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Kalman Filtering from the Perspective of the Heisenberg Uncertainty Principle

Yuqi Zhang

1 Abstract

Finite escape means the occurrence of an infinite value in the solution of a time-varying

differential equation. Finite escape can occur in the computation of either the Kalman

or the Kalman-Bucy filter because the gain is time-varying. When no escape occurs it

is analogous to the Heisenberg uncertainty principle [1] in atomic physics. Three noisy

examples are given: a single integrator, a double integrator, and a linear oscillator. Fi-

nite escape cannot happen in the single integrator or the underdamped linear oscillator,

but can happen in the double integrator and undamped linear oscillator. Therefore, fi-

nite escape can occur in the estimation of any noisy dynamic system. Except in special

situations, it is impossible to achieve certainty in the determination of all state vari-

ables using neural nets, machine learning, or artificial intelligence even with an infinite

amount of data. Conditions for finite escape to occur are given. Finally, practical solu-

tions for escape are considered for the linear oscillator.
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3 Introduction

Finite escape means the occurrence of an infinite value in the solution of a time-varying

differential equation. Finite escape can occur in the computation of either the Kalman

or the Kalman-Bucy filter because the gain is time-varying. Three simple examples of

noisy linear systems are optimally filtered in continuous time by Kalman Bucy filter-

ing, and the results are computed analytically. These examples can be generalized to

higher-order systems that are time-varying and nonlinear. However, results for higher-

order systems become too complicated to analyze analytically. The methods used for

these simple examples can be extended to more complicated systems, making it feasi-

ble for linear cases that specify initial conditions and known inputs. These examples

indicate a similarity to the Heisenberg’s uncertainty principle extended to noisy linear

dynamic systems. Furthermore, we show that the Kalman filter is not robust with re-

spect to frequency variations in the linear oscillator, but it becomes robust when the

unscented Kalman filter is used.

The three examples are: 1. a single integrator, 2. a double integrator, and 3. a linear

oscillator.

Finite escape of the Kalman filter gain means that at some time t∗ < ∞ the value of

the gain becomes infinite. For practical applications, this is unacceptable. This finite

escape occurs when the solution of the error variance Riccati equation, the n×n matrix

P(t), is no longer positive definite.

For applications, finite escape implies that the noisy linear model no longer reflects real-

ity. A basic assumption used in the Kalman filtering model has been violated. Usually,
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the violated assumption is either an incorrect model order or departure from linearity.

An interval of time surrounding the finite escape time must be avoided in practical ap-

plications. Infinite gain in feedback control causes instability and infinite control power

demand.

A possible practical solution to finite escape has been proposed by [2]. Their solution

involves controlled switches and both high and low pass filters. Possibly other solutions

might also be appropriate.
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4 Example 1: Single Integrator

In this example, the model is a single RC integrator. The system and observation model

are defined in equation (1) and equation (2), v(t) as the process noise and the w(t)

as the measurement noise. They conform to a Gaussian distribution. We choose the

RC integrator to start from a one-dimensional system, then a double RC integrator to

analyze the Kalman-Bucy Filter(KBF), and the Heisenberg Uncertainty Principle(HUP)

in example 2.

Define x0 as the Initial State. y0 as the Initial Measurement.

ẋ = 0+ v(t) ,x(0) = x0 ,v ∼ N(0,q2) (1)

y(t) = x(t)+w(t) ,y(0) = y0, w ∼ N(0,r2) (2)

This is a noisy linear dynamical system. The evolution of this system over time is

governed by a linear equation, but there is an additional component of randomness in-

troduced by the noise. The process noise reflects incomplete modeling of the actual

system. The measurement noise reflects imperfections in sensors or measurement de-

vices, including random errors, quantization errors, and device noise.

The process to apply the Kalman-Bucy Filter is shown below, equation (3) to equation

(9). In equation (3), K is the Kalman Gain, x̂(−) is the predicted estimate, x̂(+) is the

updated estimate, and they are time-varying.

x̂(+) = x̂(−)+K(y− x̂(−)) (3)

3



P(+) = (I −K)P(−) (4)

In equation (4), P is the error covariance, P(+) is the posteriori error covariance, P(−)

is the priori error covariance, I is a n× n identity matrix, here n = 1. Now consider a

discrete time interval equals δ .

Continuous prediction and update give [3]:

K(t) = P(t)R−1(t) (5)

x(t +δ )− x(t) = x(t)+K(y(t)− x(t))− x(t) = K(y(t)− x(t)) (6)

P(t +δ )−P(t) = P(+)−P(−) = (I −K)P(t)−P(t) =−P(t +δ )R−1P(t) (7)

In equation (5), R−1(t) equals r2. In equation (9), Q(t) equals q2.

Therefore, in the limit of δ −→ 0

˙̂x(t) = K(y(t)− x̂(t)) (8)

Ṗ(t) = Q(t)−P(t)R−1P(t) (9)

In the equation (1) and equation (2), v and w conform to a Gaussian probability distri-

bution. The mean of v and w is 0, and the standard deviations are q and r.


q = 0.05 ,v ∼ N(0,0.0025)

r = 0.1 ,w ∼ N(0,0.01)
(10)

4



In equation (11), x̂0 as the Initial State Estimate. P0 as the Initial Estimation Error

Covariance Matrix. Here P0 is a constant.



x0 = 0.5

y0 = 0.54

x̂0 = 0.5

P0 = π0 = 1.2

(11)

The MATLAB code for the Kalman-Bucy Filter is in Apppendices Listing 1.

Fig. 1. Stochastic Process and Kalman-Bucy Filter for single integrator

In Figure 1. The blue trajectory is the random walk, according to the dynamic

system model. The red trajectory is the measurement. The measurement model is a

5



random walk with a Gaussian distributed noise. So the red line follows the blue line.

The red dashed line is the output of the Kalman-Bucy Filter. The output is the optimal

estimate of the state of the dynamic system.

Fig. 2. Trajectory of P(t) for single integrator

In Figure 2. The trajectory of P starts from the initial guess P0, which is 1.2. Then

as the time goes on, the value of it keeps declining and tends to a constant. Its trajectory

conforms to a hyperbolic function.

4.1 A Method to obtain P(t)

The mathematical method to obtain P(t) is shown below.

P(t)X(t) = Y (t), P(t) = Y (t)X−1(t), i f det(X) ̸= 0 (12)
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In equation (12), the relationship is between these three n× n matrix P(t), X(t) and

Y (t). det(X) is the determinant of the n×n matrix X , here n = 1. Then

X(t)

Y (t)

= eHt

 1

π0

 . (13)

In equation(14), H is the Hamiltonian matrix defined in this 2×2 case as

H =

 0 1
r2

q2 0

 . (14)

Denoting Laplace transformation as L, then inverse transformation gives

L−1{(sI −H)−1}= eHt . (15)

In equation (15), L−1 is the inverse Laplace transformation. I is the identity matrix.

sI −H =

s 0

0 s

−

 0 1
r2

q2 0

=

 s − 1
r2

−q2 s

 (16)

(sI −H)−1 =
1

s2 − q2

r2

 s 1
r2

q2 s

=


s

s2− q2

r2

r−2

s2− q2

r2

q2

s2− q2

r2

s
s2− q2

r2

 (17)

L−1{(sI −H)−1}= eHt =

 cosh q
r t 1

qr sinh q
r t

qr sinh q
r t cosh q

r t

 (18)
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X(t)

Y (t)

= eHt

 1

π0

=

 cosh q
r t + π0

qr sinh q
r t

qr sinh q
r t +π0 cosh q

r t

 (19)

P(t) =
qr sinh q

r t +π0 cosh q
r t

cosh q
r t + π0

qr sinh q
r t

=
qr tanh q

r t +π0

1+ π0
qr tanh q

r t
(20)

When t → ∞, tanh q
r t = 1. Then

P(∞) =
qr+π0

1+ π0
qr

=
qr(qr+π0)

qr+π0
= qr. (21)

The MATLAB code for normalized P(t) is in Appendices Listing 1.

Fig. 3. Plot of P(t)

In Figure 3, the value of P starts from π0, which is 1.2. As time increases, the value

of P approaches qr, which is 0.005. The trajectory of P is a hyperbolic function, and

8



the value of P is consistent with equation (21).

Zero measurement and process noise case:

Fig. 4. Single noisy integrator

If q = 0, then v(t) = 0. Therefore, x̂(t) is determined by recursive least square estima-

tion as

x̂(t) = x̂(0)+
1
t

∫ t

0
y(τ)dτ → x0. (22)

If r = 0, then w(t) = 0. Therefore, using E as the conditional expectation operator,

x̂(t) =
1
t

E
{∫ t

0
y(τ)dτ

}
=

1
t

E
{∫ t

0
[x0 + v(τ)]dτ

}
→ x0 (23)

Since there is no measurement noise, x(t) = x̂(t) after t = 0.

From the single integrator of example 1, the only occurrence of finite escape is when

there is no measurement noise(r = 0). When an ’infinite’ amount of data has been

collected as t → ∞, for q = 0, then the least square estimate yields x̂(t) = x0 = x(t)

with probability one (’certainty’). Otherwise, when neither q nor r is zero, the error

variance of the estimate x̂(t) tends to P(∞) as t = ∞, where P(∞) = qr > 0. Therefore,

9



x̂ cannot ever be determined exactly even with an infinite amount of data as t → ∞.

This is the effect of unknown ’infinite condition’, unknown measurement noise, and

unknown input noise.

10



5 Example 2: Double Integrator

The double integrator is the case of two single integrators in series connection.

System equations: 
ẋ1 = x2, x1(0) = x10

ẋ2 = 0, x2(0) = x20

(24)

Measurement:

y(t) = x1(t) (25)

In equations (24) and (25), define a continuous time second-order dynamical system,

which is very common. For example, x1(t) is the location of an object and x2(t) is the

acceleration of the object.

Model with noise:

d
dt

x1

x2

=

0 1

0 0


x1

x2

+

0

1

v (26)

Measurement:

y(t) = x1(t)+w (27)

v and w are scalar valued white noise :

dv ∼ N(0,q2dt), q = 0.5 (28)

dw ∼ N(0,r2dt), r = 0.5 (29)

In equation (26) and equation (27), the process noise and the measurement noise are

11



added. Then, v and ω conform to a Gaussian distribution, the mean of v and w is 0, and

the standard deviations are q and r.

Equations for the Kalman-Bucy Filter are shown in equation (30) through equation [3].

˙̂x(t) = A(t)x̂(t)+K(t)(y(t)−H(t)x̂(t)) (30)

K(t) =

K1(t)

K2(t)

=

P11(t)
r2

P12(t)
r2

 (31)

d
dt

x̂1

x̂2

=

x̂2(t)

0

+

K1(t)(y(t)− x̂1(t))

K2(t)(y(t)− x̂1(t))

 (32)

dP
dt

= AP(t)+P(t)AT +GQGt −P(t)HT R−1HP(t) (33)

dP
dt

=

 2P12(t)−P2
11(t)/r2 P22(t)−P11(t)P12(t)/r2

P22(t)−P12(t)P11(t)/r2 q2 −P2
12(t)/r2

 (34)

Initial Conditions:
x1(0) = 1 , x̂1(t) = 1.4

x2(0) = 1 , x̂2(t) = 0.6

y1(0) = 1.04


P11(0) = π1 ,π1 = 1

P22(0) = π2 ,π2 = 1

P12(0) = P21(0) = 0

(35)

The MATLAB code for the Kalman-Bucy Filter is in Appendices Listing 3.

The Output of the Kalman-Bucy Filter:

12



Fig. 5. Double Integrator Model output and its x1(t) and x̂1(t) plotted.

Fig. 6. Double Integrator unobserved state and its estimate x2(t) and x̂2(t) plotted.
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In Figure 5, the blue trajectory is x1(t) which is a cumulative value. The red dashed

line is the trajectory of the measurement. The measurement model is a cumulative value

with a Gaussian distributed noise. So the red dashed follows the blue line. The red one

is the output of the Kalman-Bucy Filter. The output is the optimal estimate of the states

of the x1(t). In Figure 6, the red trajectory is x2(t), a random walk, agreeing with the

dynamic system model. The blue trajectory is x̂2(t). Notice that the Kalman-Bucy

Filter eliminated the white noise, defined by v.

5.1 A Method to obtain P(t)

Above, P, X, and Y have been defined. Here, n = 2.

P(t)X(t) = Y (t), P(t) = Y (t)X−1(t), i f det(X) ̸= 0 (36)

In equation (36), the relationship between P(t), X(t) and Y (t) is given. P(t) is the error

covariance matrix, X(t) is the state matrix and Y (t) is the measurement matrix. det(X)

is the determinate of X(t).

So,
d(PX)

dt
= X

dP
dt

+P
dX
dt

=
dY
dt

(37)

d
dt

X

Y

= H

X

Y

 . (38)

In equation (38), H is the Hamiltonian matrix. Note X and Y are 2× 2 matrices. To

obtain stable versions of the 2 × 2 X and Y matrices, both must be divided by the

14



largest time function, which in this case is eωt . In equation (39), hT is the 2-row vector

transforming the model state x to the measurement of y with the condition of the noise

w. A, Q, R, G, and h are defined in Grewal & Andrews [3].

H =

 −AT hT R−1h

GQGT A

 (39)

H =



0 0

0 −1


 1

r2 0

0 0

0 0

0 q2


0 1

0 0




(40)

dX
dY

=


−

0 0

1 0

 r−2

1

0

(
1 0

)

q2

0

1

(
0 1

) 0 1

0 0




X

Y

 (41)

X(0) = I2 =

1 0

0 1

 , Y (0) = P0 =

π1 0

0 π2

π1 > 0,π2 > 0 (42)

Using the Laplace transform function

s

X(s)

Y (s)

−H

X(s)

Y (s)

=

X(0)

Y (0)

 (43)

15



eHt = L−1{(sI −H)−1} (44)X(t)

Y (t)

= eHt

X(0)

Y (0)

 . (45)

From Leverrier’s algorithm [4],

(sI4 −A)−1 =
s3F1 + s2F2 + sF3 +F4

s4 +θ1s3 +θ2s2 +θ3s+θ4
(46)

F1,F2,F3,F4are 4×4 real matrices, θ1, θ2, θ3, θ4 are real scalars



F1 = I4

F2 = HF1 +θ1I4

F3 = HF2 +θ2I4

F4 = HF3 +θ3I4,



θ1 =−trHF1/1

θ2 =−trHF2/2

θ3 =−trHF3/3

θ4 =−trHF4/4

(47)

(sI4 −A)−1 =



s3 q2

r2
s2

r2
s
r2

−s2 s3 − s
r2 − 1

r2

−q2 q2s s3 s2

−q2s q2s2 −q2

r2 s3


s4 +0× s3 +0× s2 +0× s+ q2

r2

=



s3 q2

r2
s2

r2
s
r2

−s2 s3 − s
r2 − 1

r2

−q2 q2s s3 s2

−q2s q2s2 −q2

r2 s3


s4 + q2

r2

(48)
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The eigenvalues of H are four values of λ , namely λ1, λ2, λ3, λ4:

λ =

[
−1+ j√

2

√
q
r
,
−1− j√

2

√
q
r
,
1+ j√

2

√
q
r
,
1− j√

2

√
q
r

]
(49)

Using the eigenvalues of H, obtain xi and their reciprocals, r†
i , as complex 4-vectors:

eHt =
n=4

∑
i=1

eλitxir
†
i (50)

The process to calculate eHt is shown below.

x1 =



1− j√
2

√
q
r

1

jqr

−1− j√
2

q
√

qr


, x2 =



1+ j√
2

√
q
r

1

− jqr

−1+ j√
2

q
√

qr


, x3 =



−1− j√
2

√
q
r

1

− jqr

1− j√
2

q
√

qr


, x4 =



−1+ j√
2

√
q
r

1

jqr

1+ j√
2

q
√

qr


(51)

(x1|x2|x3|x4)
−1 =



r†
1

r†
2

r†
3

r†
4


(52)

(x1|x2|x3|x4)
−1 =



1+ j
8

√
2r
q

1
4 − j

4qr

√
2
qr

(−1+ j)
8q

1− j
8

√
2r
q

1
4

j
4qr

√
2
qr

(−1− j)
8q

−1+ j
8

√
2r
q

1
4

j
4qr

√
2
qr

(1+ j)
8q

−1− j
8

√
2r
q

1
4 − j

4qr

√
2
qr

(1− j)
8q


(53)
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r†
1 =

[
1+ j

8

√
2r
q

1
4 − j

4qr

√
2
qr

(−1+ j)
8q

]
(54)

r†
2 =

[
1− j

8

√
2r
q

1
4

j
4qr

√
2
qr

(−1− j)
8q

]
(55)

r†
3 =

[
−1+ j

8

√
2r
q

1
4

j
4qr

√
2
qr

(1+ j)
8q

]
(56)

r†
4 =

[
−1− j

8

√
2r
q

1
4 − j

4qr

√
2
qr

(1− j)
8q

]
(57)

x1r†
1 =



1
4

√
2q
r
(1− j)

8

√
2
qr

(−1− j)
8r

j
4qr

1+ j
8

√
2r
q

1
4 − j

4qr

√
2
qr

(−1+ j)
8q

r
√

2qr (−1+ j)
8

qr j
4

1
4

√
2r
q
(−1− j)

8

−qr j
4 q

√
2qr (−1− j)

8
√

2qr (−1+ j)
8r

1
4


(58)

x2r†
2 =



1
4

√
2q
r
(1+ j)

8

√
2
qr

(−1+ j)
8r − j

4qr

1− j
8

√
2r
q

1
4

j
4qr

√
2
qr

(−1− j)
8q

r
√

2qr (−1− j)
8 −qr j

4
1
4

√
2r
q
(−1+ j)

8

qr j
4 q

√
2qr (−1+ j)

8
√

2qr (−1− j)
8r

1
4


(59)

x3r†
3 =



1
4

√
2q
r
(−1− j)

8

√
2
qr

(1− j)
8r − j

4qr

−1+ j
8

√
2r
q

1
4

j
4qr

√
2
qr

(1+ j)
8q

r
√

2qr (1+ j)
8 −qr j

4
1
4

√
2r
q
(1− j)

8

qr j
4 q

√
2qr (1− j)

8
√

2qr (1+ j)
8r

1
4


(60)
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x4r†
4 =



1
4

√
2q
r
(−1+ j)

8

√
2
qr

(1+ j)
8r

j
4qr

−1− j
8

√
2r
q

1
4 − j

4qr

√
2
qr

(1− j)
8q

r
√

2qr (1− j)
8

qr j
4

1
4

√
2r
q
(1+ j)

8

−qr j
4 q

√
2qr (1+ j)

8
√

2qr (1− j)
8r

1
4


(61)

Applying equation (50), the expression for eHt becomes

eHt = eλ1tx1r†
1 + eλ2tx2r†

2 + eλ3tx3r†
3 + eλ4tx4r†

4 (62)

= e(−1+ j)
√ q

2r tx1r†
1 + e(−1− j)

√ q
2r tx2r†

2 + e(1+ j)
√ q

2r tx3r†
3 + e(1− j)

√ q
2r tx4r†

4. (63)

Define ω =
√

q
2r and obtain

eHt = e−ωt
(

e jwtx1r†
1 + e− jwtx2r†

2

)
+ eωt

(
e jwtx3r†

3 + e− jwtx4r†
4

)
. (64)

Equation (64) consists of two parts. e−ωt
(

e jwtx1r†
1 + e− jwtx2r†

2

)
is the first part.

eωt
(

e jwtx3r†
3 + e− jwtx4r†

4

)
is the second part.

The expression of
(

e jwtx1r†
1 + e− jwtx2r†

2

)
is shown as below, a 4×4 matrix.

First row: 

(1,1) 1
2 cosωt

(1,2) 1
4

√
2q
r (cosωt + sinωt)

(1,3) − 1
4r

√
2
qr (cosωt − sinωt)

(1,4) − 1
2qr sinωt

(65)
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Second row: 

(2,1) 1
4

√
2r
q (cosωt − sinωt)

(2,2) 1
2 cosωt

(2,3) 1
2qr sinωt

(2,4) − 1
4q

√
2
qr (cosωt + sinωt)

(66)

Third row: 

(3,1) − r
√

2qr
4 (cosωt + sinωt)

(3,2) − qr
2 sinωt

(3,3) 1
2 cosωt

(3,4) − 1
4

√
2r
q (cosωt − sinωt)

(67)

Fourth row: 

(4,1) qr
2 sinωt

(4,2) − q
√

2qr
4 (cosωt − sinωt)

(4,3) −
√

2qr
4r (cosωt + sinωt)

(4,4) 1
2 cosωt

(68)
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The expression of
(

e jwtx3r†
3 + e− jwtx4r†

4

)
is shown below, a 4×4 matrix.

First row: 

(1,1) 1
2 cosωt

(1,2) − 1
4

√
2q
r (cosωt − sinωt)

(1,3) 1
4r

√
2
qr (cosωt + sinωt)

(1,4) 1
2qr sinωt

(69)

Second row: 

(2,1) − 1
4

√
2r
q (cosωt + sinωt)

(2,2) 1
2 cosωt

(2,3) − 1
2qr sinωt

(2,4) 1
4q

√
2
qr (cosωt − sinωt)

(70)

Third row: 

(3,1) r
√

2qr
4 (cosωt − sinωt)

(3,2) − qr
2 sinωt

(3,3) 1
2 cosωt

(3,4) 1
4

√
2r
q (cosωt + sinωt)

(71)
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Fourth row: 

(4,1) − qr
2 sinωt

(4,2) q
√

2qr
4 (cosωt + sinωt)

(4,3)
√

2qr
4r (cosωt − sinωt)

(4,4) 1
2 cosωt

(72)

The expression of eHt are shown below, a 4×4 matrix.

First row: 

(1,1) cosωt coshωt

(1,2) −
√

q
2r (cosωt sinhωt − sinωt coshωt)

(1,3) 1
r
√

2qr (cosωt sinhωt + sinωt coshωt)

(1,4) 1
qr sinωt sinhωt

(73)

Second row: 

(2,1) −
√

r
2q(cosωt sinhωt + sinωt coshωt)

(2,2) cosωt coshωt

(2,3) − 1
qr sinωt sinhωt

(2,4) 1
q
√

2qr (cosωt sinhωt − sinωt coshωt)

(74)
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Third row: 

(3,1) r
√

2qr
2 (cosωt sinhωt − sinωt coshωt)

(3,2) qr sinωt sinhωt

(3,3) cosωt coshωt

(3,4)
√

r
2q(cosωt sinhωt + sinωt coshωt)

(75)

Fourth row: 

(4,1) −qr sin sinh

(4,2) q
√

2qr
2 (cosωt sinhωt + sinωt coshωt)

(4,3)
√

2qr
2r (cosωt sinhωt − sinωt coshωt)

(4,4) cosωt coshωt

(76)

After obtaining the expression of eHt , by using equation(41) the expression of X(t) and

Y (t) becomes a 2× 2 matrix. So the expression of P(t) is obtained from the Kalman-

Bucy Filter. When q = 0.5 and r = 0.5, then the trajectory of P(t) can be plotted.
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Fig. 7. Trajectory of P11(t) for the double integrators

Fig. 8. Trajectory of P12(t) for the double integrators
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Fig. 9. Trajectory of P22(t) for the double integrators

Figure 7 shows that P11(t) starts from P11(0) which is 1. Then the value declines very

fast. At 0.5s, it tends to a steady state. Then it continues to slowly decrease at a reduced

rate. Until to 2s, it becomes relatively flat. The Figure 8 shows that the P12(t) is starts

from the P12(0) which is 0. The value of P12 rises fast at first. At 1s, the value reaches a

local maximum, then keeps declining and tends to a constant. In Figure 9, P22(t) starts

from P22(0) which is 1. The value of P22 rises first, then keeps declining and tends to

a constant as the time increases.

P11(t), P12(t) and P22(t) divided by coshωt are shown below:
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Fig. 10. Plot of P11(t)/coshωt

Fig. 11. Plot of P12(t)/coshωt
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Fig. 12. Plot of P22(t)/coshωt

Compared with Figure 7, Figure 8 and Figure 9, the trend of the output of the Kalman-

Bucy Filter is same with them. The mathematical expression of P11(∞), P12(∞) and

P22(∞) are shown below.


Λ1 =

[
cosωt + π1

r
√

2qr (cosωt + sinωt)
][

cosωt + π2
q
√

2qr (cosωt − sinωt)
]

Λ2 =
[
−
√

q
2r (cosωt − sinωt)+ π2

qr sinωt
][

−
√

r
2q(cosωt + sinωt)− π1

qr sinωt
]

(77)

P11(∞):


Θ1 =

[
r
√

2qr
2 (cosωt − sinωt)+π1 cosωt

][
π2

q
√

2qr (cosωt − sinωt)+ cosωt
]

Θ2 =
[
qr sinωt +π2

√
r

2q(cosωt + sinωt)
][√

r
2q(cosωt + sinωt)+ π1

qr sinωt
]

(78)
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P11(∞) =
Θ1 +Θ2

Λ1 −Λ2
(79)

P12(∞):


Θ3 =

[
r
√

2qr
2 (cosωt − sinωt)+π1 cosωt

][√
q
2r (cosωt − sinωt)− π2

qr sinωt
]

Θ4 =
[
qr sinωt +π2

√
r

2q(cosωt + sinωt)
][

cosωt + π1
r
√

2qr (cosωt + sinωt)
]
(80)

P12(∞) =
Θ3 +Θ4

Λ1 −Λ2
(81)

P22(∞):


Θ5 =

[
−qr sinωt + π1

√
2qr

2r (cosωt − sinωt)
][√

q
2r (cosωt − sinωt)− π2

qr sinωt
]

Θ6 =
[

q
√

2qr
2 (cosωt + sinωt)+π2 cosωt

][
cosωt + π1

r
√

2qr (cosωt + sinωt)
]

(82)

P22(∞) =
Θ5 +Θ6

Λ1 −Λ2
(83)

From equation (79), equation (81) and equation (83), the P matrix doesn’t have a steady

state as in the single integrator.

Considering again equation (36), there is a time t∗ at which the determinant of X(t)

might equal to zero.

P(t)X(t) = Y (t) (84)

det(P(t∗))det(X(t∗)) = det(Y (t∗)) (85)

In equation (85), det(P(t∗)) is the determinant of P matrix at time t∗, det(X(t∗)) is the
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determinant of X matrix at time t∗ and det(Y (t∗)) is the determinant of Y matrix at time

t∗. The Y (t) matrix starts at Y (0) = P0, P0 is a positive definite matrix, so det(Y ) will

always be a finite value. At time t∗, when det(X(t∗)) goes to zero, det(P(t∗)) will go to

infinity, which means the Kalman Gain ”K” will go to infinity. So we have to find the

time t∗ and applying a new method to prevent the Kalman Gain from going to infinity.

In equation (77), Λ1 −Λ2 is the expression of the determinant of X(t). At time t∗, the

determinant of X(t∗) equals 0, which is

det(X(t∗)) = Λ1(t∗)−Λ2(t∗) = 0 (86)

0 <

√
2qr(qπ1 + rπ2)

q2r2 −π1π2
< 2 (87)

In equation (87), π1 and π2 are the initial values of P11 and P22. q and r are standard

deviations of the process noise and the measurement noise. When the values of these

parameters satisfy this relationship, the time t∗ is reached. In equation (85), when

the determinant of P at t∗ goes to infinity means that there will be at least one of the

eigenvalues will be infinity. For the covariance matrix P, the two eigenvalues are λ1

and λ2.

If λ2 goes to infinity.

det(P(t∗))→ ∞ (88)

p(x) =
1

2π
√

det(P)
e

(− 1
2

[
x̃1 x̃2

]
P−1

x̃1

x̃2

)
(89)

Equation (89) shows the probability density p(x) of x̃1 and x̃2 with zero mean. The
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lateral image of it is shown in Figure 13.

Fig. 13. p(x)

P is expressed in equation (90), λ1 and λ2 are eigenvalues of P, v1 and v2 are eigenvec-

tors of P.

P = λ1v1vT
1 +λ2v2vT

2 , v1vT
1 = 1, v1vT

2 = 0, v2vT
2 = 1 (90)

If λ1 ̸= 0 and λ2 ̸= 0, P−1 will be

P−1 =
1
λ1

v1vT
1 +

1
λ2

v2vT
2 (91)

If and only if λ1 or λ2 goes to infinity, now suppose λ2 → ∞. The probability density
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function is shown in equation(93).

x̃1

x̃2

= ξ̃ (92)

p(ξ ) =
1

2π
√

λ1
e−

(ξ̃ T v1)
2

2λ1
1√
λ2

e−
(ξ̃ T v2)

2

2λ2 (93)

In equation (93), when λ2 → ∞, the part containing λ2 will be a Dirac delta function

δ (vT
2 x̃) function. The probability of it is 1.

So

p(ξ ) =
1

2π
√

λ1
e−

(ξ̃ T v1)
2

2λ1 ·1 (94)

The equation (94) means that the probability of vT
1 x̃ is N(0,λ1) and with probability

one that vT
2 x̃ equals zero.

The probability distribution of the ξ 2-vector can be plotted in the ξ -plane. It is Gaus-

sian centered at the mean value in the ξ -plane. When λ2 tends to zero, then the bell

shaped Gaussian part becomes a line passing through the mean value point. The prob-

ability is zero for any point not on the line, Therefore only a linear combination of the

estimates x̂1 and x̂2 is known with probability one. This is the cause of the finite escape

of the Kalman gain, as will be explained in the following development.
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6 Example 3: Linear Oscillator

6.1 Case A: Damped Harmonic Oscillator

The steady state of P(t) is positive definite and constant, at the values obtained in page

213 of Grewal & Andrews [3]. Call this value P∞. Call P(0) = P0. If P∞−P0 is positive

definite, then P0 is ”smaller” than any P(t) such that P(t) will always decay to P∞ from

some ”larger” initial condition P0. But if P∞ −P0 is not positive definite, then P(t)

will ”increase” from P0 to P∞. Therefore the error variance of the state vector can not

decrease from P0 with each successive measurement instant. The state variables are not

known with certainty even with an infinite amount of data, but the variance decreases

if P0 is smaller than P∞.

6.2 Case B: Undamped Oscillator Steady State

From page 214 of [3]: For the undamped oscillator, the damping coefficient τ → ∞.

Then page213 [3] shows:

F =

 0 1

−ω2 0

 , H =

(
1 0

)
, Q =

0 0

0 q

 (95)
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The three scalar equations at the bottom of page 213 in [3].

0 =−P2
11 +2RP12 (96)

0 =−RP11 +RP22 −P11P12 (97)

0 =−P2
12 −2Rω

2P12 +Rq (98)

Solving these three equations can be done algebraically.

0 = P2
12 +2Rω

2P12 −Rq , is quadratic in P12 only (99)

T hen P12 =−Rω
2 ±

√
(Rω2)2 +Rq4 =−Rω

2(1±
√

1+
4q

Rω4 ) (100)

P2
11 = 2RP12 =⇒ P11 =±

√
2RP12, P11 =± j

√
2R(P12) i f P12 < 0 (101)

P22 = P11 +
P12

R
P11 (102)

For P =

P11 P12

P12 P22

 to be real and positive definite, P12 > 0 and is real. This assumes

a real value of limt→∞ P(t) exists and is constant. The damping on ω , q, R, and initial

conditions P0 show that this is not always true. The Heisenberg uncertainty principle

applies as in the double integrator. Then, the equations to find t∗ become even more

complicated. Further study of the undamped oscillator is beyond the scope of this work.

Only the damped oscillator can be discussed here.
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7 Unscented Kalman Filter(UKF)

The Taylor Expansion has been used to convert the a non-linear system to a linear

system in the Extended Kalman Filter(EKF), but using the Taylor Expansion will cause

non-linear errors. And the Jacobin matrix is not easy to implement, which increases

the computational complexity of the algorithm. Compared with the Extended Kalman

Filter, the Unscented Kalman Filter use unscented transform to solve the non-linear

transfer problem [5].

In this example, we choose the linear oscillator as our dynamic system.

System Model:

x(k+1) = Φ(∆)x(k)+Φ(∆)

0

1

 [v(k+1)− v(k)]∆ (103)

In equation (103), the ∆ is the time interval.

Measurement Model:

y(k) =
[

1 0

]
x(k)+w(k) (104)

Noise Model: 
v(k) ∼ N(0,q2), q = 1

w(k) ∼ N(0,r2), r = 0.2
(105)
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In noise model, v and w are process noise and measurement noise, both of v and w

conform to a Gaussian distribution.

Φ(∆) =

 cosω∆ sinω∆

−sinω∆ cosω∆

 , ω = 2π f , f = 50Hz (106)

Initial Conditions: 

x(0) =

3

1

 , x̂(0) =

3

1


y(0) = 3

P(0) = I2

(107)

Equation (107) defines initial values of x, x̂, y and P. I2 is a 2× 2 identity matrix. In

Figure 14, the process to implement the UKF is shown in Figure 14. The explanation

of it is shown below .

Fig. 14. Block diagram
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Unscented transform for symmetric distribution sampling, λ is not eigenvalue, it has

been redefined in [5]:

X (0) = x̂, i = 0 (108)

X (i) = x̂+(
√

(n+λ )PXi)i, i = 1,2, ...n (109)

X (i) = x̂− (
√
(n+λ )PXi)i, i = n+1,n+2, ...2n (110)

The first step of the symmetric distribution sampling is calculating the simga points.

In equation (108), X (0) is the center point. In equation (109) and equation (110), the√
(n+λ )PXi represents the i-th column obtained from the squared of (n+λ )P [5]. n

is the dimension of the system. According to the model of the Linear Oscillator, n is 2.

So there are five sigma points. λ is an adjustable parameter used to control the degree

of dispersion of the point set. The sigma points are shown below:

X (0) = x̂ (111)

X (i) = x̂+(
√

(2+λ )PXi)i, i = 1,2 (112)

X (i) = x̂− (
√

(2+λ )PXi)i, i = 3,4 (113)

The next step is obtaining the weight of every sigma point. The method to obtain the

weight is shown below [5].


ω

(0)
m = λ

n+λ

ω
(i)
m = 1

2(n+λ ) , i = 1,2, ...2n


ω

(0)
c = λ

n+λ
+(1−α2 +β )

ω
(i)
c = 1

2(n+λ ) , i = 1,2, ...2n
(114)
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with λ set at 1, the weights for the sigma points are:


ω

(0)
m = 1

3

ω
(i)
m = 1

6 , i = 1,2, ...4


ω

(0)
c = 1

3 +(1−α2 +β )

ω
(i)
c = 1

6 , i = 1,2, ...4
(115)

In Polar Coordinates:

Fig. 15. Unscented Kalman Filter output vs linear oscillator output

In Figure 15, the blue line in the graph represents the theoretical trajectory of a linear

oscillator, while the red circles indicate the results obtained from state estimation using

the Unscented Kalman Filter (UKF). If the red circle points closely follow the blue line,

it demonstrates that the Unscented Kalman Filter is performing well in estimating the

system states. The distribution of these points also illustrates the measurement or esti-

mation errors during the filtering process. Overall, the graph displays the effectiveness
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of the Unscented Kalman Filter in tracking the states of a linear oscillatory system.

Fig. 16. UKF output voltage vs linear oscillator voltage
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Fig. 17. UKF output current vs linear oscillator current

Figure 17 shared illustrates the true state of x1 as a function of time, overlaid with the

estimated state X̂1 derived from the Unscented Kalman Filter (UKF). The x-axis shows

the time in seconds, and the y-axis represents the voltage. The true state is indicated

by the solid blue line, and the Unscented Kalman Filter estimate is represented by

red circles along the trajectory. The graph shows that the Unscented Kalman Filter

estimates closely match the true state throughout the time period displayed, with the

red circles frequently overlapping the blue line, indicating a high degree of accuracy

in the estimation process by the Unscented Kalman Filter. The Figure 4 shows the

relationship between x2 and x̂2.
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8 Conclusions

A cartoon in the New Yorker magazine by B. Sailer [6] showed an executive facing his

employee, who says “better than the answer, I have a tremendous amount of data”. If

“the answer” is truth with probability one, the employee is correct only under certain

conditions. These conditions are that the data is infinite, unbiased, unimodal, and reg-

ular, and the system is linear, and that the initial conditions and the inputs are known

with certainty. The traditional proportional, integral, derivative (PID) feedback control

design must incorporate a single integrator into the model to accommodate changes in

a constant input. If this is linear, the residue of the integration term accounts for the

variance in the steady state error. Here is given a method to determine this variance for

a single integrator in general. Also, the double integrator and linear harmonic oscilla-

tor are investigated. These show that the state variance matrix can become singular in

finite time(finite escape of the Kalman gain) under certain conditions. In this case, the

feedback gain becomes infinite. Then, the Kalman gain must be reduced at that finite

time. At this escape time, any application in which the Kalman filter is used must be

modified appropriately.

The robustness of the Kalman filter applied to the linear oscillator is also a problem.

The unscented Kalman filter is shown to mitigate this problem.

The solution to the error is the Riccati matrix differential equation, denoted P(t) which

sometimes becomes singular even for positive definite initial values. In Example 2, the

double integrator, at least one of the eigenvector of P(t), say λ2(t), can become zero

at time t∗ that is finite. Here, the conditions are found on the parameters and initial
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conditions for which λ2(t∗) = 0.

This phenomenon must exist for higher-order dynamic systems corresponding to poles

on the imaginary axis. Further research is needed to investigate this, because analytic

solutions using the Hamiltonian are no longer possible for dynamic systems of higher

order. It is shown that when both measurement and process noise are present, wherein

the error variance will never be zero, and the estimate will always be uncertain. This

is a generalization of the Heisenberg uncertainty principle. Finite escape of the time-

varying Kalman gain can occur in any noisy dynamic system,. Even with an infinite

amount of data, it would not be possible to attain certain knowledge of the true values

of all the state variables of a noisy dynamic system.

Finite escape of the Kalman gain occurs when the X(t) and Y (t) n × n matrices in

P(t)X(t) = Y (t) no longer permits P(t) to be positive definite. This happens when

det(X(t)) = 0 or Y (t) is no longer finite. Appropriate piratical solutions must then be

found.

Also, the Kalman Filter is not robust with respect to linear system parameter variations.

For a linear oscillator, a possible solution has been shown to be Unscented Kalman fil-

tering, rather than the usual Kalman filtering. Because when the frequency of the linear

oscillator is changing, the usual Kalman filtering can go unstable.
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9 Appendices

Listing 1. Code of the Plot of P(t) normalized by cosh(ωt)

w = q / r ;

syms t ;

P t = ( q* r * tanh (w* t )+ p i 0 ) / ( 1 + ( p i 0 / ( q* r ) ) * tanh (w* t ) ) ;

P t v a l = subs ( P t , t ) ;

Listing 2. Code of the Kalman-Bucy Filter for single integrator

t i n t e r v a l = 0 . 0 0 1 ;

t s p a n = 0 : t i n t e r v a l : 0 . 2 ;

f o r i = 1 : l e n g t h ( t s p a n ) −1

% Kalman−Bucy F i l t e r Update

d x h a t = P ( i ) * ( y ( i ) − x h a t ( i ) ) / r ˆ 2 ;

[ ˜ , d x h a t ] = ode45 (@( t , x h a t ) d x h a t ,

[ t s p a n ( i ) t s p a n ( i + 1 ) ] , x h a t ( i ) ) ;

x h a t ( i +1) = d x h a t ( end ) ;

dP = q ˆ2 − P ( i ) ˆ 2 / r ˆ 2 ;

[ ˜ , dP ] = ode45 (@( t , P ) dP ,

[ t s p a n ( i ) t s p a n ( i + 1 ) ] , P ( i ) ) ;

P ( i +1) = dP ( end ) ;

42



end

Listing 3. Code of the Kalman-Bucy Filter for double integrator

f o r i = 1 : l e n g t h ( t s p a n ) −1

K1 = P11 ( i ) / r ˆ 2 ;

K2 = P12 ( i ) / r ˆ 2 ;

dX = @( t , X) [X( 2 ) + K1 * ( y ( i ) − X ( 1 ) ) ; % dx1 / d t

K2 * ( y ( i ) − X ( 1 ) ) ] ; % dx2 / d t

[ ˜ , X temp ] = ode45 ( dX , [ t s p a n ( i ) t s p a n ( i + 1 ) ] ,

[ x 1 h a t ( i ) ; x 2 h a t ( i ) ] ) ;

dP = @( t , P ) [2 * P ( 2 ) − P ( 1 ) ˆ 2 / r ˆ 2 ; % dP11 / d t

P ( 4 ) − P ( 1 ) * P ( 2 ) / r ˆ 2 ; % dP12 / d t

P ( 4 ) − P ( 1 ) * P ( 2 ) / r ˆ 2 ; % dP21 / d t

q ˆ2 − P ( 2 ) ˆ 2 / r ˆ 2 ] ; % dP22 / d t

P0 = [ P11 ( i ) ; P12 ( i ) ; P21 ( i ) ; P22 ( i ) ] ;

[ ˜ , P temp ] = ode45 ( dP , [ t s p a n ( i ) t s p a n ( i + 1 ) ] , P0 ) ;

end
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