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Abstract: Lanthanum hexaboride (LaB6) has become a material of intense interest in recent years
due to its low work function, thermal stability and intriguing optical properties. LaB6 is also a
semiconductor plasmonic material with the ability to support strong plasmon modes. Some of these
modes uniquely stretch into the infrared, allowing the material to absorb around 1000 nm, which is
of great interest to the window industry. It is well known that the plasmon of LaB6 can be tuned by
controlling particle size and shape. In this work, we explore the options available to further tune the
optical properties by describing how metal vacancies and Eu doping concentrations are additional
knobs for tuning the absorbance from the near-IR to far-IR in La1−xEuxB6 (x = 0, 0.2, 0.5, 0.8, and 1.0).
We also report that there is a direct correlation between Eu concentration and metal vacancies within
the Eu1−xLaxB6.

Keywords: plasmon; hexaboride; doping; lanthanum hexaboride; LaB6

1. Introduction

Plasmonic nanoparticles are well known for their intriguing properties [1], and are being explored
in a variety of fields such as photovoltaics [2], nanosensors [3], drug delivery devices [4], and quantum
optics [5]. The physical properties of plasmonic materials are typically easy to tune because of their
high carrier concentration and small size, where seemingly minor adjustments such as altering the
particle shape or size have a substantial influence on the absorbance spectrum [1]. Vacancies also play
a large role in tuning the optical properties of such materials, having a significant influence on free
carrier density and doping constraints [6,7]. It′s even possible to fully tune the plasmon independent
of dopant concentration in core-shell indium-tin-oxide nanoparticles [8] and by reducing holes in the
valence band in copper sulfide [9].

Plasmonic materials are highly sought after in the windows industry. The ability to design
a material to selectively transmit in the visible region while absorbing the most intense radiative
heat in the IR (about 750 nm–1250 nm) is important for smarter window design, especially in hot
climates. [10–12] Metal hexaborides (MB6) are being sought after for these applications, and with
lanthanum hexaboride (LaB6) absorbing in the middle of this range (~1000 nm) [13,14] we focus
our efforts here on the tuning of LaB6. It has already been shown that changing the particle size of
LaB6 nanoparticles offers a means of controlling the plasmon [15,16] and that these particles may
be incorporated into polymers to make films [17,18]. Though some work has been done on LaB6 to
study how La vacancies influence vibrational energies [19] and how doping impacts the thermionic
power [20,21], there is a potential link between doping content and vacancies in LaB6 that has gone
unexplored. Given the ability of doping levels and metal vacancies to alter free electron concentrations
and thus the optical properties in Eu1-xLaxB6, we wished to explore the possible connection between
doping concentration and metal vacancies as an additional means of controlling the plasmon.
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In this work we demonstrate the possibility of alloying LaB6 nanoparticles with Eu using, for
the first time, a low temperature solid state technique with varying ratios of Eu to La. Interestingly,
we report there is a direct correlation between Eu concentration and metal (M) vacancies within the
Eu1-xLaxB6 system. Furthermore, this method allows the plasmon to be tuned across an incredibly large
absorbance range from 1100 nm to 2050 nm, which may open doors to new optoelectronic applications.

2. Experimental Procedures

Anhydrous lanthanum (III) chloride (99.9% pure, Strem Chemical), anhydrous europium (III)
chloride (99.99% pure, Strem Chemical) and sodium borohydride (EMD) were used as received and
stored in an argon atmosphere glove box until use. Reactant powders were a stoichiometric 6:1 ratio of
NaBH4 to metal chloride, where the metal chloride content was a mixture of EuCl3 and LaCl3 with
varying ratios of (Eu:La). The mixtures were transferred to alumina boats approximately two inches
long and 1 cm wide and the reactions run in a one-inch diameter quartz tube in a Lindberg tube
furnace. The reaction was purged with argon at 200 cc/min for 20 min prior to heating. Gas flow was
reduced to 100 cc/min and the furnace heated to 450 ◦C at a rate of 10 ◦C/min. The reaction was held
at 450 ◦C for 60 min and then cooled to room temperature under argon. The black solid was cleaned in
air using methanol to react excess NaBH4, HCl to convert residual sodium into sodium chloride and,
finally, water to remove the sodium chloride. With each washing step, the solution was centrifuged at
10,000 rpm for ten minutes and the solvent removed. Severe aggregation of these ligand-free particles
rendered electron-microscopy imaging infeasible. However, diffraction data suggest that the particles
were approximately 17 nm, with the Scherrer equation giving calculated sizes of 17.46, 16.84, 17.62 and
17.21 nm, respectively, for x = 0.2, 0.5, 0.8 and 1.0.

Samples were analyzed by powder X-ray diffraction on a D8 Discover diffractometer (Bruker
AXS Inc., Madison, WI, USA) operated at 35 kV and 40 mA using CoKα radiation. Samples were
prepared for optical measurements by drop casting onto quartz slides. Raman spectra were collected
on a LabRAM ARAMIS (HORIBA Jobin Yvon, Edison, NJ, USA) automated scanning confocal Raman
microscope using a 532-nm excitation laser. Elemental analysis was performed by EDX spectroscopy on
a Gemini Ultra-55 scanning electron microscope (Zeiss, Thornwood, NY, USA), and FTIR spectroscopy
was performed on a Spectrum One equipped with an HATR assembly (PerkinElmer, Santa Clara, CA,
USA). The absorbance was collected on a Cary-5000 UV-Vis-NIR (Agilent Technologies, Santa Clara,
CA, USA). Samples were prepared for optical measurements by drop casting from water onto quartz
slides, and the films were allowed to dry naturally in air.

3. Results and Discussion

The success of the incorporation of a Eu into LaB6 was evident in changes to the XRD pattern of
LaxEu1-xB6 (Figure 1A). Note that the small peak at ~33◦ is from an unidentified impurity in the EuCl3.
Increasing the concentration of Eu in the LaxEu1−xB6 synthesis caused a shift of the diffraction pattern
to higher 2-Theta (Figure 1B), which is indicative of increased compressive lattice strain. This seems
counterintuitive since incorporating larger atoms typically expands a crystal lattice. For instance, in
Eu1-xCaxB6 the larger Eu atom replaces Ca and the lattice expands [21]. There is a possibility that
increasing the amount of Eu in LaxEu1-xB6 may produce two phases, as reported for the (BaxCa1−x)B6

system which has a mixture of both Ba-rich and Ca-rich particles in the final product [22]. Though
this could account for the unexpected change to the lattice strain in our system, the diffraction peaks
of LaxEu1−xB6 are symmetric, which is indicative of a single phase (Figure 1C). In LaxEu1-xB6, there
appears to be a decrease in lattice spacing with increasing Eu content (Figure 1D), even though Eu is
larger than La. The B6 network, like all boron lattices, is electron-deficient and is only stable because of
electron transfer from the metals [23]. Though Eu2+ and Ca2+ in Eu1−xCaxB6 are different sizes they
are also both divalent, so the free electron density does not change when increasing the Ca content.
By contrast, in LaxEu1−xB6 there is a mix of trivalent La3+ and divalent Eu2+. This and the metal (M)
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vacancies within the system are likely responsible for the increasing lattice strain with increasing
Eu concentration.
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Figure 1. X-ray diffraction of (A) LaxEu1−xB6; (B) a magnified image of the (2 0 0) diffraction plane
with LaxEu1−xB6 where x = 0.0, 0.2, 0.5 and 0.8; (C) Pearson VII peak fit of LaxEu1−xB6 with x = 0.5;
and (D) lattice spacing versus atomic % Eu in the LaxEu1−xB6 reaction (calculated using Bragg′s law).

EDS confirmed the presence of all three elements (La, B, and Eu) in LaxEu1−xB6 samples
(Figure 2A; LaxEu1−xB6 with x = 0.2). Intriguingly, LaB6 synthesized under this method contained
about 97% B, which indicates a huge amount of M vacancies with x = 0.19 (equivalent to about 80% M
vacancies). M vacancies are common in LaB6, but it is understood that the lattice constant is unaffected
by these voids [19,24,25]. he stability of the crystal structure is dictated by the bonds in the boron
framework and not by the metal content so long as the electronic requirements of the structure are
met [26]. However, if there is too much void space then MB6 becomes unstable. Though there is a
lot of disagreement surrounding La-B phase diagrams, a B content above 90% [24,27] is expected to
contain both LaB6 and an additional B phase [25,26,28,29], which suggests that any excess boron in our
system may not lie within the MB6 structure. However, we see no indication of a separate B phase
beyond LaxEu1−xB6 by XRD. The phase diagrams of La-B were developed under the assumption that
high temperatures (≥1500 ◦C) are required to make LaB6, which was disproved only recently [15,30].
With low temperature reactions we recently reported the existence of bridging halogens between La
atoms which are involved in the lattice formation of LaB6 [31–33], so even though a sample containing
97% B may potentially have a massive amount of vacancies, it′s possible that the structure was stable
during formation because these halogens fulfilled the electronic requirements necessary to stabilize the
material without the need of an additional B phase. Unfortunately, the amount of Cl in the materials
reported here were either too low in concentration to be detected by EDS or the 450 ◦C reaction
temperature was high enough to remove the bridging-Cl atoms as the final product formed. Work is
ongoing understand exactly how halogen atoms enter into the reaction mechanism.

As the concentration of Eu in the LaxEu1−xB6 reaction is increased there is a clear trend of
increasing amounts of B relative to M until the system becomes stoichiometric with EuB6 (86% B
or x = 1; Figure 2B), with a slightly higher Eu content in LaxEu1−xB6 than was expected with x < 1
(Figure 2C). It′s possible that EuB6 is more energetically favored than LaB6 or that there are so many
vacancies that at low concentrations the divalent Eu2+ has an easier time filling holes in addition to
replacing La atoms. Regardless, there is a clear trend of decreasing vacancies with increasing Eu in the
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reaction (Figure 2D). Unfortunately, the ligand-free nature of these particles results in an aggregated
product, rendering single-particle analysis on individual LaB6 particles infeasible.
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There have been several publications studying the ability to tune the plasmon of LaB6 to
achieve desired optical properties [13–15], but little is yet known about how vacancies influence these
properties. Research discussing vacancies related to optical and vibrational properties in LaB6 are very
recent [19,31], and though much has been done to study the magnetic and thermoelectric properties
of LaxEu1−xB6 [34,35], no one until now has synthesized doped hexaborides at low temperatures.
Furthermore, only in very recent years have the optical properties of doped MB6 been explored [36–38].
In this work, we used absorbance spectroscopy to determine how the Eu concentration and M vacancies
in LaxEu1−xB6 nanocrystals can be used to tune the plasmonic properties (Figure 3A). When increasing
the concentration of Eu the small absorbance peak in the visible region that is indicative of metal
hexaborides shifts from ~380 nm in pure LaB6 to 730 nm in pure EuB6, while the larger absorbance
peak red shifts from 1100 nm in pure LaB6 to 2050 nm in pure EuB6 (Figure 3B). Introducing Eu as a
dopant causes a constant red shift of the absorbance peak from 1100 nm in pure LaB6 to 2050 nm in
pure EuB6 (Figure 3B). This shift is a result of changes to the number of electrons in the conduction
band as divalent Eu2+ replaces trivalent La3+. The sudden broadening of the absorbance at 80% Eu is
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most likely due to the changing carrier concentration which results from Eu incorporation as well as
from changing metal vacancies within the lattice.
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Figure 3. (A) Absorbance of LaxEu1−xB6 changing with Eu content (normalized) and (B) absorbance
peak position versus atomic % Eu in LaxEu1−xB6.

The electron deficiency is calculated as vacancy content minus lanthanum content. Whatever
the mechanism causing the change in lattice spacing (vacancies or changing Eu content), the shifting
absorption peak is indicative of an increase in carrier density with lanthanum content, and is impacted
by vacancies within the system. Equation 1 gives the most basic model for the wavelength of the
plasmon resonance [39],

λ = 2πc

√
ε0m ∗ (ε∞ + kεm)

Ne2 , (1)

where N is the number of charge carriers per unit volume, e is the charge of each carrier, m* is the
effective mass of the charge carriers, ε0 is the permittivity of free space, εm is the dielectric function of
the surrounding medium, ε∞ is the dielectric limit for the material at high frequencies (accounting for
bound charge), and k is a geometrical factor. The absorbance spectroscopy was performed in air, so εm is
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nearly unity. We treat the particles as spherical [15,19], which is associated with a constant of k = 2 and
an effective electron mass of 0.225 m0 in EuB6 as reported based on optical measurements [40]. Finally,
taking ε∞ as unity, our absorption peaks translate to the charge concentrations in Figure 4. In short,
Figure 4 illustrates qualitative agreement between increasing carrier concentration as inferred from
plasmonic resonance and increasing carrier concentration as inferred from composition measurements.
As the Eu content is increased the samples lose free electrons and the absorbance peak expands
and broadens.
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4. Conclusions

We have found that systematically increasing the amount of divalent Eu2+ compared to trivalent
La3+ within Eu1−xLaxB6 not only decreases the lattice spacing but drastically changes the vacancies
within the system. These vacancies have a large influence on the optical properties and allow the
plasmon to be tuned across an incredibly large range from 1100 nm to 2050 nm. The true nature of
these particles on the nanoscale is not fully understood (i.e., the influence of Cl bridging atoms), but
we are making great strides to improve our knowledge of this system. It is our hope that this work will
not only help to further our understanding of the MB6 crystal structure, but may open new doors for
developing new devices, optoelectronics, and more. Research is ongoing to study how this synthetic
method may be used to alter the nanoparticle surface, bringing to light new properties which may
become a vital aspect for biosensing applications.
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