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Abstract

Purpose

To compare the diagnostic abilities of vessel density measurements of the optic nerve head

(ONH), peripapillary and macular regions on optical coherence tomography (OCT) angiog-

raphy in eyes with primary open angle glaucoma (POAG) with that of the ONH rim area,

peripapillary retinal nerve fiber layer (RNFL) thickness and the macular ganglion cell com-

plex (GCC) thickness measurements.

Methods

In a cross sectional study, 78 eyes of 50 control subjects and 117 eyes of 67 POAG patients

underwent vessel density and structural measurements with spectral domain OCT. POAG

was diagnosed based on the masked evaluation of optic disc stereo photographs. Area

under receiver operating characteristic curves (AUC) and sensitivities at fixed specificities of

vessel densities in ONH, peripapillary and macular regions were compared with rim area,

RNFL and GCC thickness.

Results

The AUC (sensitivity at 95% specificity) of average vessel densities within the ONH, peripa-

pillary and macular region were 0.77 (31%), 0.85 (56%) and 0.70 (18%) respectively. The

same of ONH rim area, average RNFL and GCC thickness were 0.94 (83%), 0.95 (72%)

and 0.93 (62%) respectively. AUCs of vessel densities were significantly lower (p<0.05)

than that of the corresponding structural measurements. Pre-treatment IOP (coefficient:
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0.08) affected (p<0.05) the AUC of ONH vessel density but not of any other vessel density

or structural measurements.

Conclusions

Diagnostic abilities of ONH, peripapillary and the macular vessel densities in POAG were

significantly lower than ONH rim area, peripapillary RNFL and macular GCC measurements

respectively. At fixed levels of glaucoma severity, the diagnostic ability of the ONH vessel

density was significantly greater in eyes with higher pre-treatment IOP.

Introduction

Optical coherence tomography (OCT) angiography is a new technique of non-invasively imag-

ing the blood vessels of the optic nerve head (ONH) and retina in-vivo. Of the multiple algo-

rithms developed to achieve blood vessel delineation using the OCT platform, split spectrum

amplitude-decorrelation angiography (SSADA) was the first one that was commercially avail-

able.[1] Early studies using the SSADA algorithm have shown that the vessel density measure-

ments provided by OCT angiography (OCTA) were repeatable and reproducible.[2–6].

Primary open angle glaucoma (POAG) is a chronic progressive optic neuropathy resulting

from the apoptosis of the retinal ganglion cells (RGC).[7] Evaluating the neuroretinal rim area,

retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC) thickness on OCT is used

as a surrogate measure in clinical practice to estimate the amount of RGC loss in POAG.

Although increased intraocular pressure (IOP) is the predominant risk factor for RGC death,

[8] reduced ONH perfusion has also been proposed to play a role in the pathogenesis of glau-

coma.[9, 10] Studies using the SSADA algorithm of OCTA have demonstrated reduced ONH

and peripapillary vessel densities in patients with glaucoma.[2–5, 11, 12] In addition to

reduced ONH and peripapillary vessel densities, we recently demonstrated reduced vessel den-

sities in the macula of patients with POAG.[13] Previous studies have compared the diagnostic

ability of peripapillary vessel density measurements of OCTA with the RNFL thickness mea-

surements of OCT.[5, 12] However, to the best of our knowledge, there are no studies compar-

ing the diagnostic ability of inside disc vessel densities with ONH rim area or the macular

vessel density with macular GCC thickness. The purpose of the current study was to compare

the diagnostic abilities of the vessel density measurements of the ONH, peripapillary and mac-

ular regions on OCTA in eyes with POAG with that of the ONH rim area, peripapillary RNFL

thickness and the macular GCC thickness measurements on OCT. The secondary objective

was to evaluate the effect of pre-treatment IOP on the diagnostic abilities of the vessel densities

and structural measurements of OCT.

Methods

This was a prospective, cross-sectional study conducted at Narayana Nethralaya, a tertiary eye

care center in Bengaluru, South India between September 2015 and July 2016. The methodol-

ogy adhered to the tenets of the Declaration of Helsinki for research involving human subjects.

Written informed consent was obtained from all participants and the study was approved by

the Ethics Committee of Narayana Nethralaya (approval number: C/2015/08/04).

Participants of the study included control subjects and POAG patients. Control subjects

were either hospital staff or subjects who consulted for a routine eye examination or a

Vessel density and structural measurements of OCT in POAG
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refractive error. Control subjects had no family history of glaucoma, IOP�21 mm Hg, open

angles on gonioscopy, normal anterior and posterior segment on clinical examination by an

ophthalmologist and non-glaucomatous optic discs, as assessed by glaucoma experts on

masked examination of stereoscopic optic disc photographs. POAG patients had open angles

on gonioscopy and glaucomatous changes on optic nerve head examination (neuroretinal rim

narrowing, notching and retinal nerve fiber layer defects) as documented by glaucoma experts

on dilated examination and confirmed by experts on stereoscopic optic disc photographs. Nei-

ther pre-treatment IOP, nor visual field changes were used to define POAG. Inclusion criteria

for all participants were age�18 years, corrected distance visual acuity of 20/40 or better and

refractive error within ±5 D sphere and ±3 D cylinder. Exclusion criteria were presence of any

media opacities that prevented good quality OCT scans, or any retinal or neurological disease

other than glaucoma, which could confound the evaluation. Eyes with a history of trauma or

inflammation were also excluded. All participants underwent a comprehensive ocular exami-

nation, which included a detailed medical history, corrected distance visual acuity measure-

ment, slit-lamp biomicroscopy, Goldmann applanation tonometry, gonioscopy, dilated

fundus examination, visual field (VF) examination and OCT imaging with RTVue-XR

SD-OCT (Optovue Inc., Fremont, CA). In addition to IOP measured on the day of scanning,

the pre-treatment IOP (i.e. the IOP noted on the day on initiating anti-glaucoma treatment)

was documented for all POAG eyes.

Stereoscopic optic disc photographs were obtained by trained technicians using a digital

fundus camera (Kowa nonmyd WX, Kowa Company, Ltd., Japan). Each optic disc photograph

was evaluated independently by two glaucoma experts (HLR and NKP) in a masked manner

to determine the presence of glaucomatous changes (focal or diffuse neuroretinal rim thin-

ning, localized notching or RNFL defects). The experts were masked to all the clinical data,

visual field data and the fellow eye data. Discrepancy in the classification between the two

experts was adjudicated by a third glaucoma expert (ZSP).

VF examination was performed using a Humphrey Field analyzer II, model 720i (Zeiss

Humphrey Systems, Dublin, CA), with the Swedish interactive threshold algorithm (SITA)

standard 24–2 program. VFs were considered reliable if the fixation losses were less than 20%,

and the false positive and false negative response rates were less than 15%. VF findings were

not used for defining glaucoma or controls but were considered for the grading of glaucoma

severity.

OCTA imaging of the optic disc region and macula was performed using RTVue-XR

SD-OCT (AngioVue, v2015.100.0.33). The procedure of OCTA imaging with RTVue-XR has

been detailed previously.[13] In brief, it uses an 840 nm diode laser source, with an A-scan rate

of 70 kHz per second. Imaging is performed using a set of 2 scans; one vertical priority and

one horizontal priority raster volumetric scan. The optic disc scan covers an area of 4.5 × 4.5

mm and the macular scan was performed using volumetric scans covering 3 x 3 mm. An

orthogonal registration algorithm is used to produce merged 3-dimensional OCT angiograms.

[14] The SSADA algorithm compares the consecutive B-scans at the same location to detect

flow using motion contrast, thereby delineating blood vessels.[1] Vessel density is defined as

the percentage area occupied by the large vessels and microvasculature in a particular region.

Vessel densities are calculated over the entire scan area, i.e. whole enface disc and whole enface

macula, as well as defined areas within each scan as described below. In addition, the software

calculates vessel densities in various layers of the retina and the ONH.

In the optic disc scan, the software automatically fits an ellipse to the optic disc margin and

calculates the average vessel density within the ONH (referred to as the inside disc vessel den-

sity). The peripapillary region is defined as a 0.75 mm-wide elliptical annulus extending from

the optic disc boundary and the average vessel density with this region is calculated. Both the

Vessel density and structural measurements of OCT in POAG
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ONH and the peripapillary region are divided into 6 sectors based on the Garway-Heath map

and the vessel densities in each sector is calculated (nasal, inferonasal, inferotemporal, supero-

temporal, superonasal and temporal sectors).[15] In order to compare the inside disc and

peripapillary vessel densities with the rim area and the RNFL measurements of OCT, the

superonasal and superotemporal sectors were combined together as the superior sector, and

the inferonasal and inferotemporal sectors as the inferior sector. For each scanned region, the

software calculates the vessel densities in various layers of the retina and ONH. For the pur-

pose of this study, the antero-posterior segment used for each region is as follows. The ONH

vessel densities were calculated from the “nerve head segment” of the ONH angiogram. This

segment extends from 2000 microns above the internal limiting membrane (ILM) to 150

microns below the ILM. The peripapillary vessel density was analyzed from the “Radial Peripa-

pillary Capillary (RPC) segment” which extends from the ILM to the posterior boundary of the

nerve fiber layer. Macular vessel densities were analyzed over a 1.5 mm-wide parafoveal, circu-

lar annulus centered on the macula. The parafoveal region was also divided into 4 sectors of

90˚ each (nasal, inferior, superior and temporal sectors). Macular vessel densities analyzed in

this study were of the superficial vascular plexus present in the inner layers of the retina

(extending from the internal limiting membrane to the inner plexiform layer).

All subjects also underwent the traditional ONH, peripapillary RNFL and macular GCC

thickness measurements on RTVue-XR SD-OCT using the ONH and the GCC scans. These

scan protocols have been explained in detail previously.[16, 17] All the examinations for a par-

ticular subject were performed on the same day. Image quality was assessed for all OCTA and

OCT scans. Poor quality images, which were defined as those with a signal strength index

(SSI) less than 35 or images with motion artifacts and segmentation errors were excluded

from the analysis. Fig 1 shows the OCTA and the OCT maps of a normal eye and an eye with

POAG.

Statistical analysis

Descriptive statistics included mean and standard deviation for normally distributed variables

and median and inter-quartile range (IQR) for non-normally distributed variables. Shapiro-

Wilk test was used to test for the normality distribution of continuous variables. Normally dis-

tributed continuous variables between the control and the glaucoma groups were compared

using t test. Non-normally distributed continuous variables were compared using Wilcoxon

rank sum test. Percentages were compared using Chi square test. Receiver operating character-

istic (ROC) curves were used to describe the ability of vessel density and structural measure-

ments of OCT to discriminate glaucomatous eyes from control eyes. Sensitivities at fixed

specificities of 80% and 95% were determined for all the parameters. To obtain confidence

intervals for area under the ROC curves (AUC) and sensitivities, a bootstrap re-sampling pro-

cedure was used (n = 1000 re-samples). As measurements from both eyes of the same subject

are likely to be correlated, the standard statistical methods for parameter estimation can lead

to underestimation of standard errors and to confidence intervals that are too narrow.[18]

Therefore, the cluster of data for the study subject was considered as the units of resampling

and bias corrected standard errors were calculated during all estimations. This procedure has

been used to adjust for the presence of multiple correlated measurements from the same unit.

[19, 20] To compare the AUCs, a Wald statistic, dividing the observed AUC difference by

its standard error, was compared with the standard normal distribution and a p value was

reported. ROC regression modeling technique was used to evaluate the effect of glaucoma

severity and the pre-treatment IOP on the AUCs and sensitivities of OCT measurements in

diagnosing glaucoma.[21, 22].

Vessel density and structural measurements of OCT in POAG
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Statistical analyses were performed using commercial software (Stata ver. 13.1; StataCorp,

College Station, TX). A two-tailed p value of�0.05 was considered statistically significant.

Results

Two hundred and twenty-two eyes of 123 subjects (78 eyes of 50 normal and 144 eyes of 73

POAG subjects) underwent vessel density and structural imaging with OCT. Among these, 25

eyes of 18 POAG patients in which the optic disc classification on stereo photographs was not

glaucomatous optic neuropathy, were excluded. Of the remaining eyes, 8 eyes with unreliable

VF, 19 eyes with poor OCTA scans of ONH, 25 eyes with poor OCTA scans of macula, 17 eyes

with poor structural scans of ONH and 2 eyes with poor GCC scans were excluded. Final anal-

ysis included vessel density and structural scans from 195 eyes of 117 subjects (78 eyes of 50

normal and 117 eyes of 67 POAG subjects). Of the 117 eyes with POAG, 22 eyes had a “within

normal limit” or a “borderline” glaucoma hemifield test result, and / or the probability value of

pattern standard deviation >5% on VF (preperimetric glaucoma). Table 1 shows the clinical,

VF, vessel density and structural measurements of the included subjects. SSI of the OCTA and

structural scan of ONH were significantly greater in the control subjects compared to the

POAG patients. AUCs and sensitivities at fixed specificities of optic disc and peripapillary ves-

sel density and structural parameters were therefore calculated after adjusting for the differ-

ence in signal strength between the control and POAG groups using covariate-adjustment as

proposed by Pepe.[23] All the vessel density and structural measurements were significantly

lesser in the glaucoma compared to the control group.

The AUCs and sensitivities at fixed specificities of the vessel density measurements to dif-

ferentiate POAG from control eyes are shown in Table 2. Whole enface vessel density of the

disc scan showed the best AUC and sensitivity at fixed specificity to diagnose glaucoma. The

AUCs and sensitivities at fixed specificities of the structural measurements to differentiate

Fig 1. Case examples. Nerve head segment (a), radial peripapillary capillary, RPC segment (b) and macular (c) optical coherence tomography

angiography scans of a normal eye (top panel) and an eye with glaucoma (bottom panel). The figure also shows the retinal nerve fiber layer, RNFL (d) and

ganglion cell complex, GCC (e) maps of the two eyes. Vessel loss in the eye with glaucoma can be noted in the inferotemporal peripapillary region

correlating with the RNFL loss seen on the RNFL map.

https://doi.org/10.1371/journal.pone.0173930.g001
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Table 1. Clinical features, visual field parameters, vessel density and structural measurements of the participants. All values represent median and

interquartile range unless specified.

Control group (78 eyes, 50 subjects) POAG group (117 eyes, 67 patients) P

Age (years)* 60.7 ± 8.3 62.8 ± 12.1 0.30

Gender (male:female) 27:23 47:20 0.07

Sphere (D) 0.5 (0, 1) 0.0 (-0.75, 0.75) 0.12

Cylinder (D) -0.5 (-1, -0.5) -0.75 (-1, -0.5) 0.72

Pseudophakia (n, %) 13 (16.7%) 29 (24.8%) 0.39

Optic disc area (mm2) 2.28 (1.93, 2.53) 2.27 (2.01, 2.59) 0.45

Pre-treatment IOP (mm Hg) 20 (18, 24.5)

IOP at the scanning visit (mm Hg) 15.5 (14, 18) 16 (14, 19) 0.001

Hypertension (yes:no) 19:31 29:38 0.57

Diabetes mellitus (yes:no) 17:33 20:47 0.63

Mean deviation (dB) -0.9 (-3.5, -0.3) -6.3 (-12.5, -3.5) <0.001

Pattern standard deviation (dB) 1.9 (1.5, 2.5) 4.8 (2.6, 9.7) <0.001

Visual field index (%) 99 (97, 99) 88 (69, 95) <0.001

OCTA parameters

SSI (Optic disc scan)* 53.6 ± 8.9 49.6 ± 7.8 0.002

Whole enface vessel density (disc scan, %) 53.9 (51.3, 55.5) 45.2 (41.5, 48.7) <0.001

Inside disc vessel density (%) 48.1 (44.0, 50.0) 40.1 (34.8, 45.63) <0.001

Nasal vessel density (%) 48.9 (44.1, 52.7) 41.2 (33.6, 47.0) <0.001

Inferior vessel density (%) 48.7 (44.8, 53.3) 43.8 (37.5, 49.5) <0.001

Superior vessel density (%) 49.1 (43.4, 52.2) 40.8 (33.2, 46.2) <0.001

Temporal vessel density (%) 44.3 (40.4, 50.7) 34.9 (28.8, 43.6) <0.001

Average Peripapillary vessel density (%) 61.9 (59.9, 64.2) 54.4 (49.0, 58.6) <0.001

Nasal vessel density (%) 59.5 (57.0, 61.8) 53.2 (46.9, 57.4) <0.001

Inferior vessel density (%) 64.7 (62.1, 67.2) 53.9 (45.6, 59.5) <0.001

Superior vessel density (%) 63.6 (60.3, 66.9) 55.2 (49.4, 60.7) <0.001

Temporal vessel density (%) 60.3 (58.0, 63.2) 56.5 (51.3, 59.8) <0.001

SSI (Macula scan)* 61.1 ± 6.7 59.9 ± 7.7 0.33

Whole enface vessel density (macula scan, %) 47.1 (45.5, 50.1) 43.8 (41.8, 47.0) <0.001

Parafoveal vessel density (%) 49.5 (47.3, 52.3) 46.9 (43.9, 49.4) <0.001

Nasal vessel density (%) 48.3 (46.4, 51.1) 45.9 (43.1, 48.8) 0.001

Inferior vessel density (%) 51.0 (48.0, 53.3) 46.6 (43.7, 51.1) <0.001

Superior vessel density (%) 50.3 (48.1, 53.2) 47.5 (44.3, 51.6) 0.002

Temporal vessel density (%) 49.6 (46.8, 52.5) 46.8 (44.1, 49.7) <0.001

OCT parameters

SSI (ONH scan) 55.2 ± 8.1 49.4 ± 8.3 <0.001

Neuroretinal rim area (mm2) 1.32 (1.12, 1.51) 0.72 (0.56, 0.88) <0.001

Nasal rim area (mm2) 0.40 (0.34, 0.44) 0.21 (0.15, 0.28) <0.001

Inferior rim area (mm2) 0.41 (0.33, 0.48) 0.16 (0.10, 0.26) <0.001

Superior rim area (mm2) 0.38 (0.32, 0.48) 0.22 (0.17, 0.28) <0.001

Temporal rim area (mm2) 0.12 (0.09, 0.19) 0.09 (0.06, 0.14) <0.001

Average Peripapillary RNFL thickness (μm) 100 (93, 105) 79 (70, 85) <0.001

Nasal RNFL thickness (μm) 80 (73, 87) 66 (58, 73) <0.001

Inferior RNFL thickness (μm) 123 (116, 132) 86 (70, 98) <0.001

Superior RNFL thickness (μm) 124 (115, 133) 97 (83, 107) <0.001

Temporal RNFL thickness (μm) 71 (66, 79) 63 (57, 69) <0.001

SSI (GCC scan)* 59.1 ± 9.7 58.7 ± 9.5 0.78

(Continued )

Vessel density and structural measurements of OCT in POAG

PLOS ONE | https://doi.org/10.1371/journal.pone.0173930 March 13, 2017 6 / 13

https://doi.org/10.1371/journal.pone.0173930


POAG from control eyes are shown in Table 3. Average and the inferior quadrant RNFL thick-

ness showed the best AUC and sensitivity at fixed specificity to diagnose glaucoma. Comparing

the diagnostic abilities region-wise, ONH rim area showed a statistically significantly better

(p<0.001) AUC than the inside disc vessel density, peripapillary RNFL thickness showed a sta-

tistically significantly better (p = 0.002) AUC than the peripapillary vessel density, and macular

GCC thickness showed a statistically significantly better (p<0.001) AUC than the macular ves-

sel density. Fig 2 shows the sensitivity at 95% specificity of the vessel density and structural

measurements at different severities of glaucomatous VF loss. Sensitivities of structural mea-

surements were better than the vessel densities of the corresponding regions over the whole

range of glaucoma severity.

Table 4 shows the effect of pre-treatment IOP on the diagnostic abilities of vessel density

and structural parameters of the three regions, after adjusting for the disease severity as deter-

mined by the MD of the VF. Pre-treatment IOP had a significant positive effect on the AUC of

inside disc vessel density but not on any other vessel density or structural measurement. AUC

and sensitivities at fixed specificities of inside disc vessel density increased significantly in eyes

Table 1. (Continued)

Control group (78 eyes, 50 subjects) POAG group (117 eyes, 67 patients) P

Average GCC thickness (μm) 95 (91, 102) 79 (72, 85) <0.001

Superior GCC thickness (μm) 95 (90, 102) 82 (74, 89) <0.001

Inferior GCC thickness (μm) 96 (91, 102) 77 (66, 84) <0.001

POAG: primary open angle glaucoma; D: diopter; dB: decibel; IOP: intraocular pressure; SSI: signal strength index; ONH: optic nerve head; RNFL: retinal

nerve fiber layer; GCC: ganglion cell complex;

*mean ± standard deviation.

https://doi.org/10.1371/journal.pone.0173930.t001

Table 2. Diagnostic ability of vessel density parameters of optical coherence tomography angiography in differentiating open angle glaucoma

from control eyes (figures in parenthesis represent 95% confidence intervals).

Vessel density AUC Sensitivity at 95% specificity Sensitivity at 80% specificity

Whole enface (disc scan) 0.93 (0.88–0.96) 75% (48–89) 88% (75–95)

Inside disc 0.77 (0.67–0.86) 31% (08–60) 58% (36–74)

Nasal 0.74 (0.65–0.83) 19% (01–41) 57% (28–70)

Inferior 0.67 (0.57–0.77) 25% (06–44) 46% (27–61)

Superior 0.73 (0.62–0.81) 23% (04–45) 47% (28–69)

Temporal 0.70 (0.56–0.81) 13% (03–53) 47% (13–62)

Average Peripapillary 0.85 (0.78–0.90) 56% (39–70) 76% (62–87)

Nasal 0.78 (0.68–0.85) 40% (29–59) 62% (46–79)

Inferior 0.88 (0.81–0.92) 66% (47–83) 78% (66–90)

Superior 0.82 (0.73–0.88) 52% (35–68) 66% (51–77)

Temporal 0.68 (0.57–0.77) 26% (08–52) 45% (28–57)

Whole enface (macula scan) 0.73 (0.64–0.81) 18% (01–40) 57% (37–72)

Parafoveal 0.70 (0.61–0.78) 10% (03–36) 49% (34–64)

Nasal 0.65 (0.55–0.74) 08% (01–27) 50% (28–64)

Inferior 0.69 (0.60–0.77) 19% (04–41) 52% (33–64)

Superior 0.65 (0.55–0.74) 15% (03–38) 42% (15–60)

Temporal 0.67 (0.58–0.76) 12% (02–26) 42% (18–66)

AUC: area under the receiver operating characteristic curve.

https://doi.org/10.1371/journal.pone.0173930.t002
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with higher pre-treatment IOPs. Fig 3 shows the effect of pre-treatment IOP on the sensitivi-

ties at 95% specificity of the inside disc vessel density and rim area measurements at a MD

value of -5 dB.

We ran the entire analysis considering one eye of subjects who contributed both eyes for

our earlier analysis and found similar results. When considering the better eye of the glaucoma

patients for analysis (median MD: -4.3 dB), the AUC of inside disc (0.74), peripapillary (0.82)

and parafoveal (0.70) vessel densities were significantly lower (p<0.01 for all comparisons)

than ONH rim area (0.93), peripapillary RNFL (0.93) and average GCC thickness (0.89)

respectively. When considering the worse eye of the glaucoma patients for analysis (median

MD: -8.5 dB), the AUC of inside disc (0.78), peripapillary (0.88) and parafoveal (0.74) vessel

densities were similarly significantly lower (p<0.02 for all comparisons) than ONH rim area

(0.93), peripapillary RNFL (0.96) and average GCC thickness (0.95) respectively.

Table 3. Diagnostic ability of structural parameters of optical coherence tomography in differentiating open angle glaucoma from control eyes

(figures in parenthesis represent 95% confidence intervals).

Vessel density AUC Sensitivity at 95% specificity Sensitivity at 80% specificity

Neuroretinal rim area 0.94 (0.88–0.98) 83% (70–95) 89% (78–97)

Nasal rim area 0.88 (0.81–0.94) 58% (38–73) 79% (63–89)

Inferior rim area 0.92 (0.85–0.96) 73% (57–82) 84% (72–93)

Superior rim area 0.89 (0.83–0.94) 65% (50–83) 86% (75–95)

Temporal rim area 0.72 (0.61–0.82) 26% (09–38) 52% (34–74)

Average RNFL thickness 0.95 (0.91–0.98) 72% (45–88) 94% (85–99)

Nasal RNFL thickness 0.83 (0.73–0.90) 44% (03–65) 69% (46–86)

Inferior RNFL thickness 0.95 (0.91–0.98) 84% (72–92) 90% (81–96)

Superior RNFL thickness 0.90 (0.83–0.94) 56% (38–72) 81% (63–90)

Temporal RNFL thickness 0.73 (0.63–0.82) 24% (13–46) 51% (26–69)

Average GCC thickness 0.93 (0.88–0.96) 62% (47–83) 87% (75–95)

Superior GCC thickness 0.86 (0.79–0.91) 41% (28–63) 77% (61–88)

Inferior GCC thickness 0.92 (0.87–0.95) 63% (49–74) 86% (70–93)

AUC: area under the receiver operating characteristic curve; RNFL: retinal nerve fiber layer; GCC: ganglion cell complex.

https://doi.org/10.1371/journal.pone.0173930.t003

Fig 2. Diagnostic abilities of vessel density and structural measurements. Sensitivity at 95% specificity of (a) optic nerve head vessel density and rim

area, (b) peripapillary vessel density and retinal nerve fiber layer (RNFL) thickness and (c) superficial macular vessel density and ganglion cell complex

(GCC) thickness according to mean deviation on visual fields.

https://doi.org/10.1371/journal.pone.0173930.g002
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We also ran the entire analysis considering optic disc changes and VF changes as the defini-

tion of glaucoma (excluding preperimetric glaucoma eyes) and found similar results. The

AUC of inside disc (0.79), peripapillary (0.88) and parafoveal (0.72) vessel densities were still

significantly lower (p<0.01 for all comparisons) than ONH rim area (0.96), peripapillary

RNFL (0.97) and average GCC thickness (0.96) respectively.

Table 4. Results of the multivariate Receiver Operating Characteristic (ROC) regression models eval-

uating the effect of mean deviation on visual fields and pre-treatment Intraocular Pressure (IOP) on

the area under the ROC curves of the vessel density and structural measurements inside the optic

disc, peripapillary and parafoveal region. Figures represent coefficient with 95% confidence interval in

parenthesis.

Parameter Mean deviation Pre-treatment IOP

Optic nerve head

Vessel density -0.06 (-0.12, -0.01)* 0.08 (0.03, 0.16)*

Rim area -0.04 (-0.12, 0.08) 0.01 (-0.06, 0.23)

Peripapillary region

Vessel density -0.07 (-0.14, -0.01)* 0.02 (-0.02, 0.08)

RNFL thickness -0.14 (-0.34, -0.05)* -0.06 (-0.22, 0.05)

Parafoveal region

Vessel density -0.05 (-0.10, 0.00)* -0.01 (-0.04, 0.04)

GCC thickness -0.12 (-0.23, -0.04)* -0.01 (-0.07, 0.04)

*—statistically significant (p<0.05).

RNFL: retinal nerve fiber layer; GCC: ganglion cell complex.

https://doi.org/10.1371/journal.pone.0173930.t004

Fig 3. Effect of pre-treatment intraocular pressure on the diagnostic ability of optic nerve head vessel

density and rim area. Sensitivity at 95% specificity of optic nerve head vessel density and rim area according

to the pre-treatment intraocular pressure at a mean deviation on visual fields of -5 dB.

https://doi.org/10.1371/journal.pone.0173930.g003
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Discussion

In this study, vessel density measurements of OCTA were compared with structural measure-

ments of the traditional OCT. It was found that the diagnostic abilities of several OCT parame-

ters (ONH rim area, peripapillary RNFL thickness and the macular GCC thickness) in POAG

were significantly better than the corresponding vessel densities within each of these regions.

Previous studies have compared the diagnostic ability of peripapillary vessel density mea-

surements of OCTA with the RNFL thickness measurements of OCT.[5, 12] However, to the

best of our knowledge, there are no studies comparing the inside disc vessel densities with

ONH rim area or the macular vessel densities with macular GCC thickness. Liu et al evaluated

the diagnostic ability of peripapillary vessel density and average RNFL thickness in 12 (9 peri-

metric and 3 pre-perimetric) glaucoma and 12 normal eyes. AUC, sensitivity and specificity of

peripapillary vessel density (0.94, 83.3% and 91.7% respectively) was found to be comparable

to that of the average RNFL thickness (0.97, 91.7% and 91.7% respectively).[5] Yarmohammadi

et al compared the diagnostic ability of peripapillary vessel density with that of the average

RNFL thickness in 124 eyes with POAG (median MD: -3.9 dB).[12] Although the AUC of peri-

papillary vessel density measurement (0.83) was less than that of the average RNFL thickness

(0.92), this difference was not statistically significant. Whole enface vessel density of the disc

scan showed the best AUC in their study (AUC: 0.94), similar to that found in our study

(0.93).[12] We found slightly greater AUCs of the peripapillary vessel densities and the RNFL

thickness (compared to the results of the study by Yarmohammadi et al[12]) owing to eyes

with more advanced glaucoma in our cohort (median MD: -6.3 dB). Additionally, we found

that the AUC of average RNFL thickness was significantly greater than that of the peripapillary

vessel density measurement. Glaucoma in our study was defined solely on the neuroretinal

rim and RNFL changes on clinical examination and stereo photographs of the optic discs. This

may have biased the diagnostic ability of the OCT rim area and RNFL thickness measurements

and could have been the reason for the better diagnostic ability of structural measurements

compared to vessel density measurements. We therefore ran a separate analysis considering

optic disc changes and VF changes as the definition of glaucoma and found the results to be

the same. Also, the diagnostic ability of macular measurements is less likely to be influenced

by the reference standard. Therefore, the results of our study is likely to represent true superi-

ority of structural measurements over vessel density measurements for diagnosing glaucoma.

Future studies with functional tests as reference standard and longitudinal evaluation of sus-

pect eyes are required to validate our results.

As expected, the diagnostic abilities of vessel densities and the structural measurements

increased with increasing severity of glaucoma. This has been reported earlier both with vessel

density[4, 13] and with structural measurements.[17] We therefore accounted for the severity

of disease when evaluating for the effect of baseline IOP on the diagnostic abilities of vessel

density and structural measurements. If reduced ONH blood supply was the predominant

pathogenic mechanism in POAG eyes with low baseline IOPs (normal tension glaucoma,

NTG), a greater difference in the vessel density values between the glaucoma and the control

groups (and thereby a greater AUC) in these NTG eyes would be expected. However, this was

not observed. On the contrary, the diagnostic ability of ONH vessel density increased in eyes

with higher baseline IOP. This may imply that the vascular mechanisms contributing to the

pathogenesis of glaucoma are not IOP-independent. IOP related stress and strain have been

hypothesized to occlude the capillaries especially in the lamina cribrosa of the ONH.[24]

Although there are no studies evaluating the effect of baseline IOP on the diagnostic abilities of

the structural and vascular measurements of OCT as done in the current study, two previous

studies have compared the diagnostic abilities of structural parameters of OCT in NTG
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(defined as open angle glaucoma eyes with baseline IOP<21 mm Hg) and POAG (defined as

open angle glaucoma eyes with baseline IOP> = 21 mm Hg) patients with comparable glau-

coma severity as defined on the VFs. These studies have found that the diagnostic ability of

RNFL thickness and GCC thickness was greater in POAG compared to NTG.[25, 26] Contrary

to the results of these studies, we found no statistically significant effect of the baseline IOP on

the diagnostic abilities of RNFL and GCC thickness.

There are some limitations of the OCTA technology and the study design which need to be

considered while interpreting the results. The vessel density measurements evaluated in this

study were the ones provided by the software automatically. We therefore could not exactly

match the vessel density sectors with the sectors of the structural parameters for comparison.

The OCTA algorithm, in its current form, includes large vessels along with capillaries in its

estimation of vessel density. The software also does not provide further insights into the nature

of vascular changes such as attenuation, drop-out, etc. The technology also does not evaluate

the choroidal vasculature. These details would provide a better understanding of the vascular

changes in glaucoma. Another possible limitation of the current study was that we did not

measure the blood pressure of the subjects or record their anti-hypertensive medication. How-

ever, we recorded the history of hypertension and found that the number of subjects with

hypertension was similar in the glaucoma and the control groups. A previous study also has

shown no relationship between blood pressure readings and peripapillary vessel densities on

OCTA.[5] In the same context, the peripapillary vessel densities can also be affected by parapa-

pillary atrophy (PPA).[27] We did not record the presence of PPA or its extent in our subjects.

Another limitation of the study is the case-control design, with a clear distinction between

glaucoma patients (cases) defined based on the presence of glaucomatous optic nerve head

changes, and normal subjects (controls) with no suspicious findings of glaucoma. Such a

design has been shown to overestimate the actual diagnostic ability of a test.[28–30].

In conclusion, we found that the diagnostic abilities of OCTA vessel density measurements

of the ONH, peripapillary and the macular regions in POAG were significantly lower than the

OCT ONH rim area, peripapillary RNFL thickness and the macular GCC thickness measure-

ments, respectively. At fixed levels of glaucoma severity, the diagnostic ability of the OCTA

ONH vessel density was significantly greater in eyes with higher baseline IOP. Baseline IOP

did not affect the diagnostic ability of the other OCTA vessel density or the OCT structural

measurements.
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