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ABSTRACT OF THE DISSERTATION 

 

Harnessing the Power of Human Embryonic Stem Cells and Direct Reprogramming for 

Cardiac Regeneration 

 

by 

 

James Lloyd Engel Jr. 

Doctor of Philosophy in Molecular, Cellular and Integrative Physiology 

University of California, Los Angeles, 2019 

Professor Reza Ardehali, Chair 

 

Acquiring pure populations of cardiomyocyte (CM) subtypes is important for 

developmental studies and necessary for safe cell-based therapies. Here we generated 

cardiac-specific human embryonic stem cell (hESC) reporter lines to isolate first and 

second heart field-like CMs (FHF and SHF-like respectively) and cells of the conduction 

system. Our studies demonstrate that FHF-like CMs can be prospectively isolated 

based on the co-expression of TBX5/NKX2-5 whereas SHF-like CMs are marked by 

NKX2-5 but lack TBX5 expression, and finally nodal cells are enriched within the 

fraction expressing only TBX5. Characterization of these cell populations by 

electrophysiological, functional, transplantation, and transcriptional studies supports 

the cellular identity assigned on the basis of NKX2-5 and TBX5 expression. 
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Furthermore, we identify CORIN as a novel cell surface marker of both FHF-like 

progenitors and CMs. These results provide a platform to investigate in vitro 

cardiovascular development and may facilitate a safe approach for cell therapy in heart 

disease. 

In addition to the use of hESC derived cardiomyocyte-like cells to repopulate the 

heart and fully restore cardiac function after insult, we explore the use direct 

reprogramming to convert fibroblasts into cardiomyocyte-like cells. Direct cardiac 

reprogramming using transcription factors, small molecules, miRNAs, and other biologics 

for the treatment of heart failure have been explored. Here, we focus on the use of 

modified RNAs and small molecules to develop a safe and efficient method of direct 

reprogramming for the treatment of heart failure.   
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Chapter 1: 

Isolation of Heart Field Specific Cardiomyocytes from Differentiating Human 

Embryonic Stem Cells for Cardiac Regeneration 
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Abstract 

Current hESC differentiation protocols yield a mixture of cardiac cells without the 

ability to isolate heart field specific cardiac progenitors and their associated progeny. 

Acquiring pure populations of cardiomyocyte (CM) subtypes is important for 

developmental studies and necessary for safe cell-based therapies. Here, we generated 

cardiac-specific human embryonic stem cell (hESC) reporter lines to isolate first and 

second heart field-like CMs (FHF and SHF-like respectively) and cells of the conduction 

system. The cell populations were characterized using immunostaining, qPCR and 

electrophysiological studies. 

Using our FHF specific TBX5-TdTomato/W hESC reporter line we show that TBX5+ 

cells represent an enriched population of FHF CPCs that can give rise to CMs, 

endothelial and smooth muscle cells in vitro. Transplantation of hESC-derived TBX5+ 

and TBX5- CPCs into the injured left ventricle of mice showed that these cells were 

able to survive and predominantly gave rise to CMs. RNA-sequencing analysis of 

hESC-derived cardiac cells at different stages of development suggested that while 

TBX5 expression leads to an enrichment of FHF- derived CMs, TBX5- cells also 

generate cardiac cells that resemble SHF CMs at the transcriptional level.  To enable 

prospective isolation of FHF- and SHF-like CMs we generated a double transgenic hESC 

reporter line TBX5TdTomato/W/NKX2-5eGFP/W. Our studies demonstrate that FHF-like CMs 

can be prospectively isolated based on the co-expression of TBX5/NKX2-5 whereas 

SHF-like CMs are marked by NKX2-5 but lack TBX5 expression, and finally nodal cells 

are enriched within the fraction expressing only TBX5.  Using electrophysiological, 

functional, transplantation, and transcriptional studies we were able to confirm the 
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isolation of FHF and SHF specific CMs from differentiating hESCs.  Furthermore, we 

identify CORIN as a novel cell surface marker of both FHF-like progenitors and CMs. 

These results provide a platform to investigate in vitro cardiovascular development and 

may facilitate a safe approach for cell therapy in heart disease.
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Introduction 

In vertebrates, the heart is the first organ to form and plays an essential role in the 

delivery of oxygen and nutrients to the body throughout development and life. Mammalian 

heart development is a precise, complex and highly orchestrated process that involves a 

series of morphogenic and molecular changes that result in generation of multiple cell 

lineages which ultimately makeup the functioning heart. The heart is formed from the 

anterior portion of the primitive streak by a small population of mesodermal cells, from 

which cardiac progenitors arise 1, 2. The cardiac progenitors then migrate to the lateral 

plate mesoderm where cell-to-cell interactions are necessary for progenitor specification 

to a cardiac cell fate 3, 4.  

Cardiac specification is also highly influenced by signaling molecules released 

from adjacent mesoderm and overlying endoderm 5-7. Inhibitory signals secreted from the 

axial mesoderm and neural plate delineates the lateral and medial borders of the cardiac 

region commonly referred to as the cardiac mesoderm 3, 8. The cardiac mesoderm will 

then migrate to the midline forming a transient embryonic structure known as the cardiac 

crescent. During the third week of gestation, cells of the cardiac crescent undergo 

differentiation and merge along the ventral midline to form a central pump (the primitive 

heart tube) (Figure 1)9. Later in development, asymmetrical looping of the cardiac tube 

ensures the correct alignment of the atrial and ventricular chambers and subsequent 

morphogenesis results in the formation of the valves, septa, and conduction system that 

comprise the mature, functioning heart (Figure 1)10-12.  

The current model of early vertebrate heart development describes two distinct cell 

sources that contribute to the adult heart 13. Cells from the first cell source (known as the 
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first heart field) give rise to the cardiac crescent and myocardial cells of the primitive heart 

tube (Figure 1). Descendants of the first heart field are found in all chambers of the adult 

heart. Cells of the second heart field contribute to the primitive heart tube at the arterial 

pole, which gives rise to the proximal aorta walls and pulmonary trunk in the postnatal 

heart 14, and the venous pole, which gives rise to the left and right atria and outflow tract 

(Figure 1) 15. 

 

 

Figure 1. An overview of mammalian heart development. Oblique views of whole embryos and frontal 

views of cardiac precursors during human cardiac development are shown. (First panel) First heart field 

(FHF) cells form a crescent shape in the anterior embryo with second heart field (SHF) cells medial and 

anterior to the FHF. (Second panel) SHF cells lie dorsal to the straight heart tube and begin to migrate 

(arrows) into the anterior and posterior ends of the tube to form the right ventricle (RV), conotruncus (CT), 

and part of the atria (A). (Third panel) Following rightward looping of the heart tube, cardiac neural 

crest (CNC) cells also migrate (arrow) into the outflow tract from the neural folds to septate the outflow 

tract and pattern the bilaterally symmetric aortic archarteries (III, IV, and VI). (Fourth panel) Septation of 

the ventricles, atria, and atrioventricular valves (AVV) results in the four-chambered heart. V, ventricle; 

LV, left ventricle; LA, left atrium; RA, right atrium; AS, aortic sac; Ao, aorta; PA, pulmonary artery; RSCA, 

right subclavian artery; LSCA, left subclavian artery; RCA, right carotid artery; LCA, left carotid artery; 

DA, ductus arteriosus. From Srivastava 9. 

 

 

https://www.sciencedirect.com/topics/immunology-and-microbiology/precursor
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/neural-crest
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/neural-crest
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/neural-fold
https://www.sciencedirect.com/topics/immunology-and-microbiology/aortic-arch
https://www.sciencedirect.com/topics/immunology-and-microbiology/artery
https://www.sciencedirect.com/topics/immunology-and-microbiology/aorta
https://www.sciencedirect.com/topics/immunology-and-microbiology/pulmonary-artery
https://www.sciencedirect.com/topics/neuroscience/subclavian-artery
https://www.sciencedirect.com/topics/immunology-and-microbiology/carotid-artery
https://www.sciencedirect.com/topics/immunology-and-microbiology/ductus-arteriosus
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Using Human embryonic stem cells to study development and a source for cell-

based therapies  

The in vitro differentiation of Human embryonic stem cell (hESCs) recapitulates 

many aspects of early human development and provides insight to an otherwise 

inaccessible period of embryogenesis. hESCs have been used to derive cardiac 

differentiation schemes based on signaling molecules that direct in vivo cardiogenesis 16-

18. These studies have been assisted by the generation of several cardiac reporter lines, 

which have been used to enrich for CPCs as well as their definitive progeny 19-21. While 

some investigators have developed strategies to isolate mature CMs using genetic 

markers such as troponin and myosin heavy chain, others have used early cardiac-related 

transcription factors such as MESP1 and NKX2-5, both of which are essential for cardiac 

cell fate specification 22-29. 

Despite these advances, current differentiation protocols and cardiac-specific 

reporter lines yield heterogeneous populations and lack the capacity for the identification, 

and enrichment, of heart field-specific cardiac progenitors and their progeny. Isolation of 

heart field-specific CMs is critical for several reasons. First, following a typical myocardial 

infarction there is extensive and irreversible loss of CMs, primarily localized to the left 

ventricle (LV) of the heart. The CMs of the LV are predominantly derived from FHF CPCs 

whereas CMs within the right ventricle (RV) originate from the SHF during early 

cardiogenesis 30-32. Although the adult heart consists of CMs from distinct embryonic 

origins that later localize to specific anatomical regions, it is not known whether their 

ontogeny influences their physiological function or response to pathological stressors.  It 

is possible that transplantation of heart field-specific CMs may enhance their retention 



7 
 

and integration after transplantation as well as improve cardiac function. Second, there 

are additional risks associated with the use of a heterogeneous mixture of cells from 

differentiating hESCs for transplantation. These cells include ventricular and atrial CMs 

from both heart fields as well as pacemaker cells 33-36.  The contamination of nodal cells 

could potentially generate a nidus for arrhythmias post-transplantation, which is a major 

concern that needs to be addressed prior to reaching the clinic. Finally, efficient and 

reproducible differentiation strategies to generate FHF and SHF CMs will aid modeling 

and developing treatments for diseases that specifically affect either the left or right 

regions of the heart. 

Attempts to derive heart field-specific cardiac progenitors have been made using 

ISL1 as a marker for SHF cells 19, 37. ISL1, while initially expressed throughout the heart, 

becomes restricted to the SHF during the elongation of the pre-heart tube before being 

downregulated 19, 37-40. ISL1 marks a stage-specific, self-renewing cardiac progenitor 

population capable of giving rise endothelial cells, smooth muscle, and CMs 19. However, 

ISL1 also marks cells from other lineages, including β-Islet cells and motor-neurons 41, 42. 

As such, cardiac directed hESC-derived ISL1+ populations commonly consist of a mixture 

of CPCs and CM subtypes 43. 

In light of this, we took a two-fold approach to identify and purify heart field-specific 

CMs for cell transplantation. First, we generated a FHF-specific, TBX5-TdTomato hESC 

reporter line. In vivo, TBX5 is predominately expressed in the primitive posterior heart 

tube, marking progenitors of the left ventricle and atria 44-50. TBX5 has also been shown 

to interact with NKX2-5, an important transcription factor in cardiac development 51. We 

further developed this system into a double hESC reporter line (TBX5TdTomato/W/NKX2-
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5eGFP/W) that offers a more precise and versatile platform for isolating heart field-specific 

CMs. Utilizing these cell lines, we were able to isolate and characterize CMs derived with 

molecular identities that resemble primary and secondary heart fields using RT-qPCR, 

immunocytochemistry, RNA-sequencing, in vivo cell transplantation, and 

electrophysiological studies. These reporter systems were used to optimize the in vitro 

differentiation of CMs that display similar characteristics to FHF and SHF CMs as well as 

nodal cells. Finally, we discovered that CORIN is a novel surface marker that can be used 

to selectively isolate FHF-like CMs, alleviating the requirement for genetically modified 

hESC lines. Overall, our studies demonstrate that heart field-specific CMs can be 

prospectively isolated from differentiating hESCs. This is an essential advancement for in 

vitro developmental studies as well as cell transplantation therapies for heart disease. 
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Methods 

Maintenance of hESC 

Feeder-free culture of hESC lines were carried out on Matrigel matrix (Corning) or 

Geltrex (Thermo Fisher Scientific) coated dishes with mTeSR1 medium (STEMCELL 

Technologies) and was changed every day. Cells were passaged at 80-90% confluence 

using ReLeSR (STEMCELL Technologies).  

Generation of reporter cell lines 

To generate a non-perturbing knock-in reporter cell line for TBX5, the T2A self-

cleaving peptide followed by TdTomato gene were incorporated in-frame into the last 

exon (Exon 9) of TBX5 without affecting its 3'UTR using TALENs. The TBX5-T2A-

TdTomato donor vector was built to contain left- and right homology arms (800bp-1000bp) 

that flank the genomic cleavage site in the TBX5 locus. Southern blotting was performed 

using probes and enzymes described in Table S1. Karyotyping was performed by WiCell 

Research Institute. The H9-TBX5TdtomatoTNNT2copGFP and TBX5TdtomatoMYL2copGFP 

reporters were constructed by transducing the H9-TBX5TdTomato cell line with TNNT2-

copGFP and MYL2-copGFP lentiviruses according to the manufacturer’s instructions. 

The pre-packaged lentiviral preparations of pGreenZeo-TNNT2-copGFP and 

pGreenZeo-MYL2-copGFP reporters were obtained from System Biosciences (SBI). The 

HES3-NKX2-5eGFP/W reporter cell line was generously provided by E. Stanley and A. 

Elefanty (Monash University, Victoria, AU) and was generated by targeting the eGFP 

coding sequence to the NKX2-5 locus of HES3 cells using previously described protocol 

21. The HES3-TBX5TdTomato/W/NKX2-5eGFP/W double reporter line was generated by using 
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the same TBX5 targeting strategy to insert TBX5-T2A-TdTomato into the HES3-NKX2-

5eGFP/W reporter line.   

Differentiation of hESC 

Monolayer differentiations of cardiomyocytes were carried out using the GiWi 

strategy as previously described 52. Briefly, H9-TBX5TdTomato hESCs were grown on 

Matrigel or Geltrex to 90% confluency. The cells were treated with 12µM CHIR99021 

(Tocris Biosciences) in RPMI1640 media (Thermo Fisher) supplemented with B27 minus 

insulin (RPMI B27-ins; Thermo Fisher Scientific) on Day 0. Exactly 24 hours later (Day 

1), the media was replaced with RPMI B27-ins. On Day 3 and Day 5, the media was 

replaced with RPMI B27-ins with 5µM IWP2 (Tocris Biosciences) and RPMI B27-ins 

respectively. From Day 7 onwards cells were maintained in RPMI media supplemented 

with B27 (RPMI B27; Thermo Fisher Scientific) until analysis. 

HES3-TBX5TdTomato/W/NKX2-5eGFP/W hESCs were grown on Geltrex to 90% 

confluency then harvested as single cell suspension using Accutase (Thermo Fisher 

Scientific) and resuspended in mTeSR1 containing 10µM ROCK inhibitor Y-27632 (Tocris 

Biosciences). Cells were counted using a Countess II Automated Cell Counter (Thermo 

Fisher) and re-plated onto Geltrex coated plates at 1.3 x 105 cells/cm2 for FHF 

(TBX5+NKX2-5+), 2.0 x 105 cells/cm2 for SHF (TBX5-NKX2-5+) and 3.0 x 105 cells/cm2 for 

nodal (TBX5+NKX2-5- SIRPα+CD90-) in mTeSR1 containing 10µM ROCK inhibitor Y-

27632 (day -2 of differentiation). At day -1 media was changed to mTeSR1. At day 0 

media was changed to RPMI B27-ins containing CHIR99021 (10µM for FHF, 6µM for 

SHF and 12µM for nodal). After 24 hr (day 1) media was changed to RPMI B27-ins until 
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day 3. On day 3 of differentiation cells were changed to RPMI B27-ins containing 5μM 

IWP2. At day 5, media was changed to RPMI B27-ins until day 7 when media was 

switched to RPMI B27. Cells were maintained in this media and changed every 3 days 

thereafter. 

Flow cytometry and cell sorting 

Differentiated hESCs were dissociated with TrypLE Express (Thermo Fisher) for 

3-4 min at 37°C to form a single cell suspension. Antibody labelling of cells was performed 

using anti-VCAM1 APC (Biolegend), anti-SIRPα PE-Cy7 (Biolegend), anti-Tra1-81 Alexa 

Fluor 594 (Biolegend), anti-CD90 APC (Biolegend), anti-Podoplanin PE-cy7 (Biolegend), 

anti-CORIN (KAN Research Institute Inc.), anti-TNNT2 BV421 (BD Bioscience) and anti-

mouse IgG APC (Biolegend). Anti-mouse IgG APC was used at a dilution of 1:50, all other 

antibodies were used at a dilution of 1:100. Detailed antibody information is provided in 

Table S3. All antibodies were diluted and incubated in FACS buffer (2% FBS, 1% BSA, 

2mM EDTA) containing 10µM ROCK inhibitor Y-27632. Samples were incubated with 

antibodies for 30-60 min on ice and washed using FACS buffer. Control stains using non-

specific antibodies (IgG) were performed. Cells were sorted using a FACS-ARIA (BD 

Biosciences) into RPMI B27 with 10µM ROCK inhibitor Y-27632. Flow analysis was 

performed using a Fortessa flow cytometer (BD Biosciences) and analyzed using FlowJo 

software (Tree Star Inc).  

For intracellular staining of TNNT2, cells were first stained for CORIN as described 

above, washed and incubated with anti-mouse IgG APC secondary for 30 min on ice in 
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FACS Buffer, then stained for TNNT2 using the BD Cytofix/Cytoperm fixation and 

permeabilization kit (BD Biosciences) according to the manufacture’s instructions.   

RNA-sequencing 

Total RNA of the cells was isolated using TRIZOL LS Reagent (Thermo Fisher), 

chloroform extraction and isopropanol precipitation followed by further purification using 

RNeasy Micro kit (Qiagen). The quality of the RNA was assessed by Agilent 2200 

Tapestation. For library preparation, total RNA was fragmented and subjected to cDNA 

conversion, adapter ligation and amplification using KAPA Stranded RNA-Seq Library 

Preparation Kit according to the manufacturer's instructions. The final library was 

quantified using Agilent 2100 Bioanalyzer to evaluate its integrity. The deep sequencing 

for 2x150 bp paired-end reads was performed using Illumina HiSeq 2500 Sequencing 

System.  

For sample analysis, RNA-seq data was mapped to the reference genome 

(GRCh38) with OLego version 1.1.5 53 and normalized by using TPM (Transcripts per 

millions) analysis. Total number of reads mapped to a known transcript annotation was 

estimated using featureCounts version v1.5.0-p2 54. Expression levels for each transcript 

were determined by normalizing the counts returned by featureCounts using custom Perl 

scripts. Normalized expression levels for each transcript were determined by transforming 

the raw expression counts to TPM following log2 scaling. Gene Ontology (GO) 

enrichments were computed using DAVID Bioinformatics Resources v6.8. RStudio was 

used to run custom R scripts to generate heatmaps using ‘heatmaply’ package. 

 Quantitative real-time RT-PCR 
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Total RNA was extracted from cells using RNeasy mini or micro kit (Qiagen) 

according to the manufacturer’s instructions. Purified RNA was subjected to reverse 

transcription as described in the iScript cDNA Synthesis Kit (Bio-Rad Laboratories). 

Following cDNA synthesis, expression level of the genes was quantified by quantitative 

Real-Time PCR (qPCR) using iTaq universal SYBR Green supermix on a CFX96 Touch 

Real-Time PCR Detection System (Bio-Rad Laboratories). The quantification was 

analysed using the CT (threshold cycle) values. The expression of the target genes was 

normalized to GAPDH and the relative expression was calculated using the 2-ΔΔCt method. 

Primers used in this study are in Table S2. 

Immunofluorescent analyses 

Cells cultured on Geltrex coated glass coverslips were fixed in 4% PFA in PBS for 

10 minutes at RT followed by PBS washings. Explanted hearts were fixed in 4% PFA 

overnight at 4C, then cryoprotected in 30% sucrose solution overnight at 4C and 

embedded in Tissue-Plus O.C.T. compound (Fisher Scientific). The tissue blocks were 

frozen at -80C, after which the frozen blocks were cryo-sectioned using Leica CM 1860 

cryostat (Leica Biosystems). For each block, 8µm thick cross sections were collected on 

Superfrost Plus Microscope slides (Fisher Scientific), which were later used for 

immunohistochemistry staining procedures. 

For staining, fixed cells or tissue sections were permeabilized with 0.2% Triton X-

100 in PBS for 10 minutes prior to blocking non-specific binding with 10% normal serum 

(from the same host species as the labeled secondary antibody) in PBST (PBS with 0.1% 

Tween-20) for 30 minutes. Cells and sections were incubated with primary antibodies 
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diluted in blocking buffer at 4C overnight, washed 3 times in PBST, then stained with 

secondary antibodies diluted in blocking buffer at RT for 1 hour followed by 3 washes in 

PBST. The cell nuclei were counterstained with DAPI using VECTASHIELD Antifade 

Mounting Medium with DAPI (Vector Laboratories). The stained cells and tissue sections 

were imaged with a Leica TCS SP5 microscope using LAS X software (Leica Biosystems) 

or a LSM 880 with Airyscan Confocal Microscope using ZEN software (Carl Zeiss 

Microscopy). 

The following primary antibodies were used: Rabbit anti-Cardiac Troponin T 

(Abcam; 1:400), mouse anti-TBX5 (Santa Cruz; 1:100), goat anti-ISL1 (R&D Systems; 

1:20), mouse anti-SHOX2 (Abcam; 1:200), mouse anti-cardiac Troponin T (Thermo 

Fisher; 1:400), rabbit anti-Oct4 (EMD Millipore; 1:200), mouse anti-Nanog (EMD Millipore; 

1:500), mouse anti-mitochondria (Abcam; 1:800), rabbit anti-CD31 (Abcam; 1:100), rabbit 

anti-CNN1 (Sigma; 1:200), rabbit anti-Cx43 (Cell Signaling Technology; 1:200) and rabbit 

anti-CORIN (Abcam; 1:100). Detailed antibody information is provided in Table S3.  

The following secondary antibodies were used: Goat anti-rabbit Alexa Fluor 488 

(Thermo Fisher; 1:150), goat anti-mouse Alexa Fluor 488 (Thermo Fisher; 1:150), goat 

anti-rabbit Alexa Fluor 594 (Thermo Fisher; 1:150), goat anti-mouse Alexa Fluor 594 

(Thermo Fisher; 1:150) rabbit anti-mouse Alexa Flour 647 (Thermo Fisher; 1:150), 

donkey anti-goat Alexa Flour 647 (Thermo Fisher; 1:150). 

Ischemia/Reperfusion injury and cell transplantation in mice 

Experiments were performed in 8-10-week-old male non-obese diabetic/SCID 

mice (NSG) with common γ-chain KO. Mice were anesthetized by intraperitoneal injection 
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of ketamine/xylazine. Mice were intubated for positive pressure ventilation with oxygen-

enriched room air during the surgical procedure. After left thoracotomy between ribs four 

and five, the pericardium was opened, and 8-0 suture were placed around the left anterior 

descending artery (LAD) which is 1-2 mm from the tip of the normally positioned left atrium 

and the suture was tightened to occlude the vessel for 45 min before being released. The 

chest was closed in layers using 5-0 Vicryl suture and ventilation was maintained until 

sufficient spontaneous breathing occurs. Seven days after injury, cells were transplanted 

at three sites into the border zone under direct visualization. Approximately 1.2x106 cells 

were resuspended in growth factor reduced Matrigel (Corning) and RPMI B27 (1:1) then 

injected at each site using 27-guage needle. TBX5+ and TBX5- cells were sorted on day 

7 of differentiation and re-cultured in RPMI B27 media for two additional days before 

transplantation. TBX5+NKX2-5+, TBX5-NKX2-5+, and CORIN+ cells were sorted on day 

10 of differentiation and re-cultured in RPMI B27 media for three additional days before 

transplantation.  Mice were sacrificed, and hearts were harvested for sectioning and 

immunohistochemistry either 7-8 weeks post-transplantation (TBX5+ and TBX5-) or 5-6 

weeks post-transplantation (TBX5+NKX2-5+, TBX5-NKX2-5+, and CORIN+). 

Teratoma formation assay 

Adult male NSG mice (8-10 weeks old) were anesthetized with isoflurane and after 

a transverse incision to expose the kidney, 5x105 cells resuspended in growth factor 

reduced Matrigel and RPMI B27 (1:1) were injected directly underneath the capsular 

membrane of the kidney using a 26-gauge Hamilton syringe. The kidney was then gently 

repositioned into the abdominal cavity and the muscle and skin was sutured. Four weeks 

after transplantation the kidney was removed and processed for histology analysis. 
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Patch clamp 

For electrophysiological characterization using patch clamp cultured cells were 

dissociated and respective cell populations were isolated by FACS as described above. 

Isolated cells were resuspended in RPMI B27 supplemented with 10µM ROCK inhibitor 

Y-27632 at 1-2x106 cells/ml. Drops of 25µl of this cell suspension were applied to glass 

cover slips (5mm) that were pre-coated with Geltrex in 6-well plates. The cells were 

incubated in the 25µl volume for 8-12 hr to facilitate cell attachment. The dishes were 

then flooded with 2ml of RPMI B27 supplemented with 10µM ROCK inhibitor Y-27632. 

ROCK inhibitor was removed after 24 hrs and the media was changed every 2 days. 

Cultures were used for patch clamp recordings 4–14 days following plating. Action 

potentials were measured using standard patch- clamp techniques in current-clamp 

modes, (Axopatch 200B, Axon Instruments). Voltages were recorded with 2 KHz 

sampling rate (DigiData 1200, Axon Instruments) and analyzed with Clampfit software 

(Axon Instruments). Borosilicate glass microelectrodes were used with tip resistances of 

2–5 MΩ when filled with pipette solution.  

Monolayer Optical Mapping 

For high-resolution optical mapping of action potential (AP) propagation, cultured 

cells were dissociated and respective cell populations were isolated by FACS as 

described above. Isolated cells were suspended in RPMI B27 supplemented with ROCK 

inhibitor Y-27632 (10µM) at 20-22x106 cells/ml. Drops of 25µl of this cell suspension were 

applied to Geltrex-coated 5mm coverslips (5x105 cells/coverslip). The cells were 

incubated in the 25µl volume for 8-12 hr to facilitate cell attachment. The dishes were 

then flooded with 2ml of RPMI B27 supplemented with 10µM ROCK inhibitor Y-27632. 
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ROCK inhibitor was removed after 24 hrs and the media was changed every 2 days.  On 

day of optical mapping recordings, once contractions were observed, cells were stained 

with voltage-sensitive dye, Di-8-ANEPPS (40µM; Thermo Fisher) and washed with 

normal Tyrode solution three times.  Optical AP recording were made using MiCAM-

Ultima CMOS camera (100 × 100 pixels, 16µm/pixel) at 500 frames per second (fps). 

First, spontaneously occurring APs were recorded, followed by overdrive electrical pacing 

(1Hz, 0.5Hz). The basic cycle length was gradually decreased until loss of 1:1 capture or 

re-entry was induced. 

Chronotropic response to β-adrenergic agonist and antagonist 

Day 10 FACS isolated cells were re-plated on Geltrex coated dishes for 7-10 days. 

Basal beating rates were counted using a light microscope then 1µM Isoproterenol 

(Sigma) was added and incubated at 37°C for 5 min before beating rates were counted 

again. 10 µM Propranolol (Sigma) was then added, incubated at 37°C for 5 min and 

beating rate counted again.      

Animal Use and Care 

Animal housing, handling, and procedures were approved by and carried out in 

accordance with guidelines set by the UCLA Animal Research Committee (ARC), UCLA 

Institutional Animal Care and Use Committee (IACUC), and the NIH Guide for the Care 

and Use of Laboratory Animals. 

Human fetal tissue 
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Anonymized Human fetal heart samples were obtained from the UCLA 

Translational Pathology Core Laboratory as approved by UCLA IRB. 

Statistics  

All data are represented as mean ± standard error of mean (SEM). Indicated 

sample sizes (n) represent biological replicates and individual tissue samples. No 

statistical method was used to predetermine the samples size. Due to the nature of the 

experiments, randomization was not performed and the investigators were not blinded. 

Statistical significance was determined by using Student’s t test (unpaired, two-tailed) in 

GraphPad Prism 6 software. Results were considered to be significant at p < 0.05 (*), p 

< 0.01 (**), p < 0.001 (***), and p < 0.0001 (****). All statistical parameters are reported 

in the respective figures and figure legends.  
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Results  

Generation and validation of a FHF-specific cardiac progenitor hESC reporter line 

TBX5 is predominately expressed in the primitive posterior heart tube, marking 

progenitors of the LV and atria, corresponding to the FHF 44-50. To enrich for FHF-

progenitors from differentiating hESCs, we introduced the TdTomato (TdT) gene into the 

TBX5 locus of H9 hESCs (TBX5TdTomato/W) by TALEN-mediated homologous 

recombination. To avoid haploinsufficiency, the TALEN targeting strategy was designed 

such that the TdTomato gene was fused with exon 9 (last exon) of TBX5 via a T2A 

peptide, which allowed accurate reporter expression while maintaining biallelic 

expression of TBX5 (Figure 2A). The correctly targeted clone was identified by PCR 

analysis and validated by Southern Blotting using TBX5-specific probes (Figure 2B). The 

cells exhibited a normal karyotype (Figure 2C), successfully differentiated into teratomas 

contributing to all three germ layers when transplanted under the kidney capsule in NSG 

mice (Figure 2D) and expressed pluripotency markers after several passages (Figure 2E 

and 2F).  
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Figure 2. Generation and validation of the H9-TBX5TdTomato/W hESC line. (A) Schematic of the TALEN 
targeting strategy used to insert TdTomato into the TBX5 locus. (B) PCR screening using B1/T1 primers to 
identify correctly targeted TBX5-TdT clones. Southern blotting of positive H9-TBX5TdTomato clone with 5'arm 
and 3'arm probe of TBX5 to validate the targeting of the TBX5 gene. (C) Karotyping analysis of H9-
TBX5TdTomato cells. (D) Teratoma formation of H9-TBX5TdTomato hESCs when transplanted into the kidneys 
of NSG mice depicting the three germ layers (Scale bar = 75µm). (E and F) Flow cytometry analysis and 
immunofluorescence staining for pluripotency genes (Scale bar = 50µm). (G) Schematic representation of 
the cardiomyocyte differentiation strategy used. (H) Brightfield (BF), TdT (red) and overlayed 
photomicrographs of TBX5+ and TBX5- cells 1-day post sorting (Day 7+1) (Scale bar = 75µm). (I) Relative 
gene expression of cardiac genes in TdT+ and TdT- populations at days 6-15 during differentiation 
normalized to undifferentiated hESCs (n=3, Error bars represent SEM). Scale bars = 100µm.   
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In vitro differentiation reveals enrichment of FHF progenitors in TBX5+ cells 

We first explored the lineage commitment of TBX5-marked cells from 

differentiating H9-TBX5TdTomato/W hESC line using a monolayer cardiac differentiation 

protocol (Figure 2G) described previously 52. Flow cytometry analysis beginning at day 4 

of differentiation showed progressive increase in the expression of TdT which was widely 

expressed by day 7-12 of differentiation (Figure 3A). Further, TdT+ cells were readily 

sorted using fluorescence activated cell sorting (FACS) (Figure 2H and 3A). Gene 

expression analysis on FACS isolated populations demonstrated that the TdT+ population 

had significantly higher levels of TBX5 mRNA than TdT- fractions at all time points 

examined (Figure 3B). Furthermore, TBX5+ (TdT+) cells showed enriched expression of 

mesoderm and cardiac progenitor transcripts, including NKX2-5, MEF2C and GATA4 as 

well as cardiac sarcomeric genes such as TNNT2, ACTN2, MYL2 and MYH7 (Figure 2I 

and 3B). In contrast, the TBX5- population expressed higher levels of ISL1 and lower 

levels of contractility genes during differentiation (Figure 2I and 3B), suggesting that 

perhaps TBX5- cells generated by this differentiation protocol may contain SHF 

progenitors in addition to other cells of mesoderm origin. Flow cytometry at day 7 revealed 

that nearly all TBX5+ cells (>97%) expressed the CPC marker, SIRPα, with 23% also co-

expressing VCAM1 (vs 90% and 7% respectively in TBX5- cells), providing evidence that 

TBX5+ cells preferentially commit to a CM phenotype (Figure 3C) 21, 55. Interestingly, when 

sorted on day 7 and re-cultured under cardiac conditions for an additional 7 days (day 

7+7), the majority of TBX5+ cells proceed to upregulate VCAM1 and express TNNT2 

(Figure 3C and 3D), with an increased propensity to form spontaneously contracting 
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monolayers.  These data demonstrate that H9-TBX5TdTomato/W faithfully report expression 

of the endogenous gene.  

Figure 3. Characterization of the H9-TBX5TdTomato/W hESC line. (A) Flow cytometric analysis of TdTomato 
(TdT) expression in differentiating hESCs. (B) Relative gene expression of cardiac genes in TdT+ and TdT- 
populations at days 6-15 during differentiation normalized to undifferentiated hESCs (n=3, Error bars 
represent SEM). (C) FACS plots showing percentage of TdT+ and TdT- cells on day 7 and the percentages 
of SIRPα+ and VCAM1+ cells within the TdT+ and TdT- populations on day 7 and day 7+7. (D) Phase-
contrast (Phase), TdT (red), and overlayed photomicrograph of day 7 differentiated H9-TBX5TdTomato cells 
(top) (Scale bar = 75µm). Immunofluorescence expression of TBX5 (green) and the cardiomyocyte marker 
(TNNT2; red) 7 days post sorting (Day 7+7) (Bottom) (Scale bar = 10µm). 
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We then determined whether TBX5+ and TBX5- progenitors are capable of giving 

rise to other cardiac cell types such as smooth muscle (SMC) and endothelial cells (EC). 

Gene expression analysis on FACS isolated populations at various timepoints of 

differentiation showed expression of SMC (CNN1) and EC (CD31) genes in both TBX5+ 

and TBX5- populations (Figure 4A). Immunostaining on TBX5+ and TBX5- sorted cells 

confirmed both TBX5+ and TBX5- progenitors can give rise to clusters of SMC and EC 

(Figure 4B). Together, these data suggest that while expression of TBX5 during early 

differentiation of hESCs may favor generation of FHF CMs, both TBX5+ and TBX5- 

progenitors remain multi-potent with the capacity to differentiate into SMCs and ECs in 

vitro.  

Figure 4: Endothelial and Smooth muscle contribution of TBX5 cells. (A) Gene expression analysis of 
TBX5+ and TBX5- populations at various timepoints of differentiation for SMC (CNN1) and EC (CD31) genes 
(n=3, Error bars represent SEM). (B) Immunofluorescence analysis of SMC and EC markers (CNN1 and 
CD31, respectively) in TBX5+ and TBX5- cells sorted at day 7 and re-cultured in cardiac culture conditions 
for 7 days (Day 7+7) (Scale bars = 50µm).  
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TBX5+ cells show engraftment and differentiation into cardiomyocytes when 

transplanted into the injured left ventricle of mice 

To evaluate the in vivo engraftment and differentiation potential of TBX5+ and 

TBX5- progenitors, day 7 sorted fractions were cultured for an additional 2 days then 

transplanted into the left ventricular peri-infarct area of NSG mice 7 days after ischemia-

reperfusion (I/R) injury. Human specific mitochondrial staining revealed many clusters of 

TBX5+ cells (Figure 5A) whereas fewer TBX5- cells were retained in the transplanted 

hearts (Figure 5B). Much of the transplanted TBX5+ and TBX5- grafts showed a TNNT2+ 

CM phenotype with expression of the gap junction protein, Cx43, within the grafts, but not 

between the host CMs and transplanted cells (Figure 5C and 5D). Examination of the 

TNNT2 staining revealed that the grafted CMs displayed disorganized sarcomeric 

structure compared to the host CMs (Figure 5E and 5F). In contrast to our in vitro data, 

we did not observe CD31 or CNN1 within the grafts (Figure 5C and 5D), suggesting that 

the TBX5+ and TBX5- fractions may have a preferential differentiation towards CMs in 

vivo. Additionally, we did not observe any teratoma formation in either of the transplanted 

populations. Collectively, these results indicate that hESC-derived TBX5+ progenitors 

exhibited greater survival after transplantation into the injured LV of mice, where they 

predominantly give rise to CMs without any evidence of structural integration into the host 

myocardium. 
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Figure 5. In vivo engraftment and differentiation potential of TBX5+ and TBX5- progenitors. 
Immunohistochemical analysis of engrafted (A) TBX5+ or (B) TBX5- cells stained with a human specific 
mitochondria antibody. All cells were visualized using DAPI. Dashed box shows magnified area on right 
(Scale bar = 100µm). (C and D) Analysis of graft areas for the presence of gap junction protein Cx43, 
endothelial cells (CD31) and smooth muscle cells (CNN1) in TBX5+ and TBX5- transplanted hearts. 
Cardiomyocytes are marked with TNNT2 and the presence of human cells is shown by human mitochondria 
staining. Graft areas are marked with dashed lines (Scale bars top = 20µm, bottom = 100µm ). (E and F) 
Analysis of TNNT2 sarcomeric structure of transplanted TBX5+ and TBX5- cells (Scale bar = 100µm). 
Dashed boxes outline magnified graft and host areas shown on the right (Scale bars = 20µm). 
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Transcriptional profiling of TBX5 cells at different developmental stages 

Our results showed the ability of both TBX5+ and TBX5- progenitors to give rise to 

CMs. To identify potential differences between these two populations at the transcriptomic 

level, we performed detailed RNA sequencing analyses at early and late stages of cardiac 

differentiation. We used TNNT2copGFP and MYL2copGFP lentiviral reporter constructs to 

generate dual H9-TBX5Tdtomato/TNNT2copGFP and -TBX5Tdtomato/MYL2copGFP reporter lines, 

which enabled the isolation of early stage TNNT2+ CMs at Day 14 and later stage MYL2+ 

ventricular CMs at Day 30 of differentiation (Figure 7A). These cell lines, along with the 

previously generated H9-TBX5TdTomato single-reporter, were differentiated and FACS 

isolated on days 7, 14, and 30 and compared to undifferentiated hESCs (day 0) as a 

baseline (Figure 6A and 7B).   

We paid particular attention to the gene expression patterns of CMs (TNNT2+ and 

MYL2+) derived from both TBX5+ and TBX5- (Figure 6B). Principal component analysis 

(PCA) confirmed the consistency in overall gene expression changes across samples 

within each group (Figure 6C). While a clear distinction in the transcriptomes between 

day 0 hESCs and the differentiated populations was observed, overall differences 

between early and late stage CMs appeared to be independent of TBX5 expression 

(Figure 6C, 7C and 7E). However, in gene groups related to cardiac development and 

maturation there were key differences between TBX5+ and TBX5- populations and their 

derivatives (Figure 6D). Both TBX5+ and TBX5- CM populations showed increased 

expression for cardiac contraction, ventricular-, and atrial-related genes. Notably, 

expression of SHF markers such as ISL1 and TBX1 were enriched in TBX5- populations, 

suggesting the possibility that TBX5- CMs may consist of SHF-like CMs (Figure 6D and 
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7G). These data suggest that the TBX5 reporter line may be used as a tool for isolating 

heart field-specific populations of hESC-derived CMs. Gene ontology (GO) analysis of the 

top differentially expressed genes between day 7 TBX5+ and TBX5- populations revealed 

that TBX5+ cells are more enriched for cardiac development and contraction pathways 

(Figure 6E). Additional differences were observed at later stages of development (Figure 

7D and 7F). TBX5+TNNT2+ CMs at day 14 had a gene expression profile that included 

pathways related to energy production and ATP synthesis, suggestive of a possible shift 

toward gene programs required for initiation of contraction by these immature CMs 

(Figure 7D). By day 30, more mature TBX5+MYL2+ ventricular CMs showed an even 

greater enrichment of contraction and cardiac development genes (Figure 7F).  

Due to the lack of robust surface markers for hESC-derived CMs, we sought to 

identify novel surface markers within our RNA-sequencing dataset that are distinctly 

expressed on CPCs and continue their expression when differentiated to CMs. Using the 

DAVID Bioinformatics Resource, we identified the top 10 highly expressed surface 

markers from the TBX5+, TBX5+TNNT2+, and TBX5+MYL2+ populations, 7 of which were 

common to these groups. Expression of these particular surface markers were low in the 

hESC, TBX5-, TBX5+TNNT2-, and TBX5+MYL2- populations, indicating the selectivity of 

these markers for hESC-derived CMs (Figure 6F). We discovered 3 potential surface 

markers that consistently ranked high (top 3) when we compared their expression ratios 

at the 3 differentiation time points: VCAM1, CRYAB, and CORIN (Figure S3H). CORIN 

ranked in the top 3 expression ratios at all 3-time points and appeared to be the most 

suitable surface marker for differentiating CMs since its expression levels remained high 

throughout CM maturation. 
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Collectively, gene expression analysis of hESC-derived cardiac cells at different 

stages of development suggests that while TBX5 expression leads to an enrichment of 

FHF-like CMs, TBX5- populations also generate cardiac cells that resemble SHF CMs at 

the transcriptional level. Furthermore, Corin was identified as a top surface marker 

candidate for prospective identification and isolation of hESC-derived FHF-like CMs. 
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Figure 6. Transcriptional profiling of TBX5+ and TBX5- populations at different developmental 
stages. (A) Representative flow cytometric plots showing the cell sorting strategy used for isolating distinct 
populations at day 7, 14 and 30 of differentiation. (B) Schematic showing TBX5+ and TBX5- derived 
cardiomyocyte populations at varying timepoints of differentiation. (C) PCA analysis of TBX5+ and TBX5- 
derived cardiomyocyte populations. (D) Heatmap comparing cardiac-related and pluripotency gene 
expression of TBX5+ and TBX5- derived cardiomyocyte populations. (E) GO analysis of the top differentially 
expressed genes between TBX5+ and TBX5- populations at day 7 of cardiac differentiation. (F) Heatmap 
showing co-expression of cardiac contraction and surface marker genes in TBX5+ and TBX5- cells at day 
7 and TBX5+ cardiac and non-cardiac populations at day 14 and 30.  
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Figure 7. Transcriptional profiling of TBX5+ and TBX5- populations at different developmental 
stages.  (A) Schematic of lentiviral constructs used to generate TBX5Tdtomato/TNNT2copGFP and 
TBX5Tdtomato/MYL2copGFP reporter lines and fluorescence microscopy images of hESC derived 
cardiomyocytes at day 14 (TNNT) and day 30 (MYL2) (Scale bars = 100µm). (B) Schematic showing all 
TBX5+ and TBX5- derived populations at varying timepoints of differentiation. (C) PCA analysis of TBX5+ 
and TBX5- cardiac and noncardiac populations at day 14. (D) GO analysis of the top differentially expressed 
genes between TBX5+TNNT2+ and TBX5-TNNT2+ populations at day 14 of cardiac differentiation. (E) 
PCA analysis of TBX5+ and TBX5- cardiac and noncardiac populations at day 30. (F) GO analysis of the 
top differentially expressed genes between TBX5+MYL2+ and TBX5-MYL2+ populations at day 30 of 
cardiac differentiation. (G) Heatmap comparing cardiac-related gene expression inTBX5+ and TBX5- 
derived non-cardiac populations. (H) Ranking of the top 10 expression ratios of cell surface genes between 
TBX5+ and TBX5- at day 7 and TBX5+ cardiac and non-cardiac populations at day 14 and 30. Scale bars 
= 100µm.         
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Generation and characterization of hESC-derived FHF-, SHF-, and nodal-like 

cardiomyocytes      

Our in vitro and in vivo data suggest that both TBX5+ and to a lesser extent TBX5- 

cells can give rise to CMs under cardiac differentiation conditions. RNA-sequencing 

analysis revealed that when used in conjunction with the mature CM markers TNNT2 or 

MYL2, TBX5+ cells can generate FHF-like CMs while the progeny of TBX5- cells represent 

SHF-like CMs. To further explore the generation of heart field-specific CMs, we created 

a HES3-TBX5TdTomato/W/NKX2-5eGFP/W double reporter line. We used the same TALEN 

targeting strategy as described above (Figure 2A) to insert the TdT gene into exon 9 of 

TBX5 via a T2A peptide in a previously characterized HES3-NKX2-5eGFP/W hESC line 21. 

Since NKX2-5 is expressed in nearly all myocytes of the developing heart (excluding the 

conduction system), we hypothesized that differentiation of this double reporter line would 

facilitate isolation of three distinct cardiac-related populations: 1) those that co-express 

TBX5 and NKX2-5 may represent FHF-like CMs (TBX5+NKX2-5+), 2) those that only 

express NKX2-5 may be SHF-like CMs (TBX5-NKX2-5+), and 3) cells that only express 

TBX5 may represent myocytes that make up the conduction system (TBX5+NKX2-5-). We 

optimized the differentiation conditions via altering seeding density and concentration of 

the GSK-3β inhibitor CHIR99021 to efficiently derive either double positive (TBX5+NKX2-

5+) or single positive (TBX5-NKX2-5+ or TBX5+NKX2-5-) populations (Figure 8A and 9A, 

colored boxes). Using a plating density of 1.3x105 cells/cm2 with 10μM CHIR99021 or 

2.0x105 cells/cm2 with 6μM CHIR99021 in the differentiation protocol (Figure 8B) we were 

able to efficiently generate TBX5+NKX2-5+ (76.7 +/- 1.3%) and TBX5-NKX2-5+ cells (41.5 

+/- 1.8%) respectively, as indicated by fluorescence microscopy, spontaneous beating, 
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and flow cytometry analysis at day 10 of differentiation (Figure 10A-D). When we modified 

our differentiation condition to 3.0x105 cells/cm2 with 12μM CHIR99021, we consistently 

observed generation of greater than 80% TBX5+NKX2-5- cells (Figure 9A-C). Recent 

studies have reported that the sinoatrial node (SAN) originates from NKX2-5- progenitors 

in the right sinus horn, distinguishing them from ventricular and atrial myocytes that 

express NKX2-5 56.  
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Figure 8. Quantitative analysis of TBX5+NKX2-5+ and TBX5-NKX2-5+ populations via small-
molecule modulation of Wnt signaling and cell seeding densities.  (A) Representative flow cytometric 
analysis at day 10 of cardiac differentiation showing the expression of TBX5 and NKX2-5. Left column 
represents varying seeding densities and top row shows varying concentrations of CHIR99021. Inset table 
shows results from all combinations of seeding densities and CHIR concentrations. Yellow and green 
highlighted boxes represent the maximum percentage of TBX5+NKX2-5+ and TBX5-NKX2-5+ cells 
obtained, respectively. (B) Schematic representation of the optimized protocols for differentiation of 
TBX5+NKX2-5+ and TBX5-NKX2-5+ populations. 
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Figure 9. Optimization and characterization of hESC derived nodal-like cardiomyocytes. (A) 
Representative flow cytometric analysis at day 20 of cardiac differentiation to optimize the TBX5+NKX2-5- 
population by varying CHIR99021 concentration and seeding density. Table shows results from all 
combinations of seeding densities and CHIR concentrations. Red highlighted boxes represent the 
maximum percentage of TBX5+NKX2-5- cells obtained. (B) Schematic representation of the optimized 
protocol for differentiation of TBX5+ population. (C) Fluorescence microscopy of TBX5+NKX2-5- (nodal-
like) optimized differentiation at day 20 (Scale bar = 100µm). (D) Flow cytometry analysis of TBX5+NKX2-
5- cells for expression of SIRPα and CD90. (E) Flow cytometry analysis of TBX5+NKX2-5- cells for 
expression of Podoplanin. (F) Quantitative expression analysis of day 20 sorted nodal-like cardiomyocytes 
compared to day 10 sorted FHF- and SHF-like cardiomyocytes for nodal specific genes (n=3, Error bars 
represent SEM).  
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It has also been suggested that SAN-like pacemaker cells can be isolated from 

differentiating hESCs as NKX2-5- CMs that express SAN lineage markers 57. These 

findings prompted us to examine whether the TBX5+NKX2-5- cells may be enriched for 

SAN-like pacemaker cells. Flow cytometry analysis at day 20 showed that approximately 

60% of the TBX5+NKX2-5- population was SIRPα+CD90-, indicative of a nodal cell 

phenotype (Figure 9D). The majority of these cells (92%) also expressed Podoplanin, a 

marker for cardiac pacemaker cells 58, confirming their nodal identity (Figure 9E). 

To further characterize the identity of TBX5+NKX2-5+, TBX5-NKX2-5+, and 

TBX5+NKX2-5- as FHF-, SHF-, and nodal-like cells, respectively, we FACS isolated each 

population (from separate differentiation cultures) then performed RT-qPCR. Gene 

expression analysis revealed that the TBX5+NKX2-5+ cells were enriched for the FHF 

markers, TBX5 and HAND1, and CM marker NKX2-5 while showing lower expression of 

multiple SHF markers (Figure 10E and 11A). On the other hand, the TBX5-NKX2-5+ cells 

showed increased expression of SHF markers, and NKX2-5 and lower expression of 

TBX5 and HAND1 (Figure 10E and 11A). Similar differences in expression pattern were 

observed in human fetal (gestation age 18 weeks) LV and RV samples (Figure 10F and 

11B). The TBX5+NKX2-5-SIRPα+CD90- cell population showed high expression of TBX5 

and nodal cell markers, such as SHOX2, TBX18, HCN4 and KCNJ3 with low expression 

of ISL1 and NKX2-5 (Figure 10E and 11F). Immunocytochemistry analysis of 

TBX5+NKX2-5+ and TBX5-NKX2-5+ isolated cells supported the gene expression results 

and confirmed their CM phenotype with positive co-staining of TNNT2 and FHF or SHF 

markers while showing the absence of the nodal cell marker, SHOX2 (Figure 10G and 

10H). Together these results confirm that the TBX5TdTomato/W/NKX2-5eGFP/W double 
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reporter hESC line enables the prospective isolation of heart field-specific CMs and nodal 

cells from differentiating hESCs.  

Figure 10. Characterization of hESC-derived FHF- and SHF-like cardiomyocytes. (A) Fluorescence 

microscopy and (B) representative flow cytometry plot of TBX5+NKX2-5+ (FHF) optimized differentiation 

at day 10. (C) Fluorescence microscopy and (D) representative flow cytometry plot of TBX5-NKX2-5+ 

(SHF) optimized differentiation at day 10. (E) Quantitative expression analysis of day 10 sorted FHF-, 

SHF- and nodal-like cardiomyocytes (n=3, Error bars represent SEM) and (F) isolated left and right 

ventricles (LV and RV, respectively) of human fetal heart for FHF (TBX5 and HAND1), SHF (TBX1 and 

ISL1) and NKX2-5 genes (n=1). (G and H) Immunocytochemistry analysis of day 10 sorted FHF- and 

SHF-like cardiomyocytes for specific markers of FHF (TBX5), SHF (ISL1) and nodal cells (SHOX2). 
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Presence of cardiomyocytes is indicated by expression of TNNT2 and all nuclei were visualized with DAPI 

(G: Scale bar = 50µm, H: Scale  bar = 20µm). 

 

Figure 11. Characterization of hESC-derived FHF- and SHF-like cardiomyocytes. (A) Quantitative 
expression analysis of day 10 sorted FHF- and SHF-like cardiomyocytes (n=3, Error bars represent SEM) 
and (B) isolated left and right ventricles (LV and RV, respectively) of human fetal heart for additional SHF 
genes (n=1). 

 

hESC-derived FHF- and SHF-like cardiomyocytes form functionally coupled 

monolayers and exhibit appropriate pharmacological responses 

The myocardium forms a functional syncytium with individual CMs tightly coupled 

by adhesion junctions and connexins to provide mechanical and electrical connections. 

We sought to determine whether a 2-dimensional culture of hESC-derived first and 

second heart field-like CMs exhibit electromechanical connectivity by performing optical 

mapping. Day 10 FHF- and SHF-like CMs were isolated and re-plated to form 

monolayers. After 3 days of culture, robust spontaneous contractions were observed 

throughout the monolayers, which were then labeled with a voltage-sensitive dye. Optical 
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mapping signals demonstrated that the FHF- and SHF-like CM monolayers were 

spontaneously active (Figure 12A and 13A). Action potential propagation was recorded 

from both spontaneous and pace-induced cells in FHF-like CMs. Spontaneous activation 

was present (cycle length=3 seconds) at baseline (Figure 12A) while the higher pacing 

rates (0.5 Hz) in FHF-like CMs showed the emergence of 1:1 synchronous capture of the 

entire monolayer (Figure 12B). Isochronal activation map derived from optical mapping 

of FHF-like CM monolayers showed uniform action potential (AP) propagation throughout 

the monolayer with no block or any changes in conduction velocity (Figure 12C). In SHF-

like CM cultures, spontaneous AP propagations were recorded from islands of cells 

(Figure 13A) in which APs propagated independently, but uniformly, in each island. To 

further analyze the identity of the CMs we performed single cell patch clamp, which 

revealed isolated hESC-derived CMs from both FHF and SHF differentiations had typical 

atrial and ventricular APs with fast upstroke velocities (> 30 V/s) and long AP duration 

(APD90>400ms) (Figure 13B).  

We next examined the chronotropic responses of FHF- and SHF-like CMs to β-

adrenergic drugs in vitro. Isoproterenol (1 µM), a β-adrenoreceptor agonist, enhanced the 

contraction rates of both FHF- and SHF-like CMs, whereas addition of Propranolol (Prop) 

(10 µM), a β-adrenoreceptor antagonist resulted in recovery to the baseline contraction 

rate (Figure 12D and 13C). Together, the functional analysis of FHF- and SHF-like CMs 

reflect the maturation, coordination of channel activities, presence of functional gap 

junctions, and the ability to respond to pharmacological agents in hESC- derived CMs.  
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Figure 12. Functional analyses and transplantation of FHF-like cardiomyocytes.  Snapshots of optical 
mapping show (A) spontaneous AP and (B) pace-induced AP which propagates across monolayer of hESC-
derived cardiomyocytes (TBX5+NKX2-5+). The yellow arrow denotes direction of AP propagation. Numbers 
denote the area where APs were recorded. Red and Pink represent depolarization and repolarization 
phases, respectively. (C) Activation map showing uniform action potential propagation derived from optical 
mapping. (D) Beating rates of FHF-like cardiomyocytes following application of β–adrenergic agonist 
(isoproterenol, ISO, 1µM) and antagonist (propranolol, PRP, 10µM) (n=10, Error bars represent SEM). (E) 
Immunohistochemical analysis of engrafted FHF-like cardiomyocytes stained with a human specific 
mitochondria antibody (left) (Scale bar = 100µm), high magnification image of the boxed graft area (middle) 
and pan-species TNNT2 antibody staining of adjacent section (right) (Scale bars = 20µm). All cells were 
visualized using DAPI and dashed line denotes host/graft border. (F) Co-staining of mouse heart sections 
with human specific mitochondria and TNNT2 antibodies (Scale bar = 100µm). Higher magnification image 
of the boxed graft area is shown on the right (Scale bar = 20µm). All cells were visualized with DAPI. 
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Transplantation of FHF- and SHF-like cardiomyocytes into the injured mouse 

myocardium 

To evaluate the in vivo survival and maturation of FHF- and SHF-like CMs, each 

fraction was sorted on day 10 of differentiation and cultured for an additional 3 days before 

transplantation into the left ventricular peri-infarct area of NSG mice seven days post-I/R 

injury. Human specific mitochondrial staining showed numerous clusters of FHF- and 

SHF-like CMs varying in size (Figure 12E and 13D). The transplanted cells exhibited 

expression of TNNT2 as expected, however, they showed less sarcomeric organization 

than the host CMs. Further confirmation of the graft area was carried out by co-staining 

using human specific antibodies to both mitochondria and TNNT2. Interestingly, detailed 

confocal microscopy revealed partially organized structural proteins in small areas of the 

FHF- and SHF-like CM grafts depicted by TNNT2 staining (Figure 12F and 13E). 

Together, these results show survival of hESC-derived FHF- and SHF-like CMs with a 

more organized ultra-structure in the graft area of injured mouse hearts.   
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Figure 13. Functional analyses and transplantation of SHF-like cardiomyocytes. (A) Snapshot of 
optical mapping show spontaneous APs which propagates across islands of hESC-derived cardiomyocytes 
(TBX5-NKX2-5+). The yellow arrows denote direction of AP propagations. Numbers denote the islands of 
the cells from which APs were recorded. Red and Purple represent depolarization and repolarization 
phases, respectively. (B) Representative patch-clamp recordings of spontaneous APs of individual atrial 
and ventricular-like cardiomyocytes (n=10). (C) Beating rates of SHF-like cardiomyocytes following 
application of β–adrenergic agonist (isoproterenol, ISO, 1µM) and antagonist (propranolol, PRP, 10µM) 
(n=10, Error bars represent SEM). (D) Immunohistochemical analysis of engrafted SHF-like 
cardiomyocytes stained with a human specific mitochondria antibody (left) (Scale bar = 100µm), high 
magnification image of the boxed graft area (middle) and pan-species TNNT2 antibody staining of adjacent 
section (right) (Scale bar = 20µm). All cells were visualized using DAPI and dashed line denotes host/graft 
border. (E) Co-staining of mouse heart sections with human specific mitochondria and TNNT2 antibodies 
(Scale bar = 100µm). Higher magnification image of the boxed graft area is shown on the right (Scale bar 
= 20µm). All cells were visualized with DAPI.  
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CORIN is a surface marker for the isolation of FHF-like cardiomyocytes 

Finally, we sought to isolate hESC-derived CMs from an independent non-

genetically modified cell line. Our RNA-sequencing had revealed CORIN as a potential 

novel surface marker that is differentially expressed on CMs at both early and late time 

points of differentiation (Fig 5F and 7H). Time course analysis demonstrated that CORIN 

is expressed from day 7 and maintained until day 30 of cardiac differentiation (Figure 

14A). Post-day 15 over 68% of cells maintained CORIN expression. Furthermore, CORIN 

is expressed on CMs from intact human heart tissues using immunohistochemistry on 

human left ventricle heart sections, which showed diffuse but selective staining of CMs 

(Figure 14B). These data support the notion that CORIN expression is maintained in CMs 

throughout development and into adult life.  

To determine if CORIN can be used as a surface marker for specific isolation of 

CMs, we performed flow cytometry analysis for CORIN+ and CORIN- cells after 10 days 

of FHF or SHF optimized differentiations. If the differentiation was biased towards FHF-

like CMs, analysis revealed that 82% of the CORIN+ population were FHF-like CMs 

(TBX5+NKX2-5+) (Figure 15A top) indicating the ability of CORIN to isolate FHF-like CMs. 

Additionally, selection for CORIN further enhanced the purity of FHF-like CMs when 

compared to an efficient FHF differentiation without CORIN selection, which contained 

~30% contaminant cells (Figure 15A, bottom). A similar reduction in contaminant cells 

was also observed in a non-optimized differentiation, suggesting the specificity of CORIN 

to separate FHF-like CMs from other contaminant cells.  Interestingly, when the 
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differentiation was biased towards SHF-like CMs, there were no CORIN+ cells present in 

the SHF population (Figure 15B). These results indicate that CORIN represents a 

selective surface marker that can be used to isolate and enrich FHF-like CMs from 

differentiating hESCs. To further asses the ability of CORIN to specifically distinguish FHF 

and SHF CMs, left and right ventricles of human fetal hearts (gestation age 18 weeks) 

were isolated and analyzed for CORIN gene expression along with hESC-derived FHF- 

and SHF-like CMs. CORIN was expressed at a higher level in both the left ventricle and 

FHF-like CMs (Figure 14C), again validating its specificity for FHF CMs. 

To confirm the FHF-like CM identity of CORIN+ day 10 isolated cells, we performed 

RT-qPCR and immunocytochemistry (Figure 15C and 15D). As expected, CORIN+ cells 

exhibited high expression of TBX5, but low expression of ISL1 and SHOX2 suggesting 

that these cells have a FHF-like CM phenotype. Both flow cytometry (Figure 15E) and 

immunocytochemistry (Figure 15F) for TNNT2 revealed that the majority (90%) of 

CORIN+ cells were indeed TNNT2+ CMs and displayed robust spontaneous contractions. 

We performed optical mapping to assess their electrophysiological properties. Action 

potential propagation was recorded from spontaneous beating cells in CORIN+ CMs 

(Figure 15G). Optical mapping demonstrated that CORIN+ cells have similar 

electrophysiological characteristics as the FHF-like CMs isolated from the double reporter 

hESC line (Figure 15G and 12A).  

To evaluate the in vivo survival and maturation of CORIN+ CMs, cells were 

transplanted into the left ventricular peri-infarct area of NSG mice seven days post-I/R 

injury. Human specific mitochondrial staining showed clusters of transplanted cells that 
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exhibited expression of TNNT2 as expected, however, they showed less sarcomeric 

organization than the host CMs. Co-staining using human specific antibodies to both 

mitochondria and TNNT2 revealed partially organized structural proteins in small areas 

of the graft (Figure 15H). These results show survival of CORIN+ CMs in the graft area of 

injured mouse hearts similar to transplanted hESC-derived FHF-like CMs.   

Taken together, our studies provide several independent lines of evidence that 

CORIN is a novel surface marker that can be used to isolate FHF-like CMs from a mixture 

of differentiating hESCs that may include SHF- and nodal-like CMs. CORIN+ isolated CMs 

show similar characteristics to their FHF-like counterparts isolated using a double 

transgenic reporter line, thereby eliminating the need of genetically modified lines for 

isolation of heart field-specific CMs.  
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Figure 14. CORIN is a marker of FHF cardiomyocytes. (A) Flow cytometry time course analysis of 
CORIN expression in differentiating hESCs. (B) Flow cytometry analysis for TNNT2 in CORIN+ cells at day 
10 of differentiation. (C) Immunohistochemistry analysis of CORIN expression in adult human left ventricular 
tissue (Scale bar = 20µm). (D) Quantitative PCR analysis of isolated left and right ventricles (LV and RV, 
respectively) of human fetal heart (n=1) and day 10 isolated FHF- and SHF-like cardiomyocytes for 
expression of CORIN (n=3, error bars represent SEM).  

 



46 
 

          

Figure 15. Isolation and enrichment of FHF-like cardiomyocytes using the surface marker CORIN. 
(A) Flow cytometric analysis of CORIN+ cells for FHF-like cardiomyocytes from an efficient FHF 
differentiation (top). Representative flow cytometry plot of same efficient FHF differentiation without CORIN 
selection (bottom). Contaminate (non-FHF) cells are outlined in orange box. (B) Flow cytometric analysis 
of CORIN+ cells from a SHF differentiation (top). Flow cytometric analysis of the same SHF differentiation 
shown on top based on TBX5 and NKX2-5 (bottom).  (C) Quantitative PCR analysis of FHF (TBX5), SHF 
(ISL1), NKX2-5 and nodal (SHOX2) genes in CORIN+ and CORIN- day 10 sorted cells. SHOX2 expression 
was compared to day 20 sorted nodal-like cells (n=3, Error bars represent SEM). (D) Immunocytochemistry 
of day 10 sorted CORIN+ cardiomyocytes for markers of FHF (TBX5), SHF (ISL1) and nodal cells (SHOX2). 
Cardiomyocytes are shown by TNNT2 staining and all nuclei were shown by DAPI (Scale bar = 20µm). (E) 
Flow cytometry analysis of TNNT2 in CORIN+ cells (right) from a moderate FHF differentiation (left). (F) 
Immunocytochemistry of CORIN+ sorted cells for TNNT2. All nuclei are shown by DAPI (Scale bar = 20µm). 
(G) Snapshots of optical mapping show spontaneous AP propagates across monolayer of CORIN+ 
cardiomyocytes. The yellow arrow denotes direction of AP propagation. Numbers denote the area from 
which the APs were recorded. Red and Pink represent depolarization and repolarization phases, 
respectively. (H) Immunohistochemical analysis of engrafted CORIN+ cardiomyocytes in mouse heart 
sections co-stainined with human specific mitochondria and TNNT2 antibodies (Scale bar = 100µm). Higher 
magnification image of the boxed graft area is shown on the right (Scale bar = 20µm). All cells were 
visualized with DAPI.  
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 Discussion 

Despite recent advances in the treatment of heart disease, acute myocardial 

infarction (MI) is still associated with significant morbidly and mortality. Based on some 

promising preclinical studies there is increasing interest in the use of pluripotent stem 

cells to promote cardiac repair after acute MI 34, 59-63. Previous attempts to generate 

hESC-derived CMs rely mainly on the observation of contracting cells in a dish, which not 

only include impurities such as non-myocyte cells, but also a mixture of CM subtypes 

including ventricular, atrial and pacemaker cells. The failure to isolate a pure population 

of chamber specific cardiomyocyte may compromise the safety of cell-based 

transplantation for future clinical applications. Furthermore, the delivery of a cell 

population contaminated by pacemaker cells could make the graft a focus for arrhythmias. 

This possibility may have contributed to the observed ventricular arrhythmias in previous 

reports where hESC/hiPSC-derived CMs were transplanted in non-human primates 34, 36. 

Therefore, the safety and efficacy of cell-based therapies will be vastly improved with the 

delivery of a pure population of chamber specific CMs. 

Following an acute MI, most commonly caused by blockage of the left coronary 

artery, there is extensive and irreversible loss of CMs with the damage primarily localized 

to the LV of the heart. The CMs of the LV are predominantly derived from FHF CPCs 

whereas CMs within the RV originate from the SHF during early cardiogenesis. To our 

knowledge no previous study has demonstrated the ability to purify FHF CMs from hESCs 

for preclinical transplantation studies. Previous studies have attempted to generate heart 

field-specific CMs using reporter lines that are considered specific for the SHF, however 
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these lines generated heterogeneous cell populations containing both cardiac and non-

cardiac cell types 19, 37, 43. 

In this study, we focused on TBX5, which is an important transcription factor in the 

development of the FHF. We generated a hESC reporter line to investigate the 

developmental potential of TBX5 CPCs to give rise to cardiac cell types in vitro and in 

vivo. Interestingly in contrast to our in vitro findings, in vivo transplantation studies 

revealed that both TBX5+ and TBX5- CPCs predominantly become CMs, which implies 

that the in vivo environment may influence the plasticity of hESC-derived CPCs. 

Furthermore, we observed clear differential expression of SHF genes in the TBX5- 

populations using transcriptomic analyses, which supported our hypothesis that FHF and 

SHF CMs can be separated at this phase of differentiation, even within a two-dimensional 

culture environment that lacks the spatial information present in the embyro.  

Since the expression of TBX5 is necessary for the development of a variety of 

myocytes, including the conduction system of the heart 64, our single reporter hESC line 

most likely generated a heterogeneous population of CMs including pacemaker cells. On 

the other hand, NKX2-5 is an essential transcription factor that regulates the formation of 

nearly all ventricular and atrial CMs, but not pacemaker cells 56. In order to develop a 

hierarchy for hESC-derived CPC development, we constructed a double reporter line 

utilizing TBX5 and NKX2-5, which allowed us to not only isolate and enrich FHF- and 

SHF-like CMs, but also exclusively separate nodal-like cells. To investigate their 

electrophysiological properties and assess their ability to form a functional syncytium we 

performed optical mapping studies on the isolated FHF- and SHF-like CMs. As expected, 
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these studies led to the observation that our FHF- and SHF-like CMs are predominantly 

composed of atrial and ventricular CMs. They also displayed similar electrical wavefront 

activation establishing electrical coupling and regenerative AP propagation during 

spontaneous depolarizations and following external electrical pacing. The optical AP 

profiles were remarkably similar to those measured using patch-clamp. Conduction 

velocity (CV) in 2 dimensional cell layers were much slower than reported in human CMs 

65. While several factors could contribute to this slow CV (i.e. CM connectivity and gap 

junction densities), a major factor is likely the relatively positive resting diastolic 

membrane potential which promotes sodium channel inactivation 66. Despite these 

observations, generation of functional ventricular and atrial CM subtypes as characterized 

by marker expression and electrophysiological analyses, would be of great interest for 

safe regenerative medicine, drug discovery, and human arrhythmia modeling. 

Finally, to achieve full translational application of our findings, it is important to 

isolate FHF CMs without using genetically modified hESC lines. We discovered VCAM1, 

CRYAB, and CORIN as 3 potential surface markers when we compared their expression 

ratios at 3 differentiation time points (Figure 7H). VCAM1 has been previously described 

to mark early cardiovascular lineage commitment in differentiating hESC/hiPSC as well 

as mature CMs 21, 55, 67. However, our expression ratio data from day 30 suggests that 

more robust surface markers for mature CMs may exist. Crystallin alpha B (CRYAB) is a 

member of the small heat shock protein 20 family whose function has been studied in 

cardiac hypertrophy and myopathies but has not been studied as a surface marker for 

CMs 68-71. CRYAB was not ranked in the top 10 expression ratios at day 7 suggesting that 

it may be a more suitable marker for later stage CMs. CORIN is a serine protease 
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responsible for the conversion of pro-atrial natriuretic peptide (ANP) and pro-brain 

natriuretic peptide (BNP) to their active forms, ANP and BNP respectively, in CMs and 

has been suggested as a biomarker in hypertension, cardiac hypertrophy, and heart 

failure 72-77. CORIN ranked in the top 3 expression ratios at all 3-time points, which 

prompted us to further pursue the ability of CORIN to isolate CMs from differentiating 

hESCs. Interestingly, CORIN is activated by the proprotein convertase subtilisin/kexin 

type 6 enzyme (PCSK6), which has been shown to be co-expressed with TBX5 and 

involved in development of left and right asymmetry 78 suggesting a potential role for 

CORIN in early development. In support of these observations, we show that CORIN can 

be used as a surface marker to selectively isolate FHF-like CMs from differentiating 

hESCs throughout their development from a progenitor to a more mature state.  

Our findings allow, for the first time, prospective isolation of FHF-like CMs from 

SHF-like CMs in differentiating hESCs. While their developmental pattern and epigenetic 

background can now be investigated in vitro, there is still considerable controversy as to 

whether there is a functional difference between a LV and RV CM, beyond the pressure 

and shear forces they are exposed to in fetal or adult hearts. Although left and right 

ventricular CMs emerge from different developmental origins, they express similar ion 

channels, structural proteins, and display similar electrical properties. Nonetheless, in 

congenital heart defects where the RV acts as a systemic ventricle, there is generally 

ventricular dysfunction over time, which suggests that there may be inherent differences 

between right and left ventricular CMs. It remains unknown whether transplantation of RV 

CMs in the damaged LV will demonstrate similar incompetency. Therefore, isolation of 
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pure FHF CMs will allow for elimination of possible incompetent RV CMs from the 

transplanted cells.  

In summary, here we describe a practical approach for isolation and 

characterization of hESC-derived first and second heart field-like CMs as well as nodal-

like cells. Access to enriched populations of CM subtypes is important for treating 

diseases that affect specific regions of the heart, such as myocardial infarction involving 

the left and right ventricles or chamber-specific congenital heart defects. Furthermore, 

heart field-specific CMs can be used for developmental studies, arrhythmia modeling, 

drug screening and pre-clinical regenerative therapy studies in which pure populations of 

cells are essential. 
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Tables 

Probe  PCR 

probe 

size 

Enzyme 

for 

Southern 

Expected 

Southern Bands 

5’ 

external 

probe 

    

TBX-5f1 5’-ATCCATCCATCCATCCATCCATCC-3’ 582 bp NsiI Targeted: 3.3kb 

WT: 12.4kb 

TBX-5r1 5’AACTAACCAGGTGCAGTTGTGCAC-3’    

3’ 

external 

probe 

    

TBX-3f1 5’AGGGTAAGATGTGAGGCTGAGTG-3’ 

 

650 bp NdeI Targeted: 3.1kb 

WT: 8.6kb 

TBX-3r1 5’-GAGCTCAAGTTCACAAATCCTAG-3’ 

 

   

Table 1. Southern blotting probes used in this study. 

Gene Forward 5’-3’ Reverse 5’-3’ 

TBX5 GACTTCCTACCAGAACCACAAG GGGACCACGGGATATTCTTTAC 

ISL1 ACCTTGGAAAGTACTGAGCG GGTGTATCTGGAAGTTGAGAGG 

NKX2-5 AGTGTGCGTCTGCCTTTC GTTGTCCGCCTCTGTCTTC 

ACTN2 CAAACCTGACCGGGGAAAAAT CTGAATAGCAAAGCGAAGGATGA 

TNNT2 AGCGGAAAAGTGGGAAGAG TCCAAGTTATAGATGCTCTGCC 

MYL2 CATGGCACCTAAGAAAGCAAAG ATGAAGCCATCCCTGTTCTG 

MEF2C TGTAACACATCGACCTCCAAG TGTTCAAGTTACCAGAGAC 

GATA4 AGATGGGACGGGTCACTATC CAGTTGGCACAGGAGAGG 

MYL7 GACCCAGGCAGACAAGTTC CCCTCATTCCTCTTTCTCGTC 

CNN1 AACCATACACAGGTGCAGTC GATGTTCCGCCCTTCTCTTAG 

CD31 AACAGTGTTGACATGAAGAGCC TGTAAAACAGCACGTCATCCTT 
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SHOX2 AGACCCACTATCCCGACG GCCCCTATGAGAACACCTTTATG 

TBX18 GTACATTCATCCAGACTCGCC GCGGTTGGTATTTGTGCATAG 

HCN4 TCGACTCGGAGGTCTACAAG GGTCGTAGGTCATGTGGAAG 

KCNJ3 GCCCCTTTTATGACCTATCCC ACGATGACCCCAAAGAACTTC 

HAND1 CCAAGGATGCACAGTCTGG AGGAGGAAAACCTTCGTGCTG 

TBX1 CGTGCAGCTAGAGATGAAGG CATATAGTCGGCCATGGGATC 

FGF10 GCCGTCAAAGCCATTAACAG TCCTCTATCCTCTCCTTCAGC 

BMP4 GCACTGGTCTTGAGTATCCTG TGCTGAGGTTAAAGAGGAAACG 

FOXC1 AGTAGCTGTCAAATGGCCTTC TTAGTTCGGCTTTGAGGGTG 

FGF8 GACCTACCAACTCTACAGCC ACTCGAACTCTGCTTCCAAAG 

CORIN TCTGTTCTTGGGATTGTGGG AGCGGCACTTGAAATGACTAG 

GAPDH ACATCGCTCAGACACCATG TGTAGTTGAGGTCAATGAAGGG 

Table 2. PCR Primers used in this study. 

ANTIBODY COMPANY CATALOG # 

Mouse monoclonal to Human SIRPα/β (clone SE5A5), 

PE/Cy7 conjugated  

Biolegend Cat.# 323807 

Mouse monoclonal to Human VCAM1 (clone STA), APC 

conjugated  

Biolegend Cat.# 305809 

Mouse monoclonal to Human TRA-1-81 (clone TRA-1-81), 

Alexa Fluor 594 conjugated 

Biolegend Cat.# 330712 

Mouse monoclonal to Human CD90 (clone 5E10), APC 

conjugated 

Biolegend Cat.# 328113  

Rat monoclonal to Human Podoplanin (clone NC-08), 

PE/Cy7 conjugated 

Biolegend Cat.# 337013 

Mouse monoclonal to CORIN Gift from Dr. Y. Ono, 

KAN Research Institute, 

JPN 

N/A 

Mouse monoclonal to TNNT2 (clone 13-11), BV421 

conjugated 

BD Biosciences Cat.# 565618 

Goat polyclonal to mouse IgG (clone Poly4053), APC 

conjugated 

Biolegend Cat.# 405308 

Rabbit polyclonal to TNNT2 Abcam Cat.# ab45932 

Mouse monoclonal to TNNT2 (clone 13-11) Thermo Fisher Cat.# MA5-12960 
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Mouse monoclonal to TBX5 (clone A-6) Santa Cruz Cat.# sc-515536 

Goat polyclonal to ISL1 R&D Systems Cat.# AF1837 

Mouse monoclonal to SHOX2 Abcam Cat.# ab55740  

Rabbit polyclonal to OCT4  EMD Millipore Cat.# AB3209 

Mouse monoclonal to NANOG (clone 7F7.1) EMD Millipore Cat.# MABD24  

Mouse monoclonal to Human mitochondria (clone 113-1) Abcam Cat.# ab92824 

Rabbit polyclonal to CD31 Abcam Cat.# ab28364 

Rabbit polyclonal to CNN1 Sigma Cat.# HPA014263 

Rabbit polyclonal to Cx43 Cell Signaling 

Technology 

Cat.# 3512 

Rabbit polyclonal to CORIN Abcam Cat.# ab209963 

Goat anti-rabbit IgG (H+L), Alexa Fluor 488 conjugated Thermo Fisher Cat.# A-11008 

Goat anti-mouse IgG (H+L), Alexa Fluor 488 conjugated Thermo Fisher Cat.# A-11001 

Goat anti-rabbit IgG (H+L), Alexa Fluor 594 conjugated Thermo Fisher Cat.# A-11012 

Goat anti-mouse IgG (H+L), Alexa Fluor 594 conjugated Thermo Fisher Cat.# A-11005 

Rabbit anti-mouse IgG (H+L), Alexa Fluor 647 conjugated Thermo Fisher Cat.# A-21239 

Donkey anti-goat IgG (H+L), Alexa Fluor 647 conjugated Thermo Fisher Cat.# A-21447 

Table 3. Antibodies used in this study. 
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Abstract 

 The human adult heart lacks a robust endogenous repair mechanism to fully restore 

cardiac function after insult, thus the ability to regenerate and repair the injured 

myocardium remains a top priority in treating heart failure. The ability to efficiently 

generate a large number of functioning cardiomyocytes capable of functional integration 

within the injured heart has been difficult. However, the ability to directly convert 

fibroblasts into cardiomyocyte-like cells both in vitro and in vivo offers great promise in 

overcoming this problem.  
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Introduction 

 Heart failure (HF), the leading cause of death and hospitalizations worldwide, results 

from a myriad of cardiovascular diseases that lead to the death or dysfunction of 

cardiomyocytes. With a prevalence of 38 million people worldwide, it places a significant 

financial burden on health care systems, with an estimated $30 billion of annual spending 

in just the United States alone 1, 2. Despite recent advances in the care and management 

of HF patients, the prognosis of advanced HF remains dismal at 50% survival at 5 years, 

a rate often lower than many cancers 3, 4. Considering that the pathophysiology of HF 

involves death or dysfunction of the cardiac myocyte, new therapeutic strategies for heart 

regeneration may offer hope to this intractable disease.  

 The human adult heart lacks endogenous repair mechanisms to fully restore cardiac 

function after an insult, thus the ability to regenerate and repair the injured myocardium 

remains a top priority in treating HF. However, the ability to efficiently generate a large 

number of functioning cardiomyocytes capable of functional integration within the injured 

heart has remained an obstacle. Current cell therapies are focused on three main 

approaches; 1) induction of endogenous cardiomyocytes to undergo proliferation and 

repopulate the damaged myocardium, 2) transplantation of cardiovascular progenitor 

cells (CPCs) or cardiomyocytes generated through the differentiation of pluripotent stem 

cells, and 3) direct reprogramming of somatic cells to cardiomyocytes or expandable 

CPCs without transitioning through a pluripotent intermediate. This chapter is focused on 

the last approach.  

 Direct reprogramming was first reported in 1987 when a single cDNA encoding 
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MyoD was transfected into fibroblasts converting them into muscle myoblasts 5. A few 

years later MyoD was identified as the master regulator gene for skeletal muscle 

development 6. The ability to directly reprogram adult cells to a desirable fate demonstrate 

an immense potential of this powerful tool for tissue regeneration and replacement. Since 

the identification of MyoD, there has been extensive focus on identification of master 

regulator(s) for other cell lineages and this search has led to the successful conversion 

of mature cells into other cells types including myoblasts, neurons, hepatocytes, intestinal 

cells, blood progenitor cells, and cardiomyocytes 5, 7-11. 

 In this chapter, the insights and progress that has been gained from investigation of 

direct cardiac reprogramming, with a focus on the use of key transcription factors and 

other cardiogenic genes are reviewed. Furthermore, the use of other biologics and small 

molecules to improve the efficiency of cardiac reprogramming and the development of 

safe reprogramming approaches for clinical application are explored. 

Reprogramming of Somatic Cells to Cardiomyocyte-like Cells by Over-expression 

of Key Cardiac Transcription Factors  

Direct reprogramming of fibroblasts into cardiomyocyte-like cells was first reported 

in 2010 using viral overexpression of three important cardiac developmental transcription 

factors (TFs), Gata4, Mef2c, and Tbx5 (GMT) in mouse cardiac and tail-tip fibroblasts 11. 

The Srivastava group used an iterative screening approach in which 14 factors were 

removed one by one to identify those that were dispensable for direct reprogramming. 

This process ultimately identified GMT as the factors sufficient to induce conversion of 

fibroblasts to cardiomyocyte-like cells without transitioning through a progenitor state. 
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TBX5 is an important T-box TF involved in early cardiac development that directs 

formation of the primary heart field through a coordinated but yet complex interaction with 

other TFs 12. One such interaction is with GATA4, a member of the GATA family zinc-

finger TFs, which modifies the chromatin structure allowing other TFs such as NKX2-5 to 

bind their targets and fully activate the cardiac transcriptional program 13. MEF2c, a MADS 

box transcription enhancer factor, is important for the formation of the secondary heart 

field through its interaction with other cardiac TFs 14. After the establishment of GMT as 

the core TFs for direct cardiac reprograming, much of the focus transitioned to improving 

the reprogramming efficiency and/or the function of the induced cardiomyocyte-like cells 

(iCMs) through addition of other important cardiac TFs to GMT. This was mainly due to 

the poor efficiency of reprogramming, reported to be 4.8% cardiac troponin T+ (cTnT+) 

cells in the original paper. Additionally, it was soon noted that GMT alone was insufficient 

to convert human fibroblasts to iCMs. 

One of the first TFs added to GMT was the bHLH TF HAND2 (referred to as 

GMHT). In cardiac development, HAND2 plays an important role in the formation of the 

ventricular chambers through interaction with GATA4 and NKX2-5 15. GMHT treatment of 

mouse embryonic fibroblasts (MEFs) resulted in iCMs expressing low levels of sarcomeric 

proteins and displayed immature characteristics of the main cardiac cell types (atrial, 

ventricular, and pacemaker) 16. In an effort to increase transcriptional activity of GMHT, 

the transactivation domain of MyoD was fused to each G, M, H or T and over-expressed 

in mouse fibroblasts. When MyoD was fused to Mef2c, a 15-fold increase in 

reprogramming efficiency was observed 17. Other TFs that are essential during 

cardiovascular development have also been studied for direct reprogramming. NKX2-5, 
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a homeobox TF critical for normal heart morphogenesis, was overexpressed in mouse 

fibroblasts in addition to GMHT.  This combination resulted in more than 50-fold increase 

in the efficiency of cardiac reprogramming compared to GMT alone and produced iCMs 

with mature cardiomyocyte marker expression, robust calcium oscillation, and 

spontaneous beating 18.  

Additionally, an alternative screening approach that surveyed triplet combinations 

of 10 important cardiac TFs revealed that Tbx5, Mef2c and Myocd, a developmental 

regulator of cardiomyocytes and smooth muscle cells, were able to induce a more 

complete cardiac phenotype than GMT in mouse fibroblasts 19. Likewise, a combinatorial 

screen of 10 transcriptions factors added to GMT in MEFs identified a combination of 

cocktails that resulted in successful reprogramming. GMT plus Myocd and Srf, a TF 

important in mesoderm formation, or GMT plus Myocd, Srf, Mesp1, another mesoderm 

inducing TF and Smarcd3, a chromatin structure altering protein, enhanced 

reprogramming and the expression of cardiac sarcomeric proteins over GMT alone 20. 

Despite the successes of TF overexpression to reprogram murine cells, similar 

approaches to reprogram human somatic cells has been more difficult to achieve. Only a 

few studies have reported successful reprogramming of human cells to iCMs using TFs 

alone. The first of these studies reported a combination of the E26 transformation-specific 

(ETS) TF family member ETS2 and MESP1 proteins to induce reprogramming of human 

dermal fibroblasts to cardiac progenitors 21. Another study using GMT with MESP1 and 

MYOCD in human cardiac and dermal fibroblasts was sufficient to induce expression of 

multiple cardiac-specific proteins, increased a broad range of cardiac genes, and 

exhibited spontaneous calcium transients 22. A third report showed that expressing GMT 
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along with ESSRG (a transcriptional activator), MESP1, MYOCD, and ZFPM2 (a 

modulator of GATA proteins) in human fetal cardiac fibroblasts and neonatal skin 

fibroblasts enhanced cardiac reprogramming, sarcomere formation, calcium transients, 

and action potentials 23. Results of TF based reprogramming are summarized in the table 

below. 

Table 4: Summary of transcription factor direct cardiac reprogramming results  

Reprogramming 

Factors 

Mouse/ 

Human 

in vitro/ 

in vivo 

Reported 

Efficiency 

Analysis 

Method 

Reference 

GMT Mouse Both 4.8% cTnT+ (in vitro) 

17% αMHC+ (in vitro) 

FC 11, 57 

GMHT Mouse Both 27.6% cTnT+ (in vitro) FC 16, 53 

GMHT, MyoD 

transactivation 

domain 

Mouse in vitro 19% cTnT+ IF 17 

GMHT, Nkx2-5 Mouse in vitro 1.6% GCaMP+ IF 18 

MT, Myocd  Mouse in vitro 12% cTnT+ FC 19 

GMT, Myocd, Srf, 

Mesp1, Smarcd3 

Mouse in vitro 2.4% αMHC+ FC 20 

ETS2, MESP1 Human in vitro 13.7% αMHC+ FC 21 

GMT, MESP1, 

MYOCD 

Human in vitro 5.9% cTnT+ FC 22 

GMT, ESSRG, 

MESP1, MYOCD, 

ZFPM2 

Human in vitro 18.1% αMHC+ FC 23 

Abbreviations: FC: Flow cytometry IF: Immunofluorescence   

  

Improving the Efficiency of Direct Reprogramming with Biological Molecules 

Despite the successes of direct reprogramming using forced expression of cardiac 

TFs, the efficiency remains low. The initial report on direct conversion of fibroblasts to 
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cardiomyocyte-like cells noted an efficiency of 4.8%. In an effort to improve 

reprogramming efficiency, many methods have been developed using additional 

molecules. These additives can be classified into three major categories: 

inhibitors/cytokines, non-coding RNAs, and epigenetic modifiers. A summary of these 

reprogramming experiments is presented in Table 5. 

Inhibitors/cytokines 

A potential approach to improving reprogramming is to inhibit the endogenous 

signaling pathways and gene programs that maintain the distinct properties of fibroblasts. 

One of the major signaling pathways active in fibroblasts is the transforming growth factor 

(TGF)-β pathway. TGF-β has diverse and pleotropic effects through its activation and 

signaling. The downstream effect of TGF-β signaling pathway involves phosphorylation 

of receptor-regulated SMADs that ultimately activate TFs that participate in regulation of 

target gene expressions, many of which are critical in fibroblast activation and 

proliferation. Since inhibition of TGF-β has been shown to increase mouse embryonic 

stem cell differentiation to cardiomyocytes, 24, 25 it was hypothesized that TGF-β inhibition 

could improve reprogramming. The TGF-β inhibitors SB431542 and A83-01 have been 

added to various reprogramming combinations and have shown an increase in 

reprogramming efficiency. SB431542 is a selective and potent inhibitor of the TGF-β 

pathway through suppression of the Activin A receptors ALK5, ALK4 and ALK7. A83-01 

is also a selective inhibitor of ALK5, ALK4 and ALK7, but is more potent than SB431542 

in its inhibition and effectively blocks phosphorylation of Smad2. When SB431542 was 

combined with GMHT, a 5-fold increase in reprogramming efficiency was observed in 

both MEFs and mouse adult cardiac fibroblasts 26. Furthermore, when GMT and 
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SB431542 were combined with WNT inhibition by XAV939, reprogramming efficiency was 

increased 8-fold in cardiac fibroblasts compared to GMT alone 27. In addition to the TGF-

β pathway, other pro-fibrotic and intracellular signaling pathways such as the Rho-

associated kinase, JAK/STAT, Notch and Akt pathways have been targeted to improve 

reprogramming 28-31.  

The utility of other molecules to enhance cardiac reprogramming have been 

inspired by using cytokines and/or modulators that are critical in mammalian cardiac 

development, many of which are commonly used in the differentiation of cardiomyocytes 

from pluripotent stem cells. Fibroblast growth factor-2 (FGF2), FGF10, and vascular 

endothelial growth factor (VEGF) in combination with GMT or GMHT in MEFs and mouse 

tail-tip fibroblasts showed an increase in the number of iCMs that spontaneously contract 

32. These approaches also accelerated maturation of iCMs in vitro and thus, the activation 

of important developmental pathway during reprogramming warrants further research. 

Non-coding RNAs 

MicroRNAs (miRNAs) are small non-coding RNAs that induce degradation or 

inhibit translation of target mRNAs. miRNAs are an attractive additive to reprogramming 

since they play important roles in the post-transcriptional regulation of cardiac gene 

expression and have critical function in almost every stage of heart development. miRNA-

1, miRNA-133, miRNA-208, and miRNA-499 have been shown to be cardiac- and 

muscle- specific and play important roles in cardiac development and function. miRNA-1, 

contributing to ~40% of total miRNAs in the heart, has been shown to promote 

cardiomyocyte proliferation and suppress apoptosis during development, however its 
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function in cardiac reprogramming remains unknown 33. miRNA-133 is important in 

orchestrating cardiac development, gene expression, growth, and function 34. It also 

promotes cardiomyocyte proliferation by repressing the transcriptional regulator SNAI1 

and silences fibroblast gene signatures during reprogramming 35. These two miRNAs 

have been used in combination with other factors to successfully enhance cardiac 

reprogramming. A novel approach was reported recently where a combination of miRNAs 

promoted direct conversion of cardiac fibroblasts into cardiomyocyte like cells without the 

need for forced expression of exogenous TFs.   A combination of miRNAs-1, -133, -208, 

and -499 was reported to be sufficient to convert mouse cardiac fibroblasts into iCMs 

without addition of other factors in vivo 36. The potential mechanism for this effect is 

thought to be due to altered H3K27 methyltransferase and demethylase expression, 

which leads to changes in the epigenetic landscape of fibroblasts to induce their 

conversion into cardiomyocyte-like cells. A 10-fold increase in miRNA-mediated murine 

cardiac fibroblast reprogramming was observed when miRNAs -1, -133, -208, and -499 

were combined with JAK Inhibitor I 30. 

Similarly, when miRNA-133 was used in conjunction with GMT, Mesp1, and Myocd 

or GHT, Myocd, and miRNA-1, the reprogramming efficiency was increased in both 

human and mouse fibroblasts by repressing Snai1 and silencing fibroblast gene 

signatures 35, 37. Zhao et al used a combination of GMHT, miRNA-1, -133, -208, -499, Y-

27632 and A83-01 in MEFs and mouse adult fibroblasts to achieve ~60% Cardiac 

Troponin T+ and 60% α-actinin+ iCMs 29. miRNA-590, a miRNA that can induce adult 

cardiomyocyte proliferation, was recently shown to be able to replace HAND2 and 

MYOCD in GMT direct reprogramming experiments using human and porcine fibroblasts 



72 
 

38, 39. While GMT was initially shown to be sufficient for cardiac reprogramming, further 

studies have indicated that a multi-prong approach may be necessary to enhance 

reprogramming and could hold great promise for future in vivo clinical application. 

Long non-coding RNAs (lncRNAs) are a heterogeneous group of transcripts longer 

than 200 nucleotides that exert major regulatory roles in gene expression during 

development and disease through many different mechanisms. Recent advances in 

sequencing and analysis technologies have allowed many lncRNAs to be identified, but 

due to their complex and multiple mechanisms of action as well as the low interspecies 

conservation it has been difficult to decipher biological functions of many lncRNAs 40. A 

list of cardiac lncRNAs that are involved in cardiac differentiation, development and 

contractile function have been reviewed 41.  Braveheart (Bvht) and Fendrr play a critical 

role in cardiac lineage commitment by regulating the transition from mesoderm to CPCs 

through activation of key cardiac development genes and TFs including some of those 

studied above 42-44. Hotair, Chaer and other lncRNAs have also been shown to regulate 

the epigenetic landscape in cardiac development by regulating proteins involved in 

histone modification at targeted promoters 45, 46. LncRNAs play an extensive role in the 

regulation of cardiac development and gene expression therefore it may be advantageous 

to explore the use of lncRNAs in direct reprogramming studies, however no direct 

reprogramming studies have been published using lncRNAs. 

Epigenetic modifiers 

Reprogramming of one somatic cell type to another requires the activation and 

repression of multiple sets of genes, leading to vast genomic changes. The epigenetic 
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landscape plays an important role in determining the reprogramming efficiency as 

accessibility of TFs to their DNA targets is critical. During reprogramming, epigenetic 

marks such as histone methylation, acetylation and ubiquitination must be added and 

removed from fibroblast- and cardiac- specific genes. These modifications will suppress 

expression of fibroblast genes while activating cardiac genes by remodeling chromatin 

structure to allow or restrict access of TFs to their target genes. It has been shown that 

during cardiac direct reprogramming the trimethylated histone H3 of lysine 27 

(H3K27me3), which marks inactive chromatin increases at fibroblast promoters and 

decreases at cardiac promoters while the activated chromatin mark H3K4me3 shows the 

opposite pattern at important loci 11, 47. Moreover, the activating H3K4me2 histone mark 

has been shown to be increased at the regulatory regions of miRNA-1 and -133 29.  To 

this end, attempts to improve direct cardiac reprogramming have been carried out using 

modulators of epigenetic marks. Bmi1 was identified as a barrier to reprogramming by 

modifying histone marks at key cardiogenic loci, thus inhibiting iCM induction. When Bmi1 

activity was knocked down, the active histone mark, H3K4me3, was increased while the 

repressive H2AK119ub mark was reduced, leading to increased cardiac gene expression 

at important loci 48. In non-integrative and in vivo reprogramming experiments discussed 

later in this review, other epigenetic modifiers that inhibit histone methyl transferases and 

histone demethylase have been used. The importance of epigenetic landscape and 

changes that happen during reprogramming have recently begun to be unraveled using 

a single-cell transcriptomic approach by the Qian group 49. These results highlight the 

complexity of the reprogramming process and the importance influence of a variety of 

factors, warranting additional research into the sequential addition of TFs, non-coding 
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RNAs, cytokines, inhibitors, and epigenetic modifiers to further improve the 

reprogramming efficiency. 

Modified RNAs 

Another promising non-viral method of direct cardiac reprogramming is the use of 

modified mRNAs (modRNAs) 50. ModRNAs are non-cytopathic and do not integrate into 

the host genome, thus offering a safer approach to reprogramming. ModRNAs have been 

used successfully to generate induced pluripotent stem cells from somatic cells through 

transient expression of mRNAs that direct cell fate. ModRNAs are produced using an in 

vitro transcription system to generate mRNAs that contain a synthetic 5’ guanine cap and 

poly-A tail, which improves half-life and stability, as well as modified nucleotide bases that 

reduce the innate immune response of the host cell. This technology is endowed with a 

number of attractive properties that would make it a potentially powerful platform for direct 

cardiac reprogramming. ModRNAs can mediate robust and dose-titratable expression of 

key TFs over a specified time and in a particular sequence. Previous studies outlined in 

this review have highlighted the fact that direct cardiac reprogramming is a complex 

process that may require sequential treatments to better overcome the reprogramming 

barrier. ModRNAs may be ideal for direct reprogramming as they have a relatively short 

half-life therefore distinct factors can be expressed for a short period of time then removed 

from the reprogramming cocktail or added again to continue expression. ModRNAs may 

open the door to following a more developmentally relevant sequence of TFs to improve 

transcription. It is also foreseeable that modRNAs could be combined with other small 

molecules, cytokines, and non-coding RNAs discussed in this chapter. 
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Table 5: Summary of direct cardiac reprogramming results  

Reprogramming 

Factors 

Mouse/ 

Human 

in vitro/ 

in vivo 

Reported 

Efficiency 

Analysis 

Method 

Reference 

GMHT, SB431542 Mouse in vitro 9.3% GCaMP+ IF 26 

GMHT, DAPT Mouse In vitro 38% cTnT+ IF 28 

GM(H)T, FGF2, 

FGF10, VEGF 

Mouse in vitro 2.9% cTnT+ FC 32 

miRNA-1, -133, -

208, -499 

Mouse in vivo 12% tdTomato+cTnT+ IHC 36 

miRNA-1, -133, -

208, -499, JAK 

Inhibitor I 

Mouse Both 28% αMHC+  

(in vitro)  

FC 30 

GMT, Mesp1, 

Myocd, miRNA-133 

Mouse 

Human 

in vitro 12.9% cTnT+ 

27.8% cTnT+ 

FC 35 

GHT, MYOCD, 

miRNA-1, -133 

Human in vitro 34.1% cTnT+ FC 37 

GMHT, miRNA-1, -

133, -208, -499, Y-

27632, A83-01  

Mouse in vitro 60% cTnT+ IF 29 

GMT, miRNA-590 Human 

Porcine 

in vitro 4.6% cTnT+ FC 39 

Ascorbic acid, 

RepSox, forskolin, 

valproic acid, 

CHIR99021  

Mouse in vitro 9% αMHC+ FC 62 

CHIR99021, 

BIX01294, A83-01, 

AS8351, SC1, 

OAC2, Y27632, 

SU16F and 

JNJ10198409 

Human in vitro 6.6% cTnT+ FC 63 

Abbreviations: FC: Flow cytometry IF: Immunofluorescence IHC: Immunohistochemistry 
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Methods 

Production of modRNAs 

ModRNAs were generated using the methods outlined by Mandal and Rossi 51. 

DNA sequences for genes of interest were cloned into the MCS of the pMRNA vector 

(SBI), linearized by restriction enzyme digestion and purified by gel elctrophoresis. Next, 

a tail PCR was performed to add a poly-A tail to the cDNA template using a poly dT 

primer. The resulting PCR product was purified by gel electrophoresis and then used in 

an in vitro transcription reaction using a RNA cap analog (3′-O-Me-m7G(5′)ppp(5′)G, 

Trilink), modified nucleotides (5-Methylcytidine-5′-triphosphate (Me-CTP, Trilink) and 

Pseudouridine-5′-triphosphate (Pseudo-UTP; Trilink)) and recombinant T7 RNA 

polymerase (MEGAscript T7 kit, Ambion) to produce the modified RNA. The modified 

RNA was then treated with DNase (NEB) and Antarctic phosphatase (NEB) then spin 

column purified (MEGAclear kit, Ambion) and quantified using Nanodrop. 

Isolation of mouse embryonic fibroblasts 

MEFs were isolated from MHC-GFP+ pups as previously described 52. Briefly 

E13.5 embryos were isolated from pregnant dams and analyzed for GFP expression in 

the heart by fluorescence microscopy. The heads and red tissue (heart and lungs) were 

surgically removed from GFP+ embryos then the remaining tissue was chopped into 1-2 

mm pieces using a razor blade. The embryo pieces were then transferred to a tube 

containing 0.25% Trypsin-EDTA (Thermo Fisher) and incubated for 10 minutes at 37°C. 

The pieces were mixed by pipetting and incubated for an additional 5-10 minutes. 20 ml 

of MEF culture media (DMEM containing GlutaMAX, 10% FBS and 1% Pen/Strep) was 
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added and large pieces were allowed to settle by gravity for 5 minutes before the 

remaining supernatant was transferred to a T75 flask (3 embryos per flask) coated with 

0.1% gelatin. Upon reaching confluency the MEFs were verified to be GFP- by 

microscopy and frozen for subsequent experiments.  

Direct cardiac reprograming  

To generate iCMs, fibroblasts were transduced with GMT or GMHT retroviruses 

as previously described 53. In brief, isolated fibroblasts from the first passage were plated 

on gelatin (0.1%) coated dishes at 7500 cells/cm2. 24 hours later media was changed and 

5 µM SB431542 or 0.5 µM A83-01 (Cayman Chemical) was added and kept throughout 

reprogramming. The next day fibroblasts were transduced for 24 hours with retroviruses 

containing 6 µg/ml polybrene (Sigma) or 500 ng of each modRNA was transfected using 

Lipofectamine MessengerMAX reagent (Thermo Fisher) according to the manufactures 

protocol.  Following transduction of transfection the fibroblasts were then transferred to 

iCM media (10% FBS, 5% horse serum, 1% penicillin/streptomycin, 0.1 mm non-essential 

amino acids (Life Technologies), essential amino acids (Life Technologies), B-27 

supplement (Life Technologies), insulin-selenium-transferrin (Life Technologies) and 

vitamin mixture (Sigma) in DMEM/M199 (4:1)). Media was changed every 2-3 days.  

Animal Use and Care 

Animal housing, handling, and procedures were approved by and carried out in 

accordance with guidelines set by the UCLA Animal Research Committee (ARC), UCLA 

Institutional Animal Care and Use Committee (IACUC), and the NIH Guide for the Care 

and Use of Laboratory Animals. 
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Results 

Generation and validation of ModRNAs 

 ModRNAs are generated using an in vitro transcription system to generate mRNAs 

containing a synthethic 5’ guanine cap and poly-A tail to increase half-life and stability as 

well as modified nucleotide bases to reduce the innate immune response of the host cell 

(Figure 16A). In order to test the feasibility of this method we generated a nuclear 

localized destabilized GFP modified RNA. Subsequently, 500ng of purified nuclear 

localized destabilized GFP modRNA was transfected into mouse embryonic fibroblasts 

using Lipofectamine MessengerMAX and analyzed 24 hours later for transfection 

efficiency based on GFP expression. We were able to successfully generate and transfect 

modRNA as indicated by GFP expression in the majority of mouse embryonic fibroblasts 

(Figure 16B). The transfection efficiency remains consistently at 75-85%, which suggests 

that this method can be used for reprogramming in order to maintain high expression 

levels. Additionally, modRNAs for the cardiac transcription factors, Gata4, Mef2c and 

Tbx5 were generated and tested for expression of the modRNAs at the protein level 24 

hours post transfection in HEK293T cells using immunocytochemistry for the specific 

cardiac transcription factors (Figure 16C). Our preliminary studies also have 

demonstrated that the expression levels of the modRNAs significantly decrease after 40 

hours, making this an attractive feature for temporal expression of certain transcription 

factors for efficient reprogramming. 
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Figure 16. Generation and validation of modRNAs. (A) Schematic showing the in vitro production of 
modRNAs containing a 5’ cap and modified Uracil and Cytosine bases (GOI: Gene of interest). (B) MEFs 
showing GFP expression 18 hours post transfection with GFP modRNA. (C) HEK293T 
immunocytochemistry showing expression of cardiac TFs 18 hours post transfection with GATA4, Mef2c 
and TBX5 modRNAs. 

 

Direct reprogramming of mouse embryonic fibroblasts 

To test and compare direct cardiac reprogramming efficiencies we isolated mouse 

embryonic fibroblasts (MEFs) from MHC-GFP transgenic mice. These MEFs are 

colorless after isolation, but upon expression of the cardiac contractile protein, MHC, 

after successful cardiac reprogramming will fluoresce green allowing for easily 

quantification by flow cytometry. Isolated MHC-GFP MEFs were then either transduced 

with retroviruses expressing, GMT or GMHT, or transfected with GMT modRNAs and 

subjected to flow cytometry 7 days later. Flow cytometry analysis for MHC-GFP and 

cardiac troponin T (cTnT), another more mature cardiac contraction protein, revealed that 
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modRNA cardiac reprogramming is possible albeit at a lower efficiency than retrovirus 

reprogramming (Figure 17A).  

Figure 17. Direct reprogramming using modRNAs and enhancement with SB431542. (A) Day 7 flow 
cytometry analysis comparing retroviral and modRNA reprogramming. (B) Comparison of reprogramming 
efficiencies in the presence or absence of SB431542.   
 

Next, we sought to improve the reprogramming efficiency by including the TGF-β 

inhibitor, SB431542, into our reprogramming conditions. Flow analysis at day 7 of 

reprogramming showed that the addition of SB431542 markedly improved the 

reprogramming efficiencies in all conditions including those using modRNAs (Figure 17B). 

Likewise, when we added the TGF-β inhibitor, A83-01, we observed an increase in 

reprogramming efficiency with frequent areas of spontaneous contraction and enhanced 

expression of cardiac contractile proteins (Figure 18A and 18B). 
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Figure 18. GMT + A83-01 reprogramming in MEFs. (A) Immunocytochemistry for the cardiac markers 

MHC-GFP and a-actinin (ACTA1). (B) Video snapshot showing beating areas of reprogrammed cells 
(outlined areas). 
 

Temporal modRNA direct reprogramming 

One advantage of modRNAs for reprogramming is the relatively short half-life of 

these mRNAs which allow for temporal control of the expression of important TFs. To 

examine if temporal expression of cardiac TFs that more closely mimics development can 

improve the efficiency of direct reprogramming, we produced Mesp1 modRNA. We 

hypothesized that by first priming the cells with an early mesoderm TF such as Mesp1 

then adding later cardiac TFs we could improve the reprogramming efficiency. Indeed, 

when we added Mesp1 modRNA for 3 days followed by retroviruses for GMT or GMHT 

for 7 days then analyzed MHC-GFP and cTnT expression by flow cytometry we 

observed an increase in reprogramming efficiency (Figure 19A). These data provide 

evidence that temporal control of reprogramming may play an important role in increasing 

reprogramming efficiencies. Furthermore, the ability of modRNAs to temporally control 

MHC-GFP

ACTA1

DAPI

A B

Figure 1. GMT + A83-01 reprogramming in MEFs.

(A) Immunocytochemistry for the cardiac markers aMHC-GFP and a-actinin (ACTA1).
(B) Video snapshot showing beating areas of reprogrammed cells (outlined areas).
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expression and/or dosage of TFs is an attractive avenue to reprogramming that warrants 

further investigation. 

         

Figure 19. Temporal control of modRNAs enhance reprogramming efficiency. (A) Flow cytometry 

analysis at day 10 of reprogramming after 3 days treatment with Mesp1 modRNA followed by GMT 

retroviruses.   
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Discussion 

Direct Reprogramming to expandable cardiac progenitor cells 

Another recent application of direct reprogramming is the generation of 

expandable CPCs. The goal of this approach is to safely create CPCs in vitro that can 

then be expanded in culture before transplantation into the injured heart. Upon 

transplantation, the CPCs will differentiate into three major cells of the heart; 

cardiomyocytes, endothelial and smooth muscle cells. Two groups were able to 

successfully generate expandable CPCs using unique reprogramming cocktails 

containing a variety of biomolecules described above. The Kamp group generated CPCs 

from fibroblasts using Mesp1, Tbx5, Gata4, Nkx2-5 and Baf60c, a chromatin remodeling 

protein. In vitro expansion and maintenance of a CPC state was achieved using a Wnt 

activator, BIO, and a JAK/STAT activator, LIF 54, 55. On the other hand, the Ding group 

used a chemical approach to reprogramming fibroblasts to CPCs. Generation, expansion 

and maintenance of CPCs was achieved by addition of BMP4, Activin A, CHIR99021 and 

SU504, a FGF, VEGF and PDGF signaling inhibitor 56. Both groups were able to show 

that their reprogrammed CPCs maintained their characteristics for many passages in 

culture and could generate cardiomyocytes, endothelial and smooth muscle cells both in 

vitro and in vivo when transplanted. Direct reprogramming of fibroblasts to CPCs 

represents a scalable method for the generation of multiple cardiac cell types for clinical 

applications, however this approach has not yet been applied to human cells.            

Progress of in vivo Direct Reprogramming 
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The ultimate goal of direct reprogramming is to be able to repair the damaged 

myocardium after injury. Direct reprogramming offers two potential approaches for heart 

regeneration; 1) transplantation of reprogrammed fibroblasts (either iCMs or CPCs) into 

the infarcted heart and 2) reprogramming resident cardiac fibroblasts directly to 

cardiomyocytes. The first attempt at cardiac regeneration using direct reprogramming 

was carried out using cardiac fibroblasts that were transduced with GMT for 1 day and 

then transplanted into mouse hearts 11. Analysis of these cells post-transplantation 

revealed that they successfully generated cardiomyocyte-like cells in vivo. Other studies 

have used in vivo transplantation of reprogrammed cells to test their regenerative 

potential. However, cell transplantation is complicated by many factors such as cell 

retention, viability, structural and functional integration, and immune rejection. Therefore, 

in situ repair of the heart is best studied by targeting endogenous cardiac fibroblasts 

through viral transfection of the infarct zone. This approach was attempted in 2012 by the 

Olson and Srivastava groups, in which local delivery of GM(H)T viruses induced 

reprogramming of non-myocytes into iCMs by 4 weeks post-surgery 53, 57. Additionally, 

the Srivastava study reported that co-delivery of thymosin β4 and GMT viruses further 

improved ejection fraction and reduced scar formation. Interestingly, it has been reported 

that the in vivo cardiac niche may improve the efficiency of reprogramming, however, the 

mechanisms underlying this observation remain elusive 27, 36, 53, 57. Several studies have 

improved the in vivo reprogramming efficiency even further by optimizing polycistronic 

expression vectors to control the stoichiometry of TF expression or by the addition of 

small molecules delivered with TFs 27, 58-60. 

Non-integrative Methods of Direct Reprogramming for Future In vivo Applications 
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The reprogramming results shown thus far suggest that direct reprogramming of 

fibroblasts can be a feasible therapeutic approach to repairing the injured myocardium. 

However, relatively safe methods for the delivery of various reprogramming factors needs 

to be explored for in vivo applications. Adeno-associated virus (AAV) vectors are 

attractive tools for TF delivery, but the limited capacity of about 4.5 kb complicates the 

expression of multiple TFs in a single vector and still involves the use of an integrative 

viral system. Sendai virus reprogramming is an appealing alternative to AAV since it does 

not integrate into the host genome and has been successfully used to reprogram many 

different cell types to pluripotency, however, its use in direct reprogramming has not yet 

been explored. A recent study showed that expression of GMT in nonintegrating, acute 

expression adenoviral vectors were as efficient at reprogramming as lentiviral vectors in 

a rat infarct model, which has increased the clinical applicability of in vivo reprogramming.    

As described in two recent reports, the temporal and stoichiometric control of TFs are 

also important in determining reprogramming efficiency 60, 61. Unfortunately, current in 

vivo viral reprogramming tools are unable to control dosage and temporal expression of 

TFs but warrant further investigation to improve reprogramming efficiency. 

Compared to TFs and miRNAs, small molecules have many advantages such as 

more effective cell delivery, non-immunogenic, less expensive, and are generally safer. 

Moreover, it is more convenient to control the process of reprogramming through varying 

small molecule concentrations and combinations in vitro. A combination of ascorbic acid, 

RepSox (a TGF-β inhibitor), forskolin, valproic acid and CHIR99021 (a WNT pathway 

activator through the inhibition of glycogen synthase kinase 3) was shown to reprogram 

MEFs and mouse tail-tip fibroblasts to iCMs in vitro 62. Ding and colleagues were able to 
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use a cocktail of 9 small molecules (CHIR99021, A83-01, BIX01294, AS8351 SC1, 

OAC2, Y27632, SU16F, and JNJ10198409) to direct cardiac reprogram of human 

foreskin fibroblasts in vitro before transplantation in injured murine hearts 63. Among these 

small molecules were the epigenetic modifiers BIX01294 (a methyltransferase inhibitor) 

and AS8351 (a histone demethylase inhibitor), SC1 (an ERK2 and Ras-GAP inhibitor), 

OAC2 (an Oct4 activator), SU16F (a PDGFRβ inhibitor) and JNJ10198409 (a PDGF 

receptor tyrosine kinase inhibitor). However, the use of small molecules for in vivo 

reprogramming poses some unanswered questions. Small molecules can enter the blood 

stream and spread to other organs with unknown consequences. Additionally, the ability 

of timely uptake into specific target cell type remains a challenge. Development of novel 

biomaterials for local delivery, controlled release, and retention of small molecules are 

still needed. 

Roadblocks and Challenges 

There has been significant progress in recent years with direct cardiac 

reprogramming through important discoveries in understanding the mechanism of 

reprogramming and the biology of cardiac development. However, several challenges 

must be addressed prior to clinical translation of this technology. The reprogramming 

efficiency must be increased in order to generate enough cells in vitro for transplantation. 

One avenue that has the potential to generate the number of cells needed for 

transplantation is reprogramming to CPCs, which can be expanded in vitro before 

transplantation. The retention, integration and maturation of iCMs or CPCs after 

transplantation remains a concern. Multiplex immunostaining and patch clamp analysis 

has also revealed the presence of all three cardiomyocyte types (atrial, ventricular and 
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pacemaker) in iCMs therefore increasing the risk of arrhythmias 16. There is a need to 

develop techniques to generate specific subtypes of cardiomyocytes for both in vitro and 

in vivo direct reprogramming.  A safe and effective approach to delivering and targeting 

reprogramming factors in vivo will be needed to circumvent in vitro reprogramming 

completely. 

Transcription factors, inhibitors, cytokines, non-coding RNAs, and epigenetic 

modulators have been shown to be important for direct cardiac reprogramming. However, 

studies have uncovered variable reproducibility between different labs, leading to wide 

differences in reprogramming efficiency, maturity, and characteristics of the iCMs. These 

inconsistencies can be attributed to many factors other than the reprogramming factors 

themselves. First, the components of culture media(s) used during reprogramming widely 

varies from group to group along with the duration of reprogramming before analysis. 

Additionally, the induction time, the type of fibroblasts, the amount and sequence of 

factors used along with the time exposed to reprogramming factors are different between 

protocols. Moreover, the criteria used to measure the outcome and success are 

inconsistent and not standardized in the field. Reprogramming success is measured by 

some as the presence of cardiac-related structural proteins on immunostaining, while 

others employ a much more detailed approach including appearance of spontaneous 

beating along with gene and protein expression data. Even differences in the cardiac 

markers used to analyze the reprogramming efficiency, cardiac troponin T (cTnT) vs 

alpha myosin heavy chain (αMHC) vs GCaMP activity etc., and the method of 

measurement, flow cytometry vs immunofluorescence (IF), make comparisons among 

studies difficult. The myriad of criteria and stringency that have been used to evaluate 
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reprogramming efficiency have been summarized by Addis and Epstein and are 

presented in Table 6 64. 

Table 6: Criteria to evaluate reprogramming efficiency. Adapted from Addis and Epstein 64.   

Characteristic Stringency Assay technique(s) 

Gene expression Low RT-qPCR 

Reporter transgene 

Protein expression Low Immunostaining 

Flow cytometry 

Western Blot 

Transcriptome and 

epigenetic analysis 

 

High Microarray 

RNA-seq 

ChIP-seq 

ATAC-seq 

Contraction and force 

generation 

High Spontaneous 

Chemical stimulation 

Electrical stimulation 

Three dimensional bioengineered platforms 

Electrophysiological High Patch Clamp 

Microelectrode arrays 

Optical Mapping 

Calcium transients and 

electrical coupling 

High Calcium sensitive dyes 

Genetically encoded indicators (GCaMP) 

Optical Mapping 

Functional 

improvement 

High Echocardiography 

 

Optimization of the minimal yet sufficient combination of factors to improve 

reprogramming requires further research. Studies presented here have revealed that 

simply expressing a few core transcription factors is not sufficient for efficient cardiac 
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reprogramming 65. There may also be a dosage and temporal requirement for 

reprogramming factors 60, 61. Other factors such as activated cellular signaling processes 

and epigenetic landscape should be considered to improve efficiency and quality. For 

example, when the TGF-β signaling pathway was disrupted by small molecules or when 

important cardiac regulatory miRNAs were added, an increase in reprogramming was 

observed, supporting the hypothesis that a multi-faceted approach is likely necessary to 

achieve high reprogramming efficiency. Furthermore, these studies highlight the 

significant differences between mouse and human reprogramming as well as the effect 

of the starting fibroblast type (MEFs, tail-tip or cardiac fibroblasts). 

Are All Fibroblasts Created Equal? 

Cardiac fibroblasts are ideal targets for direct reprogramming as they are the most 

prominent cell type within the heart and play key roles in regulating normal myocardial 

function as well as adverse remodeling following injury. Various mouse and/or human 

fibroblast sources have been tested, including mouse embryonic fibroblasts, tail-tip 

fibroblasts, and dermal fibroblasts, with varying results, suggesting the importance of the 

starting cell type for direct reprogramming. It is also interesting to note that in vivo 

reprogramming has been reported to be more efficient than in vitro, despite that fact that 

upon injury, cardiac fibroblast express TGF-β, which has been shown to be inhibitory to 

reprogramming in vitro. Furthermore, our lab has shown that cardiac fibroblasts are a 

heterogenous population from different embryonic origins 66. It is possible to postulate 

that perhaps a subpopulation of cardiac fibroblasts may be more susceptible to 

reprogramming depending on their developmental origin. Further understanding of the 

epigenetic landscape of fibroblasts and their susceptibility to direct reprogramming would 
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be of great use to the field. This would also open up the possibility for repairing the heart 

by targeting specific fibroblast populations. 

Conclusion 

In this review, we discussed the reprogramming of fibroblasts into cardiomyocyte-

like cells using transcription factors, small molecules, miRNAs, and other biologics for the 

treatment of heart failure (Figure 20). Despite the current limitations that exist with direct 

cardiac reprogramming, this technology offers great promise for cardiac regeneration 

therapy. It is clear that the reprogramming process is very complex and that many factors 

have profound influence over this process. Continued research of key transcription 

factors, non-coding RNAs, small molecules, reprogramming mechanisms, delivery and 

targeting methods and biomaterials will help advance direct cardiac reprogramming to 

large animal models and ultimately for the treatment of heart failure. 
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Figure 20. Schematic showing the current and future applications of direct cardiac reprogramming. 
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