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ABSTRACT OF THE DISSERTATION 
 

High Dimensional Descriptors of Subcortical Shape as a Basis for Biomarker Discovery in HIV 

and Major Depressive Disorder 

 

by 

 

Benjamin Wade 

 

Doctor of Philosophy in Bioengineering 

University of California, Los Angeles, 2016 

Professor Daniel B. Ennis, Co-Chair 

Professor Paul Thompson, Co-Chair 

 
 

Neurological disorders are commonly characterized by disease-specific profiles of 

neurodegeneration that can be quantified using structural magnetic resonance imaging (MRI). 

Historically, most structural MRI-based studies of disease-related neurodegeneration have relied 

on volumetric descriptions of affected brain regions. However, reporting a single scalar 

summarization of a brain region’s morphometry ignores a far richer source of information 

contained in local descriptions of the structure’s morphometry. As a result, anatomical profiles of 

numerous brain disorders spanning various stages of onset, progression, recovery and their 

interplay with both cognitive and clinical factors remain poorly described. A promising approach 

to capturing local structural variations is a family of modeling techniques collectively referred to 
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as surface-based shape analyses. In the set of studies reported in this dissertation we aimed to 

identify shape-based biomarkers for the progression of HIV-associated neurodegeneration and 

prognostic biomarkers for patients with major depression likely to experience symptomatic relief 

following electroconvulsive therapy. Our studies’ conclusions indicate that the incorporation of 

shape measures are important both for descriptive and predictive modeling frameworks, beyond 

classical volumetric descriptors. Specifically, we report shape-based patterns of abnormal 

neurodegeneration among HIV+ pediatric and geriatric cohorts in regions of the basal ganglia. 

We further leveraged subcortical shape measures in a machine-learning framework to improve 

the prediction of clinical response to electroconvulsive therapy in patients suffering from major 

depressive disorder. Our findings suggest that including these descriptors will enhance 

descriptive models of neurodegeneration and may inform personalized treatment strategies.  

 
 

 

 

 

 

 

 

 

 

 

 

 



	 iv	

 

The dissertation of Benjamin Wade is approved. 

 

Katherine L. Narr 

Marvin Bergsneider 

Ian Cook 

Thomas R. Belin 

Paul Thompson, Committee Co-Chair 

Daniel B. Ennis, Committee Co-Chair 

 

 

 

University of California, Los Angeles 

2016 

 

 

 

 

 

 

 

 

 



	 v	

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

In dedication to my mother and the memory of my father  
who were a constant support along my path.   



	 vi	

Table of Contents 
ABSTRACT	OF	THE	DISSERTATION	..................................................................................................................	II	

BIOGRAPHICAL	SKETCH	.....................................................................................................................................	IX	

CHAPTER	1:	INTRODUCTION	............................................................................................................................	1	
BACKGROUND AND MOTIVATION	......................................................................................................................................	1	

Background on neurological manifestations of HIV	................................................................................................	2	
Background on major depressive disorder and electroconvulsive therapy	.....................................................	4	

ORGANIZATION AND OVERVIEW	........................................................................................................................................	6	
REFERENCES	.............................................................................................................................................................................	9	

CHAPTER	2:	MACHINE	LEARNING	ON	HIGH	DIMENSIONAL	SHAPE	DATA	FROM	SUBCORTICAL	
BRAIN	SURFACES:	A	COMPARISON	OF	FEATURE	SELECTION	AND	CLASSIFICATION	METHODS
	.................................................................................................................................................................................	17	

INTRODUCTION	.....................................................................................................................................................................	17	
METHODS	................................................................................................................................................................................	21	

Subjects	...................................................................................................................................................................................	21	
High dimensional shape features	..................................................................................................................................	21	
Feature selection	.................................................................................................................................................................	22	
Classifiers	...............................................................................................................................................................................	25	
Parameterization of feature selection methods	.......................................................................................................	26	
Influence of sample size	....................................................................................................................................................	27	

RESULTS	..................................................................................................................................................................................	28	
Feature selection parameters	.........................................................................................................................................	28	
Feature selection subsets	.................................................................................................................................................	28	
Classification results	..........................................................................................................................................................	29	

DISCUSSION	...........................................................................................................................................................................	32	
ACKNOWLEDGEMENTS	......................................................................................................................................................	36	
REFERENCES	..........................................................................................................................................................................	37	
TABLES	....................................................................................................................................................................................	41	
FIGURES	..................................................................................................................................................................................	42	
SUPPLEMENTARY FIGURES	...............................................................................................................................................	46	

CHAPTER	3:	MAPPING	ABNORMAL	SUBCORTICAL	BRAIN	MORPHOMETRY	IN	AN	ELDERLY	
HIV+	COHORT	.....................................................................................................................................................	50	

INTRODUCTION	.....................................................................................................................................................................	51	
METHODS	................................................................................................................................................................................	53	

Subjects	...................................................................................................................................................................................	53	
Image acquisition	................................................................................................................................................................	54	
Morphological descriptors	..............................................................................................................................................	54	
Statistical methods	..............................................................................................................................................................	55	
Random forest classification	...........................................................................................................................................	56	

RESULTS	..................................................................................................................................................................................	58	
HIV status	...............................................................................................................................................................................	58	
Nadir CD4+ counts	............................................................................................................................................................	59	
Viral load	................................................................................................................................................................................	59	
Time since diagnosis	..........................................................................................................................................................	59	
Drug abuse history	.............................................................................................................................................................	60	
HIV-associated neurocognitive disorder	...................................................................................................................	60	



	 vii	

Cognitive measures	............................................................................................................................................................	60	
HIV status classification	...................................................................................................................................................	60	

DISCUSSION	...........................................................................................................................................................................	61	
CONCLUSIONS	.......................................................................................................................................................................	65	
ACKNOWLEDGEMENTS	......................................................................................................................................................	66	
CONFLICT OF INTEREST	......................................................................................................................................................	66	
REFERENCES	..........................................................................................................................................................................	67	
TABLES	....................................................................................................................................................................................	71	
FIGURES	..................................................................................................................................................................................	72	

CHAPTER	4:	MAPPING	LONGITUDINAL	SUBCORTICAL	BRAIN	MORPHOMETRY	IN	CHILDREN	
WITH	HIV	.............................................................................................................................................................	79	

INTRODUCTION	.....................................................................................................................................................................	80	
METHODS	................................................................................................................................................................................	84	

Participants	...........................................................................................................................................................................	84	
Image acquisition	................................................................................................................................................................	85	
Morphological descriptors	..............................................................................................................................................	85	
Statistical methods	..............................................................................................................................................................	87	

RESULTS	..................................................................................................................................................................................	88	
Demographics	.......................................................................................................................................................................	88	
HIV status	...............................................................................................................................................................................	89	
cART status	............................................................................................................................................................................	91	
HIV RNA detectability	.......................................................................................................................................................	91	
CD4 count	..............................................................................................................................................................................	92	

DISCUSSION	...........................................................................................................................................................................	93	
ACKNOWLEDGEMENTS	...................................................................................................................................................	102	
REFERENCES	.......................................................................................................................................................................	104	
TABLES	.................................................................................................................................................................................	112	
FIGURES	...............................................................................................................................................................................	113	

CHAPTER	5:	EFFECT	OF	ELECTROCONVULSIVE	THERAPY	ON	STRIATAL	MORPHOMETRY	IN	
MAJOR	DEPRESSIVE	DISORDER	..................................................................................................................	118	

INTRODUCTION	..................................................................................................................................................................	119	
MATERIALS AND METHODS	..........................................................................................................................................	121	

Subjects	................................................................................................................................................................................	121	
ECT treatment	...................................................................................................................................................................	123	
Mood ratings	......................................................................................................................................................................	123	
Image preprocessing and segmentation	..................................................................................................................	124	
Surface-based analysis	...................................................................................................................................................	124	

STATISTICAL ANALYSIS	.................................................................................................................................................	125	
RESULTS	...............................................................................................................................................................................	127	

Demographic and clinical effects	..............................................................................................................................	127	
Cross-sectional effects of diagnosis	..........................................................................................................................	127	
Longitudinal effects of ECT	..........................................................................................................................................	127	
Effects of morphometric change with clinical response	....................................................................................	128	
Baseline predictive effects	............................................................................................................................................	128	
Post-hoc analyses of diagnostic category and ECT lead placement	............................................................	129	

DISCUSSION	........................................................................................................................................................................	129	
ACKNOWLEDGEMENTS	...................................................................................................................................................	134	
REFERENCES	.......................................................................................................................................................................	135	



	 viii	

TABLES	.................................................................................................................................................................................	140	
FIGURES	...............................................................................................................................................................................	142	

CHAPTER	6:	DATA-DRIVEN	CLUSTER	SELECTION	FOR	SUBCORTICAL	SHAPE	AND	CORTICAL	
THICKNESS	PREDICT	RECOVERY	FROM	DEPRESSIVE	SYMPTOMS	.................................................	147	

INTRODUCTION	..................................................................................................................................................................	147	
MATERIALS AND METHODS	...........................................................................................................................................	149	

Participants	........................................................................................................................................................................	149	
Image acquisition and segmentation	........................................................................................................................	149	
Candidate features	...........................................................................................................................................................	150	
Data driven subcortical shape cluster selection	..................................................................................................	150	
Random forest classifier	................................................................................................................................................	151	
Nested cross-validation and feature selection	......................................................................................................	152	

RESULTS	...............................................................................................................................................................................	154	
Model performance	.........................................................................................................................................................	154	
Associations between morphometry and clinical outcome	..............................................................................	154	

DISCUSSION	........................................................................................................................................................................	155	
ACKNOWLEDGEMENTS	...................................................................................................................................................	157	
REFERENCES	.......................................................................................................................................................................	158	
FIGURES	...............................................................................................................................................................................	161	

CHAPTER	7:	ONGOING	WORK	IN	THE	PREDICTION	OF	CLINICAL	RELAPSE	FOLLOWING	
ELECTROCONVULSIVE	THERAPY	...............................................................................................................	163	

INTRODUCTION	..................................................................................................................................................................	163	
METHODS	.............................................................................................................................................................................	165	

Participants and image processing	...........................................................................................................................	165	
Nested cross validation and parameterization	.....................................................................................................	165	

RESULTS	...............................................................................................................................................................................	167	
Prediction of relapse from pre-treatment measures	...........................................................................................	167	
Prediction of relapse from post-treatment measures	.........................................................................................	168	
Prediction of relapse from morphological changes over treatment index	.................................................	169	
Sensitivity analyses	..........................................................................................................................................................	169	

DISCUSSION	........................................................................................................................................................................	170	
REFERENCES	.......................................................................................................................................................................	172	
TABLES	.................................................................................................................................................................................	174	
FIGURES	...............................................................................................................................................................................	174	

CHAPTER	8:	CONCLUSIONS	..........................................................................................................................	178	
REFERENCES	.......................................................................................................................................................................	185	

 
	 	



	 ix	

BIOGRAPHICAL SKETCH 

Benjamin Wade completed his first two years of college studies at Butte College. He 

attended the University of California, Berkeley, from 2008 to 2010 where he graduated with a 

degree in interdisciplinary studies, focusing on Neuroscience, Philosophy and Religious Studies. 

While attending Berkeley, he worked as an undergraduate research assistant in the Relationships 

and Social Cognition Lab under Professor Ozlem Ayduk studying the neural correlates of delay 

of gratification in children using functional magnetic resonance imaging.  

After completing his undergraduate studies, he spent two years working in the National 

Institute of Mental Health, Child Psychiatry Branch, under Jay Giedd. There he studied 

associations between supernumerary sex chromosomes and the morphometry of the corpus 

callosum, identifying differential contributions to callosum morphometry from X- and Y-linked 

genes.  

In 2012, he entered the Ph.D. program in Bioengineering, Signal and Image Processing, 

at the University of California, Los Angeles, and was the recipient of the National Science 

Foundation’s Graduate Research Fellowship which funded his first three years of studies. 

Working with Professors Paul Thompson and Katherine Narr, he applied subcortical shape 

analyses and machine learning techniques to characterize the neuropathology of HIV infection, 

mild traumatic brain injury, and predict clinical response to electroconvulsive therapy in patients 

with major depressive disorder.  

 



	 1	

Chapter 1: Introduction 
 
Background and motivation 
	

Neurological disorders are commonly characterized by disease-specific profiles of brain 

tissue atrophy or inflammation. Depending upon the disorder and its severity, the associated 

patterns of tissue pathology may be homogenously or heterogeneously distributed throughout the 

brain. Magnetic resonance imaging (MRI) affords a rich description of the subtleties of the 

brain’s structure. Millimeter to sub-millimeter resolution has become relatively commonplace in 

structural MRI research. Aided by recent advances in image registration methods and 

developments in pattern recognition methods that are capable of discerning profiles of variation 

embedded in high dimensional spaces, development of predictive and descriptive biomarkers for 

neurological disorders has become an increasingly tractable pursuit.   

 The development of precise biomarkers offers hope of improved medical prognoses and 

personalized treatments upon translation to the clinical setting in the form of computer-assisted 

diagnosis (CAD) systems. In theory, a CAD system can discern more subtle patterns of variation 

than even the well-trained human eye can resolve. Abnormal patterns of brain morphometry 

embedded in spaces beyond a human’s ability to discern may contain information predictive of a 

patient’s likelihood of treatment response or relapse. Because the phenotypes of many common 

disorders remain poorly understood – whether due to imprecise definitions encompassing several 

related yet separable pathological states or a paucity of research – across various stages of onset 

and recovery it is critical to develop algorithms providing both descriptive and predictive insight 

into their progression.  
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Effective biomarkers have several important properties: they are highly accurate 

(maximizing sensitivity, specificity and positive and negative predictive values), minimally 

invasive while being financially and computationally cost effective. Historically, regional 

volume has been the primary means of quantifying brain structure due to its relative 

computational simplicity and intuitive representation of morphometry. However, volume is a 

simple scalar value that, while informative, fails to leverage the information captured by modern 

high-resolution scanners and imaging sequences. In recent years, several shape-analytic methods 

have been developed to model variation of a structure’s morphological properties. These are 

generally divided into local and global descriptors of shape characteristics. Local shape 

descriptors are capable of localizing regions of variation within a structure – a beneficial 

property for both clinical applications and use in pattern recognition.  In the body of work 

presented in this dissertation I leverage local surface-based shape modeling to identify and 

validate biomarkers for the neurological manifestations of human immunodeficiency virus (HIV) 

and major depressive disorder (MDD).  

Background on neurological manifestations of HIV 
 

Rapidly following infection (Epstein and Gelbard, 1999; Li et al, 2014) HIV invades the 

central nervous system by crossing the blood-brain barrier via infected monocytes (Gartner, 

2000; Kim et al, 2003; Koenig et al, 1986). These infected monocytes go on to produce 

proinflammatory cytokines such as TNF-! leading to microglia and astrocyte activation (Hong 

and Banks, 2015) resulting release of excitotoxic amino acids, chemokines and cytokines 

(Gendelman et al, 1994; Langford and Masliah, 2001; Zahr et al, 2014). Chronic immune 

activation and inflammation resulting from this process is widely considered the primary 

mechanism for HIV-related neurodegeneration though other contributing mechanisms include 
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disrupted metabolic processes, and even neurotoxic side effects of prolonged cART exposure. As 

well as the observed effects of antiviral treatments, several clinical markers have been related to 

HIV infection and cognitive performance. Higher HIV RNA viral load and lower nadir CD4 cell 

counts have widely been linked to more impaired cognitive performance (Martin et al, 2006; 

Nachman et al, 2012; Smith et al, 2012; Wood et al, 2009) which is in turn associated with 

underlying neurodegeneration. Numerous groups have reported on HIV-related 

neurodegeneration with convergent evidence highlighting abnormal cortical and subcortical 

brain morphometry related to HIV positivity, CD4 t-cell count, viral load and reception of the 

combination antiretroviral therapy (cART) (Ances et al, 2012; Becker et al, 2012; Fennema-

Notestine et al, 2013; Jernigan et al, 2011; Kallianpur et al, 2013; Ragin et al, 2015; Wade et al, 

2015; Wilson et al, 2015). 

Investigations of structural MRI widely report age-disproportionate degrees of atrophy 

among HIV+ cohorts in adults (Becker et al, 2012; Thompson et al, 2005; Towgood et al, 2012). 

Diffusion tensor imaging has also revealed possible interaction effects of HIV infection and age 

in the reduction of fractional anisotropy and increase of mean diffusivity within subcortical white 

matter and frontal regions (Chen et al, 2009). Studies investigating magnetic resonance 

spectroscopy also suggest that CNS HIV infection parallels the aging process. For instance, 

Chang and Harezlak (Chang et al, 2004; Harezlak et al, 2011) both reported higher ratios of 

choline compounds : total creatine and myoinositol : creatine in the basal ganglia associated with 

aging and HIV status.  

The life expectancy of HIV+ individuals has dramatically improved since the advent of 

modern cART regimens and it is now projected that by the year 2020 approximately 70% of 

HIV+ individuals within the US will be aged 50 or above. Perinatal HIV infection also remains a 
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major concern in the developing world though long-term survival of infected children has also 

improved substantially in the cART era. Despite stable treatment upwards of 50% of infected 

people suffer a degree of HIV-associated neurocognitive disorder (HAND). The prevalence of 

HAND has not reduced in the cART era though the more severe manifestations of its effects 

have reduced considerably (Nasi et al, 2014). Given the prolonged life expectancy of infected 

individuals and the potential complications presented by synergistic effects of aging and HIV 

infection, it is increasingly urgent to understand how the structure of the developing and aging 

brain might be affected by HIV infection and its clinical sequelae. Neuroimaging currently plays 

two clinical roles in the evaluation of HIV infection: i) the detection of cerebral atrophy or 

encephalopathy and ii) the identification of secondary complications resulting from 

immunosenescence such as HIV-related tumors and opportunistic infections (e.g. 

toxoplasmosis). The development of more sensitive biomarkers for the neurological effects of 

HIV may aid in the monitoring of the progression of the disorder and identify patients more 

likely to suffer severe cognitive decline.  

Background on major depressive disorder and electroconvulsive therapy 
 
 The prevalence of major depressive disorder (MDD) is staggering, affecting 

approximately 10-20% of the U.S. population (Kessler et al, 2003; Weissman et al, 1996) and 

contributes to about 1 million reported suicides globally each year. The average annual cost to 

the U.S. alone is estimated to be $42 billion (Grieve et al, 2013), outranking the combined costs 

of cancer and diabetes. Clinical manifestations of MDD encompass multiple dimensions 

including, but not limited to, anhedonia, apathy and melancholy. This heterogeneity presents 

considerable challenges to investigators seeking to identify neurobiological mechanisms of MDD 

presentation and recovery. Brain imaging of MDD has revealed fairly consistent findings of 
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reduced hippocampal volume (Campbell et al, 2004; Schmaal et al, 2016) and notable alterations 

of the anterior cingulate cortex and frontal gyri (Du et al, 2012). Functional alterations including 

hypoactivity of the nucleus accumbens (Liu et al, 2011), hyperactivity of the amygdala in 

response to stressful stimuli (Groenewold et al, 2013) and abnormal prefrontal activation 

patterns (Phillips et al, 2003) are widely reported as well.  

Antidepressant drugs and behavioral therapy are the most frequently prescribed 

treatments for MDD, however, nearly two-thirds of patients undergo several drug trials prior to 

experiencing symptom relief and, even so, up to a third of patients will remain unresponsive to 

treatment. Electroconvulsive therapy (ECT) elicits rapid symptom relief in approximately 60-

70% of patients (Husain et al, 2004; Kho et al, 2003). Because of this acute efficacy it is an 

optional line of treatment for patients who remain unresponsive to several lines of drug and 

behavioral therapy or are at immanent risk of suicide (Kellner et al, 2012). Although the many 

symptomatic dimensions of MDD are commonly linked to disturbances in the prefrontal cortex, 

anterior cingulate, hippocampus, amygdala, thalamus and striatal/pallidal regions (Drevets et al, 

2008; Lorenzetti et al, 2009; Schmaal et al, 2015) the neural mechanisms mediating clinical 

response to ECT remain largely unknown.  

While highly effective, ECT also carries several side effects including temporary memory 

loss and confusion. Patients seeking this secondary line of treatment would be best served if 

biomarkers indicating their likelihood of response, degree of response and probability of long-

term relapse or sustained response were developed to identify patients likely and unlikely to 

benefit from treatment. These factors would aid clinicians and patients in navigating the medical 

decision making process and weighing the potential risks versus rewards of proceeding with 

ECT.  
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Organization and overview 
 
 The chapters of this dissertation consist of published articles (Chapters 2, 3 and 5), 

articles in review (Chapter 4) and ongoing research (Chapters 6 and 7). Chapter 2 begins by 

exploring the question of how to handle high-dimensional shape descriptors in predictive, 

machine learning framework. Given its high dimensionality, shape data may be more prone to 

the curse of dimensionality. To explore this possibility we compared the performances of joint 

feature selection and classification algorithms in classifying Alzheimer’s disease and its 

prodromal state, mild cognitive impairment, apart from typically aging controls using only 

subcortical shape descriptors. In doing so, we attempted to understand how different strategies of 

modeling and feature selection would affect classification performances across various ratios of 

sample sizes to feature set sizes when the feature set is composed exclusively of shape data.  

Chapters 3 and 4 focus on the identification and modeling of abnormal brain 

morphometry resulting from HIV infection in two distinct age groups: geriatrics and pediatrics. 

In chapter 3 we explore how long-term HIV infection affects the elderly brain aging process. To 

address this we investigated subcortical shape and volume abnormalities in 63 elderly HIV+ and 

31 HIV- participants from the San Francisco area. Chapter 4 similarly addresses whether 

seropositivity, reception, timing or duration of cART, CD4 count and viral detectability are 

related to developmental trajectories of subcortical brain structures in 43 perinatally-infected 

HIV+ and 53 uninfected Thai children. Here we again assessed development using subcortical 

shape and volume measures in cross-sectional and longitudinal frameworks spanning a one-year 

time frame.  

 Chapters 5, 6 and 7 address the development of biomarkers for depression and prediction 

of clinical response to ECT. In chapter 5 we build on previous work (Joshi et al, 2015) that 
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modeled structural plasticity induced by ECT in regions of the hippocampus and amygldala. 

There we investigated how ECT affects regions of the striatum and basal ganglia. We modeled 

changes in the morphometry of these structures longitudinally over the course of ECT index. We 

additionally developed a support-vector machine classifier to predict individuals who would be 

responsive to ECT based on pre-treatment patterns of structural brain morphometry.  

Chapter 6 consists of ongoing work in the development of prognostic biomarkers for the 

identification of patients with MDD likely to experience symptomatic remission following ECT. 

This is a natural extension of work presented in chapter 5 where clinical response was the 

outcome. The prediction of remission is a more difficult problem considering remission rate is 

lower than response rate. Responders are typically defined as patients who experience a 50% or 

more reduction in depressive symptoms according to the clinician-administered Hamilton 

Depression Rating Scale (HAM-D, outlined in Chapter 5). Remission, however, is defined by a 

more complete reduction in depressive symptoms, requiring a final HAM-D-17 score ≤ 7 or 8; 

remitters are necessarily a subset of subjects who are responders.  

Chapter 7 outlines current work in biomarker development with the aim of stratifying 

patients based on their predicted probability of clinical relapse at 6-months following ECT index. 

There we examine whether relapse prediction is viable from pre-treatment measures of brain 

structure, end-of-index measures and changes in brain structure over ECT index. Naturally, the 

ability to predict subsequent relapse prior to treatment would be the most favorable option since 

relapse risk could then be factored into the initial decision of whether a patient should receive 

ECT. These lines of research have clear importance as the ability to identify highly responsive 

patients and perform relapse risk stratification would inform the medical decision making 
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process, improve personalized treatment strategies and mitigate the incurrence of adverse 

treatment side effects when a patient is unlikely to benefit.  
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Chapter 2: Machine Learning on High Dimensional Shape Data from 
Subcortical Brain Surfaces: A Comparison of Feature Selection and 
Classification Methods1  
 

High-dimensional shape descriptors (HDSD) are useful for modeling subcortical 

brain surface morphometry. Though HDSD is a useful basis for disease biomarkers, its 

high dimensionality requires careful treatment in its application to machine learning to 

mitigate the curse of dimensionality. We explored the use of HDSD feature sets by 

comparing the performance of two feature selection approaches, Regularized Random 

Forest (RRF) and LASSO, to no feature selection (NFS). Each feature set was applied to 

three classifiers: Random Forest (RF), Support Vector Machines (SVM) and Naïve Bayes 

(NB). Paired feature-selection-classifier approaches were 10-fold cross-validated on two 

diagnostic contrasts: Alzheimer’s disease and mild cognitive impairment, both relative to 

controls across varying sample sizes to evaluate their robustness. LASSO aided 

classification efficiency, however, RRF and NFS afforded more robust performances. 

Performance varied considerably by classifier with RF being most stable. We advise 

careful consideration of performance-efficiency tradeoffs in choosing feature selection 

strategies for HDSD.  

Introduction 
Disorders that affect the central nervous system are often characterized by patterns of 

abnormal brain morphometry in regions involved with the disorder. To the extent that a disorder 

presents with stereotyped patterns of abnormal brain morphometry, these patterns can be used as 

																																																								
1 The content of this chapter has been published as Wade BSC, Joshi SH, Gutman BA, 
Thompson PM. Machine learning on high dimensional shape data from subcortical brain 
surfaces: A comparison of feature selection and classification methods. Pattern Recognition. 
Available at: http://dx.doi.org/10.1016/j.patcog.2016.09.034	
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biomarkers for the classification of the disorder as well as the monitoring of its progression. 

Recent advances in biomedical imaging and pattern detection have increased the interest in 

developing computer assisted diagnostic systems to aid in the detection of neurological disorders 

based on features derived from structural brain magnetic resonance imaging (MRI).   

Historically, studies describing brain morphometry have focused principally on the use of 

volumetric descriptions of regions of interest (ROIs). While volumetric descriptions confer the 

advantage of being relatively computationally non-intensive and simple to interpret they also 

only capture comparatively little information about the morphometry of the actual structure. 

Recently, it has become increasingly popular to include local shape-based descriptions of brain 

regions to compliment volumetric measures (Joshi et al, 2016; Wade et al, 2016; Wade et al, 

2015b). Shape analysis is most commonly used for registering individual subcortical anatomies 

to a given template. The template itself could either be created using unbiased registration of 

individual shapes or by choosing a characteristic anatomical shape from the population. The 

registration step is followed by statistical analysis, which localizes differences in the geometric 

shape features at the population level. Different representations of shapes and surfaces give rise 

to diverse geometric features. While several classes of shape analysis exist including tensor-

based morphometry (Ashburner et al, 1998) and Laplace-Beltrami spectral analysis (Reuter et al, 

2009a) we explore the use of shape features defined vertex wise on the surface of subcortical 

brain regions.  

While high-dimensional shape descriptors (HDSD) may offer more information about 

brain morphometry than simple volumetric descriptions, classification using high-dimensional 

neuroimaging feature sets is likely to be plagued by the curse of dimensionality. A handful of 

studies have investigated whether feature selection will boost the performance of classifiers 
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using high-dimensional neuroimaging feature sets with some reporting significant improvement 

(Liu et al, 2013) and others reporting only marginal to no gains (Casanova et al, 2012). Our 

contribution in this paper is a systematic evaluation of the gains in the performance of a variety 

of commonly used classifiers afforded by the use of feature selection processes. Specifically, we 

compare the efficacy of several joint feature selection and classification methods to handle 

HDSD as a biomarker for brain disorders. We assess each approach using 10-fold cross-

validation on two diagnostic contrasts: Alzheimer’s disease (AD) versus normal controls (NC) 

and mild cognitive impairment (MCI) versus NC. Classification of each contrast was based on 

two separate classes of HDSD: 1) the radial distance (RD), a proxy for the structure’s local 

thickness and 2) the log of the Jacobian determinant (JD), a measure of local surface area 

expansion or contraction. In order to evaluate the possibility that the performances of these 

approaches vary as a function of the ratio of the sample size to feature set dimensionality, we 

additionally report the performances of each approach based on reduced sample sizes of 50% and 

25% of the full cohort.  

Although dimensionality reduction methods such as principal components analysis, 

manifold learning and locally linear embedding are powerful methods to reduce the 

dimensionality of a feature set, they all produce transformations of the original data set. Feature 

selection methods are normally distinguished from dimensionality reduction methods in that they 

preserve the original set of features. This is a very desirable property especially in the context of 

identifying subsets of data in clinical and biological frameworks where the original data point is 

itself meaningful and transformations could obscure the meaning of the selected feature set.  In 

that spirit we also specifically evaluate the use of the RD and JD descriptors as they capture 

intuitive properties of a structure’s morphometry: deformations in its thickness and surface area 
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at highly focal regions of the surface. This intuitive interpretation of these descriptors also makes 

their clinical implications easier to interpret. The joint use of RD and JD is generally beneficial 

as each captures complementary aspects of a structure’s topology. Exploring both descriptors in 

this study allows us to evaluate the performance of these joint classification approaches across 

separate descriptors to improve the generalizability of our findings. Our group has previously 

applied these descriptors to map subcortical morphometry in patients with depression (Wade et 

al, 2016; Wade et al, 2015a), mild traumatic brain injury (Tate et al, 2016) and HIV (Wade et al, 

2015b). Numerous other shape descriptors, mentioned previously, have also been successfully 

applied to map abnormal patterns of brain morphometry in a variety of diseases such as 

frontotemporal dementia (Macfarlane et al, 2015), schizotypal personality disorder (Reuter et al, 

2009b), Huntington’s disease (Faria et al, 2016) and many others. However, comparing the 

performances of these descriptors is beyond the scope of our current paper.   

We specifically evaluate two feature selection methods, the regularized random forest 

(RRF) and the LASSO. The RRF framework is a recently developed extension of the random 

forest framework to incorporate feature selection and has previously been applied to classifying 

transactions on the financial market (Endler, 2014), identifying highly informative single 

nucleotide polymorphisms in genome wide association studies (Nguyen et al, 2015), human 

activity recognition (Uddin and Uddiny, 2015) and brain image classification (Wade et al, 

2015a), has been shown to improve the performance of random forest classifiers in certain cases 

(Deng and Runger, 2012; Deng and Runger, 2013a). Meanwhile, the LASSO framework 

(Tibshirani, 1994, 2011) has been widely applied as a sparse feature selection method in a wide 

variety of studies and has gained widespread popularity in the neuroimaging literature (Bunea et 

al, 2011; Toiviainen et al).   
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The no free lunch theorem (Wolpert and Macready, 1997) tells us that no single method 

would be universally optimal across all classification problems, even when limiting our scope to 

diagnostic classification problems involving neuroimaging data. As such, we are simply setting 

out to develop heuristics, not rules, for the treatment of this form of HDSD as a feature set in the 

classification of neurological disorders.  

Methods 

Subjects 
 

We analyzed AD, MCI and matched NC participants that underwent 1.5T T1-weighted 

structural brain MRI scans (MPRAGE, repetition time/echo time = 2400/1000 ms, flip angle = 

8°, slice thickness = 1.2 mm, final voxel resolution = 0.9375 x 0.9375 x 1.2 mm3) as part of 

phase 1 of the Alzheimer’s Disease Neuroimaging Initiative (ADNI-1). Our sample included 

N=143 AD, N=337 MCI and N=202 NC participants scanned at one-year follow-up.  

ADNI was launched in 2004 by the National Institutes of Health, the Food and Drug 

Administration, private pharmaceutical companies, and nonprofit organizations to identify and 

evaluate biomarkers of AD for use in multisite studies. All ADNI data are publicly available at 

adni.loni.usc.edu. All ADNI studies are conducted in compliance with the Good Clinical Practice 

guidelines, the Declaration of Helsinki, and the US 21 CFR Part 50 - Protection of Human 

Subjects, and Part 56 - Institutional Review Boards. Written informed consent was obtained from 

all ADNI participants before the study. ADNI is a multisite longitudinal study of patients with 

AD, MCI, and healthy older adult control.  

High dimensional shape features 
 

Previously validated FreeSurfer workflows, including non-brain tissue removal, intensity 

normalization and automated volumetric parcellation based on probabilistic information from 
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manually labeled training sets, were used to segment the bilateral thalamus, putamen, pallidum, 

amygdala, accumbens, caudate and hippocampus from the raw brain MRIs. Each segmented 

volume was visually inspected to ensure its quality.  

A parameterization of each surface was obtained using the Medial Demons method 

detailed in (Gutman et al, 2015; Gutman et al, 2012). In short, all surfaces were conformally 

mapped to the spherical domain. The spherical maps were rigidly rotated to a probabilistic atlas. 

Next, the Spherical Demons (SD) (Gutman et al, 2013) algorithm was used to non-linearly 

register the spherical maps on the basis of curvature. Two surface-based functions were defined 

at this stage: first, the global orientation function, defining the direction of the surface and, 

secondly, the local thickness of the surface with respect to a skeletonized medial core. Finally, 

SD was redone using both the newly defined medial core in combination with surface curvature 

to match each surface to the atlas.  

From this process, shape features are defined at each vertex: 1) radial distance (RD), a 

proxy for thickness and 2) the log of the Jacobian determinant (JD) which indicates local surface 

area dilation or contraction. Among all 14 subcortical surfaces, there were a total of 27,120 

vertices; the RD and JD were defined at each.  

Feature selection  
 

Classification using high-dimensional feature sets is often aided by feature selection. This 

is done to mitigate the curse of dimensionality in which data sparsity scales exponentially with 

its dimensionality as well as limit the potential for overfitting to training data. Feature selection 

is commonly distinguished from dimensionality reduction methods in that the former retains 

original values of features considered important by a given criterion while dimensionality 

reduction most often seeks to represent the original features by linear combinations of their 
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original values in a lower subspace. We implemented two feature selection algorithms: 1) the 

regularized random forest (RRF) (Deng et al, 2012) and 2) the least absolute shrinkage and 

selection operator (LASSO) (Tibshirani, 1994). We then compared the performance of classifiers 

using these subsets to classifiers using the full set of features. Feature selection was performed 

independently on RD and JD sets in order to evaluate the generalizability of differential 

performances across a variety of shape descriptors.  

Regularized random forest feature selection 
 

Random forests (RF) (Breiman, 2001) are a type of supervised classifier constructed from 

an ensemble of classification and regression trees (CART) that use the majority vote of its 

constituent terminal nodes to predict the class of a given observation. Each CART is normally 

provided a bootstrapped sample of 63% of the observations along with a random subset of ! 

features at each node, where m is the number of features.  

RRF is an extension of the standard RF framework to facilitate feature selection. The 

nodes within a standard RF are split by identifying the feature, !!, that maximizes the gain in the 

Gini impurity index. The Gini index is calculated for each feature at the present node, v. Gini(v) 

is given by, 

Gini v =  p!! (1− p!!) 
!

!!!
 

(1) 

where !!! is the proportion of observations belonging to class C at node v. The RF algorithm 

aims to split each CART node by the feature !! which maximizes the class purity of the resultant 

child nodes. RRF differs from the standard RF framework in that Gain(X!) is penalized by 

degree λ! if X! has not been used to split a previous node in the tree. That is, 
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Gain X! =  
Gain X!, !   ∈ !

 
λ! ∙ Gain X!, !  ∉ !

 
(2) 

 
Where F is the set of variables used to split the CART’s nodes. λ! is given by λ! = 1− ! +

 !!"#!! where ! ∈ [0,1] and !"#!! is the normalized importance score associated with feature X!.  

With penalty λ! a variable not in F is less likely to be used to split the current node. In the 

RRF framework, feature selection is done by retaining all features in set F. ! = 0 is the least 

penalized approach however in order for X! to be included in set F, it must still be more 

informative to the partitioning of the feature space than all variables currently in F (Deng and 

Runger, 2013b). A value for ! was selected using cross validation, outlined subsequently in the 

section parameterization of feature selection methods.  

LASSO feature selection 
 

The LASSO is a well-known procedure used to regularize the coefficients, β!, of a linear 

regression model subject to an l1-penalty. Provided a set of standardized features !!" along with 

centered outcomes, y!, for i in [1, N], where N is the number of observations, and j in [1, p], 

where p is the number of features, the LASSO seeks to minimize, 

(y! −  x!!β!
!

)!
!

!!!
+  λ β!   .

!

!!!
 

(3) 

This process is the same as minimizing the sum of squares with the added constraint of 

!!  ≤ !. Due to the l1-penalty, LASSO has the desirable quality of setting the coefficients of 

unimportant or redundant features to zero. This provides a natural framework for feature 

selection in which models are constructed using only features with non-zero coefficients. For our 

purposes the constraint, s, was determined empirically using 10-fold cross-validation on the 
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training data; the s affording the minimal cross-validation error was chosen. ! is the shrinkage 

parameter controlling the degree of coefficient shrinkage. !(0) results in no shrinkage while ! > 

0 results in increasingly stringent coefficient shrinkage. The shrinkage parameter value was also 

selected using 10-fold cross validation where the value resulting in the minimum mean cross 

validation error was selected. Tuning was performed using the glmnet package in R (Friedman et 

al, 2010).  

Classifiers 
 
Each of the three feature sets, RRF, LASSO and NFS was used as an input into each of three 

widely used classifiers. We briefly outline the attributes of the classifiers here.  

Random forest  
 

The general RF framework is given previously in the section regularized random forest 

feature selection. The RF classifier used here was composed of 1000 trees, with a minimum leaf 

node sample requirement of 1. Each weak learner (for CART) was grown to its maximum, 

unpruned, size and provided a bootstrapped sample of 63% of the observations along with a 

random subset of ! features, where m is the number of features, which are all standard 

parameterizations of random forests. This parameterization was the same for the RRF 

framework.  

Support vector machines  
 

We implemented an SVM with a radial basis kernel function where the optimal 

hyperplane is found by,  

argmin(
!

1
2!

!! + ! !!
!

!!!
) 

(4) 



	 26	

subject to !! !! ! !! + ! ≥ 1−  !! and !!  ≥ 0, ! = 1,… ,! where C is the cost factor that 

penalizes misclassifications in training examples, ! is a vector of coefficients, b is the constant 

intercept term, !! controls the allowable (functional) margins on either side of the hyperplane, 

and ! is a radial basis kernel. Use of the radial kernel yielded a significantly higher accuracy 

than a linear SVM. Optimal cost and ! parameters were obtained through cross validation.  

Naïve Bayes 
 

The foundation of the NB classifier is Bayes rule which assumes conditional 

independence of the constituent features of X, [X1, X2,…,Xn], with respect to each other given 

the outcome, Y ∈ [0,1]. With a set of continuous predictive features a Gaussian NB framework is 

used in which the class probability estimate is, 

! ! = 1 ! =  1
1+ exp (!!! !!!!!

!!! ) 

 

where !! in !!…!! are weightings given by, !! = !!!! !!!
!!!

 and 

!! = ln !(!!!)!(!!!) +  !!!! !!!!!
!!!!!    

where !!  !"# !! are the mean and standard deviation of feature !!. 

(5) 

 

Parameterization of feature selection methods 
 

We performed cross validation across a range of parameters to identify optimal 

parameters for the feature selection methods, RRF and LASSO. A parameterization was 

considered optimal if it yielded the both the largest AUC and its runtime was not prohibitively 

long on a 2 GHz Intel Core i7 with 8Gb of RAM. 
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The RRF required optimization of both ! and the number of trees within each forest. We 

considered a range of ! [0,1] in steps of 0.2. The LASSO is actually a special case of the more 

general elastic net (Zou and Hastie, 2005). The elastic net seeks to minimize the sum of squared 

errors subject to an interpolation between l1 and l2-penalties; that is, 

 

min
!

! − !" ! !. !.  !!∝ !  

 
where, 
 

!∝ ! = 1− !
2 ! !

! + ! ! ! =  1− !
2 !!! +  ! !!

!

!!!
 

 

(6) 

and ! is the mixing parameter between the two penalties: !(0) yields the ridge penalty while 

!(1) provides the LASSO. We performed cross validation on a range of alpha values between ! 

= [0,1] in steps of 0.2. ! is again the shrinkage parameter controlling the magnitude of 

coefficient shrinkage described in the section LASSO	feature	selection. 

Influence of sample size 
 

The ratio of sample size to feature set dimensionality lies at the heart of the curse of 

dimensionality. This suggests that it is important to evaluate the performance of these approaches 

across varying ratios of sample and feature set sizes. To accomplish this we repeated each 

analysis on randomly selected subsets of 50% and 25% of each group’s original sample size. At 

50%, there were N=71 AD, N= 168 MCI and N=101 NC. At 25% there were N= 35 AD, N= 84 

MCI and N=50 NC.  
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Results 

Feature selection parameters 
 

We selected optimal feature selection parameters based on their performance in 

classifying AD versus NC based on RD features using 10-fold cross validation. AUC varied 

moderately by ! value though not to a statistically significant degree. Runtime increased with 

increasing ! value, however, also not to a substantial degree. For our purposes we used !(0). 

AUC did not vary predictably with tree number in the RRF framework, however both runtime 

and the number of retained features increased substantially with an increased number of trees. 

Throughout this study we used 1000 trees for both RRF and standard random forest models. RRF 

CARTs were also grown to their full depth, and each received a bootstrapped sample of 63% of 

the observations along with a random subset of ! features with a minimum leaf sample size of 

N=1. In the parameterization of the elastic net we did not observe an association between AUC 

and alpha. However, !(0) (i.e. ridge penalization) was substantially more time consuming than 

any other parameterization. 0 < ! ≤ 1 yielded nearly identical runtimes with LASSO being 

somewhat faster than the others. Due to its speed and widespread use we opted to use !(1), i.e. 

the LASSO, throughout. Figure 2-1 plots the average AUC and runtimes across various 

parameterizations of feature selection methods as well as total runtimes for each paired feature 

selection and classification approach across 10 folds using RD measures to classify AD versus 

NC using the full set of subjects. Notably, total runtime for RRF-based methods was 

dramatically higher at > 2.5 hours than NFS methods (> 0.5 hours) and LASSO methods (< 5 

minutes). 

Feature selection subsets 
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Supplementary figure 2-S1 plots the percentage of features retained by the RRF and 

LASSO methods under each diagnostic contrast and sample size. Several differences are shown 

between the two methods. First, the LASSO selected a far sparser subset of features than the 

RRF, retaining upwards of about 0.9% of features on any given surface at most. Additionally, the 

LASSO selected features from only a subset of surfaces, excluding features from the caudate, 

pallidum and putamen in several instances. On average the ratios of features retained across 

surfaces did not vary to a large degree under varying sample sizes however the absolute 

percentage of retained features declined somewhat steadily in relation to smaller sample sizes. In 

contrast, the RRF selected upwards of about 18% of features from any given surface and retained 

features from each surface. Again, patterns of features retained across each structure were 

consistent for RRF under reduced sample sizes. Feature selection varied by diagnosis as well 

with the RRF retaining more features, on average, for the MCI contrast than the AD contrast. 

However, the LASSO was reversed here retaining more features for AD than MCI on average. 

Supplementary figures 2-S2 and 2-S3 map the selected regions for the LASSO and RRF, 

respectively, for the full set of participants. Supplementary figure 2-S4 maps the importance 

scores from the RRF framework to the subcortical surfaces, illustrating the relative influence of 

each region in the diagnostic classifications.  

Classification results 
 

Figure 2-2 plots receiver operating characteristic (ROC) curves for each diagnostic 

contrast grouped by shape feature under given sample sizes; a separate curve is given for each 

feature-selection-method-classifier combination in the upper triangle of each plot. The lower 

triangles within each plot provide pairwise results of DeLong’s (DeLong et al, 1988) for 

differences in area under the curve (AUC). Black intersections indicate a significant difference in 
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AUC between the two approaches being compared; green arrows within each significant 

intersection point to the name of the approach with the larger AUC. Several pairwise 

comparisons remained significantly different following false discovery rate (FDR) correction for 

multiple comparisons revealing a number of important trends. Here we simply applied FDR 

within each unique set of shape metrics within the set of diagnostic contrasts; that is, within each 

matrix.  

At the full sample size and holding feature selection method equal, NB-based classifiers 

regularly underperformed relative to RF and SVM-based methods under both diagnostic 

contrasts. In the classification of MCI using JD-based NFS, SVM outperformed RF. Beyond this, 

however, SVM and RF were highly comparable. Holding classifiers equal to compare feature 

selection approaches several other trends emerge. Among the NB-based classifiers the RRF 

outperformed NFS on three out of four comparisons. In two cases SVM-LASSO was 

outperformed by SVM-NFS and once by SVM-RRF. Table 2-1 provides exact AUC values.  

Sample size reduction highlighted further differential performances of these approaches. 

At 50% of the original sample size, NB-based methods began to have more competitive 

performances with RF and SVM methods. Only NB-NFS was consistently outperformed by 

SVM methods in the classification of MCI using JD features. NB-RRF outperformed the SVM-

LASSO in the classification of MCI using RD features, however, most NB methods were still 

outperformed by RF-based approaches. On average RF methods outperformed SVM at this 

reduced sample size. While most significant differences in performance were related to choice of 

classifier here, several differences were linked to feature selection method. NB-RRF again 

regularly outperformed NB-NFS and the SVM-LASSO was outperformed by SVM-RRF in the 

classification of MCI using RD measures.  
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At 25% of the original sample sizes, NB-LASSO consistently underperformed relative to 

RF methods in the classification of AD, however, other NB approaches were competitive with 

both RF and SVM. NB-NFS only underperformed relative to RF methods in the classification of 

MCI using RD. Interestingly, in the classification of MCI using RD, SVM methods were entirely 

outperformed by RF approaches. Again, the majority of differential performances were 

attributable to the classifiers themselves, but we again note that NB-RRF outperformed NB-NFS 

regularly in this context. It is also noteworthy that no significant differences were observed 

between approaches for the classification of MCI using JD features at 25% of observations.  

Figure 2-3 plots the average AUC attributable to each (a) feature selection method 

averaged across each classifier and (b) classifier averaged across feature selection method. In 

general, we observed that RF-based methods had robust performances across variable sample 

sizes. SVMs appeared to be rather sensitive to sample size being widely outperformed by RFs 

when the samples were reduced. NB was widely outperformed by RF across sample sizes but 

was surprisingly competitive with SVMs at the reduced sample sizes. Among feature selection 

approaches, LASSO was most affected by sample size reductions while RRF and NFS appear 

relatively robust to reductions in sample size. Average RRF AUC appears marginally higher than 

NFS AUC, however, we only observed consistent differences between these two approaches in 

the context of NB-based approaches as noted in Figure 2-2.  

Figure 2-4 illustrates the percentage of comparisons in which classifiers and feature 

selection methods attained a significantly higher AUC than other methods across the various 

sample sizes. From Figure 2-4a it is apparent that RF was robust across sample sizes while SVM 

performances declined with reduced sample sizes. NB was also shown to rarely attain an AUC 

significantly larger than SVM or RF. Figure 2-4b illustrates that both NFS and LASSO 
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performances declined substantially when sample size was reduced while RRF performances 

were somewhat more preserved when sample sizes declined. Figures 2-4(c-d) show the 

percentage of pairwise instances in which classifiers and feature selection methods had 

significantly larger AUCs than other specific approaches. Here we see notable instances of SVM 

outperforming RF and NB when the sample size was full but not when the sample is reduced. At 

reduced sample sizes, RF and NB demonstrated more widely competitive performances. At the 

full sample size, NFS performs well with respect to RRF and LASSO feature sets though when 

the sample is reduced RRF tended to yield higher AUCs than NFS. Additionally, while RRF 

maintained competitive AUCs across varying sample sizes LASSO declined more heavily with 

sample size reductions.  

Discussion 
 

Given the high degree of inherent spatial correlation within neuroimaging data, including 

the HDSD described here, we expected that there should be a lower ‘effective dimensionality’ 

that feature selection could leverage to the benefit of the classifier. To evaluate this we explored 

whether the use of feature selection would consistently boost the performance of several 

commonly used classifiers in the classification of both AD and MCI using nothing but HDSD 

defined on subcortical surfaces. Chu et al. (Chu et al, 2012) noted that feature selection is 

substantially more important in smaller sample sizes (i.e. lower sample size to feature set 

dimension ratio). To account for this possibility we additionally assessed the robustness of each 

approach to systematic sample size reductions. Prior to reducing the sample sizes we generally 

did not observe consistent significant improvements in classifier performance with the use of 

LASSO or RRF feature selection methods. SVM and RF based approaches consistently yielded 

higher AUC than NB while being competitive with each other. RRF feature sets demonstrated 
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more robustness against reductions in sample size than LASSO. NFS performance declined less 

rapidly than LASSO with reductions in sample size though it was not as robust as RRF. Greater 

differences were observed between classifiers than feature selection methods at lower sample 

sizes.  

 The relative speed of each approach was also considered. In Figure 2-1c we benchmarked 

each joint feature selection classifier approach across all 10 cross validation folds. Very 

distinctly, the RRF-based methods were highly time-consuming, requiring upwards of 3 hours to 

complete on a dataset of this size. Meanwhile, NFS-based approaches required less than an hour 

while LASSO was decidedly the fastest, requiring only several minutes to complete all folds.   

 We explored these patterns across two diagnostic contrasts in order to explore the 

generalizability of our conclusions. While AD and MCI are of course related to each other, MCI 

presents with a far more heterogeneous pattern of brain morphometry than AD. This is reflected 

by the overall higher performance attained under the AD versus NC contrast than the MCI versus 

NC contrast. Yet, despite the lack of homogeneity in MCI, similar patterns of performances were 

observed across both feature selection methods and classifiers. This suggests that these patterns 

of performance may generalize to other notoriously heterogeneous brain disorders such as 

schizophrenia and attention-deficit disorder. However, future studies are needed to confirm this.  

Numerous studies have investigated classifying AD and MCI versus normally aging 

controls using structural neuroimaging features. For a thorough review we refer the reader to a 

review by Weiner (Weiner et al, 2012). Notably, Cuingnet et al. (Cuingnet et al, 2011) compared 

the efficacy of classifying AD and MCI versus NC using voxel-based methods, cortical thickness 

measures and shape and volume measures derived exclusively from the hippocampus. Their 

group reported voxel-based and cortical thickness approaches with specificity and sensitivities of 
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up to 90% and 75%, respectively, in classifying AD. Their strategies targeting the hippocampus 

only had reduced specificities of 63% for volume and 84% for shape-based measures with 

comparable sensitivities to voxel-based and cortical data. Using volumetric measures of the 

hippocampus and entorhinal cortex only, Fan et al. (Fan et al, 2008) also reported high SVM 

classification accuracies of AD versus NC, MCI versus NC and AD versus MCI at 82%, 72% 

and 58%, respectively. Chincarini et al. (Chincarini et al, 2011) used texture-based features of 

voxel intensities derived from the medial temporal lobe to distinguish AD from NC subjects with 

a high AUC of 97% as well as MCI-AD converters from NC (AUC = 92%). It is difficult to 

directly compare performances across studies due to differences in underlying samples and 

feature sets, we note that the approaches outlined in this study attaining AUCs of up to 91% for 

AD versus NC and 82% for MCI versus NC are quite competitive with other existing unimodal 

classifiers. There is a strong interest in classifying both MCI versus AD as well as MCI-AD 

converters versus non-converters. While these problems are perhaps more challenging than 

simply classifying AD versus NC or MCI versus NC, it is beyond the scope of our current 

investigation. However, we would expect similar patterns of performances to hold across these 

approaches for those classification problems as well.  

 Ultimately, the investigator seeking to choose between this set of methods would have to 

weigh the gains in classification performance against the computational expenses associated with 

each. We generally observed, for instance, that RRF yielded the most stable performances across 

a range of sample sizes but also required upwards of three times the amount of computational 

time compared to NFS approaches. LASSO-based approaches were by far the most 

computationally efficient but often provided lower AUC, especially at reduced sample sizes. The 

clear benefit of LASSO in this context is that the sparse feature sets it returns drastically boost 
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the subsequent classification accuracy, though at the cost of marginally lower performances 

relative to the more retentive RRF and NFS approaches. SVMs using LASSO subsets appeared 

particularly prone to underperforming relative to other methods. Because SVM decision 

boundaries are determined by the data points on or within its margin which is an implicit form of 

sparsity it is possible that they are more prone to overfitting when the provided feature set is 

itself sparse as is the case with LASSO. NFS seems to be a reasonable approach in this context 

as it offered competitive AUC values in many cases while being substantially less 

computationally expensive than RRF.  

A particular limitation of our study is that we explored purely data-driven feature 

selection approaches. Two previous studies (Chu et al, 2012; Cuingnet et al, 2011) investigating 

classification of neuroimaging data both noted that data-driven feature selection methods, such 

as those employed here, failed to significantly improve classification accuracies, however, 

feature selection using prior knowledge of a disease’s morphometry was significantly beneficial. 

Importantly, we have focused exclusively on the treatment of HDSD. For many diseases, AD 

and MCI included, the use of multimodal data has been demonstrated to be most effective in 

maximizing classification accuracy (Liu et al; Westman et al, 2012; Zhang and Shen). It would 

thus be expected that multimodal classifiers would outperform the unimodal approaches 

described here. However, future studies incorporating HDSD in multimodal frameworks may 

benefit from our findings when integrating HDSD with other modalities. A further limitation of 

the current study is, of course, that we only evaluated these approaches on AD and MCI cohorts. 

AD has a relatively homogenous profile of neurodegeneration, but MCI is more heterogeneous in 

its manifestations. Although we observed similar patterns of performances across both AD and 

MCI classification problems this does not ensure that our findings will translate to other 
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neurological disorders. Our findings serve as a starting point to understand the behavior of these 

approaches in their application to other disorders.  

Overall, our results suggest that classifiers are likely to benefit from feature selection 

when using HDSD, but at a rather high computational expense. NFS offered somewhat 

competitive performances with RRF at a fraction of the computational expense. The sparsity 

induced by LASSO appears to underestimate the effective dimensionality for the classification of 

AD and MCI using this type of data, leading to the exclusion of informative data points. The 

gains in overall AUC derived from using RRF and NFS (which are more retentive feature 

selection approaches than LASSO) may reflect a lack of uninformative data that would otherwise 

be removed by feature selection. However, there were ultimately significant gains in 

computational efficiency derived from the use of the LASSO which may be beneficial in certain 

time-sensitive settings.  
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Tables 
 
 

Table 2-1.  AUC values for feature-selection-classifier pairings by shape metric, diagnostic contrast and sample size.  
 100% of Observations 50% of Observations 25% of Observations 
 RD JD RD JD RD JD 

Classifier Selection AD MC
I 

A
D 

MC
I 

A
D 

MC
I 

A
D 

MC
I 

A
D 

MC
I 

A
D 

MC
I 

RF NFS 90 76 87 72 89 74 88 72 91 79 89 71 
RF RRF 90 76 87 72 89 75 89 72 88 82 87 68 
RF LASSO 89 77 88 72 87 72 88 72 85 80 85 68 
SVM NFS 91 76 88 75 84 67 82 67 85 68 84 65 
SVM RRF 90 77 87 73 84 68 83 66 81 70 80 62 
SVM LASSO 88 74 88 72 81 62 84 65 79 67 79 65 
NB NFS 84 70 78 66 84 67 81 38 83 71 83 67 
NB RRF 88 73 81 66 87 72 86 68 89 78 86 71 
NB LASSO 88 74 82 68 82 68 83 61 77 77 67 66 
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Figures 
 

 
Figure 2-1. Benchmarking and performance evaluation for variable 
parameterizations of (a-b) feature selection methods and (c) total runtime for all 10-
folds of each pairing of feature selection and classification approach. (a) Plots the 
average runtime of each parameterization of elastic net ! value, RRF ! value and 
tree number. System runtime is given in seconds and is averaged across 10 cross 
validations using the radial distance measures to classify Alzheimer’s disease from 
normal controls. (b) Plots the average AUC associated with each parameterization 
of the feature selection methods. For (c) system runtime is given in hours and is the 
total runtime across all 10 cross validation folds. 
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Figure 2-2. ROC curves and pairwise significance tests across differing sample sizes. Each row 
contains ROCs by diagnostic contrast with shape descriptors column wise. ROC curves are color 
coded to match the type of classifier while line type is matched based on the feature selection 
method used. The lower triangle of each figure is the pairwise Delong’s test for difference in 
AUC. Black intersections indicate significant differences in AUC following FDR. Arrows inside 
each black intersection point to the name of the approach with the significantly larger AUC 
value.   
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Figure 2-3. AUC by diagnostic contrast by shape metric and sample size averaged across (a) 
feature selection method and (b) classifier.  
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Figure 2-4. Summary of performances of classification and feature selection methods across 
sample sizes. (a) Percentage of instances in which classifiers have significantly largest AUC 
value among all comparisons excluding comparisons to itself. (b) Percentage of instances in 
which a given feature selection method offers significantly largest AUC value among all 
comparisons excluding comparisons to itself. (c) Percent of instances in which classifiers 
significantly outperformed other classifiers. (d) Percent of instances in which feature selection 
methods significantly outperformed other feature selection methods. 
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Supplementary figures 
 

 
Figure 2-S1. Bar plots of the percentage of features retained under (a) RRF and (b) LASSO 
stratified by diagnostic contrast, feature set (RD or JD) and percentage of subjects in each 
sample.  
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Figure 2-S2. Mapping of LASSO coefficients from single cross validation fold to subcortical 
surfaces. Since the LASSO feature selection operated by retaining all features with a non-zero 
coefficient all highlighted regions are effectively the feature subset. 
 



	 48	

 
Figure 2-S3. Mapping of RRF-selected regions from single cross validation fold to subcortical 
surfaces. 
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Figure 2-S4. Mapping of RRF importance scores from single cross validation fold to subcortical 
surfaces. 
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Chapter 3: Mapping Abnormal Subcortical Brain Morphometry in an Elderly 
HIV+ Cohort2 
 

Over 50% of HIV+ individuals exhibit neurocognitive impairment and subcortical 

atrophy, but the profile of brain abnormalities associated with HIV is still poorly understood. 

Using surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 

elderly HIV+ participants and 31 uninfected controls. The thalamus, caudate, putamen, pallidum, 

hippocampus, amygdala, brainstem, accumbens, callosum and ventricles were segmented from 

high-resolution MRIs. To investigate shape-based morphometry, we analyzed the Jacobian 

determinant (JD) and radial distances (RD) defined on each region’s surfaces. We also 

investigated effects of nadir CD4+ T-cell counts, viral load, time since diagnosis (TSD) and 

cognition on subcortical morphology. Lastly, we explored whether HIV+ participants were 

distinguishable from unaffected controls in a machine learning context. All shape and volume 

features were included in a random forest (RF) model. The model was validated with 2-fold 

cross-validation. Volumes of HIV+ participants’ bilateral thalamus, left pallidum, left putamen 

and callosum were significantly reduced while ventricular spaces were enlarged. Significant 

shape variation was associated with HIV status, TSD and the Wechsler adult intelligence scale. 

HIV+ people had diffuse atrophy, particularly in the caudate, putamen, hippocampus and 

thalamus. Unexpectedly, extended TSD was associated with increased thickness of the anterior 

right pallidum. In the classification of HIV+ participants vs. controls, our RF model attained an 

area under the curve of 72%.  

																																																								
2	The content of this chapter has been published as B. S. Wade, V. G. Valcour, L. Wendelken- 
Riegelhaupt, P. Esmaeili-Firidouni, S. H. Joshi, B. A. Gutman, et al., "Mapping abnormal 
subcortical brain morphometry in an elderly HIV + cohort," Neuroimage Clin, vol. 9, pp. 564-73, 
2015. 
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Introduction 
 

Combined antiretroviral therapy (cART) has vastly improved the quality of life for people 

infected with human immunodeficiency virus (HIV), allowing many to live to an advanced age. 

The over 55 demographic is the most rapidly growing age group of HIV+ individuals (Hall et al, 

2008). Yet, following the increased life expectancy, numerous reports studying chronic infection 

indicate that HIV positivity independently contributes to and synergistically exacerbates age-

related neurodegeneration (Canizares et al, 2014; Cohen et al, 2015) which in many cases results 

in dramatic cognitive declines and decreased quality of life, with upwards of 50% proceeding to 

develop a degree of HIV-associated neurocognitive disorders (HAND) (Cysique et al, 2004; 

Simioni et al, 2010). Several potential mechanisms for neuronal atrophy have been reported 

including chronic inflammation, interrupted metabolic processes, immunological senescence, 

heightened risk for cardiovascular disorders and even side effects of cART. For a more detailed 

review of these factors we refer the reader to (Canizares et al, 2014). 

Numerous studies support the view that central nervous system infection parallels the aging 

process. The Multicenter AIDS Cohort Study (MACS), implementing a longitudinal study with a 

5-year follow-up, identified an interaction between HIV status, age and time whereby middle-

aged and elderly infected participants exhibited a significant decline in executive function over 

time relative to uninfected controls who showed no reduction in performance with respect to 

time (Sacktor et al, 2010). In contrast, (Cysique et al, 2011) observed that age and HIV status 

independently contributed to cognitive decline but were unable replicate an interaction between 

the two.  

 Literature from structural MRI widely reports age disproportionate degrees of atrophy 

among HIV+ cohorts. (Becker et al, 2012; Thompson et al, 2005; Towgood et al, 2012) have 
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reported both HIV-related reductions in frontal grey matter. HIV and age associated reductions 

in subcortical structures are also widely reported (Ances et al, 2012). Diffusion tensor imaging 

has revealed interactive effects of HIV status and age in the reduction of fractional anisotropy 

and increase of mean diffusivity within subcortical white matter and frontal regions (Chen et al, 

2009). Magnetic resonance spectroscopy reports also suggest that CNS HIV infection mimics the 

effects of aging. (Chang et al, 2004; Harezlak et al, 2011) both reported higher choline 

compounds (CHO) : total creatine (CR) and myoinositol (MI) : CR ratios in the basal ganglia 

associated with aging and HIV status.  

Given the complications presented by the synergistic effects of aging and HIV, it is 

important to further understand the morphological differences that occur between normal aging 

and aging influenced by HIV infection. While several studies have investigated volumetric 

differences in elderly HIV+ cohorts, a thorough description of shape differences in elderly HIV+ 

subjects remains to be explored. Local descriptions of shape variation may offer an additional 

characterization of HIV-related neurodegeneration by describing localized regions of tissue 

atrophy and expansion. This level of description could be leveraged as an additional biomarker 

for the detection of aberrant degeneration, allowing clinicians to offer more targeted 

interventions when needed. 

We report on both the subcortical volumetric and 3D surface-based shape abnormalities 

in a cohort of 63 elderly HIV+ subjects scanned with high-resolution structural magnetic 

resonance imaging (MRI) as part of the UCSF (University of California, San Francisco) HIV 

Over 60 Cohort study. To study subcortical shape, we analyzed: (1) the log of the Jacobian 

determinant (JD) indexed over structures’ surface coordinates and (2) radial distances (RD) of 

structure surfaces from a medial curve. JD maps indicate localized atrophy or dilation of a 
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surface area. Complementary to JD, RD indicates the local “thickness” of the structure. We 

tested associations of morphological descriptors with neuropsychological measures: the 

Wechsler Adult Intelligence Scale (WAIS) and Wide Range Achievement Test (WRAT) scale. 

We also tested for associations with several common HIV clinical indices: nadir CD4+ T-cell 

count (nCD4), time since diagnosis (TSD; in years), and HIV RNA level in plasma. We 

hypothesized that subcortical shape analysis would reveal regions of significant atrophy in HIV+ 

people relative to matched controls and in relation to clinical markers of HIV.  

 We additionally explored the use of shape and volume features in a machine learning 

framework to classify participants as HIV+ or HIV- using a random forest (RF) classifier; a class 

of supervised machine learning algorithms that has gained popularity for its accuracy, ease of 

use, and computational efficiency. Here, the application of machine learning based on brain 

morphometry is not intended as a potential means of clinical HIV diagnosis; rather the ability to 

robustly distinguish HIV status based on brain-derived measures would validate that observed 

differences are highly associated with infection status and potentially relevant to the prediction 

of further HIV-related neurological atrophy. To our knowledge this is the first study to explore 

classification of HIV status based solely on brain morphometry.  

Methods   

Subjects 
 

A sample of 63 elderly HIV+ subjects (2 female; age=64.68 ± 4.57) and 31 uninfected 

elderly controls (4 female; age=65.35 ± 2.21) were recruited as part of a San Francisco Bay Area 

study of elderly people with HIV. HIV+ participants had an average nCD4 count of 204. 96 ± 

154.85 cells/mm3, an average TSD of 20.39 years ± 6.31 years. 24 HIV+ participants had 

detectable levels of viral RNA (above 50 copies/mm3). Among those with detectable HIV RNA, 
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the average viral load was 16,380.58 ± 76,418.68 copies/mm3. All subjects gave informed 

consent to take part in the study. Table 3-1 outlines the demographic and clinical characteristics 

of the participants.  

Image acquisition 
 

Each subject underwent a whole-brain high-resolution magnetic resonance imaging 

(MRI) anatomical brain scan on a Siemens 3 Tesla TIM Trio scanner with a 12-channel head 

coil. T1-weighted MP-RAGE sequences (240 x 256 matrix; FOV = 256mm; 160 slices; voxel 

size = 1.0 x 1.0 x 1.0 mm3; TI = 900 ms; TR = 2300 ms; TE = 2.98 ms; flip angle = 9°.  

Morphological descriptors 
 

Previously validated FreeSurfer (Fischl et al) workflows, including non-brain tissue 

removal, intensity normalization and automated volumetric parcellation based on probabilistic 

information from manually labeled training sets, were used to segment the bilateral thalamus, 

putamen, pallidum, amygdala, accumbens, caudate and hippocampus from the raw MRIs. All 

segmentations were visually inspected to ensure their quality.  

The parameterization of each surface was obtained using the “medial demons” method 

detailed in (Gutman et al, 2015; Gutman et al, 2012). Briefly, each surface was conformally 

mapped to the spherical domain. The spherical maps were rigidly rotated to a probabilistic atlas. 

Next, Spherical Demons (SD) (Gutman et al, 2013) was used to non-linearly register the 

spherical maps on the basis of curvature. Two surface-based functions were defined to do this; 

first, the global orientation function, defining the direction of the surface and, secondly, the local 

thickness of the surface with respect to a skeletonized medial core. Finally, SD was implemented 

again using both the newly defined medial core in conjunction with surface-based curvature to 

match each surface to the atlas.  
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From this process, two shape features are defined at each vertex: 1) radial distance (RD), 

a proxy for thickness and 2) the log of the Jacobian determinant (JD) which indicates surface 

dilation or atrophy. Among all 14 brain region surfaces, there were a total of 27,120 vertices.   

Statistical methods 
 

Multiple linear regression was used to model influences of HIV status, nCD4 count, viral 

load, TSD, HAND status and drug abuse history on the morphometry of each surfaces. The 

general linear model assumed the following form, 

Y =  β! +  β! ∙Main Effect+  β!  ∙ Age+  β!  ∙  Sex+  β! ∙  ICV+  ϵ (1) 

where Y is global volume, for one of the regions, or the locally computed JD or RD; Main Effect 

is one of HIV status, nCD4 count, viral load or TSD, HAND or drug abuse history. This model 

was fitted at each of the surface vertices when the outcome of interest was the shape measure, JD 

or RD. HIV status and viral load were each modeled dichotomously; HIV status was coded as 

positive or negative and viral load as detectable (above 50 viral RNA copies/mm3) or 

undetectable (i.e., binary). nCD4 and TSD were modeled continuously. HAND status and drug 

abuse history were modeled as positive or negative. HAND encompasses a range of impairments 

including asymptomatic neurocognitive impairment (ANI), mild neurocognitive disorder (MND) 

and HIV-associated dementia (HAD); a subject having any of these was considered HAND 

positive in the regression model. Similarly, due to the small number of subjects having a history 

of drug abuse we simply model any of, marijuana, cocaine, crack or methamphetamine as having 

a history of abuse.  

 Associations of morphometry and cognitive measures were modeled using the following 

general linear model,  
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Y =  β! +  β! ∙Main Effect +  β!  ∙ HIV Status +  β! ∙  Age +  β!  ∙  Sex +  β! ∙  ICV  

+ β! ∙ Main Effect ∙ HIV Status +   ϵ (2) 

where Main Effect is one of WAIS or WRAT score modeled continuously and HIV Status is a 

dichotomous term.  

We controlled for multiple comparisons using the standard false discovery rate (FDR) 

method with a false-positive rate of 5% (q = 0.05) (Benjamini and Hochberg, 1995). FDR was 

performed separately for volumetric and shape-based tests. For the family of volumetric tests, 

FDR was applied to the set of all subcortical structures. For shape analyses we applied an FDR 

correction within the family of all tests performed on a single surface; correcting for separate 

tests within each surface.  

Random forest classification 
 

In addition to mapping differences in subcortical morphometry, we wanted to investigate 

the efficacy of our morphometric descriptors as input features in a machine learning, 

classification context. Here, we describe the RF framework used in this study. 

Developed and detailed by (Breiman, 2001), RFs are supervised classifiers composed of an 

ensemble of classification and regression trees (CART) and use the majority vote of its terminal 

nodes to predict the class of a given observation. RF CARTs are constructed from a bootstrapped 

sample of approximately 2/3 of the original observations. At each node of the CART, a random 

subset of ! features is assessed. Here the Gini impurity index is calculated for each feature at 

the given node, v. Gini(v) is given by 
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Gini v =  p!! (1− p!!) 
!

!!!
 

(3) 

where !!! is the proportion of observations belonging to class C at node v. The objective of the 

RF algorithm is to split each CART node by the feature !! which maximizes the class purity of 

the resultant child nodes, !! and !!. This is done by choosing the maximum Gain(X!, v) given 

by, 

Gain (X!, v) =  Gini X!, v −  ω!Gini X!, v! −ω!Gini X!, v! , (4) 

 

where !! and !! are the proportions of observations in node v assigned to child nodes !! and !!, 

respectively. The importance I, of feature !! is given by the summation of the decreases in the 

Gini index at each node where the CART was partitioned by !! (Gray et al, 2013). That is, 

I!! =  1
total tree number  Gain X!, v ,

!∈!!!

 
(5) 

where !!! indicates the set of all nodes split by !!. Each CART was grown to its full, unpruned 

extent. 

 Our RF model was implemented in R (R Core Team, 2014) and used the RRF package 

(Deng, 2013). The RF was composed of 5000 trees. We trained the model on half of the 

participants, stratified by HIV status, using the remaining half for cross validation. The training 

set consisted of 28 HIV+ and 15 HIV- participants while the test set included 27 HIV+ and 15 

HIV- participants. The RF model was constructed using a combination of all morphological 

features; all volumetric, RD and JD values were entered as predictors of HIV status.   

 The significance of the RF was assessed using a permutation test. This was done by first 

computing the observed area under (AUC) the receiver operating characteristic curve (ROC) 
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from the prediction of the test set. This observed AUC was compared to a null distribution of 

1000 AUC values resulting from the classification of HIV status based on randomly shuffling the 

labels associated with the observed prediction. The proportion of AUCs in the null distribution 

that were larger than the observed AUC is the p-value associated with the null hypothesis that the 

observed AUC is less than or equal to 50%, i.e. classification is no better than chance.  

 As a follow-up analysis we constructed RF classifiers on feature sets composed uniquely 

of either RD, JD or volumetric measures. We corrected for the set of all classifier p-values using 

FDR correction for multiple comparisons.  

Results 
 

We found several associations between subcortical morphometry and HIV status and 

clinical parameters. In the following sections we outline the observed morphometry associated 

with HIV status, nadir CD4 count, detectability of viral load and TSD.  

HIV status 
 

Volumetrically, the callosum (!!" = -290, -10.7%, t = -2.81, p < 0.05), left pallidum (!!" 

= -180, -7.6%, t = -3.47, p < 0.01), left putamen (!!" = -330, -5.7%, t = -2.40, p < 0.05), left 

thalamus (!!" = -390, -5.9%, t = -2.91, p < 0.05) and right thalamus (!!" = -440, -6.3%, t = -

3.00, p < 0.05) were all significantly smaller in HIV+ participants. Ventricular spaces were, on 

average, enlarged in HIV+ subjects. Specifically, the left lateral (!!" = 5100, 12.7%, t = 2.88, p 

< 0.05), right lateral (!!" = 3900, 8%, t = 2.41, p < 0.05) and third (!!" = 420, 15.5%, t = 3.68, p 

< 0.01) ventricular spaces were all significantly larger in HIV+ participants. Figure 3-1 

illustrates volumetric differences between HIV+ and HIV- participants. All units for volumetric 

measures are in mm3. 
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 Shape mapping revealed widespread regions of atrophy in the HIV+ cohort. Specifically, 

RD maps, illustrated in Figure 3-2(a), identified significant atrophy of the bilateral medial aspect 

of the caudate head; regions of atrophy and expansion were observed in the posterior tail regions 

as well. Several regions of the bilateral pallidum, left putamen and right inferior thalamus and 

inferior hippocampus were also significantly atrophied in HIV+ participants. JD mapping, 

depicted in Figure 3-2(b), corroborated the observed widespread atrophy in a set of regions only 

partially overlapping with those found in the RD maps. The JD maps highlight atrophy laterally 

and medially in the bilateral thalamus, anteriorly in the left putamen and right accumbens and in 

the inferior-posterior right hippocampus. Morphometry differences outside of these regions were 

below the set statistical threshold of significance.  

Nadir CD4+ counts  
 

There were no detectable volumetric or shape-based associations between nCD4 counts 

and morphometry.  

Viral load 
 

No significant shape or volume differences were found between HIV+ participants with 

and without detectable viral RNA levels.  

Time since diagnosis 
 

The volume of the right pallidum (!!"#$%&'( = 6.3, t = 2.43, p > 0.05) was positively 

associated with TSD prior to correction for multiple comparisons but failed to survive FDR. 

Corroborating this, both RD and JD maps of the right pallidum indicate significant local 

expansion in its anterior aspect in relation to increased TSD; RD and JD results survived FDR 

(see Figure 3-3).  
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Drug abuse history 
 
 No significant associations were found between brain morphometry and drug abuse 

history.  

HIV-associated neurocognitive disorder 
 

 HAND revealed no observable associations with brain morphometry.  

Cognitive measures 
 

Both WAIS and WRAT scores were significantly larger in the HIV- cohort, t(54) = -3.97, 

and t(70) = -3.43, respectively, both p < 0.001. The interaction of HIV status and WAIS or 

WRAT score was not significantly associated with volume.  However, the thickness of the left 

caudate was widely associated with the interaction of HIV status and WAIS score. Figure 3-4 

maps both the main effect of WAIS score (c-d) and the interaction of HIV status and WAIS 

score (a-b) on subcortical thickness. Figure 3-4 (c-d) indicates that WAIS is significantly 

positively associated with left caudate thickness in the control group. Figure 3-4(a-b) indicates 

that the magnitude of the association is significantly reduced in the HIV+ cohort. The direction 

of the association between thickness and WAIS score is shown to be inverse in (e-f), which maps 

the association only within HIV+ participants. No significant associations between shape and 

WRAT score were observed.  

HIV status classification 
 

Classification of HIV status using the full set of morphology descriptors with a 2-fold 

cross validation yielded an area under the receiver operating characteristic (ROC) curve (AUC) 

of 72.3% (q = 0. 025). We also used a more computationally expensive leave-one-out cross 

validation, but this did not improve our classifier’s performance, giving an AUC of 71.9%. 
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Again, using 2-fold cross validation, we investigated the performance of feature subsets 

comprised exclusively of one of, volume, RD or JD features. Figure 3-5 plots the ROC curves 

for each set of classifier inputs. The volumetric subset afforded an AUC of 70.4% (q = 0.025); 

RD 72.3% (q = 0. 025) and JD 65.8% (q = 0.080).  

 In Figure 3-6 we mapped the importance scores of each RD and JD value derived from 

the RF model to the corresponding surface location, providing a visual representation of how 

each region’s shape-based morphometry drove the RF model. Figure 3-7 complements this by 

plotting the importance score for each region; RD and JD-based importance scores were 

averaged within each surface. Figure 3-7 indicates that RD features were weighted more heavily 

than their JD counterparts. We also note that the only volumetric measure that was relevant to 

the RF was the left pallidum. Comparing Figure 3-6 to Figure 3-2, there is widespread 

correspondence between regions considered important to the RF classifier and regions that were 

statistically significant in modeling the effects of HIV. While this is perhaps not surprising, it 

serves to validate both sets of findings.  

Discussion 
 

The development of cART has allowed for HIV infected individuals to live to advanced 

ages and as a result it is estimated that the proportion of HIV+ people over the age of 45 years is 

close to 50% and the demographic of over 55 years is the most rapidly growing among those 

with HIV (Cohen et al, 2015; Hall et al, 2008). While cardiovascular diseases such as stroke and 

hypertension (Gorelick et al, 2011) as well as depression (Vink et al, 2009) and diabetes 

(McBean et al, 2004) are all common comorbidities associated with aging and may contribute to 

neurodegeneration,  accumulating evidence indicates that HIV exacerbates and uniquely 

contributes to age-related neurodegeneration (Holt et al, 2012). Several lines of evidence have 
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also suggested that particular cART therapies may have neurotoxic properties that affect 

cognition and brain aging (Ances et al, 2008; Robertson et al, 2010; Schweinsburg et al, 2005). 

The advancing age of the HIV+ population and the suggested viral contribution to the aging 

process underlies the importance of characterizing the progression of brain atrophy in the older 

HIV population. The development of biomarkers to track the extent of the viral effects in the 

central nervous system may help to further inform clinicians in selecting the appropriate line of 

therapy for a particular patient. Using standard volumetric and novel surface-based shape 

descriptors we were able to identify several important HIV-related patterns of brain 

abnormalities.  

Previous studies have noted that HIV has a proclivity for subcortical regions such as the 

basal ganglia (Aylward et al, 1995; Aylward et al, 1993; Berger and Nath, 2000; Gottumukkala 

et al, 2014) where the virus may replicate and maintain a reservoir despite active cART therapy. 

Atrophy of these subcortical regions is commonly reported in HIV-infected individuals. Other 

reported abnormalities of subcortical structures include hypermetabolism of the thalamus and 

basal ganglia (Drevets, 2001), a reduction in dopaminergic transporters in the putamen and 

striatum and increased mean diffusion in the putamen (Chang et al, 2008). Corroborating these 

reported effects, we observed that HIV positivity was associated with greater subcortical atrophy, 

particularly in the caudate, putamen, pallidum, hippocampus and callosum.  

Unexpectedly, we observed a dilation in the anterior aspect of the right pallidum in 

relation to extended TSD. Several subjects in our HIV+ cohort had a history of 

methamphetamine use which has been linked to enlarged subcortical volumes (Chang et al, 

2005; Jernigan et al, 2005), however we did not observe an association between drug abuse 

history and subcortical morphometry. Another possible concern is that TSD could be confounded 
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by participant age. However, this seems unlikely given the relatively low standard deviation of 

age among the HIV+ cohort (SD = 4.57).  

WAIS scores were differentially associated with the thickness of the left caudate with a 

positive association within the control group and a negative association within the HIV+ group. 

The reason for this inverse association remains unclear.  

We expected to see patterns of morphometry associated with common clinical measures 

linked to HIV such as viral load and nadir CD4 count, but none of these associations were 

significant. This may be due, in part, to limited power, as all subjects were on cART with 

relatively high CD4 counts and either undetectable or very low plasma HIV RNA levels. To 

alleviate this, our ENIGMA consortium is beginning a larger-scale project to relate clinical 

markers of HIV disease burden to brain measures across multiple cohorts (Jean-Paul Fouche et 

al, 2015).  

 In addition to mapping abnormal subcortical morphometry, we used the morphological 

descriptors to predict HIV status in a RF framework. While a simpler logistic classifier was 

considered the dimensionality of our feature set renders these simpler models less tractable and 

required initial feature selection and feature scaling to allow convergence. Given the requirement 

of extra steps for a logistic model and the natural added value of importance scores, the RF was a 

natural choice. This type of predictive framework helps to verify that observed group differences 

robustly distinguish HIV status. Given the precision of a blood test to diagnose HIV, classifiers 

based on brain morphometry are not meant to identify infected individuals; rather the added 

benefit is the identification of potential biomarkers of interest to track the progression of the 

deleterious viral effects in the brain. In mapping the importance of each surface-based feature 

derived from the RF back onto the subcortical surfaces, we were able to observe a large degree 
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of correspondence between thresholded statistical maps and feature importance. This 

correspondence between importance weightings and statistically differing regions mutually 

validates the observed profile of changes in HIV participants as well as the potential to use these 

regions as biomarkers for HIV’s effect in subcortical brain regions. The exclusive use of RD 

features moderately outperformed the exclusive use of volume as predictors, both of which 

outperformed the JD-only classifier though no feature-specific classifiers outperformed another 

at the alpha = 0.05 level of significance.  

 Analysis of the importance scores resulting from the random forest suggests several 

things. First, we observed that RD (thickness) features were on average more important than JD 

or volumetric features. In particular thickness of the left thalamus, left pallidum and right caudate 

were highly important in discerning HIV status. Patterns of importance were similar for JD 

features but to lesser extents than RD. The volume of the left pallidum was the single most 

informative feature; yet no other volumetric measures were considered important after taking 

into account the shape descriptors.  

Because the present study is not longitudinal in design, we are unable to address 

questions of accelerated brain aging caused by HIV. However, we do observe widespread yet 

concentrated regions of atrophy in the subcortical regions of interest among HIV+ participants 

that are age disproportionate. The primary regions of advanced atrophy seem concentrated in the 

basal ganglia, thalamus and caudate. This is a departure from atrophy patterns observed in 

common forms of neurodegeneration such as Alzheimer’s disease which principally targets 

hippocampal regions. However, as previously noted, increased atrophy of subcortical brain 

regions has been widely reported in HIV neuroimaging literature. Several studies have also 

observed decreased cognitive functions in vertically infected children that increase with disease 
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severity (Chase et al, 2000; Le Doare et al, 2012; Smith et al, 2006) suggesting that neurological 

dysfunction is a factor in infection at any age. It would be tenuous to directly compare observed 

differences between these age groups since study designs and protocols differ widely.   

We were notably unable to identify a relationship between brain morphometry and viral 

load, nCD4 count, HAND status or drug abuse history. As this is a cohort of elderly subjects, 

many of whom were infected prior to the development of modern cART yet managed to survive, 

the survivorship effect may generally limit our abilities to find such associations; that is it is 

possible that these individuals are generally healthier. This also limits our ability to generalize 

these findings to a younger HIV+ population. nCD4 counts have previously been linked to lower 

regional brain volumes (Hua et al, 2013) in a younger cohort. Our lack of observed associations 

with HAND status also likely reflects the fact that none of our cohort had developed HAD; rather 

14 had ANI while 16 had MND, far milder forms of HAND. Drug abuse history was similarly 

limited by the fact that few of our subjects had a history of drug abuse and those that did were 

distributed among different classes of drugs.  

Conclusions 
 

We have characterized patterns of abnormal brain morphometry in an elderly HIV+ 

cohort. The increased atrophy observed in HIV+ patients lends support to the idea that HIV 

contributes to age-disproportionate brain aging. Regions of atrophy were localized by vertex 

wise descriptions of thickness, dilation and contraction. Pronounced abnormalities were found in 

the medial head of the caudate, the bilateral pallidum and the putamen and the thalamus. Several 

other regions exhibited significant abnormalities as well. Ventricular spaces were enlarged in the 

HIV+ cohort. We also observed a paradoxically positive association between the TSD and the 

size of the right anterior pallidum that was not attributable to substance abuse history. This effect 
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may be a product of medication use or even the survivorship effect, however neither effect can 

be evaluated with this cohort as all are on stable cART and, of course, survivors.  Infection status 

was classifiable using only subcortical morphometry with an AUC of 72.3%. Classification was 

driven heavily by the thickness of pallidal, thalamic and caudate surfaces. Future studies should 

further develop the use of these descriptors to aid in tracking the progression of HIV’s effect on 

the aging brain. 
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Tables 
 
Table 3-1. Demographic and Clinical Characteristics 
 Patients, N = 63 Controls, N = 31 
Demographics   
Age, mean (SD), y 64.68 (4.57) 65.35 (2.21) 
Gender (M/F) 61/2 27/4 
Adjusted education, years* 16.09 (2.25) 17.53 (2.09) 

Clinical Information   
CD4, mean (SD), cells/mm3  516.44 (212.30)  -- 
Nadir CD4, mean (SD), 
cells/mm3 

204.96 (154.85) -- 

Time since diagnosis, mean 
(SD), y 

20.39 (6.31) -- 

Viral load, mean (SD), 
copies/mm3 

16,380.58 (76,418.68) -- 

Detectable viral load, yes/no 24/39 -- 
Receiving cART, yes/no 63/0 -- 
History of diabetes  8 0 
History of depression* 28 8 
APOE Allele, yes/no/unknown 12/51/0 6/13/12 

Cognitive Information   
ANI 14 -- 
MND 16 -- 
HAD 0 -- 
WAIS Score, mean (SD)*  48.77 (10.73) 57.27 (7.48) 
WRAT Score, mean (SD)* 64.05 (4.26) 66.50 (1.93) 

Substance Abuse History none/recent/remote  
Marijuana 61/0/2 -- 
Cocaine 55/0/8 -- 
Crack 62/0/1 -- 
Meth 57/0/6 -- 
Alcohol 50/0/13 -- 
Abbreviations: ANI = Asymptomatic Neurocognitive Impairment; MND = Mild Neurocognitive 
Disorder;  HIV-associated Dementia. *Significant difference between HIV status. WAIS = 
Wechsler Adult Intelligence Scale; scores available for N=57 patients and N=22 controls. 
WRAT = Wide Range Achievement Test; scores available for N=57 patients and N=20 controls.  
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Figures 
 

 

Figure 3-1. Scatterplot of volumetric differences between HIV+ and HIV- participants. 
The plots are divided into rows showing structures in the left hemisphere (top), midline 
(middle) and right hemisphere (bottom). All plots have been centered and scaled. The 
HIV status coefficient (in mm3) resulting from Equation (1) is given for each plot. 
Volumetric differences that survive FDR correction are highlighted in red.   
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Figure 3-2. FDR-thresholded t-value maps of the HIV+ vs. HIV- contrast. (a) maps the 
significant differences in RD while (b) maps significant differences in JD. Images are 
shown in radiological orientation (i.e. left-right flipped), orientations are provided beside 
each set of surfaces.  
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Figure 3-3. FDR-thresholded t-value maps of the association between TSD and (a) RD 
and (b) JD. Images are in radiological orientation (i.e. left-right flipped). The first column 
shows an anterior view while the second is the medial view of the right hemisphere 
structures. 
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Figure 3-4. FDR-thresholded t-value maps of (a-b) association of thickness and the 
interaction of WAIS score and HIV Status, (c-d) the main effect of WAIS on thickness 
and (e-f) the association of WAIS and thickness within the HIV+ cohort only. 
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Figure 4. FDR-thresholded t-value maps of (a-b) association of thickness 
and the interaction of WAIS score and HIV Status, (c-d) the main effect
of WAIS on thickness and (e-f ) the association of WAIS and thickness
within the HIV+ cohort only. 
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Figure 3-5.  ROC curves and associated AUC values for random forest classification 
using the full set of morphological features. ROCs for feature subsets are also provided.  
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Figure 3-6. Mapping of random forest importance scores in the classification of HIV 
status to subcortical surfaces. As all features were included in the same RF model, their 
importance is with respect to all other features. (a) RD and (b) JD feature set importance 
scores. Images are in radiological orientation (i.e. left-right flipped), orientations are 
provided beside each set of surfaces. 
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Figure 3-7. Average random forest importance scores by region and feature set.  
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Chapter 4: Mapping Longitudinal Subcortical Brain Morphometry in 
Children with HIV3 

 
The trajectory of brain development in perinatally-infected HIV+ children is poorly 

understood and neurodevelopmental measures continue to demonstrate altered trajectories 

despite availability of combination antiretroviral therapy (cART). Subcortical and cortical 

atrophy are widely reported in adults; yet, corresponding characterizations of infected pediatric 

cohorts remains unclear. Using surface-based shape and volumetric analyses, we mapped 

subcortical morphometry in 43 HIV+ (mean age, 11.09 years) and 54 HIV- (11.06 years) Thai 

children who underwent structural magnetic resonance imaging at baseline and approximately 52 

weeks later. We modeled cross-sectional and longitudinal abnormalities of the accumbens, 

amygdala, putamen, pallidum, thalamus, caudate and hippocampus related to HIV and cART 

status, current CD4 count and viral load using mixed and fixed effects models. Smaller baseline 

size of the bilateral pallidum was observed in HIV+/cART+ relative to HIV- controls whereas 

the thickness of the putamen, amygdala and thalamus was increased in cART-naïve children. 

Accelerated gains in the thickness of the right lateral pallidum and surface area of the left 

anterior accumbens were observed in the HIV+ cohort. Among HIV+ children we observed 

unexpected inverse associations between the shape and volume of the left pallidum and current 

CD4 counts that may reflect moderated inflammation in more well-preserved or recovered 

immune systems. Our findings corroborate reports in adult cohorts of the basal ganglia’s 

vulnerability to HIV infection and suggest that infection also affects pediatric brain development.  

 

 

 
																																																								
3 The content of this chapter is currently under review in the journal Human Brain Mapping.  
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Introduction 
 

Perinatally acquired HIV infection is a major concern in the developing world. Long-

term survival and quality of life of children perinatally infected with HIV has improved 

dramatically with better access to combination antiretroviral therapy (cART). Pediatric HIV-

related encephalopathy has decreased dramatically in the cART era (Patel et al, 2009; Raskino et 

al, 1999; Shanbhag et al, 2005), down to 1.6% from a prevalence of 76% prior to cART 

(Chiriboga et al, 2005; Cooper et al, 1998; Epstein et al, 1986; Patel et al, 2009; Tepper et al, 

1998). However, as the number of chronically-infected children increases, there is a need to 

understand how HIV may alter early brain development. Despite sustained cART regimens, HIV 

infection is known to lead to cognitive and fine motor impairments (Brew, 2004; Heaton et al, 

1995; Sacktor et al, 2002; Van Rie et al, 2008) that, in adults, are commonly associated with 

degeneration of regions of the basal ganglia, associated white matter and cortical regions 

(George et al, 2009; Safriel et al, 2000).  

We and other groups have reported abnormal cortical and subcortical brain morphometry 

in HIV+ adult cohorts related to HIV serostatus and HIV-related clinical factors such as CD4 t-

cell count, viral load and reception of cART (Ances et al, 2012; Becker et al, 2012; Fennema-

Notestine et al, 2013; Jernigan et al, 2011; Kallianpur et al, 2013; Ragin et al, 2015; Wade et al, 

2015; Wilson et al, 2015). HIV crosses the blood-brain barrier and invades the central nervous 

system rapidly after infection (Epstein and Gelbard, 1999; Li et al, 2014), typically via infected 

monocytes during chronic disease (Gartner, 2000; Kim et al, 2003; Koenig et al, 1986) which 

subsequently produce proinflammatory cytokines such as TNF that additionally cause microglia 

and astrocyte activation (Hong and Banks, 2015). Astrocyte and microglia activation commonly 

result in excitotoxicity through their release of excitotoxic amino acids, chemokines and 
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cytokines (Gendelman et al, 1994; Langford and Masliah, 2001; Zahr et al, 2014). Chronic 

inflammation resulting from this confluence of underlying processes is considered the primary 

mechanism for HIV-related neurodegeneration though other mechanisms may include disrupted 

metabolic processes, and even neurotoxic side effects of prolonged cART exposure (Canizares et 

al, 2014). Additionally, while cART effectively reduces viral replication it does not restrict the 

early production of Tat protein (Anderson et al, 2002; Kure et al, 1990; Puccini et al, 2015) 

which, when replicated throughout the CNS, continues to produce cytokines and chemokines 

which cause further inflammatory responses (Ellis et al, 2007; Lu et al, 2011; Masliah et al, 

1996).  

          As well as the observed effects of cART, several clinical markers have been related to 

both HIV infection and cognitive performance. Higher HIV RNA (viral load) and lower nadir 

CD4 cell counts have repeatedly been linked to more impaired cognitive performance (Martin et 

al, 2006; Nachman et al, 2012; Smith et al, 2012; Wood et al, 2009). In a study of over 200 

HIV+ adults, lower regional brain volumes were associated with lower nadir CD4 counts, though 

current CD4 count has been differentially associated with brain integrity with some reporting no 

associations (Hua et al, 2013) and others reporting somewhat counterintuitive inverse 

associations between CD4 count and gray and white matter volumes in people with HIV 

(Jernigan et al, 2011).  

Most studies of HIV-related neurodegeneration, as previously discussed, have reported 

on abnormalities in adult cohorts, with considerably fewer studying the effects of pediatric 

infection. In a cohort of 40 HIV+ youths, Uban reported globally reduced fractional anisotropy in 

the presence of increased mean and radial diffusivity among perinatally infected relative to 

uninfected youths (Uban et al, 2015). More severe infection was associated with reduced 
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fractional anisotropy of the right inferior fronto-occipital and left uncinate fibers. Higher peak 

viral loads were also inversely associated with working memory performance among the HIV+ 

cohort. In a study comparing developmental outcomes of HIV exposed but uninfected (HEU) to 

HIV unexposed and uninfected (HUU) children Jahanshad reported no volumetric or diffusion-

based differences between HEU and HUU children (Jahanshad et al, 2015). A recent study of 50 

children aged 6 – 15 years receiving cART reported decreased fractional anisotropy in 

association with second-line cART reception, increased mean diffusivity with respect to 

increased viral load as well as increased axial diffusivity in children with higher viral loads as 

well as those on second-line cART (Hoare et al, 2015). Increased radial diffusivity was 

additionally associated with lower CD4 counts. In a review of existing literature on perinatally 

HIV infected children, Laughton reported generally reduced cognitive performance among HIV+ 

children including reduced processing speed and visual spatial performance (Laughton et al, 

2013). Puthanakit reported on 284 Thai and Cambodian children, of which the current study is a 

subset, observing that neurodevelopmental outcomes as measured by Beery Visual Motor 

Integration, Purdue Pegboard, Color Trails and Child Behavioral Checklist, Wechsler 

Intelligence Scale and Stanford Binet Memory test did not significantly differ between those 

with early ART initiation (i.e. when CD4 counts were 15-24%) or those who were deferred 

(when CD4 < 15%) (Puthanakit et al, 2013). However, both early and deferred enrollees 

performed worse than HIV- children on the Beery Visual Motor Integration, Binet memory and 

Child Behavioral Checklist and had lower full-scale IQ scores.  

In the current study we investigate longitudinal and cross sectional neurodevelopment in 

a cohort of 43 perinatally-infected HIV+ and 53 HIV-uninfected Thai children between the ages 

of 6 and 16 from Bangkok and Chang Mai, Thailand, who constitute a subset of the children 
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reported on previously in the Pediatric Randomized to Early versus Deferred Initiation in 

Cambodia and Thailand (PREDICT) study (Puthanakit et al, 2012). Our analysis spans an 

approximate one-year timeframe and aimed to determine whether HIV seropositivity, reception, 

timing or duration of cART, baseline CD4 count and baseline viral detectability are related to 

developmental trajectories of subcortical brain structures. Importantly, because participants were 

enrolled to cART based on their CD4 counts being either between 15-24% or below 15%, as in 

the PREDICT parent study, we do not separately model nadir CD4 count as it is implicitly 

synonymous with the current CD4 count. In order to capture both gross and potentially subtle 

abnormalities in developmental trajectories we model both the volume and high-dimensional 

shape-based characteristics of the accumbens, amygdala, caudate, hippocampus, pallidum, 

putamen and thalamus using a series of both fixed and mixed effects regression models to 

capture the contributions of HIV positivity and interactions between clinical factors to 

subcortical brain development. These high-dimensional shape features, specifically local 

thickness and relative surface area dilation, have previously been successfully leveraged to 

model abnormal morphometry in elderly HIV+ individuals relative to age-matched controls 

(Wade et al, 2015), characterize subcortical morphometry in patients with major depressive 

disorder receiving electroconvulsive therapy (Wade et al, 2016), identify biomarkers of 

Alzheimer’s disease (Gutman et al, 2015c) and identify the degree of genetic heritability of basal 

ganglia and limbic structures’ morphometry (Gutman et al, 2015b).  

We hypothesized that the trajectories of subcortical structures in HIV-infected children 

would be diminished, and structures will be slower to develop, relative to uninfected children 

and that more extreme clinical measures such as higher viral RNA or lower CD4 counts would 

be associated with more severe morphological abnormalities. We hypothesized that the baseline 
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volumes of subcortical structures will be generally reduced in HIV+ children. Additionally, we 

expected that differences in developmental trajectories associated with HIV status, cART status, 

or differences associated with various clinical measures may be subtle or localized in particular 

regions of structures and therefore detected more readily by highly sensitive shape-based rather 

than traditional global volumetric measures. In addition to the main effects of HIV and cART 

status as well as HIV-related clinical measures, we explored differential patterns of brain 

morphometry between HIV- versus HIV+/cART+ and HIV- versus HIV+/cART- children. In 

this association we expected to observe more pronounced volumetric reductions in HIV+/cART- 

children than HIV+/cART+ relative to controls. To our knowledge this is the first study reporting 

on longitudinal shape-based abnormalities in an HIV+ pediatric cohort.  

Methods 
 

Participants 
 

A sample of 43 HIV+ (baseline age = 11.09 +/- 2.36; 20 female; 32 on stable cART) and 

54 HIV- (baseline age = 11.06 +/- 2.79; 31 female) Thai participants were recruited as part of the 

ongoing study of HIV-infected children, known as PREDICT: Pediatric Randomized to Early 

versus Deferred Initiation in Cambodia and Thailand (Puthanakit et al, 2013; Puthanakit et al, 

2012). Table 4-1 outlines the participants’ demographic and clinical characteristics at the 

baseline time point. The HIV+ children were initially selected for the parent (PREDICT) study 

due to having remained cART-naive at the time of enrollment and randomization, which 

occurred between 2005 and 2007. For this imaging analysis, all participants met the following 

inclusion criteria: (1) age <18 years, (2) able to tolerate MRI, and (3) written informed consent 

signed by a caregiver and able to provide assent for participants 7 to 12 years of age. Exclusion 

criteria included prior or current brain infection, neurological or psychiatric disorder, any 
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congenital abnormality or head injury with a loss of consciousness. Participants were imaged at 

King Chulalongkorn Memorial Hospital in Bangkok, Khon Kaen University and Chiang Mai 

University Hospital in Chiang Mai, Thailand. The Institutional Review Boards (IRBs) of each 

study site, the University of California San Francisco, and the University of Southern California, 

in Los Angeles each approved the study.   

Image acquisition 
 

Participants underwent structural magnetic resonance imaging at two time points: 

baseline and approximately 52 weeks later (median = 52.71 weeks; range = 31.14 to 116.71 

weeks to follow-up). Initially, all participants were assessed at three time points where the third 

time point was also approximately 52 weeks following time point 2. However, the average age of 

HIV+ participants was a full year higher than controls. Therefore, we decided to assess the true 

baseline and 52 week follow-up among HIV+ participants and the actual second and third time 

points for the control cohort in order to match ages. From here forward baseline and follow-up 

refer to time points 1 and 2 for HIV+ participants and time points 2 and 3 for controls.   

Whole brain structural T1-weighted MRI was performed on GE 1.5 tesla scanners at both 

study sites using the following protocol: axial plane, 3D SPGR images with a minimum TE at 

full echo, TR = 11.2 ms, slice thickness = 1.0 mm; 256x256 imaging matrix. �Quality assurance 

of the MRI acquisitions was performed throughout the study. In order to quantify scanner drift 

across time points both a structural and human phantom were acquired periodically. 

Additionally, trained technicians manually reviewed all T1 scans and repeated scans with 

excessive motion artifact.  

Morphological descriptors 
 



	 86	

Previously validated FreeSurfer (Fischl et al, 2002) workflows, including non-brain 

tissue removal, intensity normalization and automated volumetric parcellation based on 

probabilistic information from manually labeled training sets, were used to segment the bilateral 

thalamus, putamen, pallidum, amygdala, accumbens, caudate and hippocampus from the raw 

MRIs. All segmentations were visually inspected following publically available ENIGMA 

protocols: http://enigma.ini.usc.edu/protocols/imaging-protocols/ to ensure their quality. 

To define shape descriptors on the subcortical surfaces, each surface had to be 

parameterized (i.e. a 3D coordinate mesh, or grid, had to be imposed). The parameterization of 

each surface was obtained using the medial “Demons” framework detailed in (Gutman et al, 

2015a; Gutman et al, 2012). Briefly, each surface was conformally mapped to the spherical 

domain and rigidly rotated to a probabilistic atlas. Each segmentation was warped to a spherical 

template using Spherical Demons (SD) (Gutman et al, 2013) on the basis of curvature. At this 

stage two surface-based functions were defined: (1) the global orientation function used to define 

the orientation of the surface, and (2) the local thickness of the surface with respect to a 

skeletonization or the surface “medial core.” Finally, SD was implemented again using both the 

newly defined medial core, in conjunction with surface-based curvature to match each surface to 

the atlas. 

From this mapping process, two shape features were defined at each vertex: (1) radial 

distance (RD), which is a proxy for the structure’s local thickness, and (2) the log of the Jacobian 

determinant (JD) which indicates regional surface area expansion or contraction. Across all 14 

subcortical surfaces, there were a total of 27,120 vertices. Figure 4-S1 maps the subcortical 

structures investigated with shape analysis in this study and outlines the number of vertices 

constituting each surface. 



	 87	

Statistical methods 
 

Mixed effects regression was used to model associations between morphometry and HIV-

related factors over time while accounting for the correlation structure across the two time points 

resulting from repeated participant measures. The outcome of these models was one of the 

volume or locally defined RD or JD value. All longitudinal models covaried for participant age, 

sex, days to follow-up (which differed significantly by HIV status) and intracranial volume in the 

presence of a random participant-level effect term. Main effects of interest were HIV status 

(dichotomous), cART status (dichotomous), viral detectability (a viral load above 50 copies per 

ml was considered detectable and modeled dichotomously among HIV+ participants), current 

CD4 t-cell count (continuous) and cART initiation timing: initiation at baseline versus after 

baseline but before follow-up (among HIV+ participants). We additionally explored longitudinal 

associations between morphometry and interactions between HIV and cART status, HIV and 

cART status by CD4 count, HIV status by cART timing CD4 count by viral detectability and 

CD4 count by cART status. To establish the significance of the effect of interest in the 

longitudinal mixed effects models, a likelihood ratio test was conducted between the full model 

which included all covariates and the effect of interest with an interaction of time point and a 

nested null model defined using the above terms, aside from the effect of interest by time point 

interaction term; the effect of interest and time point were instead designated independent terms 

in the null model. Note that CD4 counts and viral loads were all baseline measurements only and 

not acquired at follow-up.  

Multiple linear regression was used to model baseline associations of HIV status, cART 

status, viral RNA detectability and CD4 cell count with subcortical morphometry. Interactions 

explored longitudinally were additionally explored at baseline. Additional interactions between 
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CD4 count and viral detectability were investigated in their association with morphometry at 

baseline. These cross-sectional models also covaried for age, sex and ICV. For all models we 

explored additionally covarying for cART status, CD4 count, viral detectability and days to 

follow-up time point (for longitudinal models) to rule out confounding effects. 

All models were adjusted for multiple comparisons using the standard false discovery 

rate (FDR) method with a false-positive rate of 5% (q = 0.05) (Benjamini and Hochberg, 1995). 

FDR was performed separately for volumetric and shape-based tests. For the family of 

volumetric tests, FDR was applied to the set of all subcortical structures. For shape analyses we 

applied an FDR correction within the family of all tests performed on a single surface correcting 

for separate tests within each surface. 

Results 
 

Demographics 
 
 HIV+ and HIV- participants did not differ significantly by age (T = 0.05, df = 94.62, p = 

0.95) or sex (!! = 0.74,!" = 1,! = 0.38). CD4 counts differed significantly by HIV status 

(mean HIV- = 965.70, sd = 308.19, mean HIV+ = 727.93, sd = 325.29; T = -3.66, df = 87.90, p = 

0.0004). Days to follow-up differed significantly between diagnostic contrasts (T = 4.83, df = 

47.99, p < 0.0001) with the average days to follow-up for HIV- being 365.11 (sd = 41.72) and 

HIV+ being 472.69 (sd = 140.84).  

There were no significant differences in age, sex or days to follow-up between cART+ 

and cART- HIV+ participants. Rates of detectable viral loads were significantly different by 

cART status with cART- children having a higher rate of detectable levels than those who were 

on cART (!! = 10.5,!" = 1,! = 0.0011). 3 cART+ children had detectable levels while the 

remaining cART+ participants had undetectable levels. Meanwhile 6 cART- children had 
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detectable viral loads while the remaining cART- participants did not. CD4 counts differed 

significantly by cART status (mean cART+ = 853.53, sd = 270.80, mean cART- = 362.54, sd = 

140.49; T = 7.68, df = 33.97, p < 0.00001). 

No significant differences in age or sex were present between participants initiated to 

cART at baseline (N=32) versus those enrolled between baseline and follow-up (N=9). CD4 

count, which was only measured at baseline, differed significantly by cART initiation timing (T 

= 6.98, df = 29.91, p < 0.0001) with those initiated at baseline having higher counts (mean = 

837.89, sd = 306.31) than those initiated between baseline and follow-up (mean = 375.44, sd = 

133.59).  

HIV status 
 

Significant shape variation was observed between HIV+ and HIV- participants. At 

baseline regional thickness (RD measure) of the right medial pallidum was decreased in the 

HIV+ cohort while regional RD was increased in the right medial amygdala. The surface area 

(JD measure) of the left lateral pallidum was reduced while the JD of regions within the right 

amygdala were both increased and decreased in regions in the HIV+ cohort relative to controls. 

Significant baseline shape variation associated with HIV status is illustrated in Figure 4-1(a). 

Additional interactions between HIV and cART status were present at baseline and 

illustrated in Figure 4-1(b). In this set of comparisons HIV- participants are the reference 

category and all differences are with respect to cART status among HIV+ participants. The JD of 

the left medial amygdala was increased among HIV+/cART- relative to the HIV- cohort. In 

addition, the RD of the left superior putamen, left anterior amygdala, right superior and inferior 

putamen and right superiorlateral thalamus were increased among HIV+/cART- participants 

relative to the HIV- cohort. Shape-based differences between HIV- and HIV+/cART+ 
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participants were also present. Specifically, the bilateral medial pallidum RD was reduced and 

the JD of the right medial amygdala was increased among the HIV+/cART+ relative to HIV- 

participants.  

While no main effect of cART was detected, as discussed subsequently, the significant 

increases in the JD of the right amygdala among HIV+ participants relative to HIV- appears to be 

driven primarily by HIV+/cART+ participants. Similarly, the reduction in the right medial 

pallidum RD among HIV+ participants seems driven by HIV+/cART+ participants as well given 

that this effect is present only among the cART+ group. Reductions of bilateral pallidum shape 

measures remained significant after correcting for CD4 count but increases in RD and JD were 

not present after correcting for CD4 count. Partial F-tests between regression models with and 

without CD4 count were non-significant for these regions, however, suggesting that CD4 count 

does not significantly account for the variance in these regions’ shapes above and beyond HIV 

status.  

 Longitudinally, the increase in the gain of thickness of the right lateral pallidum was 

significantly increased in the HIV+ group. The rate of surface area increase in the left anterior 

accumbens was also significantly increased in the HIV+ group, relative to controls. Longitudinal 

shape differences by HIV status are depicted in Figure 4-2(a-b). No significant interactions 

between HIV and cART status was present longitudinally. These longitudinal associations 

survived while covarying for days to follow-up.  

No significant volumetric variation was observed either at baseline or longitudinally in 

association with HIV status, however, Figure 4-S2(a) plots the percentage of volumetric 

differences at both time points by HIV status. Though not statistically significant, strong 

numerical differences were observed at baseline: The total callosum volume was reduced by 
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13%, the right caudate increased by 8% and the right pallidum reduced by 4% in the HIV+ group 

relative to controls. 

cART status 
 

The JD (surface area) of the right lateral putamen significantly reduced over time among 

participants enrolled on cART at baseline relative to participants initiating cART between 

baseline and follow-up (Figure 4-2(c)). Because there was a significantly higher CD4 count 

among those enrolled at baseline we included CD4 as a covariate in this model; the significance 

of the main effect of initiation timing remained. Significant interactions between cART status 

and CD4 count were observed and are outlined in section CD4 count, below. Otherwise cART 

status was not a significant main effect associated with shape or volumetric measures. Figure 4-

S2(b) plots the percentage of volumetric differences between HIV+ children receiving and those 

not receiving cART. We additionally observed no associations between the percent of a 

participant’s age enrolled on cART and subcortical morphometry in cross-sectional or 

longitudinal frameworks.  

HIV RNA detectability 
 

When modeled longitudinally, there were significant associations between the JD and the 

detectability of viral RNA within HIV+ participants. Here we observed regions of both 

significantly increased and decreased rate of gain in surface area in the right accumbens of 

participants with detectable viral RNA relative to those with undetectable levels. Figure 4-S3(a) 

maps this association. Additionally, there was a significantly increased rate of loss of right lateral 

ventricle volume (T = -3.82, p < 0.05) among HIV+ participants with detectable viral loads 

relative to those without. Figure 4-S3(b) shows an interaction plot between right lateral ventricle 

volume over time stratified by viral detectability. These shape and volume association survived 
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after covarying for the effects of CD4 count and cART status in addition to the standard age, sex 

and ICV covariates. No significant baseline associations between shape or volume were 

observed with respect to viral detectability.  

CD4 count 
  

At baseline, there were significant reductions in both the thickness (RD) and surface area 

(JD) of the left medial and lateral pallidum among HIV+ participants with higher CD4 counts. 

We observed a significant HIV by cART status interaction with CD4 count in the RD of the left 

pallidum as well in which the RD of the HIV+/cART+ cohort decreased significantly relative to 

the increase in RD among HIV- participants at higher CD4 counts; HIV+/cART- children did not 

reveal a significant interaction. No such interactions were present for JD measures. Figure 4-3(a-

b) illustrates these associations. Also at baseline, the volume of the left pallidum was 

significantly associated with the interaction of HIV status and CD4 cell count (T = -3.725, p < 

0.05). Specifically, there was a strong inverse association between left pallidum volume and CD4 

cell count within the HIV+ cohort (T = -3.54, p < 0.05) with a 2.5% reduction in the left 

pallidum volume for extra 100 CD4 cells/mm3. In contrast there was a non-significant but 

positive association between the left pallidum volume and CD4 cell count within the HIV- cohort 

(T = 1.29, p > 0.05) with a 0.76% increase in left pallidum volume for every extra 100 CD4 

cells/mm3. This differential association is shown in the interaction plot in Figure 4-3(c).  

An association of HIV by cART status by CD4 count was also present in the right 

superior caudate in which the local JD decreased significantly more at higher CD4 counts among 

HIV+/cART- than HIV- participants (Figure 4-3(d)). No direct interaction of HIV status and 

CD4 count was present in this region.  
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         Longitudinally, there was a significant association between CD4 cell count and the JD of 

the left putamen. Here, the surface area in the superior left putamen reduced significantly more 

rapidly in HIV+ participants with higher baseline CD4 cell counts. This longitudinal association 

is depicted in Figure 4-3(e).  

Discussion 
  

In this study we investigated the effects of HIV and cART status as well as clinical 

measures associated with HIV infection on subcortical brain morphometry in perinatally HIV-

infected Thai children and age-matched uninfected controls. To sensitize the analyses to subtle 

effects, we used a combination of volumetric and shape-based approaches across two time points 

spanning approximately one year. 

The primary findings of this study can be parsed into those observed at baseline or 

longitudinally. At baseline we observed a significant reduction in the thickness of the right 

medial pallidum, the surface area of the left lateral pallidum and a region of the right amygdala 

associated with HIV positivity. We also observed increased surface area of regions of the right 

amygdala in HIV+ participants. Additional regions’ shapes varied as a function of the interaction 

of HIV and cART status. Notably, HIV+/cART+ children exhibited principally increased regions 

of thickness and surface area. Specifically, the surface area of the left posterior medial amygdala 

was increased in this cohort relative to HIV- children as was the thickness of regions of the 

bilateral putamen, left amygdala and right thalamus. Meanwhile, some of the observed primary 

effects of HIV status appear to be driven by cART reception: both the reduced thickness of the 

right medial pallidum and increased thickness of the right medial amygdala are shown to be 

present only in HIV+/cART+ children relative to the HIV- cohort.  
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Unique to the HIV+/cART+ cohort was a reduced thickness of the left medial pallidum. 

These associations occurred in the absence of significant differences between HIV+/cART+ and 

HIV+/cART- children in either shape or volumetric characteristics. The presence of such 

interactions does, however, suggest independent contributions of cART exposure to subcortical 

morphometry. The unique changes in HIV+/cART- morphometry were expansions of thickness 

and surface area which would be consistent with processes of chronic inflammatory responses. 

However, it is difficult to account for the increased surface area of the right medial amygdala 

exhibited by HIV+/cART+ participants if moderated inflammation is the underlying process. It is 

similarly difficult to account for the reduced thickness of the bilateral pallidum in HIV+/cART+ 

participants relative to controls that is absent in HIV+/cART- children.  

The basal ganglia has been shown to be preferentially affected by several disorders 

including Alzheimer’s disease, multiple sclerosis and diabetes (de Jong et al, 2008; Kramer et al, 

2015; van Duinkerken et al, 2014) as well as HIV (Aylward et al, 1993; Berger and Arendt, 

2000; Berger and Nath, 1997; Wright et al, 2016). Exact mechanisms for this preferential insult 

remain poorly characterized though there is evidence that viral replication occurs more readily in 

perivascular and parenchymal macrophages within the basal ganglia (Pumarola-Sune et al, 

1987). Similarly, hypermetabolism of the basal ganglia is described in CNS HIV infection 

(Rottenberg et al, 1987) which likely reflects inflammation and may indicate ongoing viral 

replication. As suggested by Wright, a common mechanism of preferential basal ganglia injury 

between HIV, Alzheimer’s, Diabetes and multiple sclerosis may be tied to vascular damage as 

well as chronic inflammation (Wright et al, 2016).  

However, in our study the observed reductions in pallidal volumes were present in 

HIV+/cART+ relative to HIV- children which may be suggestive of neurotoxicity of prolonged 
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cART exposure. Existing literature on cART neurotoxicity is mixed. Ciccarelli has, for instance, 

reported poorer cognitive performances on the stroop and double barrage tasks in elderly patients 

receiving efavirenz (Ciccarelli et al, 2011). Nucleoside reverse transcriptase inhibitors used to 

suppress HIV replication have additionally been demonstrated to have mitochondrial toxicity 

which may result in reduced brain mitochondria and CNS cell respiration (Schweinsburg et al, 

2005). However, in a recent study Brier administered efavirenz and ritonavir (two common 

antiretroviral medications) to HIV- participants and reported that neither drug was associated 

with changes in functional connectivity or cerebral blood flow, suggesting that cART has few 

neurotoxic effects (Brier et al, 2015). Our baseline findings are also somewhat contrary to those 

reported in (Ances et al, 2012) who compared the volumes of brain structures of 78 HIV- 

participants, 26 HIV+/HAART+ (highly active antiretroviral therapy) and 26 HIV+/HAART- 

participants and identified no independent neurodegeneration associated with HAART reception; 

but this difference may be due to the large age differences between the two cohorts. Though we 

similarly did not observe volumetric associations with cART status among HIV+ children or 

associations between HIV and cART status, high-dimensional shape-based abnormalities were 

observed in our study.   

HIV is also widely reported to adversely affect the integrity of white matter 

microstructure. Wu reported significantly increased mean diffusivity in HIV-infected participants 

in the splenium of the callosum (Wu et al, 2006). These abnormalities were further associated 

with HIV-related dementia and deficits in motor speed. Echoing this finding, Hoare found 

decreased fractional anisotropy in the callosum, superior longitudinal fasciculus and cingulum, in 

an adult HIV+ cohort (Hoare et al, 2011). Investigating an adult cohort, Ragin reported reduced 

fractional anisotropy in the callosum of HIV+ participants, and increased diffusivity in the 
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caudate (Ragin et al, 2015). Our results are partially aligned with these findings as we have 

reported a non-significant reduction of the total callosum volume of 13% in the HIV+ cohort. 

While this effect was only significant prior to FDR correction, its magnitude is at least 

suggestive of an effect. 

Several somewhat unexpected associations between baseline (current) CD4 count and 

brain morphometry were observed as well and, in several cases, interacted with cART reception. 

Specifically, we observed significant differential associations between the volume, thickness and 

surface area of the left pallidum as a function of CD4 count and HIV by cART status. Here, the 

volume and surface area of the left pallidum were significantly reduced at higher CD4 counts 

among HIV+ participants while being elevated in HIV- children. The thickness of this region 

exhibited an additionally significant association with cART status in which HIV+/cART+ 

participants alone had significantly reduced thickness of the pallidum at higher CD4 counts 

relative to HIV- participants. HIV+/cART- participants showed a similar interaction in the 

surface area of the right superior caudate which was significantly reduced at elevated CD4 

counts whereas the association was positive among HIV- participants. This is a somewhat 

unexpected observation as we naively expected to observe positive associations between shape 

and volume of brain regions and CD4 counts regardless of HIV or cART status. However, this 

finding is not without precedent. A report from the CNS HIV Antiretroviral Therapy Effects 

Research (CHARTER) study observed reduced white and grey matter volumes and higher 

ventricular spaces among HIV+ participants who had higher current CD4 counts (Jernigan et al, 

2011). These associations were present only when nadir CD4 was accounted for and not present 

independently of nadir CD4. The authors concluded that it is, therefore, the magnitude of the 

difference between current and nadir CD4 that is most indicative of infection severity. The 
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associations of brain morphometry reported in our study are based on current CD4 count which 

is also the nadir CD4 for those receiving cART given that CD4 levels were by design at their 

lowest prior to cART initiation. These somewhat unexpected directions of associations may 

potentially reflect a moderation of inflammatory responses in the presence of additional CD4 

cells whereas participants with lower CD4 counts may have ongoing, chronic inflammatory 

responses in the reported regions.   

Longitudinal models of HIV-related abnormalities, revealed an increased rate of gain in 

the thickness of the right lateral pallidum among HIV+ participants relative to controls. 

Similarly, the rate of gain of surface area in the left anterior accumbens was higher among the 

HIV+ cohort. It seems highly unlikely that the observed rates of gains in thickness and surface 

area are reflective of healthy developmental processes. For reasons discussed previously, HIV 

infection has a predilection for the basal ganglia, an environment with highly favorable 

conditions for viral replication. While we can not definitively conclude that the accelerated 

trajectories of the pallidum and accumbens are reflective of underlying chronic inflammation 

through either MRS markers or cytokine measures, this is the most likely explanation. 

Importantly these associations survive when cART status is included as a covariate in the 

regression model and we observed no longitudinal interaction of HIV and cART status. 

Although, among HIV+ participants, the timing of cART status was observed to be associated 

with the trajectory of the right posterior putamen surface area; specifically with those being 

initiated to cART at baseline having diminished surface area of this region over time relative to 

those initiated between baseline and follow-up. This association very likely reflects the 

differential illness severity between these groups as those who were initiated had more severely 

low CD4 counts. Upon initiation to cART CD4 counts were significantly lower than those who 
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were enrolled between time points. This effect survived when we covaried for current CD4 

counts. Again, given the proclivity of HIV for regions of the basal ganglia including the 

putamen, it seems reasonable to expect that this is reflective of reduced chronic inflammation 

among those enrolled to cART at baseline. However, we reiterate that only 9 participants were 

enrolled to cART between time points which is a very small sample to estimate. Observations in 

small samples should be replicated in larger cohorts before conclusions are made.  

Prior studies have associated viral RNA load with severity of cognitive impairment in 

children (Koekkoek et al, 2008; Nichols et al, 2000; Wolters et al, 1994; Wood et al, 2009). We 

report longitudinal associations between initial (baseline) viral RNA detectability and the surface 

area of the right accumbens in which some regions contract and others expand more rapidly over 

time in children with detectable viral RNA. This effect is somewhat unclear but, taken together 

with the longitudinal deformations associated directly with HIV status reported previously, may 

reflect deformations of the accumbens cellular structure. Roscoe reported that the branching 

complexity of medium spiny neurons of HIV-1 transgenic rats are greatly reduced relative to 

controls with additional shorter length and volume of dendritic spines of these cells (Roscoe et 

al, 2014). Abnormalities of the accumbens are classically associated with apathy and depression 

(Levy and Dubois, 2006; Nestler and Carlezon, 2006) which are common comorbid sequelae of 

HIV infection (Paul et al, 2005). These particular findings may have implications for biomarkers 

of apathy and depression among HIV+ youths. We encourage future investigations to explore 

this potential association.  

We additionally observed a longitudinal association between viral RNA detectability and 

the volume of the right lateral ventricular space: detectable viral RNA was associated with an 

increased rate of ventricular space loss between the two time points. Though we would naively 
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expect detectable viral RNA levels to be associated with poorer health resulting in neuronal 

atrophy and therefore expanded ventricular spaces, this observation is again consistent with 

chronic inflammation of surrounding brain tissue which would result in impingements on 

ventricular spaces as observed here.  

Previous studies of structural brain imaging in pediatric cohorts are sparse. As noted by 

Laughton, there is severe paucity of studies on adolescent HIV from resource-constrained 

countries in which perinatal infection is most prevalent (Laughton et al, 2013). Our study begins 

to address this void. Several previous studies of brain imaging in pediatric HIV do exist, 

however. Recently Cohen reported on a cohort of 35 HIV+ children on cART and 37 matched 

controls between the ages of 8 and 18 years (Cohen et al, 2016). They reported a higher rate of 

white matter hyperintensities, and lower gray and white matter volumes among the HIV+ 

children. Sarma reported on a comparatively smaller cohort of 16 HIV+ youths on ART and 14 

uninfected controls between the ages of 13-25 years (Sarma et al, 2014). Using T1-weighted 

MRI, they reported white matter atrophy of the posterior corpus callosum (CC), bilateral external 

capsule, bilateral ventral temporal WM, mid cerebral peduncles, and basal pons as well as gray 

matter volume increases in the left superior frontal gyrus, inferior occipital gyrus, gyrus rectus, 

right mid cingulum, parahippocampal gyrus, bilateral inferior temporal gyrus, and middle 

temporal gyrus in the HIV+ cohort versus controls. Previous studies on the efficacy of 

antiretroviral treatments in adolescence in developing countries have failed to identify significant 

improvements as a result of treatment. For instance, the parent study of this report identified no 

significant improvement in cognitive functions in Thai children initiated to ART (Puthanakit et 

al, 2010) and later reported no observable differences between children initiated to ART at an 

early or deferred period (Puthanakit et al, 2013). An additional study in a South African cohort 
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also reported no cognitive improvements following 6 months of ART (Eley et al, 2008). Our 

findings extend our understanding of brain development in perinatally-infected children. As a 

result of using highly sensitive shape-based measures we were able to identify both cross-

sectional and longitudinal variations in subcortical morphometry related to HIV and cART status 

that would have been overlooked in a purely volumetric paradigm.  

Several notable limitations are important to factor into any interpretation of the reported 

findings. The first is that the timeframe of one year we report on is arguably narrow for a 

longitudinal study. The baseline ages of our patients was roughly 11 years, on average, and 

ranged from 6 to 16 across diagnostic groups. We know from previous studies of adolescent 

brain development (Giedd, 2004) that this is a time characterized by complex patterns of age and 

sex-dependent rates of gray matter pruning and myelination. Given this a wider time frame 

would be beneficial. However, despite this limitation we managed to identify several 

longitudinal abnormalities among the HIV+ cohort as well as numerous associations at baseline. 

We additionally note that the time to follow-up was significantly larger in the HIV+ cohort. As 

such we have included this as a covariate in our longitudinal models and all reported associations 

survived despite this variability. As discussed previously, the original sample included three time 

points, however, the HIV+ cohort was a full year older at baseline relative to the control group. 

To account for this we disregarded the true baseline of the control cohort and final (third) time 

point of the HIV+ group to force the groups to be age matched. As a result we sacrificed the 

ability to compare the two groups across a wider timeframe. Additional limitations that should be 

considered when interpreting these results are the lack of controlling for the effects of either 

educational level or social economic status of the children or caregivers in our regression 

models. The interactions between familial and social factors with respect to brain development 



	 101	

are, of course, complex. However, as noted in (Puthanakit et al, 2013), the primary caregivers’ 

education and income levels for the HIV+ and HIV- cohorts were comparable and, despite this, 

neurodevelopmental outcomes were better among the uninfected cohort which suggests a 

dominant effect of infection. Moreover, the effect of inflammatory responses is difficult to 

definitively rule in or out of the underlying processes we report here without direct measures of 

either MRS metabolites such as myo-inositol, total creatine and choline containing compounds, 

or other biological markers such as pro-inflammatory cytokines. Although numerous studies 

have identified cortical neurodegeneration in HIV+ cohorts, our focus in the current study was 

solely on the morphometry of subcortical structures. Of course, an investigation of cortical 

development in HIV+ children is of great interest as well, however it is beyond the scope of the 

current study and we encourage future investigations to pursue this fascinating line of research. 

Lastly, while our sample size was not prohibitively small to detect changes, several larger 

cohorts such as the Multicenter AIDS Study Cohort (MACS) and The CNS HIV Anti-Retroviral 

Therapy Effects Research (CHARTER) do exist, though they are not pediatric studies from a 

developing country.  

In conclusion, we observed a number of abnormalities in both baseline and longitudinal 

morphometry of subcortical structures in HIV+ children. The majority of significant 

morphological abnormalities were revealed by shape-based descriptors of anatomy rather than 

standard volumetric characterizations, so many of the differences may be rather subtle overall. 

While we did not observe main effects of cART treatment on brain structure, interactions of 

cART status with HIV status were suggestive of the efficacy of cART. Nevertheless, we advise 

caution in the interpretation of this finding since children were selected for the parent study due 

to ability to survive without cART at the time of randomization. Thus, survivor tendencies may 
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mitigate our ability to detect direct associations with cART and its benefits. However viral RNA 

detectability and CD4 cell count had statistically influences on subcortical structures, primarily 

in the basal ganglia and, to a lesser extent, the dorsal and ventral striatum that are regions often 

implicated as being affected by HIV infection in other cohorts.  
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Tables  
 

Table 4-1. Demographic and clinical characteristics 

  HIV+ HIV- 

Age, mean (sd), y 11.09 (2.36) 11.06 (2.79) 

Sex, M/F 23/20 23/31 

cART status, on/deferred 32/11 -- 

Age of cART initiation, mean (sd), ya 9.39 (3.23) -- 

Log Viral RNA count, mean (sd), copies/ml  9.85 (11.16) -- 

Detectable/undetectable vRNA, (%)b 25/75 -- 

CD4 count, mean (sd), cells/ml* 728 (323) 966 (307) 

Days to follow-up* 472.69 (140.84) 365.11 (41.72) 

Percent of age on cART, mean (sd)c 26.21 (13.99) -- 

 HIV+/cART+ HIV+/cART- 

Age, mean (sd), y 11.10 (2.26) 11.07 (2.72) 

Sex, M/F 17/15 6/5 

Log Viral RNA count, mean (sd), copies/ml 4.02 (1.23) 8.49 (3.77) 

Detectable/undetectable vRNA, (%)*b 10/90 75/25 

CD4 count, mean (sd), cells/ml* 853.53 (270.80) 362.54 (140.49) 

aBased on the date that a participant received the first drug in the cART cocktail. 

bUndetectable vRNA levels are < 50 copies per ml.  

cDefined as percentage of age on cART at follow-up.  

*significant difference 
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Figures 
 

 

 

Figure 4-1. (a) T-value maps of the regression of shape on HIV status at baseline. (a, left) Radial 
distance (thickness) and (a, right) Jacobian determinant (surface area). The top row shows FDR-
thresholded t-value maps while the bottom row shows unthresholded maps. Where a significant 
association was observed boxplots illustrate the average RD or JD value within the whole region. 
(a1) Highlights a significantly reduced RD in the right medial pallidum in HIV+ subjects. (a2)  
Shows increased RD of the right medial amygdala among HIV+ cohort. (a3) Indicates reduced 
JD in the left lateral pallidum in HIV+ while (a4) shows a regions of primarily increased JD in 
the right medial amygdala in HIV+. (b) T-value maps of the regression of shape on the 
interaction of HIV and cART status. (b1) Significantly increased JD of the posterior medial left 
amygdala in HIV+/cART- subjects relative to HIV-; (b2) Increased RD of the right superior 
putamen in HIV+/cART- subjects relative to HIV-; (b3) Increased RD of left anterior amygdala 
in HIV+/cART- vs. HIV-; (b4) Widely increased RD of right putamen in HIV+/cART- vs. HIV-; 
(b5) Increased RD in right superior thalamus in HIV+/cART- vs. HIV-; (b6 – b7) Reduced 
bilateral medial pallidum RD in HIV+/cART+ vs. HIV-; Increased JD of right medial amygdala 
among HIV+/cART+ participants vs. HIV-.  
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Figure 4-2. T-value maps of the longitudinal regression of (a) radial distance (thickness) and (b) 
Jacobian determinant (surface area) values on the interaction of HIV status and time. (c) 
Illustrates the interaction of cART initiation timing: enrollment at baseline vs. between baseline 
and follow-up. The top row illustrates FDR-thresholded maps with highlighted regions being 
those surviving multiple comparisons correction. The bottom row shows the uncorrected set of t-
maps. For each region containing a significant association an interaction plot is given illustrating 
the differential trajectories of the shape descriptor over time stratified by HIV status. (a) 
Indicates that the trajectory of thickness increase is positive over time among HIV+ participants 
while being negative among HIV- participants. Similarly (b) indicates the rate of gain in the 
surface area of the anterior left accumbens is higher in the HIV+ cohort. (c) Shows that the 
surface area of the right lateral posterior putamen reduces over time among participants initiated 
to cART at baseline relative to those who were initiated between time points, the latter of whom 
remained relatively stable across time.  
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Figure 4-3. Baseline associations between CD4 count and HIV status and cART status where 
significant. (a) Significant inverse association of CD4 count and RD of left pallidum among 
HIV+/cART+ vs. HIV- cohort (HIV+/cART- vs. HIV- non-signficant, however, main effect of 
HIV status was significant). (b) Similarly, a significant inverse association of CD4 count and JD 
of left pallidum among HIV+ participants vs. HIV- with no significant interaction of cART 
status. (c) Significant inverse association of CD4 and volume of left pallidum among HIV+ 
group with positive association among HIV-; no significant interaction of cART status present. 
(d) Significantly reduced JD of superior right caudate at higher CD4 counts in HIV+/cART- vs. 
HIV- cohort. No significant main effects of HIV status or CD4 count were present, however. No 
significant differences between HIV+/cART+ and HIV- cohorts were present here either. (e) 
Highlights a region of the left superior putamen with a significant inverse association between 
CD4 count and surface area over time among HIV+ participants. No significant interaction of 
HIV or cART status was present for this longitudinal association.  
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Figure 4-S1.  Color-coded illustration of subcortical surfaces reported in this study along with 
the number of vertices comprising each surface. Note that all images are in radiological 
orientation throughout this manuscript, that is they are left-right flipped. Circled points within 
the axes labels indicate the orientation coming out of the page. 
 

 

 

Figure 4-S2. (a) Percent of volumetric difference between HIV+ and HIV- groups at (top) 
baseline and (bottom) follow-up with bootstrapped 95% confidence intervals. Positive-valued 
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barplots indicate increased volume in the HIV+ cohort while negatively-valued barplots indicate 
reduced volume in the HIV+ corhort relative to controls. The majority of regions are 
numerically, though not significantly, increased in the HIV+ cohort. (b) Percent of volumetric 
difference between HIV+ participants receiving and not receiving cART at (top) baseline and 
(bottom) follow-up with bootstrapped 95% confidence intervals. Positive-valued barplots 
indicate increased volume in the cART+ cohort while negatively-valued barplots indicate 
reduced volume in the cART+ corhort. Differences are very small on average and not in 
consistent directions. 
 

 

 

Figure 4-S3. (a) T-value maps of the differential longitudinal association of HIV+ participants 
with and without detectable levels of viral RNA with the JD (surface area) measure. The top plot 
is FDR thresholded indicating regions of both significantly expanded and reduced surface area in 
the right accumbens among participants with detectable viral RNA. Given the differential 
associations, the interaction plot of the average surface area within the right accumbens does not 
show a clear direction as the effects are in opposite directions across the surface. (b) Interaction 
plot of right lateral ventricle volume over time stratified by HIV+ participants with and without 
detectable viral RNA. The rate of loss of right lateral ventricle volume is more rapid among 
participants with detectable levels of viral RNA than those without. 
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Chapter 5: Effect of Electroconvulsive Therapy on Striatal Morphometry in 
Major Depressive Disorder4 

 
Patients with major depression show reductions in striatal and paleostriatal volumes. The 

functional integrity and connectivity of these regions are also shown to change with 

antidepressant response. Electroconvulsive therapy (ECT) is a robust and rapidly acting 

treatment for severe depression. However, whether morphological changes in the dorsal and 

ventral striatum/pallidum relate to or predict therapeutic response to ECT is unknown. Using 

structural MRI, we assessed cross-sectional effects of diagnosis and longitudinal effects of ECT 

for volume and surface-based shape metrics of the caudate, putamen, pallidum and nucleus 

accumbens in 53 depressed patients (mean age: 44.1 years, 13.8 SD; 52% female) and 33 healthy 

controls (mean age: 39.1 years, 12.4 SD; 57% female). Patients were assessed before ECT, after 

their 2nd ECT and after completing an ECT treatment index. Controls were evaluated at two time 

points. Support vector machines determined if morphometric measures at baseline predicted 

ECT-related clinical response. Patients showed smaller baseline accumbens and pallidal volumes 

than controls (p<.05). Increases in left putamen volume (p<.03) occurred with ECT. Global 

increases in accumbens volume and local changes in pallidum and caudate volume occurred in 

patients defined as treatment responders. Morphometric changes were absent across time in 

controls. Baseline volume and shape metrics predicted overall response to ECT with up to 89% 

accuracy. Results support that ECT elicits structural plasticity in the dorsal and ventral 

striatum/pallidum. The morphometry of these structures, forming key components of limbic-

																																																								
4	The content of this chapter has been published as B. S. Wade, S. H. Joshi, S. Njau, A. M. 
Leaver, M. Vasavada, R. P. Woods, et al., "Effect of Electroconvulsive Therapy on Striatal 
Morphometry in Major Depressive Disorder," Neuropsychopharmacology, Apr 12 2016.	
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cortical-striatal-pallidal-thalamic circuitry involved in mood and emotional regulation, may 

determine patients likely to benefit from treatment.  

Introduction 
 

Major depression is one of the most common and economically burdensome psychiatric 

disorders (Kessler et al, 2003). Antidepressants and behavioral therapy are the most frequently 

prescribed treatments, but up to a third of patients remain unresponsive to initial treatment 

(Trivedi et al, 2006). With a rapid and high response rate, electroconvulsive therapy (ECT) is 

typically used after other failed treatments and can be particularly beneficial in suicidal, 

psychotic or catatonic depression (Kellner et al, 2012). However, the neural mechanisms 

underlying clinical response to ECT remain uncertain. To advance therapeutic development, 

research providing clearer understanding of the neural correlates underlying successful 

antidepressant response is crucial.  

Current theories describe depression as a brain network disorder. Converging evidence 

suggests neural disturbances occur in a limbic-cortical-striatal-pallidal-thalamic circuit (Drevets 

et al, 2008). Structural alterations in the prefrontal cortex, particularly the anterior cingulate, and 

subcortical hippocampal, amygdalar, thalamic and striatal/pallidal centers are consistently 

implicated (Drevets et al, 2008; Lorenzetti et al, 2009; Schmaal et al, 2015). Lesion and 

functional imaging studies show these regions form networks governing mood regulation, reward 

sensitivity and emotion (Hamilton et al, 2013; Koenigs and Grafman, 2009; Korgaonkar et al, 

2013; Ochsner et al, 2012). Symptoms of depression such as amotivation, anhedonia, apathy, and 

rumination are linked to functional disturbances in the ventral striatum/pallidum specifically 

(Disner et al, 2011; Kuhn et al, 2014; Ochsner et al, 2012). The ventral striatum, ventral 

pallidum and continuity with the ventral caudate nucleus and putamen - basal ganglia regions 
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with prominent limbic connections (Nieuwenhuys et al, 2008; Utter and Basso, 2008) - are 

themselves strongly interconnected, receive dopaminergic input from ventral midbrain regions 

(Haber and Knutson, 2010), and receive modulation by serotonergic midbrain pathways and 

other neurotransmitter systems	(Di Matteo et al, 2008; Nieuwenhuys et al, 2008). The dorsal 

striatum, including the caudate nucleus, is involved in reward processing as relevant to 

depression symptomatology (Haber et al, 2010). 

While less studied than the hippocampus and amygdala, basal ganglia substructures show 

lower volumes in meta-analyses of depression (Koolschijn et al, 2009; Videbech, 1997). 

Functional imaging studies demonstrate depression-related hyporesponsivity in striatal areas 

(Epstein et al, 2006; Smoski et al, 2009) and disturbances in fronto-striatal connectivity (Furman 

et al, 2011). Deficits in brain activation and functional connectivity in basal ganglia 

substructures are suggested to normalize with different antidepressant treatments (Admon et al, 

2015; Stoy et al, 2012). In ECT-treated patients, we recently showed a hyperconnectivity 

between the ventral striatum and ventral default-mode network (DMN), while simultaneously 

demonstrating hypoconnectivity with the anterior DMN, patterns that were modulated by ECT	

(Leaver et al, 2015). These results suggest the striatum is involved in functional 

desynchronization between dorsal and ventral cortico-limbic neural circuits in major depression 

and that normalization of these functional disturbances can occur with ECT.  

Hippocampal connections with the hypothalamic–pituitary–adrenal (HPA) axis, ventral 

striatal loop and dopaminergic mesolimbic system appear particularly relevant to the 

pathophysiology of major depression (Russo and Nestler, 2013). We and other groups have 

shown that ECT elicits increases in hippocampal (Abbott et al, 2014; Joshi et al, 2015; 

Nordanskog et al, 2010; Tendolkar et al, 2013) and amygdala volume (Joshi et al, 2015; 
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Tendolkar et al, 2013). However, whether structural plasticity occurs in the dorsal or ventral 

striatum/pallidum in association with treatment and illness recovery remains unknown. Since full 

response to ECT may be observed in only 2-4 weeks (Kellner et al, 2012), using ECT as a 

treatment model may identify predictors and correlates of response over shorter time intervals 

where effects are expected to overlap with antidepressant therapies. We thus performed 

volumetric and shape-based analyses to investigate if morphological changes are detectible 

before and after ECT in four constituents of the ventral basal ganglia: the caudate, putamen, 

pallidum, and nucleus accumbens. We compared patients to controls, and followed patients 

prospectively during an ECT treatment index series. Biomarkers predictive of treatment response 

could provide a major advance towards guiding clinical practice. We thus developed a machine-

learning framework to determine if morphometric differences, prior to treatment, might predict 

patients’ responsiveness to ECT. Based on our observations of restoration of functional 

connectivity (Leaver et al, 2015), we predicted that ECT-related structural plasticity would also 

occur in ventral striatal and connected basal ganglia regions. 

Materials and Methods 
 

Subjects 
 

Participants included 53 patients experiencing a major depressive episode (28 females) 

recruited from individuals scheduled to receive ECT at the University of California, Los Angeles 

(UCLA) Resnick Neuropsychiatric Hospital. Diagnosis was determined by a board certified 

psychiatrist following Diagnostic Statistical Manual (DSM) IV-R criteria and additionally 

confirmed by the Mini-International Neuropsychiatric Interview (M.I.N.I.)	(Sheehan et al, 1998). 

All patients had experienced two or more earlier major depressive episodes and failed to respond 

to at least two prior adequate medication trials in the index episode. Patients with comorbid 
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psychiatric disorders including schizophrenia, schizoaffective disorders, post-traumatic stress 

disorder, attention hyperactive deficit disorder, and dissociative disorders were excluded. Forty-

five patients were diagnosed with unipolar depression and 8 with bipolar disorder, though mania 

in the index episode was exclusionary. Other exclusion criteria included dementia, first-episode 

depression, onset after 50 years, depression related to serious medical illness, or any 

neuromodulation treatment (e.g., vagal nerve stimulation, repetitive transcranial magnetic 

stimulation) within 6 months of the ECT index series. All patients were tapered off 

antidepressants and benzodiazepines in preparation for ECT and were completely free of 

medication for at least 48 to 72 hours before enrollment and ECT treatment.  

Patients were scanned at three time points: (1) baseline, prior to and within 24 hours of 

the initial ECT session [T1]; (2) after the 2nd ECT session [T2, occurring 36-48 hours after 

baseline assessment and before the 3rd ECT] and (3) within a week of completing the ECT 

treatment index series [T3, as individually determined based on stabilization of mood, 

approximately 4-6 weeks after 1st treatment]. Of the 53 patients completing baseline, 45 

completed T2, and 34 completed T3 assessments. Attrition was primarily due to early 

discontinuation of ECT, inability to come in for or to tolerate repeat scanning and scanner 

hardware failures.  

Thirty-three controls (19 females) with similar demographics to patient participants were 

recruited from the same geographical area using advertisements. Controls received M.I.N.I.	

(Sheehan et al, 1998) screening to exclude history of depression, other psychiatric or medical 

illness, or a history of antidepressant use. Controls were scanned at two time points 

approximately 4-6 weeks apart. Additional exclusion criteria for all participants included history 

of alcohol or substance abuse within the past 6 months or dependence in the past 12 months, any 
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neurological disorder, and contraindication to MRI scanning. Table 5-1 summarizes the 

demographic and clinical characteristics of our cohort. Subjects in this study overlap with those 

in two recent investigations of hippocampal and amygdala morphometry	(Joshi et al, 2015) and 

functional connectivity (Leaver et al, 2015). All participants provided written informed consent 

as approved by the UCLA Institutional Review Board.  

 

ECT treatment 
 

ECT (5000Q MECTA Corp.) was administered three times a week, using standard 

protocols for anesthesia (methohexital at 1mg/kg dosage) and paralysis (succinylcholine at 

1mg/kg dosage). ECT followed the seizure threshold (ST) titration method: after establishing the 

ST, treatments were delivered at 5x ST for right unilateral (RUL) d’Elia lead placement, using an 

ultra brief pulse-width (0.3msec), and at 1.5x ST for bilateral placement, using a brief pulse-

width (0.5msec).  

Mood ratings 
 

The Montgomery-Åsberg (MADRS) (Montgomery and Asberg, 1979), Hamilton (HAM-

D-17) (Hamilton, 1976) depression rating scales and the Quick Inventory of Depressive 

Symptomology Self Report (QIDS-SR) (Rush et al, 2003) were collected at the same time points 

as brain scanning. Patients were defined as treatment responders if they showed greater than 50% 

improvement in symptoms on the HAM-D. We additionally report differences in patients who 

responded with greater than 50% improvement across all mood scales.   

Image Acquisition: High-resolution multi-echo T1-weighted MPRAGE images with real time 

motion correction using navigators (Tisdall et al, 2012) were acquired on Siemens 3T Allegra 
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(Erlangen, Germany) system (TEs/TR=1.74, 3.6, 5.46, 7.32/2530 ms, TI=1260 ms, FA=7°, 

FOV=256x256 mm, 192 sagittal slices, voxel resolution=1.3×1.0×1.0 mm3).  

Image preprocessing and segmentation 
 

Each T1-weighted image was processed and volumetrically quantified using the 

Freesurfer suite (version 5.3.0), which is documented and freely available online 

(http://surfer.nmr.mgh.harvard.edu/). Preprocessing steps included correction for magnetic field 

inhomogeneities, removal of non-brain tissue and disconnection and segmentation of subcortical 

regions-of-interest (ROIs) including the bilateral putamen, pallidum, caudate and nucleus 

accumbens in each subject and time point. All segmentations were visually inspected and 

manually corrected for minor topographic errors if needed. Intraclass correlation coefficients for 

each region from control subjects scanned 4-6 weeks apart indicated high concordance 

(accumbens=.77; pallidum=.80; putamen=.84 and caudate=.93). Figure 5-1 illustrates the 

locations of the caudate, putamen, pallidum and accumbens. 

Surface-based analysis 
 

To investigate local group-level variation in subcortical anatomy the segmented 

structures were transformed to a parameterized mesh surface using methods detailed in (Gutman 

et al, 2015). Briefly, each surface was conformally mapped to the spherical domain and rigidly 

rotated to a probabilistic atlas. Spherical Demons (SD)	(Gutman et al, 2013) then non-linearly 

registered the spherical maps based on curvature profiles. Two surface-based functions were 

defined: (1) the global orientation function, defining the direction of the surface and, (2) the local 

thickness of the surface with respect to a skeletonized medial core. SD was implemented using 

both the medial core and curvature to match each surface to the atlas. In this parameterization, 

two shape features are defined at each vertex: (1) radial distance (RD), a proxy for thickness and 
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(2) the Jacobian determinant (JD) which indicates surface area dilation or contraction. The 

number of vertices for each surface scales with the average structure volume maintaining 

uniform resolution across structures (vertex counts: accumbens=930, caudate=2502, 

putamen=2502 and pallidum=1254). 

Statistical Analysis 
 

Statistical analyses addressed (1) cross-sectional differences between patients and 

controls at baseline, (2) longitudinal effects of ECT (or time in control subjects), (3) cross-

sectional differences between ECT responders and non-responders and (4) predictors of ECT-

related clinical response (using baseline imaging measures only). To reduce the number of 

comparisons while allowing for estimation of lateralized effects, hemisphere was included as a 

repeated measure in all volumetric analyses (implemented in IBM SPSS Statistics, v22). Shape-

based analyses (executed in R; https://www.r-project.org) used the same statistical models except 

they were conducted in each hemisphere separately to allow for examination of focal effects.  

Analysis #1 above used the General Linear Model (GLM) including sex, age, and brain 

volume as covariates to determine cross-sectional effects of diagnosis (comparing baseline 

measures between patients and controls). Analysis #2 used the General Linear Mixed Model 

(GLMM), which models the correlation structure of repeated measurements while leveraging the 

statistical power gained using each subject as their own control, to determine longitudinal effects 

of ECT. These models, which allow for unbiased parameter estimates despite missing time 

points, included subject as a random effect and sex, age and brain volume as covariates. 

Individual time points were compared pairwise for measures showing significant main effects of 

ECT.  Analysis #3 used the GLM to determine whether change in morphometry over the course 

of ECT differed in treatment responders and non-responders. Since difference scores (change in 
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morphometric measures and change in mood scores) were examined, only patients completing 

all time points (n=34) were examined. Age and sex were included as covariates.  

To determine if baseline morphometry predicts ECT response based on the combined and 

individual mood scales (examined separately), analysis #4 used support vector machines (SVM), 

a supervised machine-learning algorithm. Leave-one-out cross validation was used to assess the 

performance of SVMs using a combined feature set of all baseline volume and shape measures. 

SVMs fit an optimal hyperplane in an n-dimensional feature space to separate labels matching 

input features. Our SVMs used radial kernels to model non-linear decision boundaries (Sánchez 

A, 2003). SVMs using radial kernels were compared to linear SVMs using DeLong’s test for two 

receiver operating characteristic curves (ROCs). Though the area under the curve (AUC) 

between the radial and linear SVMs was not significantly different, radial AUC was larger, thus 

the radial kernel was used. Grid search was used to find optimal combinations of the SVM cost 

and gamma parameters. Features were scaled to zero mean and unit variance. The significance of 

each SVM model was assessed using permutation tests achieved by comparing the observed 

AUC to a distribution of 1000 simulated AUCs derived from fitting SVMs to randomly shuffled 

labels. The proportion of permuted models with AUCs larger than the observed AUC provided 

the permutation p-value. 

Based on our a priori hypotheses derived from prior findings showing ECT-related 

changes of functional connectivity in the striatum/pallidum with ECT (Leaver et al, 2015), a 

two-tailed alpha level of .05 was the threshold for significance for volumetric analyses. Surface-

based analyses controlled for false positives using False Discovery Rate (FDR) (Benjamini and 

Hochberg, 1995) using a 5% false positive rate, surface wise.  
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Finally, post-hoc analyses were performed to test for differences between patients 

diagnosed with unipolar (n=45) or bipolar depression (n=8) and possible lead-placement effects 

(the % of ECT sessions using RUL) for measures showing significant ECT effects. As lead 

placement was clinically determined (American Psychiatric Association. Committee on 

Electroconvulsive Therapy. and Weiner), effects of lead placement were examined while 

controlling for baseline mood scores.   

Results 
 

Demographic and clinical effects 
 

Sex, Χ2 (1, 85)=.18, p=.66, and age, F(1, 85)=2.67, p=.11 distributions were similar in 

ECT patients and controls. MADRS, HAM-D and QIDS rating scales showed highly significant 

effects of ECT, F(2, 36.75)=38.66, F(2, 38.16)=32.74, F(2, 36.81)=37.60; all p<.0001, 

respectively. Demographic and clinical details for each group and time point are provided in 

Table 5-1. 

Cross-sectional effects of diagnosis 
 

Volumetric analyses showed smaller volumes of the nucleus accumbens, F(1, 81)=4.67, 

p=.034, -8.0% and pallidum, F(1,81)=3.96, p=.05, -4.9% in patients relative to controls at 

baseline. Cross-sectional effects were non-significant for the putamen, F(1, 82.04)=2.76, p=.101 

and caudate F(1, 80.70)=.095, p=.76 and no region showed hemispheric interactions. Means for 

each diagnostic group and time point are plotted in Figure 5-2. No significant between-group 

shape variation was observed. 

Longitudinal effects of ECT 
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A significant volumetric association with ECT, F(2, 42.80)=5.36, p=.008 and ECT by 

hemisphere interaction was observed for the putamen, F(1, 44.17)=3.40, p=.042. A significant 

increase in left putamen volume occurred with ECT, F(1, 39.83 )=3.57, p=.038, 2.4%. Pairwise 

comparisons of time points revealed significant volume increases between T1 and T3, p=.01 

(Figure 5-2). Regional shape changes were non-significant for all 4 substructures, though 

statistical maps, shown in Figure 5-3, suggest more diffuse surface expansion with ECT. Effects 

of time in control subjects were non-significant for both shape and volume.  

Effects of morphometric change with clinical response 
 

Significant effects of response status were observed for the volume of the accumbens, 

F(1, 28)=4.29, p=.048 where responders showed volumetric gain, F(2,18.98)=9.18, p=.002, with 

no change in non-responders (p>.05). There was a significant effect of response status for change 

in caudate volume over time, F(1,29.03)=4.29, p=.048. Though volumes tended to increases over 

time in responders and decrease over time in non-responders, these effects were non-significant 

within group (both p>.05). Significant regional increases in caudate morphometry were observed 

with the JD of the left superior and inferior caudate increasing in HAM-D responsive patients 

and decreasing in non-responsive patients over time. Finally, local decreases in the posterior 

medial aspect of the right pallidum for RD and JD were present in responders at time point 3. 

Figure 5-4 shows significant volume and shape differences by ECT-response. 

Baseline predictive effects 
 

Using the entire combined set of baseline shape and volume features, SVM prediction of 

clinical outcome using the combined mood scale resulted in 90% AUC (95% CI: 68 - 93%, 

p=0.000), a maximum accuracy (MA) of 89%. Response prediction for individual mood scales 

yielded 54% AUC (95% CI 29–78%; p=0.599, MA=72%) for HAM-D ; 59% AUC (95% CI 36–
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80%; p=0.392, MA=68%) for MADRS and 84% AUC (95% CI 64–93%; p=0.001, MA=75%) 

for QIDS. Figure 5-5a plots the ROC curves associated with each SVM while Figure 5-5b plots 

the associated accuracy, sensitivity and specificity values across a range of decision thresholds. 

As a post-hoc analysis we investigated the performance of SVMs using metric-specific features 

in the prediction of response. With performances averaged across mood scales, RD-specific 

features yielded a mean of 77%, JD 63% and volume 60% AUC. Because overfitting with high-

dimensional features is a common problem we tested whether LASSO feature selection, 

implemented within each cross validation fold, would significantly affect classifier performance. 

LASSO retained an average of 2 features and provided an AUC of 76%, which did not 

significantly differ from the full-feature SVM (p=0.226).  

Post-hoc analyses of diagnostic category and ECT lead placement 
 

There were no significant differences for volume or shape when comparing unipolar 

versus bipolar depression. Associations with the proportion of RUL treatments given across the 

ECT index series also failed to show significant effects for volume or shape.  

Discussion 
 

Our study addressed whether ECT impacts the morphometry of four components of the 

dorsal and ventral basal ganglia that are known to play a role in cognitive and affective function 

of high relevance to depression: the accumbens, putamen, pallidum and caudate. Each structure’s 

morphometry was modeled using global volumetric and local descriptions of shape variation. 

Exploring effects of diagnosis and treatment we contrasted ROI morphometry between patients 

and controls at baseline, in patients across the course of ECT, and between patient responders 

and non-responders. Finally, we showed that patients’ responsiveness to ECT could be predicted 

from baseline brain morphometry using machine learning.   
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Cross-sectionally, we observed reduced accumbens and pallidum volumes in patients 

prior to treatment. This corroborates prior reports of lower striatal volumes in depressed cohorts 

(Koolschijn et al, 2009; Videbech, 1997). We did not detect shape differences between patients 

and controls, so volumetric differences may be more globally dispersed than focal. Several 

longitudinal patterns emerged. The left putamen volume increased between baseline and the end 

of the ECT treatment index. We did not observe significant ECT effects for morphometry in 

other ROIs. Differential patterns of morphometry were observed within patients based on their 

responsiveness to ECT. The accumbens volume significantly increased over the course of ECT 

[Figure 5-4(a)]. However, effects in the right medial pallidum suggested more localized volume 

reductions in responders.  

Cumulatively, the above findings support that structural deficits in striatal and 

paleostriatal structures occur in major depression and ECT leads to neuroplasticity in these 

regions. While the basal ganglia play pivotal roles in psychomotor function, these regions are 

also densely connected with proximal limbic regions including the hippocampus and amygdala	

(Nieuwenhuys et al, 2008). Since there is typically a lengthy delay between the initiation of 

standard antidepressant therapies and clinical response, biomarkers that may help guide future 

treatment decisions may have substantial clinical impact. Using SVMs to learn differential 

patterns of brain morphometry between responsive and non-responsive patients, we predicted 

patient response with up to 89% accuracy when defining response across all mood scales. Some 

demographic and clinical factors, such as the presence of psychotic symptoms, have been 

associated with improved ECT response (Petrides et al, 2001). Yet, without any other basis for 

determining potential outcome, an 89% predictive value may be very beneficial, particularly if 

this prediction generalizes to other forms of antidepressant treatment. 
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ECT promoted a volumetric increase or local surface deformations in the striatum over 

short time intervals (4-6 weeks). A leading hypothesis regarding the mechanisms underlying 

major depression is that neurotrophic factors are adversely affected. This is supported by 

observations that antidepressant treatments influence transduction pathways associated with 

neuronal plasticity (Duman, 2002). For example, electroshock - the animal model of ECT - 

stimulates neurogenesis in the hippocampus of rodents (Malberg et al, 2000) and non-human 

primates (Perera et al, 2007). As adult neurogenesis occurs in the hippocampal dentate gyrus, in 

line with a neurotrophic model of antidepressant response (Fosse and Read, 2013; Kellner et al, 

2012), several prior structural imaging studies of ECT in humans showed ECT-related increases 

in hippocampal volume (Abbott et al, 2014; Duman, 2002; Jorgensen et al, 2015; Nordanskog et 

al, 2010; Tendolkar et al, 2013). In a sample overlapping with the current study, we also 

observed changes in hippocampal morphometry with ECT and relationships with symptom 

improvement (Joshi et al, 2015). Notably, Inta et al. (Inta and Gass, 2015) reported ECT-

triggered neurogenesis in striatal and frontal brain regions following ECT in a rat model 

suggesting that cell proliferation extends beyond the hippocampus. Others (Liu et al, 2009) have 

also reported increased subventricular zone neuroblast cell proliferation to striatal areas 

following seizures. Further, ECT-related structural neuroplasticity is shown in the amygdala 

(Joshi et al, 2015; Tendolkar et al, 2013). These subcortical limbic structures are intricately 

connected to the striatum, and via the cortico-striatal-pallido-thalamo-cortical loop and 

projections to the hypothalamus and brainstem, act together to influence emotional expression 

and motivation (Cardinal et al, 2002).  

Additional mechanisms may account for ECT-related neuroplasticity. These include an 

increase in monoamine neurotransmitter production, release of hypothalamic hormones, 
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increased angiogenesis (Wennstrom et al, 2006) glial cell activation (Jansson et al, 2009) and 

gliogenesis (Wennstrom et al, 2006). The ventral striatum and parts of the dorsal striatum form 

part of the mesolimbic dopaminergic pathway involved in reward processing. Patients with 

depression frequently show diminished ability to derive pleasure or positive motivation from 

rewarding stimuli leading to symptoms of anhedonia (Zhang et al, 2013). Disease-related 

abnormalities in reward processing are characterized as reflecting “reward hyposensitivity”, and 

brain activation studies typically show hypoactivation in striatal and prefrontal regions (Forbes et 

al, 2009; Zhang et al, 2013). Human neuroimaging studies also demonstrate that disturbed 

regulation between regions involved in reward processing occur via the serotonin transporter	

(Hahn et al, 2014). Preclinical studies further show that anxiety and depressive-like behavior 

associate with lower levels of serotonin and norepinephrine in the striatum (Brenes et al, 2008) 

where serotonergic and adrenergic systems are targets of commonly prescribed antidepressants. 

Though it is possible that changes in striatal morphometry may be influenced by anesthesia 

rather than by treatment-related effects, observations of change in responders vs. non-responders 

makes this less likely. 

Because shape-based descriptors are less commonly used than volumetric descriptions of 

brain structures we endeavored to demonstrate their value as both predictors in the SVM and a 

descriptor of morphometry. In the context of classification we compared use of RD-only, JD-

only and volume-only features and showed the average performance of SVMs using shape-based 

descriptors was higher than those using volume-only. Overfitting is another concern when using 

high-dimensional features. Thus we compared an SVM using all features to a LASSO subset. 

AUC did not significantly differ between these models therefore it is unlikely that significant 
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overfitting occurred with the full feature set, however, this may be confirmed with a larger 

sample.  

The value of shape-based approaches is their ability to reveal local variation in surface 

topology rather than simply identify gross volumetric variation. This is particularly valuable 

since we did not segment sub-nuclei of subcortical structures. The locality of the shape measures 

could thus inform future studies using subfield measurements. A related concern is that shape 

and volume are highly correlated. Indeed, the average correlation between RD and volume was 

r=0.37 and JD and volume r=0.44; however, this is expected since the measures are of the same 

structure. The value of the descriptors’ combined use lies in their ability to reveal separate, 

complementary aspects of the structure’s topology. 

Placed in the context of existing literature, ECT-related structural neuroplasticity in basal 

ganglia substructures could be attributed to neurotrophic factors that include cell and/or synaptic 

proliferation possibly linked to changes in monoaminergic neurotransmitter systems that form 

part of prefrontal-striatal-limbic circuitry. Though this is the first study to our knowledge to 

show that ECT affects the morphometry of the striatum and paleostriatum, several limitations 

exist. First, despite a priori hypotheses justifying the study of these regions, these findings 

warrant independent replication. Since morphometry of subcortical regions are highly variable 

even in normal populations, this variability may have impacted our ability to detect local shape 

changes. Finally, though we investigated relationships with changes in overall symptom ratings 

in the current study, it is possible that ECT-related neuroplasticity may be more closely related to 

specific symptoms such as anhedonia, apathy, amotivation and rumination as have been linked 

with altered striatal circuitry in functional imaging studies.   

Our findings provide new evidence to support that ECT induces neuroplastic changes in 
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striatal regions in addition to other subcortical limbic regions. We also demonstrate that these 

changes are associated with clinical improvement and have the potential to predict an affected 

individual’s treatment response using machine learning based solely on imaging features.  
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Tables 

 
Table 5-1. Demographic and Clinical Characteristics 
 Patients, N = 53 Controls, N = 33 
Age, mean (SD), y 44.1 (13.8) 39.3 (12.4) 
Gender (M/F) 25/28 14/19 
Race/ethnicity   
African American 3 3 
Asian 4 3 
Hispanic 6 2 
White 38 24 
Multi-ethnic 1 1 
Adjusted education, y 15.78 (2.70) 16.94 (2.30) 
Dextral/non-dextral a 37/12 28/4 
Clinical Information   
RUL/mixed lead 
placement/bilateral b 

27/6/1  

Unipolar/bipolar  45/8 -- 
Percent Responders/non-
responders c  

35/65  

Age at onset, mean (SD), y 24.26 (12.54) -- 
Current episode, mean (SD), y 2.31 (4.81) -- 
Lifetime illness, mean (SD), y 18.53 (13.27) -- 
 Responders, N = 20 Non-Responders, N = 14 
Age, mean (SD), y 44.9 (12.6) 37.2 (14.6) 
Gender (M/F) 12/8 6/8 
Race/ethnicity   
African American 1 1 
Asian 1 3 
Hispanic 2 2 
White 15 8 
Multi-ethnic 1 0 
Adjusted education, y 10.1 (2.4) 9.6 (2.9) 
Clinical Information   
# of ECT Index sessions, mean 
(SD) 

10.35 (2.34) 13.0 (3.53) 

# of ECT Index sessions, range 6-15 8-22 
 
Unipolar/bipolar 
 

 
16/4 

 
12/2 

Age at onset, mean (SD), y 
 

26.84 (14.64) 20.07 (10.94) 

Current episode, mean (SD), y 
 

1.94 (3.04) 2.52 (3.63) 

Lifetime illness, mean (SD), y 17.65 (11.30) 15.21 (11.63) 
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Time point T1, N=53 T2, N=45 T3, N=34 C1, N=33 C2, N=31 
HAM-D 24.34 

(6.16)* 
20.20 
(6.23)† 

12.46(8.04)
‡ 

-- -- 

QIDS-SR 20.60 
(4.02)* 

16.75 
(5.47)† 

10.82 
(6.55)‡ 

-- -- 

MADRS 38.44 
(9.31)* 

31.47 
(9.55)† 

17.08 
(11.94)‡ 

-- -- 

Abbreviations: T1: Patient baseline; T2: After the 2nd ECT; T3: After the ECT index series; C1: 
Control baseline; C2: Control follow-up; RUL: Right unilateral lead placement; HAM-D-17: 
Hamilton Rating Scale for Depression; QIDS-SR-16: Quick Inventory of Depressive 
Symptomatology – Self-Report; MADRS: Montgomery – Åsberg Depression Rating Scale. 
aHandedness was estimated using the modified Edinburgh Handedness Inventory (Oldfield, 1971) 
where a laterality quotient of < .7 defined non-dextrals.  b Lead placement for patients completing all 
3 time points. response defined as >50% improvement in HAM-D scores over the course of 
treatment *Significant effect between T1 and T2, †significant effect between T2 and T3; 
‡significant effect between T1 and T3.  
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Figures 
 

 
Figure 5-1. Subcortical structures including the putamen, pallidum and nucleus accumbens 
extracted from each MRI volume from (a) posterior and (b) superior perspectives. Images are in 
radiological orientation, i.e. left-right flipped.  
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Figure 5-2. Average volume by group and time point for the accumbens, pallidum and putamen. 
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Error bars are +/- 1 standard error. Asterisks (*) indicate significant differences.  
 

 

Figure 5-3. T-value maps of striatal and pallidal surfaces resulting from the mixed effects model 
examining the effect of ECT on thickness (radial distance - RD) over time. The perspectives are 
(a) superior, (b) inferior, (c) posterior, (d) anterior, (e) left lateral and (f) right lateral views. All 
maps are in radiological orientation (i.e., left-right flipped). Regions with warmer colors are 
expanding while those in cooler colors are contracting over time. 
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Figure 5-4. (a) Percent change in nucleus accumbens volume between baseline and the end of 
the ECT index (T1 and T3) in patients defined as ECT responders and non-responders (b and c) 
Uncorrected (top) and FDR-thresholded (bottom) t-value maps of shape variation by response 
status for the pallidum. Negative t-values indicate smaller values in responders while positive t-
values indicate larger values in responders. Panel b shows right hemisphere RD maps and panel c 
shows right hemisphere JD maps in responders compared to non-responders.  
 

 

Figure 5-5. (a) Receiver operating characteristic curves resulting from support vector machines 
prediction of responsive patients from baseline shape and volume features. One curve is given 
for each mood scale (HAM-D, MARDS and QIDS) used to determine response status. ‘All’ 
refers to subjects who responded across all mood scales. (b) Plots of the accuracy, sensitivity and 
specificity values mapped separately for each model across a range of thresholds. 



	 147	

	

Chapter 6: Data-Driven Cluster Selection for Subcortical Shape and Cortical 
Thickness Predict Recovery from Depressive Symptoms5 
 

Patients with major depressive disorder (MDD) who do not achieve full symptomatic 

recovery after antidepressant treatment have a higher risk of relapse. Compared to 

pharmacotherapies, electroconvulsive therapy (ECT) more rapidly produces a greater extent of 

response in patients with severe depression. However, prediction of which candidates are most 

likely to improve after ECT remains challenging.  

Using structural MRI data from 42 ECT patients scanned prior to ECT treatment, we 

developed a random forest classifier based on data-driven shape cluster selection and cortical 

thickness features to predict remission. Right hemisphere hippocampal shape and right inferior 

temporal cortical thickness was most predictive of remission, with the predicted probability of 

recovery decreasing when these regions were thicker. Remission was predicted with an average 

of 78% accuracy. Classification of MRI data may help identify treatment-responsive patients and 

aid in clinical decision-making. Our results show promise for the development of personalized 

treatment strategies.  

Introduction 
 

About 16 million (6.9%) US adults suffer from at least one major depressive episode in a 

given year. Global 12-month prevalence rates are similar (~6 %), though vary regionally 

(Kessler and Bromet, 2013). Despite available therapies, only a minority (20-40%) of individuals 

will achieve full symptomatic remission after initial or successive treatment attempts (Kennedy 

and Paykel, 2004). Unfortunately, residual symptoms increase the risk of relapse (Keller, 2004), 

																																																								
5 As of November 7th 2016, the content of this chapter is under review for publication and 
presentation at the 2017 annual International Symposium on Biomedical Imaging.  
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and with the recurrence of depressive episodes, symptoms become more refractory over time 

(Greden et al, 2011). The ability to predict the probability of therapeutic response would 

decrease the need for multiple lengthy medication trials, which appear needed in about 50% of 

patients (Gaynes et al, 2009), reduce suffering and enhance clinical outcomes. Several recent 

studies suggest that brain features extracted from structural neuroimaging data might relate to 

and predict symptom improvement (Phillips et al, 2015; Ten Doesschate et al, 2014). However, 

prognostic markers of post-treatment remission have not yet been identified.  

Electroconvulsive therapy (ECT), an established treatment typically reserved for severe 

depression, works more quickly (response can occur in 2-4 weeks) and has higher remission 

rates than other standard therapeutic approaches (Husain et al, 2004). The fast acting and robust 

clinical effects of ECT make this treatment ideal for determining whether structural variations in 

the brain might predict individual recovery from depression after completing a series of 

treatments. The existing neuroimaging literature suggests brain abnormalities in prefrontal and 

temporal cortical association regions as well as subcortical hippocampal, amygdalar, thalamic, 

ventral striatal/pallidal, and brainstem centers are of high relevance to the pathophysiology of 

major depressive disorder (MDD) (Drevets et al, 2008). We and others have further shown that 

changes in these regions or networks occur with ECT (Joshi et al, 2016; Leaver et al, 2016a; 

Leaver et al, 2016b; Njau et al, 2016; Pirnia T, 2016; Wade et al, 2016). However, few prior 

studies have simultaneously investigated whether regional changes in volume, shape and/or gray 

matter thickness might predict recovery from symptoms. Using an unbiased data-driven 

approach applied to morphometric features extracted from regions across the brain, including 

those not expected to link with depression, this study thus set out to determine if variations in 

these features might serve as prognostic markers for future remission following ECT.   
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We additionally implement a novel data-driven approach to shape-based feature selection 

that defines clusters of shape features based on associations between shape and change in 

symptom severity over treatment. This approach has the benefit of preserving local information 

about a regions shape while simultaneously reducing the dimensionality of the feature set and the 

computational complexity.  Similar patch-based approaches to shape analyses have been 

developed previously (Yushkevich et al, 2003), but to our knowledge this is the first time that a 

shape cluster selection approach was applied for prediction of remission in depression. 

Materials and methods 

Participants 
 

42 patients from the University of California, Los Angeles (mean age, 41 years [SD 14 

years]; range 19 - 74) all experiencing a DSM-IV defined major depressive episode and eligible 

to receive ECT were recruited as part of an ongoing study investigating treatment responsive 

biomarkers for antidepressant response in MDD. Patients were evaluated at two time points: 24 

hours prior to ECT (T1) and within a week of completing ECT index (T2).  

The Hamilton Depression Rating Scale (HAM-D-17) (Hamilton, 1960) was used to 

assess depression severity at each time point. Participants having a HAM-D-17 score of 8 or less 

at T2 were labeled remitters (Keller, 2003). 13 Patients remitted following ECT. The study 

protocol was approved by the Institutional Review Board at UCLA.  

Image acquisition and segmentation 
 

High-resolution motion-corrected multi-echo T1-weighted MPRAGE structural brain 

images (van der Kouwe et al, 2008) were acquired on a Siemens 3T Allegra system (Erlangen, 

Germany) for all subjects and time points (TEs/TR= 1.74, 3.6, 5.46, 7.32/2530 ms, TI=1260 ms, 

flip angle=7°, voxel resolution = 1.3×1×1 mm3).  
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Previously validated FreeSurfer (Dale et al, 1999) workflows, which include removal of 

non-brain tissue, intensity normalization and automated volumetric parcellation based on 

probabilistic information from manually labeled training sets, were used for whole brain cortical 

(Desikan Killiany atlas-based parcellations) and subcortical segmentation. Each segmented 

image was visually inspected to ensure its quality. 

Candidate features 
 

Cortical thickness of 70 regions of interest (ROIs) and volumes of 14 subcortical ROIs 

were estimated from FreeSurfer segmentations. The local thickness (i.e. shape) values of the 14 

subcortical structures, including the bilateral accumbens, amygdala, caudate, hippocampus, 

pallidum, putamen and thalamus, were further estimated using the Medial Demons framework 

described in (Gutman et al, 2012). In short, following non-linear warping to a spherical 

probabilistic template, local thickness of each subcortical surface was computed as the shortest 

distance from each vertex with respect to a skeletonized medial core traversing the anterior-

posterior axis of the structure. This local thickness for each mesh was represented at each of the 

vertices whose number scaled roughly with the average volume. Depending on the ROI, the 

resolution of each mesh ranged from 900 to 2500 amounting to 27,120 vertices in total. Age was 

also included as a candidate feature due to its well-known association with brain morphometry 

and neural integrity.   

Data driven subcortical shape cluster selection 
 

To reduce the dimensionality of the feature set and preserve the ability to report on 

clinically informative subregions of a subcortical surface, we defined clusters of vertices and 

estimated the average cluster-level local thickness. Shape clusters of vertices were defined within 

the training set of each classification fold based on the two criteria: i) their individual, training 



	 151	

fold subject-wise correlation with the percent of change in HAM-D-17 score between the two 

scan times T1 and T2 (!"#$ !!!!"#$ !!
!"#$ !! = ∆!"#$) was above a threshold !!!!"#! and ii) the 

vertices with ! ≥ !!!!"#! comprised a connected neighborhood cluster extent (CE) ≥ a 

threshold !"!!!"#! where !!!!"#!  ∈ {0.025, 0.05, 0.1, 0.15, 0.2} and 

!"!!!"#! ∈ {10, 20, 50, 100}. The effects of these parameterizations on classification 

performance were determined empirically via nested cross-validation described in section 2.6. 

The number and extent of shape clusters necessarily varied at each fold. Clusters identified in 

training folds were mapped to participants in testing folds and recomputed for cross-validation. 

Cortical thickness and subcortical volume measures were not subject to filtering as they 

contributed far less to feature set dimensionality.  

Random forest classifier 
 

Our classifier of choice was a random forest (RF) which is a supervised classifier built on 

an ensemble of classification and regression trees (CART) (Breiman, 2001) where each CART is 

composed of bootstrapped sample cases. Each decision node, v, within a CART is given a 

random subset of features for which the Gini impurity index is calculated as, 

!"#" ! =  !!! 1− !!! ,
!

!!!
 

(1) 

where !!! is the proportion of cases in class ! at node v. CART nodes are split by the feature !! 

maximizing the class purity of its child nodes, !! and !! by selecting the maximum !"#$ (!! , !) 

given by, 
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!"#$ !! , ! =  !"#" !! , ! − !!!"#" !! , !! − !!!"#" !! , !! , (2) 

 

where !! and !! are the proportions of cases in node v assigned to child nodes !! and !!. The 

global importance I of feature !! is taken as the summation of the decreases in the Gini 

coefficient at each node partitioned by !! (Gray et al, 2013). Specifically, 

 

!!! =  !
!"!#$ !"## !"#$%&  !"#$(!! , !)!∈!!! ,  (3) 

 

where !!! is the set of nodes split by !!. RFs grow each CART to its full extent and determine 

the label of a new observation by majority vote of its constituent terminal nodes. Each RF was 

tuned using a grid search over the number of variables passed to each node from 2 to p, where p 

is the number of variables in the feature set. The constituent number of CARTs in each forest 

was 1000.  

Nested cross-validation and feature selection 
 

To further randomize subjects used for training and testing, we implemented a nested 

cross-validation approach, where the outermost loop performs error-averaging by repeating the 

experiment 5 times. At each iteration participants were randomly reassigned to one of 10 cross 

validation folds to stratify the training and disjoint hold-out datasets, while the inner most loop 

performs feature selection by further partitioning the subjects into 10 sub-folds and using them 

independently for feature selection. Figure 6-1 illustrates the joint nested cross validation and 

feature selection process. The feature selection process used participants in 9 of the 10 sub-folds 

to define candidate shape clusters. Highly collinear features were removed if two features were 

correlated above a threshold !!!!"#! where !!!!"#!  ∈ {0.5, 0.6, 0.7 0.8 ,0.9, 0.95}. Of the two 
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highly correlated features, the one with the largest absolute correlation with all other features 

was removed from the feature set. Features surviving this initial threshold were then evaluated 

using 10-fold recursive feature elimination (RFE) (Guyon et al, 2002) where the internal 

classifier was also a RF composed of 1000 trees. The RFE algorithm proceeded by fitting a RF 

using all features and computing the importance (equation 3) of each feature in the full model. P 

feature subsets of sizes 1:P were created where P was the number of features surviving !!!!"#!. 

For all subsets, !!, i = 1:P, the 1:i-th most important features were used to predict remission 

status with a RF. The feature set yielding the highest average accuracy across all 10 RFE folds 

was selected. RFE and all RF models were fit using the caret package in R (Kuhn, 2008). 

 As shown in Figure 6-1, the RFE process was repeated for all ten nested folds. Upon 

completion of the internal folds, we evaluated the frequency of a feature’s occurrence in the 

optimal RFE subset and retained only those occurring with a frequency f ≥  !!!!"#! where 

!!!!"#!  ∈ {0.2, 0.3, . . . ,1} is defined relatively as the j-th quantile of frequencies of an ROI’s 

occurrence in the optimal feature set. !!!!"#! was necessarily defined at the vertex level for shape 

features. Vertices and individual ROIs surviving this thresholding process were subsequently 

used as features for prediction of the entire training set. Surviving vertices were re-clustered, and 

required to have CE ≥ !"!!!"#! (where !"!!!"#! is the same threshold used for initial cluster 

formation) and within cluster thickness averages were recomputed. Importantly, testing 

observations did not contribute to the feature selection process. Using a grid search we explored 

the space of all possible parameter combinations, !!!!"#!, !"!!!"#!, !!!!"#! and !!!!"#! resulting 

in a total of 1080 candidate parameterizations. Performances were averaged across all 5 

repetitions of this process.  
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 The prevalence of non-remitters was 69%; the baseline detection rate. Accuracy measures 

in binary classification problems with imbalanced samples are known to be biased towards the 

more prevalent class. To avoid inflated performance metrics we report on the balanced accuracy 

(BA) (Brodersen et al) defined as the average accuracy across both classes, formally BA = 

!
! (

!"#$ !"#$%$&'
!"#$%$&' + !"#$ !"#$%&'"

!"#$%&'" ). Our outermost loop allows us to further estimate the uncertainty 

of our performance estimates which is important given the increased likelihood of arriving at an 

accurate solution by chance in our large parameter space.  

Results 

Model performance 
 

We selected the model parameterization yielding the highest average test BA across all 5 

repeated folds. The highest BA was given by the parameters !!!!"#! = 0.025, !"!!!"#!, = 10 

!!!!"#! = 0.95 and !!!!"#! = 1 resulting in a mean BA = 73% (range 64-79%), accuracy = 78% 

(range 61-83%), sensitivity = 85% (range 79-89%), specificity = 61% (range 46-69%), positive 

predictive value = 83% (range 77-86%), negative predictive value = 65% (range 54-75%) where 

non-remitters were the positive class. 

 Under this parameterization there were an average of 4 (SD = 2) features selected at each 

fold. The frequency of a feature’s selection across cross validation folds is directly related to its 

overall importance by equation 3. Three features were selected in at over half (≥ 60%) of the 

models and therefore considered most important in predicting remission: two shape clusters of 

the right anterior hippocampus and the cortical thickness of the right inferior temporal cortex 

(ITC).  

Associations between morphometry and clinical outcome 
 



	 155	

In order to understand the relationship between these regions and the predicted 

probability of a patient’s remission, we fit a RF to 10 bootstrapped resamples of the patients 

using only these ROIs. Figure 6-2(a-b) illustrates this by plotting the predicted probability a 

hypothetical patient experiences symptom remission given an observed range of values in 20 

even increments for each ROI while holding other ROIs at their respective observed means. A 

non-parametric LOESS model was fit to the resampled predicted probabilities. The predicted 

probability of remission declined sharply as the thickness of the right ITC and hippocampal 

clusters increased.  

As a post hoc analysis we tested the correlation between the thickness of these regions 

and ∆!"#$. Figure 6-2(c) plots the linear least squares fit of these associations. ∆!"#$ was 

significantly anticorrelated with the first (r = -0.43, p = 0.004) and second (-0.38, p = 0.01) 

hippocampal clusters but not with ITC thickness (-0.27,  p = 0.08). The significance of these 

associations survived correction for multiple comparisons using the standard 5% false discovery 

rate.  

Additional shape clusters from several regions involved in reward circuitry and affected 

by MDD were selected with moderate frequencies including the bilateral amygdala (12%), left 

putamen (36%) and accumbens (22%). The frequency of each vertices’ selection is shown in 

Figure 6-3. No other regions were selected in over 10% of the folds; age was never selected 

suggesting it was not a critical factor.  

Discussion 
 

A primary aim in prognostic pattern recognition is the stratification of patients into 

groups likely and unlikely to benefit from a course of treatment. Remission, which leads to a 

better long term prognosis (Keller, 2004), is the ultimate goal of treatment. Identifying which 
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individuals will make a full symptomatic recovery following ECT or any other antidepressant 

treatment will aid clinicians in determining optimal treatment strategies and help patients and 

their health care providers anticipate and manage future relapse risk. Using a large cohort of ECT 

patients from UCLA, we thus sought to identify prognostic biomarkers of remission from pre-

treatment MRI scans. 

Right hemisphere temporal lobe structures were most predictive of remission. These 

regions are biologically plausible since reduced hippocampal volume is widely implicated in the 

neuropathology of depression (Drevets et al, 2008; Schmaal et al, 2016) while the ITC is a center 

of integration for mood and emotional stimuli (Seminowicz et al). ECT has previously been 

demonstrated to induce neuroplastic changes in both structures (Joshi et al, 2016; Pirnia et al). 

We further probed our classifier to build a profile of regional characteristics indicative of 

remission. The predicted probability of remission was largely inversely associated with the 

thickness of these regions in our random forest classifier and subsequent tests of correlation 

confirmed that ∆!"#$ was significantly anticorrelated with the baseline thickness of these 

regions.  

This finding is consistent with several prior reports showing increased hippocampal 

volume with ECT (Abbott et al, 2014; Joshi et al, 2015) and our prior finding of a moderate 

relationship between smaller hippocampal volume at baseline and greater improvement in 

clinical response in an overlapping sample (Joshi et al, 2015).  However, this is somewhat in 

opposition to a recent meta-analysis that reported reduced hippocampal volumes associated with 

lower remission likelihood to antidepressant drug therapies (Colle et al) though different 

mechanisms may occur for brain stimulation versus pharmacological interventions. It is also 

noteworthy that 83% of the ECT lead placements in our study were right unilateral (placed over 
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the right temporal area) which is ipsilateral to both the right ITC and right hippocampus. This 

may suggest that clinical outcome is partially determined by an interaction between the 

proximity of these structures to the induced current and their morphometry at the time of 

treatment. Future work will develop models that generalize across independent sites. Our current 

findings are encouraging and suggest that data-driven models based on neuroimaging may 

inform personalized treatment strategies.  
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Figures 
 

 
Figure. 6-1. Flowchart of classification process. 

 

 
Figure. 6-2. Illustration of shape clusters (a) and cortical (b) ROIs (top) most important in the 
prediction of remission. Line plots (bottom) indicate the predicted probability of remission over 
an observed range (minimum to maximum in 20 even increments) of ROI thicknesses averaged 
across 10 bootstrapped resamples of the data set and refitted to the derived classifier. A non-
parametric LOESS model was fit to the predicted responses. Points about each line indicate 
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predicted probabilities from each resample while rugs of each plot indicate the density of 
observed values in the whole sample. Note that orientation axes are provided below (a-b) as 
these are in radiological orientation (left-right flipped). (c) Plots least squares fits between the 
percent change in HAM-D-17 scores and baseline ROI thickness. 
 

 
Figure. 6-3. Vertex selection frequency 
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Chapter 7: Ongoing work in the prediction of clinical relapse following 
electroconvulsive therapy 
	
Introduction 
 
 Electroconvulsive therapy (ECT) elicits a high rate of clinical response, however, relapse 

rates following treatment also remain high despite ongoing maintenance therapy (Brakemeier et 

al, 2014; Kellner et al, 2006; Nordenskjold et al, 2013; Prudic et al, 2013; Sackeim et al, 2001). It is 

estimated that approximately 50-80% of patients with major depressive disorder (MDD) will suffer 

relapse after; 35% are expected to experience recurrent episodes and nearly 15% will suffer chronic, 

unremitting symptoms (Serra-Blasco et al, 2016).  

There are currently no reliable neurobiological markers in clinical use for the 

identification of patients likely and unlikely to respond or maintain a durable response to 

antidepressant treatments of any form. As previously discussed, neurological mechanisms of 

ECT response remain poorly understood and mechanisms mediating or moderating response 

durability are even less understood. Prior research has even suggested that neural architecture 

responsible for acute response to ECT and long-term response durability may differ (Brakemeier 

et al, 2014).  

Most investigations into the prediction of response durability (i.e. relapse) have focused 

on modeling associations between ultimate relapse and residual symptomatology (Judd et al, 

1998) or number and severity of depressive episodes (Judd et al, 2000; Keller et al, 1992). 

Increased severity of these measures has been successfully associated with higher long-term 

relapse risk. Yet, few studies have investigated the viability of relapse prediction from 

neurobiological markers that could compliment the aforementioned clinical features a predictive 

framework. 
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A recent study by Serra-Blasco and colleagues implemented a naturalistic approach 

(Serra-Blasco et al, 2016) to predict relapse 5 years following treatment using structural MRI 

measures. Their group observed that right anterior cingulate gyrus volume was highly 

informative of subsequent relapse and accounted for an additional 20% of variability in 

depression rating scales above the use of clinical markers in isolation. Earlier studies by Frodl 

identified smaller hippocampal and anterior cingulate volumes as indicative of subsequent 

relapse (Frodl et al, 2008a; Frodl et al, 2008b). Hippocampal and anterior cingulate atrophy are 

among the most consistently reported neurological manifestations of MDD, lending credence to 

these findings. The studies by Frodl and Serra-Blasco were naturalistic in design, however, and 

did not restrict their investigations to patients receiving particular courses of treatment. 

Additionally, their findings are based on analysis of variance methods and did not implement 

cross-validation based methods to evaluate the prognostic values of these brain regions in relapse 

risk stratification.  

Here, we build on our prior work presented in chapters 5 and 6 and seek to identify 

biomarkers to aid in risk stratification of long-term relapse. We use the predictive framework 

previously developed in chapter 6, however, currently without the use of subcortical shape 

descriptors (though these will be applied in the future). Using two independent patient cohorts 

from UCLA the University of New Mexico (UNM) we investigate the predictive value of MRI-

based biomarkers based on pre-treatment and post-treatment measures as well as changes in 

brain structure between these two time points. We currently restrict our investigations to within-

site predictions, however, due to wide age disparities between the two cohorts. Our preliminary 

findings are highly encouraging but will require independent replication as they are based on 

small sample sizes. The ability to identify patients likely to relapse following treatment would be 
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a crucial step towards developing more personalized management strategies and offsetting many 

of the personal and economic costs associated with the characteristic episodic recurrence of 

MDD. 

Methods 
 

Participants and image processing 
	
 A subset of the UCLA patient cohort reported on in the previous chapter and additional 

patients from UNM were followed 6-months after completing full ECT index. 17 patients from 

UCLA (mean age, 45 years [SD 12 years]; range 19 - 64) and 25 patients from the University of 

New Mexico (mean age, 65 years [SD 8 years]; range 25 - 94) were scanned 24 hours prior to 

initiation of ECT index and within a week of completing index. Of the UCLA cohort, 6 patients 

relapsed and 13 patients relapsed at UNM. It is important to acknowledge that much debate 

surrounds the topic of defining relapse and, naturally, much information and nuance is lost in 

designating arbitrary cutoffs based on numerical changes in depression rating scales. However, 

for our purposes a standard definition of relapse was used in which two criteria needed to be met: 

i) patients must have initially responded to ECT with a reduction in HAM-D-17 scores being ≥ 

50% and ii) patients experience a return of ≥ 50% of symptoms following ECT index.  

Imaging parameters and segmentation procedures were the same as those reported 

previously in chapter 6. Unlike our report in the previous chapter, subcortical shape analyses 

have yet been applied to the prediction of relapse; however, this is intended for future 

development of this project. Here, we instead only use FreeSurfer-derived subcortical volume 

and cortical thickness measures as the input features for our classifier.  

Nested cross validation and parameterization 
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 In an approach similar to that described in chapter 6, we randomized subjects used for 

training and testing by implementing a nested cross-validation approach, where the outermost 

loop performs error-averaging by repeated the experiment 10 times while shuffling subjects in 

each of the inner folds at each iteration. The next inner loop performs repeated 5-fold cross 

validation to randomly stratify the training and the disjoint hold-out datasets, while the inner 

most loop performs feature selection by further partitioning the subjects into 5 sub-folds and 

using them independently for feature selection.  

An additional grid search over the parameters, !!!!"#! and !!!!"#!, was performed. 

Highly collinear features were removed if two features were correlated above a threshold !!!!"#! 

where !!!!"#!  ∈ {0.1, 0.2,… ,0.9}. The feature with the largest absolute correlation with all other 

features was removed from the candidate feature set. Features surviving this initial threshold 

were then evaluated using the RFE algorithm described previously (and detailed by Guyon 

(Guyon et al, 2002)) where the internal classifier was also a RF composed of 500 trees. Upon 

completion of the internal folds, we evaluated the frequency of a feature’s occurrence in the 

optimal RFE subset and retained only those occurring with a frequency f ≥  !!!!"#! where 

!!!!"#!  ∈ {0.1, 0.3, . . . ,1} is defined relatively as the j-th quantile of frequencies of an ROI’s 

occurrence in the optimal feature set. Because binary classification problems are well-known to 

be biased towards the more prevalent class, we again used the balanced accuracy (BA) 

(Brodersen et al) defined as BA = !! (
!"#$ !"#$%$&'
!"#$%$&' + !"#$ !"#$%&'"

!"#$%&'" ) to evaluate model performance 

in order to mitigate performance inflation due to class imbalance.  

This approach to repeated nested cross-validation was performed independently for 

features from baseline (pre-treatment, T1), follow-up (post-index, T2) and changes between time 

points (deltas). Deltas were defined simply as ∆!! =  !2!! −  !1!!, where !! is the i-th feature 
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in the dataset. A ∆!! > 0 indicates that the given brain region’s thickness or volume has 

increased over treatment index. Due to the substantial age differences across the two sites we 

only report here on classification of relapse within site.  

Results 
 

For the sake of brevity we only detail the highest performing models that attained an 

average BA ≥ 70% across the 10 repetitions of cross validation. Models not meeting this 

criterion are only presented summarily. Relapse at UCLA was most accurately predicted from 

morphological changes in brain structure over the course of index (deltas); post-treatment brain 

structure was nearly as predictive. At UNM, post-treatment (T2) brain structure was most 

predictive of later relapse and pre-treatment measures (T1) were nearly as predictive.  

Balanced accuracy, positive predictive value (the probability that a patient classified as 

positive is truly positive) and negative predictive value (the probability that a patient classified as 

negative is truly negative) by site and time point are outlined in table 7-1.  

Prediction of relapse from pre-treatment measures 
 

Relapse of UNM patients from T1 measures was predicted with an average balanced 

accuracy of 71% (range, 63-84%), accuracy = 70% (range, 64-84%), sensitivity = 76% (range, 

58-91%), specificity = 65% (range, 53-76%), positive predictive value = 67% (range, 60-78%) 

and negative predictive value = 75% (range, 64-90%). The most informative regions (as 

determined by being selected in the RFE process in ≥ 80% of repeated folds) were: the right 

thalamus and left accumbens volumes and the left temporal pole and right rostral anterior 

cingulate cortical thicknesses. Here, the left temporal pole thickness was largely inversely 

associated with predicted probability of relapse. Larger right thalamus volume tended to increase 

predicted relapse probability while increases in left accumbens volume and right rostral anterior 
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cingulate thickness resulted in generally lower predicted relapse probabilities when other regions 

were held at their observed means. The relationships between these regions’ morphometry and 

predicted relapse probabilities are illustrated in Figure 7-1. The parameters of this model were 

!!!!"#! = 0.3 and !!!!"#! = 0.1. Relapse within UCLA was predicted at near-chance levels from 

T1 measures with an average balanced accuracy of 56%.  

Prediction of relapse from post-treatment measures 
 

For the classification of UCLA data, the highest performing parameterization at T2 was 

!!!!"#! = 0.9 and !!!!"#! = 0.4 which yielded an average balanced accuracy = 73% (range, 66 – 

75%), accuracy = 81% (range, 76-82%), sensitivity = 100% (range, 100-100%), specificity = 

46% (range, 33-50%) positive predictive value = 77% (range, 73-78%) and negative predictive 

value = 100% (range, 100-100%). Here, four regions were most informative the right precentral 

gyrus, right fusiform gyrus, left caudal anterior cingulate and left medial orbital frontal cortex. 

For each of these regions, the predicted probability of relapse increased in subjects having 

thicker cortices (these relationships are illustrated in Figure 7-2). The predicted probability of 

relapse was higher among patients having thinner right paracentral gyri, however, the rugs in 

figure 7-2 indicate that this is likely driven by the presence of a single observation.   

In the classification of the UNM cohort from T2 measures, the parameters !!!!"#! = 0.7 

and !!!!"#! = 0.9 provided the highest performance with an average balanced accuracy = 77% 

(range, 67 – 84%), accuracy = 77% (range, 68-84%), sensitivity = 74% (range, 66-91%), 

specificity = 80% (range, 69-92%) positive predictive value = 77% (range, 66-88%) and negative 

predictive value = 77% (range, 69-90%). Five cortical regions (illustrated in Figure 7-3) were 

considered most important in this model: the right frontal pole, right pars triangularis, the 

bilateral pericalcarine and right entorhinal cortices. Intriguingly, the relationship between 
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predicted probabilities of relapse given observed ranges of cortical thicknesses tended to be 

opposite to that observed at UCLA, with these regions being indicative of lower probabilities of 

relapse at thicker values. This difference is likely due to the fact that UCLA and UNM 

predictions were driven by disjoint sets of cortical regions.  

Prediction of relapse from morphological changes over treatment index 
 

Relapse was best predicted within UCLA from a model based on change scores with the 

parameterization !!!!"#! = 0.8 and !!!!"#! = 1 yielded an average balanced accuracy = 74% 

(range, 61 –82%), accuracy = 75% (range, 64-82%), sensitivity = 80% (range, 72-81%), 

specificity = 68% (range, 50-83%) positive predictive value = 82% (range, 72-90%) and negative 

predictive value = 64% (range, 50-71%). Interestingly, this model was constructed exclusively 

on the degree of change in left accumbens volume over index. As shown in Figure 7-4, patients 

with more increased left accumbens volumes over index were predicted to be more likely to 

relapse, in general. Prediction of relapse from changes over index within the UNM cohort 

attained a low BA of 61%.  

Sensitivity analyses 
 
 To examine the probability that the classifier parameterizations resulting in the largest 

BA were arrived at by random chance of specific combinations of subjects or due to the presence 

of high-leverage subjects, we conducted a sensitivity analysis. This was approached by repeating 

the classification process for the models detailed previously at their respective optimal 

parameterizations 100 times. At each iteration 2.5% of the observations were randomly 

excluded. In Figure 7-5 we compare the observed BAs reported above to the resampled 

distributions to both determine whether the observed performance is an outlier in this resampled 

distribution and, secondly, to examine whether the spread of the resampled distributions is 
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particularly wide which would also suggest highly variable performances potentially driven by 

particular subjects.  

 We note that the UNM T1, UNM T2 and UCLA ∆ models all fall in high-density regions 

of the resampled BAs suggesting they are fairly estimated. The observed UCLA T2 model BA 

falls beneath the high-density region of the resampled distribution suggesting a conservative 

estimation. The percentiles of the observed BAs relative to their respective resampled 

distributions are as follows: UNM T1 = 77th percentile, UNM T2 = 42nd percentile, UCLA T2 = 

18th percentile and UCLA ∆ = 74th percentile. Notably, the high-density regions of the resampled 

distributions were well above 50%, however, it is also notable that the UCLA ∆ distribution was 

spread widely with a number of observations being below 50% suggesting a high variance (i.e. 

potentially unreliable) model.  

Discussion 
 

In this ongoing work we have taken steps towards identifying biomarkers for the 

identification of patients who are at high risk for symptom relapse following reception of ECT. 

We have so far only developed site-specific classifiers. A major challenge in the future of this 

work will be to develop classifiers capable of predicting relapse across site. This has so far been 

very challenging as these two cohorts vary substantially in terms of age as well as degree of 

response to ECT. Natural age-related neurodegeneration is a substantial confound in the 

identification of MDD-related patterns of neurodegeneration that might inform subsequent 

relapse. Additional confounds include minor differences in ECT administration by site as well as 

the use of different scanners to image each patient cohort.  

Future work will attempt to implement strategies such as instance weighting and domain 

adaptation to incorporate known differences in demographic and feature set distributions by site 
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into the classification model (Wachinger and Reuter, 2016). An additional consideration of these 

models’ respective values will be the accuracy they provide as weighted by whether they are 

based on pre- or post-treatment where the former would clearly be considered the most valuable 

in a clinical setting. For instance, the highest performing UNM model was based on post-

treatment observations and yielded a balanced accuracy of 77%. But, is this more or less 

valuable than the model built from pre-treatment measures that had an accuracy of 71%? Though 

the latter model is slightly less accurate it would have the added benefit of mitigating 

unnecessary side effects in patients identified as likely to relapse. Considerations such as this 

will be factored in to future directions of this work.  

Our initial results in the classification of subsequent relapse within site are encouraging 

with both sites attaining over 70% accuracy when using features from post-treatment. The 

highest performing model from UNM was derived from this follow-up time point while the most 

predictive model at UCLA was derived from changes in brain structure over index. Ideally, we 

hope to develop a model capable of predicting relapse from pre-treatment measures of brain 

morphometry as this would help to rule out candidates who are unlikely to benefit in the long 

term. Of course, ECT is often an important line of treatment for its acute benefits as well as is the 

case for recipients who are imminently suicidal. Yet, a forecast of ECTs long-term benefits will 

be valuable to both the clinician and the patient in the medical decision making process.  
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Tables 
 

Table 7-1. Classifier performance by site by time point 
 UCLA UNM 
 T1 T2 Delta T1 T2 Delta 
BA 56% 73% 74% 71% 77% 61% 
PPV 68% 77% 82% 67% 77% 61% 
NPV 46% 100% 64% 75% 77% 62% 
Abbreviations: BA = balanced accuracy; PPV = positive predictive value; 
NPV = negative predictive value 

 
 
Figures 
 

 
Figure 7-1. Cortical and subcortical regions (top) contributing most to the prediction of relapse 
at UNM prior to ECT index and the predicted probabilities of relapse given a range of observed 
cortical thicknesses (bottom). Predicted probabilities for each range are obtained by holding 
other regions at their observed means. Points about each line indicate predicted probabilities 
from each of 10 bootstrapped resamples taken at 20 evenly spaced increments from the minimum 
to maximum of the observed ranges of cortical thickness or subcortical volume values. Rugs of 
each plot indicate the density of observed values in the whole sample. 
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Figure 7-2. Cortical regions (top) contributing most to the prediction of relapse at UCLA 
following ECT index and the predicted probability of relapse given a range of observed 
cortical thicknesses (bottom). Points about each line indicate predicted probabilities from each 
of 10 bootstrapped resamples taken at 20 evenly spaced increments from the minimum to 
maximum of the observed ranges of cortical thickness values. Rugs of each plot indicate the 
density of observed values in the whole sample.  
 

 
Figure 7-3. Cortical regions (top) contributing most to the prediction of relapse at UNM 
following ECT index and the predicted probability of relapse given a range of observed cortical 
thicknesses (bottom). Points about each line indicate predicted probabilities from each of 10 
bootstrapped resamples taken at 20 evenly spaced increments from the minimum to maximum of 
the observed ranges of cortical thickness values. Rugs of each plot indicate the density of 
observed values in the whole sample. 
 



	 176	

 
Figure 7-4. Illustration of the left accumbens (top) that contributed most to the prediction of 
relapse at UCLA when evaluating structural changes between T1 and T2. Again, the predicted 
probability of relapse for an observed range of changes in left accumbens volume (taken in 20 
even increments) is shown below. Rugs indicate densities of observed change scores.  
 

Cluster 9
Cluster 8

Thalamus
Putamen
Cluster 5

Hippocampus
Caudate

Amygdala
Accumbens

Cluster 9
Cluster 8

Thalamus
Putamen
Cluster 5

Hippocampus
Caudate

Amygdala
Accumbens

∆Volume (T2 - T1)

P(
Re

la
ps

e 
| ∆

)
0.00

0.25

0.50

0.75

1.00

0 50 100 150

VLeft Accumbens olume



	 177	

 
Figure 7-5. Observed balanced accuracies of high-performance models (vertical dashed lines) 
versus resampled distributions of balanced accuracies from (a) pretreatment measures of 
morphometry at UNM, (b) follow-up measures of morphometry from UCLA, (c) follow-up 
measures of morphometry from UNM and (d) changes in morphometry over index from UCLA.  
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Chapter 8: Conclusions 
	

In this body of work we demonstrated the efficacy of high dimensional, locally defined 

shape data as a basis for biomarker discovery in two domains: the description of neurological 

manifestations of HIV infection and the identification of patients with severe major depressive 

disorder (MDD) who are likely to respond to an aggressive line of antidepressant treatment, 

electroconvulsive therapy (ECT). Descriptions of shape modeled local surface-based variations 

in the thickness (radial distance) and surface area dilation ratio (Jacobian determinant) of seven 

prominent subcortical structures: the accumbens, amygdala, caudate, hippocampus, pallidum, 

putamen and the thalamus. Broadly speaking, we found that information captured by these shape 

descriptors exceeded that captured by global measures of volume for the same structures. This is 

likely due to the subtle presentations of neurodegeneration exhibited by certain stages of 

disorders; these more subtle signals would not be discernable when averaged across an entire 

brain region, as is the case with volumetric measures.  But, in exchange for more sensitive, local 

descriptors, we are confronted with a higher chance of detecting false positives and, in 

classification problems, the curse of dimensionality.  

Chapter 2 explored the treatment of these shape descriptors as predictive features in the 

context of classifying Alzheimer’s disease and its prodromal state, mild cognitive impairment. 

There we compared the use of feature selection methods and no feature selection to determine 

whether commonly used classification algorithms were prone to overfit to training data using 

these descriptors. We observed that the LASSO significantly improved the computational 

efficiency of classifiers using these descriptors but yielded relatively unstable performances 

across classification problems based on increasingly smaller sample sizes. We posited that this is 

due to the high degree of sparsity induced by the LASSO approach since more greedy, retentive 
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methods such as regularized random forests and no feature selection were more stable. These 

results suggest an expected tradeoff between computational efficiency and classification 

performance. On average, the greedier regularized random forest approach retained more 

features than the LASSO to classify mild cognitive impairment. As mild cognitive impairment 

has a more subtle and heterogeneous presentation than more advanced Alzheimer’s disease, this 

implies that overly sparse feature selection requirements may fail to capture more spatially 

diffuse patterns of neurodegeneration.  

 In chapters 3-4 we investigated the effects of HIV infection on the aging brain at both 

geriatric (Chapter 3) and pediatric (Chapter 4) ends of the age spectrum. These studies were 

largely descriptive rather than predictive in scope. Among the elderly cohort, we observed 

significant local atrophy and global volumetric reductions in several subcortical structures in 

those who were HIV+. These findings are aligned with previous reports of more severe 

neurodegeneration in elderly HIV+ patients versus age-matched, uninfected controls (Canizares 

et al, 2014; Cohen et al, 2015).  

 Chapter 4 addressed how HIV infection affects the developing adolescent brain in a large 

cohort of perinatally infected Thai children. Unlike the elderly cohort, the pediatric study 

examined cross-sectional and longitudinal associations. While existing literature on pediatric 

HIV infection is far sparser than that on adults, our findings largely corroborated patterns of 

neurodegeneration observed in adults, highlighting again the basal ganglia’s vulnerability to 

infection. Volumetric analyses did not reveal significant differences in this cohort and all 

reported findings were based on local shape characteristics. Cross-sectional observations 

revealed a significant reduction in the thickness of the right medial pallidum, the surface area of 

the left lateral pallidum and a region of the right amygdala in HIV+ children. The surface area of 
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the right amygdala was also enlarged in HIV+ children. Infection-by-treatment variation was 

observed as well with the thickness and surface area of many regions being increased in 

HIV+/cART+ children relative to controls. An increased rate of gain in the thickness of the right 

lateral pallidum and surface area of the left anterior accumbens of HIV+ children was observed 

when modeled longitudinally. Future studies including measures of metabolites via magnetic 

resonance spectroscopy and measures of cytokines would help to resolve whether the observed 

variation is due to inflammation stemming from excitotoxic damage to these regions. Given the 

proclivity of HIV for subcortical regions, particularly of the basal ganglia, this is a plausible 

explanation.  

 Chapters 5-7 focused more heavily on the development of prognostic, rather than 

descriptive, biomarkers. In chapter 5 we explored cross-sectional and longitudinal variation in 

subcortical morphometry among patients with MDD receiving ECT. We described differences 

between patients with MDD and unaffected controls as well as differences between patients who 

were responsive and unresponsive to ECT.  Examined cross-sectionally, we reported reduced 

accumbens and pallidum volumes in patients versus controls prior to treatment. This 

corroborates prior reports of reduced striatal volumes in depressed cohorts (Koolschijn et al, 

2009; Videbech, 1997). No shape-based differences were observed between patients with MDD 

and healthy controls, however. Among ECT patients, the left putamen increased in volume 

between baseline and the end of the ECT treatment index.  

Morphometric differences were additionally observed based on subsequent patient 

responsivity to ECT. Specifically, responders had smaller overall accumbens volumes prior to 

treatment when compared to non-responders; the accumbens was additionally observed to 

increase among responders over treatment while moderate volumetric decreases were observed 
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over index in non-responders. Additionally, there were significant differential trajectories in the 

shape of the right medial pallidum and left superior caudate between responders and non-

responders over index. These morphometric differences over index are consistent with the 

hypothesis that recovery from ECT is partially dependent on neuroplastic changes induced by 

treatment. But, whether these morphological variations are reflective of underlying inflammation 

resulting from the induced electrical current, the promotion of neurogenesis or both remains to 

be resolved and requires further investigation.  

We further developed a support vector classifier using features of subcortical shape and 

volume to predict clinical response to ECT. We observed that pre-treatment measures of 

subcortical morphometry are capable of predicting response to ECT (i.e. a minimum of 50% 

improvement in mood) with an accuracy of 89%. However, the performance of this classifier 

was highly dependent upon which of three commonly used mood scales was used to assess 

patient response. Interestingly, it was a self-report scale that was the most predictive in isolation. 

It is unclear whether this gain in classification performance reflects an underlying strength in 

using the self-report scale (the QIDS) versus the clinician-administered scales (HAM-D and 

MADRS) or if certain chance alignment between the predictors in the feature set and outcome 

measures of the QIDS scale gave rise to this performance. Given the small sample size used in 

this study, the results merit independent replication.  

The findings from this study provided additional evidence that ECT induces 

morphological changes (perhaps through inflammation and/or promotion of neurogenesis) in 

striatal and basal ganglia regions that are associated with clinical improvement and have the 

potential to inform personalized treatment. However, a further limitation of this study was that 

we did not relate characteristics of baseline features with later response. For example, is there a 
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characteristic profile of volume or shapes of these regions that are more associated with clinical 

response and, if so, what?  

In chapter 6 we searched further for biomarkers of a more complete level of patient 

response to ECT, remission. We improved upon our earlier work in chapter 5 by probing our 

classifiers to obtain profiles of brain morphometry indicative of post-treatment remission or non-

remission. We addressed a further limitation of chapter 5 by performing error averaging over 

repeated cross validation folds which allowed us to gauge our confidence in the classifier’s 

estimates. Future work will additionally include sensitivity analyses of this classifier as in 

chapter 7. An additional development in this project was the use of data-driven approaches to 

clustering subcortical shape descriptors. This had the benefit of reducing the dimensionality of 

the classification problem (which had been the focus of chapter 2) while retaining our ability to 

refer to specific subfields of subcortical structures.  

We reported three primary brain regions that were highly predictive of remission under 

this framework: the average local thickness of two regions of the anterior right hemisphere 

hippocampus and the right inferior temporal cortex. We probed the random forest model and 

observed that the predicted probability of remission decreased sharply as the thickness of these 

regions increased. We subsequently confirmed that pre-treatment thickness of the anterior 

hippocampus was strongly and significantly anticorrelated with improvement in mood scores 

over ECT index. Encouragingly, the temporal lobe structures identified by this data-driven 

framework are widely identified as being associated with symptom severity and recovery 

(Drevets et al, 2008) though they were selected from a wider collection of brain regions not 

normally associated with depression or recovery. Additional biologically relevant regions were 

identified (though less frequently). For example, structural and functional abnormalities are 
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frequently observed in serotonergically modulated emotional response circuitry, which include 

the accumbens, amygdala and pallidum which were also identified.  

Future work in this area will focus on the development of classifiers having translational 

predictive abilities across independent sites. Though this was attempted using the UCLA and 

UNM cohorts, the results have so far not been compelling. However, a major confound of age 

exists between these two sites. Techniques for multisite classification such as domain adaptation 

in which subjects having similar characteristics across site are up-weighted in the training phase 

of classifier learning offer promising frameworks for overcoming these challenges. However, if 

an age disparity is the primary reason for sub-optimal classification performances an alternative 

strategy would be to develop classifiers based on windows of age ranges once adequately sized 

samples are available. Unfortunately, in the setting of cross-validation, we can not simply regress 

out confounding effects from training and testing folds using a single model as the resulting 

residualized values in the test set would be a partial function of values in the training folds 

thereby allowing for feedback between training and testing sets. However, again, given adequate 

sample sizes for both training and testing folds separate regression models could be fitted to 

training and testing folds independently; however, we currently do not have a sample size that 

would permit this approach. 

Finally, chapter 7 introduced ongoing work in the area of patient risk stratification for 

relapse at 6-months following completion of ECT. We implemented an approach based on the 

classification process developed in chapter 6 except the use of shape features have not yet been 

applied. We compared brain imaging biomarkers predictive of subsequent relapse using features 

derived from pre-treatment, post-treatment and changes in brain structure over the course of 

treatment. Classifiers used features from both sites separately. Using these data-driven 
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approaches, we again constructed profiles of brain characteristics identified as likely and 

unlikely to relapse following reception of ECT. Models with reasonable levels of performance 

were subsequently evaluated using sensitivity analyses to both ensure that the observed 

performances were not arrived at through sheer chance combinations of subjects assigned to 

testing and training folds and to additionally determine whether influential/high-leverage 

subjects were influencing the fit of our models. Utilizing a wide parameter grid search, we were 

able to identify models with balanced accuracies above 70% for UCLA and UNM cohorts.  

Future work will focus on the development of models with predictive value across sites. 

Again, the wide age differences between the UCLA and UNM cohorts introduced a confound of 

age-related brain differences which prevented classifiers from generalizing across sites. 

However, as we continue to recruit patients for these ongoing studies sample sizes will become 

amenable to the use of either domain adaptation or the training of age-range-specific models. We 

will additionally seek to predict changes in mood scales as continuous outcomes rather than 

arbitrary binary categories of response, remission and relapse.  

 Taken together, our work in both HIV and MDD demonstrates that high-dimensional 

shape data is an effective basis for biomarker discovery in MRI research and is likely to aid 

significantly in both predictive computer-aided diagnoses systems and future work in descriptive 

characterizations of neurological pathologies.  
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