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ABSTRACT: Introduction: An international clinical trial enrolled
174 ambulatory males �5 years old with nonsense mutation
Duchenne muscular dystrophy (nmDMD). Pretreatment data pro-
vide insight into reliability, concurrent validity, and minimal clini-
cally important differences (MCIDs) of the 6-minute walk test
(6MWT) and other endpoints. Methods: Screening and baseline

evaluations included the 6-minute walk distance (6MWD), timed
function tests (TFTs), quantitative strength by myometry, the
PedsQL, heart rate–determined energy expenditure index, and
other exploratory endpoints. Results: The 6MWT proved feasible
and reliable in a multicenter context. Concurrent validity with
other endpoints was excellent. The MCID for 6MWD was 28.5
and 31.7 meters based on 2 statistical distribution methods. Con-
clusions: The ratio of MCID to baseline mean is lower for 6MWD
than for other endpoints. The 6MWD is an optimal primary end-
point for Duchenne muscular dystrophy (DMD) clinical trials that
are focused therapeutically on preservation of ambulation and
slowing of disease progression.

Muscle Nerve 48: 357–368, 2013

Duchenne muscular dystrophy (DMD) is a dis-
abling and life-threatening X-linked genetic disorder
caused by defects in the gene for dystrophin, a pro-
tein that stabilizes muscle cell membranes.1 DMD is
characterized by complete loss of dystrophin and is
the most common neuromuscular disease of child-
hood. It affects 1 in 3800–6300 males, and there are
an estimated 15,000 patients with the disease in the
USA.2,3 There is no approved therapy that addresses
the underlying cause of DMD.4,5 In �13% of boys
with nonsense mutation DMD (nmDMD, which rep-
resents �1700 boys in the USA and �2400 boys in
Europe), the causative defect in the dystrophin gene
is a nonsense mutation that truncates dystrophin
protein production by introducing a premature stop
codon into dystrophin mRNA.6–8

THE NEED FOR CLINICALLY MEANINGFUL
ENDPOINTS IN DMD

Given that several novel approaches to treatment
of DMD have shown promise in preclinical and/or
proof-of-concept clinical studies,9–12 the research
community has faced the need to identify and
develop clinically meaningful outcome measures for
use in pivotal therapeutic trials. In boys with DMD,
walking abnormalities are a major disease manifesta-
tion that has great importance to patients and

Abbreviations: 6MWD, 6-minute walk distance; 6MWT, 6-minute walk
test; ATS, American Thoracic Society; CINRG, Cooperative International
Neuromuscular Research Group; CK, creatine kinase; DMD, Duchenne
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timed function test
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families. Ambulation has been noted to be a prereq-
uisite for normal physical functioning in humans13;
the major goal of medical and physical therapy inter-
vention during the ambulatory phase of DMD is to
maintain ambulation for as long as possible.4,5,14,15

Given that ambulatory compromise is a key compo-
nent of the DMD disease process and that ambula-
tion measures the function of multiple muscle
groups as well as cardiovascular activity, ambulation-
related outcome measures are the most relevant end-
points in DMD patients who are still able to walk.
Typically, evaluation of ambulation in DMD features
short-term assessments, such as the 10-meter run/
walk,14,16 which measure transient peak activities.
The 10-m run/walk test is well accepted and com-
monly employed in assessing disease progression, but
it does not measure endurance, a crucial aspect of
ambulatory functioning.

DEVELOPMENT OF THE 6-MINUTE WALK TEST IN DMD

The 6-minute walk test (6MWT), a well-established
outcome measure in a variety of diseases. It is accu-
rate, reproducible, simple to administer, and well tol-
erated.17 It was originally developed as an integrated
global assessment of cardiac, respiratory, circulatory,
and muscular capacity.17 More recently, it has been
used to evaluate functional capacity in neuromuscular
diseases18–25 and has been the basis for regulatory
registration of several drugs.19,21,24,25 Importantly, the
6MWT assesses function and endurance, which are
important aspects of DMD patients’ disease status.
The 6MWT is a robust assessment tool for use in clini-
cal trials given its ability to quantitatively evaluate
ambulation in a controlled environment.

In advance of this study, the American Thoracic
Society (ATS) version of the 6MWT was modified
specifically for DMD.26 Also, an orientation video was
developed to assist the pediatric subjects (some of
whom have cognitive delay) in their understanding
of the nature and expectations of the test. In an ear-
lier short-term study, we reported that the modified
6MWT is feasible, safe, and reliable in boys with
DMD who have not yet transitioned to full-time
wheelchair use.26,27 We also documented that they
have markedly compromised ambulation relative to
healthy boys and correlated 6-minute walk distance
(6MWD) with age, anthropometric characteristics,
and measures, which change with disease progres-
sion, including stride length and cadence.26,27

In a follow-up longitudinal study,27 we docu-
mented that changes in 6MWD depended on stride
length and age; improvements in 6MWD usually
occurred up to 7 years of age in both healthy subjects
and patients with DMD. However, the 6MWD of
older DMD subjects worsened, whereas the 6MWD of
older healthy subjects tended to either increase or
remain stable. Subsequent studies have demonstrated

that the 6MWD correlates with other clinical end-
points in DMD, such as timed function tests and the
North Star Ambulatory Assessment (NSAA).28,29

MINIMAL CLINICALLY IMPORTANT DIFFERENCE OF
ENDPOINTS

Interpretation of functional changes in walk tests
can guide clinical management and be primary end-
points in interventional studies. It thus is important to
determine whether a change in function is clinically
relevant. Data from this study will allow us to deter-
mine quantitatively the minimal clinically important
difference (MCID) for the test. The MCID is a concept
defined as “the smallest difference in score in the
domain of interest which patients perceive as benefi-
cial and which would mandate, in the absence of trou-
blesome side effects and excessive cost, a change in
patient management.”30 The MCID is different from
the minimal detectable change, which indicates the
amount of change required to exceed measurement
variability.31,32 When interpreting clinical measures, it
is important to consider that, although small changes
may be significant statistically, they may not be relevant
clinically.31,33 Numerous methods to derive the MCID
have been described.31,32,34–44 These include anchor-
based methods,31,36,39,40 which compare a patient’s
change score with another measure of clinically rele-
vant change, and distribution-based methods,36,41–43

such as the standard error of measurement (SEM),
effect size, and one third the standard deviation (SD)
at baseline, which are built on the statistical distribu-
tion and psychometric properties of the measure in a
population. Anchor-based and distribution-based
methods are seen as complementary approaches for
MCID determination.44

AIMS

There are 3 aims in this report: (1) to assess
safety and feasibility of the 6MWT in a large multi-
center context; (2) to assess the reproducibility
and concurrent validity of the 6MWT results in
comparison with other commonly used clinical
endpoints utilizing pretreatment results from the
international multicenter, randomized, placebo-
controlled study of ataluren in ambulatory boys
with nmDMD (PTC124-GD-007-DMD, Study 007);
and (3) to estimate the MCID using distribution-
based methods. These analyses lay the groundwork
for longitudinal studies of the 6MWD in DMD.

METHODS

Participants. The pretreatment data under evalua-
tion were derived from Study 007; this study enrolled
males �5 years old at 37 sites in 11 countries (Aus-
tralia, Belgium, Canada, France, Germany, Israel,
Italy, Spain, Sweden, UK, and USA). All patients had
phenotypic evidence of dystrophinopathy; had a non-
sense mutation in the dystrophin gene as determined
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by gene sequencing; and walked �75 m unassisted
during a 6MWT at screening. There was an inclusion
criterion of phenotypic evidence of more severe dys-
trophinopathy based on the onset of characteristic
clinical symptoms (i.e., proximal muscle weakness,
waddling gait, and Gower maneuver) by 9 years of
age, an elevated serum creatine kinase (CK), and
ongoing difficulty with ambulation. Patients on sys-
temic glucocorticoids were required to be on a stable
dose for 6 months prior to study entry. Institutional
review boards/institutional ethics committees and
health authorities approved the study protocol. All
parents/participants provided signed informed con-
sent/assent before study initiation.

Overall Study Design and Procedures. Study 007 was
a phase 2b, international, multicenter, randomized,
double-blind, placebo-controlled, dose-ranging study
to evaluate the efficacy and safety of ataluren in
ambulatory male patients with nmDMD �5 years old.

Initial study evaluations (the subject of this report)
were performed at screening and baseline separated
by up to 6 weeks. Test–retest reliability was deter-
mined using the baseline and screening values for all
endpoints. Concurrent validity and MCIDs were
determined using pretreatment data.

Subject Disposition and Characteristics. There were
174 randomized patients. All patients screened
and randomized were males, ranging in age from
5 to 20 years (Table 1). Approximately 56% of
patients were age <9 years, 57% had a baseline
6MWD �350 m, and 71% were receiving glucocor-
ticoids. Nonsense mutations were distributed
across the 79 exons of the dystrophin gene, with
no mutational hotspots identified, and represented
all 3 types of premature stop codons.

Outcome Measures. Before the study began, clinical
evaluators from each of the 37 participating clinical

Table 1. Grading used during timed function tests (grades 1–6).

Standing from supine

During the test for standing from a supine position, the method used by the patient was categorized and reported as follows:
1. Unable to stand from supine, even with use of a chair.
2. Assisted Gower-requires furniture for assistance in arising from supine to full upright posture.
3. Full Gower-rolls over, stands up with both hands “climbing up” the legs to above the knees to achieve full upright posture.
4. Half Gower-rolls over, stands up with 1 hand support on lower legs.
5. Rolls to the side and/or stands up with one or both hands on the floor to start to rise.
6. Stands up without rolling over or using hands.
Run/walk 10 m
During the test for running or walking 10 m, the method used by the patient was categorized and reported as follows:
1. Unable to walk independently.
2. Unable to walk independently but can walk with support from a person or with assistive device [full leg calipers (knee-ankle-foot

orthoses-KAFOs) or walker].
3. Highly adapted gait, wide-based lordotic gait, cannot increase walking speed.
4. Moderately adapted gait, can pick up speed but cannot run.
5. Able to pick up speed but runs with a double stance phase (i.e., cannot achieve both feet off the ground).
6. Runs and gets both feet off the ground (with no double stance phase).
4-stair climbing
During the test for stair-climbing, the method used by the patient was categorized and reported as follows:
Ascending the stairs:
1. Unable to climb up 4 standard stairs.
2. Climbs 4 standard stairs “marking time” (climbs 1 foot at a time, with both feet on a step before moving to next step), using both

arms on one or both handrails.
3. Climbs 4 standard stairs “marking time” (climbs 1 foot at a time, with both feet on a step before moving to next step), using one arm

on one handrail.
4. Climbs 4 standard stairs “marking time” (climbs 1 foot at a time, with both feet on a step before moving to next step), not needing

handrail.
5. Climbs 4 standard stairs alternating feet, needs handrail for support.
6. Climbs 4 standard stairs alternating feet, not needing handrail support.
4-stair descending
During the test for stair-descending, the method used by the patient was categorized and reported as follows:
Descending the stairs:
1. Unable to descend 4 standard stairs.
2. Descends 4 standard stairs “marking time” (descends 1 foot at a time, with both feet on a step before moving to next step), using

both arms on one or both handrails.
3. Descends 4 standard stairs “marking time” (descends 1 foot at a time, with both feet on a step before moving to next step), using

one arm on one handrail.
4. Descends 4 standard stairs “marking time” (descends 1 foot at a time, with both feet on a step before moving to next step), not

needing handrail.
5. Descends 4 standard stairs alternating feet, needs handrail for support.
6. Descends 4 standard stairs alternating feet, not needing handrail support.
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sites participated in a clinical endpoint training and
standardization session to harmonize the testing pro-
tocol and logistics across sites. A centralized retraining
session was also held �1 year after study start. This
report focuses on the outcome measures obtained
from the patients during screening and baseline.

6-Minute Walk Test/6-Minute Walk Distance. Am-
bulation was assessed via the 6MWT following
standardized procedures as developed at the Uni-
versity of California Davis,26 by measuring the
6MWD in meters. The 6MWT for this study
included modifications to the method recom-
mended by the ATS for use in adults described in
Appendix 2 in the Supporting Information.17

Timed Function Tests. Timed function tests
(TFTs) included time taken to stand from a supine
position, time taken to run/walk 10 m, time taken to
climb 4 standard-sized stairs, and time taken to
descend 4 standard-sized stairs.45–51 TFTs provide a
measure of functional capability in ambulatory
patients that is complementary to the 6MWT. The
tests are reproducible, simple to administer, and have
documented response to therapeutic intervention
with steroids.47,48 A stopwatch was used to time the 10-
m run/walk, standing from supine, and 4-stair climb/
descend. For standing from supine the velocity was
calculated as 1 divided by the time to complete the
task. For the total task of climbing 4 standard stairs,
velocity was calculated as 1 divided by the time to com-
plete the task. Subjects were given 30 s to complete all
tasks. Use of velocities for timed function measures
results in a linear pattern of decline that adequately
represents the impact of the “zero velocities” of indi-
viduals who are unable to perform the evaluation.52

Timed Function Test Grades. Functional adapta-
tions employed by patients during the TFTs were
evaluated and graded by clinical evaluators accord-
ing to standardized scales developed by one of the
investigators (M.E.). Table 1 provides a description
of the standardized scales.

Myometry. Upper and lower extremity myome-
try was performed using a hand-held myometer fol-
lowing standardized procedures.53–56 Muscle
groups evaluated included knee flexors, knee
extensors, elbow flexors, elbow extensors, and
shoulder abductors. Bilateral assessments were
done, and 3 measurements (in pounds) were
recorded from each muscle group on each side.

Health-Related Quality of Life. Health-related
quality of life (HRQL) was measured via the Pediatric
Quality of Life Inventory (PedsQL).57–60 The generic
core module comprises 23 questions. The PedsQL is
available in all languages relevant for this study and
was to be completed by both the patient and parent/
caregiver. The appropriate age-specific version was
completed. It was planned that a patient would be eval-
uated with the same age-specific form even if during

the study an age change made him eligible for a differ-
ent form. If the patient lacked the ability to complete
the PedsQL, the parent/caregiver was still to complete
the instrument. If possible, the same parent/caregiver
was asked to complete the instrument each time.
HRQL was measured by all domains of the PedsQL
(Physical, Emotional, Social, and School Functioning
domain scores); however, only physical scores are
included in this report due to the relative insensitivity
of the other domains to disease progression in DMD.61

Data Analysis. Available pretreatment data for all
174 patients from all sites were pooled for analysis of
reliability (screening versus baseline performed
within 6 weeks), concurrent validity (6MWD in com-
parison to selected secondary endpoints), and MCID
determination for clinical endpoints. For the test–
retest analysis in boys with DMD, subjects who had
observations at both visits for the parameter of inter-
est were included. Pearson r and intraclass correla-
tions (ICCs) for visits 1 and 2 were recorded. For
concurrent validity, either the Pearson r or Spearman
rho (rs) rank order correlations were calculated.
MCID was determined for clinical endpoints using 2
distribution methods: (1) the standard error of mea-
surement method [baseline SD � �(1 2 r)]; and (2)
one third of SD method (baseline SD � 1=3).

Percent Predicted 6MWD. To account for
maturational effects, including age, height, and
associated stride length,26,27 we calculated a per-
cent predicted 6MWD.62,63 This prediction equa-
tion has been validated in DMD62 using the same
DMD modified 6MWT protocol as in this study.

Energy Expenditure Index. Mean heart rate was
measured before (during 5-min rest), during, and
for 3 min after the 6MWT with a Polar RS400
heart rate monitor. Using these data, a post hoc
analysis of energy expenditure index (EEI) was
performed. EEI is the active heart rate (beats per
minute) minus resting heart rate (beats per
minute) divided by walking velocity (meters per
minute). Thus, EEI was measured in units of beats
per meter. EEI has been documented by Rose and
colleagues to be a validated measure of energy
expenditure in comparison to oxygen uptake by a
metabolic cart in disabled children.64–68

RESULTS

Patient Characteristics. Patient characteristics are
shown in Table 2. All patients were males, ranging
from 5 to 20 years of age. All 3 premature stop codon
types were represented in the study population.

Test–Retest Reliability of Clinical Endpoints.

Pretreatment screening and baseline tests were com-
pared for test–retest reliability. The median (range)
between-test interval was 42 (0–91) days. Data were
available from 174 subjects enrolled at 37 study sites,
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as shown in Table 3. In general, test–retest reliability
for most measures was high. The 6MWD had the
highest test–retest reliability of any clinical endpoint
(ICC 5 0.92), as shown in Figure 1. ICCs for 6MWD,
TFTs, and hand-held myometry were all strong
(0.72–0.92), as shown in Table 3.

Invalid 6MWT Values due to Musculoskeletal

Injuries. Two patients had baseline 6MWD values
that deviated markedly from their values at screen-
ing (up to 6 weeks earlier) and their first on-
treatment values (at week 6). Both patients were
documented to have sustained lower limb injuries
prior to the baseline test (sprained ankle and right
knee injury), which negatively affected their per-
formances at baseline. Their 6MWD values at screen-
ing, baseline, and week 6 were 303, 125, and 309 for

the first patient and 395, 309, and 481 m for the sec-
ond patient, respectively. Lower limb injuries are a
known source of 6MWD variability. Through a com-
prehensive analysis, it was verified that these were
the only patients in whom the baseline 6MWT
results were affected by lower limb injuries.

Considering the strong influence the injuries had
on their baseline 6MWD values, it was considered
appropriate to declare the baseline test for these
patients invalid and to use the screening value as a
more accurate reflection of their 6MWD at baseline.

Concurrent Validity of Clinical Endpoints. For con-
current validity, the following were evaluated:

6MWD vs. Timed Function Tests. Interpretation
of time values (in seconds) obtained from timed
function testing is limited to those patients who are
able to complete the testing, thus creating results
biased in favor of more functional individuals. As a
result, time scores (in seconds) were converted into
velocities. Table 4a shows correlations between
6MWD and velocities for TFTs at baseline (using

Table 3. Test-retest reliability of selected clinical endpoints.

Clinical endpoints with timed dimension ICC Pearson r

6MWD 0.92 0.92
10-m run/walk 0.85 0.87
4-stair climb 0.91 0.91
Stair descend 0.83 0.83
Supine to stand 0.87 0.87

Myometry ICC Pearson r ICC Pearson r

left side left side right side right side

Shoulder abduction 0.76 0.81 0.74 0.78
Elbow flexion 0.82 0.86 0.81 0.95
Elbow extension 0.76 0.75 0.83 0.78
Knee flexion 0.72 0.92 0.77 0.91
Knee extension 0.91 0.86 0.89 0.93

6MWD, 6-minute walk distance; ICC, intraclass correlation coefficient. P< 0.0001 for all cases.

FIGURE 1. Reliability of the 6-minute walk distance (6MWD)

test–retest.

Table 2. Patient characteristics (evaluated at screening and
baseline).

Characteristics Baseline (N 5 174)

Age, years
Mean (SD) 8.5 (2.6)
Median 8.0
Range 5-20

Race, n (%)
White 157 (90.2)
Black 2 (1.1)
Asian 6 (3.4)
Hispanic 4 (2.3)

Other 5 (2.9)
Body height, cm
Mean (SD) 125 (13.7)
Median 123
Range 99-173

Body weight, kg
Mean (SD) 31 (11.5)
Median 27
Range 16-84

Stop codon type, n (%)
UGA 83 (47.7)
UAG 48 (27.6)
UAA 43 (24.7)
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Pearson r). Table 4b shows Spearman rank correla-
tions between method of TFT and the respective
time to perform the test. Figure 2 shows the rela-
tionship between the baseline velocity during the
10-m run/walk test and baseline 6MWD. It should
be noted that a mean value of 358 m on the 6MWD
corresponds to a velocity of 1.64 m/s on the 10-m
run/walk, which is a time of 6 s for this test.

Timed Function Test Comparisons. As shown in
Table 4a, all TFT velocities had a moderate to
high correlation with one another and strong cor-
relations with the specific methods for perform-
ance of the TFTs.

Myometry vs. 6MWD and Timed Function Tests.
Table 4 shows the correlations between right and left
myometry measures and 6MWDs, TFTs, and methods
of timed function. Knee extension strength correlated
better with timed function velocities and with timed
function grades based on function, whereas knee flex-
ion strength had lower correlations with timed func-
tion velocities and methods of timed function.

6MWD vs. Knee Extension Strength. Figure 3a
and b shows the relationships between knee extension
strength and ambulatory function as measured by per-
cent predicted 6MWD. Figure 3a depicts absolute
quantitative knee extension strength (in pounds). Fig-
ure 3b depicts knee extension strength normalized to
body weight. It should be noted that the relationship
between these 2 variables (strength and 6MWD) is
not linear but logarithmic. In DMD, at reduced
6MWD values below 50–55% predicted (based on age
and height), there are substantial declines in ambula-
tory function as measured by the 6MWD. These
declines occur despite relatively small changes in

knee extension strength values, which have reached a
floor effect.

6MWD vs. Energy Expenditure Index. Figure 4
shows the relationship between heart rate–derived
EEI and percent predicted 6MWD in 174 DMD
subjects at baseline. The relationship between per-
cent predicted 6MWD and heart rate–derived EEI
is logarithmic. When percent predicted 6MWD
approaches 50% of control values, there appears
to be a precipitous increase in the energy cost of
locomotion as measured by the EEI. Thus, the
relationship between 6MWD and the EEI is well
represented by a negative exponential model.

6MWD vs. PedsQL Physical Function Scale. Fig-
ure 5 shows the correlation between 6MWD and
the PedsQL Physical Function Scale in 174 DMD
subjects evaluated at baseline. There was a

Table 4. a. Pearson correlations between 6MWD and velocity for timed function tests.

6MWD 10-m run/walk 4-stair climb 4-stair descend Supine to stand
(m/s) (stairs/s) (stairs/s) (1/s)

6MWD 1.0
10-m run/walk (m/s) 0.78 1.0
4-stair climb (stairs/s) 0.77 0.85 1.0
4-stair descend (stairs/s) 0.73 0.69 0.75 1.0
Supine to stand (1/s) 0.73 0.86 0.82 0.59 1.0

P< 0.0001 in all cases. All other comparisons used Pearson r. 6MWD, 6-minute walk distance.

FIGURE 2. Correlation of velocity during 10-m walk/run vs. 6

minute walk distance (6MWD) at baseline. Note that a mean

value of 358 m on 6MWD corresponds to a velocity of 1.64 m/

s 5 6 s on 10-m run/walk.

Table 4. b. Correlations between timed function grade and 6MWD and velocity for timed function tests.

6MWD 10-m run/walk 4-stair climb 4-stair descend Supine to stand

(m/s) (stairs/s) (stairs/s) (1/s)

10-m run/walk grade 0.63 0.79
4-stair climb grade 0.73 0.82
4-stair descend grade 0.70 0.74
Supine to stand grade 0.65 0.81

P< 0.0001 in all cases. Methods of timed function are only correlated with 6MWD and the time function velocity for the same functional task; comparisons
were done using Spearman rho rank order correlations (rs). 6MWD, 6-minute walk distance.
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moderate association between 6MWD and the
patient-derived or parent-proxy PedsQL Physical
Function Scale (r 5 0.47).

Minimal Clinical Important Differences. Distribution-
based methods were applied to pretreatment data
on all subjects to generate a DMD-specific estimate
of the MCID for the following clinical endpoints:

6MWD: Based on the standard error of measure-
ment [defined as baseline SD � �(1 2 r) where r is
test–retest reliability], the MCID for 6MWD in DMD
is estimated to be 28.5 m (Table 5). Based on a defi-
nition of one-third of the standard deviation at base-
line, the estimated MCID for 6MWD in DMD is 31.7
m (Table 5). These MCID values represent 8.0%
and 8.9% of the mean baseline 6MWD.

TFT: Using similar distribution-based methods
for all baseline data for time to stand from supine,
time to climb 4 stairs, and time to run/walk 10 m
(Table 5), the MCID values represent 18.9–33.9%
of the mean baseline TFT values.

Knee extension: Using these same distribution-
based methods, Table 5 shows the MCID values for
knee extension strength by hand-held myometry to
be 15.7% and 17.9% of mean baseline knee exten-
sion strength.

DISCUSSION

The findings from this report reflect an evalua-
tion of the largest data set collected to date in a
multicenter context for determination of reliability
and concurrent validity of 6MWD and other clinical
endpoints in DMD. In addition, the investigation
has addressed the distribution-based MCID for com-
monly employed endpoints, including TFTs and
quantitative knee extension strength measures, as
well as the 6MWD, which is the most common pri-
mary endpoint for ambulatory DMD clinical trials.

Test–Retest Reliability of Measures. The 6MWT
showed the highest test–retest reliability of any end-
point used in the study. TFTs, such as the 10-m
run/walk test, are easy to administer and conven-
iently applied in a clinical setting. However, these
tests have inherent disadvantages for clinical trials,
including slightly reduced test–retest reliability rela-
tive to the 6MWT. Advantages of the TFTs as sec-
ondary endpoints for DMD trials include previous
steroid-naive natural history data16 and

FIGURE 3. (a) Left frame: Correlation of knee extension strength

(pounds) with percent predicted 6-minute walk distance (6MWD)

at baseline. (b) Right frame: Correlation of knee extension

strength per kilogram body weight with percent predicted 6MWD

at baseline using age- and height-calculated formula.62,63

FIGURE 4. Relationship between energy expenditure index

(EEI expressed in units of beats per meter) and percent pre-

dicted 6MWD in 174 DMD subjects at baseline.

FIGURE 5. Correlation between 6MWD and PedsQL Physical

Function Scale (n 5 174 DMD evaluated at baseline).
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contemporary long-term natural history data avail-
able through the Cooperative International Neuro-
muscular Research Group (CINRG) Duchenne
Natural History Study,52 relating the measures to
loss of ambulation, the ease of utilizing the meas-
ures in the clinic in everyday clinical practice, and
their potential inclusion as core measures for regis-
tries. Approximately 20% of patients, however, were
unable to perform stand from supine at study entry.

To maximize reproducibility, the 6MWT should
not be performed in the setting of an acute condi-
tion (e.g., musculoskeletal injury) that affects walk-
ing ability. In addition, future inclusion criteria
can reduce variability by requiring that screening
and baseline 6MWD values be within a certain per-
centage of one another (e.g., 20%).

Concurrent Validity of Clinical Endpoints. With
regard to concurrent validity, the 6MWD was
shown to be associated with other measures of dis-
ease progression in DMD, but in general it showed
closer correlation with TFTs when compared with
quantitative strength measures. Time to climb 4
stairs was the timed function measure most highly
correlated with knee extension strength, so this
may be a particularly useful secondary endpoint
for DMD trials. Concurrent validity between the
NSAA and 6MWD has been demonstrated previ-
ously.28,29 In this multicenter study the 6MWD cor-
related highly with the graded methods of
performing TFTs, which are evaluator-derived
DMD-specific measures of disease progression anal-
ogous to several components of the NSAA.

Table 5. Correlations between myometry and 6MWD, velocity of timed function, and timed function grade.

Pearson correlation

Right knee extension Left knee extension Right knee flexion Left knee flexion

6MWD (m) 0.64 0.68 0.38 0.42
10-m run/walk (m/s) 0.70 0.69 0.33 0.34
4-stair climb (stair/s) 0.74 0.73 0.37 0.36
4-stair descend (stair/s) 0.58 0.58 0.41 0.43
Supine to stand (1/s) 0.70 0.67 0.28 0.27*

Spearman correlation
10-m run/walk grade 0.62 0.60 0.17* 0.21*

4-stair climb grade 0.73 0.69 0.33 0.31
4-stair descend grade 0.60 0.61 0.36 0.33
Supine to stand grade 0.66 0.65 0.21* 0.21*

Comparisons with method of timed function use Spearman rho rank order correlations (rs); all other comparisons done using Pearson r. 6MWD, 6-minute
walk distance.

P< 0.0001 except where noted (NS); *P< 0.05 †P< 0.01 and ‡P< 0.001.

Table 6. Estimates of MCID for 6MWD and other endpoints in DMD based on pretreatment baseline data.

Endpoint/method N Mean SD Correlation* MCID MCID/mean

6MWD (m)
Standard error of measurement method (SD �(1 – r)) 174 358 95 0.91 28.5 8.0%
One third of SD method (SD 1=3) 31.7 8.9%

Supine to stand (s)
Standard error of measurement method (SD �(1 – r)) 174 11.5 10.8 0.88 3.7 32.2%
One third of SD method (SD 1=3) 3.6 31.3%

Climb 4 stairs (s)
Standard error of measurement method (SD �(1 – r)) 174 6.9 6.6 0.90 2.1 30.4%
One third of SD method (SD 1=3) 2.2 31.9%

Run/walk 10 m (s)
Standard error of measurement method (SD * �(1 – r)) 174 7.4 4.3 0.71 2.3 31.1%
One third of SD method (SD 1=3) 1.4 18.9%

Knee extension strength by myometry (lbs.)
Standard error of measurement method (SD * �(1 – r)) 174 13.4 7.1 0.91 2.1 15.7%
One third of SD method (SD 1=3) 2.4 17.9%

6MWD, 6-minute walk distance; MCID, minimal clinically important difference; SD, standard deviation.

*Based on test-retest reliability at screening and baseline visits �6 weeks apart.47,49
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Myometry has been found previously to be less
sensitive to changes in disease status than TFTs in
ambulatory DMD boys.69 Our study has shown that
the 6MWT has obvious advantages over quantitative
strength measures as an endpoint in DMD due to
its sensitivity to detect change in children who have
a decline in ambulatory function. In DMD, at
reduced 6MWD values below 50–55% predicted
(based on age and height), there are significant con-
tinued declines in ambulatory function as measured
by the 6MWD that occur despite relatively small
changes in knee extension strength values, which
appear to have approached a floor effect. An alter-
native concept is that, once lower extremity strength
reaches a critically low threshold value, a more pre-
cipitous deterioration in ambulatory function may
occur over 12 months with relatively little incremen-
tal loss of strength during that time.

Although there is a moderate correlation
between 6MWD and the parent-proxy–reported
PedsQL Physical Function Scale, the relationship is
not as strong as that reported between 6MWD or
walking speed and other patient-reported outcomes,
such as the Transfers/Basic Mobility scale, Sports
Physical Functioning Scale, or Global scale from the
POSNA/PODCI Pediatric Outcomes Instrument.61,70

6MWT Is an Integrated Global Measure of Ambulatory

Function and Metabolic Efficiency. Short-term
assessments in DMD that measure transient peak
physical activities, such as 10-m run/walk, do not
measure endurance, a crucial aspect of ambulatory
functioning. Due to the combination of strength
loss and cardiopulmonary involvement, children
with DMD experience increases in the energy cost
of locomotion (more metabolic energy consumed
per distance traveled) with increasing disease pro-
gression. Other investigators have validated the use
of the heart rate–determined EEI as a measure of
energy cost in disabled children.64–68 Heart rate–
determined EEI has been validated previously in
DMD using a COSMED portable metabolic cart.71

Other studies also showed increased energy cost of
locomotion in DMD.72 Our study has shown that
the 6MWD can be considered a proxy measure for
the energy cost of locomotion in DMD. In general,
higher EEI is associated with more metabolically
inefficient ambulation and more impaired endur-
ance. A recent report demonstrated the 6MWT to
also be highly correlated with an assisted 6-minute
cycling test,73 which is a measure of endurance in
both ambulatory and non-ambulatory patients with
DMD. The 6MWT is therefore an integrated global
measure of ambulatory function that is influenced
by decreased lower extremity strength, biomechani-
cal inefficiencies during gait, diminished endur-
ance, and compromised cardiorespiratory status.

Minimal Clinically Important Differences. MCID is a
construct that can be determined by statistical distri-
bution approaches, anchor-based methods with
patient-reported outcome measures, and determina-
tion of clinically meaningful changes with treat-
ments. Prior to the acquisition of disease-specific
data, the study of MCID in other diseases is instruc-
tive. As shown in Appendix 3 in the Supporting
Information, data from placebo-controlled studies of
laronidase for mucopolysaccharidosis type I (MPS I),
idursulfase for MPS II, bosentan for primary pulmo-
nary hypertension, and alglucosidase-alpha for
Pompe disease support the clinical meaningfulness
of a 30-m treatment effect for the 6MWT.19,21,24,25

In these studies, differences in mean changes in
6MWD in drug-treated patients versus placebo-
treated patients ranged from 28 to 44 m, or 8–13%
of baseline 6MWD (Appendix 3 in Supplementary
Material). The data from the trials in MPS I, MPS II,
and Pompe disease are especially relevant given that
patient activity limitations in these diseases and
those in DMD result from disease-related impair-
ments in neuromuscular and pulmonary systems.

Subsequent to the initiation of the ataluren Study
007 in 2008, additional research had been conducted
to define the MCID for 6MWD across multiple dis-
eases, including interstitial pulmonary fibrosis, coro-
nary artery disease, chronic obstructive pulmonary
disease, and parenchymal lung disease.74–77 In each
of these diseases, as in DMD, patients experience
disease-related deficits in 6MWD relative to healthy
controls. Those studies employed multiple methods
to determine the MCID for 6MWD, including
distribution-based methods utilizing statistical proper-
ties (e.g., effect size, standard error of measurement).
In these pulmonary and cardiac diseases, estimates of
the MCID for 6MWD ranged from 23 to 45 m
(Appendix 3 of Supporting Information).74–77 These
estimates of the MCID for 6MWD correspond to
4.7–11.6% of mean baseline 6MWD.

Distribution-based methods are commonly used
for initial MCID determination. In this study, we
addressed initially the question of MCID for the
6MWD—a relatively new endpoint in DMD—by apply-
ing 2 commonly utilized distribution-based methods
for DMD-specific MCID determination. The clinical
trials that used the 6MWD in other diseases formed
the basis of the a priori choice of a 30-m 6MWD treat-
ment effect when originally powering the ataluren trial
for ambulatory DMD subjects. In the present study of
placebo-treated patients, the MCIDs for 6MWD in
DMD (corresponding to 8.0% and 8.9% of the mean
baseline 6MWD) are both mid-range values compared
with the MCIDs determined for the other diseases.
Thus, the statistical distribution data provide support
for a 6MWD MCID of 30 m in DMD and a targeted 30-
m difference between treatment arm and placebo for
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DMD therapeutic trials. Future longitudinal investiga-
tions of anchor-based approaches to MCID are sug-
gested to validate these initial statistical distribution
approaches and compare specific changes in 6MWD
with the occurrence of both clinically meaningful
milestones and significant changes in patient-reported
outcomes. These studies may support a lower MCID
for 6MWD than 30 m based on distribution-based
methods. In addition, more experience evaluating the
6MWD in DMD patients treated with therapeutic
agents known to be efficacious will help refine the
determination of the MCID for this endpoint.

In this large, multicenter, international clinical
trial, the 6MWT proved to be feasible and highly reli-
able, and it showed excellent concurrent validity with
other commonly used clinical endpoints in DMD
such as timed function tests and quantitative strength
measures. The 6MWD proved to be a more sensitive
clinical endpoint when compared with timed function
and quantitative strength measures. Statistical distri-
bution approaches support an MCID of �30 m for
DMD. The 6MWT is an integrated global measure of
ambulatory function that is influenced by lower
extremity strength, biomechanical inefficiencies,
endurance, and cardiorespiratory status. This study
and additional longitudinal natural history data78

from the ataluren clinical trial (Study 007) support
acceptance of the 6MWT as the primary outcome
measure of choice for ambulatory DMD clinical trials.
The authors thank the patients and volunteers for their time and
effort. We also thank the principal investigators, supporting investi-
gators, clinical coordinators, clinical evaluator trainers, clinical eval-
uators, and study coordinators (see Appendix 1), and Zejiang Yang
of INC Research for statistical programming support. Finally, we
thank the patient advocacy organizations (including the Muscular
Dystrophy Association and the Parent Project Muscular Dystrophy)
for the collaboration and support, which made this trial possible.
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