
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Completeness in the Shadow of Decidability

Permalink
https://escholarship.org/uc/item/0f4133d5

Author
Killam, Lee Makua

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0f4133d5
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA,
IRVINE

Completeness In The Shadow Of Decidability

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Logic and Philosophy of Science

by

Lee Makua Killam

Dissertation Committee:
Associate Professor Jeremy Heis, Chair

Chancellor’s Professor Jeffrey A. Barrett
Dean’s Professor Kai Wehmeier

Assistant Professor Toby Meadows

2022



© 2022 Lee Makua Killam



DEDICATION

For my mom

April 11th, 1945 —April 7th, 2022

ii



TABLE OF CONTENTS

Page

LIST OF FIGURES vi

ACKNOWLEDGMENTS vii

VITA viii

ABSTRACT OF THE DISSERTATION ix

1 Introduction 1
1.1 The Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
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2.2 Gödel’s proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 First stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.4 Second stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Löwenheim 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Proving the theorem today . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
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ABSTRACT OF THE DISSERTATION

Completeness In The Shadow Of Decidability

By

Lee Makua Killam

Doctor of Philosophy in Logic and Philosophy of Science

University of California, Irvine, 2022

Associate Professor Jeremy Heis, Chair

This dissertation investigates the origins of the completeness theorem for first-order predi-

cate logic in the algebraic logic work of Löwenheim and Skolem. When Gödel proved the

completeness theorem in 1929, he was unaware that all the components of a completeness

proof were already contained in earlier papers by Löwenheim and Skolem in which they prove

the model-theoretic result known as the Löwenheim-Skolem theorem. This is not, however,

a question of Gödel’s completeness proof having been preempted. For neither Löwenheim

nor Skolem show recognition of the result that Gödel would later make explicit.

When the similarity between the proofs was noticed in the 1950s, the fact that Skolem

in particular had not put the pieces together to prove completeness before Gödel seemed

a puzzling oversight. Gödel offered his own answer to the puzzle, appealing to alleged

prejudices Skolem had against transfinite methods of reasoning.

Chapter One shows how the puzzle emerged and how Gödel purported to explain it. Chapters

Two and Three give reconstructions of the original proofs of Löwenheim and Gödel. I

analyze the meaning of Gödel’s claim that “finitary prejudices” were at the heart of the

failure to recognize completeness, and assess the evidence for this claim in Löwenheim and

Skolem. Chapter Four reconstructs Skolem’s proof of Löwenheim’s theorem and establishes

the technical background to understand the relation it bears to the completeness theorem.

ix



In Chapter 5, I argue that Gödel’s own answer to the puzzle rests on a false premise. When

certain contextual features are accounted for, Skolem’s failure to recognize a completeness

theorem in his own work is not the oversight it now seems. I investigate Skolem’s search for

a decidability proof for first-order logic and the role this played in leading Skolem away from

the discovery of completeness.
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Chapter 1

Introduction

1.1 The Theorem

The completeness theorem is one of the seminal results of modern metalogic, capturing

the deep relation that holds between the semantics and the syntax of first-order predicate

logic. The theorem states that if a formula is true in every domain, then it is deducible

from the logical axioms. Equivalently, every formula of first-order logic is either refutable or

satisfiable. The question of completeness was raised and answered for propositional logic by

Paul Bernays in 1918 and Emil Post in 1921. Extending this result to predicate logic was

not, however, an easy task. Whereas the semantics of propositional logic is characterized

by the fact that the possible models i.e., truth-assignments for a given formula are finite

in number, predicate logic entails no such restriction. With the introduction of quantifiers,

models can no longer be described as functions from atomic propositions into the set {0, 1}.

Instead, a model of a first-order formula F is a pair {∆,F} where ∆ is a non-empty, possibly

infinite set (the “domain”) and F is a function defined on the non-logical symbols of the

language. Constant and variable symbols are mapped to members of ∆, and predicate and

1



function symbols are mapped to subsets of ∆ (subject to certain conditions). As a result,

most first-order formulas have infinitely many models. And when the domain is infinite,

even evaluating a formula relative to a single model may be an infinite task. The challenge

of completeness becomes evident: although we can determine when a formula is not provable

in the theory, there is no effective way of searching through infinitely-many models to show

that the formula is therefore invalid. A new strategy had to be devised.

The completeness theorem was proven by Gödel in his dissertation (Gödel, 1929). However,

Gödel’s proof was neither conceptually nor technically unprecedented. The proof uses meth-

ods developed in the work of Leopold Löwenheim and Thoralf Skolem over a decade earlier.

Indeed, all the mathematical components of Gödel’s proof are present in Skolem’s (1922),

and are laid out explicitly in (Skolem, 1928). This dissertation will investigate the puzzle

of why the completeness theorem for first-order predicate logic was not recognized before

Gödel.

1.2 Background

1.2.1 Gödel’s proof

This section briefly describes Gödel’s original proof of completeness. A full reconstruction

is provided in Chapter 2 below.

Gödel proves the completeness theorem in the form: Every logical expression is either satis-

fiable or refutable. The original proof differs from the now standard presentation based on

(Henkin, 1949).1 The first step in Gödel’s proof is to fix a formal deductive system, namely,

“the system given in Whitehead and Russell 1910 [and] in Hilbert and Ackermann 1928”

1Henkin proves completeness as a consequence of the model existence theorem, by constructing a term
model for a maximally consistent set of formulas.
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(Gödel, 1986, Vol. 1., p. 61). Gödel then shows how the problem can be reduced to proving

completeness for a restricted class of formulas— those in “normal form”. A formula is in

normal form if it is prenex2 with all universal quantifiers preceding all existential quantifiers.

To prove completeness for this restricted class of formulas, Gödel uses a method of expansion

first introduced by Löwenheim in his (1915). As originally conceived, the method expands a

first-order formula A into an infinite conjunction of propositional instances by systematically

substituting integers for the quantified variables. Using this method, Gödel constructs an

indexed sequence of formulas A1, A2, . . . , An which we call “expansions”. Each An is the

conjunction of instances formed up to the nth level. As n increases, the domain expands by

the introduction of new variables and An can be considered a closer and closer approximation

to the quantified formula A. Within Gödel’s formal system, it can be shown, roughly, that

each An is implied by the formula A.3 This lemma (Theorem VI in Gödel, 1929) establishes

the syntactic half of the completeness theorem: using well-known methods we can determine

whether a given An is refutable. And if An is refutable for some n, then A is refutable. To

establish the other half of the theorem, Gödel shows that when every An has a satisfying

truth assignment, there is a single assignment simultaneously satisfying all the An. This

assignment is used to determine an interpretation of the predicate letters in A such that A

is satisfied in the domain of natural numbers.

1.2.2 Löwenheim, Skolem and Herbrand

The expansion method used by Gödel finds its origin in the work of Löwenheim (1915) in

his proof of the model-theoretic result known as the Löwenheim-Skolem theorem (LST).

The theorem has two versions. The weak version states that if a formula A is satisfiable,

2A prenex formula is one where all the quantifiers occur at the beginning.
3Strictly speaking, Gödel departs from Löwenheim by constructing the An to be open formulas. He

therefore shows that the existential closure of each An is implied by A. The details are discussed in Chapter
2.
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then it is satisfiable in a countable domain. The strong “subdomain” version states that if

A is satisfiable in an infinite domain D, then it is satisfiable in a countable subdomain D′

of D, where the predicates retain the same meaning in D′ as in D, modulo the restriction.

According to the most widely accepted view, Löwenheim aimed to prove the weak version

of the theorem in his (1915) paper “On possibilities in the calculus of relatives”. The paper

introduces the expansion method described above. However, Löwenheim’s proof arguably

contains a gap - he fails to justify the step from the satisfiability of every An to the satisfia-

bility of the formula A. The strong version of the theorem is proven by Skolem in 1920. His

proof, designed to avoid Löwenheim’s “detour through the infinite”, uses the axiom of choice

to obtain countably many witnesses for the quantifiers. This proof avoids the expansion

method, instead using a result from Dedekind’s chain theory to obtain a model through a

closure operation on the witness-containing sets. Skolem gives a second proof in 1922, now

proving the weaker version of the theorem but avoiding the use of choice. Unlike the 1920

proof, (Skolem, 1922) uses Löwenheim’s expansion method to construct a model of A in the

domain of natural numbers based on the satisfiability of the An. The expansion method

used by Löwenheim and Skolem (1922) implicitly yields an informal refutation procedure

for first-order logic. The inductive construction of the An yields a procedure for refuting

A in finitely-many steps: each An can be systematically checked for satisfiability using the

truth-table method from propositional logic. This procedure is complete—if a formula is un-

satisfiable, then the procedure will find an n such that An is truth-functionally unsatisfiable.

Gödel makes this result rigorous by formalizing the procedure.4

Meanwhile, apparently unaware of (Skolem, 1922),5, French mathematician Jacques Her-

brand took inspiration from both (Löwenheim, 1915) and (Skolem, 1920). Herbrand uses

a similar expansion method to arrive at his Fundamental Theorem, recognized today as a

4When refutability is defined in terms of the expansion procedure, i.e., as the existence of an n such that
An is truth-functionally unsatisfiable, the contrapositive of this claim must be shown as part of the proof of
the LST.

5Cf. Goldfarb, introduction to (Herbrand, 1971), p. 12.
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key result in proof theory (Herbrand, 1929). Unlike Skolem or Löwenheim, Herbrand ex-

plicitly formulates his theorem in terms of a formal system of quantification theory.6 A

proof of the semantic completeness of this system can be extracted from Herbrand’s text

(Herbrand, 1971, p. 12). Herbrand explicitly acknowledges this fact, yet does not give the

proof (Herbrand, 1971, p. 165). A strict adherent of Hilbert’s finitism, Herbrand considered

the notions involved to be meaningless.7

1.3 The puzzle

Several decades later, the proximity of Skolem’s 1922 proof of the LST to Gödel’s complete-

ness theorem was noted in the secondary literature:

Since about 1950 I had been struck by the fact that all the pieces in Gödel’s proof

of the completeness of predicate logic had been available by 1929 in the work of

Skolem (notably his [1922]) (Wang, 1996, p. 122)

Commentators agree that with minor supplementation, (Skolem, 1922) can be transformed

into a completeness proof for the refutation procedure determined by the construction of the

An ([Goldfarb, 1971], [Van Heijenoort, 1967]).

In correspondence, Hao Wang and Jean van Heijenoort question Gödel about this similarity.

Gödel acknowledges that

[t]he completeness theorem, mathematically, is indeed an almost trivial conse-

quence of Skolem 1922. (Letter to Wang, in [Wang, 1974], p. 8)

6A fragment of Russell and Whitehead’s Principia Mathematica.
7Hilbert apparently felt differently. The question of whether first-order predicate logic is semantically

complete was announced as an “open” problem by Hilbert and Ackermann (1928, 68).

5



He then states the puzzling fact central to the project of this dissertation:

However, the fact is that, at that time, nobody (including Skolem himself) drew

this conclusion (neither from Skolem 1922, nor, as I did, from similar considera-

tions of his own).8 (ibid.)

The puzzle goes beyond (Skolem, 1922). In 1928, Skolem applies the basic alternative of

Gödel’s completeness proof to his expansion method: “The real question now is whether

there are solutions of an arbitrarily high level or whether for a certain n there exists no

solution of the nth level.”

Skolem concludes, “In the latter case the given first order proposition contains a contradic-

tion. In the former case, on the other hand, it is consistent.” Understanding “consistent” in

the sense of “satisfiable”, Skolem has just stated the completeness theorem for the procedure

given by his expansion method:

Either A is refutable by finding an An that is contradictory, or, A is satisfiable.

Skolem could easily have proven this theorem using his 1922 equivalent of König’s infinity

lemma. But that is not what he does. Instead, he gives a syntactic argument widely

recognized to be, at best, inconclusive. Gödel goes further, finding the argument “obscure”

and misguided, and using this as the starting point for a theory about why Skolem was led

astray. Gödel’s explanation will be considered in detail in Chapter 5.

The gap Gödel finds in Skolem’s (1928) argument9 is the same one attributed to Löwenheim

on the traditional reading of his (1915). This is the reading according to which Löwenheim

proved the weak version of the LST. In Chapter 3, I argue that if this reading of Löwenheim’s

8In 1929, Gödel was acquainted only with (Skolem, 1920). The (1922) paper, published in a Norwegian
journal, did not reach a wide audience at the time.

9This gap is filled by Skolem’s 1922 equivalent if König’s infinity lemma.

6



theorem is correct, then Gödel’s remarks on Skolem’s anticipation of completeness apply

equally to Löwenheim. And yet, like Skolem, Löwenheim shows no recognition of complete-

ness as a question of interest.

The connection between syntactic provability and semantic satisfiability at the heart of the

completeness theorem was not drawn explicitly until Gödel’s dissertation in 1929. And

yet the connection is latent in the work of Lowenheim over a decade earlier, and all the

components of a proof are present in Skolem by 1922. How could Lowenheim and Skolem

come so close to preempting Gödel’s theorem and yet fail to do so? Call this “The Puzzle”.

1.4 Views in the literature

According to the prevailing view in the secondary literature, The Puzzle is explained by the

fact that prior to 1930, there was no developed notion of formal system (Bernays, 1967 [in

Wang, 1996], Dreben and van Heijenoort, 1986, p. 71, Goldfarb, 1979, p. 363, Wang, 1996,

p. 124, Brady, 2000, p. 163, Fenstad and Wang, 2009). This explanation will be referred to

as the “formal systems” explanation. In Löwenheim’s framework, the explanation is based on

the absence of formal rules of inference in the calculus of relatives—“obviously, no question

of completeness of a formal system could arise here” (Dreben and van Heijenoort, 1986, p.

45). Goldfarb concurs that

what is primarily missing [from Löwenheim] is a full sense of the role of the object

language in formalizations of mathematics. The absence of formal inference rules

precludes the use of the relative calculus for axiomatization, in the sense of formal

systems. (Goldfarb, 1979, p. 355).

Despite being the first to delineate a class of first-order expressions within a formal language,

“Löwenheim does not seem to recognize the fundamental importance of the first-order frag-

7



ment he had just demarcated” (Goldfarb, 1979, p. 355). In particular, he does not recognize

the possibility of representing deductive relationships between sentences using a first-order

formal language. As a result “he draws from his theorem none of the striking and almost

paradoxical consequences that were of such concern later on” (Goldfarb, ibid.). Badesa

(2004) does not dispute that “the theory of relatives [...] lacks rules of inference, and [that]

Löwenheim does not define the concept of consequence:

[Löwenheim’s] presentation of the language is not as accurate as I require today;

he mixes syntactic and semantic aspects, is not as explicit as one might like as to

which are the symbols of the language, and gives practically no syntactic rules.

(2004, p. 61)

Badesa explicitly addresses the question of completeness. Referring to a lemma used in

Löwenheim’s proof of the LST, Badesa writes:

This lemma asserts the completeness of the informal procedure with respect to

nonsatisfiability. In my opinion, this lemma is alien to Löwenheim, not only

because he lacks the necessary distinctions to state it, but also because he does

not prove Lemma 6.8. (emphasis added, ibid., p. 205)

The second half of this explanation concerning Lemma 6.8 will be considered in chapter 3.

Skolem, meanwhile, is alleged to have had “absolutely no interest” in completeness (Dreben

and van Heijenoort, 1986, p. 45). This attitude is attributed to his opposition to the very

idea of a formal system:1011

10Cf. (Goldfarb, 1979, p. 358). Ironically, Skolem’s opposition was spawned by his interpretation of the
very theorem (LST) that could have yielded completeness as a corollary.

11The explanation can be plausibly extended to Herbrand. Herbrand did have a precise notion of formal
system. Hence this is why he, unlike Skolem and Löwenheim, explicitly recognized completeness as a conse-
quence of his work. This recognition was not impeded by the fact that he rejected the infinitary notion of

8



Bernays has observed that Skolem did not think of the theorems of elementary

logic as given in a formal system and, therefore, that the question of full com-

pleteness had no meaning for Skolem. (Wang, 1974, p. 10)

Skolem was a constant opponent of all formalist and logicist foundational pro-

grams [...] [he] essentially had a completeness proof for a formal system of quan-

tification theory. [...] Of course, Skolem never put his ideas together in this

way—he would not have been interested. (Goldfarb, 1979, p. 363)

Skolem was not much concerned with the use of formal systems as foundational

tools, so in any case the completeness question for such systems was not a problem

of interest to him” (Goldfarb, 1971, p. 525).

Dreben and van Heijenoort attribute the formal systems explanation to Gödel:

[A]ccording to Gödel, the only significant difference between Skolem (1922) and

Gödel 1929-1930 lies in the replacement of an informal notion of ‘provable’ by a

formal one, hence in the establishment of [Theorem VI in Gödel , 1930]12 — and

in the explicit recognition that there is a question to be answered. (Dreben and

van Heijenoort, 1986, p. 52).

The authors provide no evidence from Gödel to support this attribution. However, on

Gödel ’s behalf, they defend this interpretation of Skolem based on his ambiguous use of

“consistent” (“widerspruchsfrei”, “widerspruchlos”) both in (Skolem, 1922) and elsewhere.13

semantic validity on the basis of his commitment to finitism. For this reason he did not endorse a proof of
completeness despite acknowledging its possibility (Herbrand, 1971, p. 165). The same can be said about
Hilbert who was able to pose the question on the basis of his clear and metatheoretic notion of formal system.

12Theorem VI of (Gödel , 1930) shows that for every n, A → An is provable. With this theorem, if some
An is not satisfiable, then is provable.

13If “consistent” is interpreted to mean “syntactically consistent”, “[it] might suggest that A is not
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Moore (1990, p. 125), meanwhile, blames the delay in proving completeness for first-order

logic on the lack of a precise syntax/semantics distinction:

Gödel exhibited a more profound understanding of the distinction between syntax

and semantics - as well as their interrelationship - than had his predecessors.

Skolem had failed to observe this distinction [...] by expressing Löwenheim’s

Theorem in the following form: A first-order sentence is either inconsistent or else

satisfiable in a countable domain. However, Skolem demonstrated only that if a

first-order sentence is satisfiable in a set M, it is satisfiable in a countable subset of

M. What Gödel later established was essentially Skolem’s stated theorem. Thus

the completeness theorem for first-order logic arose in 1930 rather than a decade

earlier. (1990, p. 125)

Moore’s claim can be read as a version of the formal systems explanation. As Moore notes,

Skolem’s proof established only the semantic half of the completeness theorem. Gödel’s

contribution was to show the syntactic half using his Theorem VI, i.e. that when the sentence

was unsatisfiable, its inconsistency could be demonstrated in his formal system. But Skolem

was not operating within an explicitly given formal system. Thus he lacked the rules of

inference on the basis of which it could be demonstrated that refutability using the expansion

procedure implied refutability of the original sentence.

1.5 Gödel: Rethinking the Question

Gödel rejects the suggestion that the question of completeness is meaningless unless posed

in terms of formal systems:

provable in some system left unspecified or in informal logic” (Dreben and van Heijenoort, 1986, p. 52). On
this reading, Skolem has already implicitly made the conceptual connection between syntax and semantics
at the heart of the completeness proof. All that is missing is a demonstration that the connection can be
formalized in the system, i.e., Gödel ’s Theorem VI.

10



It may be true that Skolem had little interest in the formalization of logic, but

this does not in the least explain why he did not give a correct proof of that

completeness theorem which he explicitly stated ([Skolem, 1928], p. 134), namely

that there is a contradiction at some level n if there is an informal disproof of

the formula. (Wang, 1974, p. 10)

Gödel argues that the question of completeness arises naturally for any proposed method of

proving or disproving a formula of the language. Formal or not, it is still coherent and im-

portant to ask whether a method proves all the valid formulas, or refutes all the unsatisfiable

ones. Gödel’s view rejects the formal systems explanation and reintroduces the puzzle:“[t]his

blindness (or prejudice, or whatever you may call it) of logicians is indeed surprising” (Letter

to Wang, Wang, 1974, p. 9). Both Löwenheim and Skolem introduced informal methods

of refuting a first-order formula in the course of proving the LST. But they did not raise

the question of completeness. Why did these prominent logicians fail to acknowledge the

important fact implied by their own work?

1.5.1 The alternative

Gödel rejects the formal systems explanation in favour of an alternative:

I think the explanation is not hard to find. It lies in a widespread lack, at

that time, of the required epistemological attitude toward metamathematics and

toward nonfinitary reasoning. (Wang, 1974, p. 10)

Gödel evidently has Hilbert’s program in mind as representative of the epistemological prej-

udice he targets:

Non-finitary reasoning in mathematics was widely considered to be meaningful
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only to the extent to which it can be ‘interpreted’ or ‘justified’ in terms of a

finitary metamathematics. (Note that this, for the most part, has turned out to

be impossible in consequence of my results and subsequent work.) This view,

almost unavoidably, leads to an exclusion of nonfinitary reasoning from meta-

mathematics. [...] But now the aforementioned easy inference from Skolem 1922

is definitely non-finitary, and so is any other completeness proof for the predicate

calculus. Therefore these things escaped notice or were disregarded. (ibid.)

[Skolem] was a firm believer in set theoretical relativism and in the sterility of

transfinite reasoning for finitary questions (see p. 49 of his paper [1970, p. 273]).

(Letter to Wang, 7 December 1967, in Wang, 1996, p. 124).

[E]vidently because of the transfinite character of the completeness question,

[Skolem] tried to eliminate it, instead of answering it (ibid.)

Gödel’s proposal has been overlooked in the secondary literature, where the formal systems

explanation has gone unchallenged. The inadequacy of that view, and the independent

interest of Gödel’s alternative, are the motivations for this dissertation.

1.6 Motivations

I began this project with the intention of answering a rather narrow research question:

was Gödel correct that Skolem failed to recognize completeness because he had a prejudice

against non-finitary reasoning? This question was unaddressed in the secondary literature

where the formal systems explanation has gone unchallenged. And yet Gödel’s critique of

that explanation is compelling in its simplicity. By showing how the question of completeness
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can be coherently raised outside the context of a formal system, he opens an explanatory

gap.

Beyond Gödel’s specific targeting of Skolem lies a more general claim that “non-objectivist”

philosophical viewpoints are conceptually and epistemically infertile. One reason for this,

thinks Gödel, is their unwillingness to license non-finitary methods of reasoning. As evidence

of this, Gödel cites the role he percieved his own “objectivism” to have played in arriving

at his other discoveries, notably, his incompleteness theorems, and his consistency proof for

the continuum hypothesis.

Constructivism, intuitionism, and finitism no longer occupy the place they did in math-

ematics up to 1930. Discoveries beginning with Gödel’s incompleteness theorems forced

the recognition that the promised epistemological gains of these positions were unattainable.

Gödel’s claim against Skolem represents a different sort of objection to such “non-objectivist”

philosophies of mathematics, one that does not depend on the technical results of the 30s.

Even if, for example, Hilbert’s program had somehow succeeded in its goal of securing the

foundations of mathematics on a finitary basis14, Gödel’s claim gives reason for thinking

that this security would not have been worth the cost in terms of the conceptual limitations

imposed by such frameworks. An investigation of this claim will have implications for the

types of frameworks used in contemporary mathematical investigations, and for the burden

of justification on those who endorse these frameworks.

These were the motivations from which the project began. But another theme emerged over

the course of the investigation. The path to the discovery of the completeness theorem was

arduous and convoluted. Even with all the technical components in front of them, eminent

logicians of the time failed to grasp the conceptual significance of the theorem. And yet,

today the theorem is something we expect introductory logic students to grasp in the course

of a few lectures. My own introduction to the theorem as an undergraduate was a typical

14I.e., if the incompleteness theorems were not true.
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example of this. I came away having learned that it is easier to prove an equivalent form

of the theorem (every consistent set is satisfiable), how to reproduce Henkin’s construction,

and that term models had something to do with taking the symbols themselves to be the

objects in the domain. However, I would have been hard pressed at the time to say why

the theorem is important, or explain what deep connection it establishes. In other words, I

could prove completeness but had no idea what it meant.

The latter was something I came to appreciate through an examination of the history of the

theorem and its discovery. This suggests an important general motivation for the historical

investigation of mathematical results. The process by which a student comes to understand

a mathematical concept or proof often runs parallel to the original path of discovery in the

mathematical community at large. Mathematical discoveries take place in intellectual envi-

ronments where progress towards the discovery is made in many directions, and sometimes

unwittingly, by many individuals at once. Various technical and conceptual components

must be in place before a well-placed individual (like Gödel) is able to bring all the pieces

together into a cohesive proof. From setting up the technical apparatus, to proving or dis-

proving related results, to creating an environment in which the conceptual significance of

a certain result is highlighted rather than suppressed, many of these tasks are carried out

without any awareness of the discovery to which they will eventually lead.

To this end, the current project explores the impact of particular intellectual environments

on the recognition of completeness (see Chapter 5). The contextual features introduced in

that chapter were crucial for the historical recognition of completeness and ought not to be

overlooked when teaching the completeness theorem in modern contexts.

More generally, historical investigations of this kind have important pedagogical and heuristic

roles in logic and math education. Projects such as this one are needed to make accessible

the original paths of discovery and remind us not to take for granted the ease by which our

contemporary proofs seem to arrive at their results.
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Chapter 2

Gödel

2.1 Introduction

To understand the puzzle Gödel finds in Skolem’s near-anticipation of the completeness

theorem, one must first understand the influence of Skolem’s work on Gödel’s (1930) proof

of that theorem. This chapter sets the stage for that comparison by reconstructing Gödel’s

original proof. The latter has been widely neglected in the literature due to its relative

opacity compared with the alternative due to Henkin. For good reason, Henkin’s version

has become the canonical proof for the completeness of first-order logic. Gödel’s original,

however, reveals fascinating similarities of method with earlier proofs of the Löwenheim-

Skolem theorem.

2.1.1 Henkin

The version of completeness familiar to most logicians today is due to Henkin rather than

Gödel. Henkin’s (1949) proof is simpler than Gödel’s and his methodology more widely ap-
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plicable.1 Henkin’s proof of “strong completeness” yields Gödel’s result as a straightforward

corollary.

Henkin’s Theorem

Relative to a particular formal axiomatic system, Henkin proves:

Strong Completeness (SC): every consistent set Γ of statements of a first-order

language L has a model of cardinality α, where α is the cardinality of the set of

primitive symbols of L.2

We can break down Henkin’s proof into two main parts:

1. Show that every consistent set Γ can be extended to a maximally consistent set Γ′

having the Henkin witness property.

2. Show that every maximally consistent set with the Henkin witness property has a

canonical model.

In step 1, Henkin uses an inductive construction to obtain from Γ a maximally consistent

set of closed well-formed formulas (cwff) such that for every cwff σ ∈ L, if σ /∈ Γ′, then

Γ′, σ ⊢⊥ but Γ′ ⊥. By adjoining to L an infinite set of new individual constants, the new

set can also be shown to possess the Henkin witness property. This means that for every

existential statement ϕ = ∃xA(x) in Γ, there is a witnessing constant, i.e., a constant cϕ in

the expanded language L′, such that Γ ⊢ ∃xA(x) → A(cϕ).

1In particular, his proof yields the important model-theoretic notion of a term model.
2Gödel’s version follows from Henkin’s by taking the set of statements to be Γ ∪ {¬ϕ}.
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In step 2, Henkin shows that Γ has a model M whose domain consists of the set I of

individual constant symbols of the expanded language.3

The interpretation function assigns each constant to itself as denotation, and each predicate

symbol P to the class of constants that Γ′ proves to belong to P . Henkin then shows by

induction on formula complexity that for every cwff σ ∈ L′

σ is True if Γ′ ⊢ σ and σ is False if Γ′σ

This yields a truth-assignment under which every member of Γ ⊂ Γ′ is satisfied.

As an illustration, consider how the proof goes in the case where σ = ∀xB. If σ ∈ Γ′, then by

the induction hypothesis and the interpretation of predicates, M |= B(t) for every t ∈ I. By

the semantics of ∀, σ is true. Conversely, if σ /∈ Γ′ then by maximal consistency, Γ′,∀xB ⊢⊥.

By the deductive rules, it follows that Γ′ ⊢ ∀xB →⊥ and Γ′ ⊢ ∃xB →⊥. By the witness

property, Γ′ ⊢ B[x\c] →⊥ for some constant c. Thus, if Γ′ ⊢ B[x\c] then Γ′ ⊢⊥, contrary

to assumption of consistency. So Γ′, B[x\c]. By the induction hypothesis, this implies that

B[x\c] is false. By the semantics of ∀, σ = ∀xB is false.

Henkin’s innovative method bypasses two key features of Gödel’s proof.

First, unlike Gödel, Henkin does not begin by setting up a reduction class of formulas. Noting

this contrast with Gödel, Henkin later writes:

It seems that a distinctive feature of my completeness proof for first-order logic,

which distinguishes it from Gödel’s, is that when a consistent set of [closed well-

3Henkin’s original proof takes as the domain of M the set I itself. The standard textbook version
constructs a canonical term model induced by the equivalence relation of provable equality on terms. That
is, define a relation ‘ ∼′ by

s ∼ t ⇐⇒ ⌜s = t⌝ ∈ Γ′.

Then the domain of M is the set of equivalence classes of variable-free terms t under the relation of
provable equality, i.e., the set of |t| = {s : s ∼ t}.
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formed formulas] is given in one language, I proceed to an extended language in

which new individual constants are adjoined. But in fact, something like that is

implicitly present in Gödel’s proof, because he begins by reducing the problem

of showing that an arbitrary [closed well-formed formula] is either satisfiable

or refutable, to the case of an arbitrary [closed well-formed formula] that is in

Skolem normal form. However, in a first-order language with some fixed finite

set of predicate symbols, one cannot reduce every [closed well-formed formula]

to one in Skolem normal form without adding new predicate symbols. (Henkin,

1996, p. 156)

This necessity is seen in Gödel’s proof below with the adjunction of a new predicate R in

the proof of Theorem 2.2.0.

The second feature that Henkin’s proof lacks is Gödel’s construction of a sequence of ap-

proximating instances to a universally-quantified statement over an infinite domain. As will

be seen, this construction derives from the work of Skolem and Löwenheim in proving the

Löwenheim-Skolem theorem.

2.2 Gödel’s proof

Gödel’s completeness theorem establishes that every valid formula is provable in the Hilbert-

Ackermann (HA) system of first-order predicate logic.4 Gödel proves the theorem in its

equivalent form: every formula is either refutable or satisfiable. The result can be extended

to any first-order predicate calculus in the usual way.

The first stage of Gödel’s proof consists in showing that it suffices to prove completeness for

a restricted class of formulas, namely, those in prenex normal form and of degree one. A

4The system consists of a formal language, axioms, and rules of inference.
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formula has degree one if it has a single block of universal quantifiers followed by a single block

of existential quantifiers. Showing this involves two steps. First, finding a prenex normal

form equivalent of an arbitrary formula (this step is omitted in what follows). Second,

showing that the satisfiability or refutability of any formula ϕ with k+1 alternating blocks

of universal and existential quantifiers turns on the satisfiability or refutability of a formula

ψ with only k alternating blocks.5

The first stage of the proof guarantees the sufficiency of the second stage where Gödel proves

completeness for prenex normal form formulas of degree one. The proof uses an idea found

in Löwenheim (1915) and Skolem (1922)—the construction of a sequence of “expansion

instances” An that approximate to A in a finite domain. The expansions are formed by re-

moving the quantifiers and instantiating the previously-bound variables by ordered sequences

of integers. The resulting propositional instances of A are satisfiable or refutable according

to the completeness of propositional logic. In the limit, the satsifying truth assignments for

each An can be ordered in such way as to cumulatively yield a model of A in the domain of

natural numbers.

2.2.1 Syntax

This section introduces the basic syntactic notions essential to Gödel’s completeness proof.

Language

The primitive logical symbols are individual variables x0, x1, x2, ..., predicate variables F0, F1, ...,

propositional variables X0, X1, ..., and operators (∨,¬,∀). The remaining operators (∧,→

, ⇐⇒ , ∃) are defined from these in the usual way, and formulas are constructed accord-

5This is done by finding two formulas ψ and ψ′ such that ψ ⇐⇒ ψ′ and ψ′ → ϕ, where ψ is of degree
k. Deriving ψ from ϕ necessitates the introduction of a new predicate that takes over the role performed by
one of the blocks ∀∃.
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ing to the standard compositional rules. Lowercase German letters r, n, u, o are used as

abbreviations for n-tuples of individual variables (the arity is specified in context).

Axioms

A1. X ∨X → X

A2. X → X ∨ Y

A3. X ∨ Y → Y ∨X

A4. (X → Y ) → (Z ∨X → Z ∨ Y )

A5. ∀xF (x) → F (y)6

A6. ∀x[X ∨ F (x)] → X ∨ ∀xF (x)

Rules of inference

R1. Modus ponens

R2. Rule of substitution: If t is a term and ϕ is a formula possibly containing the variable

x, ϕ[t/x] is the result of replacing all free instances of x by t in ϕ. Then, for any ϕ

and any term t, from ϕ infer ϕ[t/x], provided that no free variable of t occurs bound

in ϕ[t/x].

R3. From A(x) infer ∀xA(x).

R4. Variables (free and bound) can be changed at will.7

A formula of the language is provable if it can be derived from axioms and rules of inference

in finitely many steps. A formula is refutable if its negation is provable.

6Subject to the condition that solutions (section 5.1.2) have non-empty domains.
7Subject to the conditions given in (Hilbert Ackermann, 1928).

20



Lemmas

Gödel assumes the following lemmas without proof.

L1. For every n, and every n-tuple r,

(a) ∀rF r → ∃rF r

(b) ∀rF r ∧ ∃rGr → ∃r[F r ∧ ∃Gr]

(c) ∀r¬F r ⇐⇒ ¬∃rF r

L2. If n-tuples r and r′ differ only in the order of the variables, then ∃rF r → ∃r′F r is

provable.

L3. If r consists entirely of distinct variables and if r′ has the same number of terms as r,

then ∀rF r → ∀r′F r′ is provable, even when a number of identical variables occur in r′.

L4. If pi stands for either ∀xi or ∃xi, and qi stands for either ∀yi or ∃yi, then

p1, ..., pnF (x1, ..., xn)∧q1, ..., qmG(y1, ..., ym) ⇐⇒ P[F (x1, ..., xn)∧G(y1, ..., ym)]

is provable, for every prefix P formed from the pi and qi, preserving the relative order

of pi amongst pi and qi amongst qi but not necessarily pi amongst qi.
8

1. For every formula A of the language, there is a prenex formula P (N) such that A ⇐⇒

P (N) is provable.

8Gödel offers a proof sketch of L4 in 1929, using the equivalences:

L5. A ∧ ∀xF (x) ⇐⇒ ∀x[A ∧ F (x)]

(a) A ∧ ∃xF (x) ⇐⇒ ∃x[A ∧ F (x)]

Beginning with p1 (or q1, modulo the appropriate substitutions), take q1, ..., qmG(y1, ..., ym) for A, and take
p2, ..., pnF (x1, ..., xn) for F (x), apply (1) or (2) depending on whether the quantifier is ∀ or ∃, and move p1
to the front to get p1[q1, ..., qmG(y1, ..., ym) ∧ p2, ...pnF (x1, ..., xn)]. Continue in the same way by moving
either p2 or q1. At each step there is a choice between the outermost (of the conjuncts) pi or qi, but the
relative order amongst each is preserved.
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2. Replacement rule of HA system: If A ⇐⇒ B is provable, so is F(A) ⇐⇒ F(B), where

F represents an arbitrary expression containing A as a part (see Hilbert Ackermann,

1928, Chapter 3).

3. Every propositional formula is either refutable or satisfiable (Post, 1921)

2.2.2 Semantics

If A is a formula in which occur the individual variables x0, x1, ....xm, the predicate variables

F1, ..., Fk, and the propositional variables X1, ...Xl, a solution S for A consists of a domain

D of individuals, a set of relations f1, ..., fk defined on D9, and a set of truth values w1, ..., wl

such that a true proposition results when the fi are substituted for the Fi, the xi replaced

by their indices i, and the propositional variables Xi replaced by the truth values wi. A

is satisfiable if there exists a solution for A. A is valid if and only if the negation of A is

unsatisfiable.

2.2.3 First stage

Reduction to formulas of degree 1

A formula is in Gödel normal form if it

• (i) Has no free variables

• (ii) Is in prenex normal form (all quantifiers occur at the beginning and scope over the

entire formula)

• (iii) Has a string of quantifiers beginning with ∀ and ending with ∃
9Where each fi has the same arity as Fi.
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Following Gödel, the notation P (A) will be used to denote a formula in prenex form where

P (also Q, R, etc.) represents a prefix string of quantifiers, and A is a quantifier-free

matrix. The degree of a formula in Gödel normal form is the number of alternating blocks

of quantifiers of the form ∀∃ occurring in its prefix.

Gödel will show that it suffices to prove completeness for Gödel normal form formulas of

degree 1 by proving:

Theorem 2.3.1

Every Gödel normal form formula of degree 1 is either satisfiable or refutable.

Theorem 2.2.0

If completeness holds for every formula in Gödel normal form of degree k, then it holds for

every formula of degree k + 1.

Theorem 2.2.1

If completeness holds for every formula in Gödel normal form, then it holds for every formula.

I prove theorems 2.2.1 and 2.2.0 here. Proving Theorem 2.3.1 is the objective of the second

stage of Gödel’s proof.
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Proof of Thm. 2.2.1

Let A be an arbitrary formula and assume A is not in Gödel normal form. So, A fails at least

one of the conditions (i)-(iii) above. The proof works by providing a chain of equivalences

that preserve satisfiability/refutability between A and a formula that does meet each of the

conditions (i)-(iii) of Gödel normal form.

(1) Suppose A violates condition (i) by containing the free variables r. Then A is refutable

if and only if ∃rA is refutable, via L1(c), R3, and A5. The same result for satisfiability holds

by definition.10

(2) If ∃rA is prenex, skip to step (3). If it is not prenex, then by L5 there is a formula P (N)

in prenex form such that

∃rA ⇐⇒ P (N)

where P is the quantifier string prefixed to a quantifier-free matrix N .

(3) If P (N) is not yet in Gödel normal form, then the prefix P is not of the form ∀∃.11 If

x and y are variables not occurring in P , and F is a predicate variable not occurring in A,

then

P (N) ⇐⇒ ∀xP∃y[N ∧ (F (x) ∨ ¬F (y)]

The right-hand formula now meets all the conditions (i)-(iii) and is therefore satisfiable or

10Gödel defines satisfiability for a formula A(x, y, ..., w) with free individual variables to mean that
∃x∃y...∃wA(x, y, ..., w) is satisfiable. (Cf. footnote 4, 1930)

11P is of the form ∃∀, ∃∀∃, ∀∃∀, or some iteration thereof.
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refutable by the hypothesis. Therefore, A is either refutable or satisfiable by the chain of

equivalences:

A ⇐⇒ ∃rA ⇐⇒ P (N) ⇐⇒ ∀xP∃y[N ∧ (F (x) ∨ ¬F (y)]

□ (Theorem 2.2.1)

Proof of Thm. 2.2.0

Let P (A) be a Gödel normal form formula of degree k+1. The prefix P can be rewritten as

∀r∃nQ, where Q is the prefix of a degree k formula. This means that Q can be written as

∀u∃vR, where R is the prefix of a degree k-1 formula.

Let E be a new predicate letter not occurring in A. Let r′ and n′ be tuples of unused variables

of the same number as r and n respectively.

Let

B = ∀r′∃n′E(r′, n′) ∧ ∀r∀n[E(r, n) → Q(A)]

and

C = ∀r′∀r∀n∀u∃n′∃vR[E(r′, n′) ∧ E(r, n) → A].

By L6 [replacing Q(A)] and two applications of L4,

B ⇐⇒ ∀r′∃n′E(r′, n′) ∧ ∀r∀n∀u∃v[E(r, n) → R(A)] = B′
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By L4,

B′ ⇐⇒ ∀r′∀r∀n∀u∃n′∃v[E(r′, n′) ∧ E(r, n) → R(A)]

⇐⇒ ∀r′∀r∀n∀u∃n′∃vR[E(r′, n′) ∧ E(r, n) → A] = C

Therefore,

(1) B ⇐⇒ C

Moreover, it is evident that

(2) B → P (A).

By assumption, R has degree k-1, so C has degree k. By the induction hypothesis, com-

pleteness holds for C, hence C is either satisfiable or refutable.

If C is satisfiable, i.e., true in a model M , then P (A) must also be true in M , by (1) and

(2). If C is refutable, then by (1), ¬B is provable.

Note that in Q(A) the variables r and n occur free (they are bound by the quantifiers that

occur in P but not Q). The second occurrence of E has as arguments the same variables as

Q(A). In the first occurrence, r and n in Q(A) can be replaced by r′ and n′ by R4 and L3.

Then by L6, occurrences of E in ¬B can be replaced by Q(A), preserving provability. Thus,

the provability of ¬B implies the provability of
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¬(∀r′∃n′Q(A) ∧ ∀r∀n[Q(A) → Q(A)])

∀n[Q(A) → Q(A)] is obviously provable, so if ¬B is provable, then ¬[∀r′∃n′Q(A)] must be

provable. Changing variables by L3, ¬P (A) is provable, that is, P (A) is refutable. □ (Thm.

2.2.0)

2.2.4 Second stage

Proof of Theorem 2.3.1

Every formula of degree 1 is either satisfiable or refutable

Let P (A) = ∀u1, u2, ..., ur∃v1, v2, ..., vsA(u1, ..., ur; v1, ..., vs) be in Gödel normal form.

The first step is to drop the quantifiers. By instantiating the variables we construct a

sequence of propositional formulas that act as approximations to P (A) in a finite domain.

An expansion of level n is the conjunction of instances of A formed at the nth level in the

construction. The domain increases at each level new variables are added to witness the

existential quantifiers of P (A). The idea is to obtain, as the limit of this process, a model

of P (A) in the domain of natural numbers.

Where r is the number of universal variables in P (A), let an ordering of r-tuples of the indi-

vidual variables x0, x1, x2, ... be given according to increasing sum of their indices, beginning

with the r-tuple (x0, x0, ...., x0). These r-tuples in order will be denoted by r1, r2, ...

The sequence is defined inductively.
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A1 = A(r1;x1, x2..., xs)

A2 = A1 ∧ A(r2;xs+1, ...x2s)

.

.

.

An = An−1 ∧ A(rn;x(n−1)s+1, ...xns)

The first expansion A1 is the result of replacing the universal variables of A by the first r-tuple

r1 = (x0, x0, ...., x0) of variables in the given ordering, and replacing the s-many existential

variables with the first s variables distinct from those occurring in r1. At each level n in

the sequence, a new instance of the formula is conjoined to those already constructed—the

universal variables of A are replaced by the nth r-tuple of variables, and the existential

variables are replaced by variables distinct (w.r.t. their indices) from those in the nth r-

tuple, and from variables occurring in Ai for i < n.

Let Pn(An) denote the existential closure of the nth formula An. The prefix Pn is string of

∃ quantifiers binding all the variables of An.

Lemma 2.3.2

For every n, P (A) → Pn(An) is provable.

Proof: By induction on n.

• For n = 1,
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P (A) → ∀r1∃x1, x2, ..., xsA(r1;x1, x2, ..., xs) [L3 and R4]

∀r1∃x1, x2, ..., xsA(r1;x1, x2, ..., xs) → ∃r1∃x1, x2, ..., xsA(r1;x1, x2, ..., xs)

= P1(A1) [L1(a)]. □

• Assume P (A) → Pn(An) holds.

By the ordering of r-tuples according to sum of their indices, for every An+1, the

variables of the nth+1 r-tuple already occur in An.
12 Thus, the only new variables in

An+1 are the x(n−1)s+1, ..., xns.

Define P ′
n to be the portion of the prefix Pn that omits the quantifiers over the variables

of the n+1th r-tuple. So, ∃rn+1P
′
n = Pn (by L2).

Sublemma 2.3.2

For every n, P (A) ∧ Pn(An) → Pn+1(An+1) is provable.

1. P (A) (Premise)

2. Pn(An) (Premise)

3. P (A) → ∀rn+1∃xns+1), ..., x(n+1)sA(rn+1;xns+1, ..., x(n+1)s) [L3 and R4]

4. Pn(An) → ∃rn+1P
′
n(An) [definition]

12The nth+1 r-tuple is either a permutation of the nth r-tuple, or contains at most one new variable,
which must have already been introduced in some Am, for m ≤ n in place of an existential variable.
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5. ∀rn+1∃xns+1, ..., x(n+1)sA(rn+1;xns+1, ..., xns) ∧ ∃rn+1P
′
n(An) [from (1)-

(4)]

6. ∀rn+1∃xns+1, ..., x(n+1)sA(rn+1;xns+1, ..., x(n+1)s)∧∃rn+1P
′
n(An) → ∃rn+1[∃xns+1, ..., x(n+1)sA(rn+1;xns+1, ..., x(n+1)s)∧

P ′
n(An)] [L1(b)]

7. ∃rn+1[∃xns+1, ..., x(n+1)sA(rn+1;xns+1, ..., x(n+1)s) ∧ P ′
n(An)] [(5),(6)]

8. ∃rn+1[∃xns+1, ..., x(n+1)sA(rn+1;xns+1, ..., x(n+1)s)∧P ′
n(An)] ⇐⇒ Pn+1(An+1)

[By definition, because ∃rn+1P
′
n(An) = Pn(An) and,

Pn+1(An+1) = Pn(An) ∧ ∃xns+1, ..., x(n+1)sA(rn+1;xns+1, ..., x(n+1)s).]

9. Pn+1(An+1) [(7), (8)] □ (Sublemma 2.3.2)

Lemma 2.3.2 follows from Sublemma 2.3.2 by the induction hypothesis.

For P (A) in Gödel normal form, the quantifier-free formula A consists of atomic components

joined by propositional connectives. Assume that A is made up of the propositional vari-

ablesX1, ..., Xl and the elementary formulas F1(x11 , ..., x1p), ..., Fk(xk1 , ..., xkq). All individual

variables occurring in A are bound by quantifiers in the prefix P .

To obtain a propositional counterpart Bn of An, replace individual variables xi by their

integer indices 1 ≤ i ≤ ns, and replace elementary formulas Fi(x1, ..., xj) by propositional

variables, different from any Xi already occurring in An, and preserving in this replacement

the distinctness of formulas with respect to either the individual variables or the predicate

letters (see example below).
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Definition 2.3.3

A solution of level n is a set Sn = {fn
1 , f

n
2 , ...f

n
k , w1, w2, ..., wl} consisting of relations13 fn

i

defined on the domain {1, 2, ..., ns}14, and truth values15 wi such that when in An each xi is

replaced by the integer i, each Fi replaced by fn
i , and each Xi is replaced by wi, An comes

out true, relative to the domain in question.

Lemma 2.3.3

Bn is satisfiable if and only if there exist solutions of level n.

For the left-to-right direction of lemma 2.3.3, if there is an assignment of truth values to the

propositional variables of Bn that makes the whole formula come out true, then solutions of

level n are obtained by allowing the denotation of the predicate letters in An to be determined

by the truth value assigned to the corresponding propositional variable in Bn.
16 17

The right-to-left direction, as well as the unsatisfiability of An by solutions of level < n, are

obvious.

Theorem 2.3.3

Every Bn is either refutable or satisfiable

13(Gödel: “functions”)
14Where each fi has the same arity as Fi
150 or 1
16Note that if there do not exist solutions of level n, this must be because of the truth-functional incon-

sistency of the propositonal counterpart to An rather than the non-existence, for any atomic Fi(x1, ..., xp),
of relations fni holding of the numbers 1, ..., p. Such relations always exist since we consider all possible
definitions on the domain in question.

17For example, if An = G(x1, x1), then Bn is satisfiable by assigning truth to the single propositional
variable replacing G(x1, x1). Working backwards to find solutions of level n, if g is a binary relation defined
on the domain {1, 2, ..., ns}, then {g} is a solution for An if and only if < 1, 1 >∈ g. In this case, there are
as many solutions of level n as there are relations meeting this condition.
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By L7 (completeness of propositional logic).

Lemma 2.3.4

Either, for every n, Bn is satisfiable or for some n, Bn is not satisfiable.

(Law of excluded middle).

Lemma 2.3.5

Either Bn is refutable for some n or every Bn has a solution of level n.

Thm. 2.3.2, Lemmas 2.3.3, 2.3.4.

Theorem 2.3.4

If Bn is refutable for some n, then P (A) is refutable.

Proof: If Bn is refutable, then by R2, R3, and L1(c), Pn(An) is refutable. It follows by

Lemma 2.3.2 that P (A) is refutable.

Theorem 2.3.5

If for every Bn, there is a solution of level n, then there is a solution for P (A) in the domain

of natural numbers.
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Lemma 2.3.6

Every solution of level n+1 contains a solution of level n as a part.

By the construction of the Ai, An is a conjunct of An+1, so a truth assignment to the

propositional variables Xi of An+1 must also assign truth to the Xi in An. Likewise, every

predicate18 of level n+1, defined on the domain {1, 2..., ns+ 1} must agree with a predicate

of level n when restricted to the domain {1, 2, ..., ns}.19□

Since the domain of every solution of level n is finite (bounded by ns), there are finitely-

many different systems of relations defined on the domain, hence finitely-many possible

assignments to predicate variables of An, and finitely-many different assignments of truth

values to the resulting propositional formulas. From the fact that every An has only finitely-

many solutions, but there are infinitely many levels n, it follows (by König’s lemma) that

for each n, at least one solution of level n must occur as a part in infinitely many solutions

of higher level.

Therefore, by appeal to Choice (Gödel’s “familiar arguments’) or, alternatively, to some

definable ordering on the solutions at each level since they are finite (cf. Skolem 1923), there

is an infinite sequence S = S1, S2, ...Sk, ... of solutions such that Sk ⊂ Sk+1.

Now we define a solution S = {ϕ1, ϕ2, ...ϕk, α1, ..., αl} consisting of k-many relations ϕ and

l-many truth values α, as follows:

1. For 1 ≤ i ≤ k, ϕi(z1, ..., zp) is true of the numbers z1, ..., zp if and only if ∃m ∈ N such

18Gödel means “predicate” by “function”.
19[In the example, at level 2 we consider all possible relations f2i , defined on the larger domain {1, 2, 3}, as

replacements for the occurrences of G in B2. Obviously, the set of ordered pairs defined on {1, 2} is a subset
of the ordered pairs defined on {1, 2, 3}, so each f2i is an extension of some f1i .]
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that for fm
i ∈ Sm, (z1, ..., zp) ∈ fm

i .

2. For 1 ≤ i ≤ l, αi = 1 if and only if ∃m ∈ N such that wm
i ∈ Sm and wm

i = 1. Otherwise,

αi = 0.

Recall that P (A) = ∀u1, u2, ..., ur∃v1, v2, ..., vsA(u1, ..., ur; v1, ..., vs), so to show that P (A)

is satisfied by S we show that for every r-tuple of integers k1, k2, ..., kr, there is an s-tuple

j1, j2, ..., js such that

A′(k1, ..., kr; j1, ..., js)

is a true proposition, where A′ is the result of substituting for the predicate variables in A

the ϕi, and for the propositional variables in A the truth values αi.

Lemma 2.3.7

For every ϕi, αi ∈ S,

ϕi{1, 2, ..., ns} = fn
i and αi = wn

i

where fn
i and wn

i belong to the nth solution Sn in the sequence defined above.

Let v ∈ ϕi{1, 2, ..., ns}. Then by definition ∃m such that v ∈ fm
i . If m < n, then v ∈ fm

i →

v ∈ fn
i since Sm ⊂ Sn by Corollary 2.3.4. If m > n, suppose v ∈ fm

i but v /∈ fn
i . Then

fn
i ̸⊂ fm

i so Sm ̸⊂ Sn, contrary to the corollary. So v ∈ fn
i .

Similarly for the αi.
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By construction, the r-tuple indexed by the numbers k1, k2, ..., kr occurs in place of the uni-

versal variables of P (A) at some nth place in the sequence of Ais. We have

An = An−1 ∧ A(xk1 , ..., xkr ;xt1 , ..., xts)

By Lemma 2.3.6, the restriction of S to the domain {1, 2, ..., ns} is a solution for An, so a

true proposition results when the F n
i and wn

i are replaced by the ϕi and αi respectively, and

the variables xi are replaced by their indices. Thus, t1, ..., ts is the desired s-tuple. □ (Thm.

2.3.5)

2.2.5 Summary

The proof can be summarized as follows. The law of excluded middle establishes a basic

alternative: either

1. there is some n such that Bn is unsatisfiable, or

2. every Bn is satisfiable.

If (1) holds, then by the completeness of propositional logic, Bn is refutable. If Bn is refutable

then P (A) is refutable by Theorem 2.3.4 (and especially, Lemma 2.3.2).

If (2) holds, then Theorem 2.3.5, together with Lemma 2.3.3, establishes that P (A) is satis-

fiable in the domain of natural numbers.

This suffices to prove the main theorem of part two (Theorem 2.3.1): every formula of the

restricted class is either refutable or satisfiable.
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Completeness follows by the results of part one. Here Gödel shows that it suffices to prove

completeness for the restricted class of formulas in Gödel normal form. By Theorem 2.2.0

and the main result of part two (Theorem 2.3.1), it follows that completeness holds for every

formula in Gödel normal form. It follows by Theorem 2.2.1 that completeness holds for every

formula.

2.3 Conclusion

This chapter aimed to provide a background to understand proofs of the completeness the-

orem for first-order logic. I briefly reviewed the standard proof due to Henkin and noted

salient features that differentiate it from Gödel’s original. I then gave a complete reconstruc-

tion of Gödel’s 1930 proof, filling a gap in the literature and hopefully rendering the proof

more accessible to the modern reader. The next chapter will undertake a similar project for

Löwenheim’s 1915 proof of the Löwenheim-Skolem theorem.
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Chapter 3

Löwenheim

3.1 Introduction

In 1915, Löwenheim proved the theorem that now bears his, and Skolem’s, name. Referring

to it as the theorem is, however, imprecise. Amongst the few commentators who have con-

fronted the notational complexities of Löwenheim’s system, there is no consensus on exactly

which theorem he aimed to prove in his (1915), nor on whether he succeeded in doing so.

This chapter reconstructs Löwenheim’s proof of the weak version up to the point where the

different interpretations diverge. I then look at different ways of finishing the proof. On two

of these interpretations, the claim that Skolem’s work contains the components of an informal

completeness theorem can be extended to Löwenheim. The final section considers Gödel’s

allegation that reluctance to use non-finitary reasoning is what prevented the recognition of

completeness before 1930. After making this allegation precise by defining Gödel’s sense of

non-finitary reasoning, I assess the challenge to his claim posed by Löwenheim and Skolem’s

use of such methods. I argue that Gödel’s own response to this challenge is unconvincing.
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3.2 Proving the theorem today

The Löwenheim-Skolem theorem (LST) as it is understood today is a more general version

of the one first proven by Löwenheim in 1915. In modern terms, Löwenheim proves that if

a first-order formula F is satisfiable in an infinite domain, then it is satisfiable in a domain

that is at most countable. The now-standard version of the theorem extends this to arbitrary

sets of formulas and arbitrary languages, splitting into “upward” and “downward” theorems

depending on the cardinality of the model whose existence is guaranteed. Only the downward

version is at stake in what follows:

Downward Löwenheim-Skolem Theorem

Let Γ be a set of first-order statements in a countable language. If Γ is satisfiable in an

infinite domain, then Γ is satisfiable in a countable domain.

Most modern proofs of the LST derive it as a consequence of Henkin completeness. Recall

Henkin’s proof of:

Strong Completeness (SC): every consistent set Γ of statements of a first-order lan-

guage L has a model of cardinality α, where α is the cardinality of the set of primitive

symbols of L.1

By Soundness, the consistency of Γ follows from its satisfiability per the hypothesis of the

LST. The remainder of the proof consists in showing that expanding the language L to

include Henkin constants for every existentially quantified formula adds at most countably

many new symbols. It follows that the Henkin term model guaranteed by (SC) is countable.2

1Gödel’s version follows from Henkin’s by taking the set of statements to be Γ ∪ {¬ϕ}.
2This proves the weak version of LST. Recall the distinction from Chapter 1 (and repeated below): The
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The proof using Henkin’s method has overshadowed Löwenheim’s original for the same rea-

son that Henkin’s proof overshadowed Gödel’s 1929 proof of completeness. The notational

complexity of Löwenheim’s system is foreign and off-putting to modern readers; the following

reconstruction modernizes notation wherever possible, while preserving the form and spirit

of Löwenheim’s original.

3.3 Löwenheim’s System

Syntax Löwenheim’s language includes the following logical symbols:

• “indices” i, j, h, k, l, m; act as variables and may be subscripted by other indices

• 1′, 0′; binary relation constants interpreted respectively as the identity and diversity

relations over the first-order domain (i.e. 0′ = 1′)

• Boolean operator symbols +, ·, ; interpreted respectively as (inclusive) disjunction,

conjunction, and negation operators. The operators obey the standard laws for the

Boolean algebra {0, 1}.

• quantifiers Σ and Π; correspond to ∃ and ∀

• =; corresponds to the biconditional ⇐⇒

• propositional constants 1, 0; interpreted as denoting truth values

In addition to logical symbols, lowercase letters a, b, z denote Löwenheim’s “relatives”, i.e.,

object-language predicates or relations. Uppercase letters A,B, F etc. are metalinguistic

weak version states that if a formula A is satisfiable, then it is satisfiable in a countable domain. The
strong “subdomain” version states that if A is satisfiable in an infinite domain D, then it is satisfiable in
a countable subdomain D′ of D, where the predicates retain the same meaning in D′ as in D, modulo the
restriction. In the modern proof using (SC), the Henkin model bears no relation to any model guaranteed
by the satisfiability of Γ. In contrast, contemporary proofs of the strong version of the theorem typically use
the Tarski-Vaught criterion to show the existence of an elementary substructure.
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variables ranging over formulas. A “relative coefficient” is the result of subscripting an n-

place relation symbol with an n-length sequence of either indices or terms denoting elements

of the domain. Relative coefficients thus correspond to atomic formulas (with or without

free variables).

A first-order formula (Zählausdruck) is constructed from relative coefficients, logical opera-

tors, and finitely-many quantifiers taken to range over individuals of the domain. A first-order

equation (Zählgleichung) is the result of equating a formula with one of the propositional

constants 0 or 1.

Note that the language defined above does not include individual constants. When a for-

mula or equation is interpreted in a domain, the language is implicitly expanded to include

canonical names for every element of the domain. These may occur in place of indices and

subscripts to form atomic sentences.

The presentation here will depart from Löwenheim’s subscript notation. Brackets are added

where necessary. Thus,

• Ai1,...in will be written as A(i1, ...in)

• Πi,Σi as Πi,Σi

• Multiple quantifers
∏

i,j,
∑

i,j as Πi, j,Σi, j

Semantics The basic semantic notions needed for the proof are as follows. A solution in

a domain D is a function that assigns truth values (0 or 1) to closed atomic formulas of the

expanded language. An assignment in a domain D is a function that assigns elements of D

to the variable terms.3 An interpretation in a domain D is an assignment of truth values

3These include both constant indices (free variables) and special terms called “fleeing indices” introduced
as part of the transformations to obtain a formula in a certain normal form. Fleeing indices are terms
subscripted by universally quantified variables. Upon substitution of elements for these subscripts, the
terms behave as ordinary free variables. More on this below.
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to each closed formula of the language. Each solution and assignment over D determines a

unique interpretation defined by recursion.

A formula is satisfied by an interpretation in a domain D if the interpretation assigns it the

truth value 1. An equation is satisfied by an interpretation in a domain D if the interpre-

tation assigns the same truth value to both sides. An equation is “identically satisfied” if

every interpretation (across domains) satisfies it. Löwenheim’s proof deals exclusively with

expressions brought into zero form, i.e. equated to zero. Thus, A = 0 is identically satisfied

if there is no interpretation that satisfies A, i.e. if and only if A = 1 in every domain. A

fleeing equation is one that is not identically satisfied in every domain but is identically

satisfied in every finite domain.

Quantifiers Löwenheim explains the semantics of the quantifiers Σ and Π in terms of

the connectives + and ·. Σ and Π represent iterated sums and products over all the ele-

ments of the domain. Quantified formulas Σi1, ..., irA(i1, ..., ir) or Πi1, ..., irA(i1, ..., ir) are

taken to represent, respectively, the infinite sum (disjunction) or infinite product (conjunc-

tion) of instances A(rk) for every r-tuple rk ∈ Dr. By the Boolean definitions of sum and

product, Πi1, ..., irA(i1, ..., ir) will be equal to 1 (i.e. true) just in case every atomic in-

stance A(rk) is equal to 1 (relative to a domain and assignment of elements to the variables).

Likewise, Σi1, ..., irA(i1, ..., ir) will be equal to 1 (i.e. true) just in case at least one A(rk)

is equal to 1. The instances A(rk) obtained for each replacement of the bound variables in

Πi1, ..., irA(i1, ..., ir) or Σi1, ..., irA(i1, ..., ir) are called, respectively, the factors or summands

of the quantified formula. (Note that these definitions extend laws valid for finite sums and

products to infinite ones; no justification is given.)
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3.4 The Proof

Löwenheim states his theorem as follows:

If the domain is at least denumerably infinite, it is no longer the case that a first-

order fleeing equation is satisfied for arbitrary values of the relative coefficients.

(1915, p. 235)

By the definition of fleeing equation,

If a first-order equation of the form F = 0 is identically satisfied in every finite

domain but not in every domain, then it is not identically satisfied when the

domain is countable.

A modern statement of the theorem is obtained by recalling that F = 0 is identically satisfied

if there is no interpretation that satisfies the formula F :

Theorem 3.3 (Löwenheim-Skolem) If a first-order formula F is satisfiable in some

infinite domain but not in any finite domain, then it is satisfiable in a countable domain.

Löwenheim’s proof is open to two different readings, corresponding to a strong and weak

version of the theorem.

The strong version appeals to a given infinite domain D and a given interpretation of F in D.

A countable model of F is obtained as a submodel of D, with the predicates of F retaining

the meaning assigned to them by the original interpretation.

The weak version of the theorem makes no appeal to a particular domain. A countable

model of F is constructed from below using only the hypothesis that F is satisfiable in
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some domain. The interpretation of F in the countable model need bear no relation to the

interpretation assumed in the hypothesis.

The reconstruction given here follows the standard reading according to which Löwenheim

intended to prove the weak version. The revisionary reading according to which he intended

to prove the strong version (Badesa, 2004) is discussed in the final subsection.

3.4.1 Outline

We prove the theorem in its modern version:

If a first-order formula F is satisfiable in some infinite domain but not in any

finite domain, then it is satisfiable in a countable domain.

The reconstruction of Löwenheim’s proof of Theorem 3.3 is based on the definition given

above of satisfiability for formulas. Löwenheim’s reference to equations is dropped in what

follows.

The first stage of Löwenheim’s proof, like Gödel’s, involves converting an arbitrary formula

F into an equivalent prenex normal form (different from Gödel normal form). A formula

in Löwenheim normal form has a string of existential quantifiers followed by a string of

universal quantifiers prefixed to a quantifier-free matrix A.

Löwenheim’s conversion process is distinctive in his introduction of “fleeing indices” —vari-

able terms indexed by universally bound variables. Similar but not identical to Skolem

functions, these terms arise when existential quantifiers are taken from within the scope of

a universal quantifier and moved to the front of the formula. A special quantifier Σ is intro-

duced to bind fleeing indices. After converting to the form ΣΣΠF , the Σ and Σ quantifiers

can be dropped without altering the conditions under which the formula is satisfiable.
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The second stage of the proof uses the assumption of satisfiability in an infinite domain to

construct an interpretation that makes ΠF true in a countable domain. The interpretation

will consist of (i) an assignment of values to the constant and fleeing indices of ΠF (i.e.,

the free variables created by dropping Σ and Σ quantifiers), and (ii) an assignment of truth

values to the resulting atomic propositional components (relative coefficients). To this end,

Löwenheim constructs, level by level, a tree consisting of the factors of ΠF conceived as an

infinite product. At each level, finitely many new integers are introduced to instantiate the

free variables. The nodes of the tree represent possible assignments to the variables on the

finite domain constructed up to that point.

Choosing an infinite path through the tree yields (modulo a gap in the proof) an interpre-

tation of ΠF in a domain that is at most countable. By the assumption of the theorem that

F is not satisfied in any finite domain, the constructed domain must be infinite.

3.4.2 First Stage: Converting to Normal Form

Conversion to Löwenheim Normal Form

The first step is the reduction of the proof to formulas in Löwenheim normal form, in which

a string of existential quantifiers is followed by a string of universal quantifiers prefixed to a

quantifier-free formula F. Löwenheim’s proof is complicated by the fact that he carries out the

two steps—moving existential quantifiers in front of universals and obtaining an equivalent

prenex form—in the opposite order to what is now standard. A modern proof would first

move all quantifiers to the front by appealing to the so-called normal form theorem, and then

change their order. Löwenheim begins by moving existential quantifiers in front of universals

quantifiers, creating second-order quantifiers (over Löwenheim’s fleeing indices) which must

then be dealt with as special cases in his version of the prenex normal form theorem (see
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below).4

Löwenheim’s procedure begins with an arbitrary formula F and outlines a finite recursive

procedure for finding a logically equivalent formula F ′ in which no quantifiers of either type

occur in the scope of a Π.

Löwenheim shows how to eliminate quantifiers from the “productand”, i.e., the scope of the

outermost Π, according to its form. Productands can take the following forms:

1. A ·B

2. ΠA

3. A+B + ...+ An

4. ΣA

Löwenheim gives equations by which productands of these forms may be transformed into

equivalent formulas with no quantifier in the scope of a Π. He does not address the validity

of the equations used in these steps. Most are generalizations of algebraic distributivity laws

taken directly from Schröder. Note that Löwenheim assumes that the productand contains

at least one quantifier and that the negation operator applies only to relative coefficients.

This explains the absence of a clause for negation.5

Form (4) introduces Löwenheim’s use of ”fleeing subscripts” and distinguishes Löwenheim

normal form from Skolem’s. The equation Löwenheim uses to transform a productand of

this form is:

4In actual practice Löwenheim ignores this necessity because he treats Σ quantifiers as behaving the same
as ordinary Σ quantifiers. He assumes without justification that the former quantifiers can be moved to the
front of the formula by the same equations used for Σ quantifiers.

5This could easily be added. Schröder proves the standard equivalences for negated quantifiers. Negation
symbols appearing at the beginning of a formula can then be eliminated by reverting to the equation form
of the theorem and recalling that A = 0 if and only if A = 1.
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Equation 3.4 ΠiΣkA(i, k) = ΣkiΠiA(i, ki)

This equation introduces a new quantifier Σ that ranges over what Löwenheim calls ”flee-

ing indices”, variables of the form ki whose subindices are universally quantified variables.

Löwenheim writes that the indexed term ki is to run through “all subscripts, that is, through

all elements of [the domain]” (p. 236). Several commentators have therefore taken Σ to rep-

resent a string of as many (first-order) existential quantifiers as there are elements of the

domain. This reading is supported by the fact that Schröder expressly defines a quan-

tifier with this meaning. However, this violates Löwenheim’s syntactical constraints on

Zählausdruck in which quantifiers may occur only finitely-many times. More importantly, it

renders questionable the justification of equation 3.46

Alternatively, Σ is understood as a second-order quantifier.7 Its meaning can be stated

(anachronistically) in terms of indexed families:

ΣkiΠiA(i, ki) is true just in case there exists an indexed family {ka|a ∈ D} such

that for all a ∈ D, A(a, ka) is true in D (relative to an interpretation).

The second reading has the virtue of confirming the validity of the above equation for chang-

ing the order of quantifiers, and does so without appeal to formulas of infinite length.8

By recursion on the number of logical symbols occurring in the productand, equations (1)-(4)

can be used to transform a formula of the form Πi1, ..., inF into an equivalent form in which

no quantifier occurs in the scope of a Π. Vacuous universal quantifiers may be added to an

6Which would, on this understanding, assert an equivalence between formulas of infinite length.
7This violates Löwenheim’s constraints on Zählausdruck, but Löwenheim notably fails to even mention

the Σ quantifier in his specification of syntax.
8In modern notation, the equivalence is:

∀x∃yA(x, y) = ∃f∀xA(x, f(x))
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arbitrary formula if it is not already of the form Πi1, ..., inF .

The result of the procedure, according to Löwenheim, is a sum of formulas in Löwenheim

normal form, i.e., C + ΣD1 + ...ΣDn + ΠE1 + ...ΠEm + ...ΣΠF1 + ...ΣΠFr = 0, where

the Σs may also be of type Σ. While it goes beyond the scope of the present discussion,

additional transformations and variable changes are required for a rigorous recursive proof

and Löwenheim does not have the technical apparatus for this.9

The second step in the conversion to Löwenheim normal form takes this sum (disjunction)

of formulas in Löwenheim normal form and moves all the quantifiers to the front, using the

equivalences:

1. A = ΣiA(i)i

2. ΣiA(i) + ΣiB(i) = ΣiA(i) +B(i)

3. ΠiA(i) + ΠiB(i) = Πi, j[A(i) +B(j)]

Also required (but not mentioned) is the equivalence

4. A = ΠiA(i).

Löwenheim also neglects to mention the notational changes required by these transforma-

tions, i.e. the renaming and ordering of indices (variables) to ensure that no variable is

quantified more than once, and that no variable occurs both free and bound.

Using equivalence (1), a Σ can be added to any summand not already prefixed by one (with

the same indices). Using (2), these Σ or Σ are combined to form an initial string of quantifiers

9Cf. (Badesa, 2004, p.125-127) for discussion and a sketch of the proof that is missing from Löwenheim.
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prefixed to a sum of products. Using (3), the Πs are moved to the front (but still under the

Σs) to obtain an equation of the form

ΣΠ(F0 + F1 + ...Fn) = 0 or ΣΠF = 0

The reconstruction offered here follows the modern statement of the theorem involving for-

mulas rather than equations.

3.4.3 Second Stage

Constructing a tree

In what follows, lowercase German letters r, n, u, o are used as abbreviations for n-tuples of

individual variables (the arity is specified in context).

Let ∃x1,∃x2, ...,∃xn∃krΠrA(r;x1, x2, ..., xn, kr) be a formula in Löwenheim normal form ob-

tained from an arbitrary formula by the results of the first stage.10 Let

ΠF = ΠrA(r;x1, x2, ..., xn, kr)

be the result of dropping the Σ and Σ quantifiers. Thus, ΠF contains the variables r =

u1, u2, ..., ur bound by Π, the free variables x1, x2, ..., xn (Löwenheim’s “constant indices”),

and the “fleeing index” kr.

The proof begins with a recursive definition of an infinite sequence A1, A2, ..., An, .... of for-

mulas. Each Ai consists of the factors of ΠF when its universal quantifiers range over a

10For ease of exposition, we carry out the proof for a single Σ quantifier over the fleeing index kr. In general,
a fleeing index may be subscripted by any variable (or combination thereof) bound by a Π quantifier.
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finite domain, increasing with n. The general description of the construction is followed by

an example.

Base case A1 is constructed as follows:

1. Replace the constant indices (free existential variables) x1, x2, ..., xn of ΠF by the first

n integers. This assignment stays fixed across all subsequent factors of ΠF . The nu-

merals introduced denote specific (though not necessarily distinct) elements of some

domain in which ΠF is satisfied. Call this the starting domain.11

2. Take the universal variables r = u1, u2, ..., ur to range over the numerals introduced in

step one. Thus, consider every r-tuple that can be formed from the numerals 1 through

n. In the case where ΠF does not contain free variables, take 1 to denote an arbitrary

element of the domain and replace every ui by 1. For each r-tuple ri1, form the factor

of ΠF that results from substituting the integers of ri1 for the variables of r, including

its occurrence as subindex of kr.

3. From the substitution of the previous step, the terms kri1 now behave as ordinary free

variables standing for (possibly distinct) elements of the domain. Introduce unused

integers n+ 1, n+ 2, ..., n1 to denote the elements represented by each kri1 .

The resulting formula A1 is the product of as many factors of ΠF as there are distinct r-tuples

defined on the starting domain. Each factor is propositional in nature, being quantifier-free

and containing numerals in place of the variables, free and bound, of ΠF .

11Löwenheim is not constructing a term model using the numerals introduced as constants. He is explicit
about the fact that the integers denote elements of some (non-syntactic) domain. His consideration of the
possible equalities and inequalities amongst the constants of a given level would make no sense if the domain
consisted of the syntactic terms themselves (since every integer is distinct).
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Inductive clause Assume An has been constructed. An+1 is formed by letting the uni-

versal variables r = u1, u2, ..., ur range over the integer constants of An. For each r-tuple

rin+1 that can be formed from these integers, write a factor of ΠF in which r is replaced by

the integers of rin+1. The constant indices (free variables) are assigned the same numerals

as in A1. Introduce unused numerals for the fleeing terms krin+1
after replacement of their

subindices by the appropriate integers.

Example 3.4.3 Let ΠF = ΠiA(i, ki, j, h). To form A1, the free variables j and h are

replaced by 1 and 2. (Note that these variables will take the same values in every factor of

ΠF . Next, the universal variable i is taken to range over the domain {1, 2}. This yields two

factors of ΠF , one for i = 1 and one for i = 2. The subscript of ki takes the same value is

i in each factor. Finally, introduce distinct integers 3 and 4 for the elements denoted by k1

and k2 in the first and second factors. Thus,

A1 = A(1, 3, 1, 2) · A(2, 4, 1, 2)

The second formula A2 is formed by taking the universal variable i to range over the new

domain of constants introduced to form A1, i.e., {1, 2, 3, 4}. Since this includes the domain

{1, 2}, A2 will include A1 as one of its factors. New integers are introduced for the new terms

k3 and k4. Thus,

A2 = A(1, 3, 1, 2) · A(2, 4, 1, 2) · A(3, 5, 1, 2) · A(4, 6, 1, 2)

The formula A3 will be the factors of ΠF that can be formed when i ranges over the integers

1 through 6. And so on.
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Dealing with identity In Gödel’s proof, the next step would be to consider the pos-

sible assignments of truth values to atomic components that satisfy each An, where such

assignments are subject only to the restrictions of propositional logic. Gödel assumes no

prior interpretation of the predicate letters (Löwenheim’s “relatives”). Their meaning is

determined by the satisfying assignments of truth-values to atomic components.

However, Löwenheim’s proof is for the language of first-order predicate logic with identity.

Thus, not all the predicate symbols may be considered uninterpreted. In particular, the

symbols 1′, 0′ are binary relation constants interpreted respectively as the identity and di-

versity relations. Assume that the formula ΠF includes at least one of these coefficients. To

assign truth values to these atomic components in each An, one must determine the equal-

ities and inequalities actually holding amongst the elements of the domain independent of

the numerals used to denote them.

To this end, eachAn must be further differentiated into finitely many specializationsA′
n, A

′′
n, A

′′′
n , ...

obtained by considering all possible systems of equalities on the integer constants occurring

in An. Every system of equalities amongst the integers introduced up to and including

level n determines a particular A
(v)
n formed by replacing the integers of An by the lowest

representative of the corresponding equivalence classes.

Example 3.4.3 Consider again the formula ΠF = ΠiA(i, ki, j, h) for whichA1 = A(1, 3, 1, 2)·

A(2, 4, 1, 2).

For the constants 1, 2, 3, 4 occurring in A1, there are now 14 possible systems of equalities,

which are represented by the following equivalence classes:

• {1, 2, 3, 4}

• {1}{2, 3, 4}
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• {2}{1, 3, 4}

• {3}{1, 2, 4}

• {4}{1, 2, 3}

• {1, 2}{3, 4}

• {1, 3}{2, 4}

• {1, 4}{2, 3}

• {1}{2}{3, 4}

• {2}{3}{1, 4}

• {3}{4}{1, 2}

• {1}{4}{2, 3}

• {2}{4}{1, 3}

• {1}{2}{3}{4}

If we replace the constants in A1 by the lowest representative of the corresponding equivalence

classes, we get the following formulas (roman numerals in place of primes):

• Ai
1 = A(1, 1, 1, 1) · A(1, 1, 1, 1)

• Aii
1 = A(1, 2, 1, 2) · A(2, 2, 1, 2)

• Aiii
1 = A(1, 1, 1, 2) · A(2, 1, 1, 2)

• Aiv
1 = A(1, 3, 1, 1) · A(1, 1, 1, 1)

• Av
1 = A(1, 1, 1, 1) · A(1, 4, 1, 1)
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• Avi
1 = A(1, 3, 1, 1) · A(1, 3, 1, 1)

• Avii
1 = A(1, 1, 1, 2) · A(2, 2, 1, 2)

• Aviii
1 = A(1, 2, 1, 2) · A(2, 1, 1, 2)

• Aix
1 = A(1, 3, 1, 2) · A(2, 3, 1, 2)

• Ax
1 = A(1, 3, 1, 2) · A(2, 1, 1, 2)

• Axi
1 = A(1, 3, 1, 1) · A(1, 4, 1, 1)

• Axii
1 = A(1, 2, 1, 2) · A(2, 4, 1, 2)

• Axiii
1 = A(1, 1, 1, 2) · A(2, 4, 1, 2)

• Axiv
1 = A(1, 3, 1, 2) · A(2, 4, 1, 2)

An is satisfiable if there exists a solution for at least one A
(v)
n , i.e., an assignment of truth val-

ues to atomic components, consistent with the meaning of the identity or diversity relations

1′ and 0′, and such that A
(v)
n comes out true on this assignment by the rules of propositional

logic.

3.4.4 Proving the theorem

In the construction just outlined, the formulas An, when further differentiated into the vari-

ations A
(v)
n based on equivalence relations over the domain, form a finitely-branching infinite

tree ordered by the relation of extension between formulas. From this tree construction, the

natural step towards proving the LST would be to use the hypothesis of satisfiability to show

that each level must contain at least one satisfiable formula.

However, Löwenheim’s exposition is unexpected. In describing the construction of the tree,

he proceeds as if it is not known that ΠF is satisfiable, and at each level it is possible that
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ΠF is unsatisfiable or “vanishes” (the term “vanish” (verschwinden) comes from the Boolean

algebraic tradition within which Löwenheim was working. A mathematical function is said

to vanish when it takes the value 0 for some argument. Similiarly in this context, a formula

vanishes if it is equal to zero on every assignment of truth values to the atomic components,

or in other words, is unsatisfiable).

Thus, the structure of the proof is as follows. Construct A1 and its finitely many variants

A
(v)
1 . Consider all possible solutions to each A

(v)
1 . If none result in a true formula, then A1

vanishes. Without offering a proof, Löwenheim adds “ΠF will certainly vanish identically in

every domain if [A1] does.”

Suppose A1 does not vanish, meaning that one of the A
(v)
1 has a solution on which it is equal

to 1. Only then do we proceed to the next level, constructing A2 and its variants. We again

check whether A2 vanishes before proceeding to construct A3 and so on.

Whereas Gödel appeals to the completeness of propositional logic (which had not been proved

in 1915), Löwenheim takes for granted that for each n, An is either satisfiable or, if An is

not satisfiable, that this can be shown in a finite number of steps by running through all the

finitely many possible truth assignments to the finitely many A
(v)
n .

Like Gödel, Löwenheim implicitly applies the law of excluded middle to infinite collections

when he presents the alternative: either An vanishes for some n, or every An is satisfiable.

In the first case, the procedure Löwenheim has just described provides a method for showing

that An vanishes and therefore (according to Löwenheim) that ΠF vanishes as well. In the

case where An is satisfiable for every n, Lemma 3.5.7 below purports to establish that ΠF

is satisfiable.

Definition: A formula A is an extension of another formula B if A is of the form B · C.
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Lemma 3.5.1 Every level n+1 formula A
(v)
n+1 is an extension of one and only one level n

formula A
(v)
n .

Lemma 3.5.2 Every solution to a level n+1 formula includes as a part a solution to a

level n formula.

Lemmas 3.5.1 and 3.5.2 follow by construction of the An. □

Lemma 3.5.3 If none of the level n formulas A
(v)
n are satisfiable, then An is unsatisfiable.

Lemma 3.5.4 If none of the level n formulas A
(v)
n are satisfiable, then no A

(v)
i i > n is

satisfiable.

From Lemmas 3.5.1 and 3.5.2.

Löwenheim then states without proof:

Lemma 3.5.5 If A1 is unsatisfiable, then ΠF is unsatisfiable.

Löwenheim apparently takes this to follow immediately from the construction of A1 and

the definition of satisfaction for universally quantified formulas. When the quantifier Π is

understood as an infinite product over all instances of A as r ranges over a domain, it is

clear that ΠF must include one of the A
(v)
1 s as a factor. Any interpretation that satisfies

ΠF would also satisfy this A
(v)
1 . Thus, showing that all of the A

(v)
1 are unsatisfiable suffices

to show that ΠF = 0 on any interpretation.12

12One of the exegetical issues addressed in (Badesa, 2004) is whether Löwenheim in fact regarded quantified
formulas as infinitary sums and products (the standard reading) or whether he used infinite expansions as a
heuristic tool to gesture at a meaning that he lacked the technical framework to state more precisely.
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Lemma 3.5.6 If An is unsatisfiable for some n, then ΠF is unsatisfiable.

This generalization of lemma 3.5.5 is also stated (p. 240) without proof.

Lemma 3.5.7 If every An is satisfiable, then ΠF is satisfiable in a denumerable domain.

(Proof discussed below).

3.4.5 Basic structure of the proof

By the results of the first stage, assume that an arbitrary formula Q has been replaced by

a counterpart that preserves satisfiability and has the form ΠF . Assume the antecedent of

Theorem 3.3 holds, i.e. that ΠF is satisfiable but not in any finite domain. Construct the

sequence of Ans. Then by the contrapositive of Lemma 3.5.6, An is satisfiable for every n.

By Lemma 3.5.7, ΠF is satisfiable in a countable domain.

3.5 Divergent Interpretations

Lemma 3.5.6 marks the last point of commonality amongst the different interpretations of

Löwenheim’s theorem. The contention centers around lemma 3.5.7: If every An is satisfiable,

then ΠF is satisfiable in a denumerable domain.

Löwenheim never explicitly states this lemma, and the passage from which it is arguably

derived is open to several interpretations. Each yields a different answer to the main points

of controversy: which version of the theorem (weak or subdomain) did Löwenheim intend to

prove, and does his proof have gaps?
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On the first two interpretations described below, Löwenheim aims to prove the weak version

but, at least by modern standards, the proof he actually gives has gaps. I look at ways of

filling these gaps by appeal to later results. In the final subsection, I argue that on either

of these interpretations, Löwenheim’s proof contains all the components of a completeness

theorem and is thus equally subject to the question Gödel raises about Skolem: why did

Löwenheim fail to recognize this result implicit in his work? I also look at Badesa’s revi-

sionary account according to which Löwenheim aimed to prove the subdomain version of the

theorem. On this interpretation, Löwenheim’s proof does not contain major gaps. However,

this version of the theorem does not entail completeness for reasons explained below.

3.5.1 The passage in Löwenheim

Having described the construction of the An and A
(v)
n s, Löwenheim concludes his proof with

the following:

If for some n (hence also for all succeeding ones) all A
(v)
n vanish, the equation

is identically satisfied. If they do not all vanish, then the equation is no longer

satisfied in the denumerable domain of the first degree just constructed. For then

among A′
1, A

′′
1, A

′′′
1 ... there is at least one Q1 that occurs in infinitely many of the

nonvanishing A
(v)
n as a factor (since, after all, each of the infinitely many non-

vanishing A
(v)
n contains one of the finitely many A

(v)
1 as a factor). Furthermore,

among A′
2, A

′′
2, A

′′′
2 ... there is at least one Q2 that contains Q1 as a factor and

occurs in infinitely many of the nonvanishing A
(v)
n as a factor (since each of the

infinitely many nonvanishing A
(v)
n that contain Q1 as a factor contains one of the

finitely many A
(v)
2 as a factor). Likewise, among A′

3, A
′′
3, A

′′′
3 ...there is at least one

Q3 that contains Q2 as a factor and occurs in infinitely many of the nonvanishing

A
(v)
n as a factor. And so forth.
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Every Qv is = 1; therefore we also have

1 = Q1Q2Q3, ... ad infinitum

But now, for those values of the summation subscripts whose substitution

yielded Q1, Q2, Q3, ..., ΠF is = Q1Q2Q3, ..., hence = 1. Therefore ΠF does not

vanish identically. (1915/1967, p. 240)

3.5.2 A tree of satisfiable formulas

On the interpretation described in this section, the goal of the passage is to construct a

product (conjunction) of formulas that, in the limit, takes the same truth value as ΠF under

the same assignment to the variables. To this end, Löwenheim constructs an infinite tree

whose nodes are the propositional formulas A
(v)
n induced by different systems of equalities

on the domain of An. Each such formula determines a different partial assignment of values

to the summation indices of A, i.e., to the free variables and fleeing indices that result from

dropping the Σ and Σ quantifiers.

Löwenheim then argues for what we now recognize as an instance of König’s infinity lemma,

establishing the existence of an infinite branch through any finitely-branching infinite tree.13

His argument runs as follows:

By the hypothesis of the theorem, every level n has at least one satisfiable A
(v)
n . It follows

that

1. At least one of the first level formulas A
(v)
1 is satisfiable.

2. There are infinitely many satisfiable A
(v)
n .

13This lemma is attributed to Hungarian mathematician Dénes König (König, 1926).
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By construction, there are finitely many A
(v)
n at each level. In particular, at the first level

there are finitely many A
(v)
1 . A fortiori, there are finitely many satisfiable A

(v)
1 .

By Lemmas 3.5.1 and 3.5.2, every satisfiable A
(v)
n has as a factor one of the satisfiable A

(v)
1

guaranteed by (1). By (2), and since there are only finitely many satisfiable level 1 formulas,

at least one of the satisfiable A
(v)
1 must be a factor in infinitely many satisfiable formulas of

higher level. Let Q1 be one of the satisfiable A
(v)
1 with infinitely many satisfiable extensions.

Now consider all and only those infinitely many satisfiable formulas of level n > 1 that have

Q1 as a factor.14

For n > 2, Lemma 3.5.1 and the hypothesis of satisfiability together guarantee that every

such An must have have one of the level 2 formulas A
(v)
2 as a factor in addition to Q1.

Since there are again only finitely many A
(v)
2 , and infinitely many A

(v)
n with Q1 as a factor,

it follows that one of the A
(v)
2 has Q1 as a factor and is a factor of infinitely many A

(v)
n .15

Let Q2 be such a formula.

The argument can now be repeated to show that at the third level, there must be formulas

that have Q2, and ipso facto Q1, as factors, and have infinitely many satisfiable extensions.

Let Q3 be such a formula.

Continuing in this way yields the product

Q1 ·Q2 ·Q3·... ad infinitum.

The product Q1 · Q2 · Q3 · ... represents an infinite branch through the tree, where each Qi

for i > 1 includes the preceding Qi−1 as a factor.

14Since the construction rules out the possibility of factors being repeated at higher levels, any formula
containing Qi must contain it as the ith factor.

15Of course, each A
(v)
2 occurring in as a factor of satisfiable formulas must itself be satisfiable (Lemma

3.5.2).
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The next step is to show that the satisfiability of the product, and hence of ΠF , follows from

the satisfiability of each of the factors Qi. On the current reading, by saying that every Qv

is equal to 1, Löwenheim means that each is satisfiable.

However, the fact that every Qi is satisfiable does not suffice to find a common solution for

the infinite product Q1 · Q2 · Q3 · .... Nothing guarantees the satisfiability of all the factors

Qi by the same solution. As a result, the step from “every Qv is = 1” to “Q1Q2Q3, ... = 1”

is incomplete on the present interpretation.

Filling the gap

The tree of satisfiable formulas interpretation has the virtue of closely following the original

text, but entails that the proof is incomplete since the proof of Lemma 3.5.6 does not

go through. However, the gap can easily be filled by appeal to the following result of

Quine’s, or equivalently, to the compactness theorem. Both are anachronistic with respect

to Löwenheim.16

Lemma 3.5.8 Law of infinite conjunction (Quine, 1959): if C is a (countably) infinite

class of truth functional schemata, then either some finite conjunction of members of C is

truth functionally inconsistent, or there is an assignment to the sentence letters (atomic

components) that makes all members of C true.

Proof First replace the atomic propositional components of each S ∈ C with proposi-

tional variables (distinct variables for distinct relative coefficients) and fix an enumeration

P1, P2, P3... of these variables.

Following Quine, say that an assignment of truth values to P1, P2, ..., Pi condemns a given

16Compactness was first proven as a consequence of (Gödel, 1929).
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conjunction of members of C if it makes that conjunction come out false for every possible

truth assignment to the Pk for k > i.

Define a sequence of truth values t1, t2, ..., with ti ∈ {0, 1}, according to the rule:

[(i)]Let ti = 1 if the assignment t1, t2, ..., ti−1, 1 to P1, P2, ..., Pi does not condemn any

conjunction of members of C. Otherwise, let Ti = 0.

The proof is by contraposition, showing that if the assignment of t1, t2, ... to P1, P2, ... does not

make every member of C true, then some finite conjunction of members of C is inconsistent.

Suppose the assignment of t1, t2, ... to P1, P2, ... falsifies some member S of C. Choose j large

enough so that for all i > j, Pi does not occur in S. Thus, S must already be falsified by

the assignment t1, t2, ..., tj to P1, P2, ..., Pj, regardless of the values assigned to Pj+1, Pj+2, ....

Then there is h ≤ j least such that

[(ii)]the assignment of t1, ..., th to P1, ..., Ph condemns some conjunction K of members

of C (minimally, it condemns S).

By (i),

[(iii)]th = 0.

By (ii) and (iii),

[(iv)]the assignment of t1, ..., th−1, 0 to P1, ..., Ph condemns K.

By (i) and (iii),

[(v)]the assignment of t1, ..., th−1, 1 to P1, ..., Ph condemns some conjunctionK ′ of mem-

bers of C.
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Suppose h > 1. Then by (iv) and (v), the assignment of t1, ..., th−1 to P1, ..., Ph−1 condemns

the conjunction K and K ′ of members of C, contradicting the least-ness of h.

Therefore,

[(vi)]h = 1.

So, by (iv), the assignment of 0 to P1(= Ph) condemns K. By (v), the assignment of 1 to

P1 condemns K ′. The conjunction of K and K ′ is therefore inconsistent. □ (Lemma 3.5.6.)

To apply Quine’s law, we need to ensure that no finite conjunction of Qi is truth functionally

inconsistent. Given an arbitrary finite conjunction of Qi, let Qn be the formula (conjunct)

with the largest index. If m < n, Qn = Qm · A for some A, and since Qn is satisfiable by

definition, every such conjunct Qm is also satisfiable. Hence, no finite conjunction of Qis can

be truth-functionally inconsistent.

3.5.3 A tree of solutions

An alternative interpretation takes Löwenheim’s aim to be the construction of a tree whose

nodes are partial solutions rather than formulas.17 The following sketch of an argument

adapts Löwenheim’s passage above to reflect this interpretation.

Löwenheim has already established that at least one of the level 1 formulas A
(v)
1 must occur

as a factor in infinitely many satisfiable formulas of higher level. Choosing one such formula,

he denotes it by Q1. Q1 has at least one solution but it may have more than one solution.18

Still,

17Wang (1970) and Brady (2000) endorse this reading. Wang does not elaborate. Brady sets out to give
the argument but equivocates between formulas and solutions in a way that renders the result inconclusive.

18We may assume that the assignment of elements to the free variables in the manner described above
has already been carried out, so that Q1 is propositional. Technically, the atomic propositions of Q1 are
replaced by propositional variables which serve as arguments to the function assigning truth values (i.e. the
solution).
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1.1.1.1.1.1.1. Q1 has at most finitely many solutions since it has at most finitely many atomic

propositions.

2. Q1 occurs as a factor in infinitely many satisfiable A
(v)
n s.

3. For any Av
n that contains Q1 as a factor, if Sv

n is a solution to Av
n, then the restriction

of Sv
n to the atomic propositions of A1 is a solution to Q1.

From (2) and (3), infinitely many solutions to A
(v)
n s contain as a part solutions to Q1. From

this and (1), it follows that at least one solution to Q1 occurs as a part of infinitely many

solutions to formulas of higher level. Let S1 denote one such solution.

Now, by definition, S1 occurs as a part of infinitely many solutions to formulas of higher

level, all of which contain Q1 as a factor. These infinitely many solutions extending S1 must

contain as a part a solution to one of the level 2 formulas A
(v)
2 . There are finitely many A

(v)
2 s

and each has only finitely many solutions. Therefore, let S2 denote a solution that extends

S1 and occurs in infinitely many solutions of higher level.

Continuing in this way, construct the sequence of partial solutions S1, S2, S3... where Si ⊂

Si+1. The axiom of dependent choice (unmentioned by Löwenheim) guarantees that the

construction may be continued without end, determining an infinite branch through the tree

of solutions.

The construction determines a parallel sequence of formulas R1, R2, R3, ..., with each Ri one

of the A
(v)
i , and such that Si is a solution to Ri. Clearly, Ri ⊂ Ri+1 for every i.19

Here too, König’s infinity lemma or equivalent is needed to establish the existence of an

infinite path through the tree of solutions. The union of the Si gives a solution to ΠF

interpreted in the countable domain consisting of the elements named by the integer constants

19The solution is a function from atomic propositions to truth values; the formula can be determined from
its inverse.
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of the Ri.

3.5.4 The subdomain version

The final interpretation to consider is a revisionary one due to Badesa. Badesa holds that

Löwenheim intended to prove the stronger “subdomain” version of the LST:

Theorem 3.7.0 If a first-order formula ΠF in Löwenheim normal form is satisfiable in

some infinite domain D but not in any finite domain, then it is satisfiable in a countable

subdomain D0 of D.

Skolem gives the standard proof of this theorem in his (1920). His proof differs from

Löwenheim’s and is expressly designed to avoid what Skolem views as the former’s “de-

tour through the transfinite” (more on this below).

Badesa’s reconstruction Badesa gives a proof of Theorem 3.7.0 intended to faithfully

reconstruct Löwenheim’s original.

Let S be the solution to ΠF in a domain D given by the hypothesis of the theorem. S

assigns truth values to the atomic propositions20 that result from some assignment of values

to the individual variables of ΠF . To make sense of Löwenheim’s tree construction, the

proof does not appeal to any particular assignment to these variables. Rather, the point

of constructing the tree and fixing an infinite branch is precisely to assign elements to the

individual variables in such a way that the formula is satisfied under the solution S of the

hypothesis.

20Technically, to propositional variables that replace atomic propositions.
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Let Cn be the set of numerals occurring in An. Define

Vn = {f : Cn → D | S satisfies An under the assignment f}

Vn is the set of assignments of elements of D to the numerals of each An. The domain of each

f is finite, but the number of such functions at each level may by infinite, even uncountable, if

D is. The tree Löwenheim constructs can now be conceived as the set
⋃

n∈ω Vn ordered by the

relation of strict inclusion. The goal of the proof —constructing an infinite path through the

tree —is now the goal of showing the existence of a sequence f1, f2, ... of partial
21 assignments

from Vn, each of which is an extension of the previous one. In the limit, the union of the fi

fixes the values of the numerals in every An, and hence, in ΠF . By the definition of Vn, the

assignments making up this sequence are restricted by the condition that ΠF be satisfied by

the solution S fixed by the hypothesis of the theorem.

At this point, the reconstruction faces the following problem. Because the number of partial

assignments at each level may be infinite, the König-style argument Löwenheim gives for the

existence of the infinite branch Q1, Q2, ... no longer suffices, since the choice of Qn makes

essential appeal to the finitude of the A
(v)
n s for each n. That argument can be modified.

By appeal to Choice, select an assignment f1 of the first level that has extensions at every

higher level. Now restrict attention to all those (perhaps infinitely many) assignments of the

second level that both extend f1 and have extensions of every higher level. Let f2 be one

such assignment, and so forth.

For this argument to go through we need the following lemma:

Lemma 3.7.1 For every n, the partial assignment fn of level n has an ex-

tension fn+1 of level n+1.

21Relative to ΠF
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This Lemma does not hold in the case where ΠF has fleeing indices that depend on only

some of the universally quantified variables (Badesa, p. 196).22 To circumvent this, define

the set Vn to include the condition that the partial assignments have extensions at the next

level. Lemma 3.7.1 then follows by definition.

Putting everything together, the new definition of Vn ensures that the conditions are met for

the argument two paragraphs above to go through. The argument establishes the existence

of the infinite sequence f1, f2, ... of assignments. The union of the fi is a function f that

assigns values to the indices of ΠF and whose range is a countable subdomain D0 of the

original domain D.23 Finally, where S is the solution which satisfies ΠF in the hypothesis

of the theorem, the restriction S0 of S to the countable subdomain D0 is a solution that

satisfies ΠF under the assignment f.

This interpretation, unlike the others, does not support the allegation that completeness was

implicit as a corollary of Löwenheim’s proof. In particular, the subdomain version does not

require Löwenheim to prove Lemma 3.5.7: If every An is satisfiable, then ΠF is satisfiable

in a denumerable domain.

Instead, Löwenheim proves that when every An is true (which of course implies satisfia-

bility), then A is true (under the same interpretation). The contrapositive of this result

does not underwrite the implicit refutation procedure discussed above. As a result, on this

version of the theorem the implicit procedure lacks the guarantee that when the formula is

unsatisfiable (rather than untrue), then we can find an n such that An is demonstrably

unsatisfiable.

22For example, suppose ΠF = Πi, jA(i, j, ki). The satisfiability of An ensures that there is some assignment
(of an element of the domain D over which the formula is satisfied by hypothesis) to ka such that for every
a, b of the domain constructed up to level n, A(a, b, ka) is true. But when new elements are added to the
domain in the construction of Ai for i > n, nothing guarantees that the A(a, j, ka) will remain true for any
assignment to the variable j. See Badesa for an example.

23Badesa introduces a further revision to Löwenheim by considering the assignments that assign values to
only the fleeing indices rather than to all indices.
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3.5.5 Completeness in Löwenheim

We are now in a position to answer the question: Is a completeness proof implicit in

(Löwenheim, 1915)? The answer to this question depends on (a) which interpretation we

adopt, and (b) whether we discern in Löwenheim an implicit “refutation” procedure for

demonstrating that a formula is unsatisfiable.

The first is a straightforward technical consideration. The only interpretation that expressly

rules out a completeness result is the one on which Löwenheim aimed to prove the subdomain

version. In contrast, the interpretations on which Löwenheim aimed to prove the weak version

leave open the possibility of establishing completeness as a corollary, modulo the alleged gaps

in the proof.

Consideration (b) is more controversial. Completeness as we know it today is a property

of formal systems or calculi and we have seen that Löwenheim’s algebraic framework lacks

many of the features we require of such systems. Some would argue that this suffices to show

that completeness was not implicit in Löwenheim since he does not give us a formal calculus

for which the question can even be raised.

However, the same point can be made about Skolem, whose anti-formalism is widely rec-

ognized. This represents a challenge to Gödel, threatening to deflate his puzzle. Gödel

addresses the challenge explicitly:

It may be true that Skolem had little interest in the formalization of logic, but

this does not in the least explain why he did not give a correct proof of that

completeness theorem which he explicitly stated (op. cit., p. 134) [...] On the

basis of his lemma of 1922 this would have been quite easy [...] (Letter to Wang,

In [Wang, 1970] p. 10)

What [Skolem] could justly claim, but apparently does not claim, is that, in his
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1922 paper, he implicitly proved: ”Either A is provable or ¬A is satisfiable”

(”provable” taken in an informal sense). (Coll. Wrks. Vol 1, p. 52)

Faced with the objection that his “puzzle” has an obvious answer - what we have called

the formal systems explanation - Gödel redefines the question by broadening the notion of

proof to include informal methods that, when spelled out, constitute effective procedures

for demonstrating the satisfiability/unsatisfiability of formulas.

Skolem’s method is reconstructed in the next chapter. In the current section I look at the

methods that can be justifiably attributed to Löwenheim considering how much remains

implicit in the actual text.

Löwenheim’s refutation procedure

Common to all three interpretations of Löwenheim’s theorem is his method of expanding

a quantified formula into quantifier-free propositional instances. This method was later

appropriated by Skolem and, as a result, it bears important similarities to Gödel’s method

for proving completeness.

As will be seen with Skolem in 1928, Löwenheim considers the possibility that at some level

in the construction of An, no satisfiable formulas exist. This consideration is crucial if we

wish to attribute to him an awareness of a refutation procedure based on the construction.24

Löwenheim never describes a “refutation” procedure as such, nor does he provide what we

would consider to be the requisite detail. Nonetheless, an informal procedure can be inferred

from the construction of the An and the idea of checking whether a formula vanishes. It

is reasonable to suppose that Löwenheim found an explicit presentation to be unnecessary,

given the familiarity of the methods involved. This is suggested by Badesa:

24The consideration is unnecessary from a standpoint of simply proving the LST - witness Skolem’s 1922
proof - suggesting that Löwenheim did take an interest in the refutation procedure as such.
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In order to check whether any An vanishes (identically) or not, Lowenheim intro-

duces in An all the possible equalities between the terms of An. If all the resulting

formulas vanish, then An vanishes. Lowenheim does not explain how to decide

whether or not these formulas vanish, because he thinks it is a trivial matter.

The formulas obtained from any An by means of this procedure are essentially

propositional formulas (since the identity symbol and the quantifiers do not oc-

cur in them) and the method to decide whether or not a propositional formula

vanishes was well known at that time. Probably, Lowenheim would first apply

laws in order to simplify the formula and then, if necessary, would argue in terms

of truth values. We can say that in a sense Löwenheim possesses an informal

procedure for showing that any quantifier-free formula of a first-order language

with identity vanishes: first, he takes into account all the possible equalities be-

tween the terms of the formula in the way explained in the proof, and then, by

applying propositional methods, he checks whether all of the resulting formulas

vanish. This procedure, together with the one used in order to construct the

sequence A1, A2, ..., can be seen as an informal way of showing that a formula in

normal form vanishes. (2004, p. 203)

If we have such a procedure for refuting any given An, then the leveled construction suggests

the means of turning this into a refutation procedure for the original quantified formula.

Systematically searching through the formulas at each level, we either reach a level n for

which we can refute An in the manner just described, or, we proceed to level n+1 and repeat

the process for the propositional formulas at that level.

The only thing missing is to show the connection between the refutability of An for some

n, and the refutability of A. Gödel does this by showing that for every n, A → Pn(An)

is provable in his formal system. In conjunction with the methods for refuting Pn(An),

this gives an explicit demonstration of the procedure by which a quantified formula can be
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formally refuted.

A similar demonstration is missing from Löwenheim, who simply asserts that if An vanishes

for some level n, then the original formula is unsatisfiable. The self-evidence of this step

apparently follows for him from the way the An are constructed (see Badesa, p. 168) and

(possibly) his understanding of quantification in terms of infinite conjunction/disjunction.

Granting all these implicit steps, Löwenheim can arguably be credited with the same informal

completeness result Gödel later attributes to Skolem. If some An is not satisfiable (i.e.

vanishes), then A can be informally refuted by searching through the levels until we reach

this n, showing thatAn vanishes by propositional methods, and then inferring thatA vanishes

by the “self-evident” step mentioned above. Conversely25, Lemma 3.5.7 guarantees a solution

to the formula in the domain of natural numbers when An is satisfiable for every n.

This attribution depends, of course, on our acceptance of one of the interpretations accord-

ing to which Löwenheim proves the weak version of the theorem. If we accept Badesa’s

subdomain interpretation, then the question of why Löwenheim did not acknowledge com-

pleteness is moot. However, none of the interpretations discussed stands out as obviously

correct against the others. Each has its own merits and each is faithful to the text in different

respects. As a result, there is no reason to dismiss the weak interpretations, and by exten-

sion, the idea that completeness was also implicit in Löwenheim. As long as this possibility

is on the table, we can raise Gödel’s puzzle for Löwenheim and assess whether Gödel’s own

solution has bearing in this case. If Löwenheim intended to prove the weak version of his

theorem, his willingness to use non-finitary reasoning weighs against Gödel’s allegation that

the avoidance of such reasoning is responsible for the delayed discovery of the completeness

theorem.

25Note the use of the law of excluded middle to establish this basic alternative.
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3.6 Non-finitary reasoning in Gödel and Löwenheim

In examining Gödel’s criticism of the finitistic prejudices he attributes to Skolem and others,

one must take into account that during the pre-1930 period in question, there was no con-

sensus and little clarity on what counted as finitary methods. However, the history of this

debate can be bracketed for the current investigation. It suffices to understand, first, what

Gödel means when he says that a proof of completeness is essentially infinitary, and second,

why he thought that Skolem (specifically) was against infinitary reasoning in this sense.

Infinitary reasoning in Gödel

The infinitary character of Gödel’s completeness proof can be traced to two essential appli-

cations of the law of excluded middle to infinite sets. These count as non-finitary regardless

of one’s stance on the exact boundaries of finitism in, say, the primitive recursive functions.

The first use of the law of excluded middle occurs in setting up the basic alternative that

either some An is unsatisfiable or every An has a satisfying truth assignment (see previous

chapter). The second use occurs in Gödel’s Theorem 2.3.5, which constructs a solution to

the formula from the solutions to each Bn.

Theorem 2.3.5 is an instance of König’s infinity lemma. For each level in Gödel’s sequence of

propositional formulas Bn, there exist finitely-many possible ways of assigning truth values

to the atomic propositions to make each Bn true. Each such assignment represents a vertice

of a finitely-branching tree. Vertices are connected by the relation of extension between

assignments and the aim is to construct an infinite path through the tree. At each step in

this construction, the law of excluded middle comes into play when a proof by contradiction

is used to guarantee the existence of a vertice (assignment) with infinitely many extensions.26

26Gödel, however, does not cite König at this point, saying only that “we show, in a familiar manner,
the existence of an infinite sequence of satisfying [solutions]” (1929/1986, p. 87). “Familiar manner” may
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As will be seen in the next chapter, this is the step Gödel refers to as “the easy inference

from Skolem [1922]”.

Infinitary reasoning in Löwenheim

On any of the interpretations discussed above, both steps found in Gödel - the establishment

of the basic alternative, and the construction of a single solution - are needed for Löwenheim

to prove the LST.

The basic alternative is established by Löwenheim’s application of the law of excluded middle

to the infinite set of An:

If for some n (hence also for all succeeding ones) all A
(v)
n vanish, the equation

is identically satisfied. If they do not all vanish, then the equation is no longer

satisfied in the denumerable domain of the first degree just constructed.27

Löwenheim also needs to establish an instance of the infinity lemma, though the application

varies depending on the interpretation.

The aim of the tree of formulas interpretation is the determination of an infinite sequence

Q1, Q2, ..., representing a path through the tree.28 This step assumes Choice since Löwenheim

therefore refer to a weak version of Choice (specifically, countable choice for finite families). Gödel was
unaware at the time of (Skolem, 1922) in which Skolem defines an explicit ordering on the truth assignments
at each level, showing Choice to be avoidable.

27Verschwinden für ein [n] [...] sämtliche [A
(v)
n , so ist die Gleichung identisch erfüllt. Wenn nicht, so ist die

Gleichung schon in dem soeben konstruierten abzählbaren Denkbereich erster Ordnung nicht mehr erfüllt.
(p. 456)

28It was noted that a gap arises on this interpretation because the existence of the path does not suffice
to show that Q1, Q2, ... is satisfiable by a single truth assignment. The gap can arguably be explained by
taking into account Löwenheim’s tendency to extend laws that are valid in finite cases into the infinite. As
noted, the gap is bridgeable by the compactness theorem which states that for any infinite set of formulas Γ,
if every finite subset of propositional formulas Γ is satisfiable, then all of Γ is simultaneously satisfiable by
a single truth assignment. Löwenheim may have been inclined to accept this result without proof, given its
validity when Γ is arbitrarily large finite. This would represent an additional instance of infinitary reasoning
used by Löwenheim.
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(unlike Skolem in 1922) does not define an explicit ordering on the formulas at each level.

The infinity lemma step also involves the law of excluded middle via a proof by contradiction

to show that at each level, there must be at least one satisfiable formula which is a factor

in infinitely-many satisfiable formulas of higher level. To prove this, suppose all of the A
(v)
1

had only finitely-many satisfiable extensions. Then since every vertex of the tree must be

reachable by a path going through one of these finitely-many A
(v)
1 , the entire tree of satisfiable

formulas must be the union of finitely-many finite sets, contradicting the hypothesis that

the tree is infinite (i.e. that there are satisfiable formulas A
(v)
n for every n).

The tree of solutions version similarly establishes the existence of an infinite sequence of

solutions, the union of which determines an interpretation of the formula over the natural

numbers.

The subdomain version also requires an infinite path through the tree of formulas, but differs

from the first interpretation in that no gap arises. This is because the formulas at each level

are satisfied by the particular solution given by the hypothesis of the theorem. The point of

the path through the tree is simply to fix an assignment of elements to the variables. This

assignment determines a subdomain in which the formula is satisfied by the original solution

restricted to the new domain.

That Löwenheim used non-finitary reasoning of the kind found in Gödel’s proof is indepen-

dent of the more contentious issue of whether Löwenheim used infinitary logic or worked with

formulas of infinite length. In the first half of his proof, Löwenheim expands formulas into

conjunctions and disjunctions of infinite length in order to prove that Löwenheim normal
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form preserves satisfiablility.29 He uses the expansions to illustrate —arguably, define —the

second-order equivalences that allow existential quantifiers to be moved in front of universal

quantifiers. By failing to give an actual proof of these equivalences30, Löwenheim has been

accused of applying laws to infinite domains without justification, the validity of these laws

having only been established for finite domains.31

Whether or not this accusation is fair, Löwenheim gives no indication of any conceptual

difficulties involved in working with infinite expansions. Quite generally, Löwenheim exhibits

none of the epistemological concerns with infinitary reasoning that gained prominence with

Hilbert and his followers. Nor is he unique among the algebraists for his use of techniques

that would have been questionable from a finitist standpoint.

In sum, on the most charitable interpretations, Löwenheim’s proof succeeds by implicit but

intentional appeal to methods that are non-finitary in Gödel’s sense. Even on interpretations

according to which his proof contains gaps, his presentation shows no reluctance to restrict

the proof methods available to him. The next section will look at how this, and similar

evidence from Skolem, challenges Gödel’s claim that reluctance to use non-finitary reasoning

was responsible for the delayed recognition of completeness.

3.7 Assessing Gödel’s claim

The results of the previous sections present a prima facie challenge to Gödel’s allegation

that reluctance to use non-finitary reasoning blocked recognition of completeness. I argued

that on the most wide-spread interpretation, completeness is a straightforward corollary of

Löwenheim’s proof in the same way that Gödel argues it is for Skolem’s. Löwenheim, like

29Van Heijennort and others take this as evidence that Löwenheim made essential use of infinitary logic to
carry out his proof. Conversely, Badesa argues that the expansions are merely heuristic and thus eliminable.

30The proof makes non-constructive use of the Axiom of Choice.
31For example, by assuming distributive laws apply to formulas of infinite length.
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Skolem, shows no recognition of this result. Conversely, Löwenheim exhibits no reluctance

to use non-finitary reasoning in Gödel’s sense.

This section considers Gödel’s response to the similar challenge based on uses of non-finitary

reasoning in (Skolem, 1922). I argue that Gödel’s response is not convincing in application

to Skolem, or when extended to Löwenheim. It depends on attributing to these logicians

distinctions and motives for which there is no evidence. Thus, an alternative explanation is

called for to explain why completeness went unrecognized despite the key non-finitary steps

already being taken by both Löwenheim and Skolem in proving the LST.

3.7.1 Gödel’s defense

Faced with the objection that Skolem did in fact use non-finitary reasoning in his 1922 proof

of the LST, Gödel responds:

That he used non-finitary reasoning for Löwenheim’s Theorem proves nothing,

because pure model theory, where the concept of proof does not come in, lies on

the borderline between mathematics and metamathematics (Letter to Wang, in

Wang, 1974, p. 10)

Wang concurs, adding that “Skolem probably thought he could not use the same sort of

argument when considering the question of completeness, which is squarely in the domain

of metamathematics” (Wang, Letter to Gödel, 19 December, 1967).

This claim can be broken down into two parts. First, the distinction between mathematical

and metamathematical theorems. Second, the allegation that non-finitary methods are per-

missible in the former but not in the latter. I argue that both are problematic in application

to Skolem and Löwenheim.
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A “metamathematical” theorem

Taking Gödel’s remarks at face value suggests that the completeness theorem is metamath-

ematical because it involves the concept of proof. This is no doubt intended loosely, as it

somewhat misrepresents a distinction of which Gödel himself was an originator.

More precisely, metamathematics uses mathematical methods to study mathematics itself.

Particular mathematical theories and proofs are conceived as a formal objects amenable to

mathematical investigation in a higher order meta-theory. Gödel’s proof of completeness

counts as metamathematical in this sense. It is a proof, conducted in a metatheory, to show

something about proofs (refutations) in a separate object theory. If we look at his proof

of Lemma 2.3.2, Gödel’s appeal to syntactic features of a formal theory he specifies at the

outset is an example of treating object language proofs as mathematical objects amenable

to investigation in the metatheory.

Conversely, Gödel writes that pure model theory “lies on the borderline between mathematics

and metamathematics”. This again seems based on the idea that metatheory necessarily

involves the concept of proof. Against this, model theory today is typically regarded as

metatheoretical. It studies the relations between formal theories and their interpretations

and the Löwenheim-Skolem theorem arguably fits into this category.

Definitions aside, the basis for Gödel’s distinction is less important than its potential ap-

plication to Skolem or Löwenheim. However, it has been widely noted that this distinction

is lacking for both logicians. In particular, neither author specifies a formal theory as the

intended object of study.32 Of course, Gödel has shifted the conversation from formal to

informal completeness, so the absence of an explicit formal system, at least at the object

level, should not impact the coherence of his claim. Skolem’s informal proofs can easily

be formalized and made amenable to metamathematical study. But to suggest that this

32Though both presuppose the (semi-formal) framework of the algebraic logic tradition.
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is something Skolem would or should have done is implausible since his anti-formalism is

widely recognized. Meanwhile, Löwenheim evinces even less awareness of the possibility of

formalizing theories and making them objects of study in a higher-order theory. Without this

distinction, it is hard to see how either Skolem or Löwenheim could recognize a corresponding

distinction in the permissible proof methods for each type of theory.

3.7.2 Finitism and restrictions on reasoning

According to the second part of Gödel’s claim above, Skolem believed that because the

completeness theorem is metamathematical (unlike the LST), the methods used to prove it

must be finitary. This also attributes to Skolem a view for which no evidence exists. Even if

Skolem could have recognized completeness to be metamathematical, this fact alone implies

no general restriction on proof methods. The restriction only follows if one subscribes to

the specific brand of finitism endorsed by the Hilbert school.

Skolem was familiar with Hilbert’s work, at least by 1928.33 Yet there is no indication that he

shared Hilbert’s views, particularly those according to which non-finitary reasoning stands

in need of justification via consistency proofs in a finitary metatheory. Nor would Skolem

have endorsed Hilbert’s formalist methodology.

Though inaccurate, Gödel’s attribution of this view to Skolem is understandable. Beginning

in 1923, Skolem advocated extensively for what is now known as primitive recursive arith-

metic. This attracted the interest of Hilbert because he considered the methods used in this

arithmetic to be finitary and thus saw it as a candidate for the metatheoretical consistency

proofs he sought.

Skolem, on the other hand, was never an advocate of Hilbert’s program, even before it became

infeasible in light of the incompleteness theorems. With the benefit of hindsight, Skolem in

33Skolem cites Hilbert and Ackermann’s (1928) frequently from this point on.
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(1944) gives an accurate but highly critical description of Hilbert’s program, including its

restriction to finitary methods in the metatheory. He concludes that he “cannot understand

the enthusiasm with which these ideas have been met among so many mathematicians”

(Skolem 1944/1970, p 525). Skolem presents his recursive arithmetic as an alternative to

Hilbert’s foundational attempts. He reiterates his belief that the problems facing mathe-

matics stem from the use of unrestricted quantification which primitive recursive arithmetic

avoids by using only free variables.

Skolem’s rejection of unrestricted quantifiers is connected with the brand of finitism that

he does endorse - a sceptism about axiomatic theories and a rejection of higher infinities,

both prompted by his relativity thesis (see next chapter). This sort of finitism does not lend

support to Gödel’s claim that Skolem characterized permissible methods of proof according

to whether a theorem was metamathematical or not.

If Gödel’s claim has little substantiation in application to Skolem, the evidence in its favor is

even less for Löwenheim. Löwenheim never mentions Hilbert and his published work shows

no evidence that he was familiar with the formalist tradition. Moreover, as already noted,

Löwenheim exhibits a willingness to use non-finitary methods (and possibly even infinitary

logic) at multiple removes in his proof. Furthermore, there is widespread agreement that

Löwenheim did not possess an object/metatheory distinction. In this he was simply following

the standards of the algebraic tradition.

3.8 Conclusion

This chapter gave the framework to understand Löwenheim’s (1915), and reconstructed his

main theorem on three different interpretations set forth in the literature. Common to all

three interpretations is Löwenheim’s expansion method. This plays a crucial role in the
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history of the completeness theorem. Both Skolem and Gödel used versions of the same

method to give, respectively, another proof of Löwenheim’s theorem, and the first proof of

completeness.

This shared methodology explains why it makes sense to ask whether Löwenheim, like

Skolem, possessed all the technical components of a completeness proof in 1915. As seen in

section 2, the answer varies depending on which interpretation of Löwenheim’s theorem one

adopts.

One either version of the prevailing “weak” interpretation, Löwenheim’s proof arguably ex-

hibits the key steps taken by Gödel in 1929, modulo Löwenheim’s lack of a formal system.

Löwenheim’s expansion method yields an informal refutation procedure and the completeness

of this procedure follows, albeit implicitly, as a corollary of his main theorem. This conclu-

sion has interesting implications for Gödel’s allegation that reluctance to use non-finitary

reasoning blocked the recognition of completeness.

The second half of the chapter looked at the different ways Löwenheim uses such reason-

ing in his paper and compared these with the non-finitary steps in Gödel’s completeness

proof. Gödel’s allegation is challenged by Löwenheim’s willingness to make the same non-

finitary moves as Gödel. I examined Gödel’s counterargument against a similar objection

based on uses of non-finitary reasoning in Skolem. Gödel’s attribution of a Hilbertian ver-

sion of finitism to either Skolem or Löwenheim was argued to be unsubstantiated by the

textual evidence. As a result, his attempt to dismiss non-finitary reasoning in the context

of Löwenheim’s theorem falls short, as does his own explanation for why completeness went

unrecognized. This raises the stakes for Gödel’s question: if appeal to a finitistic prejudice

is unconvincing, what alternative explanation can be given for why Löwenheim and Skolem

came so close to preempting Gödel’s proof yet failed to do so?

In Löwenheim’s case, Badesa’s revisionary interpretation offers a plausible account that
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deflates Gödel’s puzzle. Badesa identifies Löwenheim’s aim to be a proof of the subdomain

version of the theorem. Since a correct proof of this version does not entail completeness,

Badesa exempts Löwenheim from any obligation to acknowledge it.

When it comes to Skolem however, Gödel’s puzzle cannot be dismissed as easily. Skolem

is clear about which versions of the theorem he intends to prove. After explicitly stating

and proving the subdomain version in 1920, Skolem’s (1922) intentionally proves the weak

version of Löwenheim’s theorem in order to avoid the use of Choice.

In the next chapter, I give a reconstruction of Skolem’s proofs in 1922 and 1928. This sets

the stage for Chapter 5 where I give a revisionary answer to The Puzzle, arguing that Skolem

had little reason to acknowledge the completeness of first order logic when he thought that

a full decidability result was on the table. This account can be extended to Löwenheim on

the interpretations according to which he aimed to prove the weak version of his theorem.
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Chapter 4

Skolem

4.1 Introduction

The present chapter provides the background understanding of how Skolem’s work bears

on The Puzzle. I give a complete reconstruction of Skolem’s 1922 proof of the Löwenheim-

Skolem theorem. This is followed by an overview of (Skolem, 1928) and an examination of the

main theorem of that paper from the perspective of the most plausible extant interpretations.

These reconstructions set the stage for the examination, in Chapter 5, of Gödel’s claim that

finitism prevented Skolem from recognizing the completeness theorem implicit in his work.

4.2 Background

The important place occupied by Löwenheim’s theorem in modern logic and model theory

owes much to Skolem. In 1920, Skolem set out to give a simpler proof of the theorem that

would avoid some of the notational complexities of Löwenheim’s original. The comparative

accessibility of Skolem’s proof has contributed to the perception that he corrected the flaws
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in Löwenheim and deserved equal credit for the theorem.1

The proof Skolem gives is a proof of the subdomain version of Löwenheim’s theorem: if a

formula is satisfiable in an infinite domain D, then it is satisfiable in a countable subdomain

of D, under the same interpretation of predicates. The proof uses the axiom of choice.

As noted in the previous chapter, this version of the theorem does not entail completeness.

This is even more evident in Skolem’s case: by using the axiom of choice, there is no need for

the leveled construction of expansions that accounts for the similarity between Löwenheim’s

proof and Gödel’s proof of completeness.

In 1922 however, Skolem offers a second proof of Löwenheim’s theorem, this time avoiding

the axiom of choice.

Skolem’s overarching aim in his (1922) is critical: he argues for eight theses including the

claim that axiomatized set theory cannot provide an adequate foundation for mathematics.

The argument turns on what Skolem sees as the most important result of the paper —that

all set-theoretic notions are unavoidably relative. He takes this claim to follow as a corollary

of Löwenheim’s theorem.

When generalized to countably infinite sets of formulas, Löwenheim’s theorem can be applied

to axiomatizations of set theory to create a “paradoxical state-of-affairs”. On the one hand,

the axioms guarantee the existence of transfinite cardinalities; on the other hand, the axioms

have a model in the domain of integers. This shows, according to Skolem, that there is no

absolute notion of transfinite cardinality because the meaning (i.e. “size”) of any given

cardinality varies from model to model.

This can be generalized to other set theoretic notions besides cardinality, yielding Skolem’s

“relativity thesis”: when “sets are nothing but objects that are connected with one another

1In the absence of a consensus that Löwenheim’s proof is flawed, or even, exactly which theorem
Löwenheim was trying to prove, this assessment has more to do with the ease of Skolem’s notation.
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through certain relations expressed by the axioms” (1922, p. 295), then the properties sets

possess are relative to the domains in which they are found. It follows that the intuitive and

absolute meaning of these properties cannot be captured by any axiomatization to which

Löwenheim’s theorem applies.

This critical aim explains Skolem’s desire for a Choiceless proof of Löwenheim’s theorem:

[H]ere, where we are concerned with an investigation in the foundations of set

theory, it will be desirable to avoid the principle of choice as well. Therefore I

now indicate very briefly how this can be done. It will also appear from the proof

that general set-theoretical notions are unnecessary for our understanding of the

content of these theorems. (Skolem, 1922, p. 293)

Skolem replaces the closure argument of 1920 with a level-by-level construction of solutions

using the same method as (Löwenheim, 1915). This yields a proof of the weak version of the

theorem: if a formula is satisfied in an infinite domain, then it is satisfiable in a countable

domain. Unlike the 1920 version, this theorem can consistently be used to prove the relativity

thesis, because it does not presuppose a standard model or appeal to the very axioms under

attack by that thesis.

This is the proof that prompts Gödel’s remark:

[t]he completeness theorem, mathematically, is indeed an almost trivial conse-

quence of Skolem [1922]. (Letter to Wang, 1967)

I unpack this claim by reconstructing the proof as faithfully to Skolem’s 1922 original as

possible.
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4.3 The 1922 proof

4.3.1 Overview

The proof corresponds closely to what the last chapter called the “tree of solutions” interpre-

tation. Starting with a formula in the normal form A = ∀∃F , Skolem constructs a sequence

of conjunctions of propositional instances of A. At each level n, the universal variables are

replaced by integers from a finite domain expanding with n, and at each level, new integers

are introduced to witness the existential quantifiers. As in Löwenheim’s construction, the

result is a sequence of propositional formulas.

Skolem begins with a formula A assumed to be satisfiable (“consistent”). This guarantees

that at every level n there must be “solutions”—truth value assignments that determine the

predicates and relations in such a way that the formula constructed at that level is satisfied.

By a suitable ordering on the solutions of each level, Skolem bridges the gap attributed to

Löwenheim2, showing the existence of a single truth assignment that satisfies the original

formula.

4.3.2 Skolem’s construction

Let A = ∀x1, ..., xm∃y1, ..., ynF (x1, ..., xm, y1, ..., yk) be a first-order formula in normal form.

Let A′ be the result of dropping the quantifiers from A. By systematically instantiating the

variables with integers, Skolem constructs an expanding sequence of propositional instances

of A′. As the domain increases with each level, the conjunction of these instances represents

a closer and closer approximation to A.

The construction can be described recursively:

2On the tree of formulas interpretation.
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• To construct A1, replace the universal variables x1, ..., xm by a sequence of m-many 1s.

Introduce new integers 2,..., k + 1 for the existential variables y1, ..., yk. The resulting

formula A1 = F (1, 1, ...1, 2, ..., k + 1) is propositional.

• To construct An+1, take the (now free) universal variables x1, ..., xm to range over allm-

tuples of integers introduced up to level n. For each newm-tuple3, form a propositional

instance of A′ by replacing x1, ..., xm with the integers in the m-tuple, and introducing

new integers to witness y1, ..., yk. An+1 is equal to the conjunction of these instances,

conjoined with An.
4

Definition 4.1

Let A be a formula of first-order predicate logic. A solution S of level n is a function

from the atomic propositions of An into {0, 1} such that An = 1 according to the standard

propositional rules.

Solutions are necessarily leveled; the domain increases as new instances of A′ are added at

each level of the construction. By the hypothesis of consistency, at each level n there must

be at least one solution that satisfies An. Otherwise, An is truth-functionally inconsistent.

Definition 4.2

A solution Sn is an extension of a solution Sm, for n > m, if and only if the restriction of Sn

to atomic formulas of Am is equal to Sm.

3I.e.,that has not yet occurred as the x values for some Ai, i ≤ n
4For example, to construct A2, take the x1, ..., xm to range over the integers 1, 2, ...k + 1. This means

constructing an instance of A′ for each of the (k + 1)m permutations of this domain, with the exception of
the m-tuple 1,1,...,1 already used in A1. Taken in some order (say, lexicographic), each m-tuple is assigned
unused integers for the y values. So, the first m-tuple is assigned k + 1, k + 2, ..., 2k, the second is assigned
2k+1, ..., 3k etc. Take the conjunction of the instances formed in this way, and conjoin with A1. This is A2.
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Each solution of level n extends one of the solutions of level n− 1 for all n ≥ 1.

4.3.3 Ordering solutions

Skolem next defines an ordering ‘≺’ on the solutions at each level.

Let R0, R1, R2, ... be an enumeration of the atomic propositions of A′ according to their first

occurrence going left to right in the formula.

Definition 4.3

For solutions S and S ′ of an arbitrary level k, S ≺ S ′ if and only if the first atomic proposition

Rj that is assigned different values by S and S ′ is assigned 0 in S and 1 in S ′.

Lemma 4.1

For solutions S, S ′ and S ′′ of a single level,

S ≺ S ′ and S ′ ≺ S ′′ implies S ≺ S ′′

Proof: Let Rj be the first (in the ordering) atomic proposition such that S(Rj) = 0 and

S ′(Rj) = 1 and let Rk be the first atomic proposition such that S ′(Rk) = 0 and S ′′(Rk) = 1.

Suppose for reductio that ¬(S ≺ S ′′). Two cases are possible:

• Case 1: S = S ′′
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Then S(Rj) = S ′′(Rj) = 0 ̸= S ′(Rj). If Rj is the least atomic proposition on which

S ′ and S ′′ differ, then S ′′ ≺ S contrary to assumption. If Rj is not the least atomic

proposition on which S ′ and S ′′ differ, then there is some Rq for q < j such that

S ′(Rq) ̸= S ′′(Rq). By leastness of Rj for S and S ′, S(Rq) = S ′(Rq) ̸= S ′′(Rq), so

S ̸= S ′′.⊥

• Case 2: S ′′ ≺ S

Let Rq be least such that S(Rq) ̸= S ′′(Rq) and S
′′(Rq) = 0 and S(Rq) = 1. Then either

q < j < k, or, q = j, or, j < q < k, or, j < k ≤ q, or, k < j.

– (q < j < k)

Then S(Rq) = S ′(Rq) = 1 by leastness of Rj for S and S ′.SoS’(Rq) ̸= S ′′(Rq)

and q < k contradicting leastness of k.

– (q = j).

Then S(Rq) = S(Rj) = 0.⊥

– (j < q < k)

Then by leastness of q with respect to S and S ′′, S(Ri) = S ′′(Ri) for all i < q.

By leastness of k with respect to S ′ and S ′′,S’(Ri) = S ′′(Ri) for i < k. Therefore,

S(Ri) = S ′(Ri) for i < q, and S(Rj) = S ′(Rj)..

– (j < k ≤ q)

Then S(Ri) = S ′(Ri) for i < k, and therefore S(Rj) = S ′(Rj).⊥.

– (k < j)

Then S(Ri) = S ′(Ri) for all i ≤ k, so S ≺ S ′′

□ (Lemma 4.1)

Antisymmetry and connexivity of ≺ are obvious.
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Corollary 4.1.1

≺ is a total order.

Corollary 4.1.2

Every finite subset of solutions has a least element under ≺.

Lemma 4.2

For solutions Sn and S ′
n of the nth level, if Sn extends the mth level solution Sm and S ′

n

extends the mth level solution S ′
m for m < n, then

Sn ≺ S ′
n implies Sm ⪯ S ′

m

Proof: Let Sn extend Sm and S ′
n extend S ′

m with Sn ≺ S ′
n. Let R0, R1, R2, ... be an enumera-

tion of the atomic propositions that preserves their ordering by first occurrence left-to-right

within a formula and the preserves the ordering of the formulas by level. Let Ri be the first

atomic proposition on which Sn and S ′
n differ. By the definition of ‘≺’, Sn(Ri) = 0 and

S ′
n(Ri) = 1. We need to show that if Sm ̸= S ′

m then ∃Rj least such that Sm(Rj) = 0 and

S ′
m(Rj) = 1.

Case 1: Ri occurs in a formula of level < m. Then Ri is already in the domain of the level

m solutions Sm and S ′
m. Since Sn extends Sm and S ′

n extends S ′
m, it follows that Sm(Rj) =

Sn(Rj) and S
′
m(Rj) = S ′

n(Rj) for all j ≤ i. So Sm(Ri) = 0 and S ′
m(Ri) = 1. Moreover, Ri

must be least such that Sm ̸= S ′
m since if ∃Rk such that k < i and Sm(Rk) ̸= S ′

m(Rk), then

Sn(Rk) ̸= S ′
n(Rk) contradicting leastness of Ri. So Sm ≺ S ′

m.
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Case 2: Ri first occurs in a formula of level l > m. Then Ri not in the domain of Sm or

S ′
m. But then Sm must be equal to S ′

m since if Sm ̸= S ′
m, then Ri is not the least atomic

proposition on which Sn and S ′
n differ.□ (Lemma 4.2)

Definition 4.2 For integers n,m ≥ 1, let Sm
n denote the solution of level n that is mth in

the ordering ≺.

Convergence

The set of solutions ordered by ≺ forms a connected, infinite tree, that is locally finite.

Skolem will show that the tree has an infinite branch. The solution determined by this

branch satisfies the original formula, filling the gap in Löwenheim’s proof under the tree of

solutions interpretation.

The branch Skolem singles out is defined relative to the sequence of first solutions at each

level, S1
1 , S

1
2 , ..., S

1
n... The desired branch is not necessarily identical with the branch defined

by the union of these first solutions –this branch may terminate after a finite number of

levels. However, the hypothesis of the theorem guarantees that at least one solution of each

level is guaranteed to have extensions of every level.

Whenever the first solution of level n cannot be consistently extended by the first of the

level n+ 1 solutions, it causes the ordering to shift right at the nth level. The first solution

of the n+ 1th level will then be a continuation of some Sm
n for m > 1.

From this we can see that if we consider only the first solutions, their respective restrictions

to earlier levels may not agree. The theorem proven in this section is designed to show that

because (i) the number of solutions at each level is finite, and (ii) the vertical branch being
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constructed can only shift right in the horizontal ordering under ≺, eventually the sequence

of first solutions must converge on a particular solution of each level.

When talking about restrictions, instead of S1
kAj, I write S

akj
j . Thus, akj denotes the place in

the ordering of jth level solutions (j < k) where occurs the restriction of the first of the kth

level solutions to Aj. When akj occurs as the superscript of a solution, I drop the subscript

j since this information is contained in the subscript of the solution. E.g. S
akj
j = Sak

j .

If akj > 1, this means that there is at least one level i, 1 ≤ i ≤ j, such that the first solution

of the ith level has no consistent continuations at level i+ 1.

Theorem 4.3

For all levels v, there is a level g(v) such that for all n > g(v), a
g(v)
v = anv .

Theorem 4.3 tells us that for a given level v, there is a level g(v) > v such that the first

solutions for levels above g(v) will always agree on their restriction to the vth level, i.e.,

the part that assigns values to atomic propositions of Av. Since this holds for every v, the

sequence of first solutions will ultimately converge to a single truth assignment S. The proof

requires the following lemma:

Lemma 4.3

Fix arbitrary v. The sequence {anv}n∈ω is monotone increasing.

Proof: It suffices to show that for n′ > n > v ≥ 1,

San

v ⪯ San
′

v
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I.e., that S1
nAv ⪯ S1

n′Av.

Proof: San

v is extended by S1
n and San

′

v is extended by San
′

n . Clearly S1
n ≺ San

′

n since the

restriction of S1
n′ to the atomic propositions of An must be one of the nth level solutions.

The lemma follows by Lemma 4.2.□

Now, the sequence {anv}n∈ω has a finite bound since there are only finitely many solutions at

each level. By the monotonic sequence theorem, {anv}n∈ω converges, i.e., for each v there is

some g(v) such that for all m > g(v), amv = a
g(v)
v . □ (Theorem 4.3)

A single solution

Now form the infinite assignment S =
⋃

i∈ω S
ag(i)

i . Clearly,

SAv ⊂ SAv+1

since if SAv = Sag(v)

v and SAv+1 = Sag(v+1)

v+1 , then Sag(v+1)

v+1 v = Sag(v)

v .

This concludes the proof of Theorem 4.1. □

4.4 Skolem 1928

Introduction

Skolem’s 1928 paper “On Mathematical Logic” touches on everything from Boolean algebra

and Schröder’s “identical calculus”, to second-order predicate logic. Skolem takes the main
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result to be his proposed alternative to the axiomatic development of first-order predicate

calculus. Rather than deducing a formula using formal axioms and inference rules, Skolem

shows how it is possible to “deal with deduction problems in a more expedient way”, giving

a semantic proof procedure that can effectively decide when a formula is refutable. The

procedure uses the same idea found in (Löwenheim, 1915) and (Skolem, 1922) of expanding a

first-order formula into truth-functional instances and checking for solutions via the methods

of propositional logic.

This culminates in Skolem’s statement of what is essentially the basic alternative of Gödel’s

completeness proof: “The real question now is whether there are solutions of an arbitrar-

ily high level or whether for a certain n there exists no solution of the nth level.” From

this alternative Skolem purports to show that, in the second case, A is truth-functionally

contradictory, and in the first case, A is “consistent”. Thus,

Theorem 4.2.1

Either A is truth-functionally contradictory, or, A is consistent.

There is no consensus on what Skolem means by this statement, or whether his proof of it

succeeds. The different interpretations put forward in the literature can be divided along

three main lines of inquiry: Is the theorem semantic or syntactic? Is the proof finitistic? Is

the proof complete?

Is Skolem’s theorem semantic or syntactic?

Skolem’s use of ‘’‘consistent” (widerspruchslos) in stating Theorem 4.2.1 is ambiguous be-

tween the semantic and the syntactic senses. This ambiguity is widespread in Skolem’s work,

as Goldfarb notes:
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Skolem is, as always, being heterodox, and accepting neither the usual semantic

notions nor the formal proof-theoretic notions as explicative of the notion of

mathematical inconsistency. (Goldfarb, 1979, p. 363)

Understanding “consistent” in a semantic sense to mean “satisfiable”, the target theorem is

the semantic completeness of a refutation procedure using the method of searching through

solutions of each level. Skolem aims to show that either we can find an n for which the

expansion An is truth-functionally contradictory, or, A is satisfiable.

Understanding “consistent” in a syntactic sense, a second interpretation is that Skolem

intends to prove that if there is no n for which the nth level expansion An of A is truth-

functionally contradictory, then adding the quantified formula A as an axiom in some implicit

quantification theory does not result in syntactic inconsistency.

A third interpretation replaces A with the formula A∗ that results from A when the quanti-

fiers are dropped and the existential variables are replaced by Skolem functions. Following

Goldfarb I call A∗ the “functional form” of A. Theorem 4.2.1 can then be understood to

mean that adding A∗ to an implicit proof system (without laws for quantifiers) does not

result in syntactic inconsistency.

Each interpretation fares differently with respect to the following two questions.

A finitistic proof?

Cutting across the semantic vs. syntactic question is the fact that the proof Skolem gives for

Theorem 4.2.1 is apparently finitistic. Recall that in his 1922 proof of the Löwenheim-Skolem

theorem, Skolem appeals to the existence of solutions for every n in order to construct his

denumerable model.
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In 1928 however, Skolem replaces the assumption of solutions for every n with the assumption

of solutions for arbitrarily high (finite) n. The argument he gives attempts to show the

existence of a finite upper bound on the level of the constants occurring in any contradictory

proposition (see below).

A complete proof?

Depending on the interpretation one adopts, Skolem’s proof may or may not suffice to

establish the target theorem.

If the semantic interpretation of the theorem is correct, then the proof that Skolem gives

is insufficient: a proof of completeness is inherently infinitary, requiring some equivalent of

König’s infinity lemma to establish the satisfiability of the formula. As noted, the (1928)

proof appears to be finitary. However, commentators who support this first interpretation

have pointed out that Skolem, in (1922) and (1929), did give infinitary proofs of exactly the

step needed in order for (1928) to constitute a completeness proof.

On the first of the syntactic interpretations, Skolem’s proof also has problems. This is the

interpretation according to which adding the quantified formula A as an axiom of some

implicit quantification theory does not result in syntactic inconsistency. In this case, a

finitistic proof is possible, but is considerably more involved than the one given by Skolem.

Also inexplicable is the fact that Skolem never gives the formal system of quantification

theory presupposed by this interpretation. Although he gives examples of several rules of

quantifier manipulation, he “does not go into this more deeply” turning instead to “solv[ing]

deduction problems in a more expedient way”.

This leaves the third interpretation according to which Skolem proves that adding the func-

tional form A∗ to an informal proof theory S does not result in syntactic inconsistency.

Skolem’s lack of a formal system is also a shortcoming for this interpretation, but by switch-
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ing to the quantifier-free functional form A∗, the system required is not as complex. Remarks

in (Skolem, 1929) support his intention to prove the result for the basic system S described

below.

4.4.1 Reconstructions

This section reconstructs Skolem’s proof on both the first (semantic) and third (syntactic)

interpretations.

Semantic completeness

The semantic interpretation is endorsed by Gödel who writes that Skolem “in his 1928 paper

(at the bottom of p. 134) stated a completeness theorem (about refutation)” (Letter to

Wang, 1967, in Wang 1974). I show how Skolem’s construction of leveled instances of the

functional form of a first-order formula can be conceived as a refutation procedure. I then

sketch the steps for showing that the completeness of this procedure is a trivial consequence

of the 1928 paper in conjunction with (Skolem, 1922).

Skolem’s refutation procedure

Let A = ∀x1, ..., xmF (x1, ..., xm, f1(x1, ..., xm), ...,

fn(x1, ..., xm)) be a first-order formula in prenex normal form where the existential variables

y1, ..., yn have been replaced by Skolem functions f1(x1, ..., xm), ..., fn(x1, ..., xm) of the scop-

ing universal variables. For simplicity, I consider only a single block of quantifiers ∀∃.5 Let

A∗ be the result of dropping the quantifiers from A.

Skolem constructs expansions of A∗ by defining a set of constant terms for each level n. The

5Though Skolem’s schema allows for finitely many alternating blocks of such.
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symbol “0” is the unique constant of level 0. The constants of level n + 1 are the Skolem

terms that can be formed by replacing the arguments to the Skolem functions by arbitrary

m-length permutations of the constants of level n:

Definition 4.5.1

The oth level expansion of A is

A0 = F (0, 0, ..., 0, f1(0, 0, ..., 0), ..., fn(0, 0, ..., 0)).

Definition 4.5.2

The nth level expansion An of A is the conjunction of instances of F (x1, ..., xm,

f1(x1, ..., xm), ..., fn(x1, ..., xm)) when x1, ..., xm range over the constants of level n− 1.

For each level n, consider all assignments of m-tuples of constants of level n− 1 to the vari-

ables. Eachm-tuple generates a propositional instance ofA∗ = F (x1, ..., xm, f1(x1, ..., xm), ..., fn(x1, ..., xm)).

An is the conjunction of all such instances (including conjuncts formed at levels q < n). The

construction of constants thus generates a parallel construction of sequences of propositional

formulas.

This construction is very similar to the one found in Löwenheim.6

Either construction yields a refutation procedure for A. Since the expansions are made up

of propositional instances of A∗, we can consider truth values assignments to the atomic

6On the other hand, Skolem shows an awareness of the recursive structure of language that is absent in
Löwenheim. For Skolem, the distinctness of terms is directly reflected in the syntax, i.e., the iteration of
functional terms as arguments to the same functions. Also unlike Löwenheim, Skolem’s constant terms are
not presupposed to denote elements of a separate domain.
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components that make the conjunction at each level come out true.7 At each level, the class

of possible assignments is narrowed down according to whether they can be extended to

include instances of the next level.

If there exists a level n and formula An that cannot be satisfied by any extension of assign-

ments to earlier levels, then the formula is shown to be unsatisfiable or “contradictory”. Call

this procedure R. R is best illustrated with an example.

4.4.2 Example of Skolem’s procedure

I demonstrate this procedure for one of Skolem’s example formulas (p. 520, 1967/1928).8

Let U = ∀x∃y[[A(x, y) ∧B(x) ∧ ¬B(y)] ∨ [A(x, x) ∧ ¬A(y, y) ∧ ¬B(y)]].

The first step is to drop the quantifiers, replace x with 0 and y with 1:

[A(0, 1) ∧B(0) ∧ ¬B(1)] ∨ [A(0, 0) ∧ ¬A(1, 1) ∧ ¬B(1)]

Figure 4.1 breaks this instance into atomic components (columns) and lists all the possible

truth assignments (rows) that make this instance come out true.

At the second step, consider assignments to the single9 new instance when x ranges over the

domain introduced in the first step:

[A(1, 2) ∧B(1) ∧ ¬B(2)] ∨ [A(1, 1) ∧ ¬A(2, 2) ∧ ¬B(2)]

7Note that the atomic components of each conjunct will be distinct based on the different instantiations
of the variables.

8Although the use of Skolem term makes the construction superficially different from the one used in
(1922), in practice Skolem adopts the same strategy of replacing y-variables (in this case, Skolem functions)
by integers for simplicity. See 1928/1967, pg. 519).

9By working with a single x and y, we avoid having to consider multiple new instances at every level.
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Figure 4.1: Level one solutions for the formula ∀x∃y[A(x, y) ∧ B(x) ∧ ¬B(y)] ∨ [A(x, x) ∧
¬A(y, y) ∧ ¬B(y)]

Note that the formulas considered at each level are not Un but rather Un\Un−1 since Un was

defined to be the conjunction of instances of U ′ up to the nth level, whereas each level in

Skolem’s procedure operates with only the new instances. The aim of each step is to find a

way of including the new instance (or instances) as an extension of a solution (in the defined

sense) of the previous level. This means determining whether the new instance is compatible

with any assignments to the instances of earlier levels, progressively narrowing down the

possible solutions by ruling out solutions from the bottom up.

For example, at this second step we rule out the first level solutions represented by rows

a1, c1, e1, f1, and g1 (Fig. 4.1). No second level assignment (Fig. 4.2) is an extension of

one of these solutions because no second level assignment makes both A(1,1) and B(1) false.

(Note that when checking for consistency in this example we can disregard the first column

for the atomic formula A(x,y) since potential contradiction between levels can only occur

with the formulas B(x) and B(y) and A(x,x,) and A(y,y).)

On the other hand, the solutions b1 and d1 are compatible with some second level assignments,
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Figure 4.2: Level two solutions for the formula ∀x∃y[A(x, y) ∧ B(x) ∧ ¬B(y)] ∨ [A(x, x) ∧
¬A(y, y) ∧ ¬B(y)]

specifically, those in rows d2 and f2 of Fig. 4.2.

Restricting our attention to these second level assignments that extend b1 or d1, we now ask

whether any of these have extensions of the third level. Since both d2 and f2 assign False to

A(2,2), this rules out all but two of the third level assignments (rows d3 and e3).

However, since d2 and f2 assign False to B(2) and d3 and e3 (Fig. 4.3) assign True to B(2),

none of the second level solutions that extend a first level solution have extensions of the

third level. Therefore, the procedure terminates because we have reached a point where none

of the finite number of level one solutions have extensions beyond the second level. This

reveals the formula to be contradictory.

Completeness of the procedure

Whether or not Skolem thought of it as such, the procedure just described constitutes a

refutation procedure for A. If, for some level n ≥ 0, none of the solutions to An can be
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Figure 4.3: Level three solutions for the formula ∀x∃y[A(x, y) ∧ B(x) ∧ ¬B(y)] ∨ [A(x, x) ∧
¬A(y, y) ∧ ¬B(y)]

extended to include the new conjuncts of An+1, then An+1 is unsatisfiable (“contradictory”).

Both Löwenheim and Skolem take it to follow immediately that A is unsatisfiable.10 This

represents one half of the following completeness theorem for the refutation procedure:

Theorem 4.5

Either A is refutable by the method of finding an n for which the expansion An is truth-

functionally unsatisfiable, or, A is satisfiable.

When stated this way, the theorem follows as an immediate consequence of Skolem’s 1922

proof of the Löwenheim-Skolem theorem (Theorem 4.1 above).

However, if Skolem intended to prove Theorem 4.5, the proof he actually gives in 1928

differs from the one just sketched and does not suffice to prove the result. He makes no

10A contemporary proof would require more elaboration of this connection between the unsatisfiability of
the instances, and the unsatisfiability of the formula. Gödel formalizes this step as his Theorem VI in (1929,
p. 113), see Lemma 1.3.2 above.
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assumption of the existence of solutions for every level, replacing this with the assumption

of “solutions for arbitrarily high n”. Nor does he appeal to the 1922 result at the crucial

infinitary step. This leaves a gap if Skolem’s aim is to show that the formula is satisfiable,

prompting commentators to endorse a different interpretation of Skolem’s actual proof.

4.4.3 Syntactic consistency

This section reconstructs the interpretation on which Skolem shows that adding the func-

tional form A∗ to an implicit proof system S does not result in syntactic inconsistency. This

reading of (Skolem, 1928) is supported by a more detailed proof in (Skolem, 1929).11

11The passage is worth quoting in full:

If [functional form of the] formula is given as an axiom, then the theory based on it can be
understood as follows:

1. The rule for generating individual terms: If x1, ..., xm, z1, ..., zp, ... are individual terms,
then so are f1(x1, ..., xm), ..., fn(x1, ..., xm),
g1(x1, ..., xm, z1, ..., zp, ...), ..., gq(x1, ..., xm, z1, ..., zp, ...) etc.

2. If A(t1, ...tu) is an atomic function in U , so for any individual t1, ..., tu, A should be
either false or true, but not both at the same time.

3. For any individuals x1, ..., xm, z1, ..., zp, ... the statement U should be true.

The whole theory should therefore only consist in trying to determine the atomic functions
for new individuals created repeatedly in accordance with 1) in such a way that 2) is fulfilled
or to examine these possible determinations. [Skolem writes 2) and 3) in place of 1) and 2)
which seems erroneous.] A general theorem of the theory then has the form: Let a1, a2, ... be
any individual. If b1, b2, ... are certain symbols that can be derived from them according to 1),
the statement V (a1, a2, ..., b1, b2, ...) holds; Every general proposition consists in the assertion
that the elementary constructed propositional function V (a1, a2, ..., b1, b2, ...), in which a1, a2, ...
occur as real variables ( the b are only expressions made from them) is a true statement for
any choice of these individuals.

According to this view, it is clear that there is no contradiction in the theory for which
solutions of each level exist in the sense explained above. For if there are two contradictory
provable sentences in which the indefinite symbols a1, a2, ... appear, they remain valid if all a
are replaced by 0; then the b change into symbols of the set Mv for a certain v, and no solution
of the vth level can exist. (Skolem, 1970, pg. 253, translation mine)
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Assume the following system S. The language of S is quantifier-free, consisting only of the

truth-functional connectives ∨,∧,¬, predicate symbols A,B,C..., function symbols f, g, h...,

individual variables x1, x2, . . . , y1, y2. . . and constants 0,1,2. . . over the domain of natural

numbers. The inference rules of S are the valid truth-functional inferences of propositional

logic and the rule of substitution: arbitrary variable and constant terms may be substituted

for variables occurring free and as arguments to functional terms.

A derivation in S is a finite sequence of formulas each of which is either an axiom or follows

from preceding formulas by the inference rules.

This section sketches Skolem’s proof on the interpretation12 according to which Skolem aims

to prove:

Theorem 4.6 Either we can demonstrate that A is truth-functionally contradictory, or,

adding the functional formA∗ ofA as an axiom to S does not result in syntactic inconsistency.

Proof: Let A be a quantified formula containing the predicate symbols U, V,W. . . . Let A∗ be

the functional form of A, formed by dropping the quantifiers and replacing each existentially

quantified variable yi by a Skolem function fi of the universal variables scoping over yi in A.

The universal variables x1, ..., xn of A are now free variables of A∗.

Suppose that from A∗ it is possible to derive in S a proposition T that is inconsistent, e.g.,the

conjunction of an atomic formula (with free variables) and its negation. These contradictory

atomic sentences were derived in S by propositional inferences from certain substitution

instances A′ and A′′ of A∗.13 From this Skolem purports to demonstrate the existence of

12Cf. (Goldfarb, 1971)
13Each predicate symbol in A∗ generates an atomic proposition when the variables in A∗ are replaced by

ground terms. Ground terms are formed recursively, starting with 0, by iterated application of the rule of
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a level n such that the nth level expansion An has no solutions. (Note that in the 1928

construction, Skolem now considers a solution of level n to be a cumulative assignment of

truth-values to expansion instances of every level up to n.)

The first step is to replace variables occurring anywhere in the derivation of T by 0. The

result is a derivation of a variable-free sentence T0. Terms occurring in this derivation are

either 0 or can be obtained from 0 by finitely-many applications of the rule of substitution

to the function symbols.14 T0 is inconsistent because T is.

Now, A′ and A′′, the instances from which the contradictory atomic sentences were derived

in S, must occur somewhere in Skolem’s hierarchy of expansion instances. The point of the

expansion is to systematically account for all such instances in order to represent the universal

quantification. The goal of Skolem’s proof is to locate the lowest level in the construction by

which both A′ and A′′ have occurred as conjuncts of the cumulative expansion up to that

point.

To find a bound on the level by which both A′ and A′′ must have occurred, Skolem appeals to

the facts that (i) the functional symbols f1, f2.... occurring in A∗ are finite in number (since

there are finitely-many existentially quantified variables of A), (ii) the derivation consists of

finitely many steps, (iii) any given step may involve at most finitely many applications of

the rule of substitution, and (iv) propositional inferences do not introduce new individual

terms. The bound is determined by a parallel between the construction of terms (through

iteration of the rule of substitution on the function symbols of A) and the construction of

expansion instances.

Skolem then claims that the least level at which both A′ and A′′ have occurred cannot have

a solution. A solution to the expansion at this level would have to assign truth to both A′

substitution in the Skolem functions.
14Since the rules of S do not license the introduction of new predicate symbols, the predicate symbols in

T must already occur in A∗. The free variables in T are those x1, ..., xn already occurring free in A∗ and
terms built up from these by finitely-many applications of the rule of substitution.
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and A′′ and, by extension, to the atomic and its negation derivable from these instances.

This last step reveals a problem of circularity. The contradictory pair of atomics derivable

from A′ and A′′ occur in the expansion embedded under whatever logical operations make

up the formula A*. Therefore, to demonstrate the unsatisfiability of the expansion at level

n requires isolating these atomics using the same propositional methods by which T was

derived in S. If the intention was to show that the syntactic method only refutes unsatisfiable

formulas (i.e., soundness), the proof is question-begging since the way we know a formula is

unsatisfiable is ultimately by reference to the fact that it is refutable.

In defense of Skolem, this objection assumes that the explicit motive of the proof is to

establish a connection - soundness - between the syntactic proof system S and the semantic

method R. However, Skolem did not distinguish between syntax and semantics in a way that

would support this interpretation. It is more likely that Skolem recognized the connection

between S and R to be self-evident (this connection is, as Goldfarb notes, “a triviality”). The

aim is not to show that S is an independent way of picking out the unsatisfiable formulas.

Rather, the syntactic considerations are intended to supplement the semantic method R and

show how it constitutes a decision procedure. This will be discussed further in Chapter 5.

Problems

This reconstruction, based on the actual proof Skolem gives, is not without problems. Wang

writes in his introduction to (Skolem, 1970): “it is not clear how one can turn this suggestive

argument into a convincing proof” (Wang, 1970, p. 26). I concur with this assessment. In

particular, the existence of a bound on the level of the constant terms in U0 relies on syntac-

tical considerations about the system S that are nowhere mentioned by Skolem. Without

erecting a formal framework which would be antithetical to Skolem’s sensibilities, the argu-

ment is too sketchy to warrant being considered an actual proof.
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In the next chapter, I argue that Skolem’s intent is not to prove completeness or consistency,

but to sketch a method for proving decidability.

4.5 Conclusion

This chapter began with a reconstruction of Skolem’s 1922 proof of the weak version of

Löwenheim’s theorem. Skolem’s construction resembles Löwenheim’s on the “tree of so-

lutions” interpretation. By defining an ordering on the solutions at each level, Skolem

gives a convergence argument that takes the place of an infinity lemma and fills the gap in

Löwenheim’s proof. I then looked at the main argument of (Skolem, 1928), for Theorem 4.2.1

above. This theorem admits of at least three different interpretations. I looked at how each

interpretation responds to three issues: whether Skolem uses “consistent” in a syntactical or

a semantical sense, whether the proof is finitistic, and whether the proof is complete. I then

reconstructed the proof on two of these interpretations, the second of which will be defended

further in Chapter 5 as part of a revisionary account of Skolem’s aims in 1928.
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Chapter 5

Completeness in the Shadow of

Decidability

5.1 Introduction

This chapter will give a revisionary account of why completeness went overlooked by Skolem.

I argue that the ability to recognize completeness as an interesting and distinct property of

logical systems presupposes certain contextual features that were absent in Skolem’s pre-1930

context. These features are introduced in Section 2 and used to challenge a presupposition

of The Puzzle. In section 3, I argue for the untenability of Gödel’s explanation of Skolem’s

argument in 1928. I defend an alternative interpretation of Skolem’s reasoning in light of his

aim to prove a decidability result for all first-order logic formulas.
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5.2 Completeness in context

In this section, I argue for three contextual features that promote the recognition of com-

pleteness as an important property of first-order logic. I argue that the absence of these

features in Skolem challenges a presupposition of The Puzzle. Skolem’s inattention to a

completeness result is neither puzzling nor contemptible when his proper context is taken

into account.

5.2.1 Completeness and the decision problem

An overlooked1 but crucial step in the progression towards a completeness proof is the

recognition of completeness as a property distinct from decidability. I argue that when this

distinction is absent, completeness often coincides with semi-decidability, and its interest is

therefore overshadowed by the interest of decidability.

The aim of the first feature is therefore to preserve the conceptual independence of com-

pleteness by way of a distinction between proof and decision procedures:

Feature 1 A framework in which deductive proof procedures are distinguished

and investigated separately from decision algorithms.

Today, the conceptual distinction between decidability and completeness is taken for granted,

usually with reference to the discovery that it is possible for theories to be complete yet

undecidable, or conversely, to be decidable yet incomplete. For example, the theory of al-

gebraically closed fields (without fixed characteristic) is a decidable but incomplete theory.

Decidability in this context is a property that holds of a theory T, considered as a set of sen-

tences closed under logical consequence, when there exists an algorithm that can effectively

1With the exception of Manzano and Alonso (2013).
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decide the membership relation for T.

Decidability is also used to refer to the property a deductive system has when there exists an

effective algorithm that can decide membership in its set of logical validities. The question

of whether first-order logic possesses this property is known as the “Entscheidungsproblem”.

As stated by Hilbert and Ackermann in 1928:2

The Entscheidungsproblem is solved when we know a procedure that allows for

any given logical expression to decide by finitely many operations its validity or

satisfiability.[...] The entscheidungsproblem must be considered the main problem

of mathematical logic.3 (Böerger, Grädel, and Gurevich, 1997).

Today we know that completeness comes apart from decidability in this sense also: first-

order logic was discovered by Gödel to be complete, and by Church and Turing (1936/37)

to be undecidable.

But prior to this discovery, the decision problem for first-order logic was not always clearly

distinct from the problem of completeness.

Consider the fact that any decision algorithm for validity can be transformed into a proof

procedure. A decision algorithm gives a finite method that when applied to any formula

F, will either determine that F is valid, or, will determine that F is invalid. Starting with

any valid formula, by actually carrying out the steps of the algorithm we can construct an

informal proof of that validity.4

2The origins of this problem go back to the seventeenth century with Leibniz’s search for a machine that
could mechanically calculate or “decide” the truth value of any mathematical statement. Meanwhile, in the
algebraic tradition starting with Boole, decision problems for validity were represented and investigated as
problems of algebra - deciding whether or not an equation has solutions. In the context of first-order logic,
Behmann claims to have been the first to explicitly state the decision problem. He went on to solve it for
monadic second-order logic (see Mancosu and Zach, 2015).

3A more precise statement would later be given using the notion of effective computability, formally
characterized in terms general recursive functions, Turing machines, or the lambda calculus (these charac-
terizations were shown to be equivalent).

4For example, suppose the decision algorithm gives a way of recursively enumerating the validities with
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I argue that this sort of conflation between proof and decision procedures can devalue the

question of completeness. It does so by erasing the distinction between completeness and

semi-decidability, i.e., between asking whether a procedure can prove all the valid formulas,

and asking of the same procedure whether it can decide, for any valid formula, that it is in

fact valid.5

Semi-decidability, as the name implies, only yields half of what we get from full decidability.

Full decidability additionally requires that the procedure can effectively determine when a

formula is not a validity.6

For logicians first setting out to investigate these properties of logical systems, it would

have been natural to regard a proof of the semi-decidability of validity/unsatisfiability as a

methodological stepping stone towards proving decidability. It would not have been natural

to regard semi-decidability as an end in itself, unless there was prior knowledge that full

decidability was unattainable (see feature 3 below). Thus, when the question of completeness

is only investigated as part of the decision problem, the interest of both completeness and

semi-decidability becomes subordinate to that of decidability. This was the situation for

Skolem writing in 1928.

Proof versus decision procedures in Skolem

Recall the procedure R reconstructed in Chapter 4 from Skolem’s (1922) proof of the LST.

Skolem adapts this procedure as part of his 1928 proof of decidability for the fragment of

first-order logic with quantifier prefix ∀x∃y1, ..., ym.

the guarantee that any valid formula will eventually appear on the list. This algorithm can generate a proof
for any valid formula. The proof is a list, in order, of the valid formulas enumerated by the algorithm. The
target formula is proven when it appears on the list, as the last line of the proof.

5Equivalently, to decide, for any unsatisfiable formula, that it is unsatisfiable.
6In contrast, when a formula is not valid, completeness does not require that the proof procedure produce

a refutation. Instead, it may simply never terminate in its search for a proof. This is because there are
closed formulae like ∃x∃y(x ̸= y) that are not valid and yet the negation ∀x∀y(x = y) is not valid either.
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As described in Section 4.4.2:

The procedure has two possible outcomes. The first is that all possible assign-

ments are ruled out by reaching a level n and formula An that cannot be satisfied

by any extension of assignments to earlier levels. In this case the formula is shown

to be unsatisfiable or “contradictory”. The other possibility (for formulas of this

prefix) is that the procedure reaches a level n such that the solutions that have

extensions of level n + 1 are the same as those that have extensions of level n.

Since the assignment of truth values to the atomic components of level n is in-

dependent of the assignment of truth values to atomic components of all levels

earlier than n− 1,7 the formula is revealed to be “consistent”, i.e., satisfiable.

Note that the restriction to formulas of a certain prefix only comes into play for the second of

the two possible outcomes of the procedure. In the case where a formula A is unsatisfiable,

R can be used to show unsatisfiability regardless of quantifier prefix (provided A is in normal

form).

R is a semantic procedure. Like the truth table method for propositional logic, it searches

through “solutions” - assignments of truth values to instances of a given formula - looking

for a level where no possible assignment to atomic components can render true the instance

of that level.

This is in sharp contrast with the deductive procedure for which Gödel proves completeness,

namely the “restricted functional calculus” of Russell and Whitehead’s Principia8. The

propositional fragment of this system is likewise the object of Post’s (1922) completeness

proof for propositional logic. The system is based on syntactical formation and inference

rules that apply to formulae as uninterpreted objects. The burden of the completeness

7Again, only for formulas with this prefix.
8Gödel follows the presentation given in (Hilbert and Ackermann, 1928)
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theorem is to show how the purely formal calculus connects up with the semantics, i.e., the

truth or satisfiability of the formulae.

The semantic nature of Skolem’s procedure therefore seems to place it in opposition to the

notion of proof involved in standard formulations of the completeness theorem. Despite this,

R is the basis for the claim made by Gödel, Wang, Goldfarb and others that Skolem had a

“refutation procedure” for which he should have proved informal completeness.9

That is, in proving the LST, Skolem should have recognized the following corollary:

Informal Completeness of R(IC) For a given formula F, either F is refutable

by R, or, F is satisfiable.

It will be argued in Section 3 that (IC) misrepresents Skolem’s aim in 1928. What Skolem

actually wishes to show is that R constitutes a decision algorithm for validity. As a result,

there is no distinction for Skolem between the decision procedure he hoped would yield

decidability, and the procedure that Gödel and others attribute to Skolem as a refutation

procedure designed to disprove formulae. This means that feature (1) does not hold: the

deductive proof procedure attributed to Skolem is not distinct from the decision algorithm

he hopes to use to identify both the valid and invalid formulas.

5.2.2 Summary

This section argued that the absence of feature (1) - the separation between proof and

decision procedures - makes it difficult to recognize completeness as a property distinct from

semi-decidability and therefore, as being of interest outside the context of an anticipated

decidability result. This argument applies to Skolem. Feature (1) is notably absent from his

9See for example Wang, 1970, p. 21-22.
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(1928), the main aim of which was to show not completeness but decidability. The informal

procedure R for which Skolem could have proven completeness was conceptualized by him

as a decision procedure, making completeness synonymous with semi-decidability.

There is also a positive argument for feature (1). When the distinction between proof and

decision procedures is present, it introduces a conceptual gap between the set of validities

identified by the decision algorithm, and the set of theorems derivable in the proof calculus.

This separation leads naturally to the question of completeness: does the proof procedure

of the calculus allow us to prove all the valid formulae identified by the decision algorithm?

The next section introduces another key distinction that gives rise to this question.

5.2.3 Semantics vs. Syntax

The second contextual feature also aims to differentiate validity from theoremhood:

Feature 2 A clear distinction between semantics and syntax.

Unlike the first feature, (2) has been widely mentioned in the literature. Moore, for example:

In his doctoral dissertation, which established the completeness theorem for first-

order logic, Gödel exhibited a more profound understanding of the distinction

between syntax and semantics - as well as their interrelationship - than had

his predecessors. Skolem had failed to observe this distinction, especially as it

concerned consistency and satisfiability, by expressing Löwenheim’s Theorem in

the following form: A first-order sentence is either inconsistent or else satisfiable

in a countable domain. However, Skolem demonstrated only that if a first-order

sentence is satisfiable in a set M it is satisfiable in a countable subset of M.
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What Gödel later established was essentially Skolem’s stated theorem. Thus the

completeness theorem for first-order logic arose in 1930 rather than a decade

earlier. (Moore, 1979, p. 125)10

As Moore observes, the clear syntax/semantics distinction drawn by Gödel allows him to

adapt Skolem’s proof of the LST by taking the notion of inconsistency in a syntactic sense,

and contrasting it with the semantic notion of satisfiability. This gap between the notions

of semantic and syntactic consequence is then bridged by his completeness proof.

The discussion of feature (2) in the literature has focused predominantly on what Gödel

achieved by recognizing the distinction. This section looks at how the absence of feature (2)

affects the question of completeness for Skolem.

The following argument, like the one given in the preceding section, is based on the idea

that key distinctions are needed to differentiate completeness from other results. Gödel and

others have used the proximity between a completeness proof and Skolem’s proof of the

LST to argue that Skolem ought to have recognized the easy inference connecting the two

theorems. I argue that the proximity between completeness and the LST was not an aid

but a hindrance to Skolem’s recognition of the former. Feature (2) - the semantics/syntax

distinction - is absent in Skolem’s informal setting, but is crucial to establish completeness

as conceptually distinct from the LST.

In order to claim that Skolem ought to have recognized completeness, Gödel maintains that

the notion of completeness does not depend on a formal framework:

10Moore’s target here is Skolem’s (1928) statement of the LST - the same statement that arguably implies
(IC) above. The observation that Skolem fails to distinguish semantic and syntactic senses of “inconsistent”
fits with our claim that the “refutation” procedure attributed to Skolem is more charitably understood as a
semantic decision procedure.
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It may be true that Skolem had little interest in the formalization of logic, but

this does not in the least explain why he did not give a correct proof of that

completeness theorem which he explicitly stated (op. cit., p. 134), namely that

there is a contradiction at some level n if there is an informal disproof of the

formula. (Letter to Wang, 1967, in [Wang, 1970] p. 10)

I agree with Gödel that a formal concept of proof is not essential in order to raise the question

of completeness.11 However, an unforeseen consequence of transposing completeness to the

informal setting is that it removes the basis - via feature (2) - for distinguishing it from a

result already familiar to Skolem. This can be seen by looking at the role of feature (2) in

Gödel’s proof of completeness.

Gödel’s semantics vs. syntax distinction

The crucial step that characterizes Gödel’s proof is his lemma 1.3.2 (see chapter 1 above).

This lemma states, roughly, that for every n, the implication A → An is provable in the

object theory.12 It is the only step in Gödel’s proof that cannot be meaningfully stated

in the absence of feature (2). It is also the step that differentiates the content of Gödel’s

theorem from that of Skolem and Löwenheim’s proofs of the LST. Apart from this lemma,

Gödel’s proof consists in formalizing the steps taken by Skolem in 1922 where he shows that

the satisfiability of every An implies the satisfiability of A.

Lemma 1.3.2 relies on an explicit distinction between the formal, uninterpreted calculus in

which the implication A→ An is provable for every n, and the semantic content of what the

implication expresses - that the truth of A implies the truth of each of the approximating

11Quite generally, this is the question of the adequacy of a procedure to prove all of a given set of sentences
(in this case, the validities). This is conceptually independent of the particular procedure and corresponding
definition of “proof”, though both evidently bear on how one actual proves (in the metatheory) that the
procedure has the desired property.

12For Gödel, the system of Principia.
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instances An.
13 This distinction in Gödel is made possible by the formal proof calculus laid

out explicitly as the object of investigation. In Gödel’s system, the refutability of a formula

A means that it is possible to derive the negation of A by the axioms and inference rules of

the “restricted functional calculus” (see above). Recall that the aim of completeness is to

show that for any formula A, if A is not satisfiable, then A is refutable in this sense.

On Gödel’s definition of what it is to refute a formula, merely constructing the formulae An

and checking their satisfiability does not suffice as a means to refute A. Finding an n such

that An is unsatifiable yields at most a derivation of ¬An. By the syntactic definition, this

is not identical with a derivation of ¬A. This is where lemma 1.3.2 comes in, enabling the

move, inside the proof system, from the refutability of some An, to the refutability of the

original quantified formula A.

To summarize, the conceptual gap between unsatisfiability and refutability is brought to

light by Gödel’s formal notion of refutation. The gap is bridged by his lemma 1.3.2. This

lemma is the locus of the semantics/syntax distinction in Gödel and what differentiates his

completeness proof from earlier proofs of the LST.

Defining away the gap between semantics and syntax

Refutability has a quite different meaning in Skolem’s informal setting and relative to his

procedureR. To say that A is refutable byRmeans that we can find a finite level n such that

the nth level expansion An has no satisfying interpretations (Cf. [Goldfarb, 1971, p. 522]).

13Juliette Kennedy writes,

This lemma is the main step missing from the various earlier attempts at the proof due to
Löwenheim and Skolem, and, in the context of the completeness theorem for first order logic,
renders the connection between syntax and semantics completely explicit.

Neither Löwenheim nor Skolem attempted completeness proofs. Kennedy is likely referring to the proximity
with the LST mentioned above.
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Note that this is not Skolem’s own definition of refutation14, but the definition foisted on

him by those, including Gödel, who think that he should have recognized R as a refutation

procedure, rather than a semantic decision procedure.

When refutation is defined in Skolem’s way, an analog to Gödel’s lemma becomes unnecessary

because a refutation of An yields a refutation of A by definition. This brings Skolem even

closer to a proof of informal completeness since, granting this step, all the component parts

of the proof are already available in his proof of the LST. But in consequence, it becomes

difficult to see anything very interesting or novel in the question of the completeness of the

informal procedure R. “Every formula is either refutable by R or is satisfiable” becomes:

For every formula A, either we can find an n such that the nth expansion of A

is truth-functionally unsatisfiable, or, A is satisfiable.

Compare,

If for every n the nth expansion An is satisfiable, then A is satisfiable.

With the added specification that the domain in which A is satisfiable is countable, this

is just the Löwenheim-Skolem theorem. The only thing separating these two theorems is

the distinction between being unable to find an n for which An is unsatisfiable, and the

non-existence of such an An. This is a distinction that Skolem glossed over. In doing so, he

was either taking the completeness of his refutation procedure for granted, or recognizing it

as following trivially from the LST.

14A concept Skolem never explicitly mentions.
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A defensible notion?

On the one hand, the argument just given is favourable to Skolem in that it challenges Gödel’s

assumption that Skolem failed to recognize completeness. Skolem may have recognized the

latter as a corollary and yet neglected to state what he took to be a trivial restatement of

the LST.

On the other hand, it could be countered that endorsing a concept of refutation that obviates

the need for Gödel’s lemma is itself an intellectually blameworthy move. Skolem can still be

charged with failing to recognize the distinction between showing some An to be unsatisfiable,

and showing the formula A to be unsatisfiable, a distinction that is defined out of existence

by his notion of refutation. For this reason, Skolem ought to have rejected that notion as

untenable.

In Skolem’s defense, I claim that the coherence of this counterattack presupposes feature

(2), the semantics/syntax distinction. When and only when the latter distinction is in place

does it become inappropriate to bridge the resulting gap by definition.

In a context where feature (2) is absent however, Skolem’s informal notion of refutation is jus-

tified by implicit arguments that were standard at the time. Skolem (and Löwenheim) take

it to be self-evident that the unsatisfiability of one of the propositional An implies the un-

satisfiability of the quantified formula A. This self-evidence stems from an implicit semantic

argument based on the conception of quantified formulas as infinite conjunctions/disjunctions

of instances formed in the manner of the An.

Today we would be inclined to dismiss such justifications as “semantic” and as extraneous to

the question of the inferential connections between certain formulae - the question addressed

by Gödel’s lemma 1.3.2. But this objection is anachronistic in Skolem’s context. For one,

Skolem’s proof procedure is also, from a modern perspective, “semantic”, making it unclear
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what type of justification one could give other than an appeal to interpretations of the

formulae.

But even this misses the point. Without feature (2), there is nothing to distinguish these

sorts of arguments as semantic in the way we now understand that term. As Manzano and

Alonso write:

To speak of semantics in the 1920s can be seen [...] as a misconception largely

motivated by the mere transposition of the structure and organization that these

notions have at present. (p. 56)

Thus, it is not surprising that despite frequently invoking the concept of satisfiability, Skolem

never gives an explicit definition of semantic consequence.15

The charge of anachronism is even stronger in speaking about Skolem’s “syntax”. Skolem did

not present his arguments in the framework of a formal axiomatic system or formal language.

As a result, the notion of syntax as dealing with the formation and inference rules for such

languages is not applicable. The closest Skolem comes to specifying a formal language is his

adoption of Schröder’s notation in his (1922). Even here, he fails to distinguish between the

mathematical operations and the symbols that denote them and does not mention rules of

inference.

There is no evidence that this imprecision ever leads Skolem’s arguments astray.16 At most

15The closest Skolem comes to defining it is in his 1928 discussion of problems”: If U and V are first
order propositions and we pose the question whether V follows from U, this is equivalent to asking whether
[U ∧ ¬V ] is a contradiction or not. (1928, p. 517)
It is evident from the context and the lack of a formal system that Skolem intends “contradiction” in the

semantic sense: U ∧¬V is a contradiction if it is unsatisfiable, i.e., if it is impossible for U to be true and V
to be false at the same time. This definition could easily be generalized to sets of formulas, and made precise
in terms of the concept of satisfiability already at play in Skolem’s work. Skolem himself though, shows no
inclination to do this.

16It is uncharitable to label as “conflations” the ways in which Skolem fails to align with modern termi-
nology. The strict separation of semantics from pure syntax is a pervasive feature of contemporary logic and
this gives the impression of its necessity. However, the early decades of the twentieth century did not share
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it results in the glossing of steps that we would now expect to be spelled out in formal detail.

Gödel’s lemma is one of these.

Summary To summarize the argument of this section, the place where the syntax/semantics

distinction is most in evidence in Gödel’s proof of completeness is his Lemma 1.3.2. No anal-

ogous lemma can be attributed to Skolem because, like Löwenheim before him, Skolem did

not recognize any gap between showing some finite expansion An to be refutable (unsatisfi-

able), and showing the original quantified formula A to be unsatisfiable. In Skolem’s proper

context, this need not be viewed as an oversight. Justifications for the immediacy of this

step can be given by appeal to the interpretation of the quantifiers and our contemporary

reasons for prohibiting such appeals do not come into play in the informal setting where

feature (2) is absent.

However, adapting the concept of completeness to apply in Skolem’s informal context ulti-

mately obscures the distinction between it and the LST. Even if we accept the implicit seman-

tic arguments that make lemma 1.3.2 unnecessary, there is still the question of why Skolem

would recognize completeness as a conceptually distinct result: without lemma 1.3.2 to dis-

tinguish it, informal completeness coincides with the proof already given of the Löwenheim-

Skolem theorem.

the viewpoint that came to dominate logic after 1930. As mathematician Andrej Bauer writes:

[T]he mindsets of the early 20th century logicians were closer to that of categorical logic than
first-order logic and model theory. Or to put it another way, the conflation of syntax and
semantics was not a mistake. Using the word “conflation” to describe what they did betrays a
very syntactically minded view of logic rooted in philosophy of language–which came later to
dominate logic for several decades. It is easy to argue in the opposite direction and present the
dichotomy as a flaw: the preoccupation with pure syntax by logicians of the mid 20th century
demonstrates their inability to think abstractly, and can be likened to the historic period of
mathematical analysis during which “function” was equated with “expression”. (Correspon-
dence [url: https://mathoverflow.net/q/319921], Math Stack Exchange, 2019)
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5.2.4 Undecidability

The third feature does not have the benefit of historical confirmation. Nonetheless, I spec-

ulate that Church’s undecidability theorem, had it been discovered during the 1920s, might

have helped distinguish completeness even in contexts where feature (1) - the distinction be-

tween proof and decision procedures - is not fulfilled. Whereas completeness in the shadow

of decidability appears as a weak corollary, completeness in the shadow of undecidability

appears as a surprising and optimal result. Surprising, because the notion of validity that

is seemingly out of our reach via finite decision procedures is nonetheless accessible as the

counterpart of what is finitely provable. Optimal, simply because this is the only way we

can access it. Hence:

Feature 3 Proof of the undecidability of the class of formulae for which com-

pleteness is at stake.

This feature potentially applies even in the absence of a sharp distinction between decision

and proof procedure. For example, the original aim of Skolem was to find a decision procedure

that would construct a model if the formula is satisfiable, or find a contradiction if the

formula is unsatisfiable. In this context, if it was discovered that finding a model is not a

recursive procedure, then the informal completeness of the same procedure might emerge as a

significant finding. The sought-after effective method for constructing a model is replaced by

the construction yielded by the Löwenheim-Skolem theorem (using non-finitary reasoning)

because it is recognized that the former goal is impossible.

5.2.5 Summary

In this section, I argued that each of the contextual features introduced above is conducive to

the framing of the completeness theorem as a distinct and interesting result. None of these
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features are claimed as necessary conditions on the recognition of completeness. However,

the absence of all three in Skolem’s context lends support to my claim that Skolem’s failure to

acknowledge completeness does not have the inexplicable character that Gödel attributes to

it. This claim is backed up by the argument given in the following section, where I argue for

the untenability of Gödel’s own answer to his puzzle, and give an alternative interpretation

of (Skolem, 1928) to fill the resulting explanatory gap.

5.3 Skolem 1928

Recall Gödel’s explanation for why Skolem failed to acknowledge a completeness theorem

implicit in his (1928) when supplemented with the (1922) proof of the LST:

I think the explanation is not hard to find. It lies in a widespread lack, at

that time, of the required epistemological attitude toward metamathematics and

toward nonfinitary reasoning. [...]

[Skolem] was a firm believer in set theoretical relativism and in the sterility of

transfinite reasoning [...]

[E]vidently because of the transfinite character of the completeness question,

[Skolem] tried to eliminate it, instead of answering it (Letter to Wang, 7 December

1967, in Wang, 1996, p. 124).

In chapter 3, I identified the sense of non-finitary reasoning specific to Gödel’s claim. A

completeness proof is “essentially infinitary” in that it requires applying the law of excluded

middle to - and therefore quantifying over - the actually infinite set of An. First, to obtain

the basic alternative, and again in the infinity lemma step that Gödel’s proof shares with

Skolem’s (1922) proof of the LST. “Finitism”, in Gödel’s sense, is the intentional avoidance

of such quantifications, allegedly motivated by epistemological concerns.
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In the following section, I argue against the impression that the syntactic argument Skolem

gives on pg. 519 is evidence of finitism in Gödel’s sense. There is no basis for thinking that

Skolem avoids taking infinitary steps17 for this reason. In place of Gödel’s explanation, I

give a new defense of the syntactic interpretation discussed in Section 4.4.3. I argue that,

in addition to being the most charitable of the interpretations put forward, it is consistent

with Skolem’s aim of extending a limited decidability result to formulae of any prefix.

5.3.1 Evidence of finitism

In 1928, Skolem states the following:

The real question now is whether there are solutions of an arbitrary high level or

whether for some n there exists no solution of the nth level. In the latter case

the given first order proposition contains a contradiction. In the former case, on

the other hand, it is consistent.

.

In Chapter 4, I considered two interpretations of this statement as theorems 4.5 and 4.6

respectively. For neutrality, I will refer to the above statement simply as “The Theorem”.

The argument Skolem gives for The Theorem is, as discussed in Chapter 4, the main point

of contention in the 1928 paper.

There are two main pieces of evidence that have prompted Gödel and others to label Skolem’s

reasoning as “finitistic”. The first is Skolem’s statement of The Theorem itself, the second

is the syntactic nature of the argument Skolem gives for it.

17Steps already taken in his (1922)
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Arbitrary versus Every

The phrase “solutions of arbitrary high level” used in Skolem’s statement of The Theorem is

suggestive. Why does Skolem not say “solutions of every level”? It would be understandable

to read into this change of language the views on quantification that Skolem expresses in his

[1923]. In that paper, Skolem takes a skeptical stance towards unbounded quantification over

infinite domains. He propounds what is now called primitive recursive arithmetic (PRA) as

a quantifier-free alternative foundation for mathematics. These views also characterize the

sort of finitism that Gödel is argued (in chapter 3) to have in mind when he claims that

the proof of completeness is essentially infinitary. I identified Gödel’s non-finitary reasoning

with the quantification over infinite totalities occurring in the applications of law of excluded

middle in his proof of completeness.

There is, however, no evidence that Skolem extended the [1923] views to his [1928]. The

latter paper makes no reference to the earlier paper, nor to the “problem” of quantification.

Moreover, it is not unprecedented for Skolem to use ambiguous (indeed,“potentialist”) lan-

guage when discussing quantification, apparently without intending any philosophical com-

mitment. This appears frequently throughout his work, including his [1922] which predates

Skolem’s concerns about quantification.18 For example, Skolem in [1922] describes the exis-

tence of solutions for all n in terms of the ability to “indefinitely extend” a given solution.

The hypothesis of the LST guarantees that “it must be possible to continue the process [of

finding solutions] in this way indefinitely” (p. 294). He then gives a convergence argument

to show how the solutions guaranteed at each level form a satisfying interpretation for the

quantified formula. This step, equivalent to König’s infinity lemma, requires an application

of the law of excluded middle to the completed set of solutions for every level n. Either we

18More accurately, the paradox Skolem develops on the basis of the 1922 proof of the LST is one of the
motivations for the skepticism about quantification that leads Skolem to endorse recursive arithmetic without
quantifiers.
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charge Skolem with the large oversight of having failed to recognize that such quantification is

required for the step in question, or we acknowledge that for Skolem it was legitimate to pass

directly from a method for constructing solutions for arbitrary n (“indefinite extensibility”),

to the existence of solutions for all n.

This same tendency is evidenced elsewhere in [1928]. When he proves decidability for for-

mulas of prefix ∀x∃y1, ..., ym, Skolem describes his decision procedure in schematic terms,

avoiding a quantification over the totality of integers:“we recognize that it is then possible,

for each new argument sequence of the individual variables . . . to form a corresponding

[solution] that is consistently compatible with the [solutions] set up for the earlier argument

sequences” (p. 520). From this schematic solution, Skolem concludes immediately to the

satisfiability of the formula.

But when Skolem reformulates the problem for a specific example, he includes the quantifi-

cation:

In the arithmetic formulation the problem is: Investigate whether it is possible

to determine the function A(x, y), whose values shall be restricted to 0 and 1, in

such a way that for all n, n = 0, 1, 2, . . . ,max(A(n, n+1),min(A(n, n), 1−A(n+

1, n+ 1))) = 1.

Skolem goes on to show how the specific problem is solved “for all n” using the schematic

procedure above, thus ignoring the apparent distinction between“all n” and “arbitrary high

n”.

For these reasons, little weight can be placed on Skolem’s wording in the formulation of The

Theorem.
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Syntactical Reasoning

The language Skolem uses when talking about quantification is one of two arguments in

support of Gödel’s charge of finitism.19 The other is Skolem’s syntactical turn in the passage

on pg. 519. This results in an argument which is indeed finitary in the sense that it appeals

only to syntactical features of formulas as finite sequences of symbols. In this way, it avoids

any applications of the law of excluded middle to infinite sets. However, the argument is

opaque and, according to commentators, inconclusive. Alternatively, by appealing to the

infinity lemma used in the LST, Skolem could have inferred directly from the existence of

solutions for arbitrary high n to the satisfiability of the formula as he did in [Skolem 1922].

Gödel sees no other explanation for Skolem’s turn to syntax than a desire (that was absent

in [1922]) to avoid the lemma on account of its non-finitary character (in the sense explained

in chapter 3, section 3.3.2).

I argue that Gödel’s explanation disregards other reasons Skolem could have for not using

the 1922 lemma in this particular context. Immediately following the syntactical argument,

Skolem writes: “to be sure, the procedure . . . is infinite, but can be made finite in certain

cases”. He goes on to describe these cases and thereby prove decidability for the formu-

las of prefix ∀x∃y1, ..., ym. This proof presents the most telling evidence against Gödel’s

interpretation. —

5.3.2 Appealing to the infinity lemma to prove decidability

In the decidability proof for the class of formulas with prefix ∀x∃y1, ..., ym, Skolem shows

how his procedure R can be adapted to give a decision procedure for determining which of

the disjuncts of the basic alternative is true: either for some n there are no solutions of level

19These arguments are made on behalf of Gödel who does not explicitly give any support for his allegation.
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n, or, there are solutions for every n.20

The general idea of the procedure is as follows. Let U = ∀x∃y1, ..., ymF . Recall that

R searches for inconsistencies amongst the atomic propositions that are formed when the

argument variables of propositional functions in F are replaced by ordered sequences of

integers (Skolem’s “argument sequences”). The resulting formulas are analyzed for truth-

functional consistency by the methods of propositional rather than predicate logic. Argument

sequences assigned to the variables determine the identities between atomic propositions and

these constrain the assignments of truth values that constitute solutions to the formulas of

a given level.

For example, if B(x, x) and B(y, y) are atomic propositional functions occurring in F , the

assignment of integers to x and y will differ for each level, but the relevant feature of these

assignments is whether the instantiation of B(x, x) at one level is identical with the instan-

tiation of B(y, y) at another. This depends on whether the argument sequences of different

levels21 have common elements. In fact, Skolem’s construction guarantees such common

elements - integers are assigned to ensure that every new y-value introduced will become a

value of x higher up.22 The resulting duplications of atomic propositions across levels raise

the possibility of contradiction and must be accommodated when determining consistent

extensions of solutions from one level to the next.

What makes the decision problem tractable for formulas of prefix ∀x∃y1, ..., ym is that each

argument sequence of level n (n > 0) will have only a single element in common with the

argument sequences of level n − 1, and no elements in common with levels below n − 1.

As a result, duplications of atomic propositions will only occur between consecutive levels.

Consecutive levels will also have the same pattern of contradictions or consistencies amongst

20Each formula generates its own instance of this alternative, which is indexed to the construction of
expansions An.

21Each level after the first will have multiple argument sequences.
22This is how the instances approximate to the quantified formula in the limit.
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atomic propositions.23

For this reason it suffices to look for the first level n such that, of the paths through the

tree of solutions that reach level n, all can be consistently extended to the next level. The

pattern of consistency between the solutions at levels n and n+1 will then hold for any level

m > n, contradictory assignments having already been eliminated at earlier levels.

The existence of such a level can be decided in finite time. All paths through the tree

of solutions must start from one of finitely-many solutions of level 0. These solutions are

progressively narrowed down as the paths terminate at higher levels. The method just

described has two possible, mutually exclusive outcomes. One, it eliminates all level 0

solutions, reaching a level after which none of the level 0 solutions can be extended. Two, it

reaches the level n described above where all the level 0 solutions with extensions through

the nth level can be consistently extended through the n+1th level. In the former case, the

formula is contradictory; in the latter, it is possible to describe a solution that holds for the

nth level formula, for arbitrary n. Decidability follows by the infinity lemma step taken in

(Skolem, 1922) and the conflation mentioned in the previous section: if there are solutions

for all n, then the original formula U has a solution defined by ordering the solutions at each

level.24

Implications for Gödel’s argument

This result cannot be ignored when assessing Skolem’s motives in the syntactical passage.

It challenges Gödel’s explanation in two respects.

First, if Skolem is willing to use the 1922 lemma to prove decidability for the subset of

23For example, if B(x, x) and ¬B(y, y) are atomic functions occurring in F , a contradiction will arise at
every consecutive pair of levels between the propositional values of these functions, because y at level n will
equal x at level n+ 1.

24In the second situation, Skolem simply concludes: “The formula is consistent”, using “consistent” here
in the (for him) standard semantic sense of “satisfiable”.
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formulas with prefix ∀x∃y1, ..., ym, why would he shy away from it for the theorem on pg. 519?

Attributing this reluctance to Skolem’s “finitistic prejudices” requires that these prejudices

be confined, inexplicably, to a single result in the 1928 paper.25 What is it about The

Theorem in particular that explains a “finitistic” approach that is not upheld elsewhere in

the paper?

Second, this is the only place in the paper where Skolem explicitly mentions anything to do

with finitism. But the comment is not in the direction that supports Gödel’s reading.

As quoted above, following the syntactical passage, Skolem writes: “to be sure, this procedure

is infinite, but it can be made finite in certain cases”. He then gives the proof of decidability

discussed above for formulas with prefix ∀x∃y1, ..., ym. (It is not clear which procedure

Skolem is calling infinite in this quote, but most plausibly it is the procedure R rather than

the procedure described in the syntactical passage. This is because the latter procedure is

arguably finite, and furthermore, it is not this one but the procedure R that Skolem goes on

to “make finite” for certain cases.)

Although “finitary procedure” was not a precise notion in 1928 (awaiting the definitions

of recursive function and effective computability in the 1930s), the procedure Skolem gives

for the restricted class of prefixes is what we would expect when using “finitary” in the

intuitive sense required by the criteria of decidability, i.e., a procedure that can be executed

by a human in a practicable number of steps. This is not the sense of non-finitary we

distinguished in chapter 2 in connection with Gödel’s proof of completeness. As analyzed in

that chapter, the sense in which the LST, like Gödel’s proof of completeness, is non-finitary is

that its proof makes essential use of the law of excluded middle applied to infinite totalities.

25Varying degrees of rigor with respect to different results in a single paper are sometimes justified by
differences in the nature of the results being proven. This defense on Gödel’s behalf presupposes that
Skolem was attempting something like a completeness proof, as distinct from the proof of decidability he
gives immediately following the pg. 519 passage. If both proofs are conceived as decidability results, one a
subset of the other (as I argue below), then the methodological rigor demanded by the nature of the result
should be the same in both cases.
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Skolem’s comment does not fit well with the latter meaning of non-finitary, which applies to

the nature of a proof (at the meta-level, as we would recognize it) rather than a procedure.

In the next section, I give a new argument in support of one of the interpretations of the

passage on pg. 519 already discussed in Chapter 4. This interpretation is argued to consist

with Skolem’s aim of proving decidability and to better explain the two features just noted.

5.3.3 A new argument

Gödel’s puzzle is premised on the idea that Skolem’s Theorem is a completeness theorem.

This interpretation is understandable in light of the fact that Skolem standardly uses “con-

sistent” to mean “satisfiable”. Skolem appears to equivocate on this meaning by arguing

for syntactic consistency. Gödel naturally assumes that his intention was to argue for satis-

fiability, thereby proving completeness, but that philosophical considerations forced him to

approach that theorem syntactically.

I argue instead that Skolem never intended to prove completeness, although it would have

followed as a corollary of the decidability result he did intend to prove. Skolem’s avoidance

of the infinity lemma can be seen as motivated not by Gödel’s sort of “finitistic prejudices”,

but by the recognition that the lemma is not helpful to prove decidability in the case of

general prefixes. This is because the lemma works in application to the basic alternative,

and in the case of general prefixes, there is no decision procedure for determining which of

the disjuncts of this alternative holds (for simplicity, I will imprecisely refer to the latter as

the “decidability of the basic alternative”). 26

Of course, Skolem’s search for a decision procedure in 1928 carries with it finitism of one

26The distinction between completeness and decidability, though obscured by Skolem’s framework,
reemerges in this avoidance of the infinity lemma. The lemma can be used to prove completeness, be-
cause it does not require deciding whether there exist solutions for all n - this can be simply assumed as the
hypothesis.
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sort, namely, the pre-existing but vague requirement that the procedure be executable in

finite time. This sort of finitism is consistent with his turn to syntax to bypass deciding

the basic alternative directly. If he could prove that each of the disjuncts of the basic

alternative was equivalent with a syntactic counterpart, the latter may have seemed more

tractable candidates for a decision procedure using the finitary character of syntax. This

would indirectly enable us to decide the basic alternative. From there, Skolem could use

the infinity lemma to prove that satisfiability is decidable, in the same way he does for the

restricted classes of prefixes. Unfortunately for Skolem, this attempt is destined to fail.

For general prefixes, determining which of the disjuncts of the basic alternative holds is an

essentially undecidable problem because first-order logic is undecidable.

Decidability and the basic alternative

The decision procedure Skolem gives, with reference to the construction of expansions An,

works in cases where argument sequences27 of consecutive levels have a limited number of

common elements, and those of non-consecutive levels do not have any common elements.

The formulas for which the argument sequences meet these criteria are, roughly, those with-

out multiple blocks of alternating quantifiers.

The method works by determining which atomic components can be assigned truth values

independently of the assignments at other levels, and which have to be checked for consistency

with assignments to the same components at lower levels. When common elements are

restricted to consecutive levels, Skolem can show that it suffices to look for the first level n

at which the existing paths from level 0 through level n can be consistently extended to level

n+ 1. If such a level exists, it is straightforward to define a general solution to the formula

for arbitrary n that is guaranteed not to encounter contradictions further up. As discussed,

27Recall that for a formula U = ∀x∃y1, ..., ymF , the argument sequences are the sequences of integers
that replace the argument variables of propositional functions in F to form expansion instances of U . Each
sequence represents an assignment to the variables of a single instance of F.
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Skolem takes this to imply a solution to the formula for all n, thereby deciding the basic

alternative.

Skolem extends this method to formulas with any finite number of universal quantifiers

followed by any finite number of existential quantifiers. But the method breaks down for

more elaborate prefixes. With multiple alternating quantifier blocks, argument sequences

may have elements in common with multiple arguments sequences across multiple levels.

The rapid increase in complexity, and the necessity of treating each variation separately,

would have undoubtedly motivated Skolem to search for a more manageable alternative.

A syntactic alternative

There is a natural analogy between the method of locating these propositional inconsistencies

(an atomic and its negation) between the expansions of different levels, and the question

Skolem asks according to the third interpretation of the passage on pg. 519. This is the

interpretation on which Skolem aims to prove that adding the functional form A* of A as

an axiom of a rudimentary system S does not result in syntactic inconsistency (see Chapter

4, Theorem 4.6).

In the reconstruction described in chapter 4, the functional form A* works as an axiom

schema. In place of the individual conjuncts of expansions in Skolem’s construction of

An, we have the possible instances of A* formed by replacing the variables by individual

terms. These terms are formed by arbitrary (finite) applications of the rule of substitution

in functional terms.

I speculate that Skolem saw the idea of determining the syntactic consistency of A* in the

system S as a way of approaching the insolubility of the basic alternative for general prefixes.

On this interpretation, Skolem’s aim is to show:
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• A* is syntactically consistent if there are solutions for all An

• A* is is syntactically inconsistent if there is a level n with no solutions

One direction may have seemed self-evident to Skolem. Notice that each An can be repre-

sented as a conjunction of instances of A* formed via the rule of substitution. When A*

is added as an axiom, all such instances are implied. If we assume that the system S is

sound (see below), then the syntactic consistency of A* would imply that none of the An are

unsatisfiable.28

This leaves the converse implication, that the existence of solutions for all An implies the

syntactic consistency of A* (contrapositive of the second implication above). I argue that

this is what Skolem tries to prove in the passage on pg. 519 (see the reconstruction in

Chapter 4).

If Skolem’s proof were successful in showing that there are solutions for all An if and only

if A* is syntactically consistent, this does not get us any closer to a decidability result. It

simply poses the question from a different angle. However, if Skolem could go on to show

that the syntactic consistency of A* in S was a decidable property, this would suffice to

decide by proxy which of the disjuncts of the the basic alternative holds. Skolem could then

appeal to the 1922 argument to prove that satisfiability is decidable.

Skolem, however, gives no indication of pursuing a decision procedure that would determine

the syntactic consistency A* in S. Immediately following his attempted proof, he shifts

attention to the cases for which “the procedure” can be made finite, referring to the method

R of checking solutions until we either reach a level with no solutions, or one at which the

solutions of that level coincide with those of the next. Perhaps this turn back to the original

28This is what Goldfarb means when he writes that “the connection between R and S is a triviality”
(Goldfarb, 1971, p. 524). Once variables have been substituted for, derivation in S is a matter of using
propositional rules to break down instances of A* into atomic components. If we can derive an atomic
and its negation in this way, the formula is inconsistent. This is the same criterion by which R determines
inconsistency in the semantic sense of unsatisfiability.
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procedure R (which “is infinite” for the general case), indicates that Skolem had his own

doubts about the viability of the syntactic approach absent a more specific framework in

which to expound it.29

5.3.4 Summary

This section argued against the impression that Skolem in 1928 intends to reason “finitis-

tically”, understood in Gödel’s sense as the intentional avoidance of the law of excluded

middle applied to completed infinite totalities. Gödel’s explanation does not hold up in the

face of an alternative explanation for Skolem’s reasoning in the passage on p. 519. The

alternative I give is based on the interpretation of this passage put forward by Goldfarb.

According to this interpretation, Skolem aims to show that adding the functional form A*

of A as an axiom of a rudimentary system S does not result in syntactic inconsistency. This

interpretation better explains the two features of Skolem’s argument that raise problems

for Gödel. First, there is no need to explain why Skolem would avoid the infinity lemma

step in this particular case but not in others since we have argued that Skolem did not in

fact have the qualms about its non-finitary character that Gödel alleges. Instead, Skolem

simply never reached the point in the proof of decidability for the general prefixes where the

infinity lemma would have been applicable. Second, his comment regarding the infinitary

character of the procedure accurately represents the sense in which he was concerned with

finitism. Not, as Gödel contends, as a requirement at the metalevel on the methods of avail-

able reasoning, but as a general (and at this point, still imprecise) requirement on object

level decision procedures.30

29When Skolem returns to the idea 1929, he gives essentially the same argument but starts off by specifying
the system we have called S above. This end result is no less opaque than the 1928 version, but the addition
suggests some recognition that the 1928 proof is not fleshed out.

30To view it as such, there is no need to impute an understanding of this distinction to Skolem.

133



5.4 Conclusion

This chapter began by introducing contextual features conducive to the recognition of com-

pleteness as a significant property of logical systems. These features are notably absent for

the pre-1930 context of Skolem. It was argued that Skolem had no reason to acknowledge

completeness as a separate result, given its proximity to theorems that he had already proven

(the Löwenheim-Skolem theorem) or was in the process of proving (decidability).

In part 2, I returned to the puzzle raised by Gödel. I argued against the impression that

the contentious passage in (Skolem, 1928) is finitistic in the sense Gödel alleges. I then

gave an interpretation of Skolem’s (1928) argument that takes account of his actual context,

specifically, his aim of finding a procedure to decide the validity of all first-order logic for-

mulas. Unlike Gödel’s explanation, mine does not come into conflict with Skolem’s use of

non-finitary reasoning elsewhere in his work, is maximally charitable to Skolem’s intentions,

and sheds new light on the relation between decidability and completeness in the pre-1930

context.
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