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Abstract

In an nontransferable utility (NTU) exchange economy with a continuum of
agents, the Mas-Colell bargaining set coincides with the set of Walrasian equilibria. In
this paper, we show that the Mas-Colell bargaining set, as well as a smaller bargaining
set due to Zhou, may fail to converge to competitive outcomes in large {inite NTU
exchange econormies.
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1 Introduction

The bargaining set was originally defined by Aumann and Maschler [2] and
Davis and Maschler [3]. Mas-Colell [10] considered exchange economies with
a continuum of agents but without transferable utility or smooth preferences.
His definition differs from the Aumann-Davis-Maschler definition principally
because it does not involve the concept of a leader. Under hypotheses similar
to those of Aumann’s core equivalence theorem, he showed that the Mas-
Colell bargaining set coincides with the set of Walrasian allocations. Since
models with a continuum of agents are thought of as idealizations of large
economies, it seemed reasonable to expect that the Mas-Colell bargaining
set would become approximately competitive in sequences of finite exchange
economies as the number of agents increased. Zhou [13] has proposed ad-
ditional restrictions on counterobjections; these restrictions are satisfied in
the Aumann-Davis-Maschler definition. Since Zhou's additional restrictions
make it easier to form a justified objection, they make the bargaining set
smaller.

In Theorem 3.4, we show that the Mas-Colell and Zhou bargaining sets
need not converge in replica sequences of economies. In the example, the
measure of the set of individually rational Pareto optimal equal-treatment
(IRPOET) allocations which are not in the Mas-Colell and Zhou bargaining
sets tends to zero as the economy is replicated; in particular, the set of IR-
POET bargaining set allocations converges in the Hausdorff distance to the
set of all IRPOET allocations. The replica sequence in the example satisfies
the hypotheses of the Debreu-Scarf theorem [5] and of Debreu’s rate of con-
vergence theorem for the core [4]. The cooperative game generated by the
example has transferable utility and satisfies the assumptions of Shapley and
Shubik [11]; thus, the Aumann-Davis-Maschler bargaining set does converge.
The discrepancy between the behavior of the Mas-Colell bargaining set in
the continuum and its behavior in sequences of large finite economies gives
reason to be cautious in accepting the continuum as the proper idealization
of a “large” economy.

The essence of the nonconvergence example is easy to describe. It is
a replica sequence with two goods and two types of agents. Let f be an
IRPOET allocation and let f, denote the n-fold replica of f. Let the agents
of type 2 be relatively favored by f, and the agents of type 1 disfavored.
One first shows that if a coalition S can make a justified Mas-Colell or Zhou
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objection to f, then S must contain all n agents of type 1; if not, one could
form a counterobjection by switching one of the type 1 agents omitted from
S for one of the type 1 agents included in S. There is an ideal ratio ¢ of the
number of type 2 agents to type 1 agents that maximizes the utility that can
be provided to type 1 agents. For most n, it will be the case that there exist
n’ < n and m’ such that

!

< min
meN

= (1)

— —1
! 7

T
But then a coalition consisting of n' agents of type 1 and m’ agents of type 2
can counterobject. It is only in the rare case that the best approximation to
t of the form %‘,—' with n' < n has n’ = n that f, is nof in the Mas-Colell and
Zhou bargaining sets. Thus, the nonconvergence example is driven entirely
by an integer problem.

Anderson [1] shows that a different bargaining set, due to Geanakoplos
8], is approximately competitive in large finite NTU exchange economies.
In addition, in large finite NTU exchange economies with smooth preferences
and uniformly bounded endowments, the Aumann-Davis-Maschler bargain-
ing set is approximately competitive. '

The Aumann-Davis-Maschler bargaining set differs from the Mas-Colell
bargaining set only by the designation of a single individual as the leader of
an objection. The nonconvergence example occurs in a replica sequence of
TU economies with smooth preferences which satisfies all the assumptions of
the convergence theorem for the Aumann-Davis-Maschler bargaining set in
Anderson [1]. It is remarkable that the designation of a single leader should
make such a profound difference in the resulting bargaining set.

2 Preliminaries

We begin with some notation and definitions which will be used throughout.
Suppose z,y € RF, B C R*. 2% denotes the ith component of z; z > y means
o' >y forall i; £ > y means z > y and z # y; £ > y means z¢ > ¢ for all
i izl = S 2% llolle = max{lzt],---,|z*1}; RE = {z € R* : z > 0;
R, ={r e R*: 2 > 0}. Ift € R, |t] denotes the greatest integer less
than or equal to ¢ and [#] denotes the smallest integer greater than or equal
to 1.




A preference is a binary relation = on R satisfying the following condi-

tions:

1.
2.

A

weak monotonicity: z > y =2 > y;

continuity: {(z,y) € R%, : 2 > y} is open;
transitivity: if = y and y > z, then = > z;
negative transitivity: if 2 ¥ y and y ¥ 2, then x ¥ z;
irreflexivity: = ¥ z; and

convexity: {x : > y} is a convex set.

Let P denote the set of preferences. If =€ P, definez ~ y if © ¥ y and
y# x,x>=yif x> yor z ~ y Note that the indifference relation z ~ y is
defined from the underlying strict preference relation x > y, and is not one
of the primitives of the specification of the economy.

Lemma 2.1 If = satisfies properties 1-5 in the definition of P, then

1.
2.

TYrz2=>T -2

LY z2=x > 2 and

S x>2yr-z=>1> 2.
Proof:

1.

2.

First, we prove conclusion 1. There are two cases to consider.

(a) I y > z, then z > z by transitivity.

(b) Iy ~ 2, then z ¥ y; if z ¥ z, then « ¥ y by negative transitivity,
contradiction. Therefore, z > z.

The proof of conclusion 2 is essentially the same as the proof of con-
clusion 1.

Now, we turn to conclusion 3. Since z > y and > is weakly monotone,
we may find z, — z with 2, > z, hence z, > y,s0z, » y. fy > z,
then y = z, for n sufficiently large, by continuity; but then y > =, » v,
so y » y by transitivity, contradicting irreflexivity. Therefore, z > v,
so x > z by conclusion 2.
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An ezchange economy is amap x : A — P x RE | where A is a finite set
of agents. For ¢ € A, let >, denote the preference of a (i.e. the projection
of x(a) onto P) and e(a) the initial endowment of a (i.e. the projection of
x(a) onto RY). An allocation is a map f : A — R such that ¥,.4 f(a)
= Y acacela); let A(x) denote the set of allocations of the economy x. An
allocation f is individually rational if e(a) ¥, f(a) for every ¢ € A. A
coalition is a non-empty subset of A,

A weak objection to an allocation f is a pair (S, g), where S is a coalition,

7:S—=RE, T ocs9(a) < Yesea), and
gla) =q f(a) for all @ € S with strict preference for at least one a.  (2)

An allocation f is strongly Pareto optimal if there is no weak objection (5, g)
to f with S = A. A strong objection to an allocation f is a pair (S, g}, where
S is a coalition, g : S — R, ¥ ocs 9(0) = S,es e(a), and

gla) >, f(a) for all a € S. (3)

An allocation f is weakly Pareto optimal if there is no strong objection (S, g)
to f with S = A.

If (S,¢) is a (weak or strong) objection to f, a weak counterobjection to
(S,g) is a pair (T,h), where T' is a coalition, A : T — RE, . h{a) <
Yaer €{a), and

gla) faeTnS
Ma) 7 { f((a) ifaeT\S. (4)

with strict preference for at least one agent a. If (S, g) is a (weak or strong)
objection to f, a strong counterobjection to (S, ¢) is a pair (T, k), where T is
a coalition, b : T — RE, T,cr h(a) = Taer e(a) and

M- 0 FeeTts o

The bargaining set will be defined, roughly, as the set of all allocations
such that every objection admits a counterobjection. Suppose that prefer-
ences are continuous, strongly monotonic (i.e. z > y — = = y), transitive
and negatively transitive. It is then well known that an allocation is weakly
Pareto optimal if and only if it is strongly Pareto optimal. The same argu-
ment shows the following two facts:




1. if preferences are strongly monotonic, continuous, transitive and nega-
tively transitive, and f is an allocation, then f admits a weak objection
if and only if it admits a strong objection; and

2. if preferences are strongly monotonic, continuous, transitive and nega-
tively transitive, and (S, g) is a (weak or strong) objection to f, then
(S, g) admits a weak counterobjection if and only if it admits a strong
counterobjection.

However, as we shall see below in Proposition 3.2, it is very hard to construct
a strong objection which does not admit a counterobjection. Thus, in the
definition of the bargaining set, it matters a great deal whether we require
objections to be weak or strong. Accordingly, we must define more than one
bargaining set. The weak Mas-Colell bargaining set, denoted By (x), is the
set of all allocations to which every strong objection has a strong counter-
objection; if preferences are continuous, strongly monotonic, transitive and
negatively transitive, this is the same as the set of all allocations to which
every strong objection has a weak counterobjection. The strong Mas-Colell
bargaining set, denoted B,(x), is the set of all allocations to which every
weak objection has a weak counterobjection; if preferences are continuous,
strongly monotonic, transitive and negatively transitive, this is the same as
the set of all allocations to which every weak objection has a strong counter-
objection. Observe that if preferences are continuous, strongly monotonic,
transitive and negatively transitive,

Bu(X) C Bul(x)- | (6)

If an objection has no counterobjection (weak or strong, as determined by
the context}, we will say that the objection is justified.
Zhou [13] has proposed adding three restrictions on counterobjections:

1. TnS #§
2. S¢ T
3. T¢S.

The Zhou bargaining set, denoted Bz(x), is the set of all allocations such
that every weak objection admits a weak counterobjection satisfying these
three restrictions.



IfTN.S =0, then a (weak or strong) counterobjection (T, ) would have
little deterrent effect on the members of S in proposing the objection (S, g);
even if the members of T do implement A, it is still feasible for the members
of S to implement g. If S C T, then every member of S would be willing to
put (T, k) forward as an objection in place of (S, g). For more comments on
the motivation for these restrictions, see Zhou [13].

3 Nonconvergence Examples for the Mas-
Colell and Zhou Bargaining Sets

We will consider replica sequences of economies, as defined by Edgeworth (7]
and Debren and Scarf [5]. The base economy is defined by x : A — P x RE.
The n-fold replica of x is xp: A, — P x R’_fr where

A, = Ax{1,...,n}

xn(7) = x(@) (1<j<n) o
The n-fold replica of an allocation f is f, : A, — RE with
fala, ) = fla) (1< j <), (8)

In Proposition 3.2, we show that the weak bargaining set is very big in
replica economies with two types of agents; in the light of the situation in
continuum econormies, this is not surprising. In Theorem 3.4, we show that
the strong Mas-Colell bargaining set and the Zhou bargaining set may also
be very big in replica economies; in sharp contrast with the situation in
continuum economies.

We begin with some propositions concerning the bargaining set in the
replica context.

Lemma 3.1 Suppose f is any individually rational allocation of a base econ-
omy x : A — PxRE and f, is the n-fold replica of f. Suppose further (S, g)
18 @ weak objection to f, with no weak Zhou counterobjection. Then

1. for alla € A, either
(a)

9(a,) ~o £(a) for all j satisfying (a,5) €S (9)
or



(b) (a,7) € S forallje{1,...,n};

2. there exists o € A such that (a,7) € S for all j € {1,...,n}; and

3. if fn is strongly Pareto optimal, then there exists a € A such that

(a,7) € S for some j.

Proof:
1. Fixa e A If(a,7) ¢ S (1 < 7 < n), then equation 9 is vacuously

satisfled. Now suppose (a,j) € S for some j. Suppose (a,7) ¢ S.
By the definition of a weak objection, g(a,7) =, f(a) for j satisfying

(a,7)€ S. Ifg(a,j) =, f(a) forsome j,let T = (S U {(a, 1) })\{(a,7)}.
Clearly, S ¢ T and T ¢ S. There are two cases to consider:

(a) Case : TS #0. Let
{ g(b,k) if (b,k) € S\ {(a, 1)}
h(b, k) =

9(a,7) i (b,k) = (a,%).
Then (T, h) is a weak Zhou counterobjection to (S, g), contradic-
tion.
(b) Case II: TNS =0. Then S = {{a,j)}, so e(a) > g(a,j) =. f(a),
so e(a) >, f(a) by Lemma 2.1, contradicting the assumption that
f is individually rational.

(10)

Since both cases lead to a contradiction, g(a, j) ~. f(a) for all j such
that (a,7) € S.

. If for every a € A, there exists j with (a,7) € S, then g(a,7) ~, f(a)
for all (a,7) € S, by item 1. But then {S, g) is not a weak objection to
fn, contradiction. Hence, there is some ¢ € A with (a,j) € S for all

je{l,...,n}.

. Suppose f, is strongly Pareto optimal. Then S C A,,S # A,. Thus,
there is some a € A and some j € {1,...,n} such that {(a,5) € S.

The following proposition shows that, in replica economies with two types

of agents, the weak Mas-Colell bargaining set is extremely large. A similar
phenomenon occurs in the continuum context, as noted by Mas-Colell [10].
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Proposition 3.2 Suppose |A| = 2, f is any individually rational allocation
of a base economy x : A — PxRE, =, is strongly monotonic for each a € A,
fn 18 the n-fold replica of f, and n > 1. If f,, is weakly Pareto optimal in xn,
then fn € Bul(xn).

Proof: Suppose (S, g) is a strong objection to f,. Since f, is weakly Pareto
optimal, we have 5 # A,, so there exists (a, 7) with (a,j) ¢ S. Relabelling,
we may assume without loss of generality that @ = 1. Since strong objections
are weak objections, item 1 of Lemma 3.1 implies we are in one of two cases:

1. (S, g) has a weak counterobjection. Since preferences are continuous,
strongly monotonic and transitive, (.S, g) also has a strong counterob-
jection.

2. g(1,7) ~1 f(1) for all j such that (1,7) € S. Since (S,g) is a strong
objection, we must have (1,5) & S for j = 1,...,n. Since |4] = 2,
we have 57, 9(2,7) = ne(2). ¢(2,7) =2 f(2) =2 ¢(2) because f is
individually rational. By Lemma 2.1, ¢(2,7) =2 e(2). By convexity,
e(2)y=1 i=19(2,J) = €(2), contradicting irreflexivity.

Thus, we are always in the first case. Accordingly, every strong objection
has a strong counterobjection, so f, € By(xa). ®

Example 3.3 We consider a replica sequence of economies with two goods
and two types of agents; both types have the same Cobb-Douglas utility
function. The characteristics of the agents in the unreplicated economy x
are given by
A={1,2}
e(l) = (3,1) e(2) = (1,3) (11)
u(z,y) = IY

Let x, denote the n-fold replica of x. Given £ & [0,4], let fc denote the
allocation {in the unreplicated economy)

fe) = (68 f(2)=(4-§4-¢) (12)

and let f¢, denote the n-fold replica of fe, i.e. fen(a,7) = fe(a). Let A denote
Lebesgue measure on R.



Theorem 3.4 If x, is the replica sequence described in Example 3.8, then

VE € V3,4 = V3] |{n: fen € Bz(xa)} = 0 (13)
and there is a constant C such that
A€ € [V3.4 = VA fon § Brlx)D) < <= =0 (14)

Proof:

1. g: S — RZ is Pareto optimal on S if and only if there exist A, € [0,1]
with 3.5 A, = 1 such that

9(a) = Xa Laes e(a)
u(g(a)) = Aot (Laes e(a))

for all a. Thus, the cooperative game generated by x, has transferable
utility, with characteristic function V(S) = u {3 ,es e(a)).

(15)

2. Suppose & € [\/3,4 — 3] ¢ =2, then fen 1s a Walrasian allocation,
and hence f¢, € Bz(x,) for all n. Thus, we can restrict attention to the
case £ # 2. By symmetry, we can assume without loss of generality that
¢ € [v/3,2). Moreover, we can also assume without loss of generality
that n > 2.

3. Suppose (S, g) is a weak objection to fe, with no weak Zhou counter-
objection. Observe that fg, is strongly Pareto optimal. Thus, renum-
bering if necessary, we find we are in either

Case . (1,1) ¢ S & (2,5) e Sforallj
or (16)
CaseIl: (2,1) 2 8 & (lL,j)e Sforally

by item 1 of Lemma 3.1.

(a) In Case I, let m be [{j : (1,7) € S}|. We have u(g(1,7)) =
u(fe(1)) = € for all j with (1,7) € S, by Lemma 3.1.

mé + iu(g(Q,j)) <V(8S)= \/(Bm + n)(3n +m). (17)

9



We can assume without loss of generality that u(g(2,n)) > u(g(2, 7))
for all 7. Now let T be a coalition consisting of m + 1 agents of
type 1 and n -1 agents of type 2, specifically (2,1),...,(2,n—1).

V(T) = /(3(m+1)+n—1)(m+1+3(n— 1))

=/Bm+n+2)(3n+m—2) (18)

> /(3m +n) (3n+m) = V(9),
since if m <n—2,
Bm+n+2)+Bn+m=-—2)=383m+n)+{3n+m)
(3m+n) < (3m+n +2) g Grtnitlntm) (19)

<@Bn+m—2)<(3n+m)
and if m=n—1,
(3m—i—ﬁ—!—2):3n+maud(3n+m—2):3m+n. (20)

‘Therefore, it is feasible in T to give the m type 1 agents in SNT
utility £, the type 1 agent in T\ S utility u{g(2,n)) > £, and the
type 2 agents in 7 the same utility level they received under g;
it we do so, we produce a weak Mas-Colell counterobjection. By
construction, T' ¢ S; moreover, S ¢ T and SNT # B, since n > 2,
so 7' can form a Zhou counterobjection.

Therefore, we must be in Case I, so S contains all n agents of
type 1 and m < n agents of type 2. Moreover, u{g(2,7)) =4 — ¢
whenever (2,7) € S, and we can assume without loss of generality
that u(g(la 1)) S 'u,(g(l, 2)) <0 S u(g(lun))'

i, Let

F(&,t) = /(3 +)(3t + 1)—t(4—£) = v/32 + 10t + 3—t(4—¢).
(21)

10



ii.

iil.

Then

1~

n (g1, ) = MBI iy gy

(22)

= JG+2) () -2e-9=F(em).

AF(ELY _ 3845 (4
gt T J/3E+10t+3 (4-6)

BF(£t) _ 5 8443
bt |t=0_ﬁ——(4_£)2 V3 >0

apgf,qI _%'_(4_5):§—2<0

8t jg=1 V16 (23)

V32103 (3¢t YR S— 10)
3V 32410t +3—( +5)(2 r_3t2+mt+3( +10}
3t2+1044+3

BPF(EE)
o2 -

_ 3(3%4+10t43)-(3t45)° _ 16
(3t2+10t+3)% (3t2+10t+3)%
for t € [0,1]. Thus, for each £, F(£,1) achieves its maximum
(over t € [0,1]) at a unique point #; € (0,1). The first order
conditions imply that

fmd_ 3t +5 | (24)
\/3(te)? + 10t + 3

S0
de 16

= ;>0
dti (S(t‘f)z + 1Ut§ -+ 3)5
for all ¢ € [0,1]. By the inverse function theorem, the map
£ — ¢ is C* and has positive derivative (and thus is one to
one) for all £ € [v/3,2).
We claim that

(25)

Je >0 V¢ € V3,4 -3
Iy_td >2|‘T__t§|ﬂ |th5| <6=>F(£:$) >F(£:y)( )
26

11



Note that %ETE and |%3Tf} are continuous on [v/3,4—+/3] %[0, 1],
so there exists A > 0 such that
O*F 1

_5?5_<~:’\7f and

PF

W < M (27)

for all {¢,¢) € [v3,4—-+3] x [0,1]. Let e = 2. Since
%zt—f— < O for all ¢, F(£,-) is increasing to the left of #; and
decreasing to the right of ¢; hence, we may assume without

loss of generality that |y — ¢¢| < 2¢. Then

F&,) = F(&te) + %_fl(e,ts) (=~ o) (28)
1 8%F 2,1 8F 3
F2 o |y (F ) G T, (0 1)

for some t, between t¢ and . The same formula holds for

F(€,y) for some t, between t; and y. Note that %ﬂ(g: )=
b

Therefore,
F&,z) - F(&y)
3 5 | [ 1) — (= 1))
B F »Br
65 kg 8 7 G |,y 0 )

(29)

= (v~ te)* g3 — ¥y — el

which establishes Equation (26).

iv. Fix £ € [v/3,2). We will show that fe, € Bz(x,) for infinitely
many n. By Theorem 185 of Hardy and Wright! [9], there are

'Hardy and Wright state this only if t¢ is irrational; however, if ¢, = ?5-3 is rational,
Equation (30) is satisfied for (p,q) = (po,40), (2P0, 240), (3P0, 3q0)s - - .-

12



infinitely many pairs of integers p, ¢ such that

D 1

- — —. 30
g tf < qz ( )
Since 0 < t¢ < 1, there are infinitely many pairs (p, g) with
q% < eand 5 < p < g—>5 (and thus g > 3) satisfying Equation
(30). For any such pair, consider the n-fold replica x,, where
n=gq+ 1. Then

P P _PLP—__P P
g+l T g+l q+q_ q(q+1)+q
< —ga bl g <te—
(31)
prl _ptl _ p P .. 9P B
g+l T g+l q+q—q(q+1)+q
>t - >tet
For every m € {0,...,n},
’%—t€|>2§—t§ and |§"t§ < €. (32)
80
m
P(s2)<r(el) (53)

by Equation (26). But then a coalition T consisting of ¢
agents of type 1 (namely, agents (1,1),...,(1,¢)) and p agents
of type 2 can counterobject to (S,g), since S has n agents
of type 1 and m agents of type 2. Since m < n, we can
choose one of the p type 2 agents (say, agent {2, jy)) from the
complement of S. Observe that (1,1) € SN T (since ¢ > 0),
(2,70) € T\ S, and (1,n) € S\ T. Therefore, T can form a
Zhou counterobjection, contradiction. Thus, we have shown
that fen € Bz(x,) for infinitely many n.

. Now, we will show that Equation (14) holds. Fix n. By
Theorem 36 of Hardy and Wright [9],

Vieo,1] Jg<n

P 1
E—t’g—-q(n_l_l). (34)
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Note that
M{te0,1]:3¢< va Ip<q ’E—t|5m})

vnl _2 2y/n
< T s < B

Therefore,

)\({t:ﬂq>\/ﬁ Ip < gq Ig——t

o) r-25

g{n +1) n+1’
(36)
S0
: P 1 2\/n
fewsosn s men)) 2251
(37)
However,
m 2 4dn
A({t:ﬂmgn ';—tlg_m})ﬁma
(38)
80

)\({t:3§€ [V3,2]te=t Im<n F(‘f,%)
= s F (69))) (39)

4 2/n 6
= \/5(::+1) Tl S A

B

Since the map £ — {; has positive derivative, there is a con-
stant L > 0 such that the derivative is at least L for every
¢ € [v/3,4 — +/3]. Therefore,

AM{E: fen & Bz(xn)}) < v (40)

which proves Equation (14).
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