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ABSTRACT OF THE DISSERTATION
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Physical interaction between humans and robots is becoming more widespread in society due

to major research efforts in developing intelligent robotics in numerous industries: health

care, manufacturing, transportation, energy, etc. The coupled human-robot system allows

the strengths of one part to overcome the limitations of the other; the high-level task planning

and problem-solving abilities of the human are complemented by the accuracy, strength,

reliability, and repeatability of the robot.

One technology to benefit from these advancements is the exoskeleton, which has ap-

plications primarily in robot-assisted rehabilitation and human augmentation. Admittance

control enables motion of the exoskeleton by generating reference trajectories corresponding

to a lightweight virtual system that responds to human-applied forces. The exoskeleton’s

controller then tracks the reference, giving the illusion that the exoskeleton’s dynamics are

those of the lightweight system. The ease at which the exoskeleton moves with the operator

is known as transparency. The virtual system can emulate many desired dynamics, such as

those of point masses or rigid bodies. This flexibility is foundational for more advanced ap-

plications, such as having the exoskeleton also provide assistive forces during rehabilitation

or restricting motions to be within a safe workspace.
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Naturally, when coupling a human to an exoskeleton, there are important safety, relia-

bility, and performance considerations. Safety is often addressed at all levels of the system:

mechanics, controller, and reference generation, and is further explored in this work. The

feedback connection between the human and the exoskeleton also creates possible stability

issues, which may not exist in either system independently. Delay-induced instability and a

mechanism for mitigation are also explored.

Furthermore, improving transparency can conflict with wearability. However, for robot-

assisted rehabilitation, such a trade-off may be necessary. Thus, achieving comparable be-

havior for a system that has a simpler human-robot interface is of importance and is also

explored.

Finally, the flexibility of virtual dynamics can enable behavior that is not otherwise pos-

sible. For instance, creating virtually constrained motion for path-guided rehabilitation and

virtual reality-based object manipulation can greatly improve robot-assisted rehabilitation.

These examples showcase the significant potential of robotics for the field of rehabilitation.
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CHAPTER 1

Introduction

The term pHRI broadly describes any system in which a human interacts with a robotic

device in order to accomplish some task. Examples of pHRI include rehabilitation robots

for physical therapy [9–16], teleoperation surgical robots for conducting surgeries [17, 18],

exo-suit robots for strength augmentation [19–21], collaborative robots [22–24], and so on.

In all these examples, the robot and human are combined together so that the strengths of

one overlap with the limitations of the other. Humans are intelligent, capable of high level

task planning, and able to adapt to complex environments. On the other hand, robots are

robust, strong, accurate, repeatable, can operate in harsh or uninhabitable environments,

and can record data from numerous sensors. Complementing the two results in a system

in which the human plans high level tasks and the robot executes those tasks, creating an

efficient system of combined strengths.

Within pHRI, the robot’s autonomy can classify the interaction into one of three levels [25]

as shown in Fig. 1.1.

1. At level 1, the human has complete control over the robot’s motions. In this sce-

nario, the robot serves more as an extension of the human, rather than another agent.

Typical examples of this level of cooperation are seen in teleoperation [26,27] or high-

transparency exoskeleton control [5, 28, 29].

2. At level 2, control of the robot is shared between the robot and the human. The

human actively controls parts of the robot’s movement, while autonomous controllers

in the robot handle other aspects of the motion. Human-robot cooperation at this
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Level 1 Level 2 Level 3

Figure 1.1: One way to classify pHRI is by the robot’s autonomy, which can be one of three

levels: 1) the human completely controls the robot, 2) the human and robot share control,

and 3) the human only specifies only the end-objective.

level can be designed such that the human handles the intelligent high-level aspects,

such as path-planning, while the robot handles the other aspects, such as collision

avoidance [30].

3. At level 3, the human specifies only the end-objective, and the robot takes care of the

other aspects of the motion: path planning, collision avoidance, object handling, etc.

Using the classification described above, exoskeleton devices fall under level 1. Other

level 1 interactions can include teleoperation [26, 27], in which a human’s input is digitized,

transmitted over a network, and reconstructed by a robotic device. For example, teleopera-

tion can be used in dangerous environments, where a human cannot physically be present,

or for robot-assisted surgery, where it may be more time-efficient for the surgeon to avoid

traveling to the location of each operation [26].

In level 2 interactions, the robot has more autonomy and can perform more complex

tasks. The robot is no longer a physical extension of the human operator, but rather it

can complement the human in performing the task at hand. Examples of such systems

include industrial manipulators with automatic collision avoidance [31], human-controlled

robotic platoons [7], or intelligent prostheses that can infer the task that the human is
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trying to perform [32]. Some literature also refers to robots in this category as “cobots” - a

portmanteau of “collaborative” and ”robots” [33].

In level 3, the robot is almost completely autonomous and the human only provides

high-level objectives. Autopilot in autonomous cars [34], autonomous cooking robots [35],

warehouse organization robots [36], etc, are examples of systems in this category. The

physical human-robot interaction at this level is limited, so this dissertation primarily focuses

on level 1 and 2 interactions.

1.1 Admittance Control

The aspect of pHRI concerned with moving a robot according to a human operator’s input,

such as force, has motivated the use of admittance control. This methodology is one of

four input to output combinations from the robotics literature: admittance control (force to

position), impedance control (position to force), force control (force to force), and position

control (position to position) [37–40]. In this methodology, the controller generates reference

signals from human-applied forces, based on the dynamics of some virtual model. The

internal controllers of the robot then move it according to these reference signals, so that

from the perspective of the operator, the robot appears to move like the virtual model. By

designing the model to represent a lightweight system, the robot appears to move effortlessly

to human-applied input. The term transparency is typically used to describe how well the

robot’s motions follow the human’s intentions.

Since the model generating the robot’s motions is virtual, there is freedom in designing the

model to capture the desired behavior. For instance, the model can be virtually constrained

so that its trajectories never leave certain safety bounding regions. The model can also

emulate dynamics with entirely different parameters, e.g., a small point mass to enable fast

motions. The flexibility in designing the virtual system gives it utility; however, the farther

the virtual dynamics deviate from the physical dynamics, the more difficult it is for the

robot’s controller to track the virtual state. Thus, achieving transparent behavior is often
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more complicated than simply picking a virtual system with minimum inertia and damping.

The topic of admittance control and its implementation is explored in Chapter 3.

1.2 Safety

Safety is paramount for any pHRI system. This is especially the case for systems in which

the operator is attached to the robot, such as with exoskeletons, or in applications in which

the operator has reduced motion or strength, such as in robot-assisted stroke rehabilitation.

The importance of safety has motivated numerous approaches that try to address safety at

various levels of the software and hardware stack. Electrical and mechanical fail-safes, such

as joint limits, power e-stops, breakaway attachments, etc, are often simple to implement

and provide basic safety. However, due to their simplicity, they often cannot anticipate

dangerous situations, and must instead either react to the situation (e.g., joint limits) or

rely on external input (e.g., requiring another operator to press an e-stop button). These

detract from their reliability and force them to become last-resort measures. Thus, safety is

often also addressed at the controller level. In these cases, more sophisticated measures of

safety can be implemented, some of which can even predict when an unsafe situation may

occur and preemptively pause the robotic system.

Controller-level safety can monitor important signals within the robot, and automatically

respond to situations in which any of these signals exceed predefined limits. For instance,

monitoring velocity can ensure that the robot is stopped before its velocity exceeds a value at

which potential collisions become dangerous. Monitoring currents in the motors can detect

when external forces act on the robot, such as during collisions. Situations such like these

cannot simply be prevented from only mechanical joint limits, so they must be handled at

the controller level. Implementing safety at the controller level is also beneficial in that these

methods not only check for dangerous situations, but can also automatically stop the robot

when necessary without relying on external human input.

In addition to reaction-based safety methods, there are also anticipatory approaches. For
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instance, reference-level approaches can generate trajectories that avoid kinematic singu-

larities or joint limits. These approaches can be very effective since they avoid dangerous

situations in the first place. Reference-level approaches are further explored in Chapter 4.

Even when a robotic system is well-designed and incorporates safety throughout, incor-

porating it in a pHRI setting can cause new dangerous situations for which the robot was

not designed. For such HITL systems, the robot’s motion simultaneously reacts to and influ-

ences that of the human, which can induce phenomena not present in the robot’s dynamics.

For instance, the time-delay for muscle contraction signals in a human may not pose a great

issue in activities of daily living (ADLs), but in a exoskeleton with stiff virtual dynamics,

they can cause instability of the closed-loop HITL system. The coupled system may have

additional dynamics for which neither the robot designer nor the human can anticipate and

compensate. Delay-induced instability is one such possibility, and is explored in Chapter 5.

In general, the feedback connection of stable systems is not necessarily stable, so additional

safety measures must be implemented.

1.3 Sensor Fusion

Sensing and estimation in pHRI includes estimating human intent, which focuses on identi-

fying what the operator is currently doing or plans to do. Knowledge of the intent can then

be used as inputs to admittance controllers or other interaction controllers. In the literature,

various techniques have been explored, including surface electromyography (sEMG)-based

techniques [41–45], electroencephalogram (EEG)-based “brain-machine interfaces” [46–48],

vision-based techniques [49–51], and force measurement and estimation methods [28,52–56].

Typically, the use of more sensors can provide better estimates of human intent, but there

is often a trade-off. For the case of force/torque sensors on the EXO-UL8, that trade-off is

wearability, which is crucial for operators with muscular impairments. Chapter 6 explores a

method for reducing the number of sensors while retaining comparable transparency.
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1.4 Constrained Control

In addition to constraining the admittance control for safety, the allowable motions may

be further constrained to enable certain applications, such as virtual object manipulation,

which is common in VR-based rehabilitation; and path following, which plays a role in

trajectory-based reaching AAN rehabilitation. These seemingly unrelated objectives can

be unified by considering them as applications of set stabilization: the allowable motions

of the human-robot system are constrained to a subset of the original workspace. For a

bimanual exoskeleton, the first interaction constrains the relative pose between the hands to

be constant, which is equivalent to respecting the geometry of a rigid object. The second

interaction constrains the position of the end effector to be on the one-dimensional path. In

each of these scenarios, the desired behavior can be achieved by constraining the configuration

space of the human-robot system to a subset of the total space. The system’s dynamics are

free to move inside the constrained subset, but must be controlled to not leave the subset.

The topic of constrained admittance control for rehabilitation applications is explored in

Chapter 7.

1.5 EXO-UL8 Exoskeleton

The “robot” aspect of pHRI discussed in this dissertation is primarily implemented on the

EXO-UL8 exoskeleton, which serves as the robotic platform for the majority of the ex-

periments. The EXO-UL8 is a bimanual upper limb exoskeleton system developed by the

Bionics Lab at the University of California Los Angeles (UCLA) to support research efforts in

exoskeleton-based rehabilitation [4–6,57–61]. An exoskeleton robot is a wearable robotic sys-

tem whose links and joints align with those of the operator, and is able to assist the operator

with certain motions. The EXO-UL8 consists of two independently controlled robotic arms

with eight independently actuated joints corresponding to those of a human. The exoskele-

ton is worn by an operator and controlled by the operator’s movements through admittance

control, which maps the motions of the operator’s arms to those of the exoskeleton. Since
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the EXO-UL8 serves as the underlying hardware that supports many of the aforementioned

studies, it is introduced in Chapter 2. The hardware, kinematics, dynamics, control, and

implementation are discussed.

1.6 Dissertation Overview and Summary of Contributions

A summary and overview of the chapters in this dissertation are as follows:

• Chapter 1 introduces the main aspects of pHRI explored in this dissertation. An

overview and brief background are provided for each section.

• Chapter 2 discusses the EXO-UL8 exoskeleton hardware, kinematics, computed-torque

control, and software implementation details. The exoskeleton serves as the platform

on which subsequent control methodologies are developed and evaluated.

• Chapter 3 introduces the admittance control methodology and how virtual dynamics

are used to generate reference trajectories. A section on sensor fusion discusses how a

Kalman filter is used to combine multiple wrenches measured by force/torque sensors

on the EXO-UL8 to propagate the virtual dynamics.

• Chapter 4 introduces the primary safety methodology used on both the EXO-UL8 and

V-Rex exoskeleton robots. The section discusses how the virtual admittance control

dynamics are bounded through the use of soft bounds and hard bounds, which generate

restoring forces and emulate infinitely stiff virtual walls, respectively. A multi-arm col-

lision avoidance algorithm is also presented. The overall methodology is then evaluated

on both exoskeletons to demonstrate its generalizability.

• Chapter 5 explores the effects of time delay on human-induced instability, which is

caused by a combination of neural-muscular and electromechanical delays. The section

also introduces how rate-limiting can prevent time delays from destabilizing the system.

Experimental results validate the rate-limiter, demonstrating its role as a potential

safeguard against time delays.
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• Chapter 6 adapts the Kalman filter-based sensor fusion algorithm to provide compa-

rable estimation performance using a strict subset of sensors in an effort to improve

wearability of the EXO-UL8. Experimental results demonstrate the approach’s fea-

sibility and quantify the impact to transparency using power exchange and operator

discomfort as metrics.

• Chapter 7 presents a feedback linearization-inspired method for enabling constrained

admittance control, which has direct applications in path-following in AAN robot re-

habilitation tasks and VR-based rehabilitation using virtual objects. The constrained

admittance control methodology is experimentally verified on both the V-Rex and

EXO-UL8 systems in order to demonstrate the methodology and showcase its gener-

alizability.

• Chapter 8 summarizes the main contributions of this work.
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CHAPTER 2

EXO-UL8 Exoskeleton System and Control

The EXO-UL8 is a custom, powered, bimanual, redundant, upper-limb, anthropomorphic

exoskeleton consisting of two arms, each with seven revolute DoFs and one active gripper DoF

[4–6,57,58,62], designed to support research efforts in pHRI and robot-assisted rehabilitation.

The EXO-UL8 serves as the robot hardware on which a significant portion of the methods

and algorithms within this dissertation are implemented and verified. Thus, this chapter

discusses the details of the exoskeleton’s mechanics, control, and improvements.

2.1 Kinematics

The arms of the EXO-UL8 are mirrored to correspond to the two arms of a healthy human

operator. Most of the joints of exoskeleton correspond to the anatomical joints of a human

arm: the first two joints provide the range of motion for should abduction/adduction and

shoulder flexion/extension, the third joint corresponds to shoulder interior/exterior rotation,

the fourth to elbow flexion/extension, the fifth to forearm pronation/supination, the sixth

to wrist extension/flexion, the seventh to wrist radial/ulnar deviation, and the eighth to

opening the closing of the hand. All of the joints are revolute to agree with their anatomical

counterparts. Figure 2.1 summarizes the kinematic structure of the one of the two arms;

the locations of the joints and actuators is independent of the chirality of the arms. Table

2.1 summarizes the anatomical and exoskeleton range of motions for the joints; anatomical

values are from [63]. Note that the eighth joint is not considered in this chapter’s analysis

as it does not affect admittance control of the EXO-UL8’s arm.
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Joint DoF Name Anatomical Limits EXO-UL8 Limits

1 Shoulder abduction/adduction 180 ◦ /0 ◦ 90 ◦ /0 ◦

2 Shoulder flexion/extension 180 ◦ /50 ◦ 90 ◦ /10 ◦

3 Shoulder internal/external rotation 95 ◦ /70 ◦ 68.75 ◦ /15 ◦

4 Elbow flexion/extension 140 ◦ /0 ◦ 105 ◦ /0 ◦

5 Forearm pronation/supination 90 ◦ /90 ◦ 70 ◦ /39 ◦

6 Wrist extension/flexion 70 ◦ /73 ◦ 45 ◦ /29 ◦

7 Wrist radial/ulnar deviation 27 ◦ /27 ◦ 29 ◦ /30 ◦

Table 2.1: Joint limits for a typical human arm and the designed joint limits for the EXO-

UL8.

Along each of the two arms, three 6-axis force/torque sensors (ATImini 40) are utilized to

measure interaction forces with the operator. The first two sensors are located at the upper

arm and lower arm, while the third is integrated into the wrist assembly. The locations of

these sensors in the kinematic chain is shown in Figure 2.1.

2.1.1 Homogeneous Transformation

Kinematic analysis of the EXO-UL8 is performed using the product-of-exponentials (POE)

methodology, as described in [40]. POE is advantageous over conventional Denavit-Hartenberg

approaches in that the underlying screw theory provides more intuitive geometric interpre-

tation and uses only two reference frames: the body and the spatial frame [40]. For each of

the two arms on the EXO-UL8, the origin of the spatial frame is located at the intersection

of the three shoulder axes of revolution and oriented such that the x-axis points from the left

arm to the right arm, the y-axis points in the forward direction a person faces while wearing

the exoskeleton, and the z-axis points upwards, perpendicular from the ground. Figure 2.2

shows the location and orientation of these frames.
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θ3 − shoulder interior/exterior rotation

θ4 − elbow flexion/extension

θ6 − wrist extension/flexion

θ7 − wrist radial/ulnar deviation

F̂ b
u − upper arm sensor

F̂ b
w − wrist sensor

θ − gripper

θ5 − forearm pronation/supination

F̂ b
l − lower arm sensor

]
θ1

θ2

shoulder abduction/adduction

shoulder flexion/extension
−
{

Figure 2.1: Kinematic schematic of one arm on the EXO-UL8 showing the relative locations

of all seven revolute joints and three force/torque sensors. The first two joints do not

correspond exactly to the anatomical joints. The gripper accounts for the eighth degree-of-

freedom.

In forward kinematics, the objective is to relate the end-effector’s pose to the spatial

frame, while being parameterized by joint angles (θ1, . . . , θ7). Let gst(0) ∈ SE(3), where

SE(3) ⊂ R4×4 is the special Euclidean group, represent a transformation to the end-effector

frame from the spatial frame at the shoulder with the EXO-UL8 when its joints are in their

initial zero position. Then,

gst(θ) = eξ̂1θ1 · · · eξ̂7θ7gst(0), (2.1)

for some joint displacements, θ1, . . . , θ7. Each ξi is a local twist coordinate, and for revolute

joints, has the form

ξi =


−ωi × qi

ωi


 , (2.2)

where ωi is the unit-norm axis of rotation of the joint, and qi is any point along the axis of
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(a) Left arm (b) Right arm

Figure 2.2: Spatial reference frames and axes of rotation of the first three joints.

rotation. The hat operator maps into a matrix ξ̂i ∈ se(3) from the local coordinate ξ ∈ R6,

where se(3) is the Lie algebra of SE(3) at its identity element.

ξ̂i =


vi
ωi




∧

=


ω̂i vi

0 0


 , (2.3)

where ω̂i ∈ so(3), the group of 3× 3 skew-symmetric matrices and the Lie algebra of SO(3)

at its identity element, and

ω̂i =




ω1

ω2

ω3




∧

=




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 , (2.4)

where the hat operator here maps local coordinates in R3 to matrices in so(3). Each of the

seven transformation matrices in equation (2.1) can be computed using

eξ̂iθi =


e

ω̂iθi (I − eω̂iθi)(ωi × vi) + ωiω
⊤
i viθi

0 1


 , (2.5)

eω̂iθi = I + ω̂i sin(θi) + ω̂2
i (1− cos(θi)). (2.6)
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The axes of rotation of the joints and points along the axes of rotation in the spatial frame

are given in Tables 2.2 and 2.3, respectively. Note that these vectors and points are when

the exoskeleton is in its initial zero-position configuration.

Joint Left Arm Rotation Axes (m) Right Arm Rotation Axes (m)

1 [0.707107, 0.521334, 0.477714] [0.707107,−0.521334,−0.477714]
2 [0.593426,−0.804889, 0] [0.593426, 0.804889, 0]

3 [0, 0,−1] [0, 0, 1]

4 [1, 0, 0] [1, 0, 0]

5 [0, 0,−1] [0, 0, 1]

6 [0, 1, 0] [0,−1, 0]
7 [1, 0, 0] [1, 0, 0]

Table 2.2: Axes of rotation for each joint.

Joint Point along Axes (m)

1 [0, 0, 0]

2 [0, 0, 0]

3 [0, 0, 0]

4 [0, 0,−0.3036]
5 [0, 0,−0.3036]
6 [0, 0,−0.5803]
7 [0, 0,−0.5803]

Table 2.3: Point along each axes of rotation for each joint.
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2.1.2 Spatial Manipulator Jacobian

The velocity of the end-effector (expressed in the spatial coordinate frame) can be written

as a function of the joint positions and velocities:

v̂sps = ġst(θ)g
−1
st (θ). (2.7)

The time derivative can be carried out, and equation (2.7) can be rewritten as

vsps = Jsp
s (θ)θ̇, (2.8)

where Jsp
s (θ) is defined as the spatial manipulator Jacobian. The Jacobian is computed as

Jsp
s (θ) =

[(
∂gst
∂θ1

g−1
st

)∨

· · ·
(
∂gst
∂θn

g−1
st

)∨]
, (2.9)

= [ξ1 ξ
′

2 · · · ξ
′

n], (2.10)

where

ξ
′

i = Ad
(eξ̂1θ1 ··· eξ̂i−1θi−1 )

ξi. (2.11)

Note that the adjoint for a homogeneous transformation g =
[
R p
0 1

]
∈ SE(3) is given by

Adg =


R p̂R

0 R


 . (2.12)

2.1.3 Force Transformation

Contact force between the human and the exoskeleton is measured by the ATImini 40 force

sensor modules located at the upper arm, the lower arm, and the wrist, as shown in Figure

2.3. Each of these sensors provides a wrench measurement (3 DoF for force, 3 DoF for torque).

These measurements can be transformed into torques applied to the exoskeleton’s joints by

using the spatial manipulator Jacobian. First, the measured wrenches are transformed from

the sensor’s frame to the spatial frame through

F sp
s = Ad⊤

g−1
s (θ)

F b
s , (2.13)
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Figure 2.3: Each arm of the EXO-UL8 incorporates three 6-axis ATImini40 force/torque

sensors located at the upper arm, the lower arm, and the wrist assembly.

where F sp
s ∈ R6 expresses the equivalent wrench in the spatial frame. The transformed

wrenches, F sp
s , are then mapped to joint torques Γs ∈ R7 with the spatial manipulator

Jacobian:

Γs = Jsp
s (θ)⊤F sp

s . (2.14)

Each of the sensors contributes a torque vector (Γu ∈ R3,Γl ∈ R5,Γw ∈ R7) to the admittance

controller. Note that the dimensions of the spatial manipulator Jacobian are different for

each sensor due to each sensor being located at a different position along the kinematic chain,

as shown in Figure 2.1. Table 2.4 gives the physical locations of the sensors.
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Sensor Right Side Relative Location (m) Left Side Relative Location (m)

Upper [0.0467, 0,−0.2069] [−0.0467, 0,−0.2069]
Lower [0, 0,−0.5134] [0, 0,−0.5134]
Wrist [0.058, 0,−0.6528] [−0.058, 0,−0.6528]

Table 2.4: Location of force sensors on the right and left sides.

2.2 Dynamics

The dynamical equations of motion can be formulated using the Lagrangian, as detailed

in [40]. Similar to the previous section, it suffices to consider only one of the arms. In

order to calculate the total kinetic energy of the arm, let a coordinate frame, Li, be fixed to

the center of mass of the ith link and oriented with the principle axes of inertia. Then the

homogeneous transformation from the base frame to the link frame is given as:

gsli(θ) = eξ̂1θ1 · · · eξ̂iθigsli(0), (2.15)

where i ∈ {1, . . . , 7}. The corresponding body Jacobian is given as:

J b
sli
(θ) =

[
ξ†1 · · · ξ†i 0 · · · 0

]
, (2.16)

where ξ†j is the jth instantaneous joint twist relative to the ith frame, and is given as:

ξ†j = Ad−1(
eξ̂jθj ···eξ̂iθigsli (0)

) ξj, j ≤ i. (2.17)

The body Jacobian allows the body velocity of the ith link’s center of mass to be written as:

V b
sli

= J b
sli
(θ)θ̇. (2.18)

Next, let the generalized inertia for the link be:

Mi =


miI 0

0 Ii


 , (2.19)
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where mi is the link’s mass, I is the 3×3 identity matrix, and Ii is the link’s diagonal inertia
tensor. Note that Mi is diagonal only because Li is attached to the center of the mass of

the link and aligned with the principle axes of inertia. Finally, the kinetic energy of the link

is:

Ti(θ, θ̇) =
1

2
(V b

sli
)⊤MiV

b
sli
, (2.20)

=
1

2
θ̇⊤J b

sli
(θ)⊤MiJ

b
sli
(θ)θ̇. (2.21)

By defining M(θ) :=
∑

i J
b
sli
(θ)⊤MiJ

b
sli
(θ), the total kinetic energy of the manipulator can

be written as:

T (θ, θ̇) =
1

2
θ̇⊤M(θ)θ̇, (2.22)

where M(θ) is known as the manipulator inertia matrix. The potential energy for the

manipulator is solely due to the effects of gravity. In this case, the potential energy for the

ith link is:

Vi(θ) = mighi(θ), (2.23)

where hi(θ) is the height of the link’s center of mass, and g is the gravitational constant. By

defining V (θ) =
∑

i Vi(θ), the Lagrangian of the manipulator can be written as:

L(θ, θ̇) =
1

2
θ̇⊤M(θ)θ̇ − V (θ). (2.24)

2.2.1 Equations of Motion

Let ui be the total torque acting on the ith joint. Then, the equations of motion are:

d

dt

∂L(θ, θ̇)

∂θ̇i
− ∂L(θ, θ̇)

∂θi
= ui, (2.25)

where L(θ, θ̇) is the Lagrangian from equation (2.24), and i ∈ {1, . . . , 7}. Carrying out the

differentiation, the equations of motion become:

∑

j

Mij(θ)θ̈j +
∑

j,k

(
∂Mij(θ)

∂θk
θ̇j θ̇k −

1

2

∂Mkj(θ)

∂θi
θ̇kθ̇j

)
+

∂V (θ)

∂θi
= ui. (2.26)
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The Christoffel symbols of the first kind, Γijk, for the manipulator inertia matrix are com-

monly used to simplify the equations of motion. They are given as:

Γijk =
1

2

(
∂Mij(θ)

∂θk
+

∂Mik(θ)

∂θj
− ∂Mkj(θ)

∂θi

)
. (2.27)

Applying the substitution, equation (2.26) then becomes:

∑

j

Mij(θ)θ̈j +
∑

j,k

Γijkθ̇j θ̇k +
∂V (θ)

∂θi
= ui. (2.28)

To write the equations of motion in vector form, a couple more definitions are made. Let

N ∈ R7 represent the conservative forces and be defined as:

Ni(θ) =
∂V (θ)

∂θi
. (2.29)

Furthermore, let C(θ, θ̇) ∈ R7×7 be a square matrix with elements:

Cij(θ, θ̇) =
∑

k

Γijkθ̇k. (2.30)

Then, the equations of motion can be written concisely as:

M(θ)θ̈ + C(θ, θ̇)θ̇ +N(θ) = u, (2.31)

where M(θ) ∈ R7×7 is the manipulator inertia matrix, C(θ, θ̇) ∈ R7×7 is the manipulator

Coriolis matrix, N(θ) ∈ R7 is the conservative force vector, and u ∈ R7 is the vector of joint

torques. Equation (2.31) conveniently represents the dynamics of the manipulator in vector

form, and will be used for subsequent analysis.
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2.2.2 EXO-UL8 Parameters

The parameters for the EXO-UL8 are calculated using the Mass Properties tool from SOLID-

WORKS. Material densities and component masses are filled into the SOLIDWORKS model

according to their datasheet values. The parameters for the right arm of the EXO-UL8 are

given in Tables 2.5 and 2.6. All coordinate-dependant quantities are expressed in the base

frame.

Since the left arm is a mirror copy of the right arm, its dynamical parameters can be

computed from those of the right arm. However, since the left arm is mirrored in the plane

normal to the x-axis, care must be taken to ensure that only certain values have their sign

flipped. The center of mass of each link i on the left arm can be computed by simply negating

the x-component for the corresponding right arm link. Intrinsic properties, such as mass or

principle inertias, do not change between the arms. For the principle axes of inertia, flip the

direction of the first principle axis. Then, negate only the x-coordinates of the three axes.

In order words:







a
(1)
x

a
(1)
y

a
(1)
z


 ,




a
(2)
x

a
(2)
y

a
(2)
z


 ,




a
(3)
x

a
(3)
y

a
(3)
z







−→








a
(1)
x

−a(1)y

−a(1)z


 ,




−a(2)x

a
(2)
y

a
(2)
z


 ,




−a(3)x

a
(3)
y

a
(3)
z








. (2.32)

Since the principle axes must form a right-handed coordinate frame located at the center of

mass, any two of the axes can flip and still yield the same inertia properties.
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Joint Link Masses (kg) Center of Mass (m) Principle Inertias (kg ·m2)

1 14.16052 [0.23727, 0.13825,−0.06131] [0.09249, 0.49091, 0.54456]

2 1.90092 [0.05823, 0.05051,−0.09990] [0.00517, 0.01295, 0.01560]

3 7.70825 [0.18034,−0.02335,−0.26417] [0.02499, 0.05136, 0.05415]

4 1.30118 [0.01520,−0.03836,−0.37523] [0.00235, 0.00759, 0.00841]

5 2.29959 [−0.02194,−0.10862,−0.46951] [0.00360, 0.00925, 0.01084]

6 0.74245 [0.09193,−0.05096,−0.58021] [0.00051, 0.00163, 0.00205]

7 0.85143 [0.01190, 0.04524,−0.65505] [0.00120, 0.00019, 0.00180]

Table 2.5: Link masses, centers of mass, and principle inertias for the right arm of the

EXO-UL8.

2.3 Computed Torque Control

2.3.1 Control Output

Given the equations of motion from equation (2.31), the computed torque method of [40] is

implemented for the EXO-UL8. Given a desired joint trajectory, θref, along with its time-

derivatives, θ̇ref, θ̈ref, the joint torques are set as:

u = M(θ)(θ̈ref +Kdė+Kpe) + C(θ, θ̇)θ̇ +N(θ), (2.33)

where e = θref − θ and ė = θ̇ref − θ̇, and Kp, Kd are constant gain matrices. The computed

torque controller essentially tries to cancel out the nonlinearities associated with the Coriolis

matrix and the conservative force vector. Substituting equation (2.33) into equation (2.31),

the closed-loop dynamics become:

M(θ)(ë+Kdė+Kpe) = 0, (2.34)

where ë = θ̈ref − θ̈. Since M(θ) is positive definite by construction, the error dynamics

simplify to:

ë+Kdė+Kpe = 0, (2.35)
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Joint First Principle Axes of Inertia Second Principle Axes of Inertia

1 [−0.61357, 0.62841, 0.47816] [−0.65679,−0.74229, 0.13275]
2 [0.08146, 0.83151, 0.54951] [−0.72090, 0.42988,−0.54361]
3 [−0.40235,−0.31316, 0.86026] [0.05348, 0.93003, 0.36357]

4 [−0.94455,−0.29870,−0.13638] [0.32750,−0.88704,−0.32543]
5 [−0.09139,−0.03444, 0.99522] [0.41615, 0.90663, 0.06959]

6 [−0.18183, 0.98333,−0.00219] [−0.98326,−0.18185,−0.01116]
7 [0.19916, 0.89843, 0.39135] [−0.51325, 0.43582,−0.73935]

Table 2.6: The first two principle axes of inertia about the centers of mass for each link of

the right arm of the EXO-UL8 is given. The third axis can be directly computed by taking

the cross-product.

which is a stable linear system as long as Kd > 0 and Kp > 0 (positive definite). The

computed torque input can be broken down into the sum of two components:

u = M(θ)θ̈ref + C(θ, θ̇)θ̇ +N(θ)︸ ︷︷ ︸
feedforward

+M(θ)(Kdė+Kpe)︸ ︷︷ ︸
feedback

. (2.36)

The feedback gains on the error terms are for stability of the error dynamics, while the feed-

forward component is necessary for cancelling the nonlinearity of the system dynamics and

decoupling the error dynamics from the state. Since the nonlinearities cannot be perfectly

compensated in practice, the feedback portion is necessary.

Note that the feedforward component θ̈ref is also necessary in order to produce the closed-

loop error dynamics of equation (2.35). If a reference acceleration is not generated, i.e.

θ̈ref = 0, then the closed-loop error dynamics become:

θ̈ +Kdė+Kpë = 0. (2.37)

In the Laplace domain, the transfer function matrix for these dynamics is of the form:

(e/θ)(s) = −s2(sKd +Kp)
−1, (2.38)
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which resembles a high-pass filter. Hence, the error becomes coupled with the state in the

absence of feedforward reference acceleration.

2.3.2 State Measurement

Joint positions, θ, can be directly measured at a frequency of 1kHz by the optical encoders at

each joint. On the other hand, the joint velocities, θ̇, must be estimated. Traditional linear

Kalman filter-based estimation strategies are inadequate due to the nonlinear equations of

motion of equation (2.31).

For practical implementation feasibility, the joint velocities are numerically differentiated

and then passed through a 4th order Butterworth low-pass filter with corner frequency of

30Hz. The transfer function for each channel of the filter was designed as:

Hi(z) =
b0 + b1z

−1 + b2z
−2 + b3z

−3 + b4z
−4

1 + a1z−1 + a2z−2 + a3z−3 + a4z−4
, (2.39)

where the coefficients given in Table 2.7 are calculated with MATLAB. The discrete time

filter was realized with the Direct form II implementation in software.

Index Numerator (b) Denominator (a)

0 6.238 698 354 854 577 1× 10−5 1.0

1 2.495 479 341 941 830 9× 10−4 −3.507 786 207 390 781 3
2 3.743 219 012 912 746 3× 10−4 4.640 902 412 686 704 9

3 2.495 479 341 941 830 9× 10−4 −2.742 652 821 120 370 5
4 6.238 698 354 854 577 1× 10−5 6.105 348 075 612 233 6× 10−1

Table 2.7: Discrete time filter coefficients for a 4th order Butterworth low-pass filter.
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2.3.3 Friction Compensation

Friction is compensated for the Maxon motor actuators used in joints 3, 5, 6, and 7. Although

the feedback controller is able to overcome the effects of friction, explicitly compensating for

the friction can improve tracking performance. Since modeling friction is a complex problem,

only the most significant component, static friction, is modeled and compensated. Static

friction is modeled as an additional torque that acts in the opposite direction as the joint’s

angular velocity. Thus, the friction torque for the ith joint is modeled as:

τf,i(θ̇i) = τ staticf,i sgn(θ̇i), (2.40)

where sgn is the signum function and τ staticf,i is an empirically determined constant. Figure

2.4 shows the friction model, and Table 2.8 lists the values of τ staticf,i .

θ̇i

τ staticf,i

−τ staticf,i

τf,i(θ̇i)

Figure 2.4: Static friction model used for friction compensation on the Maxon motor joints.

For the Harmonic drives of joints 1, 2, and 4, a similar friction model consisting of

both static and viscous friction forces is used. To identify the friction torque and velocity

relationship, the motor is driven at constant velocities while the current is measured using the

vendor-provided Harmonic drive controller. The current is then converted to an estimated

torque using the motor’s torque constant. Results are plotted for the SHA25 motor (joint

4) in Fig. 2.5.
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Joint τ staticf,i (Nm)

3 12.0

5 15.0

6 25.0

7 10.0

Table 2.8: Empirically determined constants for modeling static friction on the Maxon motor

joints on the EXO-UL8.
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0.1043x + 7.8247

Figure 2.5: Measured relationship between motor torque and velocity, and a least-squares

curve-fit to an affine model.

In general, the friction torque to velocity relationship for Harmonic drives is complex and

can even contain hysteresis [64]. To simplify the control, an affine model is fit to the data, in

the sense of least-squares. The Stribeck effect is not included due to the limited resolution of

the current sensing hardware. The resulting model is shown in Fig. 2.6. Note that the static
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friction component of Fig. 2.4 is replaced by a sloped line so that the torque relationship

remains continuous. The model is subsequently used in the computed torque control of the

exoskeleton.
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Figure 2.6: Friction model for the SHA25 Harmonic drive used on joint 4 (elbow flexion/ex-

tension).

The computed torque control input of equation (2.33) is then augmented with the

velocity-dependent static friction:

u = M(θ)(θ̈ref +Kdė+Kpe) + C(θ, θ̇)θ̇ +N(θ) + τf (θ̇). (2.41)

2.4 Symbolic Dynamics

Implementing the controller of equation (2.41) requires computing the matricesM(θ), C(θ, θ̇),

and N(θ) in real-time since they are dependent on the joint position, and also angular ve-

locity in the case of C(θ, θ̇). Furthermore, the state space is too large to pre-compute these
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matrices to store in a look-up table. Thus, they must be computed in real-time, and effi-

ciently enough to meet the 1kHz timing requirement of the control loop.

While these matrices can be computed numerically following the steps in subsection

2.1.2 and section 2.2, such a procedure can be inefficient and is not immune to potential

issues from floating point numbers. As a result, closed-form expressions parameterize by the

state (θ, θ̇) are symbolically generated using Sympy (version 1.6.1) [65] for Python (version

3.7.6). The package was selected for its support of common subexpression elimination, which

allows for complicated symbolic expressions to be broken down into smaller subexpressions,

assigned to intermediate variables, and then used in subsequent expressions. The included

C11CodePrinter class was extended to generate C code from the symbolic expressions. The

code snippet below shows a sample of the generated code.

void manipulatorInertiaMatrix(const double* M, const double* position){

const double x0 = M_SQRT2;

const double x1 = cos(position [0]);

const double x2 = 0.73611111111111116* M_PI;

const double x3 = sin(x2);

const double x4 = x1 - 1;

const double x5 = x3*x4;

const double x6 = 0.11630055367992947* x5;

const double x7 = cos(x2);

const double x8 = x4*x7;

const double x9 = sin(position [0]);

Although several thousand intermediate variables are generated for complex expressions,

such as the Coriolis matrix, modern C/C++ optimizing compilers will still produce efficient

code. The runtime of using symbolic expressions is often significantly faster than numerically

computing all the matrices. Generating all of symbolic expressions for all the matrices and

then outputting C-style code takes approximately 6 minutes on a 3.1GHz Quad-Core Intel

i7 with 16GB of RAM. Note that the code only needs to be generated whenever the mass

properties of the EXO-UL8 change.
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Figure 2.7: Dynamical simulation of the EXO-UL8 is implemented using MuJoCo. The

simulator is used throughout during development and verification.

2.5 Verification

2.5.1 Simulation

Dynamical simulation of the EXO-UL8 is performed using MuJoCo [66], as shown in Figure

2.7. A hardware model of the EXO-UL8 is created from the inertia properties of 2.2.2 and

visualized with STL outputs from the SOLIDWORKS model. The equations of motion

are implemented internally in MuJoCo, and are used to corroborate both the equations of

motion derived from the Lagrangian formulation and the symbolic implementation. The

MuJoCo-based simulator is also used to verify functionality logic, such as switching between

different controllers and references, data logging, visualization, and so on. It has proved to

be an invaluable tool throughout development and verification of all subsequent methods.

2.5.2 Hardware Testing

The computed torque controller was applied to the Maxon motor-actuated joints and com-

pared to the former PD controllers. The reference and measured trajectories for the joints

are shown in Figures 2.8, 2.9, 2.10, and 2.11. Results indicate that tracking performance has

improved.
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To quantitatively assess the performance, the RMS of the error signal is calculated. For

an error signal, e[k], of length N , the RMS is defined as:

RMS =

√√√√ 1

n

N∑

k=1

e[k]2. (2.42)

The RMS quantifies the magnitude of the error signal and provides a comparable metric

independent of the signal duration. The RMS values for the error signals are reported in

Table 2.9.

Joint PD Controller Model-based Controller

3 2.297◦ 0.302◦

5 0.788◦ 0.417◦

6 0.964◦ 0.208◦

7 1.126◦ 0.237◦

Table 2.9: Error RMS values comparing the tracking performance between the original PD

controller and the computed torque controller. Error values are reported in degrees.

The largest improvements can be seen in joint 3. Since this joint moves the largest

mass due to its higher position in the kinematic chain compared to the other joints, gravity

compensation benefits this joint the most. Furthermore, the tracking errors in the former

PD controller for joint 3 are skewed towards positive errors, which happens during shoulder

interior rotation with the arm extended in front. In this scenario, gravity acts against

tracking the reference, so the skew in errors are expected. This is not the case in the model-

based controller due to its gravity compensation. The other joints are loaded with less mass,

so the performance improvements are relatively smaller.
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Figure 2.8: Tracking performance for joint 3: shoulder interior/exterior rotation.

Figure 2.9: Tracking performance for joint 5: forearm supination/pronation.
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Figure 2.10: Tracking performance for joint 6: wrist flexion/extension.

Figure 2.11: Tracking performance for joint 7: wrist ulnar/radial deviation.
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2.6 Hardware Updates

Actuators on the EXO-UL8 consist of brushless DC motors from Maxon Motors (joints 3, 5,

6, 7) in current-control mode enabled by Escon 50-5 motor controllers, and harmonic drives

from the company Harmonic Drive (joints 1, 2, 4) operated in either current- or velocity-

control mode. For either actuator type, the input signal is passed as an analog voltage (-10V

to 10V), generated from a DAC on the industrial computer running the control loop. The

existing DAC is the PCI-DAC6702 from Measurement Computing, capable of generating

16-bit analog output at an aggregate frequency of 1KHz for all the channels. Since the

data output is bottle-necked by the DAC, the I/O operations were initially asynchronous to

the main control loop. While this was fine for operation in the past, a hardware update is

necessary in order to improve joint space tracking performance, which is necessary for high

transparency.

Figure 2.12: Design of the updated analog signal distribution circuit in order to accommodate

the new PCIe-DA16-16 DAC

.

To this end, the card is replaced by the PCIe-DA16-16 DAC from Acces I/O Products,

which is capable of updating outputs at a frequency of at least 1KHz for each channel inde-

pendently. Upgrading the DAC card also required a redesign of the analog signal distribution

circuit board, which was completed using Altium Designer, as shown in Figure 2.12. The
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Figure 2.13: Built and assembled analog signal distribution circuit board.

.

circuit board is subsequently built with JLC-PCB, manually assembled as shown in Figure

2.13, and installed into the EXO-UL8 electronics box. The upgrade enabled the controller

software and voltage output to run synchronously at 1KHz, which improved tracking per-

formance and facilitated subsequent software development on the EXO-UL8.

2.7 Software

To ensure consistent performance while being compatible with device drivers, the core control

loop utilizes the Multimedia Timer running on Windows 10. Although the operating system

is not real-time, the use of the Multimedia Timer allowed for a consistent 1KHz loop in which

the admittance controller and computed-torque controllers are implemented. All aspects of

the software are written in C++17 and compiled with MSVC provided through Visual Studio

2019. Third party tools and libraries used include:

• CMake - build system,

• Eigen - template library for matrices, vectors, and linear algebra,

• QT6 - graphical user interface,

• Boost - Network UDP operations,
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• MuJoCo - Dynamical simulator and visualizer,

• OSQP - quadratic program solver,

• {fmt} - printing and formatting,

• nlohmann/JSON - JSON parsing.

Version control was handled by git and hosted on GitHub. A screenshot of the graphical

user interface is shown in Figure 2.14.

Figure 2.14: Graphical user interface of the EXO-UL8 control interface, written in C++17

and QT6.

.
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CHAPTER 3

Admittance Control

Admittance control in pHRI is concerned with generating robot positions in response to

human-applied forces. A common approach is to use a virtual dynamics model to generate

the positions [4,67–70]. A measured, or estimated, human-applied force integrates the virtual

dynamics, whose position and velocity can serve as reference signals to be tracked by the

robot’s controller. In this case, additional constraints can be imposed on the virtual state,

such as ensuring that positions do not exceed certain safety regions or bounding velocity

magnitudes. Since the virtual dynamics are integrated, there may be phase lag that must

be considered in the robot’s controller, since stability can be affected. To this end, the

virtual velocity or feedforward accelerations can be used to improve the tracking performance.

It should be noted that the robot will always move according to its physical dynamics.

Thus, there is often a trade-off in the virtual dynamics between being lightweight (more

transparent) and dynamically feasible (robot’s controller can follow well).

Another technique to enable pHRI is to view the admittance controller as trying to zero

the interaction force between the human and the robot. In the ideal transparent case, there

is no power exchanged between the interface, since the relative velocity between the two is

zero. Practically, the interaction forces are necessary for the robot’s admittance controller

to determine how to move. Thus, in this scheme, the robot’s control is directly generated

from the human-applied forces, using a stabilizing controller. While this approach may have

less phase lag, it is difficult to tune or impose safety limits on position or velocity, since the

robot dynamics would have to be considered in the admittance control. A comparison with

the first method is further explored in [6].
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The remainder of this dissertation is primarily focused on the first approach, where a vir-

tual model generates the reference signals that a low level controller (computed torque con-

troller for the EXO-UL8) tracks. This chapter discusses the methodology for some common

virtual dynamics in section 3.1 and provides an open source C++17 library implementation:

https://github.com/jianwei-sun/gtfo. Input to the virtual dynamics is also discussed; specif-

ically, the Kalman filter-based sensor fusion technique used on the EXO-UL8 is presented.

3.1 Virtual Dynamics

The virtual model is responsible for generating reference signals corresponding to the desired

motion of the pHRI system resulting from human-applied forces. Typically, the virtual

system models physical systems, albeit with different parameters, so that they align well

with our existing intuition for how they should react. Second-order point mass systems

parameterized by mass, damping, and sometimes a virtual spring, are common. However,

other systems are also worth discussing, such as first-order dynamics or second-order rigid

body dynamics. Reference generation models, such as ones that generate smooth homing or

point-to-point trajectories, also belong to this category.

3.1.1 Point Mass Dynamics

In the simplest case, consider a single dimensional second-order model:

mp̈(t) + bṗ(t) = u(t), (3.1)

where p(·) : R→ R is the position, u(·) : R→ R is the input force, m ∈ R>0 is the mass, and

b ∈ R≥0 is the damping coefficient. Such a model is frequent in the literature since it is easy

to implement and can easily be extended to the vector case. The damping parameter b often

must be included to ensure passivity of the virtual system, which is necessary for stability.

Although equation (3.1) is in continuous time, a discrete time implementation is possible

using any discretization technique. Letting the virtual state x := col(p, ṗ), the dynamics can

35

https://github.com/jianwei-sun/gtfo


be written in state-space format:

ẋ : =


0 1

0 −b/m


x+


 0

1/m


u, (3.2)

: = Ax+Bu (3.3)

where the dependency on time has been dropped for clarity. Software implementation re-

quires the dynamics to be discretized, which can be done with forward Euler:

xk+1 = Adxk +Bduk, (3.4)

where Ad = I + AT , Bd = BT , and T is the loop period. Such a technique can cause the

system to no longer be passive, so implicit Euler techniques may yield better stability:

ṗk+1 = ṗk + T

(
− b

m
ṗk +

1

m
uk

)
, (3.5)

pk+1 = pk + T ṗk+1, (3.6)

where the updated velocity is used to compute the updated position. In some cases, it

may be necessary to exactly discretize equation (3.2). To this end, assume that the input

is piecewise constant and constant on each sampling period. Then, solving the differential

equation over one period yields:

x(t+ T ) = eATx(t) +

∫ t+T

t

eA(t−τ)Bu(τ)dτ. (3.7)

On the interval [t, t+ T ), the input is constant: u(τ) = u. Then, simplifying the integral:

x(t+ T ) = eATx(t) +

∫ t+T

t

eA(t−τ)Bdτu, (3.8)

= Adx(t) +Bdu, (3.9)

where:

Ad : = eAT , (3.10)

Bd : =

∫ t+T

t

eA(t−τ)Bdτ. (3.11)
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In the case that A is invertible, Bd = A−1(A− I)B.

Regardless of the discretization used (forward Euler, implicit Euler, exact), decreasing

the sampling period generally yields better results, but at the cost of requiring a higher

control rate.

3.1.1.1 First-Order Dynamics

First-order systems are also common and can serve as virtual dynamics. Let x ∈ R represent

the virtual position, then the continuous time dynamics take the form:

τ ẋ+ x = Ku, (3.12)

where τ,K ∈ R>0 are the time-constant and gain, respectively. The dynamics can easily be

exactly discretized to yield:

xk+1 = e−
T
τ xk +K(1− e−

T
τ )uk. (3.13)

The first-order system can have less phase lag than the second-order system, but tuning the

parameters for transparency can be less intuitive.

3.1.2 Rigid Body Dynamics

In general, point-mass dynamics are easy to implement since their state-space is Euclidean.

However, certain applications may require more complicated dynamics, such as emulating

the interaction with a virtual object. In this case, the object has geometry and cannot simply

be represented by a point mass. The rigid body dynamics can be considered in two parts:

the translational dynamics of its center of mass, and the rotational dynamics around the

center of mass. The former can use the aforementioned second-order point-mass dynamics.

However, the rotational dynamics require more care.
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3.1.2.1 Rotational Dynamics

Assuming that the center of mass of the virtual object is fixed, the orientation of the object

relative to a global reference frame can be expressed by an element R ∈ SO(3). Typically, R

is a 3× 3 rotation matrix or a unit quaternion. Local coordinates for SO(3), such as Euler

angles, are often used for simplicity, but suffer from gimbal lock when the orientation leaves

the coordinate chart in which the local coordinate is defined. Let u ∈ R3 be a torque acting

on the body about its center of mass, expressed in the body frame. The goal is to compute

the updated orientation Rk+1 from its current orientation.

Let I ∈ R3×3 be the object’s inertia matrix, b ∈ R≥0 be the rotational damping, and

ω ∈ R3 be the angular velocity also expressed in the body frame. Then, the dynamics follow

Euler’s equations with damping:

Iω̇ + ω × (Iω) + bω = u, (3.14)

which can be discretized. The orientation then needs to be updated by a rotation Ωk = ω̇kT .

Since this rotation is about the axis Ωk/∥Ωk∥ by an amount ∥Ωk∥, the corresponding rotation
is:

RT = eΩ̂k , (3.15)

where Ω̂k ∈ so(3) is the skew-symmetric form of Ωk, belonging to the Lie algebra of SO(3)

at the identity. A closed form for the matrix exponential is given by the Rodrigues’ rotation

formula as:

eΩ̂k = I +
Ω̂k

∥Ωk∥
sin(∥Ωk∥) +

(
Ω̂k

∥Ωk∥

)2

(1− cos(∥Ωk∥)). (3.16)

In the case that ∥Ωk∥ ≈ 0, small angle approximations or Taylor expansions should be used

so that floating-point division by ∥Ωk∥ does not cause instability. Once the delta rotation is

computed, the orientation can be updated as:

Rk+1 = RkRT . (3.17)

In the case that unit quaternions are used to represent the orientation, the delta quaternion
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in coordinates qT = (w, x, y, z) can be computed with:

qT = (cos(θ), sΩk) (3.18)

where θ = (T/2)∥Ωk∥, s = (T/2) sinc(θ), and sinc : R → R is the cardinal sine function

defined as:

sinc(x) :=





sinx
x
, x ̸= 0,

1, x = 0.

(3.19)

Numerical implementation of sinc can make the approximation:

sinc(x) ≈




1− x2

6
, ∥x∥ < ϵ,

sinx
x
, ∥x∥ >= ϵ,

(3.20)

for some numerical tolerance ϵ ∈ R>0. As long as a globally valid representation is used for

orientation, e.g. rotation matrices, unit quaternions, axis-angles, the orientation dynamics

do not suffer from gimbal lock.

3.1.2.2 Rigid Body Dynamics

Given the rotation and point mass dynamics, the rigid body dynamics can be viewed as

dynamics on R3 × SO(3), where the center of mass follows the second-order point mass

dynamics, and the orientation follows the rotational dynamics. Typically, the human-applied

input is measured by a wrench sensor located at the end effector of the robot. In this

case, it should be noted that the wrench measurement is in the body frame of the virtual

object. When the point mass dynamics representing the object’s center of mass are used,

the force component of the human-applied wrench needs to be rotated into the global frame:

fg = Rgbfb, where R is the body frame relative to the global frame. The torque component

is fine to leave in the body frame, which is typically done in practice.

An open source C++17 templated virtual dynamics library is implemented to facilitate

pHRI studies and experiments for the Bionics Lab: https://github.com/jianwei-sun/gtfo.
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3.2 EXO-UL8 Sensor Fusion

For systems that have multiple force/torque sensors, such as the EXO-UL8, the wrench

measurements must be combined before they can propagate the virtual model in the ad-

mittance controller. One method for fusing the measurements is with a Kalman filter [6].

Using the EXO-UL8 as an example, this section discusses the implementation for fusing the

three wrenches measured from the upper, lower, and wrist sensors into a joint-space torque

command used to propagate the virtual dynamics.

Each of the three measured wrenches is transformed into the global frame and then

mapped to joint torques using the spatial manipulator Jacobian. The resulting joint torques

(Γu,Γl,Γw) are then combined to propagate the virtual dynamics.

A Kalman filter is utilized for the sensor fusion system. The Kalman filter-based sensor

fusion combines the torques from the sensors (Γu,Γl,Γw) into a single torque estimate Γ̂.

Since the joint torques are generated from human-applied forces, the exact signal is not

known a priori. Therefore, the process equation for Γ is modeled as a random walk, similar

to the technique used in [6, 70]:

Γ[k + 1] = Γ[k] + (T )wΓ[k], (3.21)

where T is the sampling period, and wΓ[k] ∼ N (0, QΓ), where QΓ is an empirically tuned

covariance matrix. The torques Γu,Γl,Γw are then treated as measurements with additive

Gaussian noise to the Kalman filter:
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z[k] : =




Γu[k]

Γl[k]

Γw[k]


+




wu[k]

wl[k]

ww[k]


 , (3.22)

=




I3×3 03×4

I5×5 05×2

I7×7



Γ[k] +




wu[k]

wl[k]

ww[k]


 , (3.23)

:= HΓ[k] + col(wu[k], wl[k], ww[k]), (3.24)

where z[k] ∈ R15 is a combined vector of joint torques from the sensors. wu[k] ∼ N (03×1, Ru),

wl[k] ∼ N (05×1, Rl), and ww[k] ∼ N (07×1, Rw), where Ru ∈ R3×3, Rl ∈ R5×5, and Rw ∈ R7×7

are the noise covariance matrices corresponding to the upper, lower, and wrist sensor, re-

spectively. Let Γ̂ ∈ R7 be the minimum mean squared error (MMSE) estimate of Γ,

Pp ∈ R7×7 be the variance of the a priori, Pm ∈ R7×7 be the variance of the a posteri-

ori, and R := diag(Ru, Rl, Rw). Then, the update equations for the Kalman filter become:

Initialization:

Γ̂[0] = 07×1, (3.25)

Pm[0] = (T )2QΓ. (3.26)

A Priori Update:

Pp[k] = Pm[k − 1] + (T )2QΓ. (3.27)

A Posteriori Update:

K[k] := Pp[k]H
⊤(HPp[k]H

⊤ +R)−1, (3.28)

Γ̂[k] = (I−K[k]H)Γ̂[k − 1] +K[k]z[k], (3.29)

Pm[k] = (I−K[k]H)Pp[k](I−K[k]H)⊤ (3.30)

+K[k]RK[k]⊤,
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where K[k] ∈ R7×15 is defined as the Kalman gain at time step k. Note that equation (3.30)

implements the Joseph form for numerical stability.

Convergence of the Kalman filter is guaranteed by the pair (I7×7, H) being detectable

and the pair (I7×7, Q
1/2
Γ ) being stabilizable [71], where I7×7 is the state transition matrix in

equation (3.21). Then, let P∞ be the steady-state a posteriori variance calculated from the

discrete algebraic Riccati equation and let K∞ = P∞H⊤(HP∞H⊤+R)−1 be the steady-state

Kalman gain [72]. The converged update equations become:

Γ̂[k] = (I−K∞H)Γ̂[k − 1] +K∞z[k], (3.31)

which is a discrete-time, linear time-invariant system.
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CHAPTER 4

Reference-Level Safety

[2] J. Sun, Erik Harrison Kramer, J. Rosen, “A Safety-Focused Admittance Control Ap-

proach for Physical Human-Robot Interaction with Rigid Multi-Arm Serial Link Exoskele-

tons.” Under review.

4.1 Overview

Ensuring safety in physical human-robot interaction is challenging due to hardware and

control architecture differences across robots, and is often implemented as system-dependent

ad-hoc approaches. To offer a holistic solution, we present a hardware-independent safety-

focused admittance control approach which promotes safety at the reference-generation level.

This safety framework can restrict virtual dynamics through soft virtual bounds. Hard

bounds are also introduced as a way to impose infinitely stiff soft bounds. As part of the

overall approach, we also present a method for serial manipulator and multi-segment entity

collision avoidance by using partial Jacobians. In order to demonstrate the methodology’s

versatility across hardware platforms, we experimentally validate on two robotic systems:

(1) the V-Rex, a non-anthropomorphic full-body haptic device composed of five robotic

arms interacting with the body at the hands, feet, and pelvis; and (2) the EXO-UL8, an

anthropomorphic bimanual upper-limb exoskeleton; which exist on opposite ends of the

task/joint space control, non-redundant/redundant, off-the-shelf (industrial)/custom, non-

anthropomorphic/anthropomorphic spectra. Experimental results validate virtual dynamics,

soft and hard bounds, and multi-arm collision avoidance on both systems. In all cases, both

systems respect bound and collision constraints, supporting the approach as a safety-focused
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admittance control design.

4.2 Introduction

In pHRI, admittance control is often used to generate desired trajectories for controlling

how a robot should respond to human-applied forces. In any human-interaction, safety

is paramount, and must therefore be addressed at not only the hardware level, but also

throughout the control. This paper presents a safety-focused admittance control approach

for pHRI with rigid multi-arm serial link exoskeletons.

Safety in pHRI is a complex problem that has no perfect solution, but has been ap-

proached through many ways. Most directly, mechanical safety, such as joint-stops [57, 73],

back-driveable actuators [57,74], e-stops [57,75], and compliance [76,77], provide limited de-

grees of safety. While actuator output can be reduced to levels that minimize harm, doing so

sacrifices performance and can result in undesirable behavior [78]. E-stops require human in-

put, which may be delayed during dangerous situations. Compliance and soft interfaces may

be mechanically simple to implement, but can significantly complicate the control [76, 77].

Furthermore, these mechanical solutions may not be viable to off-the-shelf manipulators that

were not designed with pHRI in mind, and are better suited for custom designs.

Safety research also includes controller-level approaches, which can be implemented en-

tirely in software and/or rely on minor hardware additions. These include: human-tracking

through vision [79] or motion-based sensors [80]; monitoring instability through indices or

heuristics [67,81]; saturating or filtering some aspect of human-applied signals [4,82,83]; and

so on. While human tracking methods can provide useful real-time information, they may

require additional complexity such as more sensors [79,80], and/or placing sensors directly on

the human [42,48], which detracts from ease of use. Detection of unsafe interaction through

performance metrics or heuristics has shown good results [67,81], but are usually specific to

the system and difficult to generalize. Saturation of signals is not necessarily safer because

the system can be slower to respond to unsafe situations.
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Safety can also be tackled at the reference-generation level, which includes: dynamically

tuning admittance control parameters [67–69,84], defining virtual bounding regions [85–89],

utilizing data-driven methods [69, 88], and collision avoidance [90–97]. Collision avoidance

involves two aspects: detection (finding intersections between 3D shapes representing the

robot’s links) and avoidance (using robot kinematics to prevent dangerous motions). Existing

simulation environments, such as MuJoCo [66], implement detection by finding intersections

between convex hulls of the links. Although most accurate, the computation cost may not

be justified in pHRI, which would want large bounding regions around human-operated ex-

oskeletons. Other approaches make this trade-off by using simpler geometries [92,94,95]. [92]

implements avoidance in task-space, requiring the Jacobian to be invertible which poses a

problem for redundant manipulators. In [94] and [95], a series of virtual spheres encapsulate

the manipulator, and the velocity between colliding spheres is restricted. However, adjusting

the detection radius would modify their number and positions, requiring Jacobian recompu-

tation for each sphere. [96] and [97] restrict the relative velocity between closest points on

colliding manipulators. Whereas [96] assumes the closest points can be determined and only

restricts the velocity to a fixed value, [97] uses an iterative scheme to compute these points

and a quadratic program to restrict the velocity.

Our approach improves upon previous methods and extends the collision avoidance

methodology of [92] by using line segments to provide analytic expressions for distances

between primitives and utilizing the method from [98] to analytically compute partial Jaco-

bians at any arbitrary collision point.

In this paper, we present a comprehensive safety-oriented admittance control framework

for pHRI with rigid multi-arm serial link exoskeletons. We validate this approach on two

multi-arm exoskeletons which have significantly different hardware and control. Our ap-

proach facilitates admittance control by generating collision-free trajectories that emulate

virtual second-order systems, while incorporating hard and soft boundary constraints for

operation within a safe workspace.

Within this unified safety framework, we introduce a new method for emulating infinitely
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stiff virtual bounds (sometimes referred to as virtual fixtures in robotic surgery [99]), which

avoids issues of stability typically seen with high-stiffness virtual springs. We also present a

method for collision avoidance between multi-segment entities by utilizing partial Jacobians.

This collision avoidance technique uses the translational components of a robot manipulator

Jacobian evaluated at potential collision points to determine safe motion directions, pre-

venting collisions with not only the end effector, but also any point along the manipulator’s

links.

In summary, our contribution is a broad safety-centric admittance control approach that

is comprised of emulating infinitely stiff virtual bounds and avoiding collisions for serial link

manipulators. This framework can serve as both a safe self-contained reference generator

for admittance control and a versatile lightweight safety intermediary layer, upon which

customized applications can be developed. Moreover, individual elements of this framework

can be employed modularly to enhance specific safety functionalities of pHRI systems.

4.3 Methodology

To enable pHRI, admittance control is used to generate motions of a virtual system with

some desired dynamics from physical human-applied forces. The robot’s controller then

tracks these target trajectories, making the robot a physical manifestation of the virtual

system. This behavior forms the foundation for advanced features such as safety bounds

(limiting movement and speed) and multi-arm collision avoidance.

4.3.1 Virtual Dynamics

Emulating how a light-weight system moves is commonly done by propagating a virtual

second-order mass-damper model [4, 67–69]. The second-order dynamics are chosen due to

their similarities with physical mechanical systems and our existing intuition about how they

react. Furthermore, their parameters are physically intuitive and can be easily tuned. The
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dynamics in a single dimension are:

mp̈(t) + bṗ(t) = f(t), (4.1)

where p(·) : R → R is the position, f(·) : R → R is the input force, m ∈ R>0 is the mass,

and b ∈ R≥0 is the damping coefficient. The dynamics of vector systems are similar, in that

each coordinate implements the scalar dynamics, allowing the system to be used for both

task or joint-space admittance control. The state variables’ explicit dependency on time will

no longer be shown for brevity.

4.3.2 Bounds

One approach for safety in pHRI is to define regions in which motions are hindered. To this

end, we define a bound, B ⊂ Rn, as a convex closed subset of the space of virtual positions,

where n is the dimension of the virtual system. Convexity is necessary so that projections

into B, denoted by projB(·) : Rn → B, are unique. From practice, we saw that norm

bounds and rectangular bounds are most commonly used, so we focus on them. However,

the methodology applies to any convex bound.

Moreover, we classify bounds as soft or hard. Soft bounds allow violation but generate a

restoring force as a function of how far the virtual position is beyond the bound (typically

implemented as a virtual spring-damper system), similar to impedance-based schemes [87,

100] or virtual fixtures [99, 101]. Stiff or rigid boundaries can be simulated using a high

stiffness constant for the virtual spring, but such approaches can cause stability issues [99].

To address the limitation of using soft bounds to emulate infinitely stiff boundaries, we

introduce hard bounds, which are inviolable at the reference generation level. These bounds

constrain the virtual position and velocity directly, avoiding the need to integrate large

restoring forces. Hard bounds are particularly useful for defining mechanical endpoints, such

as joint limits or physical boundaries within task space. These bounds represent the safe

regions in which the pHRI should occur. Thus, the virtual position must always start within

the bound for the method to be valid. We base this on the fact that the human should not

47



even be interacting with the robot if it is outside safety limits. Using hard bounds alone

can lead to abrupt velocity changes at their boundaries, which may be uncomfortable for

an operator moving rapidly towards them. Therefore, our approach is designed to allow

utilization of both types of bounds simultaneously, with the soft bound contained within

the hard bound. This formulation allows for soft bounds to buffer motions towards a hard

bound, meaning fast motions are gradually slowed instead of abruptly stopped.

4.3.2.1 Soft Bounds

Let pk ∈ Rn, vk ∈ Rn be the position and velocity of the virtual system at the current kth

timestep, respectively. Furthermore, let B ⊂ Rn be a bound. To emulate a restoring force

based on how much B is violated, let r ∈ Rn be the vector from the current position to the

closest bounded position:

r := pk − projB(pk), (4.2)

which is well-defined and unique due to the convexity of B. Then, when r is nonzero, let

r̂ := ∥r∥−1r, and the restoring force fr ∈ Rn can emulate a virtual spring-damper system:

fr = −ksr −max{vk · r̂, 0}dsr̂, (4.3)

where ks ∈ R≥0 and ds ∈ R≥0 are the restoring spring constant and damping coefficient,

respectively. Note that all vector norms are the 2-norm, unless otherwise specified. The max

function is included so that the restoring force only hinders movement that further violates

the bound. The restoring force is then added to equation (4.1) before the dynamics are

propagated.
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Figure 4.1: Convex bounds, such as norms and rectangles, can be used as both soft and hard

bounds. In the norm bound, there is only ever a single unit surface normal, so Sp1 = {n̂1}.
However, the rectangular bound is not differentiable at the corners, so Sp2 = {n̂2} and

Sp3 = {n̂3, n̂4}.

4.3.2.2 Hard Bounds

Similar to soft bounds, a hard bound B is also a convex closed subset of the space of virtual

positions. However, to ensure that pk is always contained within B, first assume that the

unbounded discretized dynamics of equation (4.1) would result in pk+1 /∈ B. Then, the

virtual position can be updated as p′k+1 := projB(pk+1), which would ensure containment

within B.

For velocities, the components that try to escape B should be removed. Let s(·) : ∂B →
Rn be a map from points on the surface of B to its corresponding unit normal vector. Since

s(·) may not be defined everywhere on ∂B, e.g., at the corners if B is a rectangle, define

the unit surface normal at such a point p as a set, Sp, of all possible limits of s(·) towards
p. For bounds where s(·) exists everywhere on ∂B, |Sp| = 1. For other bounds, such as the

rectangle example, there exist p such that |Sp| ≥ 1, as shown in Fig. 4.1.

To ensure that future states of the virtual dynamics remain bounded, update the position

and velocity as follows:
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p̃k+1 = projB(pk+1), (4.4)

ṽk+1 = argmin
v

∥v − vk+1∥2 (4.5)

s.t. n̂⊤v ≤ 0, ∀n̂ ∈ Sp̃k+1

Positions are guaranteed to always remain in B. The update in velocity ensures that

components that try to escape the bound are zeroed, which is necessary for robot systems

that only use the virtual velocity as reference. When the bound is rectangular such that all

the unit normal vectors in Sp are orthogonal, then equation (4.5) can be simplified to:

ṽk+1 = vk+1 −
∑

n̂∈Sp̃k+1

max{vk+1 · n̂, 0}n̂. (4.6)

On each integration step, soft bounds are evaluated before virtual dynamics are propagated

with equation (4.1) in order to integrate the restoring force. Then, hard bounds are enforced

with equations (4.4) and (4.5) to ensure they are always satisfied. The same hard bound

methodology in equations (4.4) and (4.5) can be imposed on any higher-order derivative

of position. This allows for further constraints on virtual quantities such as velocity or

acceleration.
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Figure 4.2: A sample collision shown between two entities, each of which is represented by

three vertices and two corresponding segments: EA = {sA1 , sA2 } and EB = {sB1 , sB2 }. Green

dotted lines indicate potential collisions that do not exceed the threshold ϵ, whereas the

red line shows the collision. The intersections of the red line with sA2 and sB2 constitute the

collided sets ÃA and ÃB.

4.3.3 Collisions

Collision avoidance is an integral part of safety in pHRI, especially for multi-arm systems.

Any controllable object with which a collision can occur is henceforth denoted a controllable

entity. Objects that cannot be controlled, such as the human, obstacles, or static links and

frames of a robot, are called uncontrollable entities. Uncontrollable entities can be free or

fixed. As mentioned in the literature review, collision avoidance consists of two aspects:

detection and avoidance. Detection is concerned with finding entities that are too close,

whereas avoidance then restricts the relative motion between the entities from becoming

closer.
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4.3.3.1 Detection

Let V i
j ∈ R3, j ∈ {1, . . . ,mi}, mi ≥ 1 be called entity vertices, which are a series of user-

specified locations along entity i in the system, such that the segment drawn between adjacent

points captures the geometry of the corresponding link of the entity, as shown in Fig. 4.2.

mi is the number of entity vertices on entity i. Let sij := {λV i
j +(1−λ)V i

j+1 | λ ∈ [0, 1] ⊂ R}
be the segment between two adjacent collision points, and S be the space of segments. Then,

let Ei := {sij | j ∈ {1, . . . ,mi}} be the set of the aforementioned segments corresponding to

entity i. If mi = 1, then Ei = {{V i
1}} consists of a single zero-length segment.

Next, for each entity, enumerate the set Ci = {(sa, sb) | sa ∈ Ei, sb /∈ Ei}, which is the

set of potential collision segments between entity i and every other entity that has collision

points. Certain collisions, such as self-collisions between adjacent links or collisions between

robots that are physically farther than the limits of their workspace, can be pruned from

this set in order to speed up computation. Let the pruned set be C̃i ⊆ Ci.

Let d(·) : S×S → R3×R3 map segments sa, sb to points ca ∈ sa, cb ∈ sb such that ∥ca−cb∥
is minimized. To make d(·) well-defined, when sa and sb are parallel and proximate, ca and

cb are chosen as the midpoints of the overlapping region. The definition for d(·) is discussed
below. For entity i, let Ai := {d(sa, sb) | (sa, sb) ∈ C̃i} and compute Ãi := {(ca, cb) | (ca, cb) ∈
Ai, ∥ca − cb∥ ≤ ϵi}, called the collided set, where ϵi ∈ R≥0 is a user-specified threshold for

detection. Note that Ãi can be computed in parallel. The collided set tells not only whether

a collision has occurred, but also its location and direction.

The aforementioned segment-segment distance function d(·) needs to consider corner

cases, such as: zero-length segments and parallel-segments. Let two segments sa, sb ∈ S
have endpoints a0, a1 ∈ R3 and b0, b1 ∈ R3, respectively.

If a0 = a1 and b0 = b1, then d(sa, sb) = (a0, b0).

If only one of the segments has zero-length, say a0 = a1 without loss of generality, then

project a0 onto sb and determine its ratio rb ∈ R along sb:
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rb =
(b1 − b0)

⊤(a0 − b0)

∥b1 − b0∥2
. (4.7)

Then, depending on the value of rb, assign the point on sb:

d(sa, sb) =





(a0, b0), rb < 0,

(a0, b0 + rb(b1 − b0)), 0 ≤ rb ≤ 1,

(a0, b1), 1 < rb.

(4.8)

If both segments have nonzero length, then check if they are parallel. If so, i.e., (a1 −
a0)× (b1 − b0) = 0, then find the midpoints of the overlapping region: am ∈ sa and bm ∈ sb.

Then, d(sa, sb) = (am, bm). Otherwise, compute the mutual-perpendicular segment sp with

endpoints pa ∈ sa and pb ∈ sb. This can be done by finding the ratios of pa along sa and pb

along sb.Now, define the normalized cross-product and compute the ratio ra along segment

sa as:

ĉ : =
a1 − a0
∥a1 − a0∥

× b1 − b0
∥b1 − b0∥

, (4.9)

ra =
1

∥a1 − a0∥∥ĉ∥2
det







(b0 − a0)
⊤

(b1−b0)⊤

∥b1−b0∥

ĉ⊤







, (4.10)

and similarly for rb. Then, d(sa, sb) = (a0 + ra(a1 − a0), b0 + rb(b1 − b0)). Note that this

computation also handles the case when sa and sb intersect.

4.3.3.2 Avoidance

Collision avoidance can only be implemented on controllable entities, which are typically

robot manipulators. It is implemented in joint-space in order to also consider internal mo-

tions of redundant manipulators, which is particularly relevant for exoskeletons. The objec-

tive is to restrict motions of the manipulator such that for each (ca, cb) ∈ Ãi, the point ca is
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prohibited from moving in the direction cb− ca. Since ca can be anywhere on the manipula-

tor, the kinematics of the robot are required. However, to be robot-agnostic, our approach

requires the translational components of the Jacobian functions of the robot on which it is

implemented: J i
j(·) : R3×Rn → R3×n, where n is the DoFs of the robot, henceforth referred

to as the partial Jacobian. The output of J i
j(·) is the upper three rows (linear motion) of

the spatial manipulator Jacobian for an arbitrary point ca located on segment sij. A partial

Jacobian can be constructed online using [98, equation (14)].

Given a desired joint-space velocity θ̇d ∈ Rn, either from the virtual dynamics if they

are configured as being in joint-space, or from the robot’s inverse kinematics if the virtual

dynamics are in task-space, the objective is to restrict the reference joint-space velocity such

that the velocity of each collided point ca does not have positive dot product with cb − ca.

More succinctly, the restricted desired joint-space velocity θ̇r ∈ Rn can be found by solving

the following quadratic program:

min
θ̇r

∥θ̇r − θ̇d∥2

s.t. (cb − ca)
⊤J i

j(ca, θ)θ̇r ≤ 0 (4.11)

∀(ca, cb) ∈ Ãi

where θ is the physical joint configuration, and each J i
j is picked such that ca corresponds

to segment sij. Note that each collided point imposes one additional linear constraint on

θ̇r. The optimal θ̇r is then sent to the manipulator’s controller and also used to update the

velocity of the virtual model.

The proposed methodology of constraining potential collision points from moving closer

to each other is not inherently restricted to line segments, and can be extended to other

geometries in which a similar function to d(·) - which computes the closest points between

two objects - can be constructed. For instance, planes can also be used to represent static

obstacles such as the floor or walls.
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4.3.4 Summary

Algorithm 1 outlines the approach, which runs within the system’s control loop.

Procedure 1 Safety-Focused Admittance Control

1: for each controllable entity, Ei

2: Receive human-applied force measurements fh

3: Compute restoring Soft Bound force fr (equation 4.3)

4: Sum dynamics input force f = fh + fr

5: Propagate virtual dynamics (equation 4.1)

6: Restrict state via Hard Bounds (equations 4.4, 4.5)

7: Update entity vertices using physical position

8: Compute collided set Ãi

9: Restrict virtual velocity (equation 4.11)

10: Output virtual state to Ei’s controller

4.4 Experiment Setup

To demonstrate the correctness and versatility of the approach, a series of experiments on two

different multi-arm robotic systems: (1) the V-Rex and (2) the EXO-UL8, are conducted.

The V-Rex is a non-anthropomorphic exoskeleton consisting of multiple task-space-controlled

off-the-shelf industrial serial manipulators, whereas the EXO-UL8 is a custom-built anthro-

pomorphic bimanual upper-limb exoskeleton controlled in joint-space. The existence of the

two systems on opposite ends of the off-the-shelf (industrial) vs. custom, task-space vs.

joint-space, and non-anthropomorphic/anthropomorphic spectra demonstrates the versatil-

ity and generalizability of the approach. The experiments verify and validate both soft and

hard bounds, as well as multi-arm collision avoidance, on each of the two systems.

4.4.1 Systems
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(a) The V-Rex is a full body haptic device consisting of five

robotic arms, designed for pHRI with virtual environments.

Force-torque input from load cells is used to step virtual dy-

namics and determine the next position reference, p in task

space. Physical joint state, θ, is read and utilized to find partial

Jacobians, Jj , to adjust reference position for collision avoid-

ance. Utilizing an inverse kinematic solver, all viable joint

space configurations are found. A l2−norm is then applied to

find the closest solution to the current joint state, θ. The se-

lected joint state is vetted through a secondary safety check

before the joint references θr are updated for the Kawasaki

arm controller for precise position control. The entire control

cycle runs at 500Hz.

(b) The EXO-UL8 is a bimanual upper-limb exoskeleton de-

signed for pHRI and robot-assisted rehabilitation. Human-

applied forces are measured by three load cells on each arm

located at the: upper-arm (u), lower-arm (l), and wrist (w).

The measured wrenches, Fs, s ∈ {u, l, w}, are transformed into

joint torques through the Jacobian, J , and then fused together

into a single joint-space human-applied torque vector, f , with

the algorithm in [5]. This torque propagates the virtual dy-

namics in the admittance control, which also uses the partial

Jacobians, Jj for collision avoidance. The virtual states are

then tracked by the exoskeleton’s computed torque controller,

which outputs motor torques, u. The control rate is 1KHz.

Figure 4.3: The V-Rex and EXO-UL8 systems exist on opposite ends of the task/joint

space control, non-redundant/redundant, off-the-shelf (industrial)/custom, and non-

anthropomorphic/anthropomorphic spectra.
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4.4.1.1 V-Rex

The Virtual Reality Exoskeleton (V-Rex) is a full body haptic device designed to provide

force feedback to a human interacting with a virtual environment visualized with a VR head-

set. The system is composed of five task-space-controlled off-the-shelf Kawasaki industrial

serial manipulator robots. Two RS-007L robots are gripped by the operator’s hands; two

BX-100S robots are connected with breakaways to the operator’s shoes; and one CX-210L

provides gravity offloading through a flying harness. All robot arms have load cells between

their end effectors and the human interface (three ATI Omega sensors for the lower limbs and

body support plus two ATI Gamma sensors for the upper limbs). Each manipulator takes

human-applied wrenches and propagates them into task-space motions of the end effector

using the model shown in Fig. 4.3a.

4.4.1.2 EXO-UL8

The EXO-UL8 is a custom bimanual redundant powered joint-space controlled upper-limb

anthropomorphic exoskeleton with seven DoFs in each arm, built as the latest system in a

series of exoskeletons designed for pHRI and robot-assisted rehabilitation [4–6, 57–61, 102].

The HITL requirement has motivated specific hardware designs, such as rotating ring joints

to allow shoulder rotation and forearm supination/pronation [57], and anatomically similar

joint limits to align the exoskeleton’s and operator’s arms. pHRI is enabled by joint-space

admittance control. Wrenches measured from three ATI Mini40 sensors on each arm are

fused and propagate virtual dynamics [5], whose trajectories are tracked by a computed-

torque controller [38,40], as shown in Fig. 4.3b.

57



4.4.2 Experiments

4.4.2.1 Bounds

Hard and soft bounds are first demonstrated separately on the V-Rex. A single arm of the

system is restricted to move in a 2D plane parallel with the ground, as shown in Fig. 4.4. For

both bound types, the operator tries to move the end effector to follow the desired trajectory

at a constant speed. The operator starts in the region’s center, moves to the bottom-left

side, traverses the desired trajectory in a counter-clockwise direction, and then returns to

the center. In the hard bounds trial, a square hard bound of equal size (side length: 37 cm)

to the trajectory rotated by 45◦ is imposed. The soft bound trial utilizes the same bound

shape, but has soft bound parameters: ks = 250 N/m, ds = 60 Ns/m. The manipulator

implements the same second-order virtual dynamics parameters m = 10 kg, d = 15 Ns/m

for both trials.
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Figure 4.4: For bounds experiments on the V-Rex, the operator is guided by a black square

(solid line) on the surface beneath one of upper limb arms. A square boundary (shown by

the dashed line), either soft or hard, is positioned at a 45◦ angle to the trajectory, sharing

the same centroid. Starting from the centroid, the operator follows the trajectory to the

best of their ability before returning to the starting point. A laser pointer attached to the

end effector helps the operator track their progress throughout the experiment.

Since the EXO-UL8 implements decoupled 1D virtual dynamics for each joint, hard and

soft bounds are simultaneously shown on the elbow (joint 4) and shoulder rotation (joint

3) DoFs. The hard bound restricts the elbow motion to the range of [0, 70◦], whereas the

soft bound on the shoulder joint becomes active once the motion exceeds [15◦, 60◦]. The

parameters of the soft bound are ks = 10 N/m, ds = 0 Ns/m. A movement trajectory, as

shown in Fig. 4.5, is designed to exercise both bound types in the joints.
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Figure 4.5: The bounds experiment on the EXO-UL8 has the operator follow a target tra-

jectory consisting of 4 way-points (1-4). These way-points are strategically placed to engage

shoulder rotation (joint 3) and elbow flexion (joint 4) near bound limits. Soft bounds restrict

the shoulder position and hard bounds restrict the elbow position. The operator traverses

through the way-points once, pausing at each for approximately 1 s. The corresponding

motions from the previous way-point are indicated by red arrows, while the configuration of

the human arm at each way-point is shown by a green line.
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4.4.2.2 Collision Avoidance

While our collision avoidance method applies identically to dynamic avoidance of free entities

and avoidance of static fixed entities, here we demonstrate only with a static entity on

each of the two systems for clarity of results. With this methodology, the only difference

between dynamic and static entity avoidance is the inputs of entity locations prior to collision

avoidance algorithm being applied. For the V-Rex, the segment is physically represented by

the right arm being static, which is oriented with the elbow-to-wrist link nearly vertical. This

vertical segment is located at (0.3 m, 0.014 m) as shown in images (1) and (2) of Fig. 4.10.

The operator initially aims to move the end effector of the left arm to pass in front of the

static right arm. Next, the operator aims to move as far left from the static right arm as they

can go before returning to the starting location. For ease of data representation, motions of

the end effector and elbow-to-wrist link of the left arm are kept in a plane parallel with the

ground, similar to the bounds experiment. The collision detection threshold is 0.27 m.

For the EXO-UL8, the axes of rotation for shoulder flexion and elbow flexion are first

aligned. The other five joints are locked so that the motion of the arm is restricted to

the plane perpendicular to these two unrestricted axes of rotation. The quadratic pro-

gram of equation (4.11) includes these five locked joints as the constraints: 0 ≤ θ̇r,i ≤
0, i ∈ {1, 3, 5, 6, 7}. A virtual collision segment is then placed in front of the arm at

(0.4 m,−0.43 m) and oriented perpendicular to this plane, as shown in Fig. 4.6. The opera-

tor is instructed to move the arm above the collision segment and then return to the original

location. The collision detection threshold is 0.1 m.

The collision avoidance algorithm requires the free entity positions to be updated on each

iteration. For the V-Rex and EXO-UL8, free entities are the robotic manipulators. In each

system, the relative locations of the manipulator bases are known, so the absolute locations

of any point along the manipulators can be determined through forward kinematics. Thus,

no calibration phase is necessary. For fixed entities, such as structural elements of the frame,

their static locations are known (from design), so they can be added to the collision algorithm
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Figure 4.6: For the collision experiment on the EXO-UL8, the shoulder and elbow flexion

joints are aligned and allowed to move, while all other joints are locked. A virtual fixed

collision entity is placed in front of the arm and oriented to be parallel to the joints’ axes of

rotation. Collision avoidance distance is set to 0.1 m.

at initialization and do not need to be updated.

4.5 Results

4.5.1 Bounds

4.5.1.1 V-Rex

Fig. 4.7 presents the operator’s trajectory as determined by the virtual dynamics with a hard

bound. The trajectory took approximately 12 seconds to complete, resulting in an average

speed of 10.2cm/s. The results demonstrate the effectiveness of a hard bound in limiting

motion to the bounded region in task space, without destabilizing the system. Despite

exerting forces in a direction to break outside the bounds, the virtual position is constrained
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and instead slides along the virtual bounding surface in compliance with the applied force.

Conversely, when inside the bound, motion remains unrestricted as expected.
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Figure 4.7: On the V-Rex, the operator’s trajectory (blue line) tracking the reference (green)

is impeded by the hard bound (dotted black). At the bound, the position is restricted and

slides along the surface, despite the user’s exerted force to move outside (blue arrows). Note

that for clarity the forces are only shown when the position is at the bound. In contrast,

while inside the bound, the virtual dynamics enable the operator to track the trajectory with

high fidelity.
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Fig. 4.8 illustrate the operator’s trajectory and soft bound restoring forces. When inside

the bound, no restoring forces are present, indicating unrestricted motion. However, upon

breaking a bound, restoring forces are generated with a direction to move the operator back

into bounds. Notably, all restoring forces are normal to the broken bound surface, and

their magnitude increases with distance past the bound, consistent with the virtual spring-

damper. The trajectory loop took approximately 18 seconds to complete, resulting in an

average speed of 8.2cm/s.

4.5.1.2 EXO-UL8

The elbow flexion and shoulder rotation reference trajectories are plotted in Fig. 4.9, with

the four way-points labeled. The trajectory was completed in approximately 20s, resulting

in an average speed of 11◦/s. A soft bound, which is only present for the shoulder, produces

restoring forces generated by a virtual spring whenever the trajectory exceeds the boundary.

Note that the soft bound is only configured with a virtual spring, so the restoring force

depends only on position. Hard-bounds were implemented in both DoFs, but only the elbow

reached the limits due to the absence of an additional soft-bound. The applied forces at

the hard-bounds show that the dynamics were only allowed to propagate tangentially to the

bound surface, as designed. This experiment shows a typical application in which a soft

bound is placed inside a hard bound. Motions towards bound limits are gently slowed while

ensuring that the absolute limits are respected (e.g., at point 3 of Fig. 4.9).
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Figure 4.8: On the V-Rex, the operator’s trajectory (blue line) tries to track the reference

(green). However, the presence of a soft bound (dotted red) results in a restoring force (yellow

arrow) that amplifies with distance from the bound. As the operator navigates around the

corners of the reference, the restoring force shifts from being fully antagonistic to providing

some assistance in the direction of motion. This sudden change is reflected in the lower

accuracy of the operator’s trajectory when compared to the hard bound trials.
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Figure 4.9: On the EXO-UL8, the operator’s trajectory (blue line) starts at point 1 (green

dot) outside the shoulder’s soft bound (dotted red line), resulting in restoring forces (yellow

arrow). While moving towards point 2, a hard bound (dotted black line) blocks the elbow,

despite human-applied forces (blue arrow) pointing out of the bound, which are only plotted

when the position is at a hard bound for clarity. The shoulder soft bound applies another

restoring force towards point 3. Since the soft bound is configured as a virtual spring, the

restoring force is only a function of displacement past the bound. At the intersection of the

shoulder upper soft bound with the elbow upper hard bound (between points 2 and 3), the

soft bound restoring force appears to suddenly be present. However, this is not the case;

as the trajectory slides up along the elbow hard bound, soft bound restoring forces increase

continuously. The largest force arrow visually occludes the smaller arrows underneath. At

point 4, another hard bound restricts the elbow. The trajectory ends at the maroon dot

back at point 1.
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4.5.2 Collision Avoidance

4.5.2.1 V-Rex

The end effector’s trajectory and the elbow-to-wrist link’s pose during key collision avoidance

points are shown in Fig. 4.10. At the first instance (1) of collision, the end effector trajectory

is restricted such that the link will not continue into the collision detection region, despite

the operator’s force in that direction. Similarly at the second instance (2), the end effector

trajectory is restricted; however, the restriction is now in a direction away from the collision

detection region, since continued motion in the -X direction would result in the left elbow

colliding with the right arm. Unlike the EXO-UL8, the operator’s arms are not aligned with

the manipulator, which could result in potential collisions between the two. However, the

operator can be modeled as an uncontrollable free entity, so that the robotic manipulators

would avoid collisions with it in a similar fashion.
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Figure 4.10: On the V-Rex, the operator’s trajectory (blue line) starts at the green dot and

ends at the maroon dot. During the trajectory, two collisions are avoided with a detection

radius around the right arm (pink region). A physical representation of the data at the

two time instances ((1) and (2)) is shown in the subfigures above. At instance (1), motion

is restricted in the direction of the right arm, even though the operator is applying force

to continue in that direction. At instance (2), motion is restricted from continuing in the

-X direction despite applying force in that direction, because the elbow would collide if the

motion were unrestricted.
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4.5.2.2 EXO-UL8

The contour of the collision detection region of Fig. 4.6 is plotted in the shoulder and

elbow flexion joint space in Fig. 4.11. The trajectory and human-applied forces are overlaid

to show the motion being constrained from entering the collision region, even when the

operator is pushing into it. Near (63◦, 9◦), the trajectory doubles back slightly, but collision

constraints are respected. Once the operator flexes their elbow, the region is avoided (from

(30◦, 38◦) upwards), and subsequent motion is unaffected. The experiment demonstrates

collision avoidance’s expected function.

Figure 4.11: The virtual segment’s collision detection region is transformed through inverse

kinematics of the EXO-UL8 into the joint-space of the shoulder and elbow flexion DoFs.

Even though human-applied forces try to push the trajectory into the region, it respects the

collision constraints. Human-applied forces are only plotted at the boundary for clarity.
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4.6 Discussion

4.6.1 Comparison to Existing Methods

In general, using runtime as a metric for comparison poses several issues. The implementation

of the methodology has a significant influence; for instance, using a compiled language can

be faster than an interpreted one, and the use of parallelism or vectorized operations can

make the program even faster. As not all the studies in this comparison [66, 92, 94, 95, 97]

provide code implementation or even specify the optimization solver used, a comparison

based on runtime alone may not be feasible or meaningful. Furthermore, methods such

as [97]’s utilize a neural net to solve the optimization. While this could be fast, it would

require more effort to train and setup. Whether this trade-off is justified depends on the

particular use case. The most notable aspects of collision avoidance that we have identified

are: (1) modeling, which refers to the use of simpler shapes, known as primitives, used to

represent the manipulators’ geometry, (2) enumeration of primitives, which is the process of

identifying potentially colliding primitives, (3) distance between primitives, which computes

the shortest distance between two primitives as well as the locations on the primitives at

which this occurs, (4) partial Jacobian, which relates the velocities of these locations to the

manipulator’s velocity, and (5) optimization solver, which is the numerical method or tool

used to complete the computation. A comparison summary is presented in Table 4.1.

Collision avoidance is a complex problem that requires several application-dependent

trade-offs to be made, which is why many algorithms exist. For instance, [66] uses meshes

to represent the manipulator, which can be highly accuracy, but come at the expense of

requiring a dedicated library for computing contact. On the other hand, studies like [94]

and [95] represent the manipulator as a union of spheres. Although fast to compute pairwise

distance, the method cannot find exact collision points, and requires a partial Jacobian to

be precomputed for each sphere at setup, detracting from ease of use. The neural net of [97]

makes an even bigger trade-off between speed, ease of use, and potentially even correctness.
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Aspect\Study Bosscher [92] Liu [94] Lin [95] Zhang [97] Todorov [66] Ours

Modeling

(location accuracy)

Spherical shells

=

Spheres

−

Spheres

−

Line segments

=

Meshes

+

Line segments

=

Enumeration of

Primitives

(complexity)

Pairwise with

pruning

=

Pairwise

−

Pairwise

−

Pairwise

−

Pairwise with

pruning

=

Pairwise with

pruning

=

Distance between

Primitives

(complexity)

Unspecified

Unknown

Analytic

=

Analytic

=

Iterative

−

Iterative

−

Analytic

=

Partial Jacobian

(setup)

Unspecified

Unknown

Analytic for

each sphere

−

Analytic for

each sphere

−

Unspecified

Unknown
N/A

Analytic for

any point [98]

=

Optimization

Solver
Simulink Unspecified Simulink Neural network Newton OSQP [103]

Table 4.1: The comparison examines the main aspects of collision avoidance using a suitable

metric approach across five different recent publications. In each aspect, the relevant metric

(shown in parenthesis) is assessed relative to our proposed approach and reported with one

of the symbols: {+,−,=}, to indicate more performant, less performant, or comparable,

respectively. The “unknown” keyword indicates that a comparison to our approach could

not be made.

Our strategy prioritizes generality and ease of use in collision avoidance by using simple

geometries and optimizing where possible (e.g., primitive enumeration). In addition to pro-

viding detailed specifications, such as the use of OSQP for speed and software compatibility

(refer to [103] for its comparison results), our entire approach is implemented as a free and

open-source library. This comparison aims to underscore the distinctions in our approach,

allowing implementers to make an informed decision for their specific applications.
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4.6.2 Potential Limitations

In situations where a robot manipulator operates at high speeds, it becomes impractical

for the robot to come to an immediate stop when encountering a boundary, even if that

boundary is defined as a hard bound. The proposed strategy focuses on creating trajectories

that prioritize safety awareness, however the robot’s overall ability to precisely track these

trajectories is also determined by its controller’s capabilities. Incorporating hardware or

controller level information back into the reference generation can have potential improve-

ments, such as in model predictive control (MPC). However, doing so creates an additional

signal feedback loop from state to reference, which may affect overall stability. In general,

the feedback interconnection of stable systems is not necessarily stable. So, a hardware-

agnostic method that incorporates hardware level information while always guaranteeing

safety may not be possible. To ensure generalizability of the approach, we chose not to allow

for hardware-level information to influence the reference generation. Doing so would detract

the approach’s versatility, despite potentially achieving better results on specific systems.

A control rate of 1KHz is commonly recommended for reliable haptic interaction, but

is not a strict rule and depends on specific factors such as desired virtual stiffness and the

robot’s mechanical capabilities. The haptic rendering presented only focused on soft bounds,

which were not overly stiff. High-performance Kawasaki industrial manipulators of the V-

Rex enabled convincing virtual force emulation at a lower control rate. Therefore, a control

rate of 500Hz was chosen for the V-Rex as a suitable compromise between haptic rendering

fidelity and CPU usage.

4.6.3 Choice of Parameters

The V-Rex virtual dynamics parameters were chosen empirically to simulate a 10 kg object

in a damping medium of 15 Ns/m. This mass, though seemingly heavy, is not difficult to

move in the absence of gravity. The damping constant was selected based on user feedback,

as a compromise between transparency and dissipative stability. Soft bounds were configured
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with a spring constant of 250 N/m and damping of 60 Ns/m, in order to provide a noticeable

resistance to the user.

In our implementation, we opted for rectangular and norm bounds for their intuitive

nature. Rectangular bounds are easy to understand and configure, while norm bounds,

though less common for position, prove useful for velocity by representing speed limits.

However, the methodology accommodates any convex bound. In out experiments, position

bounds were centered at the robot’s starting point for clarity and to allow movement in any

direction. In general, they can be placed anywhere containing the starting point.

4.6.4 Safety at Hard Bounds

When the virtual position reaches a hard bound, human-applied forces perpendicular to the

bound do not impact virtual motion (see Fig. 4.7 and Fig. 4.9). However, these force

components are still resisted by the robot’s controller, potentially leading to increased motor

currents. Safety implications are examined in detail for the shoulder interior/exterior joint

of the EXO-UL8, which has the smallest gear ratio. Fig. 4.12 shows the motor current

when the operator pushes against the hard bound at 55◦. In this case, the current remains

within the motor’s continuous operating range (RE50 series 578298 from Maxon Motor).

Although safety can be addressed at the reference generation level, hardware remains crucial

for overall pHRI safety. The proposed methodology, being hardware agnostic, enhances

safety at the reference generation level, without subjecting the robot’s low level controller

to any situation more dangerous than tracking a continuous position trajectory. However,

controller-level safety must be ensured by the implementer, otherwise any algorithm would

be subject to the same potentially dangerous situations.
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Figure 4.12: A hard bound at 55◦ on the shoulder interior/exterior rotation joint of the

EXO-UL8 resists the operator’s attempts to push past it. The commanded motor current

(-1.01A) remains in its maximum continuous operation range of ±4A. Prior to reaching the

position reaching the bound, the motor current varies due to the computed torque controller

generating torques to compensate for reaction torques from motions of the other joints.

However at the hard bound, the current appears flat as all joints are stationary. Friction at

the joint and low back-drivability limit the variation in the human-applied torque from being

easily seen in the current profile. In general, pHRI hardware should ensure that all currents

always remain in safe operating ranges, despite adversarial attempts by the operator to cause

unsafe situations.
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4.7 Conclusion

This study presents a comprehensive safety-focused admittance control approach, consisting

of soft virtual bounding regions, emulation of infinitely stiff bounds, and collision avoidance at

any point along the manipulator. Experimental results validate the effectiveness of hard and

soft bounds by confining trajectories to predefined regions, and producing restoring forces

to return the reference to within the bound, respectively. They also validate the multi-arm

collision avoidance methodology on both systems by successfully restricting trajectories that

would cause any links of the serial manipulator to collide, despite the difference in control

and redundancy.

Future directions on this framework plan to incorporate the human operator as a free

entity in the collision avoidance algorithm. This would further improve safety by ensuring

that the robot manipulators also cannot collide with the operator. The time-varying location

of the operator’s body can be determined by a vision-based system, which would likely require

calibration to account for varying lighting conditions.

For utilization of our approach in existing and future systems within the pHRI community,

an implementation as a free and open-source templated C++ library is available at: https:

//github.com/jianwei-sun/gtfo. The library requires a C++17 compiler and depends

on Eigen [104] and OSQP [103]. Future work completed on this framework will be made

available within the open-source library.
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CHAPTER 5

Safety via Rate-Limiting

[4] J. Sun, P. W. Ferguson and J. Rosen, “Suppressing Delay-Induced Oscillations in

Physical Human-Robot Interaction with an Upper-Limb Exoskeleton using Rate-Limiting,”

2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto,

Japan, 2022, pp. 6695-6701, doi: 10.1109/IROS47612.2022.9981943.

5.1 Overview

In pHRI enabled by admittance control, delay-induced oscillations arising from both the

neuromuscular time-delays of the human and electromechanical delays of the robot can cause

unsafe instability in the system. This study presents and evaluates rate-limiting as a means

to overcome such instability, and provides a new perspective on how rate-limiting can benefit

pHRI. Specifically, a rate-limited and time-delayed HITL model is analyzed to show not only

how the rate-limiter can transform an unstable equilibrium (due to time-delay) into a stable

limit-cycle, but also how a desired upper-bound on the range of persistent oscillations can be

achieved by appropriately setting the rate-limiter threshold. In addition, a study involving 10

subjects and the EXO-UL8 upper-limb exoskeleton, and consisting of 16 trials - 4 rate-limiter

thresholds by 4 time-delays - is performed to: (1) validate the relationships between time-

delays, rate-limits, and position bounds on persistent oscillations, and (2) demonstrate the

effectiveness of rate-limiting for recovery from delay-induced oscillations without interfering

with regular operation. Agreement of experimental results with the theoretical developments

supports the feasibility of incorporating rate-limiting in admittance-controlled pHRI systems

as a safety mechanism.
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5.2 Introduction

pHRI is a necessary component of any exoskeleton-assisted physical therapy. Often enabled

through admittance control, such pHRI allows the exoskeleton to fluidly follow the motions

of the human operator. This functionality allows the exoskeleton to precisely apply assistive

forces to the operator in order to create an effective training environment. Naturally, safety

is a primary concern when interacting with powered robotic devices, as the target audience

of such physical therapy often has limited physical capability.

Even though the exoskeleton’s admittance controller renders it a stable system by it-

self, the feedback connection of the human with the exoskeleton, along with neuromuscular

delays of the human and electromechanical delays of the robot, can cause dangerous un-

stable oscillations. As discussed in [105], a human’s natural tendency is to stiffen in order

to suppress oscillations, but this can actually increase instability. An intuitive response to

handling the instability is to add low-pass filtering, which assumes that removing high fre-

quency components can bound velocity. However, not only is this false, low-pass filtering

also introduces −(π/2)n radians of phase lag for high-frequency components, where n is the

filter’s order. This phase lag reduces the system’s phase margin and responsiveness to the

operator, and can even be destabilizing [105]. Thus, ensuring stability in these HITL systems

is non-intuitive, and must be addressed from the exoskeleton’s point of view.

Various studies have proposed different methods of ensuring safety in pHRI, including,

but not limited to: ensuring passivity of the system [78,106–109], reducing phase-lag through

feedforward control [28, 110, 111], saturating forces/torques [82, 83], using adaptive control

to ensure robustness against modeling uncertainties [112], and dynamically adjusting admit-

tance control parameters [67, 68,81,84,113].

Motivated by nonlinear control theory, passivity-based controllers ensure stability by

preventing the feedback system from accumulating unbounded energy. Previous literature

shows the utility of passivity-based approaches, such as in designing stabilizing controllers

for exoskeletons [106,108], mitigating communication delays in teleoperation [107], and over-
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Figure 5.1: (a) Experiment setup using the left elbow of the EXO-UL8 upper-limb exoskele-

ton. Subjects must track the 45◦ setpoint for various values of time-delay and rate-limiter

thresholds. A laser pointer (enhanced in red) provides visual feedback to the subjects. (b)

A block diagram of the HITL used in the theoretical developments of sections 5.3 and 5.4.

coming modeling uncertainties [109]. While passivity-based control is effective for ensuring

stability, the controller requires knowledge of the passivity properties of the human, which

may be difficult to precisely determine.

Another technique for improving stability is to reduce phase-lag in the HITL system by

utilizing disturbance observers to provide feedforward compensation [28,110,111]. For these

systems, the controller requires measuring or estimating the robot’s acceleration, which can

be susceptible to modelling errors. A simpler method is to just saturate the human-applied

forces by limiting the maximum values measured. While this can prevent divergence in some

cases, it is inadequate in general because: (1) it is unclear how the saturation threshold
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Force
Mapping

EXO-UL8

Figure 5.2: Block diagram of the EXO-UL8’s control architecture with the admittance con-

troller shown in the dash-outlined box on the right. The rate-limiter outputs the filtered

estimated human-applied torques, which propagate the virtual dynamics. The trajectories

of the virtual dynamics are then tracked by the computed torque controller, which also com-

pensates for gravity and link inertia. On the physical side, the operator interacts with the

EXO-UL8 through force/torque sensors and motor actuators, which are shown in the dashed

round blocks but are considered as part of the EXO-UL8.

should be set to prevent instability without interfering with regular high-speed interaction,

(2) saturation does not prevent high frequency switching between threshold values, and (3)

it may result in the “wall-sticking” problem described in [78] which can produce undesirable

performance.

Safety has also been addressed by detecting instability using various heuristics and then

dynamically adjusting the admittance control parameters [67,68,81], but this requires tuning

based on experimental data and may not generalize to other HITL robotic systems.

In this paper, we present a new perspective on rate-limiting as a safety mechanism against

delay-induced instability. Rate-limiting is traditionally regarded as an undesirable nonlin-

earity since it is difficult to compensate for, as seen in early fighter jets [114, 115]. Sub-

sequent studies have therefore investigated various other methods for prediction and com-

pensation [116–118]. However, rate-limiting has useful properties that can benefit pHRI.

In this work, we propose and experimentally validate the incorporation of a rate-limiting

filter to our admittance controller to prevent delay-induced instability for the EXO-UL8
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upper-limb exoskeleton. Even though the filter does not guarantee equilibrium stability, it

prevents trajectories from diverging and can allow the human operator to recover from un-

stable oscillations. We believe that the rate-limiting filter can improve safety in admittance

control-based pHRI because it does not require precise dynamical/passivity models of the

human, does not require estimating acceleration, can overcome issues with high frequency

switching apparent in force/torque saturation methods, avoids the need for any detection of

instability, and is simple to implement. Our contributions are therefore:

1. Theoretically analyzing the rate-limiter in a HITL system, as shown in Fig. 5.1, and

demonstrating how persistent oscillations due to large time-delays can be bounded as

desired by selection of rate-limiter threshold,

2. Validating the rate-limiter on an upper-limb exoskeleton for 10 subjects to empirically

demonstrate utility,

3. Demonstrating the effect of time-delay for the HITL system and how rate-limiting can

prevent instability to allow for recovery from persistent oscillations.

5.3 Model of Human-in-the-Loop

The EXO-UL8 is a bimanual upper-limb exoskeleton comprised of a pair of serial manipulator

arms, each with 7 active DoFs, developed to support research in pHRI and stroke rehabili-

tation. Admittance control is utilized to enable physical interaction by sensing human input

using force/torque sensors located along the exoskeleton’s arm and then converting it into

equivalent torques at the exoskeleton’s joints. These torques then drive virtual dynamic

models consisting of decoupled second-order systems with low virtual masses, whose dy-

namics are then tracked by the exoskeleton’s computed-torque controller, as shown in Fig.

5.2. The overall effect is that to the human, the exoskeleton appears to move according to

the virtual dynamics. More information about the sensing and control architecture of the

EXO-UL8 can be found in [5, 6].
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Figure 5.3: A root locus for the closed-loop system shows that the closed-loop poles cross

the imaginary axis for a sufficiently large time-delay.

Consider the simplified HITL model consisting of a single second-order linear time-

invariant (LTI) system (to represent a single DoF of the exoskeleton’s virtual dynamics)

in feedback with a static gain, as shown in Fig. 5.1. By design, the exoskeleton system

is stable as its poles are located in the open left half-plane (OLHP) at {−σ ± jωd}, where
σ = ζωn, ωd = ωn

√
1− ζ2, ωn and ωd are the natural and damped frequencies of the

virtual second-order dynamics, respectively, and ζ is the damping ratio. The human inter-

action is modeled as a static gain, similar to [115], with delay. The static gain represents

human-applied forces trying to drive the exoskeleton to a constant setpoint (taken as zero

without loss of generality by using error coordinates), while the delay models neuromuscular

delay [41].

5.3.1 Instability due to Time-Delays

Even though both the human and the exoskeleton are stable systems individually, their

feedback connection is not necessarily stable. This is shown by considering the stability of

the closed-loop system as a function of the time-delay, d ∈ R≥0. As the closed-loop system

81



is still LTI, stability can be assessed by its characteristic polynominal:

s2 + 2ζωns+ ω2
n +KhKeω

2
ne

−sd. (5.1)

A root-locus of the zeros of the characteristic polynominal is shown in Fig. 5.3 with sample

values: Kh = 10, Ke = 1, ζ = 1, ωn = 1. The branches cross the imaginary axis, indicating

that a sufficiently large time-delay can destabilize the system.

5.4 Rate-Limiting Filter

Consider the rate-limiting filter added after the human input in Fig. 5.1. Also known as

slew rate-limiting, the nonlinear filter places bounds on the maximum and minimum rates

of change of the input signal. In continuous time, the rate-limiter can be implemented as a

first-order filter with saturation:

ẏ(t) = satR(pu(t)− py(t)), (5.2)

where R > 0 is the rate-limiter threshold, u(t) is the input scalar signal, y(t) is the output

scalar signal, and p > 0 is a constant chosen to be much larger than the other system poles.

The saturation function is defined as:

satR(x) :=





−R, if x ≤ −R,

x, if −R < x < R,

R, if R ≤ x.

(5.3)

5.4.1 Human-in-the-Loop System with Rate-Limiting

The rate-limiter is added to the HITL system as shown in Fig. 5.1 to limit the maximum

rate-of-change of the human-applied torque. The rate-limiter’s output depends on the input

signal’s frequency and amplitude, and also introduces additional frequency components not

present in the input signal. To analyze the effect of the rate-limiter on the HITL system, it

is useful to first determine the phase lag of the filter, which helps in calculating the period

of the limit cycle in the closed-loop system.
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5.4.1.1 Phase Lag of Rate-Limiter

Consider a sinusoidal signal of amplitude A and angular frequency ω input to the rate-limiter

with rate-limiter threshold R such that:

A ≥ πR

2ω
, (5.4)

which ensures that the rate-limit is always active, as shown in Fig. 5.4. The output signal is

a periodic triangular wave whose fundamental has the same frequency as the input, but with

reduced amplitude and additional phase lag. The phase lag, ϕ, of the output’s fundamental

harmonic can be determined by considering the start time as the crest of the input and

noting that the maximum value of the output is πR
2ω
. Then, the phase can be calculated by

solving for ϕ in:

A cos(ϕ) =
πR

2ω
, (5.5)

to yield:

ϕ = cos−1

(
πR

2Aω

)
, (5.6)

which is a function of both input frequency and amplitude. Also unlike that of high-order

linear filters, the phase lag of the rate-limiter is upper-bounded by π/2, occurring when

inputs have high frequency and high amplitude. This difference demonstrates one intuitive

reason for how a rate-limiter can prevent instability in the closed-loop system.

5.4.1.2 Limit Cycle Frequency and Bound on Position

The objective now is to compute the resonant frequency, ω, of the HITL system. To do this,

first consider the LTI virtual dynamics of the exoskeleton system. Its phase lag is a function

of the input signal’s frequency, so the response of the system to a triangular wave input

oscillating at ω can be computed. For an even periodic triangular waveform with frequency

ω (and consequently, period T = 2π
ω
) defined as:

xT (t) :=





RT
4
−Rt, if t ∈

[
0, T

2

)
,

−3RT
4

+Rt, if t ∈
[
T
2
, T
)
,

(5.7)
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Figure 5.4: A sinusoidal input with amplitude greater than or equal to πR
2ω

results in a

triangular waveform output. In this example, the rate-limiter threshold is set to R = 2,

and the input has amplitude A = 1 and frequency ω = 2π. By inspection, the fundamental

harmonic of the output is phase-lagged and has decreased amplitude. Furthermore, the

triangular waveform has frequency components at multiples of the fundamental harmonics

not present in the input signal, which is characteristic of the filter’s nonlinearity.

it can be expressed as a sum of its harmonics:

xT (t) =
∞∑

n=−∞

(
πR

2ω

)
cne

jnωt, (5.8)

cn =
4 sin

(
πn
2

)2

π2n2
. (5.9)

Let the Fourier transform of the second-order exoskeleton system be denoted as G(·) :

C → C. Since it is LTI, its output for the input signal xT is a superposition of the input’s

harmonics:

yT (t) =
∞∑

n=−∞

(
πR

2ω

)
cn |G(j(nw))| ej[nωt+∠G(jnw)]. (5.10)

Since the phase lag of the rate-limiter also depends on its input signal’s amplitude, it is

helpful to compute the ratio of the input and output signal maximum amplitudes for G. The
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Figure 5.5: Trajectories of the HITL with rate-limiter threshold set according to equation

(5.14) for ϵ = 0.8 (shown as dashed lines). Since the closed-loop system is a delayed differ-

ential equation, trajectories can cross each other because the system’s instantaneous state

does not uniquely determine its derivative. Certain trajectories appear to exceed the desired

ϵ boundary due to the decaying contributions of the initial conditions; ϵ is a bound on the

steady-state oscillations. For all trajectories starting close to the limit cycle, their steady-

state behavior approaches the stable limit cycle.

amplitude of the input triangular wave is πR
2ω
, but the output signal attains its maximum

value at the delay corresponding to the phase lag of the fundamental harmonic, which is

−∠G(jω). Hence, the ratio of input and output maximum amplitudes as a function of

frequency, denoted by the function r(·) : R→ R, can be calculated as:

r(ω) :=
∞∑

n=−∞

cn |G(j(nw))| ej[∠G(jnw))−∠G(jω)], (5.11)

which does not depend on the rate-limiter threshold, R. Next, to compute the resonant

frequency, ω, of the HITL closed-loop system as shown in Fig. 5.1, consider the gain around
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Figure 5.6: Zero-mean position and velocity trajectories of subject 1. The top row shows

trajectories of persistent oscillations with increasing position range (range shown in the

legends) as the time-delay value is increased (highlighted in red) for a constant rate-limiter

threshold. The bounds increase monotonically with time-delay. The bottom row shows the

effect of decreasing rate-limiter threshold for a fixed time-delay. In this case, the delay is mild

and does not result in instability when the rate-limiter is not present (leftmost subfigure).

As the threshold decreases, so does the position bound. However, the decrease is not always

monotonic, as shown by R = 1.0 Nm/s. Simplifying assumptions, such as the human being

modeled as a static gain with delay, may be inadequate in capturing complex time-varying

behaviors that affect how the human responds to low rate-limiter thresholds.

the loop. If the rate-limiter’s output amplitude is πR
2ω
, then this amplitude becomes

A = Khr(ω)
πR

2ω
, (5.12)

as the signal makes its way around the loop to the rate-limiter’s input. WhenKhr(ω) ≥ 1, the

condition in equation (5.4) is satisfied, and the rate-limiter is always active. For persistent

oscillations to occur, the phase lags contributed by the rate-limiter, time-delay, and the

exoskeleton system also must result in one period of oscillation. This is described by:

∠G(jω)− cos−1

(
1

Khr(ω)

)
− ωd− π = −2π, (5.13)
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where the first term is the phase lag of the exoskeleton system, the second is from the phase

lag of the rate-limiter by substituting equation (5.12) into equation (5.6), the third is from

the time-delay, and −π is from the negative input to the summation block. As an example,

solving equation (5.13) numerically with the same parameters as in Fig. 5.3 and d = 0.3 s

yields an oscillation frequency of ω = 0.955 rads/s.

Once ω is determined, the output position can then be bounded to ±ϵ by selecting a

rate-limiter threshold of:

R ≤ 2ωϵ

πr(ω)
. (5.14)

Thus, the size of the stable oscillation can be set as desired for the given virtual dynamics

of the system. Fig. 5.5 shows the stable limit cycle with the desired bounds. This analysis

shows the feasibility of rate-limiting as a safety mechanism for human-exoskeleton interaction

as unstable trajectories no longer diverge due to time-delay instability, but rather flow in a

limit cycle, allowing the human to recover.

5.5 Implementation

The EXO-UL8’s admittance controller consists of decoupled virtual dynamics at each rev-

olute joint, and converts human-applied forces (inputs) into reference trajectories (output).

Rate-limiters are placed between the human-applied forces and the virtual dynamics as

shown in Fig. 5.2. A discrete-time implementation of the rate-limiter dynamics from equa-

tion (5.2) is given in equation (5.15), which uses the saturation function in equation (5.3).

In the equation, uk and yk are the filter’s input and output, respectively; ∆t is the period of

the software loop, and R is the rate-limiter threshold:

yk = yk−1 + sat(∆t)R(uk − yk−1). (5.15)
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5.6 Experiments

5.6.1 Experiment Setup

A series of setpoint tracking experiments are performed to validate the expected relation-

ships between time-delay, rate-limiter threshold, and the bound on position for persistent

oscillations. The experiment consists of 16 trials: 4 values of rate-limiter threshold for each

of 4 values of artificially added time-delay. The experiments are performed on the left el-

bow flexion DoF of the EXO-UL8, as shown in Fig. 5.1. In each trial, the subject tries

to maintain a constant elbow angle after the experimenter programmatically sends a fixed-

magnitude impulse disturbance with random direction. The trial is concluded and marked

as unstable if the interaction diverges due to instability. Otherwise, the subject holds the

reference position for 15 seconds, as paced by a metronome. An overview of the experimental

procedure is presented in Procedure 2. A total of 10 subjects (ages: 27.5 ± 2.6; 2 female,

8 male) participated in the study. The experiment is performed in accordance with IRB

#18-00766.

5.6.2 Results and Discussion

The experiment aims to validate the rate-limiter on the EXO-UL8, and demonstrate that

position ranges of persistent oscillations increase with higher time-delays, but decrease with

lower rate-limiter thresholds. Experimental trajectories for a sample subject are plotted

in Fig. 5.6. In this figure, increasing time-delay for a fixed rate-limiter threshold results

in larger oscillations in steady-state. In contrast, decreasing rate-limiter threshold for a

fixed time-delay yields smaller oscillations, suggesting that a lower threshold is needed if the

HITL system has significant delay. For this subject, the position bound is slightly larger

for R = 1.0 Nm/s than for R = 3.0 Nm/s; however, this discrepancy can be explained by

inter-trial variability of the subject and limitations of the constant gain human model used

in the theoretical development. To better evaluate the overall trends, consider the results

averaged across all subjects in Fig. 5.7.
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Procedure 2 Experimental Procedure

1: for each subject s ∈ {1, . . . , 10} do
2: Subject familiarizes with EXO-UL8 for 5 minutes

3: for each delay d ∈ {0, 0.05, 0.1, 0.2} do
4: for each threshold R ∈ {∞, 3, 1, 0.3} do
5: Set d and R on EXO-UL8

6: Subject moves to 45◦ position

7: Experimenter sends ± impulse disturbance

8: if tracking becomes unstable then

9: Conclude trial

10: else

11: Subject moves to 45◦ position

12: Subject holds for 15 seconds

13: Subject reports on experience

Subject averaged results show that in order to mitigate the enlarging effects of time-

delay on steady-state oscillations, the rate-limiter threshold should be reduced. It should

also be noted that instability only occurred in trials in which the rate-limiter was inactive

(R = ∞) and the delay was large (d ≥ 0.1 s). This suggests that rate-limiting, even with

a large threshold, can prevent instability, which was theoretically predicted by the existence

of stable limit-cycles in the simulated trajectories of Fig. 5.5. Furthermore, the undelayed

(d = 0 s) trials corresponding to R = 3.0 Nm/s and R =∞ showed similar position ranges,

indicating that the rate-limiter did not significantly affect normal operation. This is also

supported by the percentage of time that the rate-limiter was active, as shown in Fig. 5.8.

As delays become larger, so do the active times of the rate-limiter in order to overcome the

increased likelihood of instability. However, during the undelayed trials, the rate-limiter is

still partially active. This is likely a consequence of numerically differentiating the noisy

human-applied torque signals, whose derivatives frequently contain impulses exceeding the

rate-limiter threshold. By comparing the three different rate-limiter thresholds, it is apparent
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Figure 5.7: Position ranges corresponding to 5.5 s of steady-state oscillations of all trials

averaged across all subjects. Trials in which subjects experienced instability are recorded

as the range exceeding 30◦; these only occurred in the absence of the rate-limiter and with

delay ≥ 0.1 s.

that while a lower threshold value results in lower amplitude oscillations, as was seen in Fig.

5.7, too low a value may hinder regular operation.

5.6.2.1 Minimum Rate-Limiter Threshold

For a very small rate-limiter threshold (R = 0.3 Nm/s), the position range did not strictly

increase with time-delay. Although equation (5.14) suggests that an arbitrarily small bound

can be achieved by a sufficiently small threshold, the experimental results suggest a min-

imum threshold beyond which the relationship is no longer valid. The theoretical result

assumed that the human can be modeled as a static gain controller with constant delay.

While this assumption is sufficient in some cases, these experimental results show the extent
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to which that assumption is valid. For such a small rate-limiter threshold, the phase delay of

equation (5.13) approaches its maximum, and makes the exoskeleton’s motions feel sluggish,

as described by subjects in the post-experiment discussions. This is also indicated by the

rate-limiter being active 65% of the time at this threshold, even with no added time-delay,

as shown in Fig. 5.8. The increased activity of the rate-limiter and its phase-lag affect the

subjects’ ability to track the setpoint and cause them to feel less in-control of the exoskele-

ton, which is a phenomenon not reported for trials corresponding to the larger rate-limiter

thresholds. The qualitative and subjective results of the experiments suggest that although

rate-limiting is beneficial for mitigating instability, there is a minimum threshold beyond

which its limitations outweigh its benefits.

5.6.2.2 Generalization of Rate-Limiter Thresholds

The relationship between the rate-limiter threshold and the oscillation range depends on

the virtual dynamics and associated delays of the admittance control system, which do not

change across trials and operators; and the electromechanical delays of the operator, which

are comparable across individuals [119]. Thus, specific threshold values need only be tuned

for each pHRI devices by using a reasonable upper-bound for the operator’s delay for the

target motion.

5.6.2.3 Recovering from Instability

In a regular HITL system, the rate-limiter is not expected to always be active. Instead,

its role is to act as a safeguard by preventing delay-induced oscillations from diverging,

while minimizing interference with normal operation. An example of this behavior can

be seen in Fig. 5.9. In this trial, the time-delay is large (d = 0.2 s) and destabilization

occurs at the 14 s mark, but the rate-limiter prevents the oscillations from diverging. At

20 s, the subject stabilizes and is able to continue normal operation afterward. Causes

of instability can include any combination of: the subject becoming fatigued; the subject
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Figure 5.8: Active time of the rate-limiter for all trials averaged across all subjects. Greater

time delays trigger the rate-limiter more frequently in order to prevent instability. However,

longer active times in undelayed trials indicate that too low a threshold may inhibit normal

operation.

tensing their arm in an attempt to fight instability [105]; or the subject losing concentration

and relying purely on haptic feedback, which can be much less effective than utilizing both

visual and haptic feedback [120, 121]. Such scenarios are not uncommon in HITL systems,

which underscores the importance of safety from instability. These experimental results

demonstrate the effectiveness of the rate-limiter as a safety mechanism.
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Figure 5.9: A time-series showing the rate-limiter suppressing an unstable oscillation and

enabling recovery. Oscillations begin to diverge at 14 s due to high time-delay (d = 0.2 s),

at which point the behavior follows the predicted limit cycle of Fig. 5.5 until the operator

relaxes and regains control at 20 s.

5.6.2.4 Bounded Jerk Perspective

In literature on pHRI with an exoskeleton, it is known that smooth human-like trajecto-

ries can be generated by minimizing jerk (time-derivative of acceleration) [122–124]. Con-

sequently, a trajectory with high jerk appears as unnatural and robotic. Thus, another

perspective to the method of this study is that it promotes more natural movements by

rate-limiting the human-applied torque signals and thus bounding the jerk of the position

trajectories generated by the admittance controller.
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5.7 Conclusion

In this paper, we show how rate-limiting human-applied torque signals for pHRI on the EXO-

UL8 exoskeleton can prevent diverging instability due to time-delay. Specifically, we model

the HITL system as: a human as a proportional controller with constant delay, a rate-limiter

on the output of the human’s applied torques, and a linear second-order virtual dynamics

model enabled by admittance control. Our analysis shows that even for large destabilizing

time-delays, the trajectories of the HITL system are attracted to a stable limit cycle that can

be bound by selecting a sufficiently small rate-limiter threshold. We experimentally validate

the rate-limiter through 16 trials corresponding to 4 time-delays and 4 rate-limiter thresholds

for each of 10 subjects. Results agree with theory across all time-delays for moderate and

large rate-limiter thresholds, and show the limitations of the proportional controller human

model for very small rate-limiter thresholds. The results demonstrate that the rate-limiter is

effective at preventing instability due to large time-delays, and allows the human to recover

from delay-induced oscillations, all with minimal interference to regular operation.
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CHAPTER 6

Sensor Reduction

[5] J. Sun, Y. Shen, J. Rosen, “Sensor Reduction, Estimation, and Control of an Upper-

Limb Exoskeleton,” in IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1012-1019,

April 2021, doi: 10.1109/LRA.2021.3056366.

6.1 Overview

A multi-DoF exoskeleton relies on an array of sensors to communicate its state (e.g., posi-

tions/orientations) and operator-exoskeleton contact interactions (e.g., forces/torques) to its

control system. Although sensor redundancy is common in biological systems to cope with

uncertainty and partial failure of sensors, in man-made systems, sensor redundancy increases

the overall system’s cost and control complexity. This study presents a sensor reduction tech-

nique for force/torque (F/T) sensors utilizing a Kalman filter-based sensor fusion system in

the context of admittance control. The methodology is applied to the EXO-UL8 exoskeleton,

which is a powered, redundant, dual-arm, upper-limb robotic system with (7 arm + 1 hand)

DoFs incorporating three 6-axis F/T sensors in each arm. Motivated by improving wear-

ability through minimizing human-exoskeleton contact interfaces, which reduces spurious

contact forces due to joint misalignment; and reducing cost, the proposed strategy emulates

the admittance controller’s virtual dynamics with only a subset of sensors, resulting in the

physical human-robot interaction feeling the same from the operator’s perspective. Exper-

imental results indicate that human-exoskeleton power exchange and actuation stresses of

the operator’s joints, with the proposed strategy on a subset of two sensors, are compara-

ble to those in the full three-sensor case (p < 0.01). The experiments verify the proposed
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methodology for the EXO-UL8, and support the feasibility of operating other Kalman filter-

based sensor fusion systems with fewer sensors without sacrificing transparency in physical

human-robot interaction.

6.2 Introduction

In this paper, a method of sensor reduction is presented for a force estimation sensor fusion

algorithm in the context of admittance control for the EXO-UL8 exoskeleton [6, 58,62].

Force sensing and estimation are prevalent in the field of exoskeleton [28, 52–56] and

robotics control [17, 18, 70, 125–128]. Force sensing includes resolving sensor redundancies

and finding optimal sensor placement [28, 126–128], whereas force estimation includes sen-

sorless approaches, such as using disturbance observers [28, 55] or other model-based state

estimators/filters [17, 18, 54, 56, 125]. These techniques have found applications in teleoper-

ation [17,18], exoskeleton control [28,52–56], human-robot interaction [70], and other appli-

cations in which the use of sensors is limited by feasibility, reliability, or cost.

Sensorless force estimation, such as in the flying probe of [125], the exoskeletons of [54,55],

and the quadrocopter of [70], estimate external contact forces through knowledge of the

system dynamics. Unlike the exoskeletons of [28, 55, 56], the EXO-UL8 does not have back-

driveable joints in order to achieve higher joint payload capacity. As a result, sensorless

approaches could not be utilized.

Applications in which the use of sensors is limited have necessitated the exploration of

sensor reduction techniques. These include sensorless approaches, as described above, or

reducing the number of required sensors, which is the focus of this research. In the latter

case, existing literature has formulated the problem of selecting an optimal subset of sensors

as minimizing some cost function [126–128]. While these approaches typically deal with a

large number of sensors and are concerned with the optimal subset of sensors, our paper aims

to show that different subsets of sensors can be tuned to yield similar dynamic responses as

the full set.
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Figure 6.1: (a) On each arm (right arm shown), the upper and lower force/torque sensors

interface with an operator’s arm via elastic cuff links. The wrist sensor is embedded into

the gripper. (b) Each arm can be analyzed as a serial manipulator with joints corresponding

to those of a human arm: {θ1, θ2} - shoulder abduction/adduction and flexion/extension, θ3

- shoulder interior/exterior rotation, θ4 - elbow flexion/extension, θ5 - forearm pronation/-

supination, θ6 - wrist extension/flexion, and θ7 - wrist radial/ulnar deviation.

In resolving sensor redundancy, literature has explored sensor fusion techniques such as

Kalman filtering [72,129,130], fuzzy logic approaches [129,131], Monte Carlo methods [132],

and other weighted sum approaches [28,58]. Whereas the ARMIN IV+ of [28] uses a constant

weighted sum to combine sensor inputs, our approach uses a Kalman filter to account for

state-dependency of the sensor fusion gains, as the arm’s ability to generate force is position-

dependent [62].

Many variations of Kalman filtering are utilized in robotic state estimation and con-

trol. [133] implements the Extended Kalman filter to estimate joint angles from the non-

linear dynamics of muscle tension control in a redundant musculoskeletal humanoid. [125]
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implements a modified Kalman filter with acceleration estimation for a flying probe system.

In [134], the authors utilize the Unscented Kalman filter in pose estimation to enable back-

stepping control of a mobile robot. In our work, we utilize the linear Kalman filter for sensor

fusion.

The EXO-UL8 is a dual-arm, powered, redundant, upper-limb exoskeleton with seven

active DoFs and one active gripper DoF on each arm [6,58,62] designed to support research

efforts in robot-assisted rehabilitation. The exoskeleton tracks an operator’s movements

through admittance control in joint-space. The admittance controller is driven by operator-

applied forces that are measured by three 6-axis force/torque sensors (ATI Mini40) located

at the upper arm, lower arm, and wrist, as shown in Fig. 6.1. Reducing the number of

required sensors in the EXO-UL8 is motivated by:

1. Improved wearability: During donning, a patient’s arm must pass through each of

the elastic cuffs, akin to putting one’s arm through the sleeve of a sleeved shirt. For

patients with neuromuscular disorders such as coupled joint movements or muscular

spasticity, such a maneuver is difficult or impossible.

2. Joint alignment: Misalignment of the rotational axes of the EXO-UL8’s joints with

those of anatomical joints can result in large contact forces to the operator [135]. The

absence of a sensor can provide increased scapular movement freedom so that the

operator can actively correct for joint misalignment.

3. Reduced cost: If fewer sensors can achieve similar performance, then component cost

can be lowered.

While existing literature explores optimal sensor placement, sensor fusion, and sensorless

force-estimation and control, the main contribution of our paper is a Kalman filter tuning

method to emulate the baseline admittance controller virtual dynamics (based on the full

three-sensor case) with only two of the three sensors, resulting in the interaction feeling the

same from the operator’s perspective.
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The rest of the paper is organized as follows: section 6.3 describes the filtering and

control strategies of the EXO-UL8, section 6.4 examines the minimum required number of

sensors and the compensation for a missing sensor, and section 6.5 describes the experimental

validation of the proposed method.

6.3 System Architecture

6.3.1 Cascaded Control Scheme

The EXO-UL8 implements a cascaded control scheme in which the sensor fusion block com-

bines measured forces into a torque signal. The torques are then input to the admittance

controller, which generates joint-space trajectories tracked by PD motor joint controllers.

Fig. 6.2 shows a block diagram of the control architecture.

Figure 6.2: The cascaded control scheme of the EXO-UL8 operates at 1kHz and consists of a

high-level controller, which contains the Kalman filter-based sensor fusion block and admit-

tance controller, and a low-level controller, which tracks joint-space reference trajectories.

Relevant signals are labeled.
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6.3.2 Sensor Torque Mapping and Fusion

The EXO-UL8 was originally designed with three 6-axis force/torque sensors on each of its

two arms: one at the upper arm (u), one at the lower arm (l), and one integrated into

the wrist assembly (w), as shown in Fig. 6.1. Each sensor s ∈ {u, l, w} provides a wrench

measurement, F b
s ∈ R6, in its body reference frame, as indicated by the b superscript. To

enable compatible operations, each measured wrench F b
s is transformed to the spatial frame,

located at the intersection of the three shoulder axes of rotation, through:

F sp
s = Ad⊤

g−1
s (θ)

F b
s , (6.1)

where F sp
s ∈ R6 expresses the equivalent wrench in the spatial frame, and Adgs ∈ R6×6 is

the corresponding adjoint matrix for the homogeneous transformation gs ∈ SE(3) from the

spatial frame to the sensor’s body frame. The transformed wrenches, F sp
s , are then mapped

to joint torques Γs ∈ R7 with the spatial manipulator Jacobian:

Γs = Js(θ)
⊤F sp

s . (6.2)

Note that Ju(θ) ̸= Jl(θ) ̸= Jw(θ) because the dimensions are different due to each sensor

being located at a different position along the kinematic chain, as shown in Fig. 6.1.

The torque contributions from the sensors are then combined via a LTI sensor fusion

system to yield joint torques Γ̂ ∈ R7 to input to the admittance controller. The sensor

fusion system is represented as:

xΓ[k + 1] = AΓxΓ[k] +BΓ col(Γu[k],Γl[k],Γw[k]), (6.3)

Γ̂[k] = CΓxΓ[k] +DΓ col(Γu[k],Γl[k],Γw[k]),

where xΓ[k] ∈ RnΓ is the state of the sensor fusion at time step k, (AΓ, BΓ, CΓ, DΓ) are

state-space matrices in minimal realization, and col(·, . . . , ·) produces a column vector from

its arguments. The sensor fusion system is expressed in discrete-time to support software

implementation.
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6.3.3 Sensor Fusion via Kalman Filtering

A Kalman filter-based sensor fusion combines the torques from the sensors (Γu,Γl,Γw) into

a single torque estimate Γ̂. Since the joint torques are generated from human-applied forces,

the exact signal is not known a priori. Therefore, the process equation for Γ is modeled as

a random walk, similar to the technique used in [6, 70]:

Γ[k + 1] = Γ[k] + (∆t)wΓ[k], (6.4)

where ∆t is the sampling period, and wΓ[k] ∼ N (0, QΓ), where QΓ is an empirically tuned

covariance matrix. The torques Γu,Γl,Γw are then treated as measurements with additive

Gaussian noise to the Kalman filter:

z[k] : =




Γu[k]

Γl[k]

Γw[k]


+




wu[k]

wl[k]

ww[k]


 , (6.5)

=




I3×3 03×4

I5×5 05×2

I7×7



Γ[k] +




wu[k]

wl[k]

ww[k]


 , (6.6)

:= HΓ[k] + col(wu[k], wl[k], ww[k]), (6.7)

where z[k] ∈ R15 is a combined vector of joint torques from the sensors. wu[k] ∼ N (03×1, Ru),

wl[k] ∼ N (05×1, Rl), and ww[k] ∼ N (07×1, Rw), where Ru ∈ R3×3, Rl ∈ R5×5, and Rw ∈
R7×7 are the noise covariance matrices corresponding to the upper, lower, and wrist sensor,

respectively. Let Γ̂ ∈ R7 be the MMSE estimate of Γ, Pp ∈ R7×7 be the variance of the a

priori, Pm ∈ R7×7 be the variance of the a posteriori, and R := diag(Ru, Rl, Rw). Then, the

update equations for the Kalman filter become:
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Initialization:

Γ̂[0] = 07×1, (6.8)

Pm[0] = (∆t)2QΓ. (6.9)

A Priori Update:

Pp[k] = Pm[k − 1] + (∆t)2QΓ. (6.10)

A Posteriori Update:

K[k] := Pp[k]H
⊤(HPp[k]H

⊤ +R)−1, (6.11)

Γ̂[k] = (I−K[k]H)Γ̂[k − 1] +K[k]z[k], (6.12)

Pm[k] = (I−K[k]H)Pp[k](I−K[k]H)⊤ (6.13)

+K[k]RK[k]⊤,

where K[k] ∈ R7×15 is defined as the Kalman gain at time step k. Note that equation (6.13)

implements the Joseph form for numerical stability.

The Kalman filter implemented in this form is not time-invariant, so it cannot be ex-

pressed in the form of equation (6.3). However, this is not problematic because convergence

of the Kalman filter is guaranteed by (I7×7, H) being detectable and (I7×7, Q
1/2
Γ ) being sta-

bilizable [71], where I7×7 is the state transition matrix in equation (6.4). Then, let P∞ be

the steady-state a posteriori variance calculated from the discrete algebraic Riccati equation

and let K∞ = P∞H⊤(HP∞H⊤ + R)−1 be the steady-state Kalman gain [72]. The updated

equations become:

Γ̂[k] = (I−K∞H)Γ̂[k − 1] +K∞z[k], (6.14)

which is a discrete-time, linear time-invariant system.
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6.4 Sensor Reduction

6.4.1 Admittance Controller

The estimated joint torques, Γ̂, from the sensor fusion system are then used to drive a

first-order reference-generation model in joint-space:

τj θ̇
ref
j + θrefj = ajΓ̂j, j ∈ {1, . . . , 7}, (6.15)

where τj, aj ∈ R, τj > 0, aj > 0 are the time constant and DC gain of the model for joint

j, and θref ∈ R7 is the generated reference signal to be tracked by the motor controllers.

These constants are experimentally tuned to achieve responsive behavior of the EXO-UL8,

as qualitatively determined by test users. In the Laplace domain, each channel of equation

(6.15) has a pole at s = −τ−1
j , which is stable since τj > 0. Furthermore, the model can be

exactly discretized to:

θrefj [k + 1] = e
−∆t

τj θrefj [k] + aj(1− e
−∆t

τj )Γ̂j[k], (6.16)

for each joint, j ∈ {1, . . . , 7}. The discretized model ensures that discretization errors are

minimal.

A summary of the control scheme implementation is given in Procedure 3. The procedure

is implemented as an interrupt handler for a timer with interrupt frequency of 1kHz.

6.4.2 Minimum Number of Sensors

In non-singular configurations of the joint angles, the wrist Jacobian, Jw(θ), is the only

Jacobian that can affect all seven dimensions of the joint torque vector, Γ̂. For this reason,

it must be included in the control strategy. Additionally, at least one of the upper or lower

sensors must also be present. To illustrate this requirement, consider the case in which only

the wrist sensor provides the joint torques used by the admittance controller:

Γ̂ = Γw = Jw(θ)
⊤Fw. (6.17)
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Procedure 3 1kHz Timer Interrupt Handler

1: θ ← Read joint angles

2: for s ∈ {u, l, w} do
3: F b

s ← Read force sensor

4: F sp
s ← Ad⊤

g−1
s (θ)

F b
s ▷ Eqn (6.1)

5: Γs ← Js(θ)
⊤F sp

s ▷ Eqn (6.2)

6: KF a priori update ▷ Eqn (6.10)

7: Γ̂← KF a posteriori update ▷ Eqns (6.11)-(6.13)

8: for j ∈ {1, . . . , 7} do
9: θrefj ← Update virtual dynamics ▷ Eqn (6.16)

10: Send θref to Low-Level Controller

In order for the single sensor to provide enough information to fully control the exoskeleton,

the map between the space of wrenches (R6) to the space of joint torques (R7) must be

surjective. Due to the limited dimensionality of the space of wrenches, there does not

exist a mapping that satisfies this requirement. In fact, the wrench can only map to a

six-dimensional subspace in R7, assuming that the Jacobian does not lose rank from the

exoskeleton being in a singular configuration. The orthogonal complement of the column

space of Jw(θ)
⊤ is the left nullspace of Jw(θ)

⊤, or simply the nullspace of Jw(θ). Since

Jw(θ) ∈ R6×7 and has full row rank, the dimension of its nullspace is one, and corresponds to

the manifold of internal motions on which Jw(θ)θ̇ = 0. This manifold contains the motions

along the swivel angle in which the wrist maintains its position in end-effector space while

the elbow is free to rotate [62,136]. The redundancy of the EXO-UL8 means that the wrist

sensor alone cannot provide enough information, so at least one other sensor must also be

present. Thus, a total of two sensors are utilized.
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6.4.3 Feasibility of Two Sensors

When two of the 6-axis force/torque sensors are included, a total of twelve inputs are provided

to the exoskeleton to actuate seven joints. The Kalman filter in the admittance control

scheme serves as a sensor fusion system whose outputs are estimates of the joint torques.

Feasibility of requiring only two sensors is equivalent to controllability of the Kalman filter

when interpreted as an LTI system. Therefore, if the sensor fusion system described by

equation (6.14) is controllable, there exist inputs from the sensors that can drive the torque

estimate to any point in the state-space. The pair (K∞, I−K∞H) is controllable if and only

if its controllabilty matrix is full rank:

C = [K∞ (I−K∞H)K∞ . . . (I−K∞H)6K∞]. (6.18)

Since the Kalman filter converges, as shown in subsection 6.3.3, the steady-state Kalman

gain, K∞ ∈ R7×15 is necessarily full rank. The first block column of C is K∞, so the

controllability matrix must already have a column rank of 7. Therefore, the sensor fusion

system is controllable and the inputs from the two sensors are sufficient to produce any joint

torque estimate.

6.4.4 Sensor Fusion Tuning to Compensate for Fewer Sensors

The absence of an upper or lower sensor impacts the interaction dynamics experienced by

the operator; more force may be required to move the exoskeleton in certain directions. To

ensure that the interaction feels the same from the operator’s perspective when only two

of the three sensors are utilized, the baseline (full three-sensor case) admittance controller

virtual dynamics must be emulated. This is achieved by tuning the Kalman filter in either of

the reduced-sensor cases to have the same filter dynamics as in the baseline. In both cases,

the admittance controller receives the same input and generates the same virtual dynamics.

The details of this tuning strategy are explained in this section.
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Let the sensor configurations be denoted as:

(A) All three sensors (upper, lower, wrist),

(B) Lower and wrist sensors only,

(C) Upper and wrist sensors only.

From equation (6.15), the same joint trajectories are generated if the Γ̂ output from the

Kalman filter remains the same. Equation (6.14) shows that the steady-state Kalman gain,

K∞, and the measurement matrix, H, directly affect the filter dynamics. For the subsequent

analysis, let:

Hlw :=




I5×5 05×2

I7×7


 , (6.19)

which denotes the measurement matrix used to define zlw[k] in the Kalman filter a posteriori

update equations, and corresponds to the case in which the upper sensor is absent (config.

B). Then, to ensure that equation (6.14) remains the same in configurations A and B, it is

required that:

K∞H = K̃∞Hlw, (6.20)

where K̃∞ denotes the modified steady-state Kalman gain. Expanding equation (6.20), the

requirement becomes:

H⊤ (HP∞H⊤ +R
)−1

H

= H⊤
lw

(
HlwP∞H⊤

lw +Rlw

)−1
Hlw (6.21)

where Rlw ∈ R12×12 is the new diagonal measurement covariance to be determined. Note

that the estimation error covariance, P∞, should be the same in both cases to ensure that

the removal of one sensor does not change the steady-state performance of the Kalman filter.

Then, the objective is to solve equation (6.21) for the only unknown, Rlw.

106



Note that the matrices H and Hlw are related by:

H =




I3×3 03×9

I12×12


Hlw := EHlw. (6.22)

Finding an appropriate matrix E is always possible when Hlw has full row rank, which is a

necessary requirement for the Kalman filter to converge in this case. Then, the left side of

equation (6.21) becomes:

= H⊤
lwE

⊤ (HP∞H⊤ +R
)−1

EHlw. (6.23)

By equating the matrices between the H⊤
lw and Hlw terms, Rlw is solved as:

Rlw =
[
E⊤ (HP∞H⊤ +R

)−1
E
]−1

−HlwP∞H⊤
lw. (6.24)

A similar analysis calculates Ruw ∈ R10×10 for configuration C. Equation (6.24) computes

the necessary measurement noise covariance matrix to achieve equal filter dynamics to the

nominal case, despite the absence of a sensor.

When the Kalman filter reaches steady state, the contribution of each measurement

to the estimate is proportional to the inverse of the associated noise variance. Thus, to

visualize how sensor contributions change, it suffices to consider how the noise variances in

Rlw (config. B) and Ruw (config. C) differ from those in Ru, Rl, Rw (config. A). For example,

the contribution of the lower sensor to joint 1 in config. A is:

1/Rl(1, 1)

1/Ru(1, 1) + 1/Rl(1, 1) + 1/Rw(1, 1)
≈ 0.256. (6.25)

However, when the upper sensor is removed (config. B), the contribution of the lower sensor

becomes:
1/Rlw(1, 1)

1/Rlw(1, 1) + 1/Rlw(6, 6)
≈ 0.767. (6.26)

The increase indicates that when the upper sensor is removed, the Kalman filter places

greater emphasis on the measurement of the lower sensor in order to yield the same dy-

namics. Fig. 6.3 summarizes the distributions of sensor contributions in each of the three

configurations.
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Figure 6.3: The theoretical normalized sensor contributions to the estimated torque are

determined by normalizing the reciprocal of the variance values for each sensor with the sum

of the reciprocal variance values in each sensor configuration. Joints located farther down

the kinematic chain are affected by fewer sensors, as in the case of Joints 4− 7. In all cases,

the removal of a sensor redistributes the relative contributions of the remaining sensors.
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6.5 Experiments

All experiments in this study were performed with a healthy right-handed participant (male,

25-years-old) following an approved Institutional Review Board protocol (IRB #18-00766).

6.5.1 Performance Metrics

6.5.1.1 NASA Task Load Index (NASA-TLX)

The term transparency is a measure of the exoskeleton’s tracking performance to an opera-

tor’s movements. Although it can be quantified using the metrics defined below, a qualitative

assessment of ease of control and wearability, as provided by the operator, is also an impor-

tant indication of performance. To this end, the NASA-TLX survey [137] was utilized to

assess the quality of the interaction and ease of donning for each of the three sensor config-

urations.

6.5.1.2 Power Exchange

In an ideal interaction, no force occurs at the physical human-exoskeleton interface (sensor

locations). During motion, this is equivalent to zero mechanical power exchanged. Therefore,

the power exchanged through the sensors can quantify the transparency of the interaction;

the smaller the power exchanged, the more ideal the interaction. Let vsps ∈ R6 be the linear

and angular velocity of sensor s expressed in the spatial frame. Then the instantaneous

power exchange for sensor s is the inner product between the wrench and velocity: Ps(t) :=

⟨F sp
s (t), vsps (t)⟩. The mean power exchange over an interval t ∈ [0, T ] is then:

P avg
s :=

1

T

∫ T

0

⟨F sp
s (τ), vsps (τ)⟩ dτ. (6.27)
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Figure 6.4: (a) A subject wears the exoskeleton to accomplish the trajectory-following tasks;

(b) Planned trajectory.

6.5.1.3 Actuation Stress

As another metric for transparency, the actuation stress is defined as a normalization of the

effort contributed by each joint in the operator’s arm during motion. The less torque each

joint has to produce relative to its limit, the lower the actuation stress. Quantitatively, the

actuation stress for joint j ∈ {1, . . . , 7} is defined as:

Sj(t) :=
|Γ̂j(t)|
Γmax
j

× 100%, (6.28)

where Γ̂j(t) is the estimated torque from the Kalman filter, and Γmax
j is the max joint torque

that a human arm is able to exert. Table 6.1 shows typical anatomical values for Γmax
j [138].

Note that the torque limits are direction-dependent due to differences in concentric and

eccentric muscle contractions.
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Figure 6.5: A sample 20 second duration data fusion time-series is shown for joint 1 for the

three sensor configuration cases. The three plots in the top row show the torque measure-

ments Γs from equation (6.2) for the three sensors in the three configurations. The bottom

row shows the corresponding sensor fusion outputs Γ̂. The torque measurements are also

combined in a weighted sum with the normalized contribution values from Fig. 6.3. The

estimated torques output from the sensor fusion algorithm shows strong agreement with the

expected results based on the compensated sensor noise covariance matrix in equation (6.24).

The differences of the signals is also shown, and quantified by its RMS value. The small

magnitudes of errors indicate that the analysis based on the steady-state Kalman filter in

equation (6.14) is valid for the time-varying filter.

6.5.2 Experimental Setup

A reaching trajectory, as shown in Fig. 6.4, is used to assess the three sensor configurations.

For configurations B and C, the attachment cuff for the unused sensor was also detached.

As operator-exoskeleton force exchange occurs via the attachment cuffs, without a sensor

to quantify the interaction forces, local dynamics may not be accurately captured, and may

consequently harm transparency. Additionally, one of the primary motivators for removing

sensors was to improve wearability by reducing the number of attachment cuffs that an
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Table 6.1: Direction-dependent joint torque limits

Joint Positive Limit (Nm) Negative Limit (Nm)

Flexion: 13.13 Extension: 8.90

Shoulder Adduction: 14.49 Abduction: 15.62

Internal Rotation: 11.59 External Rotation: 11.63

Elbow Flexion: 10.75 Extension: 8.76

Pronation: 3.39 Supination: 1.42

Wrist Extension: 2.11 Flexion: 1.55

Radial Deviation: 2.67 Ulnar Deviation: 1.98

operator’s arm has to pass through to donn the exoskeleton.

The target trajectory in Cartesian space is designed to exercise a large range of motion.

Physical markers (15 cm apart from each other) delineate the trajectory in front of the

exoskeleton as shown in Fig. 6.4. The plane of the targets is located 75 cm in front of

the operator, at a height at which the operator’s outstretched arm is perpendicular to the

operator’s body when touching the topmost target. A 5 cm rubber pointer at the end-

effector is used to make contact with the targets. To ensure comparable timescales across all

experimental trials, the subject is given 2 seconds to complete each segment of the trajectory

without stopping, for a total of 8× 2 (forward and back) segments. A metronome with a 2

second period is used to pace the experiment. The subject also wears short-sleeved clothing

to prevent inaccurate sensor readings caused by nonlinear deformation of clothing. Prior

to each trial, the subject is given 3 minutes to become familiar with the operation of the

exoskeleton. A total of 10 trials for each sensor configuration is carried out to ensure the

statistical significance of results.
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6.5.3 Results and Discussion

6.5.3.1 Qualitative Assessment

The NASA-TLX assessment for the three sensor configurations is shown in Table 6.2. A lower

number is favorable for all metrics except for Performance. The numbers in parentheses for

configuration B and configuration C indicate the change from the corresponding task load

in configuration A, which serves as the baseline. Qualitative assessment from the subject

indicates little change in terms of exoskeleton operation and wearability, which is the desired

result. However, configuration B indicates a slight increase in operational difficulty, likely

due to more inaccuracies in estimating the torques of the shoulder joints as the closest

sensor (upper) is removed in configuration B. This sensing limitation is also evident in the

quantitative results described in the subsequent sections.

Table 6.2: NASA-TLX Assessment for each Sensor Configuration

Better Scale (1 - 20) Config. A Config. B Config. C

↓ Mental Demand 5 5 5

↓ Physical Demand 7 8 (+1) 6 (-1)

↓ Temporal Demand 10 11 (+1) 10

↑ Performance 5 6 (+1) 5

↓ Effort 7 8 (+1) 7

↓ Frustration 5 5 5
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6.5.3.2 Sensor Contribution

Fig. 6.5 shows experimental data for the three sensor configurations for joint 1. The top row

plots the joint torques converted from the sensor readings (equation (6.5)). The bottom row

shows the output of the time-varying Kalman filter and a weighted sum of the torques from

the first column using the theoretical contributions in Fig. 6.3. These were plotted together

to show strong agreement, which indicates convergence of the Kalman filter. Demonstrating

that the time-varying filter achieves expected results with experimental data validates the

steady-state Kalman filter assumption used in calculating the theoretical sensor contributions

of Fig. 6.3.

The bottom row of Fig. 6.5 also shows the error and its RMS to quantify the disagreement

between the expected filter output and measured filter output. While configuration C shows

agreement to the baseline (config. A) in terms of error RMS, configuration B shows a larger

error, which agrees with the qualitative assessment. This may be caused by the removal of

the closest sensor to joint 1 (upper sensor in configuration B). The lower and wrist sensors are

located farther along the kinematic chain than the upper sensor, so their accurate estimation

of the torque on joint 1, as compared to that of the upper sensor, is affected by a greater

number of intermediate joints.
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Figure 6.6: End-effector trajectories in the plane of the target pattern for the three sensor

configurations. Trajectories are overlayed onto the target pattern shown in Fig. 6.4. Each

of the three configurations allows for satisfactory performance in enabling the operator to

follow the target pattern.

6.5.3.3 Power Exchange

Sample end-effector trajectories are shown in Fig. 6.6. Mean power exchange for the trials

are computed with equation (6.27) and represented by the box-and-whisker plots in Fig.

6.7. Experimental results show that the compensated Kalman filters resulted in lower power

exchange as compared to the uncompensated cases (p < 0.01). Statistical significance of

the power exchange results was evaluated using the two-sample t-test. The null hypothesis

for each sensor in configurations B and C was that the power exchange distributions of

the compensated and uncompensated cases had equal mean but unknown variance. The

alternative hypothesis was that the distributions had unequal means. In all four cases (B

- lower, B - wrist, C - upper, C - wrist), the p-values were less than 0.01, with the largest

being p = 0.0089 for the wrist sensor in configuration C, indicating that re-tuning the Kalman

filter was statistically significant in improving transparency, when measured with the power

exchange metric.
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Figure 6.7: The columns show the power exchange for configurations A, B, and C (left to

right). Uncompensated (Uncp.) refers to the sensor configuration applied but without re-

tuning the Kalman filter; i.e., the filter operates under the assumption that all sensors are

present, even though a sensor is physically removed. On the other hand, compensated (Cp.)

refers to tuning the filter’s noise covariance matrices according to equation (6.24). Results

indicate that after tuning, average power exchange decreases (p < 0.01), indicative of more

transparent human-exoskeleton interaction.

In configuration B, the mean power exchange of the compensated case closely matched

that of the baseline, albeit with more variance. This is likely caused by the same limitation

evident in the NASA-TLX qualitative assessment of Table. 6.2 and error RMS of Fig. 6.5:

the removal of the upper sensor places more emphasis on the lower sensor to estimate torques

for the shoulder joints (1-3), which may introduce additional uncertainties as there are now

more intermediate joints between the shoulder and its closest sensor (lower).

116



In configuration C, the power exchange in the compensated case is higher than in the

baseline. Since the lower and wrist sensors are only 12.5 cm apart, the absence of the lower

sensor and its attachment cuff may cause the full mass of the operator’s forearm to rest on

only the wrist attachment, resulting in higher sensor readings. This anomaly is not present

in configuration B (upper sensor absent) because the mass of the operator’s upper arm is

supported by their shoulder and does not rest on the upper sensor. With the upper sensor

absent, the compensated cases match more closely with the baseline.

6.5.3.4 Actuation Stress

The actuation stresses are computed with equation (6.28), averaged across the trials, and

shown in Fig. 6.8. Between the compensated and uncompensated cases, all joints except for

joint 2 show a lower actuation stress when the remaining sensors are re-tuned according to

section 6.4.4, which agrees with the power exchange results. The discrepancy for configura-

tion C is likely caused by the redistribution of the forearm’s mass as previously described in

the Power Exchange subsection. In both configurations, the compensated cases show closer

agreement with the baseline configuration in which all sensors are present.
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Figure 6.8: Actuation stresses for the three sensor configurations show that compensation

(re-tuning the Kalman filter) results in closer values to the baseline (config. A).

6.6 Conclusion

This study proposed a tuning method for removing sensors in a Kalman filter-based sensor

fusion system in which any reasonable subset of sensors yields the same filter dynamics as

with the full set of sensors. The dynamical impact of operating with a subset of sensors

without tuning was demonstrated experimentally, which motivates the need for a systematic

tuning strategy. The proposed method was verified on the EXO-UL8 exoskeleton where the

output of the Kalman filter drove an admittance controller. The tuning method was applied

to two different sensor configurations (configs. B and C), and retained similar performance

as the original full set of sensors (config. A). Experiments performed with the EXO-UL8

quantified actual performance by calculating operator-exoskeleton power exchange and ac-
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tuation stress. Results agree with theoretical expectations and support the feasibility and

utility of the method.

A limitation of the method arises when sensors are located kinematically far from the

joints whose torque are being estimated, such as with joint 1 in configuration B. Qualitative

and quantitative assessments indicate a decrease in operator-exoskeleton transparency due to

inaccuracies introduced by more intermediate joints. This limitation may be further studied

by quantifying transparency as a function of sensor placement, and then implementing the

optimal placement.

The proposed sensor reduction method could be applied to any physical system that

implements a Kalman filter-based sensor fusion strategy, which is pervasive in the field of

robotics. For future work, applying the tuning method to other robotic devices and systems

using heterogeneous sensors would broaden the utility of the method. Specifically in the

context of the EXO-UL8, further work may be done to explore sensor reduction in bimanual

operation, or comparison to other force sensing strategies in the literature.
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CHAPTER 7

Constrained Admittance Control

[1] J. Sun, Y. Foroutani, J. Rosen, “Virtually Constrained Admittance Control using Feed-

back Linearization for Physical Human-Robot Interaction with Rehabilitation Exoskeletons.”

Under review.

7.1 Overview

Robot-assisted rehabilitation focuses in part on path-based assist-as-needed reaching reha-

bilitation, which dynamically adapts the level of robot assistance during physical therapy

to ensure patient progress along a predefined trajectory without fostering overreliance on

the system. Additionally, bimanual exoskeletons have enabled asymmetric rehabilitation

schemes, which aim to promote motor recovery by leveraging the patient’s healthy side to

guide the rehabilitation through interactions with objects in virtual reality that replicate

activities of daily living. Within the context of physical human-robot interaction imple-

mented with admittance control, these tasks can be formulated as constraints on the space

of allowable motions. This study introduces a feedback linearization-inspired time-invariant

controller that enforces these motion constraints by isolating the component of the admit-

tance control dynamics transversal to the constraint, and then implementing a stabilizing

force field. The methodology is applied to two rehabilitation tasks: (1) a path-guided reach-

ing task with restoring force field, and (2) a bimanual interaction with a virtual object.

Each task is then evaluated on one of two drastically different exoskeleton systems, namely:

(1) the V-Rex, a non-anthropomorphic full-body haptic device, and (2) the EXO-UL8, an

anthropomorphic bimanual upper-limb exoskeleton. The two systems exist on opposite ends
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of the task/joint space control: non-redundant/redundant, off-the-shelf (industrial)/custom,

non-anthropomorphic/anthropomorphic spectra. Experimental results validate and support

the methodology as a generalizable approach to enabling constrained admittance control for

rehabilitation robots.

7.2 Introduction

The field of robot-assisted rehabilitation within the context of pHRI has experienced a surge

in attention in recent years [139–142] in areas focused on improving rehabilitation effective-

ness and safety. One such instance is AAN, which adapts the level of assistance provided by

the robot during physical therapy to ensure patient progress without fostering overreliance

on the system. Furthermore, the development of bimanual exoskeletons has enabled asym-

metric rehabilitation schemes, which aim to promote motor control recovery by leveraging

the patient’s healthy side to guide the rehabilitation through VR-based training tasks that

replicate ADLs [143,144]. These VR-based studies have introduced dynamic and motivating

therapy experiences that adapt to individual participants, drawing upon principles of flow

theory [145] and utilizing reinforcement learning [142] to maximize effectiveness. The de-

velopments showcase the importance of pHRI in robot rehabilitation, but also expose new

challenges in control that must be addressed before its widespread adoption can be realized.

In AAN robot-assisted rehabilitation, virtual force fields are often used to assist patients

in following predefined paths, as part of reaching-based rehabilitation. The restoring force

is often generated by virtual spring [146, 147] or spring-damper [148] systems. However,

such systems can generate large forces if they start far from the path, making them poten-

tially dangerous for therapeutic applications. Thus, other systems have been designed to

saturate the restoring force at a desired radius around the desired path using exponential

equations [13, 149, 150]. Velocity-field trajectories, where the path is defined as a velocity

profile and does not directly depend on the current position of the robot, have also been

explored in conjunction with adjustable deadzones and adaptive learning strategies [14,151].
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However, a major limitation of these approaches is that the path’s geometry has to be consid-

ered in the force-restoring system, which complicates their implementation and limits their

generalizability.

As most ADLs are bimanual [144,152], robot-assisted rehabilitation has also delved into

bimanual rehabilitation strategies, primarily facilitated through bimanual exoskeletons [5,

57,139,144,153], and often synergistically integrated with immersive VR environments [140,

141,154]. These training schemes can involve haptic interaction with virtual objects, which is

known to be an important aspect of the motor learning process when used in conjunction with

visual feedback [120,121]. However, a challenge of creating stable interaction is the rendering

of stiff objects, which require large forces to be generated from small displacements [144,155].

Complex geometries also complicate computing interaction forces, which may require convex

approximations. These challenges have spurred the exploration of position-based techniques

[156], or more advanced simulation tools [66,157].

In either application, the nominal virtual dynamics of the rehabilitation robot are re-

stricted to a subset. In the case of reaching rehabilitation, a stabilizing controller is used to

limit the motion along a predefined path. On the other hand, bimanual interaction with a

virtual rigid object restricts the overall space of motions to the subset in which the relative

poses of the hands are constant. Constraining pHRI motion to a subset has been explored

through various methods. Guidance virtual fixtures produce restoring forces to keep the

desired motion along a predefined virtual path [101,158–160]. Similarly, other works utilize

a virtual viscoelastic coupling to attract the robot’s motion to a surface [161]. These tech-

niques do not consider the system dynamics, which can affect the guidance performance.

Transverse feedback linearization, which decouples the system dynamics into tangential and

transversal components [162,163], has found application in path-constrained pHRI [7]. While

the decoupled dynamics can simplify the design of feedback controllers, such techniques may

require local coordinates for both components, which may exist for paths due to their one

dimensional nature, but can be difficult to find in general. Hybrid force-position control

has also been employed to restrict motions to surfaces for sanding robots [164, 165]. How-
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ever, the additional complexity of impedance control at the surface may not be necessary

for applications that are more concerned about spatial accuracy.

In this paper, we present and experimentally validate a novel feedback linearization-

inspired admittance control methodology for enabling virtual holonomically constrained

pHRI admittance control in robot rehabilitation applications. Specifically, we model the

motion constraint as a submanifold formed by the zero level set of a twice-differentiable

function, before applying ideas from feedback linearization to isolate the component of

the nominal virtual dynamics transversal to the submanifold, without requiring local co-

ordinates for the tangential component. A time-invariant controller then stabilizes this

transversal subsystem, while being parameterized by a constraint strength parameter that

governs how stringently the constraint is enforced. The methodology is then experimen-

tally validated on two tasks common in robot-rehabilitation: (1) a path-guided reaching

task with a virtual restoring force field in AAN rehabilitation schemes, performed on the

V-Rex full-body haptic exoskeleton, and (2) a bimanual virtual object interaction found

in VR-based asymmetric bimanual rehabilitation, performed on the EXO-UL8 exoskele-

ton. Demonstrating the applicability of the proposed method on two markedly different

rehabilitation tasks, on contrasting exoskeleton systems - existing on opposite ends of the

task/joint space control, non-redundant/redundant, off-the-shelf (industrial)/custom, non-

anthropomorphic/anthropomorphic spectra - illustrates the method’s generalizability and

versatility as a novel way to enable constrained admittance control in robot rehabilitation

applications.

7.3 Methodology

Our proposed approach requires an admittance control system, whose virtual dynamics rep-

resent the desired unconstrained pHRI motion. The constraint is then modeled as the zero

level set of some smooth constraint function that only depends on the virtual position. We

introduce a parameter γ ∈ [0, 1] ⊂ R, called the constraint strength, which parameterizes how
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stringently the constraint should be enforced; a value of (γ = 0) corresponds to unconstrained

motion, whereas (γ = 1) fully constrains the motion. The max value represents a perfectly

stiff constraint, which is necessary for emulating stable interaction with non-deformable vir-

tual objects - typical in VR-based rehabilitation environments. Any intermediate value of γ

allows for some violation of the constraint set that is also resisted by some restoring force,

representative of typical behavior in path-following AAN schemes. Thus, the desired behav-

iors in different applications of robot-assisted rehabilitation can be selected by varying γ,

which is summarized below:

γ ∈





{0}, Unconstrained (nominal),

(0, 1), Partially constrained,

{1}, Fully constrained.

(7.1)

7.3.1 Virtual Dynamics

Admittance control is commonly used for pHRI, in which human-applied forces, either mea-

sured or estimated, are used to propagate virtual dynamics, which are typically second-order

and represent mass-damper systems [4, 67–69]. The trajectories of these dynamics are then

used as reference signals for the robot, which, assuming its controller is sufficiently perfor-

mant, appears to move like the virtual dynamics. By assuming satisfactory tracking per-

formance, only the virtual dynamics are considered from this point onward. Let θ(t) ∈ Rn

represent the generalized virtual position and τ(t) ∈ Rn be the human-applied force, where

n is the number of DoFs. For each DoF, the dynamics can be parameterized by a virtual

mass mi ∈ R>0 and damping bi ∈ R≥0:

miθ̈i(t) + biθ̇i(t) = ui(t), (7.2)

where i ∈ {1, . . . , n}, u ∈ Rn is the input to the virtual system, and u(t) = τ(t). The

explicit dependency on time notation will be dropped for conciseness. The virtual second-

order dynamics can include more complexity by treating each virtual link as a rigid body,
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resulting in the dynamics:

M(θ)θ̈ + C(θ, θ̇) +N(θ) = u, (7.3)

where M(θ) ∈ Rn×n is a positive-definite inertia matrix, C(θ, θ̇) ∈ Rn represents the Coriolis

and centripetal terms, and N(θ) ∈ Rn is the gravity vector. Note that equation (7.2) can

be written in the form of equation (7.3) by letting M(θ) = diag(m1, . . . ,mn), C(θ, θ̇) =

col(b1θ̇1, . . . , bnθ̇n), and N(θ) = 0n×1, where diag constructs a diagonal matrix from its

arguments and col stacks its arguments vertically. To write the dynamics more concisely,

define x := (θ, θ̇) ∈ R2n to be the state, and rewrite the dynamics as:

ẋ =


 θ̇

−M(θ)−1[C(θ, θ̇) +N(θ)]


+


 0n×n

−M(θ)−1


u,

: = f(x) + g(x)u, (7.4)

and define f : R2n → Rn and g : R2n → Rn×n accordingly. Equation (7.4) represents the

general form of the virtual second-order dynamics, which will be used for all subsequent

sections.

7.3.2 Constraint Set Definition

To represent the constraint, let h : R2n → Rk be a twice continuously differentiable function

in the state, henceforth referred to as the constraint function, and satisfying 1 ≤ k ≤ n and

0k×1 being a regular value. Since only the class of holonomic constraints are considered, let

the constraints be modeled as equality constraints on the state using h(x) = h(x1:n) = 0k×1,

where the 1 : n subscript refers to the first n coordinates of x. Next, define the constraint

set to be the submanifold formed by the zero level set of h:

Ω := {x ∈ R2n | h(x) = 0k×1}. (7.5)

Then, as long as the state can be restricted to Ω, the constraint equation is satisfied.
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7.3.3 Objective Formulation

To formalize the constrained motion requirements, a time-invariant feedback control law

u(x, γ) should be designed to satisfy the following three objectives:

Objective 1 (Transparency): The dynamics should be unconstrained (u = τ) for

trajectories inside the constraint set. Moreover, when γ = 0, this requirement should hold

over the entire domain R2n.

Objective 2 (Attractiveness): Unforced trajectories (τ = 0) with initial conditions

outside the constraint set should move towards it; i.e., infx′∈Ω∥x(t)− x′∥ → 0 as t→∞ for

any γ > 0. However, when γ = 1, even forced trajectories (τ ̸= 0) should be attracted.

Objective 3 (Invariance): When the dynamics are fully constrained (γ = 1), any

trajectory that enters the constraint set should remain there regardless of human-applied

forces, τ ; i.e., if x(0) ∈ Ω, then x(t) ∈ Ω for all t ≥ 0.

7.3.4 Virtual Constraints Controller

This subsection utilizes feedback linearization in order to decouple the virtual dynamics

into components that are tangential and transversal to the constraint manifold. Then, a

stabilizing control law is implemented on the transversal component, while human-applied

forces are projected onto the tangential component. To this end, define a virtual output

y = h(x) so that stabilizing Ω becomes output regulation of y. Then, the dynamics of y can

be determined by differentiating it with respect to time:

y = h(x), (7.6)

ẏ =
∂h

∂x
ẋ =

[
∂h
∂θ

0k×n

]
ẋ = Lf h(x), (7.7)

ÿ = L2
f h(x) + Lg Lf h(x)u, (7.8)

where Lf and Lg are the Lie operators along vector fields f and g, respectively. The dynamics

of y result in a vector relative degree of (2, . . . , 2) due to the constraints being holonomic and

the virtual dynamics of equation (7.4) being second-order, allowing the system with virtual
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output y to be input-output feedback linearizable [7,162,163,166]. It is also assumed that the

choice of h results in Lg Lf h(x) ∈ Rk×n having linearly independent rows on Ωc = R2n \ Ω,
where the set is assumed to be nonempty. Then, for each i ∈ {1, . . . , k}, define the coordinate
transformation:

ηi(x) :=


 hi(x)

Lf hi(x)


 , (7.9)

so that its dynamics are linear for some virtual control input, vi = L2
f hi(x) + Lg Lf hi(x)u:

η̇i =


0 1

0 0


 ηi +


0
1


 vi. (7.10)

Each linear system ηi represents the dynamics of a component of y, so y can be regulated

by stabilizing each ηi subsystem with a suitable state feedback:

vi = −kiηi, (7.11)

for some ki ≻ 01×2, where ≻ refers to element-wise inequality. Although a linear controller

suffices, any controller vi(ηi) that stabilizes the origin of equation (7.10) will stabilize Ω.

Note that η := col(η1, . . . , ηk) : R2n → R2k is not a diffeomorphism unless k = n. When

k ̸= n, motion is allowed on the n − k dimensional space Ω. To determine the input u to

the admittance controller, the virtual input v := col(v1, . . . , vk) that stabilizes Ω needs to be

transformed back into x-coordinates.

When γ = 1, the human-applied forces τ should not interfere with the stability of Ω,

so its component in the subspace spanned by the rows of Lg Lf h needs to be replaced by

v := col(vi, . . . , vk). The remaining component of τ respects the constraint and can be

computed by projecting τ into the space tangential to the constraint manifold, which is the

nullspace of Lg Lf h. Then, by using the Moore-Penrose inverse of Lg Lf h, the control input

is:

u = τ − γ(Lg Lf h)
†(Lg Lf h)τ

+ sgn(γ)(Lg Lf h)
†(v − L2

f h), (7.12)
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where sgn is the signum function defined as:

sgn(x) :=





−1, if x ≤ 0,

0, if x = 0,

1, if x ≥ 0.

(7.13)

The control law consists of three components:

1. τ , the nominal human-applied forces,

2. γ(Lg Lf h)
†(Lg Lf h)τ , the γ-scaled component of τ in the subspace transversal to Ω,

3. sgn(γ)(Lg Lf h)
†(v − L2

f h), the virtual transversal stabilizing controller, transformed

to x-coordinates.

The inclusion of γ in two of the terms allows for adjusting the motion constraint behavior

using a single parameter. The proposed control law leads to the following theorem.

Theorem 1. The control law of equation (7.12) satisfies the three main objectives: (1)

transparency, (2) attractiveness, and (3) invariance.

Proof of Theorem 1. To satisfy the first objective, consider a trajectory x(t) ∈ Ω. Then,

since h(x) is identically zero for this trajectory, the matrix Lg Lf h(x) and its Moore-Penrose

pseudoinverse are also zero, of dimension k × n and n× k, respectively. Thus, substituting

these matrices into the control law of equation (7.12) reduces it to u = τ , which is indepen-

dent of γ, as required. Furthermore, when γ = 0, the control law also reduces to u = τ .

These two cases together satisfy Objective 1.

To show that the last two objectives can by satisfied using the control law of equation

(7.12), consider the error dynamics away from Ω. Let the error e ∈ Rn be defined as
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e := h(x), so that its closed-loop dynamics are:

ė = Lf h, (7.14)

ë = L2
f h+ (Lg Lf h)τ

− γ(Lg Lf h)(Lg Lf h)
†(Lg Lf h)τ

+ sgn(γ)(Lg Lf h)(Lg Lf h)
†(v − L2

f h), (7.15)

which substitutes equation (7.12) into the virtual dynamics of equation (7.4). By the assump-

tion that Lg Lf h has linearly independent rows, and is rank k, (Lg Lf h)(Lg Lf h)
† = Ik×k.

Thus, equation (7.15) reduces to:

ë = L2
f h+ (1− γ)(Lg Lf h)τ + sgn(γ)(v − L2

f h). (7.16)

Considering the last two objectives, there are two cases of interest: (1) γ > 0 and the

dynamics are unforced (τ = 0), and (2) γ = 1 and τ can be any value. The first and second

case correspond to partially and fully constraining the dynamics to Ω, respectively. However,

in either case, equation (7.16) simplifies to:

ë = v. (7.17)

By defining ϵ := col(e1, ė1, . . . , ek, ėk), the error dynamics become:

ϵ̇ =


Ik×k ⊗


0 1

0 0




 ϵ+


Ik×k ⊗


0
1




 v, (7.18)

where ⊗ is the Kronecker product. Then, substitute in the virtual control law of equation

(7.11) by observing that ϵ = η. The closed-loop error dynamics of equation (7.18) then

becomes block-diagonal:

ϵ̇ = diag




 0 1

−k1,1 −k1,2


 , . . . ,


 0 1

−kk,1 −kk,2




 ϵ, (7.19)

where the matrix is formed as the block diagonal of all the 2×2 blocks. Due to its structure,

its eigenvalues are the union of the eigenvalues of each 2 × 2 block. By the Routh-Hurwitz
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criteria, each block’s eigenvalues are in the open left half-plane if ki ≻ 01×2 for all i ∈
{1, . . . , k}. Thus, the error dynamics can be stabilized by an appropriate choice of gains ki.

It is worth noting that although the η-dynamics are linear, the choice of a virtual transversal

controller v does not have to be linear. The feedback linearization just allowed the system

dynamics of equation (7.4) to be decoupled into transversal and tangential subsystems, so

the choice of a stabilizing transversal controller is flexible. In any case, the stability of ϵ

holds everywhere in the domain, which satisfies Objective 2 and Objective 3. ■

The implementation of the virtual constraints controller within the admittance controller

is shown in Fig. 7.1.
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Figure 7.1: (Left) The V-Rex is a full-body haptic system consisting of five robotic serial

manipulators interacting with the operator in task-space through the hands, feet, and a

harness attached at the pelvis. (Right) The EXO-UL8 is a bimanual upper-limb exoskeleton

interacting with the operator in joint-space through three force/torque sensors per arm.

(Bottom) The admittance controller consists of the virtual constraints controller of equation

(7.12) and the virtual dynamics of equation (7.4). From the nominal human-applied force, τ ,

the virtual constraints control law replaces a γ-scaled component in the transversal direction

with the output of a transversal stabilizing controller. The value of γ determines how strongly

the operator can push back against constraint. The same admittance controller structure is

used in both the V-Rex and EXO-UL8 exoskeletons, albeit with different virtual dynamics

and constraint functions.
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7.4 Experimental Setup

In order to demonstrate the versatility of the proposed method, two experiments are con-

ducted: a path-based reaching task with restoring force field, and a bimanual manipulation

of a virtual rigid object, each on a different exoskeleton system. A visual depiction of the

experiments is shown in Fig. 7.2. For each experiment, the pertinent exoskeleton system is

first introduced in the setup, and then the constraint associated with the task is modeled.

Figure 7.2: The two robot rehabilitation tasks in this study are: (A) a unilateral reaching

task constrained to an elliptical path by an adjustable restoring force field, typically found in

AAN-based reaching rehabilitation, and (B) a bimanual manipulation task of a virtual rigid

object, commonly found in VR-based robot rehabilitation. For each task, the submanifold

of allowable motions is modeled as a smooth function’s level set, and then used by the

virtual constraints controller to restrict nominal motions to the submanifold. The tasks are

experimentally verified on the V-Rex full-body haptic exoskeleton and the EXO-UL8 upper-

limb bimanual exoskeleton.
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7.4.1 Path-Based Assistance-As-Needed

7.4.1.1 V-Rex Full-Body Haptic Exoskeleton

The Virtual Reality Exoskeleton (V-Rex) is a non-anthropomorphic full-body haptic system

consisting of five Kawasaki industrial serial manipulators. Two RS-007L manipulators in-

teract with the operator through the hands, two BX-100S manipulators are connected with

safety breakaways at the feet, and one CX-210L provides gravity offloading through a harness

attached at the pelvis. Each of the five manipulators has six powered revolute DoFs, is inde-

pendently controlled in task-space, and is also equipped with a six-DoF force/torque sensor at

the end effector. On each iteration of the control loop, for each manipulator, the force/torque

measurement at the end effector is used to propagate a virtual three-dimensional model of

the form in equation (7.2). The virtual state is then transformed into joint-space using an

inverse kinematics solver, before serving as reference signals for the embedded Kawasaki arm

controller. Fig. 7.1 shows the V-Rex and a block diagram of its control.

7.4.1.2 Elliptical Path Constraint with Restoring Force Field

A path constraint can be implemented with varying levels of constraint strength, ranging

from free motion (γ = 0) to fully constrained (γ = 1). To illustrate how γ affects the interac-

tion forces and corresponding trajectories during path-based reaching tasks, a constraint set

Ω in the form of an ellipse is implemented, while a different ellipse oriented 90◦ from the first

is used as a target trajectory. Both ellipses are situated in the XY plane, parallel with the

ground. The operator attempts to move along the target trajectory, even though the virtual

constraints controller is pushing them onto the constraint set. Although the interaction is

through the hand, the setup serves to demonstrate the methodology and can be modified

in future experiments to simulate human gait. Equation (7.20) shows the elliptical path

constraint, with x1c and x2c defined as the ellipse center, and the minor and major axes,
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a = 0.15m and b = 0.2m, chosen to fit within the V-Rex’s workspace:

h(x) =


(x1 − x1c)

2/a2 + (x2 − x2c)
2/b2 − 1

x3


 . (7.20)

The target ellipse has parameters a = 0.2m and b = 0.15m and is drawn on a table below

the manipulator, serving as a visual aid for the operator, as show in Fig. 7.3. Constraint

strengths of γ ∈ {0.0, 0.3, 0.7, 1.0} are used for the trials.

Figure 7.3: The AAN path experiment uses the upper-left arm of the V-Rex constrained

to an ellipse (red) with varying constraint strengths, parameterized by γ. The operator

attempts to follow the target path (green), which is also an ellipse but rotated 90◦ about the

z-axis in order to illustrate the effect of γ. A laser pointer mounted at the end effector helps

to visualize the 2D -projection of the motion onto the plane containing the two ellipses.

The path constraint is enforced through a force field generated by a virtual spring damper

system, similar to existing work [148]. This choice of controller does not limit the system as
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any other stabilizing controller can be used, depending on the desired performance. Further-

more, the experiment aims to demonstrate the main advantage, which is that the transversal

component of the constraint is isolated, allowing stabilizing force fields to be developed in-

dependently of the path’s geometry.

7.4.2 Bimanual Interaction with Virtual Object

7.4.2.1 EXO-UL8 Bimanual Upper-Limb Exoskeleton

The EXO-UL8 is a custom bimanual powered redundant upper-limb anthropomorphic ex-

oskeleton consisting of two arms, each with seven revolute DoFs [4–6, 57]. Each of its two

arms is equipped with three six-DoFs force/torque sensors located at the upper arm, lower

arm, and wrist. The measured force/torque signals are first fused together using the method

from [5], before propagating the virtual dynamics of the admittance control in joint space,

which is 14-dimensional and consists of 14 independent second-order systems of the form

of equation (7.2), in order to allow each joint to have its own virtual inertia and damping

parameters. The combined virtual state is then used as a reference signal that a computed

torque controller [40] tracks. Fig. 7.1 shows the system and a block diagram of its control

architecture.

7.4.2.2 Relative Pose Constraint

Bimanual interaction with virtual rigid objects involves constraining the overall 14-dimensional

space of motions to the subset in which the relative pose between the end effectors is con-

stant. To formulate this constraint, let Tl, Tr ∈ SE(3) be the homogeneous transformation

from the base (inertial) frame to the left and right end effectors, respectively. Using the

product-of-exponentials formulation, each transformation can be written as a map of the

joint angles:

Tl(θ
l) =

(
7∏

i=1

eξ̂
l
iθ

l
i

)
Tl(0), (7.21)
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where {ξli}7i=1 are the twists in local coordinates associated with each of the left joints, and

Tl(0) is the transformation in the default configuration. Similarly for the right arm, Tr is a

function of θr, and parameterized by the right twists {ξri }7i=1. Then, the relative transfor-

mation between the end effectors is Trl(θ
r, θl) = T−1

r (θr)Tl(θ
l). Using local coordinates for

SE(3), and defining θ := (θr, θl), the constraint function is:

h(θ, θ̇) = [p(θ), α(θ)]− (p0, α0), (7.22)

where (p(·), α(·)) : R14 → R3 ×R3 are local coordinates for Trl(θ), and (p0, α0) ∈ R3 ×R3 is

the desired constant relative pose between the end effectors. The coordinates of the desired

relative pose, (p0, α0), is measured when contact is first made with the virtual object. Note

that the choice of local coordinates on SE(3) does not matter as long as they exist over

the range of the desired motion. In our experiments, canonical coordinates are used for

position and ZYX Tait-Bryan angles for orientation. Specifically, given matrix coordinates

for a relative pose, Trl ∈ SE(3):

Trl(θ) =


R(θ) p(θ)

0 1


 , (7.23)

α(θ) =




sin−1(−R21(θ)/
√
1−R31(θ)2)

sin−1(−R31(θ))

sin−1(−R32(θ)/
√
1−R31(θ)2)


 , (7.24)

where the coordinate chart is defined on the subset of SE(3) in which R31 ̸= ±1.

The use of a high-dimensional motion set with a constraint manifold Ω = h−1(0) for

which local coordinates on Ω are hard to find aims to demonstrate the generalizability of the

proposed feedback linearization-based approach.

7.4.3 Software Implementation and Numerical Considerations

While computing the gradient and Hessians for h in the elliptical path constraint of equation

(7.20) may be tractable, the same quantities for the relative pose constraint of equation (7.22)
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require significantly more work. To ensure correctness and minimize the impact of numerical

errors, symbolic tools, such as SymForce [167] or Sympy [65], can symbolically differentiate

the quantities and generate corresponding C++ code that can be optimized and evaluated

quickly online.

Note that when x ∈ Ω, h(x) = 0, so the matrix Lg Lf h(x) and its Moore-Penrose inverse

are also zero, of dimension k × n and n × k, respectively. In practice, when floating-point

arithmetic is used, care should be taken to ensure that numerically small values in Lg Lf h(x)

are treated as zero. Specifically, each row of Lg Lf h(x) should first be checked for whether

it is numerically non-zero; call the set of row indices NZ(x) ⊆ {1, . . . , k}. Next, form the

matrix L = row(r1, . . . , rk), where row ri is defined as:

ri :=




row i of Lg Lf h(x), if i ∈ NZ(x),

01×n, otherwise.

(7.25)

Then, any instance of the vector (Lg Lf h(x))
†w, where w ∈ Rk, such as in the case of

equation (7.12), can be written as a linear combination of non-zero columns of L†:

(Lg Lf h(x))
†w ≈

∑

i∈NZ(x)

(L†)iwi, (7.26)

where (L†)i is the ith column of L†.

7.5 Results

7.5.1 Path-Based Assistance-As-Needed

The path-based reaching task assesses the controller with four constraint strengths, ranging

from free motion (γ = 0) to fully constrained (γ = 1). The operator starts at the left-most

edge of the target ellipse (-200mm, -450mm), and the virtual constraints controller is acti-

vated. Fig. 7.4 shows the transversal states, defined in equation (7.20), of the manipulator’s

virtual dynamics as a function of time. In the fully constrained case, the states converge to

zero, regardless of the human-applied forces as expected. In the semi-constrained trials, the
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Figure 7.4: The transversal states of the path-constrained reaching experiment, and the

corresponding human-applied forces, are shown as timeseries for two different values of con-

straint strength: γ = 0.7 (left), and γ = 1.0 (right). Human-applied forces together with

the output of the virtual constraints controller influence the virtual position when γ = 0.7,

allowing the operator deviate from the constraint while feeling a restoring force. However,

when γ = 1.0, the virtual position stabilizes independently of any human-applied force.

human-applied forces can resist the controller and prevent the state from reaching zero, as

shown in the left column of Fig. 7.4 and the middle subfigures of Fig. 7.5. In these cases,

the operator haptically experiences the restoring force field generated by the controller.

Fig. 7.5 plots the motion trajectories, with either the transversal component of the

human-applied forces or the virtual constraint controller’s output overlaid. During free

motion (γ = 0), there are no constraint-stabilizing forces. In the partially constrained

cases (γ = 0.3, γ = 0.7), the operator can guide the robot along the target path; however,

the virtual constraints controller partially resists the motion, resulting in transversal forces
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Figure 7.5: The manipulator’s trajectories (blue line) and relevant transversal forces are

plotted for each constraint strength parameter (γ) in the path-based reaching rehabilitation

task. The operator attempts to follow a target trajectory (green line), which is oriented 90◦

from the constraint path (red line) to demonstrate the impact of γ. In the unconstrained

trial (γ = 0), no restoring forces are present, as expected. When the motion is partially

constrained (0 < γ < 1), the restoring force field (red arrows) generated by the virtual

constraints controller push the motion towards the constraint set. In the fully constrained

(γ = 1), the manipulator’s trajectory aligns with the constraint set, as expected, despite

human-applied forces (yellow arrows) pushing towards the target path. Each trial took

approximately 30 seconds to complete.

pushing towards the constraint. In the fully constrained case (γ = 1), the robot’s trajectories

remain on the constraint path, despite the human-applied forces pushing towards the target

path.

139



Figure 7.6: Subimages show keyframes of the bimanual interaction with a virtual object.

The object is not explicitly defined by its geometry, but rather as a constraint on the total

joint space in which the relative pose between the hands is fixed. During keyframe (1), the

hands are unconstrained (γ = 0). In keyframe (2), the constraint is activated by setting

γ = 1. Subsequent motions (2)-(4) show that the virtual rigid coupling between the hands

gives the illusion of interacting with a virtual rigid object that can be freely manipulated.

7.5.2 Bimanual Interaction with Virtual Object

The bimanual interaction starts with the operator wearing the EXO-UL8 and freely moving

each arm, as shown in subfigure 1 of Fig. 7.6. Once the operator’s hands are in a desired

configuration, e.g., around the boundary of some virtual object, the current relative pose

between the hands is measured and stored as (p0, α0), which is used in the constraint func-

tion of equation (7.22). The virtual constraints controller is then activated by setting the

constraint strength γ = 1, as shown on at the left gray boundary in Fig. 7.7. Subsequent

motion within the constraint manifold physically appear as the hands being rigidly coupled,

as seen in subfigures 2− 4 of Fig. 7.6, giving the illusion of interacting with a virtual rigid

object.

Furthermore, during this time the component of the human interaction force that is

transversal to the constraint manifold is completely rejected, as shown by the human forces

in Fig. 7.7. The magnitude and direction of these transversal forces do not impact the

constraint controller’s tracking performance at all, which is expected from setting γ = 1.

The remaining tangential component of the interaction force component allows the virtual
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object (a relative pose between the end effectors) to move only on the 14 − 6 dimensional

joint space constraint manifold, as illustrated by subfigures 2 − 4 of Fig. 7.6. Once the

interaction is complete, the constraints are deactivated by setting γ = 0 at the right gray

boundary in Fig. 7.7, and the hands can move independently again.

Figure 7.7: Subplots show the six components of the transversal state of the relative pose

between the EXO-UL8’s end effectors. The gray regions show unconstrained motion (γ = 0),

during which the constraint values are not set (dashed red lines), whereas the region in the

middle is fully constrained (γ = 1). Since the desired pose is snapshot at the start of

the constrained motion (left edge of gray region), the virtual state (blue) is equal to the

constraint value (red) at this point in time. During the constrained motion, the virtual

constraints controller tracks the constraint while rejecting any human-applied forces in the

transversal direction (orange) that try to move the virtual state away from the constraint

manifold. Note that the spikes in the virtual state are explained in Fig. 7.8.
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7.6 Discussion

7.6.1 Path-Based Assistance-As-Needed

The experiment utilized a virtual spring damper system to generate the corrective force-field

transversal to the constraint path in order to match existing experiments in the literature.

However, the proposed method differs in that the force field is completely agnostic of the

constraint path’s geometry, and can be generated by any stabilizing controller. Furthermore,

while the experiment utilizes a closed elliptical path for demonstrating the path constraint,

which is commonly found in AAN rehabilitation tasks, the proposed method is not limited

to a specific path or robotic system. Unlike many existing control schemes for path following

that require either a parameterized path or one comprised of timed waypoints, this method

is time-invariant and can be applied to any valid path without requiring a parameterization

for the submanifold, and any admittance control rehabilitation robot utilizing second-order

virtual dynamics.

7.6.2 Bimanual Interaction with Virtual Object

In the Z-position and α2-orientation subplots of Fig. 7.7, the virtual state appears to deviate

from the constraint manifold at 13s, 22s, and 30s. This behavior is not a limitation of the

virtual constraints controller, but rather due to the hard joint limits of the EXO-UL8. At

these instances, joint 6 of the right arm reaches its minimum allowed value of −30◦ as shown
in Fig. 7.8 Since it cannot go lower, the corresponding virtual states h cannot maintain its

set points of h3 = −10 cm and h5 = −40◦.
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Figure 7.8: The instances (pale red) during which the virtual Z-position (blue) deviates

from the constraint set (around -10cm) in the bottom left subfigure of Fig. 7.7 is caused

by joint 6 (wrist flexion/extension) of the right arm (green) on the EXO-UL8 reaching its

lower mechanical limit (dashed black line). Since the joint cannot physically go lower, the

virtual position cannot maintain its set point. A similar case is evident in the α2-orientation

component of the virtual state.

The virtual constraints controller enables bimanual interaction with virtual rigid objects

by constraining the relative pose between the operator’s hands. The approach is agnostic

to the geometry of the virtual object when constraining the motion, which has the benefit

of being generalizable and places no restrictions on the shape of the object, such as con-

vexity. The only place in which the object’s geometry would be used is in detecting initial

contact with it in order to record (p0, α0). However, detecting contact is much simpler than

constraining dynamics to respect their geometries, which is typically done in force-based

approaches. The proposed method also does not suffer from instability of contacting high

stiffness objects, making it appropriate for virtual interactions in VR-based rehabilitation

applications.
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The use of second-order virtual dynamics in the admittance control attempts to sim-

plify pHRI by leveraging our intuition of how rigid bodies move. In the virtual constraints

controller, this choice manifests as the transversal output having vector relative degree of 2

due to the virtual constraints being holonomic. However, the method can extend to non-

holonomic constraints with virtual dynamics of any order by following the same approach,

as long as the virtual outputs remain input-output feedback linearizable.

7.7 Conclusion

This study introduces a novel feedback linearization-inspired control methodology for con-

straining admittance control to virtual motion subsets in exoskeleton-based rehabilitation

applications. The study explores two specific applications: a path-guided reaching task

commonly encountered in AAN rehabilitation, and bimanual interaction with a virtual ob-

ject, often used in VR-based rehabilitation. In the former, the proposed method confines

motion to an elliptical path and uses a virtual spring-damper restoring force field. Exper-

iments explore the impact of adjusting the constraint strength parameter, which regulates

the strictness of the motion constraint, serving as an analogue for the force field strength.

In the latter experiment, the method rigidly constrains the end effectors of a bimanual ex-

oskeleton in its 14-dimensional bimanual joint space in order to simulate interaction with a

virtual object, and demonstrate a high-dimensional application for which local coordinates

on the constraint manifold cannot easily be found. The two experiments illustrate the vir-

tual constraint controller’s robustness against operator-applied forces that can violate the

constraint, while being transparent to forces that propagate motion within the constraint.

The experiments exemplify markedly different applications within exoskeleton-based reha-

bilitation, showcasing the generalizability of the proposed virtually constrained admittance

control methodology for constrained pHRI.
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CHAPTER 8

Conclusion

This dissertation explored various challenges concerning pHRI with exoskeleton robots, in-

cluding safety for HITL systems, admittance control for high transparency interactions,

human input estimation, and constrained control for robot rehabilitation and VR-based

applications. These challenges were explored through the following contributions:

1. A reference level safety approach for pHRI with serial link manipulators:

Chapter 4 focused on the development of a safety approach that defines virtual soft and

hard bounding regions for the admittance controller’s virtual dynamics. A joint space

collision avoidance algorithm is also presented, which ensures that all points along the

manipulator are constrained from moving too closely to other bodies in order to avoid

potential collisions. The entire methodology is also implemented and distributed as an

open-source C++ library: https://github.com/jianwei-sun/gtfo.

2. A study of rate-limiting as a potential mitigation to delay-induced insta-

bility: Chapter 5 investigated the phenomenon of delay-induced instability, in which

a HITL system can become unstable in the presence of time-delay, even though both

the human operator and exoskeleton are stable systems by themselves. The study

analyzed a rate-limiting filter placed after the human-applied forces and provided the-

oretical bounds on how the filter’s rate-limiting threshold should be set. Experimental

results verified the filter’s performance in suppressing instability and allowing recovery.
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3. A method for reducing the number of force sensors while maintaining trans-

parency: Chapter 6 explored a method for utilizing the Kalman filter-based sensor

fusion method using a strict subset of sensors, while maintaining comparable trans-

parency. The methodology is verified with force sensing on the EXO-UL8, showing

that one of the three sensors per arm can be removed, improving wearability of the

exoskeleton.

4. A feedback linearization-inspired method for enabling holonomically con-

strained admittance control: Chapter 7 proposed a time-invariant admittance

control methodology for enforcing virtual constraints that are modeled as level sets

of smooth functions. The strength of the enforcement can be tuned via a single pa-

rameter. The utility of the approach and tuning is experimentally demonstrated on

two important pHRI applications: path-following within AAN rehabilitation using the

V-Rex, and bimanual interaction with virtual objects in VR using the EXO-UL8.

The field of pHRI is a large and multifaceted domain that gives rise to various chal-

lenges across robotics, control, and human factors. As robotics become more widespread

and commonplace in society, it will undoubtedly overlap with many existing fields that are

traditionally human-dominated, such as in robotic rehabilitation, robot surgery, warehouse

automation, logistics, and exploration, to name a few. This growth has created many new

challenges at the intersection of humans and robots. This dissertation explored and addressed

some of these challenges in the aspects of safety, estimation, and control. However, this work

is only one step toward realizing the maximum potential of human-robot interaction.
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Terrel, v. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz,
“Sympy: symbolic computing in python,” PeerJ Computer Science, vol. 3, p. e103,
Jan. 2017.

[66] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based con-
trol,” in 2012 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 5026–5033,
2012.

[67] F. Dimeas and N. Aspragathos, “Online stability in human-robot cooperation with
admittance control,” IEEE Transactions on Haptics, vol. 9, no. 2, pp. 267–278, 2016.

[68] F. Ferraguti, C. Talignani Landi, L. Sabattini, M. Bonfè, C. Fantuzzi, and C. Secchi,
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