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A B S T R A C T

The 2020 Mw 6.4 Petrinja, Croatia, earthquake triggered widespread liquefaction along the Kupa, Glina, and
Sava rivers. The locations of liquefaction ejecta and lateral spreading were identified through a combination of
field reconnaissance and interrogation of aerial photographs. Superimposing those locations on the regional
geologic map revealed the liquefaction vulnerability of Holocene terrace and flood deposits, Holocene deluvium-
proluvium, and Pleistocene loess deposits. Liquefaction caused damage to the land and structures, with ejecta
observed both near and far from residential structures. In the free field, the ejection of silty and sandy soil
accompanied the extensive ground fracturing. At residential properties, ejecta led to differential settlement,
cracks in foundations, walls, and floors, and contamination of water wells. Lateral spreading resulted in the
formation of ground and building cracks, house sliding and tilting, pipe breakage, and pavement damage. This
article documents these observations of liquefaction and draws conclusions regarding the patterns of liquefaction
observed in this earthquake. These observations will be a valuable addition to liquefaction triggering databases
as there are relatively few earthquakes with magnitudes less than 6.5 that triggered extensive liquefaction, and
they provide additional case histories of liquefaction in Pleistocene deposits.

1. Introduction

On Dec 29, 2020, the Mw 6.4 Petrinja earthquake triggered wide-
spread liquefaction-induced ground failure, resulting in damage to res-
idential structures, bridges, levees, and roads in Sisak-Moslavina
County, Croatia (e.g., Ref. [1]). Sediment ejecta and lateral spreading
were observed in the predominantly flat valleys surrounding the
meandering Sava and Kupa rivers and their tributaries. The earthquake
was generated by a dextral strike-slip fault at a depth of 8 km, 4 km to
the southwest of the Town of Petrinja [2]. The fault lies in a diffuse
boundary zone associated primarily with the ongoing convergence be-
tween the Eurasia and Africa plates and the Adria microplate wedged
between them [3–5]. It is situated in a transition zone between the
Pannonian Basin and the Internal Dinarides [2,4]. The Internal Dinar-
ides belong to the mountain belt formed by the subduction of the Adria
microplate beneath the Eurasia plate and are impacted by the extension
of the Pannonian back-arc basin [3,6]. The entire region is characterized
by complex geodynamic processes that are still not well understood (e.
g., Refs. [7], [3–5,8–11]). At the time of the earthquake, the nearest

strong motion stations were in the country’s capital, Zagreb, approxi-
mately 40 km from the fault rupture. The median peak ground accel-
eration (PGA) recorded at those six stations was 0.11 g, while the
maximum PGA of 0.20 g was recorded at a distance of 47 km from the
fault rupture [12]. The PGA near the rupture was estimated at 0.4–0.6 g
[13,14].

Most residents in the region live in family houses that were typically
built by property owners. In some cases, owners added an extra story to
the existing single-story houses, often without reinforcing the original
structure. Most of the houses affected by the earthquake are masonry
structures with shallow foundations and have no basements due to the
shallow groundwater table in the region. The construction of houses was
supported by limited to no geotechnical investigations prior to the 2020
earthquake.

Post-earthquake field reconnaissance was conducted by a collabo-
rative team representing researchers from the United States and Croatia.
Due to the global pandemic, the reconnaissance was conducted both in
person and virtually through the use of aerial mapping. The full recon-
naissance efforts are documented in the reports by the various teams
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[15–18]. This article summarizes the observations of liquefaction
documented by the reconnaissance teams. Historical observations of
liquefaction and the depositional environment in the reconnaissance
area are reviewed. Following this background, observations of lique-
faction and its effects on light-weight residential structures are sum-
marized and selected case histories of differential settlement and lateral
spreading are presented. Current liquefaction databases (e.g., Refs. [19,
20]) have relatively few observations from earthquakes with magni-
tudes less than 6.5 outside of Christchurch, New Zealand, which makes
the observations from the Mw 6.4 Petrinja earthquake an important
contribution to understanding the risk of liquefaction and its effects
from lower magnitude events.

2. Historical observations of liquefaction in Croatia

There are historical records of seismic liquefaction in Croatia,
including events in Virovitica (1757), Zagreb (1880), and Pokupsko
(1909), which are situated in the Pannonian Basin by the Drava, Sava,
and Kupa rivers, respectively. Virovitica is about 100 km to the north-
east of Petrinja, while Zagreb and Pokupsko are approximately 50 km
and 20 km, respectively, to the northwest of Petrinja. In 1757, the Mw
6.1 earthquake [21] led to ground cracking and the ejection of water
followed by yellow sand at two locations in Virovitica and multiple
places outside the city [22]. Deep wells became filled with water and
sediment and overflowed long after the shaking had ceased [22]. His-
torical observations of liquefaction were also documented for areas
surrounding the Kupa and Sava rivers. During the 1880 Mw 6.2 Zagreb
earthquake, the ground cracked and water gushed from the earth

alongside the formation of soil boils across the greater Zagreb area [23].
A team of scientists in the field recorded the conically shaped ejecta with
diameters ranging from 0.1 m to 0.7 m and comprised primarily of fine
alluvial sand from shallow depths [23]. The 1909 Mw 5.9 Pokupsko
earthquake produced widespread liquefaction effects that were
observed primarily in the Kupa Valley [24,25]. Therefore, these his-
torical records offer evidence of alluvial deposits in Croatia being
vulnerable to liquefaction.

3. Liquefaction manifestation in the 2020 Petrinja earthquake

Several reconnaissance teams contributed to mapping and under-
standing the effects of the 2020 Petrinja earthquake. This included
hybrid (virtual and on-site) teams organized by Geotechnical Extreme
Events Reconnaissance [18] and Structural Extreme Events Reconnais-
sance and Earthquake Engineering Research Institute [16] along with
Croatian collaborators, field volunteers organized by the Croatian
Centre for Earthquake Engineering [17] and faculty from the University
of Zagreb and the University of Rijeka [15]. These teams focused on
documenting as many aspects of the earthquake, but this article is
focused only on manifestations of liquefaction.

Liquefaction manifestations were documented using a combination
of field visits, aerial and satellite image analysis, reports from residents,
and social media posts (Fig. 1). Direct observations of liquefaction ejecta
were made during field reconnaissance efforts at over 70 locations along
the Kupa, Glina, and Sava rivers (red circles in Fig. 1). Post-earthquake
digital orthophotographs for Drencina, Glina, Moscenica, Petrinja, and
Sisak were developed by the Faculty of Geodesy at the University of

Fig. 1. Satellite map of Petrinja, Sisak, and Glina with locations of documented liquefaction sites in the 2020 Petrinja earthquake. The epicenter and inferred surface
trace of the causative Petrinja fault [2], locations of the 1909 Pokupsko liquefaction [25], and sites with multichannel analysis of surface waves (MASW) lines (A.
Salkovic and I. Salkovic, personal communication, Nov 2023 and Aug 2024) are also shown.
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Zagreb. The corresponding aerial photographs were acquired by the
Croatian Mountain Rescue Service using the Matrice 300 RTK and
Phantom 4 RTK uncrewed aerial vehicles. Satellite imagery for regions

around Petrinja and Sisak was available on Google Earth Pro. The
orthophotographs were visually inspected for traces of liquefaction
ejecta. Locations with evidence of ejecta near Petrinja, Sisak, and Glina

Fig. 2. Liquefaction ejecta in the free field: (a) aerial view of ejecta north of Glina [45.3439N, 16.0847E] (base map: © OpenStreetMap contributors) and (b) ground-
level photograph of ejecta in Letovanic [45.506N, 16.198E], northwest of Petrinja.

Fig. 3. Geologic map of the Petrinja region [31] showing locations of documented liquefaction case histories. The map legend on the right has been translated
from Croatian.

Z. Mijic et al. Soil Dynamics and Earthquake Engineering 193 (2025) 109262 

3 



are shown as purple circles in Fig. 1. An example of a site where ejecta
were mapped is presented in Fig. 2a. The absence of ejecta away from
Drencina, Glina, Moscenica, Petrinja, and Sisak and near the Kupa, Sava,
and Odra rivers is not necessarily due to mitigating factors but rather the
limited coverage of aerial photographs. Similarly, the presence of
vegetation, structures, and other features in the aerial photographs had
the potential to obscure ejecta. There is also some uncertainty associated
with the interpretation of ejecta in the aerial photographs due to their
limited resolution. The locations of ejecta marked by the cyan triangles
in Fig. 1 are approximate as they are based on news and social media
posts [26–30].

The region with liquefaction manifestations in the 2020 Petrinja
earthquake is underlain by Quaternary deposits, according to the

geologic map by Pikija [31]. Fig. 3 illustrates the locations of liquefac-
tion manifestation superimposed on the geologic map for Petrinja. The
primary geologic units in the affected areas are Holocene flood (ap) and
terrace deposits (a1) near the active river channels, Holocene
deluvium-proluvium (dpr), and Pleistocene loess deposits (l). Flood
deposits are formed by sedimentation of predominantly fine material
that remained in suspension after flooding [31]. They are comprised
primarily of clayey and sandy silt (5–12 % clay and up to 20 % sand) and
fine sand to a lower extent. Terrace deposits tend to be characterized
primarily by sandy silt but can also contain fine gravel.
Deluvium-proluvium consists of weathered bedrock products (silt, sand,
gravel, and boulders) carried down a slope in a gradual, relatively
continuous manner as well as by torrential flows. Loess represents
sediment of aeolian origin comprised of silt with typically 7–10 % sand
and 4–14 % clay [31].

Evidence of liquefaction in Pleistocene loess deposits is an important
observation from this earthquake. Although the majority of liquefaction
case histories in the literature involves Holocene deposits, there is pre-
vious evidence of liquefaction in Pleistocene deposits (e.g., Refs.
[32–36]), and saturated Pleistocene loess deposits are considered highly
susceptible to liquefaction under strong seismic shaking [37]. In Pet-
rinja, the liquefaction observations within mapped Pleistocene units
were all within 10 km of the fault and close to the rivers (Fig. 3), where
high water tables would be expected. A few locations with liquefaction
ejecta were within areas mapped as the Late Pliocene deposits (Pl,Q and
Pl2,3). However, these locations are near the contact with the younger
Quaternary deposits (ap, dpr, and l). Given the scale and date of the
geologic map, the locations of these contacts are approximate. There-
fore, it is possible these manifestations occurred within the aforemen-
tioned Quaternary sediments.

Liquefaction ejecta were frequently observed in the free field, typi-
cally emerging through extensive ground cracks (Fig. 2). The ground-
water table was often near the ground surface. In Petrinja, a
multichannel analysis of surface waves (MASW) was conducted after the
earthquake to compare the subsurface conditions at free-field sites with
and without ejecta (A. Salkovic and I. Salkovic, personal communica-
tion, Nov 2023 and Aug 2024). The data were acquired using a 24-chan-
nel array of 4.5 Hz vertical geophones at 2-m intervals and a
sledgehammer as a seismic source [18]. The Geometrics Geode seis-
mograph was used to record the seismic data in a roll-along acquisition
fashion, moving the array 10 m between shots. The total length of the
array with four rolls was 86 m. For each position, strikes were conducted
at − 4.0 m, 0 m, 4 m, 8 m, and 12 m. Data reduction and analysis were

Fig. 4. One-dimensional shear wave velocity profiles of two nearby sites in
Petrinja: site with ejecta [45.4484N, 16.2769E] and site without ejecta
[45.4461N, 16.2760E] (A. Salkovic and I. Salkovic, personal communication,
Nov 2023 and Aug 2024).

Fig. 5. Structural damage associated with liquefaction: (a) diagonal foundation crack adjacent to sandy ejecta [45.4349N, 16.2683E] and (b) co-located damage at
[45.43515N, 16.26844E] with (i) horizontal cracks in column adjacent to uplifted ground and ejecta and (ii) vertical cracks in exterior wall adjacent to the column
shown in (i).
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performed using the SurfSeis software developed by the Kansas
Geological Survey. Dispersion curves in a multi-record file were
analyzed for each sledgehammer strike by examining the change in
phase velocity versus frequency using the fundamental mode compo-
nent of the dispersion data. Non-linear inversion modeling of each

dispersion curve was performed and resulted in one-dimensional
mid-point representation of the shear wave (Vs) profile [18]. As
shown in Fig. 4, the average shear wave velocities in the depth ranges
from 0 m to 6 m and from 9.5 m to 18.5 m at the site with ejecta are
comparable to the average shear wave velocities in the same depth

Fig. 6. Liquefaction effects at Milan Makanac St: (a) (i) liquefaction-induced flooding and (ii) sediment ejecta at 11 Milan Makanac St [45.4361N, 16.2629E], (b)
structural damage, as evidenced by horizontal crack between the first story and the attic, at 8 Milan Makanac St [45.4359N, 16.2627E], and (c) ejecta inside the
house at 10 Milan Makanac St [45.4358N, 16.2628E].
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ranges at the site without ejecta (150 m/s vs. 140 m/s and 260 m/s vs.
270 m/s, respectively). However, the site without ejecta has stiffer soil
in the depth range from 6 m to 9.5 m compared to the site with ejecta
(270 m/s vs. 190 m/s).

4. Effects of liquefaction on residential properties: selected case
histories

This section presents an assessment of liquefaction-induced damage
at residential properties with the focus on ejecta and lateral spreading.
Subsurface conditions at some properties were evaluated using dynamic
probing medium, specifically the DPM30 device manufactured by
Pagani Geotechnical Equipment. The DPM30 uses rods with a diameter
of 20 mm and the conical tip with a cross-sectional area of 10 cm2 at the
base. A 30-kg hammer is dropped from the height of 20 cm, and the
number of blows required to drive the tip 10 cm into the soil, N10, is
counted. The N10 can be converted into dynamic point resistance using
the Dutch formula described in EN ISO 22476–2:2005 (Geotechnical
investigation and testing—Field testing—Part 2: Dynamic probing).
Specifically, the theoretical energy of a blow, which is equal to the
weight of the hammer times the height of the fall, is divided by the cross-
sectional area of the cone and the average penetration per blow to obtain
the unit point resistance, rd. This value is then adjusted for the inertia of
the driving rods and hammer after the impact with the anvil, which
produces the dynamic point resistance, qd (EN ISO 22476–2:2005). The
qd values are comparable to tip resistance values obtained by static
penetrometer tests [38]. Dynamic probing is less reliable in soft soil
types and at larger depths because the measured resistance can be
significantly affected by skin friction. Other factors that have the po-
tential to influence the dynamic probing results are explained in EN ISO
22476–2:2005.

Direct correlations between the DPM30 data and engineering soil
parameters are lacking. Blow counts from DPM30 can be approximately
converted to the equivalent standard penetration test (SPT) blow counts,
NSPT, by adding N10 for each 30 cm interval and multiplying by 0.77
[39–41]. TheNSPT can be then corrected for hammer efficiency, effective
overburden stress, etc. to estimate common properties like relative
density (e.g., using the [42] correlation). The average energy efficiency
of DPM30 is expected to be 72–73 % [39,43]. It is also worth noting that
the penetration resistance is affected by the mean particle size [42]. For
example, the blow count would be lower in fines-containing sand than in
clean sand, which would lead to underestimation of relative density in
sand with fines [42].

4.1. Liquefaction ejecta and differential settlement

Liquefaction ejecta caused differential settlement of some light-
weight residential structures in Petrinja. Ejecta were identified in
yards and adjacent to house foundations. Diagonal cracks in foundations
and exterior walls were typically initiated near the ejected soil (Fig. 5a).
At one property, horizontal cracks appeared in the isolated house col-
umn (Fig. 5b–i), while vertical cracks were visible in the exterior wall of
the second story near the column (Fig. 5b–ii). This property had ejecta
along the fence foundation about 2 m from the column and the uplifted
ground near the column.

Examples of liquefaction-induced damage at residential properties in
Milan Makanac St, Petrinja, are presented in Fig. 6. The property at 11
Milan Makanac St sustained liquefaction-induced flooding wherein the
discharged groundwater was mixed with sediment ejecta (Fig. 6a).
Although the structure was not visibly damaged, the DPM30 testing
revealed soil whose penetration resistance to a depth of 8.5 m ranged
typically from 1 MPa to 3 MPa, indicating loose material. At 8 Milan
Makanac St, sandy material was ejected through the well into the air to a
height of about 1.5 m above the ground surface, according to the resi-
dent of the adjoining property. Traces of ejecta were visible on the rim of
the well and on the surrounding ground. Approximately 5 m from the
well, a horizontal crack developed in the exterior wall of the house,
between the first story and the attic (Fig. 6b). At 10 Milan Makanac St,
the house adjacent to this well had ejecta on the floor (Fig. 6c) and a
horizontal crack in the ceiling along the wall.

Sediment ejecta often appeared in residential water wells that
extended through non-liquefiable soil layers into the underlying lique-
fiable sandy soil (Fig. 7). Wells filled with sediment ejecta were rendered
unusable after the earthquake.

4.2. Lateral spreading

Lateral spreading was observed in the villages of Bok Palanjecki
(northeast of Sisak) and Stari Brod (northwest of Petrinja), as shown in
Fig. 1. In Bok Palanjecki, lateral cracks were observed on both banks of
the meandering Sava River. While no structural damage was noted, a
private driveway was offset horizontally by up to 10 cm and vertically
by up to 30 cm. In Stari Brod, approximately 2 km from the fault rupture,
lateral spreading and ejecta were identified for several residential
properties along the Kupa River. Ejecta were observed around the
houses and in the open areas of the properties at 83, 94, 97, 98, 99, 110,
and 110A Izisce St (Fig. 8a). Liquefied soil was also ejected through
water wells. At 97 Izisce St, sandy ejecta were found both outside the
well and 6 m below ground surface inside the well. Lateral spreading
affected the properties at 94, 97, 98, and 99 Izisce St. Fig. 8a shows two
major sets of cracks: one across the level ground farther away from the
river, roughly along the northwestern facade of the houses (Fig. 8b), and
another closer to the Kupa River, along the transition zone between the
level and sloping ground (Fig. 8c). These cracks indicate this portion of
the ground moved laterally toward the Kupa River due to liquefaction of
underlying sandy layers.

At 97 Izisce St, the house was slightly tilted toward the river, sug-
gesting ground movement toward the river. However, the house was not
severely damaged even though the adjoining patio settled notably
relative to the house. At 98 Izisce St, the house sustained substantial
damage due to differential settlement and sliding. The same crack
observed in the backyards at 97 and 98 Izisce St propagated through the
house at 99 Izisce St, inducing severe damage (Fig. 9a–d). This and
additional cracks throughout the house also caused damage to the pipes
(Fig. 9c and d). The DPM30 testing near the foundation of the 99 Izisce
St house revealed low penetration resistances in the upper 7 m of the soil
profile (Fig. 9e). The penetration resistances in the approximate depth
range at 98 Izisce St were comparable, while those at 97 Izisce St were
slightly higher (by about 1 MPa) in the 2.7–3.9 m and 5.9–7.0 m depth
ranges. Fig. 9e also shows the approximate NSPT at the house at 99 Izisce

Fig. 7. Residential water well partially filled with liquefaction ejecta at Dre-
nacka St, Petrinja [45.456224N, 16.316443E].
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Fig. 8. Liquefaction-induced damage in Stari Brod [45.480N, 16.183E]: (a) distribution of properties impacted by ejecta (83, 94, 97, 98, 99, 110, and 110A Izisce St)
and lateral spreading (94, 97, 98, and 99 Izisce St), (b) crack along the northwestern exterior side of the houses (shown as solid line in panel a), and (c) parallel
ground fissure in greater proximity to the Kupa River (shown as shorter dashed curve in panel a).
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Fig. 9. Damage documentation and subsurface investigation at 99 Izisce St, Stari Brod [45.48023N, 16.18434E]: (a) floor plan showing documented cracks in red,
(b) crack through the patio (marked as crack 1 in the floor plan) with depth exceeding 1 m, horizontal separation of 10 cm, and vertical displacement of 8 cm, (c)
uplifted ground with displaced pavers and ruptured roof drainage pipe (marked as crack 2 in the floor plan), (d) water-pipe rupture caused by crack through the wall
and floor (marked as crack 3 in the floor plan), (e) dynamic probing medium (DPM30) [45.48025N, 16.18429E] blow count per 10 cm penetration, N10, and dynamic
point resistance, qd, versus depth, and (f) equivalent standard penetration test (SPT) blow count per 30 cm penetration, NSPT, versus depth. Cracks denoted by 4 and 5
in the floor plan indicate cracks in pavement and southeast wall, respectively.
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St. The upper 7 m of the profile would classify as loose, while strata
below this depth would classify as medium dense. However, there is
significant uncertainty in this correlation with SPT blow count and no
energy measurements are available from the DPM30 testing, which
would allow for more robust interpretation of these data or consider-
ation of other factors like rod friction. Additionally, no parameters other
than N10 or qd are obtained from the DPM30 testing. Given these un-
certainties and limitations, additional fieldwork, including cone pene-
tration testing (CPT) with pore water pressure measurements and
detailed logging of continuous, high-quality soil samples, should be
performed at these locations to better understand the subsurface con-
ditions and improve the usefulness of these case histories.

5. Concluding remarks

The 2020Mw 6.4 Petrinja, Croatia, earthquake triggered liquefaction
at multiple locations, causing widespread damage to the land and light-
weight residential structures in parts of Sisak-Moslavina County. Both
on-site and remote inspections were conducted to assess liquefaction-
related damage and document observations of ejecta to allow future
teams to collect in-situ data at these sites. Ejecta and lateral spreading
were observed in the vicinity of the Kupa and Sava rivers and their
tributaries, within 20 km of the rupture, where strong shaking of
0.3–0.6 g was estimated. Holocene flood and terrace deposits, Holocene
deluvium-proluvium, and Pleistocene loess deposits were identified as
deposits with surface manifestation of liquefaction. Historical observa-
tions of liquefaction near the fault indicated that liquefaction of loose
saturated sediments near the active stream channels could be expected.

Extensive fracturing of the ground accompanied by silty and sandy
ejecta was commonly observed in the free field. Ejecta at residential
properties caused differential settlement of houses and contamination of
water wells. In the village of Stari Brod, lateral spreading involved the
movement of land toward the Kupa River, which damaged four neigh-
boring houses. Dynamic probing medium (DPM30) testing at those
properties revealed low dynamic resistances at shallow depths, indi-
cating loose sandy layers. Multichannel analysis of surface waves
(MASW) in the free field indicated that the site without ejecta had stiffer
soil at depths of 6 m–9.5 m compared to the site with ejecta.

Existing liquefaction case history databases contain data from rela-
tively few earthquakes with magnitudes less than 6.5. Observations from
the 2020 Petrinja earthquake and previous earthquakes in this region
demonstrate that widespread liquefaction can occur due to these lower
magnitude events. Similarly, the literature contains a limited number of
liquefaction case histories involving Pleistocene loess, yet these deposits
manifested liquefaction in the 2020 Petrinja earthquake.

This study sought to collect perishable data on observations of sur-
face manifestations of liquefaction and liquefaction-induced damage,
but further work is needed to collect in-situ data at these locations to
maximize the usefulness of these case histories. The studies should
involve field investigations, laboratory testing, and numerical analysis
to improve the understanding of liquefaction susceptibility, triggering,
and associated effects in the region in conjunction with a thorough
geologic model.
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Legend for Sisak L33-93]. Geološki zavod, Zagreb (1975–1986); Savezni geološki
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