and f  f∗. So, D∗ is
covariant by construction: for any morphism f : X → Y in Schpro, we denote by f∗ the
corresponding functor D∗(X)→ D∗(Y ).

Explicitly, suppose Z ∈ Schpro be presented as

Z ' lim
r∈R

Zr, (2.1.1)

where Rop is a filtered category. (In most cases of interest, R = (N, <)op.) For any arrow
s→ r in Rop, let πs→r : Zs → Zr be the corresponding projection. Then,

D∗(Z) ' lim
r∈R,π∗

D(Zr), (2.1.2)

the limit being taken with respect to the pushforwards (πs→r)∗.

In several occasions, we will make use of the following categorical fact, due to J. Lurie
(cf. [G0]). Let C• : I → DGCat be a diagram of categories, where, for each γ : i → j, the
corresponding functor Fγ : Ci → Cj admits a right adjoint Gγ. Then, there is an equivalence
of categories

LC : lim
i∈Iop,G

Ci
'−−→ colim

i∈I,F
Ci.

Moreover, under LC, the tautological functors of “insertion” and “evaluation”

insi : Ci → colim
i∈I,F

Ci evi : lim
i∈Iop,G

Ci → Ci

form an adjoint pair.

2This reference was pointed out by S. Raskin, who has independently developed the theory of D-modules
on schemes of infinite type.
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In the case at hand, smoothness of each πs→r implies the existence of the left adjoints
(πs→r)

∗, so that
D∗(Z) ' lim

R,π∗
D(Zr) ' colim

Rop,π∗
D(Zr).

The latter expression explains the notation D∗, which is meant to indicate a colimit along
∗-pullback functors. It also shows that D∗(Z) is compactly generated, hence dualizable. We
denote the insertion

inss : D(Zs)→ colim
Rop,π∗

D(Zr)

formally by (π∞→s)
∗. Analogously, the evaluation functor will be formally denoted by

(π∞→s)∗. Compact objects of D∗(Z) are those of the form (π∞→s)
∗(M), for M compact

in D(Zs).

Thanks to the continuity of the push-forward functors π∗ and the filteredness of Rop, the
isomorphism lim

R,π∗
D(Zr)→ colim

Rop,π∗
D(Zr) can be made explicit ([G0]). Namely,

LC : M = {M r}r 7→ colim
r∈Rop

(
(π∞→r)

∗(M r)
)
, (2.1.3)

while the inverse equivalence is completely determined by the assignment:

LC−1 : (π∞→r)
∗(M r) 7→

{
colim

k : k→r, k→s
(πk→s)∗(πk→r)

∗(M r)

}
s

. (2.1.4)

Clearly, the latter expression greatly simplifies if each pull-back (πr1→r2)∗ is fully faithful: in
that case, the colimit in (2.1.4) is independent of k. Thus, we propose the following definition:
we say that a pro-scheme Z is pseudo-contractible if it admits a presentation as in (2.1.1)
with transition maps giving rise to fully faithful ∗-pullback functors. By smoothness, the
!-pullbacks are also fully faithful.

The dual of D∗(Z) is easily computed and it is by the definition the category of D!-
modules on Z:

D!(Z) :=
(
D∗(Z)

)∨ ' colim
Rop,π!

D(Zr).

This is a consequence of the fact that D(S)∨ ' D(S) via the classical Verdier duality, and
that (π∗)

∨ ' π! under this self-duality.

The assigment Z  D!(Z) upgrades to a contravariant functor mapping f : X → Y to

f ! := (f∗)
∨ : D!(Y )→ D!(X).

As before, let
(π∞→s)

! : D(Zs)→ colim
Rop,π!

D(Zr)
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symbolize the tautological insertion map. Compact objects of D!(Z) are those objects of the
form (π∞→s)

!(M), for all s ∈ R and all M compact in D(Zs).

Since each πs→r is smooth, (πs→r)
! ' (πs→r)

∗[2drs], where drs is the dimension of πs→r.
Thus, the right adjoint of (πs→r)

! is isomorphic to (πs→r)∗[−2drs] (hence, it is continuous).
We can realize D!(Z) as a limit:

D!(Z) ' lim
r∈R,π∗[−2dπ ]

D(Zr). (2.1.5)

Suppose that each Zr has a well-defined dimension. Then, comparing this formula with
(2.1.2), we construct the canonical equivalence

ηZ : D!(Z)
'−−→ D∗(Z), (2.1.6)

induced by the inverse family of shift functors id[−2 dim(Zr)] : D(Zr)→ D(Zr).

By ([G0]), the duality pairing εZ between D∗(Z) and D!(Z) consists of the assignment

εZ({M s}s, (π∞→r)!N r) ' εZr(M
r, N r). (2.1.7)

In other words, (π∞→r)
! is dual to the functor evr = (π∞→r)∗ : D∗(Z) → D(Zr). Alterna-

tively, by (2.1.4), we obtain

εZ((π∞→r)
∗M r, (π∞→r)

!N r) = colim
s∈R/r

εZs
(
(πs→r)

∗M r, (πs→r)
!N r
)

= colim
s∈R/r

ΓdR

(
Zs, (πs→r)

∗(M r ⊗N r)
)
. (2.1.8)

Remark 2.1.1. If Z is pseudo-contractible, the latter formula simplifies as

εZ((π∞→r)
∗M r, (π∞→r)

!N r) ' ΓdR(Zr,M r ⊗N r).

Lemma 2.1.2. For any M r ∈ D(Zr)cpt, Verdier duality DZ : D!(Z)
'−−→ D∗(Z) is computed

“component-wise”, i.e., it sends

DZ : (π∞→r)
!(M r) 7→ (π∞→r)

∗(DZr(M
r)).

Proof. By definition, it suffices to exhibit a canonical equivalence

HomD∗(Z)

(
(π∞→r)

∗(DZr(M
r)), P

)
' εZ

(
(π∞→r)

!(M r), P
)
, (2.1.9)

for any P ∈ D∗(Z) pulled back from a finite type quotient. This follows immediately from the
adjunction

(
(π∞→r)

∗, (π∞→r)∗
)

for D∗-modules, combined with the duality between (π∞→r)
!

and (π∞→r)∗.
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2.2 Basic functoriality

In this subsection we work out part of the theory of D∗ and D!-modules on pro-schemes:
we discuss various push-forward and pull-back functors, the tensor products, the projection
and base-change formulas.

By definition of right Kan extension, if f : X → Y is a morphism of pro-schemes, the
functor f∗ : D∗(X)→ D∗(Y ) is determined by the formula

evYr ◦ f∗ ' (f r)∗ ◦ evXr (2.2.1)

for any morphism f r : Xr → Y r of schemes of finite type covered by f .
In practice, if X and Y are given presentations compatible with f , meaning that f is the

limit of morphisms f r : Xr → Y r, then f∗ is defined as the limit of the (f r)∗’s. The general
case is reduced to this, by reindexing a sub-presentation of X: indeed, any map X → Y r

factors as X → Xs → Y r, for some s mapping to r in R.

For instance, de Rham cohomology ΓdR of X ' limrX
r is defined as

ΓdR := (pX)∗ : D∗(X)→ Vect,

where pX : X → pt is the tautological map. Explicitly, if M ∈ D∗(X) is represented by the
collection {M r}r, with M r ∈ D(Xr) and isomorphims (πs→r)∗(M

s) 'M r, then

ΓdR(M) := ΓdR(Xr,M r),

the RHS being independent of r.

If ix : pt ↪→ X is a closed point, we define the “delta” D-module at x according to the
usual formula: δx,X := (ix)∗(C) ∈ D∗(X). Explicitly, in the realization of D∗(X) as a limit,
δx is represented by the collection of δxr,Xr ∈ D(Xr), where xr is the image of x under the
projection X → Xr.

Contrarily to the finite-type case, (ix)∗ is not proper: as pointed out before, compact
D∗-modules on X are (in particular) ∗-pulled back along some projection X → Xr and δx,X
is not such. As a consequence, (ix)∗ does not admit a continuous right adjoint.

However, (ix)∗ is fully faithful, being the limit of the embeddings (ixr)∗ (Kashiwara’s
lemma). More generally, if f : Y ↪→ X is q-closed (which means that f can be written as
a limit of a filtered family of closed embeddings between schemes of finite type), then f∗ is
fully faithful.

Consider again an arbitrary map f : X → Y of pro-schemes. The left adjoint to f∗,
denoted f ∗, is only partially defined. We say that f ∗ is defined on M ∈ D∗(Y ) if the functor
Hom(M, f∗(−)) is corepresentable (by an object that we denote as f ∗(M)). A sufficient
condition for f ∗ to be defined on all of D∗(Y ) is that each f r be smooth. More generally:
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Lemma 2.2.1. Let N r ∈ D(Y r) be an object in the domain of definition of (f r)∗. Then
f ∗((πY∞→r)

∗(N r)) is well-defined and computed by

f ∗
(
(πY∞→r)

∗(N r)
)

= (πX∞→r)
∗((f r)∗(N r)

)
.

Proof. This is obtained from (2.2.1) after passing to left adjoints.

In particular, whenever Xr admits a constant sheaf kXr , the functor of de Rham coho-
mology p∗ : D∗(X)→ Vect is corepresented by the constant D∗-module

kX := (π∞→r)
∗(kXr), (2.2.2)

where the RHS is independent of r. If X is pseudo-contractible, kX is easily written as a
limit: kX ' {kXr}r.

Given f : X → Y as above, let us discuss the functor f ! : D!(Y ) → D!(X), dual to f∗.
To compute it, one represents f as a compatible family of maps f r : Xr → Y r; then, by
(2.1.7), one readily gets

f ! ' colim
r∈Rop

(π∞→r)
! ◦ (f r)!. (2.2.3)

Here are two basic examples.

First, the case of ix : pt→ X. If M = {M r}r ∈ lim(π!)R D(Xr) ' D!(X), then (ix)
! sends

M to the vector space
(ix)

!(M) ' colimr(M
r|xr).

The transition maps in the RHS are as follows: for s→ r, letting π = πs→r,

M r|xr ' π!(M r)
∣∣
xs
' π! ◦ (π!)R(M s)

∣∣
xs

counit−−−→ M s|xs .

Secondly, the case of p : X → pt. Then p! : Vect → D!(X) gives the dualizing sheaf,
ωX := p!(C). Explicitly,

ωX := (π∞→r)
!(ωXr),

being clear that the RHS does not depend on r. If X is pseudo-contractible, ωX is computed
naively in the realization of D!(X) as a limit (2.1.5):

ωX ' {ωXr}r.

The functor f!, left adjoint to f !, is only partially defined. For instance, here is a typically
infinite dimensional phenomenon.
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Remark 2.2.2. If X is infinite dimensional, (ix)
! does not have a left adjoint. Indeed, the value

of this hypothetical left adjoint on C would have to be compact, hence of the form (π∞→r)
!(F )

for some r and some F ∈ D(Xr)cpt. It is easy to see that this causes a contradiction. For
simplicity, assume that R = (N, <)op and that all π! are fully faithful. For any s → r,
adjunction forces

HomD!(X)

(
(π∞→r)

!(F ), (π∞→s)
!(−)

)
' (ixs)

!

as functors from D(Xs) to Vect. It follows that (πs→r)
!F ' δxs , which is absurd if πs→r is of

positive dimension.

This example shows that f! may not be defined even if all (f r)! are. However, in this
paper we will only need to deal with p! : D!(X) → Vect for pseudo-contractible X. Then,
we have

(pr)! ' evr,! ◦ p!

by contruction and fully faithfulness of (π∞→r)
!; here, evr,! denotes the evaluation functor

D!(X)→ D(Xr). Hence, by passing to the left adjoints, we obtain

(pr)! ' p! ◦ (π∞→r)
!,

which implies that
p!(M) ' colim

r∈Rop
(pr)!(M

r)

for M = {M r}r ∈ D!(X) = lim(π!)R D(Xr), provided that (pr)! is defined on M r (e.g., if M r

is holonomic).

Suppose that f : X → Y can be presented as the limit of maps f r : Xr → Y r such that
all the squares

Y s Y r

Xs Xr

��
fs

π //
��
fr

π //

(2.2.4)

are Cartesian (equivalently, f is finitely presented, [R]). In this case, base-change yields
commutative squares

D(Y s) D(Y r)

D(Xs) D(Xr)

(fs)!

OO

π∗ //

(fr)!

OO
π∗ //

D(Y s) D(Y r),

D(Xs) D(Xr)

(fs)∗
��

π!
oo

��
(fr)∗

oo π!

(2.2.5)
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which allow to define the functors

f ¡ : D∗(Y )→ D∗(X), f ¡({N r}r) := {(f r)!(N r)}r

f• : D!(X)→ D!(Y ), f•({M r}r) := colimr(π∞→r)
!(f r)∗(M

r).

It follows from the finite-type case that the pairs of functors (f∗, g
¡) and (f•, g

!) satisfy the
base-change formula (see [R] for a thorough treatment).

We will not use these functors in the present paper, but will often use the renormalized
push-forward

f ren
∗ : D!(X)→ D!(Y ), f ren

∗ := η−1
Y ◦ f∗ ◦ ηX .

Obviously, the (ordinary) category Schpro admits products. Moreover, for two pro-
schemes X and Y , there are canonical equivalences

D∗(X)⊗D∗(Y )
�−−→ D∗(X × Y )

D!(X)⊗D!(Y )
�−−→ D!(X × Y ), (2.2.6)

which follow at once from dualizability of each D(Xr) and the fact that D∗ and D! can be
represented as colimits.

Remark 2.2.3. It is easy to see that Schpro admits fiber products. Indeed, let X → Z ← Y
be a diagram of pro-schemes. Let Z = limZr be a presentation of Z. For each r ∈ R, the
composition X → Z � Zr factors through a projection X � X ′, with X ′ of finite type.
We let Xr := X ′. In this way we contruct compatible pro-scheme presentations of X and Y
Moreover, limr(X

r ×Zr Y r) is a presentation of X ×Z Y ,

Note that D!(X) is symmetric monoidal under the “pointwise” tensor product, which is
defined as usual:

−⊗
X
− : D!(X)⊗D!(X)

�−→ D!(X ×X)
∆!

−−→ D!(X),

where ∆ : X → X × X is the diagonal. The fact that this operation endows D!(X) with
a symmetric monoidal structure is a consequence of the same fact in the finite dimensional
case, combined with the observation that the functors (πs→r)

! are monoidal. This tensor
product is completely determined by

(π∞→r)
!(M)⊗X (π∞→r)

!(M ′) = (π∞→r)
!(M ⊗Xr M ′).

For any f : X → Z, the functor f ! : D!(Z) → D!(X) is symmetric monoidal, hence
(D!(Z),⊗) acts on D!(X). The relative analogue of (2.2.6) holds true as well:
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Lemma 2.2.4. Let X → Z ← Y be a diagram of pro-schemes. There are canonical equiva-
lences

D!(X) ⊗
D!(Z)

D!(Y ) ' D!(X ×Z Y ). (2.2.7)

Proof. The canonical functor is induced by pullback along X ×Z Y → X × Y . To prove it
is an equivalence, we reduce it to the finite dimensional case, where it is true by a result of
[BZN]. By fixing compatible presentations of X, Y, Z and X ×Z Y as in Remark 2.2.3, we
obtain

D!(X ×Z Y ) ' colim
r∈Rop

D(Xr ×Zr Y r) ' colim
r∈Rop

(
D!(Xr) ⊗

D!(Zr)
D!(Y r)

)
' D!(X) ⊗

D!(Z)
D!(Y ).

Remark 2.2.5. Using the functor ηX of (2.1.6), one can define a symmetric monoidal structure
on D∗(Z) making D∗(X) and D∗(Y ) into D∗(Z)-modules and such that

D∗(X) ⊗
D∗(Z)

D∗(Y ) ' D∗(X ×Z Y ).

There is an action
!∗
⊗ of (D!(X),⊗) on D∗(X), induced by the usual tensor product of

D(X) for X ∈ Schft:

(π∞→r)
!(M)

!∗
⊗ (π∞→r)

∗(P ) = (π∞→r)
∗(M ⊗Xr P ).

This follows from the functorial equivalence

π!(M)⊗X π∗(P ) ' π∗(M ⊗Y P ),

valid for any smooth map π : X → Y between schemes of finite type. Written more
compactly, the action is

M
!∗
⊗N ' ηX(M ⊗ η−1

X (N)).

When we consider the above as a right action, we write it as
∗!
⊗, for clarity. The following

lemma is the projection formula in this context:

Lemma 2.2.6. For f : X → Y , the functor f∗ is linear with respect to the action of D!(Y ),
i.e. there is a canonical isomorphism

f∗(M)
∗!
⊗N ' f∗(M

∗!
⊗ f !(N)). (2.2.8)
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Proof. Note that M
!∗
⊗− : D∗(X)→ D∗(X) is the dual functor of M ⊗− : D!(X)→ D!(X).

Hence, for P ∈ D!(Y ) arbitrary, we have

εY
(
f∗(M)

∗!
⊗N,P

)
' εY

(
f∗(M), N ⊗ P

)
' εY

(
M, f !(N)⊗ f !(P )

)
' εY

(
M
∗!
⊗ f !(N), f !(P )

)
' εY

(
f∗(M

∗!
⊗ f !(N)), P

)
,

which concludes the proof.

2.3 D-modules on ind-pro-schemes

Before proceeding with the definition of the two theories of D-modules on ind-pro-
schemes, let us recall the definition of the category of D-modules on ind-schemes of ind-finite
type. Let IndSchft := Indcl Schft denote the category of such. The functor

D : IndSchft −→ DGCat

is defined to be the left Kan extension of D : Schft → DGCat along the inclusion Schft ↪→
IndSchft. Explicitly, if Y ∈ IndSchft is written as a filtered colimit Y = colimI Yi, with
Yi ∈ Schft and closed embeddings ιi→j : Yi ↪→ Yj, then D(Y) ' colimID(Yi), with respect to
the pushforward morphisms (ιi→j)∗.

We repeat the same process for ind-pro-schemes. Namely, we define the ordinary category
IndSchpro := Indcl Schpro of ind-pro-schemes to be the one comprising ind-schemes that can
be formed as colimits of pro-schemes under closed embeddings. Then, the functor

D∗ : IndSchpro → DGCat

is defined as the left Kan extension of D∗ : Schpro → DGCat along the inclusion Schpro ↪→
IndSchpro .

Analogously, the functor

D! : (IndSchpro)op → DGCat

is defined as the right Kan extension of D! : (Schpro)op → DGCat along the inclusion
(Schpro)op ↪→ (IndSchpro)op. For f : X → Y a map in IndSchpro, we continue to denote
by f∗ : D∗(X)→ D∗(Y ) and f ! : D!(Y )→ D!(X) the induced functors.

Lemma 2.3.1. The duality D! ' (D∗)∨ and the isomorphism (f∗)
∨ ' f ! continue to hold

for ind-pro-schemes.
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Proof. Let Y = colimj∈I Yi be a presentation of Y as an ind-pro-scheme as above. The two
categories D!(Y) and D∗(Y) are, by construction,

D!(Y) ' lim
j∈Iop,ι!

D!(Yj) D∗(Y) ' colim
j∈I,ι∗

D∗(Yj).

They are evidently dual to each other, thanks to the validity of the lemma for pro-schemes.
The duality (f∗)

∨ ' f ! is a formal consequence of this.

Proposition 2.3.2. The ordinary category IndSchpro is symmetric monoidal via Cartesian
product and the functor D! : (IndSchpro)op → DGCat is symmetric monoidal.

Proof. The first assertion is obvious. As for the second, recall that D! is symmetric monoidal
as a functor (Schpro)op → DGCat. Furthermore, for any map of pro-schemes f : X → Y , the
pull-back f ! : D!(Y ) → D!(X) is symmetric monoidal. The combination of these two facts
yields the assertion.

2.4 D-modules on G((t)) and N((t))

Finally, let us take up the case of loop groups. The following construction is well-known:

Lemma 2.4.1. The loop group G := G((t)) is an ind-pro-scheme.

Proof. Consider the (schematic) quotient map to the affine Grassmannian q : G → Gr and
choose a presentation of Gr as an ind-scheme of ind-finite type: Gr ' colimn,ι Zn. Pulling-
back each Zn along q, we obtain an ind-scheme presentation of G:

G ' colim
n∈N

q−1(Zn).

Of course, each q−1(Zn) = Zn×
Gr

G is of infinite type. However, as q factors through G→ Gr

for any r ∈ N, we can write:

q−1(Zn) ' lim
r∈N

(
Zn ×

Gr
G/Gr

)
,

where the limit is taken along the maps induced by the projections πs→r : G/Gs → G/Gr.
This is a presentation of q−1(Zn) as a pro-scheme, and the proof in concluded.

We now justify the definitions given in the introduction.

Lemma 2.4.2.

D∗(G) ' colim
r,π∗

D(G/Gr), D!(G) ' colim
r,π!

D(G/Gr).
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Proof. We only prove the first formula, the proof of the second being completely analogous.
Let Zr

n := Zn ×
Gr

G/Gr, so that

G = colim
n,ι

lim
r,π

Zr
n G/Gr = colimn,ι Z

r
n

are presentations of G and G/Gr as an ind-pro-scheme and an ind-scheme, respectively. For
each n and r, consider the evidently Cartesian square:

Zn+1 ×Gr G/Gr+1 Zn+1 ×Gr G/Gr.

Zn ×Gr G/Gr+1 Zn ×Gr G/Gr

��
ι

π //
��

ι

π //

(2.4.1)

Consequently, the category of D∗-modules on G is expressed as follows:

D∗(G) ' colim
n,ι∗

lim
r,π∗

D(Zr
n) ' colim

n,ι∗
colim
r,π∗

D(Zr
n) ' colim

r,π∗
colim
n,ι∗

D(Zr
n) ' colim

r,π∗
D(G/Gr),

where the switch of colimits in the third equivalence is a consequence of base-change along
the above square.

We now prove that D∗(G) has a convolution monoidal structure. This will enable us to
provide well-defined notion of categorical G-actions.

Lemma 2.4.3. The functor m∗ : D∗(G×G)→ D∗(G), together with the equivalence

D∗(G)⊗D∗(G)
�−−→ D∗(G×G) (2.4.2)

endows D∗(G) with a monoidal structure.

Proof. The functor D! : (IndSchpro)op → DGCat is contravariant and, by Proposition 2.3.2,
symmetric monoidal. Hence, it sends algebras in IndSchpro to comonoidal categories: in
particular,

(
D!(G),m!

)
is comonoidal. By duality, we obtain the required statement.

Let us now discuss self-duality of D∗(G). Note that each projection G/Gr+1 � G/Gr is
smooth of dimension, say, nr. A trivialization of the dimension torsor of G is, by definition,
a sequence of integers {dk}k∈N such that dr+1 − dr = nr.

Lemma 2.4.4. To any trivialization {dk}k of the dimension torsor of G there corresponds

a self duality of D∗(G), that is, an equivalence D∗(G)
'−−→ D!(G).



22

Proof. It was explained before that D!(G) can be written as a limit:

D!(G) ' lim
π∗[−2nr]

D(G/Gr).

Thinking of D∗(G) and D!(G) in their realizations as limits, the isomorphism D∗(G)
'−−→

D!(G) is given by the inverse system of functors id[2dr] : D(G/Gr)→ D(G/Gr).

Remark 2.4.5. The proof of Lemma 2.4.3 shows that it is useful to keep D∗(G) is naturally
monoidal, while D!(G) is naturally comonoidal. Hence, we will never use the result of Lemma
2.4.4.

Unlike G, the ind-scheme N is exhausted by its compact open subgroups, hence it is
an ind-object in the category of group-schemes. We choose a cofinal sequence Nk of such
groups: let t−ρ ∈ T be the loop corresponding to ρ, the sum of the fundamental weights.
For all k ≥ 1, we set Nk := Adt−kρ(N [[t]]), so that

N ' colimk Nk.

Notational warning: for us k ≥ 0 always. The reader should not confuse Nk (just defined)
with Nk (a congruence subgroup). The former contains N(O), while the latter is contained
in N(O); however, they both coincide with N(O) for k = 0.

Lemma 2.4.6. The loop group N is an ind-pro-scheme.

Proof. Each Nk is a pro-scheme: indeed, writing Nk ' limr Nk/N
r, the conclusion follows

immediately.

Example: G = GL2

When G = GL2, we obtain that N((t)) ' A1((t)) is an ind-pro-scheme. Slightly more
generally, A := An((t)) is an ind-pro-scheme for any n ∈ N. Indeed, setting Ai := t−i ·Am[[t]]
we can present A as an ind-scheme:

A ' colimi Ai.

Furthermore, each Ai is a pro-scheme with presentation, say, Ai ' limj Ai,j, where Ai,j :=
Ai/t

j. This combines to

A ' colimi Ai ' colimi (limj Ai,j) .

Inclusions and projections fit into an N× N-family of Cartesian diagrams:

Ai,j−1 Ai+1,j−1.

Ai,j Ai+1,j

����
π

� � ι //

� � ι //

����
π

(2.4.3)
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By construction, D∗(A) is expressed as

D∗(A) ' colim
i∈N,i∗

D∗(Ai) ' colim
i,ι∗

lim
j,π∗

D∗(Ai,j). (2.4.4)

Recall that D∗(A) is monoidal under convolution product. This structure comes from
the analogous structure for each D∗(Ai), together with the fact that ι∗ is monoidal.

We record the following facts, which repeat verbatim the analogous results for G:

Lemma 2.4.7.

D∗(N) ' lim
r,π∗

D(N/Nr) ' colim
r,π∗

D(N/Nr) and D!(N) ' colim
r,π!

D(N/Nr).

Lemma 2.4.8. Group multiplication endows D∗(N) and D∗(Nk) with compatible convolution
monoidal structures.

The compatibility between the monoidal structures of D∗(Nk) and D∗(N) is expressed
by the fact that i∗ : D∗(Nk)→ D∗(N) is monoidal, which in turn follows from the canonical
isomorphism i ◦mNk

' mN ◦ i.

Lemma 2.4.9. To any trivialization {dk}k of the dimension torsor of N there corresponds
an equivalence D∗(N) ' D!(N).
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Chapter 3

Loop group actions on categories

In this Section we discuss actions of loop groups on categories. By definition, C ∈ DGCat
is acted on by G if it is endowed with an action of the monoidal category (D∗(G),m∗) (see
Lemma 2.4.3). The totality of categories with G action forms an ∞-category, denoted by
G - rep. The Hopf monoidal structure of D∗(G) ensures that G - rep is monoidal: we provide
the relevant constructions in the Sect. 3.1.

In the next subsections, we discuss invariant and coinvariants, especially for unipotent
group schemes. For such groups, we show that the invariant and the coinvariant categories
are naturally equivalent. This will be of fundamental importance for the study of Whittaker
categories and for the proof of our main theorem.

3.1 Hopf algebras and Hopf monoidal categories

Given a symmetric monoidal ∞-category C⊗, the ∞-category Coalg(C⊗) of its coalge-
bra objects inherits a symmetric monoidal structure, compatible with the forgetful functor
Coalg(C⊗) → C. A Hopf algebra in C is, by definition, an object in Alg(Coalg(C)). It easy
to check that we can switch “Alg” with “Coalg”, so that

HopfAlg(C) := Alg(Coalg(C)) ' Coalg(Alg(C)). (3.1.1)

Consequently, the subcategory HopfAlg(C)dualizable ⊆ HopfAlg(C) spanned by Hopf algebras
in C that are dualizable as objects of C is closed under duality.

If C = Vect♥, we recover ordinary bialgebras : to get to ordinary Hopf algebras, one needs
to specify an antipode map. Since the latter concept will not be needed in this paper, we
have omitted it from the definition of Hopf category. However, the antipode is evident in
any example considered.

For C = DGCat, we obtain the concept of Hopf monoidal category (or just Hopf category,
for short): in other words, H ∈ DGCat is Hopf if it is both comonoidal and monoidal, in a
compatible manner.
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Any group object (G,m) in C = Set (or Sch, IndSch, IndSchpro etc.) in a Hopf algebra in
C, with multiplication being m and comultiplication being ∆ : G→ G×G. The compatibility
between the two sctructures follows at once from commutativity of the diagram

G×G,G

G×G×G×GG×G

��
m13×m24

//∆

//∆×∆

��
m

(3.1.2)

which shows that m is a morphism of coalgebras (or that ∆ is a morphism of algebras).

The only example of Hopf category we shall consider is the following. For a group ind-
pro-scheme G, we claim that H = D!(G) can be naturally endowed with the structure of a
Hopf category.

Recall that D! on ind-pro-schemes is symmetric monoidal and contravariant, and that
any such functor maps algebras to coalgebras and viceversa. Hence, by (3.1.1), D!(G) is
indeed Hopf, with comultiplication induced by m! and multiplication by ∆!.

Remark 3.1.1. The mentioned antipode H→ H in this case is pull-back along the inversion
automorphism inv : G→ G.

The coalgebra structure on a Hopf category H allows to form the ∞-category
H - comod := ComodH(DGCat) of comodules categories for H. The rest of the structure
of a Hopf category endows H - comod with a monoidal structure compatible with the
tensor product of the underlying DG categories: informally, given C, E ∈ H - comod, their
product C⊗ E has the following H-comodule structure

C⊗ E
coactC⊗coactE−−−−−−−−→ C⊗ E⊗H ⊗H

multH−−−−→ (C⊗ E)⊗H.

Hence, we can consider algebra objects in H - comod, that is, monoidal categories with a
compatible coaction of H.

Let H be a Hopf category, which is dualizable as a plain category. Then, as pointed out
before, H∨ (the dual of H as a plain category) is naturally a Hopf category. Given an object
B ∈ Alg(H∨ - comod), we shall form another monoidal category H n B, called the crossed
product algebra of H and B.

Consider the ∞-category B-mod(H∨ - comod). There is an adjuction

DGCat� B-mod(H∨ - comod),

the left adjoint being the composition of the free functors and the right adjoint being the
forgetful functor. Both functors are continuous and the right adjoint is conservative. Thus,
B-mod(H∨ - comod) concides with the category of modules for a monad whose underlying
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functor is C 7→ B⊗(H∨)∨⊗C. The monad structure endows B⊗H with an algebra structure:
the resulting monoidal category is by definition H nB.

Example
Given an ind-pro group G, consider the Hopf category H = D∗(G). Let X an ind-pro-

scheme acted upon by G. We claim that B = D!(X), equipped with the point-wise tensor

product, belongs to Alg(H∨ - comod). In fact, the datum of the action G×X act−−→ X yields
the coaction of H∨ on D!(X), and the required compatibility arises from the commutative
diagram

XG×X

X ×X.G× G×X ×X

∆X

��

//act

//act×act

∆G×∆X

��
(3.1.3)

Thus, we have a well-defined category D∗(G) nD!(X). This example will be crucial in the
sequel.

3.2 Invariant and coinvariant categories

Let C be an arbitrary (co-complete DG) category equipped with a (strong) action of G,
by which we mean that C is a left module category for (D∗(G), ?). Equivalently, the same
datum can be encoded by a coaction of the comonoidal category (D!(G),m!) on C. In fact,
this is the following general result in category theory:

Lemma 3.2.1. Let C⊗ be a symmetric monoidal ∞-category, and A ∈ C an algebra object,
with dual A∨ (automatically a coalgebra object). Then A-mod(C) ' A∨ -comod(C).

The previous section shows that G - rep is monoidal: in terms of the coaction, for C,E ∈
G - rep, the coaction of D!(G) on C⊗ E given by

c⊗ e 7→ ∆!
G

(
coact(c)� coact(e)

)
. (3.2.1)

The universal example of a category with a G-action is the regular representation: i.e.,
D∗(G), considered as a module over itself. In analogy with this, we sometimes denote the
action map D∗(G)⊗ C→ C by the convolution symbol, ?.

The trivial representation is Vect, the category of complexes of C-vector spaces, endowed
with the G-action specified by the monoidal functor ΓdR : D∗(G) → Vect. This is called
the trivial action of G on Vect. More generally, we say that a D∗(G)-module C is acted on
trivially by G if the action D∗(G)⊗ C→ C is prescribed by M ⊗ c 7→ ΓdR(G,M)⊗ c.
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We define the coinvariant category :

CG := Vect ⊗
D∗(G)

C.

This is computed by the Bar resolution of the relative tensor product, i.e. the simplicial
category

· · · D∗(G)⊗D∗(G)⊗ C ////// D∗(G)⊗ C //// C, (3.2.2)

where the maps are given by action, multiplication and trivial action, according to the usual
pattern. To show this, one uses the “free” resolution of Vect as a right D∗(G)-module and
invokes the fact that relative tensor product commutes with colimits in each variable.

We define the invariant category :

CG := HomD∗(G)(Vect,C).

Again, using the free resolution of Vect as a left D∗(G)-module, CG can be computed by the
totalization of

C //// Hom(D∗(G),C) ////// Hom(D∗(G)⊗D∗(G),C) · · · .

Moreover, as D∗(G) and D!(G) are in duality, the latter becomes

C //// D!(G)⊗ C ////// D!(G)⊗D!(G)⊗ C · · · . (3.2.3)

If C is a dualizable category, its dual C∨ = Hom(C,Vect) inherits a right action of G,
described informally by

C∨ ⊗D∗(G)→ C∨, φ(−)⊗M 7→ φ(M ?−).

With this structure,

Lemma 3.2.2. If C is dualizable, then (CG)∨ ' (C∨)G.

Proof. The dual of (3.2.2) is the cosimplicial category (3.2.3) for C∨.

The very same definitions apply to N: a strong action of N on C means a left action of
the monoidal category (D∗(N), ?) on C. Moreover, in view of the extra property of N of
being a colimit of groups, the above action corresponds to a family of compatible actions of
(D∗(Nk), ?) on C.

It follows that
CN ' colim

k∈N
CNk

,
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where the maps in the directed system

Vect ⊗
D∗(Nk)

C→ Vect ⊗
D∗(Nk+1)

C

are induced by the push-forward functors i∗ : D∗(Nk)→ D∗(Nk+1).

Likewise,
CN ' lim

k∈N
CNk ,

the limit taken with respect to the forgetful maps

HomD∗(Nk+1)(Vect,C)→ HomD∗(Nk)(Vect,C).

See Proposition 4.1.1 below for a more explicit description of the transition maps in both
cases.

3.3 Actions by pro-unipotent group schemes

The above formulas show that, in order to better understand N-actions on categories, one
should first discuss Nk-invariants and coinvariants. More generally, in this section we shall
discuss the action of a pro-unipotent group scheme H ⊆ G (e.g. H = Nk) on a category C.
To handle D∗(H), we choose at first the most naive presentation of H as a pro-scheme:1

H ' lim
r,π

Qr, where Qr := H/(H ∩Gr).

The essential feature of this situation is that H is pseudo-contractible (see Sect. 2.1): this
follows from the contractibility of the fibers of each projection πs→r.

A reminder on notation: we indicate by p the map p : H → pt and we set dr = dimQr,
so that ωQr ' kQr [2dr].

We remind the reader that almost contractibility ensures that the sheaves kH and ωH
can be computed “naively” in the realization of D∗(H) and D!(H) as a limits:

kH '
{
kQr
}
r
∈ lim

r,π∗
D(Qr) ' D∗(H)

ωH '
{
ωQr
}
r
∈ lim

r,π∗[2dr−2dr+1]
D(Qr) ' D!(H).

Consequently, the self-duality ηH : D!(H)
'−−→ D∗(H) sends ωH 7→ kH .

We shall see later that convolution with the constant sheaf is a significant operation
(Lemma 3.3.4). Here we prove:

1In Sect. 3.4 and also in the next lemma, we will need a more clever choice of the quotients Qr.
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Lemma 3.3.1. For any M ∈ D∗(H), we have

kH ? M ' ΓdR(H,M)⊗ kH .

Proof. Let us first recall the computation in the finite dimensional case. To prove the
formula, one introduces the automorphism ξ : H ×H → H ×H that sends (x, y) 7→ (xy, y)
and computes

kH ? M ' m∗(p
!
2(M))[−2dH ] ' (p1)∗ξ∗ξ

!(p2)!(M)[−2dH ] ' ΓdR(M)⊗ kH .

In the pro-case, we repeat the same computation at each level r. For this to work, we need to
alter the presentation of H to make sure that H/H̃r are groups for each r. This can always
be achieved, by pro-unipotence of H (see Sect. 3.4).

Thus, for arbitrary M = {M r}r ∈ D∗(H), we obtain

kH ? M '
{
kQr ? M

r
}
r
'
{

ΓdR(Qr,M r)⊗ kQr
}
r
.

Since ΓdR(Qr,M r) ' ΓdR(H,M) is independent of r, the desired formula follows.

The invariant category CH for H,

CH := HomD∗(H)(Vect,C) ' Tot
(
C //// D!(H)⊗ C ////// D!(H)⊗D!(H)⊗ C · · ·

)
,

comes equipped with a tautological forgetful functor oblvH : CH → C. By its very nature,
oblvH is conservative. It admits a right adjoint, called the ∗-averaging functor, AvH∗ : C→ CH .
We shall prove later that AvH∗ is continuous. A left adjoint to oblvH is only partially defined:
when it is so, we denote it by AvH! .

As explained before for G and N, the geometric realization of the simplicial category

· · · D∗(H)⊗D∗(H)⊗ C // //// D∗(H)⊗ C //// C (3.3.1)

computes the coinvariant category CH . The latter comes equipped with a tautological functor
pr : C→ CH , which admits a right adjoint i, discontinuous in general.

Remark 3.3.2. CH can also be computed as the limit of the cosimplicial category obtained
from (3.3.1) by substituting all the arrows with their (possibly non-continuous) right adjoints.
It follows that i is conservative.

Recall that εH , the duality pairing between D!(H) and D∗(H), is the functor

εH : D∗(H)⊗D!(H)→ Vect, M ⊗M ′ 7→ ΓdR(H;M
∗!
⊗M ′).

By construction, the action of D∗(H) on C is related to the coaction coact : C→ D!(H)⊗ C

as follows
act : D∗(H)⊗ C

idH⊗coact−−−−−−→ D∗(H)⊗D!(H)⊗ C
εH−→ C. (3.3.2)
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Lemma 3.3.3. The functor kH ? − : C → C of convolution with the constant sheaf is
canonically isomorphic to

kH ?− ' pren∗ ◦ coact. (3.3.3)

Proof. Indeed, by the construction of the duality pairing,

kH ? c ' p∗(kH
∗!
⊗ coact(c)) ' pren∗

(
η−1
H (kH)⊗ coact(c)

)
and ηH(ωH) ' kH .

We now express the ∗-averaging operation in terms of convolution:

Lemma 3.3.4. The composition oblvH ◦ AvH∗ coincides with the functor kH ? − : C → C.
Consequently, AvH∗ is continuous.

Proof. First, we show that (p!)R : D!(H)→ Vect coincides with the composition

(p!)R ' pren∗ : D!(H)
ηH−−→ D∗(H)

p∗−→ Vect . (3.3.4)

This amounts to an easy verification:

HomD!(H)(ωH ,M) ' HomD∗(H)(kH , ηH(M)) ' ΓdR(H, ηH(M)).

Next, it is routine to check that the Beck-Chevalley condition holds for the cosimplicial
complex

C //// D!(H)⊗ C ////// · · · ,

thus implying
oblvH ◦ AvH∗ ' (p!)R ◦ coact. (3.3.5)

Thanks to this, the first assertion follows from Lemma 3.3.3. Continuity of AvH∗ is now
obvious, as oblvH is conservative and kH ?− is continuous.

Corollary 3.3.5. The functor oblvH is fully faithful.

Proof. Since oblvH is always conservative, it suffices to prove that oblvH◦AvH∗ ◦ oblvH ' oblvH ,
as functors CH → C. Using (3.3.4) and (3.3.5), we get

oblvH ◦ AvH∗ ◦ oblvH ' (p!)R ◦ coact ◦ oblvH ' (p!)R ◦ p! ◦ oblvH ' ΓdR(H, kH)⊗ oblvH ,

and the conclusion follows by the contractibility of H.

In view of the above corollary, we regard CH as a subcategory of C and AvH∗ as an endofunctor
of C.
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Remark 3.3.6. If H ⊂ K are pro-unipotent group schemes, the embedding oblvK : CK ↪→ C

factors through oblvH : CH ↪→ C. We denote by oblvK→H (or oblvrel or oblv when the
context is clear), the resulting inclusion CK ↪→ CH . This functor always admits a right
adjoint, AvH→K∗ , or just Avrel∗ when no confusion is likely to occur. By contractibility, the
composition oblvrel ◦ Avrel∗ is given by convolution with kK .

Let us deduce two properties of the !-averaging functor AvH! .

Lemma 3.3.7. The functor oblvH ◦ AvH! is canonically isomorphic to p! ◦ coact, whenever
the latter is defined.

Proof. It suffices to check that the right adjoint to p! ◦ coact is isomorphic to oblvH ◦ AvH∗ :

(p! ◦ coact)R ' coactR ◦ p! ' (p!)R ◦ coact,

and the claim follows from (3.3.5). The last isomorphism in the above formula is a con-
sequence of the fact that p! and coact can be treated symmetrically: indeed, there is an
automorphism of D!(H)⊗ C that switches them.

Corollary 3.3.8. If H is finite dimensional with dimH = d, then there is a natural trans-
formation

AvH! → AvH∗ [2d]. (3.3.6)

Proof. We showed that AvH! ' p! ◦ coact. Under the assumption, AvH∗ ' pren∗ ◦ coact '
p∗ ◦coact[−2d]. The sought-after map is then induced by the canonical arrow p! → p∗, where
p : H → pt.

3.4 Smooth generation

We now discuss a special features of module categories for (D∗(H), ?), called smooth
generation. Namely, if C is acted upon by H, then any object of c is generated by a sequence
of objects each of which is invariant for a high congruence subgroup. More precisely, C is
the colimit of its subcategories CH

r
, under the relative forgetful maps.

Notice that we can choose a sequence of normal subgroups of H, shrinking to the identity
element. Let {H̃r}r be such a sequence, where the tilde indicates that H̃r is in general
different from Hr (but commensurable to it). The quotients are now themselves groups:

Q̃r := H/H̃r. In this subsection we drop the tilde from the notation: we warn the reader
that this notation clashes with the one in the previous section.

Lemma 3.4.1. For any c ∈ C, there is an equivalence

c ' colim
r≥1

(
oblvH

r ◦ AvHr

∗ (c)
)
.
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Proof. Consider the delta D∗-module δ1,H at 1 ∈ H, the monoidal unit of the convolution
on D∗(H). By (2.1.3), δ1,H can be written as the colimit

δ1,H ' colim
r≥1

(π∞→r)
∗(δ1,Qr),

so that
c ' δ1,H ? c ' colim

r≥1

(
(π∞→r)

∗(δ1,Qr) ? c
)
.

In view of Lemma 3.3.4, it suffices to prove that (π∞→r)
∗(δ1,Qr) ' kHr , for any r ≥ 1.

To show this, we reconvert the expression (π∞→r)
∗(δ1,Qr) into an object of limrD(Qr) by

means of the functor (2.1.4). By almost contractibility we obtain

(π∞→r)
∗(δ1,Qr)

LC−1

−−−→
{

(πs→r)
∗(δ1,Qr)

}
s≥r,

and, by base-change,
(π∞→r)

∗(δ1,Qr) ' {kfib(Qs→Qr)}s≥r. (3.4.1)

Here, fib(Qs → Qr) is the fiber of the projection Qs → Qr over 1 ∈ Qr, which is of course
Hr/Hs. Thus, (3.4.1) coincides with kHr , by the very construction of the latter.

Corollary 3.4.2. If C is acted on by H, then C is automatically smoothly generated, i.e.

C ' colim
r≥1

CH
r

, (3.4.2)

the colimit being taken along the relative forgetful functors oblvrel : CH
r → CH

r+1
.

Proof. The collection of functors oblvH
r

: CH
r → C yields a functor α : colim

r≥1
CH

r → C, which

is essentially surjective by the above lemma. It remains to prove that α is fully faithful. Let
us write

colim
r≥1,oblv

CH
r ' lim

r≥1,Avrel∗

CH
r

,

and denote by insr and evr the structure functors, as usual. Then, α ◦ insr ' oblvH
r

by
definition, so that β := αR satisfies the relation evr ◦ β = AvH

r

∗ . In other words, β consists
of the inverse family of functors AvH

r

∗ : C → CH
r
. To conclude, it suffices to prove that

β ◦ α ' id. For c ∈ CH
r
, we have

β ◦ α(insr(c)) = {AvHs

∗ (c)}s≥r ' {oblvr→s(c)}s≥r ' colim
s≥r

inss(oblv
r→sc) = insr(c).
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3.5 Harish-Chandra bimodules and the adjoint repre-

sentation

In this section we deal with groups of finite type and discuss the relation between weak
and strong invariants in detail.

Let G be an affine algebraic group of finite type (as always, defined over C). We freely
use the notion of “de Rham” functor, as developed in [GR0]. Specifically, there is a group
prestack GdR such that D(G) := QCoh(GdR). This is the realization of D-modules as left
crystals.

From this point of view, it is clear that QCoh(G) acts on D(G) via the monoidal functor
ind : QCoh(G)→ D(G), left adjoint to the forgetful functor oblv` : D(G)→ QCoh(G).

Recall that the action of G on a scheme X of finite type induces a weak (resp., strong)
action of G on QCoh(X) (resp., D(X)). Slighly more general is the following important
example.

Let Ĝ denote the formal group of G at 1 ∈ G. By definition,

Ĝ := {1} ×GdR
G.

Note that GdR ' G/Ĝ, so that BĜ ' GdR/G. Thus, as a prestack, BĜ carries an action of
GdR, induced by the multiplication of GdR:

GdR ×BĜ ' GdR ×GdR/G
m−−→ GdR/G ' BĜ. (3.5.1)

Remark 3.5.1. We claim that this is a familiar structure. Let g-mod is the category of
representations of the Lie algebra of G. There is an equivalence QCoh(BĜ) ' g-mod, under
which the strong G-action just described corresponds to the adjoint action of G on g. This
follows from the equivalence between Lie algebras and formal groups, which holds over a field
of characteristic zero. The correspondence associates to a Lie algebra g the formal group
Spf(U(g)∨) and it is well-known that U(g) and O(Ĝ) are dual Hopf algebras.

We will not use any Lie algebra theory in the present paper, and by the symbol “g-mod”
we understand the category QCoh(BĜ). Formula (3.5.1) implies that G acts strongly on
g-mod. It will be shown later that

(g-mod)G,s ' Rep(G),

while (g-mod)G,w is the Harish-Chandra category to be studied in detail in the next para-
graphs.

We digress briefly to discuss actions by normal subgroups. Let i : K ↪→ G be a normal
subgroup. The category D(K) acts on D(G), as the functor i∗ : D(K)→ D(G) is monoidal.
We prove that G-invariants can be taken in two steps: K-invariants first and then G/K-
invariants.
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Lemma 3.5.2. Let C be a category with a strong action of G. The quotient group G/K acts
on CK and CK. Furthermore,

CG '
(
CK
)G/K

and CG ' (CK)G/K .

The statement holds verbatim for weak actions and weak (co)invariants.

Proof. For coinvariants, we have

CK := Vect ⊗
D(K)

C '
(

Vect ⊗
D(K)

D(G)
)
⊗

D(G)
C.

The expression in parenthesis is by definition the category of K-coinvariants of D(G), which
is D(G/K) by descent. This makes it clear that G/K acts on CK . Moreover,

(CK)G/K ' Vect ⊗
D(G/K)

CK ' Vect ⊗
D(G/K)

D(G/K) ⊗
D(G)

C ' Vect ⊗
D(G)

C =: CG.

The argument for invariants is completely analogous.

As the quotient G/Ĝ ' GdR is a group prestack, the above reasoning can be applied to

the group morphism Ĝ→ G, yielding the following result:

Lemma 3.5.3. If C admits a weak action of G, then CĜ carries a strong action of G and

CG,w ' (CĜ,w)G,s and CG,w ' (CĜ,w)G,s.

We now explain how to recover strong invariants from weak invariants. (Ultimately,
we shall use this to prove that the ∗-averaging functor induces an equivalence CH ' CH ,
whenever H is a pro-unipotent pro-group.)

We need a preliminary lemma. Recall that g-mod ' QCoh(BĜ) admits a strong action
of G.

Lemma 3.5.4. If C is a category with a strong action of G, then

CG,w ' HomD(G)(g-mod,C) and CG,w ' g-mod ⊗
D(G)

C.

Proof. The defining formula CG,w := HomQCoh(G)(Vect,C) becomes, by adjunction,

CG,w ' HomD(G)

(
Vect⊗QCoh(G)D(G),C

)
.

Using the same logic, the formula for coinvariants becomes

CG,w := Vect ⊗
QCoh(G)

C ' Vect ⊗
QCoh(G)

D(G) ⊗
D(G)

C.
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In both cases, it remains to show that

Vect ⊗
QCoh(G)

D(G) ' g-mod.

Since
Vect ⊗

QCoh(G)
D(G) = D(G)G,w ' QCoh(GdR/G) ' QCoh(BĜ),

this is clear.

Consequently, if C admits a strong action of G, its weak invariant and coinvariant cate-
gories CG,w and CG,w both retain an action of the monoidal category

HC := HomD(G)(g-mod, g-mod),

where the monoidal structure is given by composition. This is called the category of Harish-
Chandra bimodules. By the above,

HC ' HomQCoh(G)(Vect, g-mod) ' (g-mod)G,w.

Here is yet another description:

Lemma 3.5.5. There is a natural monoidal equivalence(
QCoh(G\GdR/G), ?

)
' (HC, ◦).

The next result shows that HC is a rigid monoidal category ([G0]). In particular, HC is
self-dual and a module category over it is dualizable in HC-mod if and only if it is dualizable
as a plain category.

Proposition 3.5.6. The monoidal category HC is compactly generated by objects that are
left and right dualizable.

Proof. Let q : G→ GdR be the quotient map. It induces a map, denoted again by q,

q : BG ' G\G/G→ G\GdR/G.

Using this description, it is easy to see that q∗ : Rep(G)→ HC is monoidal. As any compact
object in Rep(G) is (both left and right) dualizable, it suffices to prove that the right adjoint
to q∗ is continuous and conservative.

We shall prove the following result:
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Theorem 3.5.7. For any affine algebraic group G over a field of characteristic 0, the functor
of weak invariants invw : C CG,w induces an equivalence

HC-mod
'←−− (D(G), ?)-mod.

Before explaining the proof, let us notice that the weak (co)invariant category of any
(QCoh(G), ?)-module admits an action of Vect⊗QCoh(G) Vect ' Rep(G). Thus, there is an
adjunction

rec : (Rep(G),⊗)-mod� (QCoh(G), ?)-mod : invw, (3.5.2)

where invw is the functor of weak G-invariants and rec, the “reconstruction” functor, sends
E to Vect⊗Rep(G)E. It is a theorem, due to Gaitsgory (announced in [AG] and proven in
[G7]), that these adjoint functors are mutually inverse equivalences of categories. Our proof
of Theorem 3.5.7 is a formal consequence of this.

Proof of Theorem 3.5.7. Recall the adjunction

ind := D(G)⊗QCoh(G) − : QCoh(G)-mod� D(G)-mod : oblvs→w. (3.5.3)

Combined with (3.5.2), it yields an adjunction

F : Rep(G)-mod� D(G)-mod : invw, (3.5.4)

where
F(E) = ind ◦ rec ' D(G) ⊗

QCoh(G)
Vect ⊗

Rep(G)
E ' g-mod ⊗

Rep(G)
E.

Note that oblvs→w is continuous and conservative: in fact, the absolute forgetful functor
oblv : D(G)-mod → DGCat is conservative. Furthermore, the functor invw in (3.5.2),
being an equivalence, is continuous and conservative as well. Thus, we apply the Barr-Beck
theorem to the adjunction (3.5.4): invw provides an equivalence between D(G)-mod and
the category of modules for the monad

E 7→ (g-mod⊗Rep(G) E)G,w

in Rep(G)-mod. It remains to compute this monad:

(g-mod ⊗
Rep(G)

E)G,w = Vect∨ ⊗
QCoh(G)

g-mod ⊗
Rep(G)

E ' ĤC ⊗
Rep(G)

E.

We have denoted by ĤC the category HC, considered as a (Rep(G))-bimodule. In

summary, invw gives an equivalence between D(G)-mod and ĤC-mod(Rep(G)-mod).
Another straightforward application of Barr-Beck yields a canonical equivalence
ĤC-mod(Rep(G)-mod) ' HC-mod, concluding the proof.

As an immediate corollary, here is the relation between strong and weak (co)invariants:

Corollary 3.5.8. If C is equipped with a strong action of G, we can compute its strong
invariants as follows:

CG,s ' HomHC(Rep(G),CG,w) and CG,s ' Rep(G) ⊗
HC

CG,w.
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3.6 Equivalence between invariants and coinvariants

for group schemes

We are now ready to prove the following important result.

Theorem 3.6.1. For a pro-unipotent group H and a category C ∈ D∗(H)-mod, the coin-
variant and invariant categories CH and CH are equivalent. In particular, the operation
C CH commutes with colimits and tensor products by categories.

Proof. Let H be finite dimensional first. Recall the equivalence between
(QCoh(H), ?)-mod ' Rep(H)-mod. Since Rep(H) is a rigid monoidal category,
we deduce an equivalence

CH,w = Vect∨ ⊗
Rep(H)

C ' Vect ⊗
Rep(H)

C = CH,w

between weak invariants and weak coinvariants. From this, we infer the same result for
strong invariants. Since HC is a rigid monoidal category and Rep(H) is self-dual as a plain
category, we obtain from Corollary 3.5.8 that

CH ' Rep(H)∨ ⊗
HC

CH,w ' Rep(H) ⊗
HC

CH,w ' Rep(H) ⊗
HC

CH,w = CH . (3.6.1)

This proves the assertion for H finite dimensional.

To extend the result to H being a pro-scheme, we resort to the smooth generation of C:
let {Hr}r be a sequence of normal subgroups shrinking to the identity element; by (3.4.2),
we have

CH ' colim
r≥1

(CH
r

)H .

As the action of H on CH
r

factors through H → H/Hr, we further obtain

CH ' colim
r≥1

(CH
r

)H/Hr ' colim
r≥1

(CH
r

)H/H
r

.

where the second equivalence follows from finite dimensionality of H/Hr, invoking (3.6.1).
Lastly, (CH

r
)H/H

r ' CH , which concludes the proof.

Next, we single out a naturally defined functor S : CH → CH realizing the above equiva-
lence: this is induced by

Vect⊗C→ C, V ⊗ c 7→ V ⊗ (kH ? c).

That S descends to a functor Vect ⊗
D∗(H)

C→ C follows from the canonical equivalence

kH ? (M ? c) ' ΓdR(H,M)⊗ kH ? c, for any M ∈ D∗(H), c ∈ C.

proven above. Moreover, S lands in CH , as kH ?− ' oblvH ◦ AvH∗ .
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Proposition 3.6.2. The above functor S is an equivalence.

Proof. Any D∗(H)-module is, via the Bar resolution, a colimit of categories of the form
D∗(H)⊗E, where E is endowed with the trivial action of H. Thus, in view of Theorem 3.6.1,
it suffices to prove that S is an equivalence when C = D∗(H) is the regular representation.

In this case, CH and CH are both equivalent to Vect. More precisely, for coinvariants, the
canonical equivalence Vect ' Vect⊗D∗(H)C =: CH is obtained from the functor

α : Vect
'−−→ Vect ⊗

D∗(H)
C, α : V 7→ V ⊗ δ1.

For invariants, the equivalence Vect ' HomD∗(H)(Vect,C) =: CH is induced by the map

β : Vect
'−−→ HomD∗(H)(Vect,C), β : V 7→ (C 7→ V ⊗ kH).

Under α and β, the functor S goes over to the identity Vect→ Vect.
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Chapter 4

Whittaker actions

We focus now on categories with an action of N and study their (co)invariants in terms
of the invariants for the sequence of Nk. After this, we introduce an additive character χ of
N and study N-(co)invariants of C against χ. The resulting categories are by definition the
Whittaker categories of C.

4.1 Invariants and coinvariants with respect to N((t))

Let ik : Nk → Nk+1 the inclusion.

Proposition 4.1.1. There are natural equivalences

CN := lim
oblvrel

CNk and CN := colim
Avrel∗

CNk .

Proof. Let us treat coinvariants first. As the functor (ik)∗ : (D∗(Nk), ?)→ (D∗(Nk+1), ?) is
monoidal, the equivalence D∗(N) = colimi∗ D

∗(Nk) is an equivalence of monoidal categories.
Hence, we can commute the colimit under the tensor product:

CN := Vect ⊗
D(N)

C ' Vect ⊗
colim
k,i∗

D(Nk)
C ' colim

k,i∗

(
Vect ⊗

D(Nk)
C
)
' colim

k,i∗
CNk

.

Next, identifying CNk
with CNk via Proposition 3.6.2, the map induced by i∗ goes over to

Avrel∗ : CNk → CNk+1 , the right adjoint to the inclusion oblvrel : CNk+1 → CNk . Indeed, this
follows from the commutativity of the diagram:

D∗(Nk+1)⊗ C C CNk+1 .

D∗(Nk)⊗ C C CNk

i∗
��

////

////

id

�� Av
Nk+1
∗ //

Av
Nk
∗ //

Avrel∗
��

(4.1.1)
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The computation of N-invariants is easier: CN is the limit of CNk , along the transition
maps CNk+1 → CNk induced by i! : D!(Nk+1)→ D!(Nk). The relevant diagram

D!(Nk+1)⊗ C C CNk+1

D!(Nk)⊗ C C CNk
OO

i!

oooo

oooo

id

OO

oblvNk+1

oo

oo oblvNk

OO

oblvrel

(4.1.2)

is commutative (the assertion for the left square follows by duality from commutativity of
the left square of (4.1.1)). This identifies CNk+1 → CNk as oblvrel .

4.2 Whittaker invariants and coinvariants

To introduce the main mathematical objects of this paper, the Whittaker invariant and
coinvariant categories of an object of N - rep, we need to first discuss N-actions on the trivial
category Vect.

Strong actions on Vect
As mentioned before, a strong action of N on Vect is given by a monoidal functor

D∗(N) → Vect. Equivalently, by a comonoidal functor Vect → D!(N). Such functors
correspond precisely to character D!-modules, i.e. D!-modules F with an isomorphism

m!(F) ' F � F,

satisfying the natural compatibility conditions. For such F, the action map D∗(N)⊗Vect→
Vect is given by

M ⊗ V 7→M ?F V := εN(M ⊗ F)⊗ V,

where, as before, εN is the duality pairing between D∗(N) and D!(N) := D∗(N)∨.

Consider the exponential (right) D-module exp on Ga = A1 = Spec(k[z]):

exp =
DA1

(∂z − 1)DA1

. (4.2.1)

We point out that exp is a substitute of the Artin-Schreier sheaf in characteristic zero. It is
a character D-module,

m!exp ' exp� exp, (4.2.2)

and the prototype of all the character D-modules we shall consider. In fact,

Lemma 4.2.1. Let G be an ind-pro-scheme (in our case G = N) equipped with an additive
character: χ : G→ Ga. Then χ!(exp) ∈ D!(G) is a character D!-module.
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Proof. This follows from the equality m ◦ (χ× χ) = χ ◦ m.

We write Vectχ to emphasize that Vect is being considered as a category with the D!(N)-
coaction corresponding to χ!exp.

If N acts on C, we have an action of N on C⊗Vectχ: by (3.2.1), this is simply determined
in terms of the coaction of D!(N) on C by the assignment

C→ D!(N)⊗ C, c 7→ χ!(exp)⊗ coact(c),

where we have identified C ' C⊗ Vectχ. Dually, the action of D∗(N) on C⊗ Vectχ consists
of the composition of the “old” action of D∗(N) on C with the monoidal automorphism

D∗(N)→ D∗(N), M 7→ χ!(exp)
!∗
⊗M,

where
!∗
⊗ denotes the action of D!(N) on D∗(N).

We define the Whittaker invariant and Whittaker coinvariant categories of C respectively
as

CN,χ := HomD∗(N)(Vect,Vectχ⊗C) and CN,χ := Vect ⊗
D∗(N)

(C⊗ Vectχ).

Lemma 4.2.2. Alternatively,

CN,χ := HomD∗(N)(Vect−χ,C) and CN,χ := Vect−χ ⊗
D∗(N)

C.

Proof. The automorphism of D!(N) sending M 7→ M ⊗ (−χ)!(exp) converts the original
definitions into the ones of the lemma.

We also define

CNk,χ := CNk,χ := (C⊗ Vectχ)Nk and CNk,χ := (C⊗ Vectχ)Nk
.

In view of the above Proposition 4.1.1, we have:

CN,χ := lim
oblv

CNk,χ and CN,χ := colim
Av∗

CNk,χ.

We set
χNk

:= ηk(χ
!
k(exp)) ∈ D∗(Nk),

where χk is the restriction of χ to Nk and ηk : D!(Nk) → D∗(Nk) is the usual self-duality.
The right adjoint to the inclusion oblvNk : CNk,χ ↪→ C is denoted AvNk,χ

∗ .
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Lemma 4.2.3. The functor oblvNk ◦ AvNk,χ
∗ in given by convolution with χNk

.

Proof. Let coactχ be the coaction C⊗Vectχ → D!(Nk)⊗C⊗Vectχ: under the identification
C⊗ Vectχ ' C, it is simply given by χ!

kexp⊗ coact.

Now, convolution with χNk
is given by p∗ ◦ ηk(χ!

kexp ⊗ coact(−)) ' p∗ ◦ ηk ◦ coactχ; on
the other hand, base-change yields

oblvNk ◦ AvNk,χ
∗ ' (p!)R ◦ coactχ,

concluding the proof in view of (3.3.4).

The two conjectures that follow have been proposed by Gaitsgory. First,

Conjecture 4.2.4. For any C with an action of G, there is an equivalence CN,χ ' CN,χ.

This conjecture can be refined. Indeed, there is always a natural functor (or rather, a
Z-family of such) mapping CN,χ → CN,χ. Such functor depends on the choice of a sequence
of integers {di}i such that d`− dk = dim(N`/Nk) for any ` ≥ k. We need the following fact:

Lemma 4.2.5. For any ` ≥ k, there is a canonical morphism of sheaves

χNk
→ χN`

[2(d` − dk)]. (4.2.3)

Furthermore, this system of maps is transitive in a natural way.

Proof. Let i : Nk → N` be the closed embedding given by the inclusion. It suffices to find a
natural map

i∗ (χNk
)→ χN`

[2(d` − dk)]

of D∗-modules on N`. Under η−1
` , such map corresponds to

iren∗ χ!
k(exp)→ χ!

`(exp)[2(d` − dk)],

where iren∗ : D!(Nk) → D!(N`) is the functor η−1
` ◦ i∗ ◦ ηk. Since the LHS is isomorphic to

iren∗ i!χ!
`(exp), it suffices to exhibit a natural map

iren∗ i!(M)→M [2(d` − dk)]

for any arbitrary M ∈ D!(N`).

Let us represent N` as a pro-scheme by N` = limrQ
r, where each Qr = N`/N

r. The
induced presentation Nk = limr P

r is obtained by setting P r = Nk/N
r, so that the inclusion

i corresponds to the inverse system of closed embeddings ir : P r ↪→ Qr. We also set
qr = dimQr and pr = dimP r.
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Let M ∈ D!(N`) correspond, in the realization of D!(N`) as a limit, to the family
of sheaves M r ∈ D(Qr). We wish to show that i!(M) can be computed value-wise. By
definition, the functor i! is computed as the colimit of the directed system of functors (ir)!,
according to the leftmost diagram below. In the present case, however, such diagram is right
adjointable, which means that the rightmost diagram commutes as well.

D(Qr+1) D(Qr)

D(P r+1) D(P r)

D(Qr+1) D(Qr)

D(P r+1) D(P r)

(ir+1)!

OO

oo π!

(ir)!

OO
oo π!

(ir+1)!

OO

π∗[−2(qr+1−qr)] //

(ir)!

OO

π∗[−2(pr+1−pr)] //

(4.2.4)

This is a consequence of base-change, which holds thanks to Pr+1 ' Pr ×Qr Qr+1, combined
with the equality pr+1 − pr = qr+1 − qr. This guarantees that i!(M) ' {(ir)!(M r)}r, as
wanted.

We then have

iren∗ i!(M) '
{
ir∗ ◦ (ir)!(M r)[2qr − 2pr]

}
r
'
{
M r ⊗ ir∗(ωP r)

}
r
[2(d` − dk)].

Indeed qr − pr = d` − dk for any r. For the above formula, the sought-after map is induced
by the canonical “trace” ir∗(ωP r)→ ωQr .

The construction also shows that the composition

χNk
→ χN`

[2(d` − dk)]→ χNm [2(dm − d`)][2(d` − dk)] (4.2.5)

is canonically isomorphic to χNk
→ χNm [2(dm − dk)], for any m ≥ ` ≥ k.

Equation (4.2.3) and Lemma 4.2.3 yield a natural transformation

AvNk,χ
∗ [2dk] −→ AvN`,χ

∗ [2d`].

Transitivity of such natural transformations, (4.2.5), allows to form the functor:

T : C→ C, T(c) = colim
k∈N

(
AvNk,χ
∗ (c)[2dk]

)
. (4.2.6)

Notice that the image of T is contained in CN,χ, as the tail of the sequence is in CNk,χ for
any k ∈ N.

Lemma 4.2.6. The above functor T : C→ CN,χ descends to a functor (denoted by the same
name) T : CN,χ → CN,χ.
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Proof. For any M ∈ D∗(N), we need to provide a natural equivalence between T(M ?c) and
εN(M, (−χ)!exp)⊗ T(c). It suffices to exhibit a natural equivalence

M ? χNk
' εNk

(
M, (−χNk

)!(exp)
)
⊗ χNk

,

for M ∈ D∗(Nk) and any k ∈ N. Let σ : N2 → N2 be the automorphism (x, y) 7→ (x, xy),

whose inverse is τ := (id ×m) ◦ (∆̃ × id), where ∆̃ : x 7→ (x, x−1). It follows that σ∗ and
(τ !)ren := η ◦ τ ! ◦ η−1, so that m∗ ' (p2)∗ ◦ (τ !)ren . Hence,

M ? χNk
' m∗

(
M � η(χ!exp)

)
' (p2)∗ ◦ η ◦ (∆̃× id)!(id×m)!(η−1M � χ!exp)

' (p2)∗ ◦ η ◦
((
η−1M ⊗ (−χ)!exp

)
� χ!exp

)
' Γ(M

∗!
⊗ (−χ)!exp)⊗ η(χ!exp).

The conclusion is now evident, in view of the definition of the pairing ε (see (2.1.8)).

Conjecture 4.2.7. Let C be a category with an action of G. For any choice of dk as above,
T : CN,χ → CN,χ is an equivalence of categories.

We prove this conjecture for G = GLn in Section 7, but first we need to study actions of
loop vector spaces. This is the subject of the next section.
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Chapter 5

Fourier transform and actions by loop
vector groups

If G = GL2, then N ' A1 is abelian, so that all the notions discussed above (group
actions, invariants, coinvariants, averaging functors...) can be understood via Fourier trans-
form. Slightly more generally, we consider the case of a vector group An and its loop group
A := An((t)), which is of course the main example of an ind-pro-vector space.

5.1 The Fourier transform on a finite dimensional vec-

tor space

We start by reviewing the well-known Fourier-Deligne transform in the finite dimensional
case, following, for the most part, [La].

Let V ' An be a finite dimensional vector space, with dual V ∨. We indicate by m the
addition in V , V ∨ or Ga (depending on the context) and by Q : V × V ∨ → Ga the duality
pairing. Let p1 and p2 be the projections from V × V ∨ to V and V ∨, respectively.

Recall the D-module exp on Ga, as in formula (4.2.1). The Fourier transform kernel is

expQ := Q!(exp) ∈ D(V × V ∨).

Here are some (well-known) key features of this “integral kernel”.

Lemma 5.1.1. (p1)∗(exp
Q) ' δ0,V [2dV ].

Proof. It is enough to show that the !-fibers of (p1)∗(exp
Q) at v ∈ V are zero for v 6= 0 and

that(p1)∗(exp
Q)
∣∣
0
' C[2dV ].
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In either case, the !-fiber of (p1)∗(exp
Q) at v ∈ V is isomorphic to the cohomology

Γ(V ∨, expv), where expv := v!(exp) and v is thought of as a character of V ∨. This cohomology
is known to be zero if v 6= 0. For v = 0, we compute

Γ(V ∨, exp0) ' Γ(V ∨, ωV ∨)⊗ exp|0 ' C[2dV ],

as claimed.

Lemma 5.1.2. Let p13, p23 : V × V × V ∨ → V × V ∨ be the obvious projections. There is a
canonical isomorphism

p!
13(expQ)⊗ p!

23(expQ) ' (m× idV ∨)!(expQ). (5.1.1)

Proof. This follows from the commutative diagram

Ga ×Ga Ga

V × V × V ∨ V × V ∨

��
Q13×Q23

m //

m×idV ∨ //

��
Q

(5.1.2)

together with (4.2.2).

The Fourier transform FT = FTV is the functor

FT : D(V )→ D(V ∨), M 7→ (p2)∗(p
!
1(M)⊗ expQ).

We also define the inverse Fourier transform IFT = IFTV as

IFT : D(V ∨)→ D(V ), M 7→ (p1)∗(p
!
2(M)⊗ exp−Q)[−2dV ].

This name is justified by the following result:

Proposition 5.1.3. For any finite dimensional vector space V , the functors FTV and IFTV
are mutually inverse equivalences of categories.

Proof. By symmetry, it suffices to prove a natural isomorphism IFT◦FT ' idV . Base-change
yields

IFT ◦ FT(M) ' (p1 ◦ p13)∗

(
p!

13(exp−Q)⊗ p!
23(expQ)⊗ p!

23p
!
1(M)

)
[−2dV ].

A computation similar to the proof of (5.1.1) further gives

IFT ◦ FT(M) ' (p̂1)∗

(
(ξ × idV ∨)!(expQ)⊗ p̂!

2(M)
)

[−2dV ],



47

where ξ : V × V → V sends (v, v′) 7→ (v′− v) and p̂i : V × V × V ∨ → V are the projections.
Rewriting p̂1 = p1 ◦ p12 and p̂2 = p2 ◦ p12, we obtain

IFT ◦ FT(M) ' (p1)∗

(
(p12)∗(ξ × idV ∨)!(expQ)⊗ p!

2(M)
)

[−2dV ]

' (p1)∗

(
ξ! (p1)∗(exp

Q)⊗ p!
2(M)

)
[−2dV ]. (5.1.3)

By Lemma 5.1.1, we can simplify ξ! (p1)∗(exp
Q) ' ∆∗(ωV )[2dV ], and the result follows by

the projection formula.

Emphasizing the dependence on Q, it is obvious that

FTQV ' IFT−QV ∨ [2dV ].

Remark 5.1.4. The proof of Lemma 5.1.1 shows that FTV (δv) ' v!(exp). Here are two handy
consequences:

FTGa(δ1) ' exp, FTGa(exp) ' δ−1[2]. (5.1.4)

We now recall how the formalism of correspondences allows to handle base-change in the
setting of DG categories. Let Schft the ordinary category of schemes of finite type. We form
Schftcorr, the 1-category whose objects are the same as Schft and whose morphisms are given
by correspondences:

HomSchftcorr
(S, T ) =

{
S

α←− H
β−→ T : H ∈ Schft

}
.

Such correspondences compose under fiber product. Clearly, Schftcorr is symmetric monoidal
via Cartesian product.

Theorem 5.1.5 ( [GR2]). The assignment S  D(S) upgrades to a symmetric monoidal
functor

D : Schftcorr → DGCat

which sends S
α←− H

β−→ T to the functor D(S)
β∗ ◦α!

−−−→ D(T ).

In particular, by restricting the domain of the above functor to the 1-category of finite
dimensional vector spaces (in schemes) and linear maps under correspondences, we obtain
the theory of D-modules on vector spaces. To discuss the Fourier transform, we shall need
a mild generalization of this theory.

Let Corr′ := Vectfd,Gacorr be the following 1-category: its objects are finite dimensional vector
spaces; given two such V,W , the set of morphisms V 99K W consists of all diagrams of the
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form

V W,

H

Ga

α

{{
β

##

f

OO

(5.1.5)

where H is also a finite dimensional vector space and all maps are linear. For short, we

write (V
α←− H

β−→ W ; f) to indicate the morphism V 99K W in (5.1.5). The composition of

(V
α←− H

β−→ W ; f) with (W
γ←− K

δ−→ Z; g) is the correspondence(
V ←− H ×

W
K −→ Z;h

)
,

with h : H ×W K → H ×K f+g−−−→ Ga. It is straightforward to check that Vectfd,Gacorr is indeed

a 1-category. The identity morphism V 99K V is given by (V
id←− V

id−→ V ; 0).

Theorem 5.1.6. The assignment V  D(V ) upgrades to a symmetric monoidal functor

Denh : Vectfd,Gacorr → DGCat

which sends (V
α←− H

β−→ W ; f) to the functor

D(V )
β∗(f !(exp)⊗α!(−))−−−−−−−−−−→ D(W ).

Proof. The following argument is due to D. Gaitsgory and holds in greater generality. First
of all, for an algebraic group of finite type, Theorem 5.1.5 holds in the G-equivariant setting,
namely D upgrades to a symmetric monoidal functor

DG : (Schft
G)corr → D(G)-mod,

from the 1-category of G-schemes under correspondences to the∞-category G - rep. If fact,
more generally, Theorem 5.1.5 holds for simplicial schemes. Let CorrG denote the 1-category
of finite dimensional vector spaces with G-action, under correspondences.

Consider the following functor Ψ : Corr′ → CorrGa : at the level of objects, it sends
V 7→ V ×Ga, where Ga acts freely on the second factor of V ×Ga. At the level of morphisms,
Ψ sends

(V
α←− H

β−→ W ; f) 7→ (V ×Ga
σ←− H ×Ga

β×id−−−→ W ×Ga),

where σ(v, x) = (α(v), f(v) + x). One can easily check that Ψ is indeed a functor.
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Let invGa,exp : Ga - rep → DGCat be the functor of (Ga, exp)-invariants. Recall the
canonical equivalence

D(V ) ' invGa,exp
(
D(V ×Ga)

)
induced by the functor D(V ) → D(V × Ga) sending M 7→ M � exp. We now claim that,
under this equivalence, our functor Denh is the composition

Denh ' invGa,exp ◦DGa ◦Ψ.

Noticing that the above map σ equals the composition (id×m) ◦ (α× f × id) ◦ (∆× id), the
proof of the claim is routine.

Tautologically, FTV is the value of Denh on the following “arrow” (which we also call FT):

V
FT
99K V ∨ :=

V V ∨.

V × V ∨

Ga

p1

zz
p2

$$

Q

OO

(5.1.6)

Furthermore,

Proposition 5.1.7. FT is a monoidal equivalence between (D(V ), ?) and (D(V ∨),⊗).

Proof. Recall that the convolution monoidal structure on D(V ) arises from the algebra
structure on V given by

V × V m
99K V :=

(
V × V id←− V × V m−→ V ; 0

)
and that the pointwise monoidal structure on D(V ∨) from the algebra structure

V ∨ × V ∨ ∆
99K V ∨ :=

(
V ∨ × V ∨ ∆←− V ∨

id−→ V ∨; 0
)
.

We just need to prove that FT : V 99K V ∨ intertwines the two algebra structures, or
equivalently that the following diagram in Schft,Ga

corr commutes:

V V ∨.

V × V V ∨ × V ∨

��
m

FT //

FT×FT //

��
∆

(5.1.7)

We leave it to the reader to check that both paths in the above diagram coincide with(
V × V p12←−− V × V × V ∨ m×idV ∨−−−−−→ V ∨; f

)
,

where f : V × V × V ∨ → Ga sends (v, w, φ) 7→ Q(φ,w − v).



50

This result immediately implies a crucial fact for us. First, recall that an action of the
vector group V on a category amounts to an action of the monoidal category (D(V ), ?): thus
we have

FT : V - rep := (D(V ), ?)-mod
'−−→ (D(V ∨),⊗)-mod.

In other words,

Corollary 5.1.8. Fourier transform indentifies categorical representations of V and crystals
of categories over V ∨, that is, categories with an action of (D(V ∨),⊗).

The action of (D(V ∨),⊗) on C ∈ V - rep is given by P ⊗ c 7→ IFT(P ) ? c.

Let us study the effect of Fourier transform on pushforwards and pullbacks along linear
maps.

Lemma 5.1.9. Given a linear map of finite dimensional vector spaces f : W → V and its
dual φ : V ∨ → W∨, there exist natural equivalences of functors:

φ! ◦ FTW ' FTV ◦ f∗ (5.1.8)

FTV ∨ ◦ φ![−2dV ] ' f∗ ◦ FTW∨ [−2dW ]. (5.1.9)

Proof. We only prove the first formula, the second follows by applying the inverse Fourier
trasform. Consider the arrows

W
(id,f)
99K V :=

(
W

id←−W
f−→ V ; 0

)
and

W∨ (φ,id)
99K V ∨ :=

(
W∨ φ←− V ∨

id−→ V ∨; 0
)
.

It suffices to prove that the following diagram is commutative:

V V ∨.

W W∨

��
(id,f)

FTV //

FTW //

��
(φ,id)

(5.1.10)

As in the proof above, it is routine to verify that both paths coincide with(
W

p1←− W × V ∨ p2−→ V ∨;h
)
,

where h = Q ◦ (f × idV ∨) = Q ◦ (idW × φ).

Our last computation in the finite dimensional case involves a character χ ∈ V ∨. We
first need a small result:
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Corollary 5.1.10. FTV (χ!(exp)) ' δ−χ,V ∨ [2dV ]. In particular, by putting χ = 0, we obtain
FTV (kV ) ' δ0,V ∨.

Proof. By (5.1.9) and (5.1.4),

FTV (χ!(exp)) ' (χ∨)∗FTGa(exp)[2dV − 2] ' (χ∨)∗ (δ−1,Ga [2]) [2dV − 2].

Since χ∨ : Ga → V ∨ is the linear map sending 1 to χ, the conclusion follows.

Proposition 5.1.11. Let i : W ↪→ V be the embedding of a vector subspace and χ ∈ V ∨ a
character. Let χ : W → Ga be its restriction to W and χW := i∗ ◦ χ!exp ∈ D(V ). Then

FTV (χW )[−2dW ] ' ω−χ+W⊥ ,

where W⊥ is the annihilator of W in V ∨.

Proof. Using (5.1.8) and the corollary above, we have

FTV (χW ) ' π!
(
FTW (χ!exp)

)
' FTW (χ!exp) ' δ−χ,W∨ [2dW ],

where π : V ∨ → W∨ is the projection dual to i. Noting that the fiber of the projection
π : V ∨ → W∨ at {−χ} is precisely −χ+W⊥, we conclude

FTV (χW ) = ω−χ+W⊥ [2dW ],

as desired.

5.2 Fourier transform on a loop vector space

We now develop the notion of Fourier transform for the loop group A := An((t)) of
the affine scheme An, thought of as a vector group. More generally, we define the Fourier
transform functor of a vector space of ind-pro type and estabilish its properties, parallel to
the ones of the previous section.

Let V be a vector space of ind-pro-type, with presentation

V ' colim
n∈N

Vn ' colim
n∈N

(
lim
r∈R

Vn,r

)
.

Its dual, as a topological vector space, can be written as

V∨ ' limn

(
colimr V

∨
n,r

)
.
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Lemma 5.2.1. Suppose that, for each n→ n′ and r → r′, the square

Vn,r Vn′,r

Vn,r′ Vn′,r′

��
//

//

��
(5.2.1)

is Cartesian. Then the natural map

colimr (limn Vn,r)→ limn (colimr Vn,r)

is an equivalence.

Proof. The assignment (n, r) 7→ Vn,r upgrades to a functor Ξ : N × Rop → Sch. By Carte-
sianity of all the squares involved, the two expressions in the lemma are both equivalent to
the colimit of Ξ, calculated in two ways (either first along columns and then along rows, or
viceversa).

Let us refer to ind-pro vector spaces V satisfying the condition of Lemma 5.2.1 as Carte-
sian ind-pro vector spaces. For intance, A := An((t)) and A∨ are such. From the above
discussion, the 1-category of Cartesian ind-pro vector spaces admits duals.

We wish to extend the Fourier Transform equivalence to such vector spaces. This amounts
to a combination of a left and a right Kan extension. We start by considering FTV as a functor
of V :

FT : Vectfd →
(

DGCatSymmMon,'
)∆1

. (5.2.2)

Namely, at the level of objects, FT sends a finite dimensional vector space to the equiva-
lence of symmetric monoidal categories categories (D(V ), ?) → (D(V ∨),⊗). At the level of
morphisms, FT sends the linear map f : W → V to the natural transformation

D(V ) D(V ∨),

D(W ) D(W∨)

��
f∗

FTV //

FTW //

��
φ!

(5.2.3)

where φ = f∨ : V ∨ → W∨. That this defines a functor is the content of Lemma 5.1.9. Note
that f∗ and φ! are compatible with the symmetric monoidal structures.

We now define the functor

FT : Vectpro →
(

DGCatSymmMon,'
)∆1

. (5.2.4)
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by right Kan extension of (5.2.2) along the inclusion Vectfd ↪→ Vectpro . By construction, the
new FT yields and equivalence of symmetric monoidal categories (D∗(V ), ?)→ (D(V ∨),⊗),
by the very definition of D∗ for pro-schemes. In fact, FTV (for a pro-scheme V ) is built as a
limit of monoidal equivalences along symmetric monoidal functors.

To define FT at the level of ind-pro-schemes, we simply left Kan extend (5.2.4) along
Vectpro ↪→ Ind(Vectpro):

FT : Ind(Vectpro)→
(

DGCatSymmMon,'
)∆1

. (5.2.5)

As before, by construction and Lemma 5.2.1, for any Cartesian ind-pro vector space V, we
obtain a monoidal equivalence (D∗(V), ?)

'−−→ (D!(V∨),⊗).

We now express the above functors in more explicit terms. Let Q : V ×V∨ → Ga be a
perfect pairing; we shall use the sheaf Q!(exp) ∈ D!(V×V∨) as the kernel. Pick a self-duality
equivalence ηV : D!(V) → D∗(V): while this is not canonical, it determines preferred ηV∨
and ηV×V∨ . We stipulate that if formula involves two or more η functors, these are chosen
coherently.

We claim that FTV, as defined above, is the functor

FTV : D∗(V)→ D!(V∨), M 7→ (p2)ren∗

(
expQ ⊗ p!

1

(
η−1
V (M)

))
,

while the inverse Fourier transform IFTV is

IFTV : D!(V∨)→ D∗(V), M 7→ ηV ◦ (p1)!

(
exp−Q ⊗ p!

2(M)
)
.

Remark 5.2.2. The above claim implies that these functors are canonical, that is, independent
of the choice of ηV. Also, IFTV, which involves the partially defined functor (p1)! will be
shown to be well-defined, being the inverse of FTV. Note that FTV and IFTV extend their
finite dimensional analogs.

The proof of the claim is a tedious calculation, relying on a explicit formula for expQ

(provided below); the proof is left to the reader (in this paper, we will only use FTV with its
definition of left-right Kan extension). Nevertheless, we record:

Theorem 5.2.3. For any Cartesian vector space V of ind-pro type, the functors

FTV : (D∗(V), ?)� (D!(V∨),⊗) : IFTV

are mutually inverse monoidal equivalences of categories.
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For completeness, we analyze how the “kernel” expQ on V × V∨ looks like. Let Zr be
the pro vector space

Zr := lim
n,ι∨

V ∨n,r,

so that
V ×V∨ ' colim

m,(ι×π∨)
Vm × Zm

is a presentation of V × V∨ as an ind-scheme. It is straightforward to check that the
restriction of Q to Vm × Zm, which we denote by Qm, factors through the quotient

πm × ι∨m : Vm × Zm � Vm,m × V ∨m,m.

Unraveling the definitions, we obtain that expQ consists of the compatible family

Q!exp =
{

(πm × ι∨m)!
(
Q!
m,m(exp)

)}
m
∈ D!(V ×V∨) ' lim

m,(ι×π∨)!
D!(Vm × Zm),

where Qm,m is the evaluation on Vm,m × V ∨m,m.

5.3 Invariants and coinvariants via Fourier transform

Let V be a Cartesian ind-pro vector space as in the above section. Suppose that V acts
on C; as usual, we indicate by ? the action. We wish to express the invariant and coinvariant
categories CV and CV in terms of the action of (D!(V∨),⊗) on C, which is given by

D!(V∨)⊗ C→ C, P ⊗ c 7→ IFTV(P ) ? c. (5.3.1)

We begin by studying invariants and coinvariants for the action of a pro-finite dimensional
vector group V .

Lemma 5.3.1. Under Fourier transform,

CV ' D(0) ⊗
D(V ∨)

C and CV ' HomD(V ∨)(D(0),C)

where the action of D(V ∨) on Vect ' D(0) is by pullback along the inclusion 0 ↪→ V ∨.

Proof. Using the equivalence between D∗(V ) and D(V ∨) provided by (5.2.4), the categories
CV and CV go over to

CV ' Vect ⊗
D(V ∨)

C, CV ' HomD(V ∨)(Vect,C),
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where the action D(V ∨) ⊗ C → C is as in (5.3.1) and the action of (D(V ∨),⊗) on Vect is
given by the monoidal functor

D(V ∨)→ Vect, P 7→ ΓdR(IFTV (P )).

By the pro-finite version of Lemma 5.1.9 discussed after (5.2.4), we obtain that
ΓdR(IFTV (P )) ' (i0)!(P ). This proves both formulas.

Remark 5.3.2. Note that Vect is self-dual as a module for D(V ∨). Using this, the functor
oblvV goes over to push-forward along the embedding 0 ∈ V ∨:

(i0)∗ ' (i0)! : D(0)⊗D(V ∨) C ↪→ D(V ∨)⊗D(V ∨) C ' C.

By adjunction, AvV∗ corresponds to the restriction

r := (i0)! : C ' D(V ∨)⊗D(V ∨) C −→ D(0)⊗D(V ∨) C.

Lemma 5.3.3. Let V be a pro-vector space and χ : V → Ga a character. Under Fourier
transform, the action of D(V ∨) on Vectχ corresponds to the restriction functor (i−χ)! :
D(V ∨)→ Vect.

Proof. As the action of D∗(V ) on Vect corresponds to the monoidal functor

α : D∗(V )→ Vect, M 7→ p∗(M
∗!
⊗ χ!(exp)),

it suffices to verify that the composition

D(V ∨)
IFT−−→ D∗(V )

α−→ Vect, P 7→ p∗(IFT(P )
∗!
⊗ χ!(exp))

is equivalent to (i−χ)!. By construction, given P = {P s}s ∈ D(V ∨), we get

p∗

(
IFT(P )

∗!
⊗ χ!(exp)

)
= p∗

(
{IFTV s(P s)}s

∗!
⊗ χ!(exp)

)
.

Let Vr be a quotient under which χ factors. Equivalently, χ, as a point of the ind-scheme V ∨,
comes from the scheme Vr

∨. Writing χ!(exp) = {(πs→r)!(χr)
!exp}s∈R/r , we further obtain

p∗

(
IFT(P )

∗!
⊗ χ!(exp)

)
= p∗

{
IFTV s(P

s)⊗ (πs→r)
!(χr)

!exp
}
s

'
{

(pr)∗

(
(πs→r)∗

(
IFTV s(P

s)
)
⊗ (χr)

!exp
)}

s

'
{

(pr)∗
(
IFTV r(P

r)⊗ IFTV r(δ−χr)
)}

s

'
{

(pr)∗
(
IFTV r(P

r ? δ−χr)
)}

s
' (P r ? δ−χr)|0 ' P r|0 .

The latter is exactly the fiber of P at −χ ∈ V ∨.
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Combining the above results, we obtain:

Corollary 5.3.4. Under Fourier transform,

CV,χ ' D(χ) ⊗
D(V ∨)

C and CV,χ ' HomD(V ∨)(D(χ),C)

where the action of D(V ∨) on D(χ) ' Vect is by pullback along {χ} ↪→ V ∨. Under this
equivalence, the averaging functor AvV,χ∗ goes over to the functor of restriction at χ.

Proof. The pair of equivalences is an immediate consequence of Lemma 4.2.2, Lemma 5.3.1
and Lemma 5.3.3.

Invariants with respect to a subspace
Consider again a category C with an action of A = An((t)) and let W ⊂ A a pro-finite

dimensional subspace. We wish to describe the procedure of taking (co)invariants of C with
respect to W via Fourier transform. Let p : A∨ → W∨ be the projection dual to W ↪→ A.
Let W⊥ ⊆ A∨ denote the annihilator of W . If W is infinite dimensional, then W⊥ is a
pro-scheme, too.

Proposition 5.3.5. Let χ ∈ A∨ be a character. Under Fourier transform,

CW,χ ' D!(W⊥ + {χ}) ⊗
D!(A∨)

C, CW,χ ' HomD!(A∨)

(
D!(W⊥ + {χ}),C

)
,

where D!(A∨) acts on D!(W⊥ + {χ}) via !-pullback along the inclusion W⊥ + {χ} ⊆ A∨.

Proof. We can arrange that A = limj colimiAi,j and W = limjWj are presentations as an
ind-pro-scheme and pro-scheme respectively, such that the linear map W ↪→ A is induced
by the compatible family of inclusions Wj ↪→ colimiAi,j.

By Corollary 5.3.4, we have

CW,χ ' D(χ) ⊗
D(W∨)

C.

However, C lives over A∨ and the action of D(W∨) on C factors through D(W∨)
p!

−→ D!(A∨),
which lets us write

CW,χ ' D(χ) ⊗
D(W∨)

C ' D(χ) ⊗
D(W∨)

D!(A∨) ⊗
D!(A∨)

C.

It remains to prove that

D(χ) ⊗
D(W∨)

D!(A∨) ' D({χ}+W⊥) :
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to show this, we note that {χ}+W⊥ ' {χ} ×W∨ A∨ and invoke the result of Lemma 2.2.4.
In more detail, we have the presentation

{χ} ×W∨ A∨ ' colimj

(
χ×W∨j lim

i
A∨i,j
)

of {χ} ×W∨ A∨ as an indscheme, so that

D!({χ} ×W∨ A∨) ' lim
j

D!({χ} ×W∨j lim
i
A∨i,j
)

' lim
j

(
D(χ) ⊗

D(W∨j )
D!(lim

i
A∨i,j
))

' D(χ) ⊗
D(W∨)

(
lim
j

D!(lim
i
A∨i,j)

)
' D(χ) ⊗

D(W∨)
D!(A).

The proof of the formula about invariants is completely analogous and is left to the reader.
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Chapter 6

Categories fibering over quotient
stacks

Let X/G be a quotient stack, where X is a scheme of finite type and G a finite dimensional
affine algebraic group: a category over X/G (for us, always with connection) is an object
of ShvCat((X/G)dR). We shall discuss the relation between the averaging functor and the
functor of restriction to a subscheme of X. However, if X and G are of infinite type, the
notion of de Rham functor is not yet well understood. We propose an alternative definition,
inspired by the following result.

Proposition 6.0.6. With the notation above, recall that D(X) acquires the structure of
algebra object in D(G) - comod. There is an equivalence

ShvCat((X/G)dR)
'−−→ D(G) nD(X)-mod.

Proof. By definition of ShvCat and the 1-affiness of Gn ×X, the LHS is the totalization of
the cosimplicial ∞-category

D(X)-mod //// D(G×X)-mod // //// D(G×G×X)-mod · · · .

A standard application of Barr-Beck-Lurie’s theorem shows that ShvCat((X/G)dR) is equiv-
alent to the ∞-category of comodules in D(X)-mod for the comonad given by tensoring up
with D(G×X) over D(X). Obviously, this is equivalent to tensoring by D(G). Hence,

ShvCat((X/G)dR) ' D(G) - comod(D(X)-mod) ' D(X)-mod(D(G) - comod).

The latter expression is precisely the definition of D(G)nD(X)-mod, given in Section 3.

6.1 Quotients by pro-unipotent groups

Let us now move to the infinite dimensional setting. We only need the case of pro-
unipotent G.
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Let K be a pro-unipotent group and X an ind-pro-scheme endowed with an action of
K. In this situation, D!(X) is algebra object in the ∞-category D!(G) - comod and we can
form the crossed product monoidal category D∗(K) n D!(X). We say that C ∈ DGCat is
a category fibered over X/K if it is endowed with the structure of a module category for
D∗(K) n D!(X). To reduce ambiguity in the notation, we indicate by M � c the action of
M ∈ D!(X) on c ∈ C, while the action of D∗(K) on C is the usual ?.

The construction D∗(K)nD!(X) entails the following compatibility between the actions
of K and D!(X) on C: for each M and c as above, there is a canonical isomorphism

coactK(M � c) ' act!K,X(M) � coactK(c). (6.1.1)

To be precise, the symbol � in the RHS means ⊗ on the D!(K)-factor and action of D(X)
on C. Let

δrenx := (ix)
ren
∗ (C) ' η−1

X (δx).

be the renormalized delta D!-module at x ∈ X. If M = δrenx , we obtain

coactK(δrenx � c) ' act!K,X(δrenx ) � coactK(c), (6.1.2)

a formula that will be particularly useful later.

We pause to give one important example of category over a quotient stack. Let K is a
pro-unipotent group scheme action on an ind-pro-vector space V. If KnV acts on a category
C, then

• C fibers over X := V ∨, by Fourier transform;

• K acts on X via the dual action;

• K acts on C via the embedding K → K n V .

The proposition below makes it precise that these three pieces of data are compatible.

Proposition 6.1.1. With the above notation, Fourier transform induces an equivalence

idD∗(K) ⊗ FTV : D∗(K n V )
'−−→ D∗(K) nD!(V ∨).

Proof. It suffices to notice that D∗ preserves n, so that D∗(K n V ) ' D∗(K) nD∗(V ).
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6.2 Interactions between (co)invariants and restric-

tions

Let us continue with the general treatment. We say that a map f : Y → X of pro-
schemes is q-closed if it can be represented as a limit of closed embeddings f r : Y r ↪→ Xr

in Schft. For instance, the embedding of a point into a pro-scheme of infinite dimension is
obviously q-closed, but not closed: in fact, it is not even proper. Analogously, we say that f
is q-proper if it arises as a limit of proper maps. The letter “q” stands for “quotient-wise”.

The projection formula shows then that ιren∗ is (symmetric) monoidal. Thus, given C ∈
D!(X)-mod, it makes sense to consider the category C|Y := D!(Y ) ⊗D!(X) C, which comes
with a natural functor

ιren∗ : C|Y = D!(Y ) ⊗
D!(X)

C→ D!(X) ⊗
D!(X)

C ' C.

As ιren∗ is a limit of fully faithful functors (the inverse family r 7→ (ιr)ren∗ ⊗ idC), it is itself
fully faithful. Hence, we consider C|Y as a subcategory of C.

We now provide a criterion for the existence of the !-averaging functor AvK! . Let X be a
pseudo-contractible pro-scheme and K a pro-unipotent pro-group acting on X. We impose
the technical condition that K acts on X quotient-wise. By definition, this means that there
exist pro-scheme presentations of X ' limrX

r and K = limrK
r such that act : K×X → X

is the limit of maps actr : Kr ×Xr → Xr. We emphasize that Kr might not be a group, so
that actr, in spite of the name, is not an action.

Proposition 6.2.1. Let X and K as above, and Y ⊂ X be a q-closed embedding with Y

also pseudo-contractible. If K×Y
actK,Y−−−−→ X, the restriction of the action to Y , is q-proper,

then AvK! is defined on C|Y ⊆ C.

Proof. Each object of c ∈ C|Y is written as ιren∗ (ωY ) � c, so that (6.1.1) gives

coactK(ιren∗ (ωY ) � c) ' act!K,X(ιren∗ (ωY )) � coactK(c).

Thus, we need to prove that (pK)! is defined on the RHS of the above formula. As coactK(c)
can be expressed as a colimit of simple tensors, it suffices to prove that

(pK)!

(
act!K,X(ιren∗ (ωY )) � (Q⊗ d)

)
=: d′ ∈ C

is well-defined for arbitrary Q ∈ D!(K) and d ∈ C. In turn, it is just enough to check that

(pK)!

(
act!K,X(ιren∗ (ωY )) ⊗

D!(K×X)
(Q� ωX)

)
=: M ′ ∈ D!(X)
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is well-defined for arbitrary Q ∈ D!(K). (Indeed, if M ′ were defined, then d′ = M ′ � d.)

Existence of M ′ is shown as follows. Consider the following Cartesian diagram:

Y X.

K × Y K ×X,

��
p2

� � ι //

ζ: (k,y)7→(k−1,k·y) //

��
actK,X

(6.2.1)

We claim

Lemma 6.2.2. There is a canonical equivalence

act!K,X(ιren∗ (ωY )) ' ζren∗ (ωK×Y ). (6.2.2)

The proof of this will be supplied in Sect. 6.2. Combined with the projection formula,
(6.2.2) yields

(pK)!

(
act!K,X(ωY )⊗ (Q� ωX)

)
' (pK)! ◦ ζren∗ ◦ ζ !(Q� ωX).

To conclude, it suffices to check that (pK)!◦ ζren∗ ' (actK,Y )ren∗ . For M = {M r}r ∈ D!(K×Y ),
we have

ζren∗ (M) = {(ζr)∗(M r)[2nr]}r ' colim
r∈Rop

(π∞→r)
!
(

(ζr)∗(M
r)[2nr]

)
.

As ζ is q-proper, we have (ζr)! ' (ζr)∗ for any r, so that

(pK)! ◦ ζren∗ (M) ' colim
r∈Rop

(π∞→r)
!
(

(pKr)! ◦ (ζr)!(M
r)[2nr]

)
.

It remains to notice that (pKr ◦ ζr)! ' (actrK,Y )! ' (actrK,Y )∗, by the q-properness of actK,Y .

Corollary 6.2.3. In the setting of the above proposition, if K is finite dimensional, the
natural transformation AvK! → AvK∗ [2dK ] (see Corollary 3.3.8) is an equivalence on the
subcategory C|Y .

Proof. If K is finite dimensional, the equivalence ηK : D!(K) → D∗(K) is the shift functor
[−2dK ]. So, Lemma 3.3.3 gives

AvK∗ (c) ' (pK)∗
(
coactK(c)

)
[−2dK ].

On the other hand, for c ∈ C|Y , the proof of the above proposition shows that

AvK! (c) ' (pK)∗
(
coactK(c)

)
,

whence the conclusion.
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We now supply the proof of Formula 6.2.2, which will also be of use later.

Proof of Lemma 6.2.2. Since the action of K on Y is quotient-wise, the diagram (6.2.1) is
the limit of the R-family of Cartesian diagrams

Y r Xr.

Kr × Y r Kr ×Xr,

��
p2

� � ιr //

ζr: (k,y)7→(k−1,k·y)//

��
actrK,X

(6.2.3)

We stress that actr is not necessarily the action of a group. By pseudo-contractibility,
ιren∗ (ωY ) ' {ιr∗(ωY r)[nr]}r; using base-change for the diagram (6.2.3), we compute

act!K,X(ιren∗ (ωY )) ' colimr(π∞→r)
!
(

(actr)! ◦ ιr∗(ωY r)[nr]
)

' colimr(π∞→r)
!
(

(ζr)∗(ωKr×Y r)[nr]
)
.

The latter expression matches ζren∗ (ωK×Y ) via the equivalence (2.1.3).

Here is the special case in which Y is a point.

Corollary 6.2.4. If ιx : pt ↪→ X is the inclusion of a point in a pseudo-contractible X on
which K acts quotient-wise, then

act!(δrenx ) ' (ζx)
ren
∗ (ωK), (6.2.4)

where ζx : k 7→ (k−1, k · x).

Example: the Heisenberg group
Let V be a finite dimensional vector space, V ∨ its dual and Q a duality pairing. The

Heisenberg group of (V,Q) is defined to be

Heis(V ) := V n (V ∨ ×Ga),

where V acts on V ∨ ×Ga via v · (φ, x) = (φ,Q(φ, v) + x).

Lemma 6.2.5. Let C be a module category for D(Heis(V )) and χa be the character on
V ∨ ×Ga given by (0, 1) ∈ V ×Ga. The functor

AvV! : CV
∨×Ga,χa → CV

is defined and naturally isomorphic to AvV∗ [2dV ].
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Proof. According to Proposition 6.1.1, a category acted on by Heis(V ) becomes a category
over the stack (V × Ga)/V , where the action of V on V × Ga is given by ǎct(v, (u, y)) =
(u+ yv, y), as one easily checks. Furthermore, Fourier transform gives the equivalence

CV
∨×Ga,χa ' C|(0,1) .

Since the map

V × {(0, 1)} ↪→ V × (V ×Ga)
ǎct−−→ V ×Ga, v 7→ (v, 1)

is proper, we conclude by invoking Proposition 6.2.1.

Let ι : Y ↪→ X be a q-closed embedding and S ⊆ K the subgroup preserving Y . Let
ι! : C→ C|Y be the restriction map induced by ι! : D!(X)→ D(Y ) upon tensoring up with
C over D!(X).

Lemma 6.2.6. The K-action on C restricts to an S-action on the subcategory C|Y ⊆ C.
Also, ι! descends to a functor CK → (C|Y )S.

Proof. As for the first claim, it suffices to show that the composition

C|Y
ιren∗−−→ C

coactS−−−→ D!(S)⊗ C

lands in the subcategory D!(S)⊗ C|Y . Compatibility yields

coactS(ιren∗ (ωY ) � c) ' act!S,X
(
ιren∗ (ωY )

)
� coactS(c). (6.2.5)

Since act!S,X
(
ιren∗ (ωY )

)
' ωS � ιren∗ (ωY ), the assertion follows.

Next, we must show that the functor ι! ◦ oblvK : CK → C|Y lands in (C|Y )S: in other
words, that c ∈ CK implies

coactS
(
ιren∗ (ωY ) � c

)
' ωS �

(
ιren∗ (ωY ) � c

)
.

This is clear, as coactS(c) ' ωS ⊗ c for such c.

Lemma 6.2.7. With the same hypotheses as above, assume that the embedding λ : S ↪→ K
is finitely presented. Then, there is a canonical isomorphism

ι! ◦ (kK ?−) ◦ ιren∗ ' (kS ?−)[−2dK/S]. (6.2.6)
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Proof. For c ∈ C|Y , we have a chain of isomorphisms

ι! ◦ AvK∗
(
ιren∗ (ωY ) � c

)
' ι! ◦ (pK×X→X)ren∗

(
act!(ιren∗ (ωY )) � coactK(c)

)
' (pK×X→X)ren∗ ◦ ι̃

!
(
act!(ιren∗ (ωY )) � coactK(c)

)
' (pK×X→X)ren∗

(
ι̃!
(
act!(ιren∗ (ωY ))

)
� ι̃!coactK(c)

)
,

where ι̃ = idK × ι. Thanks to the hypotheses on the action and on λ, one quickly computes
that

ι̃!
(
act!(ιren∗ (ωY ))

)
' ι̃!

(
(λ× ι)ren∗ (ωS×Y )

)
[−2dK/S],

whence

ι! ◦ AvK∗
(
ιren∗ (ωY ) � c

)
' ι! ◦ (pK×X→X)ren∗

(
(λ× ι)ren∗ (ωS×Y ) � coactK(c)

)
[−2dK/S]

' ι! ◦ (pK×X→X)ren∗ ◦ (λ× ι)ren∗

(
(λ× ι)!coactK(c)

)
[−2dK/S]

' (pS×Y→Y )ren∗
(
coactS(c)

)
[−2dK/S]

' AvS∗ (c)[−2dK/S].

The second isomorphism follows from the projection formula.

6.3 Transitive actions

If Y = {x} is a C-point, then obviously S ' StabK(x) is the stabilizer of x in K. We shall
investigate the situation when K acts transitively on X. For clarity, we denote ιx : x ↪→ X
the inclusion.

Lemma 6.3.1. If K acts quotient-wise and transitively on X, then AvK∗ (δrenx ) ' ωX .

Proof. Using (6.2.4) and the formula AvK∗ ' (pK)ren∗ ◦ act!, we get

AvK∗ (δrenx ) ' (pK)ren∗ ◦ (ζx)
ren
∗ (ωK) ' (actx)

ren
∗ (ωK).

Since actx : K → X is a projection with contractible fibers, the push-forward (actx)∗ sends
kK 7→ kX .

Proposition 6.3.2. If K acts transitively and quotient-wise on X, the functor α = ι!
x ◦

oblvK : CK → (C|x)S of Lemma 6.2.6 is an equivalence with inverse

β := AvK∗ ◦ (ιx)
ren
∗ ◦ oblvS.
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Moreover, the two diagrams below are commutative:

CK C

(C|x)S C|x

CK C.

(C|x)S C|x

' α

OO

oblvK //

ι!x

OO
oblvS //

' α

OO

oo AvK∗
��

(ιx)ren∗

oo AvS∗

(6.3.1)

Proof. We will check that α ◦ β and β ◦ α are naturally isomorphic to the identity functors.
As for the former,

α ◦ β(c) ' ι!
x ◦ (kK ?−) ◦ (δrenx � oblvS(c))

We now claim that
ι!
x ◦ (kK ?−) ◦ (ιx)

ren
∗ ' (kS ?−) ' AvS∗ ; (6.3.2)

this would imply that α ◦ β ' AvS∗ ◦ oblvS ' id.

The structure of the proof of (6.3.2) is formally equal to the one of (6.2.6); the two
differences are that now the action is transitive and that λ : S ↪→ K is no longer required to
be finitely presented (so that dimK/S does not make sense). The crucial computation is

ι̃!(act!(δrenx )) ' λren∗ (ωS),

obtained as follows:

ι̃!(act!(δrenx )) ' colimr(π∞→r)
!(ι̃r)!(actr)!

(
δxr,Xr [2dXr ]

)
' colimr(π∞→r)

!λr∗(ωSr)[2dXr ]

' colimr(π∞→r)
!λr∗(ωSr)[2(dKr − dSr)] ' λren∗ (ωS).

The second ' is base-change.

The opposite composition simplifies as

β ◦ α ' AvK∗ ◦ (ix)
ren
∗ ◦ (ix)

! ◦ oblvK .

For c ∈ CK , we thus have

β ◦ α(c) ' AvK∗ (δrenx � c)
' pK∗ ◦ ηK

(
coactK(δrenx � c)

)
' pK∗ ◦ ηK

(
act!K,X(δrenx ) � coactK(c)

)
'

(
pK∗ ◦ ηK ◦ act!K,X(δrenx )

)
� c

and the latter expression is equivalent to AvK∗ (δrenx ) � c, which in turn is c by Lemma 6.3.1.

Finally, commutativity of the leftmost diagram in the proposition is obvious; commuta-
tivity of the second one is precisely (6.3.2).
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The results above generalize easily to include averages against characters. For instance:

Corollary 6.3.3. If K is endowed with a character θ, restriction induces an equivalence
α : CH,θ ' (C|x)S,θ such that the diagrams like in (6.3.1) commute.

Proof. Substituting C with C⊗ Vectθ, this is immediate from the above proposition.

6.4 Actions by semi-direct products

Let L and K be two pro-unipotent group subschemes of G((t)), with K acting quotient-
wise on L. We form the semi-direct product K n L. First of all, let us record the useful
formula

kKnL ' kK ? kL, (6.4.1)

whose proof follows immediately from the finite dimensional case (using that K and L pro-
objects in the category of group schemes). More generally, using (4.2.2):

Lemma 6.4.1. Assume that K and L are endowed with characters µ and ν and that ν is
compatible with the action of K. Then, ψ := µ+ν is a character on KnL. In this situation,

ψKnL ' µK ? νL, (6.4.2)

where µK := (iK)∗
(
ηK(µ!exp)

)
and νL, ψKnL are defined accordingly.

Assume now that K n L acts on a category C. This is a special case of the situation
considered in Section 3.5: indeed, L is normal in KnL and (KnL)/L ' K. The statements
of Lemma 3.5.3 adapt verbatim (up to changing D with D∗) to the case of pro-groups. Thus,
there is an equivalence

(CL)K ' CKnL.

This equivalence is compatible with the forgetful functors to C:

Lemma 6.4.2. The composition (CL)K
oblvK−−−→ CL

oblvL−−−→ C factors as follows:

(CL)K

CL

CKnL.

COO

oblvK

OO

oblvKnL

' //

oblvL //

(6.4.3)

Proof. First, we show that AvKnL
∗ ◦ oblvK ◦ oblvL ' oblvK ◦ oblvL. This implies the existence

of the dotted arrow making the diagram commutative. Using (6.4.1), we have

oblvKnL ◦ AvKnL
∗ ◦ oblvK ◦ oblvL(−) ' kL ? (kK ? (oblvK ◦ oblvL(−))) ' oblvK ◦ oblvL(−).
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Let us call the dotted arrow λ : (CL)K → CKnL. Next, we show that λ is an equivalence.
Clearly,

λ ' AvKnL
! ◦ oblvL ◦ oblvK

so that its right adjoint is
λR ' AvK∗ ◦ AvL∗ ◦ oblvKnL.

It is then straightforward to check that the compositions λ ◦ λR and λR ◦ λ are isomorphic
to the identity functors.

Corollary 6.4.3. Diagram (6.4.3) is right adjointable, that is, the following diagram is still
commutative:

(CL)K

CL

CKnL.

COO

oblvK

OO

oblvKnL

oo λ−1

oo AvL∗

(6.4.4)

Proof. The above lemma shows that λ−1 ' λR ' AvK∗ ◦ AvL∗ ◦ oblvKnL. It is obvious that
the two paths in the diagram are both canonically isomorphic to oblvrel : CKnL ↪→ CL.

Variant including characters In the situation of Lemma 6.4.1, there is still an equivalence

(CL,ν)K,µ ' CKnL,ψ

and the analogous diagrams still commute. The proofs are identical.

Assume now that L = V , a pro-vector space. Then, K acts on V ∨ as well and the above
results, combined with the Fourier transform, yield

Lemma 6.4.4. With the above set-up, let C|χ denote the category HomD!(A∨)(D(0),C). The
following two diagrams are canonically commutative:

(C|χ)K,ψ

C|χ

CKnV,χ+ψ.

C
OO

oblvK

OO

oblvKnV

' //

oblv //

(C|χ)K,ψ

C|χ

CKnV .

C
OO

oblvK

OO

oblvKnV

oo '

oo
i!χ

(6.4.5)

We shall exploit this in two situations of interest:
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1. Writing N ' N′nAn−1, we see that χ is the sum of two characters: χa (the restriction
of χ on An−1) and χ′ (the projection of χ to N′). Moveover, χa is constant on the
N′-orbits of An−1. Thus, according to the above results (adapted to the case of ind-
pro-schemes), the procedure of taking Whittaker invariants consists of two steps: first
take (An−1, χa)-invariants and then take (N′, χ′)-invariants. This is the observation
that allows the use of induction.

2. We also apply the above results to the semi-direct product Hk = Gk n Ak, endowed
with the character ψ, which is the sum of two characters: χg on Gk and χa on Ak.
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Chapter 7

Actions by the loop group of GLn

In this section, unless otherwise stated, we will assume that G = GLn. Thus, B is
the Borel subgroup of upper triangular matrices and N ⊆ B its unipotent radical: upper
triangular matrices with 1’s on the diagonal. Further, let T be the torus of diagonal matrices
and B−, N− be the opposite Borel and its unipotent radical. The character χ on N simply
computes the sum of the residues of the entries in the diagonal (i, i+ 1).

We will also need analogous notations for subgroups of G′ := GLn−1, their loop groups
and so on. Thus B′, N ′,G′,N′, χ′ have their obvious meanings.

7.1 Statement of the main theorem

Let (dk) be a sequence of integers with the property that dk+1−dk = dim(Nk+1/Nk) and
such that dk = 0 for some k ≥ 1. Of course, this sequence is just determined by the positive
integer k: let Tk be the corresponding functor, as defined in formula (4.2.6). When k is clear
from the context, we omit it from the notation. Our goal is to prove:

Theorem 7.1.1. For any choice of (dk) as above, Tk : CN,χ → CN,χ is an equivalence of
categories.

The proof will occupy the remainder of the text.

If we were just interested in the existence of an equivalence CN,χ ' CN,χ, then, in view
of Proposition 3.6.2, the following theorem would be enough:

Theorem 7.1.2. For any k ≥ 1, there exists a group scheme Hk ⊂ G endowed with a
character, such that CN,χ ' CHk,ψ and CN,χ ' CHk,ψ.

The group Hk is presented in the next section. However, to show that T is an equivalence,
we need to keep track of the functors more carefully. We will prove a pair of twin statements:
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Theorem 7.1.3. For any k ≥ 1, the functors

Ψ := AvHk,ψ
∗ ◦ oblvN : CN,χ −→ CHk,ψ

Υ := pr ◦ oblvHk : CHk,ψ → CN,χ

are equivalences of categories.

Finally, the proof of Theorem 7.1.1 will be completed by showing:

Proposition 7.1.4. For k chosen as in the above theorem, we have Tk ' Ψ−1 ◦Υ−1.

7.2 Some combinatorics of GLn

Let us introduce the long-awaited group Hk. For k ≥ 1 we consider Bk
− ·N(O) ⊂ G(O).

To show it is a group, notice that it is the preimage of N [t]/tn under the group epimorphism
p : G(O)→ G[t]/tk.

For convenience, we redefine the cofinal sequence of group schemes Nk used above to
approximate N: consider the diagonal element γ := diag

(
tnk, t(n−1)k, . . . , tk

)
∈ T. We let

Nk := γ−1 ·N [[t]] · γ.

We first define the group

Gk := Adγ′−1

(
(B′−)k ·N ′(O)

)
= Adγ′−1

(
(N′−)k

)
· (T′)k ·N′k.

For example, when n = 2 and n = 3 and n = 4, we have

G
(2)
k = (1 + tkO), G

(3)
k =

(
1 + tkO t−kO
t2kO 1 + tkO

)
, G

(4)
k =

 1 + tkO t−kO t−2kO

t2kO 1 + tkO t−kO
t3kO t2kO 1 + tkO

 .

For higher n, the structure of Gk follows the evident pattern. The first important feature of
Gk is the following:

Lemma 7.2.1. The group Gk is endowed with a character χg that extends the character χ′

on Adγ′−1 (N ′(O)) = N′k and that is trivial on Adγ′−1

(
(B′−)k

)
.

Proof. Each element of Gk can be written uniquely as γ′−1 · y · γ′. We set

χg(γ
′−1 · y · γ′) := χ′(γ′−1 · p′(y) · γ′),

where p′ : (B′−)k ·N ′(O)→ N ′[t]/tk is the projection.
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Consider now the vector group

Ak := An−1
k :=


t−(n−1)kO

t−(n−2)kO
...
t−kO


We consider the character χa on Ak that computes the residue of the last entry. The second
important feature of Gk is that it acts on Ak. We form the semidirect product

Hk := Gk n Ak =

(
Gk Ak

O 1

)
.

The latter also admits a character ψ : Hk → Ga, which is the sum of the characters χg on
Gk and χa on Ak.

The annihilator of Ak in (An−1)∨ ' An−1 is easily computed:

A⊥k =


t(n−1)kO

t(n−2)kO
...
tkO


Let Lk := {en−1}+ A⊥k ⊂ (An−1)∨. For future use, notice the third important feature of

Gk, which is actually one of the main motivations for the theory of Section 6.

Lemma 7.2.2. Gk acts on Lk (via the dual action) transitively, and the stabilizer of en−1

is exactly H′k.

Proof. This is straightforward linear algebra. For instance, to show the second claim, it
suffices to notice that H′k is obtained from Gk by setting the last row of the latter to be
(0, . . . , 0, 1).

This result allows to apply Lemma 6.3.2 in the example where X = Lk, K = Gk, x = en−1

and S = H′k:

Corollary 7.2.3. Let C be a category acted on by GLn((t)). In particular C is acted on by
A and, by Fourier transform, we view it as a category over A∨ ' A. Then, the restriction
functor ι!

x : C|Lk → C|en−1
yields an equivalence

α :
(
C|Lk

)Gk,χg '−−→
(
C|en−1

)H′k,ψ′
.

Proof. After noting that the restriction of χg to H′k is exactly ψ′, this is an immediate
consequence of Corollary 6.3.3.
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7.3 Proof of the main theorem: step 1

We have introduced all the necessary tools to prove Theorem 7.1.3.

We first prove that
Ψ := AvHk,ψ

∗ ◦ oblvN : CN,χ −→ CHk,ψ

is an equivalence. We proceed by induction on n, the claim being tautologically true for
n = 1. Consider the following (possibly non-commutative) diagram.

CN,χ = (C|A∨)N,χ

(C|χa)
N′,χ′

C = C|A∨

C|χa

CHk,ψ = (C|A∨)Hk,ψ

(C|χa)
H′k,ψ

′

(C|χa+A⊥k
)Gk,χgr1

OO

r2

OO

α3

OO

� � oblvN //

� � oblvN
′

//

Av
Hk,ψ
∗ // //

Av
H′k,ψ

′
∗ // //

(7.3.1)

We note that:

• the bottom edge is our functor Ψ;

• the top edge is Ψ′, applied to CA,χa ' C|χa , and it is an equivalence by the induction
hypothesis;

• the leftmost vertical functor r1 is induced by the restriction r : C → C|χa and it is an
equivalence thanks to Lemma 6.4.2;

• the vertical functor r2 is induced by restriction and it is an equivalence, also by Lemma
6.4.2;

• the vertical functor α3 is induced by restriction and it is an equivalence thanks to
Corollary 7.2.3.

Consequently, it remains to show that the above diagram commutes. To this goal, we
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insert an extra vertex and four extra arrows.

CN,χ = (C|A∨)N,χ

(C|χa)
N′,χ′

C = C|A∨

C|χa

CHk,ψ = (C|A∨)Hk,ψ

(C|χa)
H′k,ψ

′

(C|χa+A⊥k
)Gk,χgC|χa+A⊥k

D2

D3

r1

OO

r2

OO

��

ι3

r2

OO

α3

OO

oblvN //

oblvN
′

//

Av
Hk,ψ
∗ //

Av
Gk,χg
∗ //

Av
H′k,ψ

′
∗ //

γ

55

(7.3.2)

Here,

γ : CN,χ −→ C|χa+A⊥k
' CAk,χa and ι3 : CA,χa ' C|χa −→ C|χa+A⊥k

' CAk,χa

are just the relative forgetful functors. By pro-unipotence of all the groups involved, com-
mutativity of the triangle and of the trapezoid follow immediately.

Now, diagram D2 commutes in view of the second assertion of Lemma 6.4.2 after passing
to right adjoints. Diagram D3 commutes in view of Proposition 6.3.2.

This concludes the proof the first equivalence in Theorem 7.1.3. Before proceeding with
the analysis of Υ, let us notice the following immediate consequence:

Corollary 7.3.1. For any k ≥ 1, the partially defined functor

Φ := colimk Av
Nk,χ
! ◦ oblvHk : CHk,ψ −→ CN,χ

is everywhere defined and it is the inverse of Ψ.

Proof. One readily verifies that Φ is (where defined) left adjoint to Ψ. Since Ψ is an equiv-
alence by Theorem 7.1.3, Φ is everywhere defined and inverse to Ψ.

Second equivalence in Theorem 7.1.3
The proof that Υ is an equivalence is completely analogous, if not easier: it amounts to

proving that the following diagram is commutative.

CHk,ψ

(C|χa)
H′k,ψ

′

C

C|χa

CN,χ

(C|χa)N′,χ′

(C|χa+A⊥k
)Gk,χg C|χa+A⊥k

r2

OO

α3

OO

r2

OO

r3

OO

r1

OO

� � oblvHk //

� � oblvGk //

� � oblvH
′
k //

pr // //

pr // //

(7.3.3)
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Commutativity of the rightmost square and of the bottom rectangle follow from Lemma
6.4.2, while commutativity of the top rectangle is a consequence of Corollary 6.3.3.

7.4 Proof of the main theorem: step 2

Proposition 7.1.4 is what remains to be proven. I.e., we need to show that the composi-
tions

CHk,ψ oblv−−→ C
T−→ C and CHk,ψ oblv−−→ C

AvN,χ!−−−→ C

are canonically equivalent. This will be proven again by induction on n and, as before, the
statement is trivial for G = GL1. Note that

AvN,χ! := colim
k∈N

(AvNk,χ
! )

is indeed the left adjoint to oblvN,χ : CN,χ → C.

Once more, induction is made possible by the isomorphism of functors:

AvN`,χ
∗ ' Av

N′`,χ
∗ ◦ AvA`,χa

∗ : CHk,ψ → C

which is an instance of Lemma 6.4.1.

Since d` = dA` + dN
′

` , we also have

AvN`,χ
∗ [2d`] ' Av

N′`,χ
∗ [2dN

′

` ] ◦ AvA`,χa
∗ [2dA` ].

We shall treat the two averaging functors in right-hand side separately. We begin with
AvA`,χa
∗ .

The abelian case
We wish to show that

colim
k∈N

(AvNk,χ
! ) ' colim

`≥k
(AvAk,χ

∗ )[2dA` ].

We will prove a stronger statement, namely that this equivalence holds at each stage `:

Proposition 7.4.1. For any ` ≥ k ≥ 1, there is a natural equivalence

AvA`,χa
!

'−−→ AvA`,χa
∗ [2dA` ]

of functors CHk,ψ → C.
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The proof of this requires some preparation and some more notation. Let us onsider
the subgroup of Gk defined by requiring that all the rows except for the last one equal
the corresponding rows of the identity matrix. We name this subgroup Kk and form the
semi-direct product

Heisk := Kk n Ak.

The name is chosen because Heisk looks like an “extended Heisenberg group”; e.g., for
G = GL4,

Heisk =


1 0 0 t−3kO

0 1 0 t−2kO

t3kO t2kO 1 + tkO t−kO
0 0 0 1

 .

By construction, Heisk is a subgroup of Hk and ψ = χa on it.

Fix now ` ≥ k ≥ 1. On CHeisk , the natural forgetful map AvHeis`,χ∗ → AvA`,χ
∗ is an

equivalence. Similarly, on CHeis` , the natural forgetful map AvHeisk,χ∗ → AvKk
∗ is an equivalence.

Thus, Proposition 7.4.1 follows immediately from the next lemma.

Lemma 7.4.2. Let C be endowed with an action of the mirabolic group of GLn((t)). For any
` ≥ k ≥ 1, the functors

AvHeis`,χ∗ [2(dA` − dAk )] : CHeisk,χ � CHeis`,χ : AvHeisk,χ∗

are mutually inverse equivalences of categories.

For G = GL2, this lemma was originally stated and proved by D. Gaitsgory in a more
direct way, i.e., without using the Fourier transform.

Proof. We use the same strategy as in Proposition 6.3.2. Let D := 2(dAk − dA` ). Let Av`
and Avk denote the functors AvHeis`,χ∗ and AvHeisk,χ∗ respectively. We shall show that the two
compositions are naturally isomorphic to the shift functor id[D]. By Fourier transform, the
datum of an action of the mirabolic group on C makes C a category over the quotient stack
A∨/G′. From this point of view, the functor Av` is equivalent to restricting to χ + A⊥` ,
which we identify with K`. Thus, we view CHeisk,χ as a category over Kk and we are going
to analyze its restriction to K`. Let ι : K` ↪→ Kk be the inclusion; note that ι is a closed
embedding (finitely presented, in particular) and Kk acts quotient-wise on K`. Then, Av`
consists of acting by ι•(ωK`

) ' ιren∗ (ωK`
)[D].

Hence, the composition Avk ◦ Av` : CHeisk,χ → CHeisk,χ becomes:

c 7→ AvKk
∗
(
ιren∗ (ωK`

)[D] � c
)
.

Thanks to (6.1.1) and the Kk-invariance of c, it is enough to prove that AvKk
∗ (ιren∗ (ωK`

)) '
ωKk

. By (6.2.2),

AvKk
∗ (ιren∗ (ωK`

)) ' pren∗ ◦ ζren∗ (ωK`×Kk
) ' mren

∗ (ιren∗ (ωK`
)� ωKk

) ' ωKk
.
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The opposite composition is written as

Av` ◦ Avk : CHeis`,χ → CHeis`,χ, c 7→ ι! ◦ AvKk(ιren∗ c).

By (6.2.6), the latter expression is canonically equivalent to

AvK`
∗ (c)[−2 dimKk/K`

] ' c[2(dAk − dA` )],

as desired.

We can now finish the proof that T is an equivalence.

Conclusion of the proof of Proposition 7.1.4. As the diagonal {(`, `) : ` ≥ k} is cofinal in
the half-quadrant {(h, `) : h ≥ ` ≥ k}, we have

T := colim
`≥k

AvN`,χ
∗ [2d`] ' colim

h≥`≥k

(
Av

N′`,χ
∗ [2dN

′

` ] ◦ AvAh,χa
∗ [2dAh ]

)
.

Thus, we compute

T ' colim
h≥`≥k

(
Av

N′`,χ
∗ [2dN

′

` ] ◦ AvAh,χa
∗ [2dAh ]

)
' colim

`≥k

(
Av

N′`,χ
∗ [2dN

′

` ] ◦ colim
h≥`

AvAh,χa
∗ [2dAh ]

)
' colim

`≥k

(
Av

N′`,χ
∗ [2dN

′

` ]
)
◦ AvA,χa! ,

where the last isomorphism is a consequence of Lemma 7.4.1. By induction hypothesis,

T ' colim
`≥k

(
Av

N′`,χ
∗ [2dN

′

` ]
)
◦ AvA,χa! ' AvN

′,χ
! ◦ AvA,χa! ' AvN,χ! ,

as desired.
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