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Abstract
Ice-based thermal  energy  storage (TES)  systems can shift peak cooling  demand and reduce
operational  energy  costs  (with  time-of-use  rates)  in  commercial  buildings.  The  accurate
prediction of the cooling load, and the optimal control strategy for managing the charging and
discharging of a TES system, are two critical elements to improving system performance and
achieving  energy  cost  savings.  This  study  utilizes  data-driven  analytics  and  modeling  to
holistically understand the operation of an ice–based TES system in a shopping mall, calculating
the  system’s  performance  using  actual  measured  data  from  installed  meters  and  sensors.
Results show that there is significant savings potential when the current operating strategy is
improved by appropriately scheduling the operation of each piece of equipment of the TES
system, as well as by determining the amount of charging and discharging for each day. A novel
optimal  control  strategy,  determined  by  an  optimization  algorithm  of  Sequential  Quadratic
Programming,  was developed to  minimize the TES system’s  operating costs.  Three heuristic
strategies were also investigated for comparison with our proposed strategy, and the results
demonstrate the superiority of our method to the heuristic strategies in terms of total energy
cost savings. Specifically, the optimal strategy yields energy costs of up to 11.3% per day and
9.3% per month compared with current operational strategies. A one-day-ahead hourly load
prediction was also developed using machine learning algorithms, which facilitates the adoption
of the developed data analytics and optimization of the control strategy in a real TES system
operation.

Keywords: thermal energy storage; optimization; data analytics; energy cost saving; heuristic
strategy; machine learning
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Acronym

TES thermal energy storage
SQP sequential quadratic programming
MPC model-based predictive control
TOU time of use
GA genetic algorithm
COP coefficient of performance
GPR Gaussian processes regression
LR linear regression
GRNN generalized regression neural network
SVMR support vector machine regression
RFR random forest regression
RAE relative absolute error
RRMSE relative root mean square error
R2 R-squared
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1.Introduction
In recent decades, peak demand management of commercial buildings has become an active 
research area. Different strategies for shifting energy loads have been developed to reduce total
operating costs without sacrificing the thermal comfort of building occupants. As noted in the 
report from the International Energy Agency, it is possible to gain an annual savings of $10—$15
billion for the U.S. market through peak demand management [1]. In general, load shifting 
control can be achieved using three strategies: building thermal mass, thermal energy storage 
(TES), and phase change materials. Recent reviews present and compare the current status of 
the three control strategies [2][3]; TES is the most widely used technology in existing air 
conditioning systems. A statistical study [4] shows that in the 1990s, about 1,500—2,000 units 
of TES cooling systems were employed in the U.S., of which the ice-based TES systems had the 
largest proportion of the market, at about 80%–85%. This sizeable market share for TES systems 
has increased interest in studying their operation.

In an ice-based TES system, cooling can be provided to meet the indoor thermal requirement 
either by directly operating the chiller or by discharging the ice storage. The chiller is also used 
to charge the ice storage during low-price electricity periods, which generally occur at night. The
benefits of the TES system are twofold. First, a TES system can overcome the problem of 
constrained capacity that many current cooling systems face [5] from increasing occupant 
thermal comfort demand. With the help of an ice tank acting as a thermal battery, the whole 
system can not only meet a high-peak cooling demand during the hot season, but also possibly 
enhance its total performance and efficiency [6][7]. More importantly, by managing an 
appropriate allocation between the charging and discharging periods according to a time-of-use 
(TOU) electricity price, the total operating costs of chiller plant and TES system are significantly  
reduced [8][9].

Control strategies are often quite simple for most existing ice-based TES systems in buildings: 
these systems are either controlled manually, or are restricted to storage capacity-based control
and priority-based control. Such conventional heuristic control strategies do not take full 
advantage of the available storage, and often lead to very limited cost savings [10]. Under these 
heuristic strategies, the ice storage solves the problem of high peak demand during the hot 
season; however, there is still huge potential to save more on operating costs by using an 
optimal control strategy. Indeed, the significant benefit of an optimal control strategy has been 
pointed out in previous studies that compared heuristic strategies [10][11]; specifically, these 
studies indicate that the benefits of the TES system could be maximized when the cooling loads 
are appropriately allocated in an optimal strategy.

Up until now, optimization studies for TES systems have mostly focused on physically modeling 
the thermal performance of the building and improving the efficiency of the cooling system by 
employing an optimal control or design strategy [12][13][14][15][16][17] [18][19]. For example, 
Cui et al. [12] developed a model-based optimal design method to optimize the capacity of the 
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active cool storage while minimizing life-cycle costs for the system. Candanedo et al. [13] 
described a model-based predictive control (MPC) approach for the cooling plant of a building. 
The MPC optimal strategy was compared with two rule-based strategies, resulting in a cost 
reduction of 5%-30%. Ma et al. [14] introduced an MPC approach to estimate the resulting 
electricity cost reductions in a university cooling system, using periodic invariant sets and dual-
stage optimization to tackle feasibility issues with their proposed scheme. Lee et al. [15] 
presented an optimal design of an ice-based TES system, using particle swarm algorithms. This 
case study used minimal life cycle cost as the objective function to analyze the increase in 
power consumption and its potential influences on the system’s optimization. Zhou et al. [16] 
developed an engineering approach to the optimal design of the water- and ice-based energy 
storage system in China, and evaluated the total annual cost. Lu et al. [17] developed an optimal
scheduling strategy for a Zero Carbon Building in Hong Kong, using the MINLP method, reducing
25% of operational energy cost compared with a rule-based strategy. In these studies, different 
models and algorithms like Genetic Algorithm (GA) [9][11][20], Particle Swarm Optimization 
(PSO) [15][21], Mixed-integer Linear Programming (MILP) [18][22][23], and Mixed-integer 
Nonlinear Programming (MINLP) [17][24] were widely used to solve the optimization problem. 
Two previous reviews introduced these optimization techniques in the context of TES operations
[25][26]. Given new trends of data collection and data analytics, however, an optimal control 
strategy can now be developed using a real performance dataset, by first evaluating the 
system’s current operating status and subsequently improving the performance to achieve the 
system’s full savings potential. This data-driven solution can more accurately solve the 
optimization problem for the given TES system.

This study presents a new approach and workflow for pairing data-driven analytics with 
modeling to understand the operation of an ice-based TES system in a shopping mall, and to 
calculate the performance of the equipment in the central cooling plant. Based on this 
calculated performance, the study develops a novel optimal control strategy that achieves 
minimum operating costs for cooling; the energy costs savings potential of the strategy is finally 
compared with three conventional heuristic strategies, assuming three scenarios of cooling 
demand level. The datasets used in this work were from actual measurements from installed 
meters and sensors in the TES system. As the optimization of TES requires the cooling load 
profile to be known a priori, we also propose a cooling load prediction algorithm based on 
Gaussian process regression, which can provide an accurate forecast of the cooling load using 
weather data. Overall, the study demonstrates a holistic approach to optimizing the operation 
of a TES system in a real air-conditioning system. 

2.Description of the TES system and the dataset
The ice-based TES system of focus provides partial cooling for a shopping mall in Shenzhen, a 
city located in Southern China. The shopping mall has four stories with a total conditioned floor 
area of 35,000 m2. The dataset includes measured parameters for the central cooling plant 
equipment and the cooling energy demand of the shopping mall. The source data were 
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recorded at irregular time intervals and were thus consolidated into hourly data. The data were 
recorded from June to November 2016, covering the cooling season from late spring to early 
winter in Shenzhen. 

Figure 1 System diagram of the central cooling plant

Figure 1 shows the system diagram of the central cooling plant. Table 1 shows the performance 
parameters for each piece of equipment in this TES system. 

There are three identical York chillers (YSQXEXS45CJE) with screw compressors using R-22 
refrigerant. The chillers are dual-operational, either providing the cooling or making ice to 
charge the ice tank. Due to the electric current limit of the whole system, only two chillers are 
designed to operate simultaneously. The third chiller is used for backup during extremely hot 
conditions. For each chiller, during the direct cooling stage, the capacity is rated at 1,337 kW 
with a power input of 252 kW (COP = 1,337/252 = 5.31). During the ice-charging stage, the 
capacity is rated at 823 kW with a power input of 213 kW (COP = 823/213 = 3.86). 

The cooling system also consists of three identical cylindrical tanks to store the ice. The total 
storage capacity is 5,500 RT (19,343.5 kW), which is lower than the daily cooling demand most 
of the time. The ice tanks are installed in the basement with good insulation, which significantly 
reduces the heat gains to the tanks; accordingly, we ignored these heat gains in this study. The 
ethylene glycol refrigerant for making the ice is transported through three circulation pumps. 
There are four types of operating modes in this system, which are: direct cooling by the chillers, 
direct cooling by the ice tank, combined cooling by the chillers and the ice tank, and charging 
the ice tank by the chillers. Four valves with different combinations of opening and closing are 
used to switch between these four different operating modes. 
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In addition, there are three groups of cooling towers with three condenser water pumps for 
delivering the condenser water. Three primary and secondary chilled water pumps are used to 
deliver chilled water to the building. Several temperature sensors were installed in this system 
to measure the inlet and outlet water temperature for each part of the cooling system. The total
flow rate of the chilled water was also measured.

Table 1  Performance parameters for each piece of equipment in the central plant

Brand &
Model

Number
of units

Type
Refriger
ant type

Refrigeratio
n

capacity（k
W（

Power
input

(kW（

Chilled
water
flow

rate（m3/
h)

Condens
er water
flow rate

（m3/h)

York
YSQXEXS

45CJE
3

Screw
compressors

R22

1,337 (high) 252 248 273

823 (low) 213 248 273

Brand & Model Model Number of units
Capacity

(m3/h)
Head (m)

Electric power
(kW)

WEI NU,
Secondary

chilled water
pumps

NL125/315-30/4 3 275 28 30

Primary 
chilled water 
pumps

NL150/400-45/4 3 275 38 45

WEI NU,
Condenser

water pumps
NL125/315-37/4 3 290 28 37

Brand Number of units
Transverse

flow/Counter flow
Circulation water
flow rate (m3/h)

Electric power
(kW)

SINRO cooling
towers

3 Transverse flow 300 7.5

Brand Number of units Length (m) Width (m) Height (m) Capacity (RT)

Ice storage
tank

3 7.8 4.6 3.768
5,500

(19,343.5 kW)

3.Methodology
Figure 2 shows the study’s overall methodology. First, the datasets were analyzed to help 
understand the current control strategy and the operational performance of each piece of 
equipment. Resultant performance curves can be used to accurately calculate the total energy 
costs of the TES system under various control strategies. Three heuristic strategies, including 
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chiller-priority, ice-priority, and price-priority, were used to calculate operating energy costs; the
limitations and saving potentials of each strategy were also evaluated. In parallel, an optimal 
strategy was developed to better allocate flexible cooling loads to the chillers and ice tanks, with
an objective of minimizing total operating costs. To solve the optimization problem, an objective
function and constraint conditions were determined based on the performance analysis 
described above. Subsequently, an appropriate algorithm was selected for the optimization 
problem and implemented. Finally, the results from all five control strategies were compared 
and analyzed further. 

Figure 2 The overall methodology of the data analytics, modeling, and optimization

3.1. Data analytics

3.1.1. Electricity rates

Figure 3 shows the TOU electricity rate profile in Shenzhen city. The rate profile peaks at 
1.1147 RMB/kWh during the periods of 9:00–12:00, 14:00–16:00, and 19:00–21:00. The lowest 
electricity rates are 0.2788 RMB/kWh during the night period of 23:00–8:00. For the other time 
periods, the electricity rate is 0.8959 RMB/kWh. It can be seen that the rate during the 
nighttime is much lower than that during the daytime; this pricing characteristic favors the use 
of load shifting management to reduce operating costs.
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Figure 3 Daily 24-hour electricity rate profile in Shenzhen city

3.1.2. Data pre-processing

Time correspondences for different parameters are very important in this work. First, to 
understand the current hourly control strategy, the open status of each valve must be compared
at the same hour, to discover their different combinations. Second, to calculate the hourly 
cooling load, temperature differences and water flow rate must be used at the same hour as 
well. However, the measured data are somewhat irregular in time – specifically, the time was 
unevenly divided into 35 time periods per day, leading to difficulties in building the correlations 
between different parameters across time. Ultimately, irregular interval data were consolidated 
into hourly data by mapping the time point to the adjacent hour; overlapping values within the 
same hour were averaged out. 

3.1.3. Current operation strategy

Table 2 shows the four major valves, their combinations, and corresponding operation modes. 
Furthermore, Figure 4 (a) shows the four major valves controlling the different operation modes
on the system diagram. The open status of both V2 and V3 represents the operating mode of 
direct cooling by the chillers, the open status of both V1 and V3 represents a direct cooling 
operating mode by the ice tanks, while the open status of both V1 and V4 represents charging 
of the ice tank by the chillers. Occasionally, when the cooling demand is very high during the 
hot seasons, the chillers and the ice tanks were used together under the combined open status 
of V1, V2, and V3.

Table 2 Different operation modes and combinations of valves status (√: opened, ×: closed)

Operation modes V1 V2 V3 V4

Charge the ice tank √ × × √

Direct cooling by chillers × √ √ ×

Direct cooling by ice tank √ × √ ×

Combined cooling by chillers and ice tank √ √ √ ×

In this work, Tableau version 10.1.1 was applied to further analyze and visualize the current 
operation strategy. Tableau is specialized software for analyzing relational databases, and is 
widely used in the data analytics research area. Figure 4(b) shows the system’s current 
operating strategy for one typical day (July 1, 2016). Here, different color bars represent 
different operational modes during the hour. The electric rate profile and the total cooling load 
are also presented in Figure 4(b), for reference. Compared against the electric rate profile 
shown below, the current strategy can be considered a “price-priority” strategy. The ice tank 
was charged during the night based on a load prediction, when the price was low; during 
working hours in the daytime, when the price was on-peak, the ice tank was discharged to 
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provide cooling; otherwise, the chillers were operating. When the cooling demand was 
relatively high at time 17:00, the chillers and the ice tank were operating together. 

The current control strategy was not completely in line with the variation of the electricity price 
all the time, however, due to the use of manual control. Indeed, to satisfy cooling demand and 
avoid sacrificing the occupants’ thermal comfort, chillers were preferred to the ice tank, even 
during the on-peak electricity rate periods. In this case, the ice stored during the night was not 
fully discharged during the daytime, increasing total energy costs. 

Figure 4  (a) System diagram with operation modes, (b) Current operating strategy (one typical 
day, July 1, 2016)
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3.1.4. Equipment performance curves

The total cooling load can be calculated based on the equation below:

Qtotal=cρV (T inlet−T outlet)  Eq. 1

where Qtotal  is the total cooling load of the entire system; c and ρ  are the specific heat 

capacity and density of the water, respectively; V is the hourly measured flow rate of the chilled 

water; and T inlet−T outlet  represents the measured temperature difference of the chilled water

in one hour. 

Using the different combinations of the valve open status shown in Figure 4, operating periods 
for the chillers and ice tanks were separately identified. Thus, the actual cooling load provided 
by chiller-only and ice-only could be calculated. Divided by the corresponding measured 
electricity use for each hour, the efficiency for each piece of equipment was calculated during 
daytime operating hours, based on the following equations: 

COPchiller=
cooling loadchiller

energy consumptionchiller
Eq. 2

COPice=
cooling loadice

energy consumptionice
Eq. 3

COPpump=
coo l ing load pump

energy consumption pump
Eq. 4

COPcooling tower=
cooling loadcooling tower

energy consumptioncooling tower
Eq. 5

where COPchiller  and COPice  (coefficient of performance) represent the ratio of electricity 

supplied to satisfied cooling load for the chillers and the ice tanks, respectively; COPpump  and

COPcooling tower  represent the water-to-wire efficiency of pumps and cooling towers related to 

the cooling load satisfied by the chillers. 

Equipment performance curves can be determined based on the equipment’s calculated COP 
and cooling load to establish correlations between cooling efficiency and cooling load.  shows 
the performance curves for (a) the chillers, (b) the ice tanks, (c) the pumps, and (d) the cooling 
towers. The x-axis in  (a) is the load ratio, or the cooling load divided by the capacity of a single 
chiller. The chiller performance curve is a power function with an R-squared value of 0.9066. For
the ice tank in  (b), the COP was almost irrelevant to the ice content or cooling load; thus, the 
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constant average COP of 40 for the ice tanks was determined. Finally, although the cooling 
towers have variable speed fans, they operate at constant power due to the installation of an 
enclosure to reduce the operating noise. Therefore, as shown in  (d), the electricity 
consumption of the cooling towers remained constant during operation.

Figure 5 Performance curves for (a) chillers, (b) ice-tanks, (c) pumps, and (d) cooling towers

3.2. Heuristic strategies

TES operating strategies are generally classified as either full storage or partial storage, referring 
to whether the storage capacity is large enough to support the total amount of cooling demand 
during on-peak hours. The cooling capacity of the current ice tank is much lower than the 
designed cooling demand, which makes it a partial storage system. Nowadays, for most partial 
storage systems, three heuristic strategies are widely used to control the operation, including 
the chiller-priority strategy, the ice-priority strategy, and the price-priority strategy. 

3.2.1. Chiller-priority strategy

For the chiller-priority strategy, chillers are designed to operate all the time. During the on-peak 
periods when the cooling demand exceeds the chiller capacity, the ice tank will be discharged to
meet the remaining cooling load. During the night, three chillers will be operated at full capacity
to charge the ice tank until they reach the needed ice amount for daytime use. Figure 6 (a) 
shows the schematic diagram of the chiller-priority strategy.

3.2.2. Ice-priority strategy

For the ice-priority strategy, the ice tank is utilized to meet the cooling load during the first few 
operating hours. Here, the chillers start to operate after the ice runs out. When the cooling 
demand exceeds the cooling capacity of the two chillers, the third chiller is then put into use to 
meet the remaining load. During the night, the three chillers will be operated at full capacity to 
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charge the ice tank until they reach the daily needed ice amount. The schematic diagram of the 
ice-priority strategy is shown in Figure 6 (b).

3.2.3. Price-priority strategy

The operating modes of the price-priority strategy depend on the hourly electricity price, as 
shown in Figure 3. The ice tank is first discharged when the electricity price is high. Otherwise, 
when the electricity price is relatively low, the chillers are used to meet the cooling load. Similar 
to the ice-priority strategy, when using the two chillers and ice storage does not satisfy the 
cooling demand, a third chiller will be used to meet the remaining cooling load. Figure 6 (c) 
shows the schematic diagram of the price-priority strategy. 

Figure 6 Diagram of three heuristic strategies: (a) chiller priority, (b) ice priority, and (c) price

priority

3.3. Optimal strategy

On top of the conventionally used heuristic strategies described above, an optimal TES 
operating strategy can be developed and evaluated by forming and soling an optimization 
problem using the derived equipment performance curves, the actual electricity TOU rates, and 
the hourly cooling demand.

3.3.1. Objective function

The objective of the current optimization problem is to minimize the operating costs of the 
cooling system by appropriately allocating the cooling load for the chillers and the ice tank. In an
optimal control scenario, the objective function must apply to each unique operational period. 
Accordingly, in this work, the objective function was defined (Error: Reference source not found)
by separately considering the chiller operating periods during the daytime and the ice tank 
charging and discharging during night and daytime, respectively.

14
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M=min∑
i=0

23

(e i× Ei )=min{∑i=9

22

(e i×( X i

COPchiller

+
X i

COPpump

+
X i

COPcooling tower
))+∑i=9

22

(e i×
Y i

COPice
)+∑i=23

8

(ei× f i(∑ Y i))}
Eq. 6

where M represents the targeting minimal total daily operating cost of the entire TES system 
(RMB); e and E are the electric price (RMB/kWh) and electricity consumption (kWh), 
respectively; and i represents the ith hour of a day. The business hours of the shopping mall are 
from 9:00 am to 10:00 pm and the charging periods start afterward. X and Y represent the 

cooling load (kW) met by the chillers and the ice tank, respectively. COPchiller , COPpump , 

and COPcooling tower  have been described by the cooling load of chiller ( X i ) and the ice tank 

( Y i ), ( (a–d)); this optimization finds a non-linear optimization solution.

3.3.2. Constraint conditions

It is noted that there are certain constraints on X i  and Y i . In particular, during the 

daytime, the total cooling loads provided by the chillers and the ice tank must satisfy the total 
cooling demand during that period of time. Moreover, the cooling load provided by one chiller 
must not exceed or be less than 20% of its rated capacity, considering the chiller’s minimum 
limit of operating hours. Since there are two chillers operating at the same time, the capacities 
of the two chillers were considered separately. Finally, the ice tank’s discharging rate must not 
exceed a maximum melting amount within one hour. Such constraints are represented in  Eq. 7–
Eq. 10  as follows. 

∑ ( X i ,1+X i , 2+Y i )=Qi ,total Eq. 7

267 ≤ X i ,1≤ 1337 Eq. 8

267≤ X i ,2 ≤1337 Eq. 9

0 ≤Y i ≤ Y imax Eq. 10

where Y imax  represents the maximum melting amount (kW) at the ith hour, which depends 

on the total discharging cooling load during previous hours. The previous total cooling capacity 
(Q, kWh) was described as an exponential function of time (h), as shown in  Eq. 11, which was 
based on the performance parameter of the ice-storage system. 

Q=19343.5 ×(1−e−0.316 t
) Eq. 11
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where 19343.5 is the total capacity of the ice tank, and 0.316 is an empirical parameter of the 
tank.

Y imax  can be determined as:

Y imax=
dQ
dt

=6112.55×(1−
∑
k=1

i−1

Y k

19343.5
) Eq. 12

Measured data were used to verify the accuracy of  Eq. 11. When the cooling demand is 
provided only by the ice tank, Figure 7 shows that the cooling load (y-axis) and its corresponding
ice content percentage (x-axis) can be analyzed. Assuming that the ice content percentage 
varies linearly with the tank capacity, according to the empirical formula, the theoretical 

maximum cooling load can be described as loadmax=6112.55×(1−x ) , which is shown as the

orange line in Figure 7. It can be seen from the figure that, for each level of the ice content 
percentage, all the actual operating cooling loads are beneath (or equal to) the theoretical 
maximum cooling load. Therefore, the measured performance data proved that  Eq. 11 is valid 
in representing the maximum cooling rate constraint condition for the ice tank.

Figure 7 Comparison between actual cooling load and constraint condition for the ice tank

During the night, when the chillers were operated to charge the ice tank, Figure 8 shows that 

electricity consumption was related to stored ice content. Thus, the f i  in the objective 

function can be described as in  Eq. 13:
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f i=6466 ×
∑Y i

19343.5
+903.6 Eq. 13

where f i  is the electricity consumption for charging (kWh) the ice tank, and ∑Y i  

represents the total cooling load provided by the ice tank during the daytime. 

Figure 8 Fitted curve for measured ice tank electricity consumption and ice content during the
night

3.3.3. Optimization algorithms

To solve the nonlinear objective function, a Sequential Quadratic Programming (SQP) method 
was used. SQP is an iterative method for solving a nonlinear optimization, especially for which 
the objective function and the constraints are twice continuously differentiable. This method 
solves a sequence of optimization sub-problems, each of which optimizes a quadratic model of 
the objective subject to a linearization of the constraints [27]. Global search was also used to 
find a global optimal solution to this problem.

The initial value of the SQP algorithm was determined as the output of the price-priority 
strategy to save on computation time. A genetic algorithm (GA) was also tested as an effective 
way to obtain the initial values. The calculated results for both methods were found to be 
insensitive to initial values and only related to the boundary constraint conditions.

In this work, Matlab release 2015 was applied on a normal PC with Windows 7 to perform the 
modeling of the three heuristic strategies and the optimal strategy.

3.4. Load prediction model

We present a cooling load prediction method based on Gaussian processes regression (GPR), a 
powerful non-parametric machine learning algorithm. The Gaussian process has been 
successfully applied to tasks such as prediction of electricity demand [28], atmospheric carbon 
dioxide concentration [29], and robotics dynamics [30]. In this study, we will show the flexibility 
and ability of GPR to provide an accurate prediction with a relatively small dataset.
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3.4.1. Background overview of GPR

Let D={ ( x1 , y1 ) ,⋯ , ( xn , yn ) }  be a set of n training samples drawn from a noisy process:

y i=f ( x i )+ϵ Eq. 14

where each x i  is an input sample and y i  is a target value. The noise ϵ  is assumed to 

come from a zero mean Gaussian distribution with some variance σn
2

. A key idea underlying 

GPR is the requirement that the target values at different points are correlated, where the 

covariance between two function values, f ( x i )  and f ( x j ) , hinges on the corresponding 

input values x i  and x j  through an arbitrary covariance function, or kernel k ( x i , x j ) , 

i.e., cov ( f ( xi ) , f ( x j ) )=k ( x i , x j ) . The GPR assumes that the target values evaluated at any 

collection of input samples are drawn from a joint Gaussian distribution with mean and 
covariance functions evaluated at the inputs. For notation convenience, we denote
(x1,⋯ , xn)  by x , and ( y1 ,⋯ , yn )  by y ; then GPR indicates

y∼N (m ( x ) , K ( x , x )+σ n
2 I)  where [ K (x , x ) ]i , j=k ( xi , x j ) . We are interested in predicting 

the function value at an arbitrary point x¿

, conditioned on the training data x  and y . 

From the GPR assumption, the posterior over the function values f ¿

 at x¿

 is Gaussian, 

distributed according to N ( ´f ¿ , cov ( f ¿ )) , where:

( x , x )+σn
2 I

K ¿
¿

f́ ¿
=E [ f ¿|x , y , x¿ ]=K ( x¿ , x ) ¿

 Eq. 15

( x , x )+σn
2 I

K ¿
¿

cov (f ¿ )=K ( x¿ , x¿ )−K ( x¿ , x ) ¿

Eq. 16

Therefore, f́ ¿
 can be used as the prediction at x¿

.

Similar to other machine learning algorithms, the use of GPR in any prediction tasks is 
accomplished in two phases: namely, training and testing. In the training phase, a dataset 
consisting of input samples and corresponding target values is utilized to select the hyper-
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parameters of the kernel function. Once the kernel function is learned, it can be used for 
predicting the target values for new input samples in the testing phase.

3.4.2. GPR for cooling load prediction

The dataset available for cooling load prediction consists of hourly time-stamped outdoor air 
wet-bulb temperature and the hourly cooling load derived from in situ measurements of supply 
and return water temperature and water flowrate. Our goal is to model the cooling load as a 
function of time and weather parameters. The cooling load data during a randomly chosen time 
interval is shown in Figure 9 (a), where we can observe a pronounced daily and weekly 
periodicity of the cooling load. Figure 9 (b) demonstrates the impact of the wet-bulb 
temperature on the cooling load. The linear line fit to the temperature and cooling load data 
shows that the increase in temperature generally tends to increase the cooling load. The 
observations from the Figure 9 (a) and Figure 9 (b) inspire our design of the kernel function as 
follows.

 

(a)           (b)

Figure 9 The impact of (a) time and (b) temperature on the cooling load: (a) the cooling load data
during a randomly chosen 2-week long time window in the training dataset, and (b) the

correlation between temperature and cooling load with a linear line fitting.

To incorporate the “hourly effect” that allows each hour of the day to have a different predicted 
load, and the “day effect” that allows each day of the week to have a distinctive predicted load, 
we map the data time stamps to an hourly index within a day, and the day index to a week. The

i th input sample is given by:

x i=[ H I i , D I i ,T i ] Eq. 17

where H I i  and D I i  stand for the hour and day index, respectively. T i  indicates the 

outdoor air wet-bulb temperature measurement. 

To model the “hourly effect”, we use the periodic covariance form, multiplied with a squared 
exponential component to allow a possible decay from exact periodicity: 
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k1 (H Ii , H I i
' )=θ1exp (−(H I i−H I i

' )
2

2θ2
2 −

2sin2( π (H I i−H I i
' )

p1
)

θ3
2 ) Eq. 18

where p1  is the period of the covariance function, which is initialized to be 24. θ1  gives 

the magnitude, θ2  is the decay time for the periodic component, and θ3  defines the 

smoothness of the periodic component. 

Similarly, we model the “day effect” by a decayed periodic covariance function given by:

k2 (D Ii , D I i
' )=θ4 exp(−(D Ii−D I i

' )
2

2θ5
2 −

2sin 2( π (D Ii−D I i
' )

p2
)

θ6
2 ) Eq. 19

where p2  is initialized to be 7.

The impact of wet-bulb temperature on the cooling load is capture by the sum of a squared 
exponential term and a rational quadratic term:

k3 (T i , T i
' )=θ7

2exp (−(T i−T i
' )

2

2θ8
2 )+θ9

2(1+
(T i−T i

' )
2

2 θ10θ11
2 )

−θ10

Eq. 20

where the squared exponential term is used to capture the smoothly increasing trend, and the 
rational quadratic covariance term is to model irregularities.

To capture the impact of the “hourly effect,” “daily effect,” and temperature on cooling load, the
final kernel function used in the GPR-based load prediction is the sum of the aforementioned 
kernel functions:

k (x i , x i
' )=k1 ( H I i , H I i

' )+k 2 (D I i , D I i
' )+k3 (T i , T i

' )  Eq. 21

The parameters of the covariance function are learned from the training dataset by maximizing 
the log-likelihood of the training dataset. Interested readers are referred to [29] for more details
on the derivation of the training procedure.

4.Results
4.1. Daily analysis for three typical cooling demand scenarios

The optimal and three heuristic strategies were investigated under three typical scenarios with 
different levels of daily total cooling loads. Due to the different cooling demand levels, the 
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performance and savings potential of the optimal strategy tends to be different than for the 
three heuristic strategies. Examining the underlying datasets, the lowest cooling demand for the
current system was more than 20,000 kWh per day; average-level cooling demand was nearly 
40,000 kWh per day; and high-level cooling demand was almost 50,000 kWh. In this context, 
three “typical” days were selected to represent three scenarios of cooling demand level; these 
were the minimum level on October 10, the average level on July 2, and the maximum level on 
August 5. The total operating energy costs for the three scenarios were calculated and are listed
in Table 3. It should be noted that only as many as two chillers were allowed to operate 
simultaneously.

Table 3 Total energy costs (RMB) of different control strategies under three scenarios (maximally
two chillers operating)

Minimum load (A) Average load (B) Maximum load (C)

Date October 10 July 2 August 5

Current 5951.00 7563.66 8228.46

Optimal 5309.47 7113.01 7757.34

Chiller priority 7923.82 8922.32 9268.26

Ice priority 5758.55 6951.33* 7152.71*

Price priority 5831.59 7364.04* 7781.85*

* These simulated results are yielded under the assumption that only up to two chillers can operate simultaneously;
this assumption led to some hours with loads not met, potentially failing to satisfy occupant comfort. Separate 
simulations were run assuming all three chillers can operate simultaneously, and updated results are listed in Table 
4. 

4.1.1. Minimum level of cooling loads

Figure 10 shows the calculated allocation of the cooling load, to both the chillers and the ice 
tank, for different control strategies under the minimum-level load scenario. From the daily 
energy cost in column A of Table 3, it can be seen that the optimal strategy reduces energy costs
up to 10.8% compared to the current control strategy, which is similar to a price-priority 
scheme. Of all the five strategies, the cooling loads were assumed to be 100% met by the 
chillers or ice tanks, and the chiller-priority strategy cost the most. The capacity of the ice-
storage system was much less utilized with the chiller-priority strategy, especially under the 
minimum-load scenario, when two chillers can meet the majority of the cooling demand. The 
price-priority strategy can avoid using the chillers during the on-peak price periods in principle; 
however, depending on the level of the cooling demand, the utilization rate of the ice storage 
was still limited under this scenario. As for the optimal and ice-priority strategies, they both 
save more energy costs by taking full advantage of the ice-storage capacity. The ice tank was 
fully charged during the night, when the electric price was much lower; during the daytime 

21



operating hours, the ice tank could provide much more cooling with a higher efficiency (only 
pumps consumed electricity) than that provided by the chillers. Therefore, the total operating 
costs can be reduced if the ice tank is fully used during the high electricity price periods. As 
shown in Figure 10, between the optimal and ice-priority strategies at time 20:00, the optimal 
strategy performed better than the ice-priority strategy in accurately avoiding running the 
chillers during the on-peak price periods, which made it the most economical strategy among all
five control strategies. 

Figure 10 Calculated allocation of cooling loads by different control strategies under the minimum-
load scenario
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Figure 11 shows the electricity consumption for different control strategies under the minimum-
level load scenario. Electricity consumption distributions for the current and price-priority 
strategies were similar, which suggests that the current control strategy is strongly tied to 
variation in the electricity rate. Most electricity consumption in the optimal strategy is 
attributable to the chillers, occurring when the electric rate was at a lower level. Thus, the 
optimal strategy realized the objective to minimize the total energy costs by taking full 
advantage of the electricity price distribution. 

Figure 11 Electricity consumption of different control strategies under the minimum-load scenario

4.1.2. Average level of cooling loads

Figure 12 shows the calculated allocation of cooling load for different control strategies under 
the average-level load scenario; associated daily operating costs can be seen in column B of
Table 3. Here, the optimal strategy saves up to 6.0% of energy costs compared to the current 
strategy; moreover, the cooling load satisfied by the chillers and ice tank was well allocated in 
the optimal strategy according to the electricity price profile. Additionally, chillers in the optimal
strategy typically operated under full load conditions, maximizjng their efficiency. Operating 
costs were highest for the chiller-priority strategy, and the ice-storage was only 33% utilized. 
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Figure 12 Calculated allocation of cooling loads by different control strategies under the average-
load scenario

For the ice-priority and price-priority strategies, the cooling demand during the afternoon was 
not completely met, as chiller operation was normally limited to two at a time. Indeed, the total
capacities of the two chillers were insufficient to satisfy cooling demand after the ice had been 
used; this constitutes a significant limitation of both the ice-priority and price-priority strategies.
It is noted that the unmet cooling load for a given hour was counted in the next hour, and under
rare circumstances when the cooling load was not met by the end of a day, the unmet cooling 
load was ignored and not counted on the next day. Although the operating costs for these two 
strategies were similar to that of the optimal one, results for these strategies demonstrate that 
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occupant thermal comfort could decline when up to 20% of cooling demand was not met in a 
given hour. However, if a third chiller is activated during these hours, the remaining cooling 
demand can be fully met; the total costs for the strategies under this assumption are shown in 
column B of Table 4. Here, it is seen that the optimal strategy still saves energy costs when 
compared to the other three heuristic strategies, specifically: 3.75% lower energy costs than the
ice-priority strategy, 4.34% lower energy costs than the price-priority strategy, and 20.29% 
lower energy costs than the chiller-priority strategy. The advantage of the optimal strategy is 
obvious when considering both the energy cost saving potential and the satisfaction of the 
occupants’ thermal comfort.

Table 4 Total energy costs (RMB) of different control strategies under three scenarios (all three
chillers can operate if needed to meet the cooling loads)

Minimum load (A) Average load (B) Maximum load (C)

Date October 10 July 2 August 5

Current 5951.00 7563.66 8228.46

Optimal 5309.47 7113.01 7757.34

Chiller priority 7923.82 8922.32 9268.26

Ice priority 5758.55 7389.78* 7899.89*

Price priority 5831.59 7435.57* 8108.43*

* These numbers are the updated energy costs for the ice-priority and price-priority strategies under the B and C 
scenarios, compared with Table 3.

Figure 13 shows the electricity consumption for different control strategies under the average-
level load scenario. Here, the third chiller was allowed to operate when the first two chillers did 
not meet the cooling demand. The distribution of the electricity consumption for the current 
and price-priority strategies is similar. For the optimal strategy, the chillers consumed the most 
electricity when the electricity rate was lower, which resulted in the lowest energy costs among 
the strategies.
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Figure 13 Electricity consumption by different control strategies under the average-load scenario

4.1.3. Maximum level of cooling loads

Figure 14 shows the calculated allocation of cooling loads by different control strategies under 
the maximum-level load scenario. The daily operating energy cost can be seen in column C of
Table 3. Compared to the current strategy, the optimal strategy can save up to 5.7% of energy 
costs by effectively allocating cooling loads and running the chillers at a higher efficiency (e.g., 
under higher load ratio conditions). Indeed, under the optimal strategy, the chillers operate at 
nearly full load during operating hours, which corresponds to a much higher efficiency in the 
performance curves for the chiller. For the chiller-priority strategy, the ice-storage system was 
utilized up to about 50%, and the operating costs remained the highest compared to the other 
strategies. As aforementioned, the limitations of the ice-priority and price-priority strategies 
become more apparent when the daily cooling load is elevated. Here, occupant thermal 
comfort declines when up to 40% and 30% of hourly cooling demand is not met under the ice-
priority and price-priority strategies, respectively. In fact, under the ice-priority strategy, the 
total cooling load was not met until the end of the day. After activating the third chiller to help 
meet the remaining cooling load under these strategies, operating costs increased greatly, as 
shown in column C of Table 4. Here, the optimal strategy still saves energy costs relative to the 
other strategies specifically: 1.80% lower energy costs than the ice-priority, 4.33% lower energy 
costs than the price-priority, and 16.30% lower energy costs than the chiller-priority.
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Figure 14 Calculated allocation of cooling loads by different control strategies under the
maximum-load scenario

Figure 15 shows the electricity consumption for different control strategies under the 
maximum-level load scenario. Here, the third chiller was allowed to operate when the cooling 
demand was not met by the operation of two chillers. The distribution of electricity 
consumption for the current and price-priority strategies is similar, though the usage rate of the 
chillers under the current strategy is somewhat higher than that of the price-priority strategy. 
For the optimal strategy, the chillers consumed the most electricity when the electricity rate 
was lower, which resulted in the lowest energy costs among the strategies. 
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Figure 15 Electricity consumption of different control strategies under the maximum-load scenario

4.1.4. Summary of the daily analysis

Comparing the control patterns and total energy costs under various operation strategies, the 
optimal strategy developed in this paper was shown to be most effective in allocating the 
operation modes of chillers and ice tank among all five strategies, including the current one. 
Specifically, total energy costs under the optimal strategy are reduced by 5.7%-11.3% compared 
to a modified price-priority strategy (in current use), and by 16.3%-33.0% compared to a rule-
based chiller-priority strategy. On one hand, the ice storage was not fully discharged under the 
current strategy; the strategy therefore misses a significant opportunity to reduce energy costs. 
Conversely, when the proposed optimal strategy was used, ice storage was typically fully 
charged during the night and fully discharged during the daytime; this not only helped reduce 
the usage of the chillers, but also enhanced the operating efficiency of the chiller group. In the 
heuristic storage-priority strategy, ice storage was fully used; however, the total cooling demand
was not met for majority of the days under this strategy, likely sacrificing occupant comfort in 
the shopping mall. Conversely, the optimal strategy achieves energy cost savings while still 
meeting the total daily cooling demand. Moreover, as mentioned, the optimal strategy better 
allocates the operating modes of chillers and ice tank, which helps to avoid operating the 
chillers during high electricity price periods.

Finally, by calculating results under three cooling demand scenarios, the savings potential of the
optimal strategy was shown to vary based on the level of the daily total cooling demand. 
Specifically, the lower the daily cooling demand, the higher the daily cost savings for the optimal
strategy were when compared to the current modified strategy.  
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4.2. Monthly analysis

Monthly results were also calculated and analyzed for the five control strategies. Figure 16 
shows the total energy costs in July, August, and September, assuming that only up to two 
chillers could operate at the same time. The total cooling demand in August and September 
were the highest and lowest within these three months, respectively. Compared to the current 
strategy, the optimal strategy can save 7.7%, 6.3%, and 9.3% of the current energy costs in July, 
August, and September, respectively. The chiller-priority strategy always cost the most as it does
not take full advantage of the ice-storage system. As for the ice-priority strategy, in July, there 
were five days when the total cooling demand was not met by the end of the day. The 
unsatisfied cooling demand accounted for 11.7% of the total cooling demand. In August, there 
were eight days in total when the daily cooling demand was not met. The unsatisfied cooling 
demand accounted for 16.2% of the total cooling demand. In September, the cooling demand 
for each day was met; however, in certain typical hours, the unsatisfied cooling load still rose to 
2.7% of the hourly cooling demand. Similar problems applied to the price-priority strategy; in 
July and August, the unmet cooling loads accounted for 3.1% and 5.5% of the total cooling 
loads, respectively. Moreover, under the price-priority strategy, there were two days when the 
total daily cooling demand was not met by the end of the day in August.

Figure 16 Monthly energy costs of different control strategies in July, August and September
(maximally two chillers operating)

As aforementioned, if the third chiller was activated during those hours when the cooling load 
was not met, the remaining cooling demand could be fully met. The monthly total costs of 
different strategies were also calculated under this scenario, and results are shown in Figure 17. 
Clearly, the optimal strategy still saves energy costs compared to the current control strategy 
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and the other three heuristic strategies, even when allowing the other strategies to fully meet 
the cooling demand and satisfy occupant thermal comfort. 

Figure 17 Monthly energy costs of different control strategies in July, August and September (all
three chillers can operate if needed to meet the cooling loads)

4.3. Validation of the hourly cooling load prediction model

The cooling load dataset we have contains 1,708 samples of time-stamped web-bulb 
temperature and cooling load data collected in Shenzhen, lasting about 71 days. We used 750 
samples for training and the rest for the validation of the model. We compared our GPR model’s
predictive performance for the testing dataset against that of other regression methods studied 
in the previous literature, including linear regression (LR), Generalized Regression Neural 
Network (GRNN) [31], Support Vector Machine Regression (SVMR) [32], and Random Forest 
Regression (RFR) [33]. We use MATLAB built-in functions, fitlm, newgrnn, fitrsvm, and 
TreeBagger to implement LR, GRNN, SVMR, and RFR, respectively. Our GPR model is 
implemented using the GPML toolbox [34]. Predictive performance was evaluated via three 
commonly used measures, namely: Relative Absolute Error (RAE), Relative Root Mean Square 
Error (RRMSE), and R-squared value (R2), which are defined as follows:
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and its true value y i
true

. RAE and RRMSE measure the deviation of a prediction from the true 

value, where RAE focuses more on the performance of predicting the general trend, while 
RRMSE is more sensitive to the prediction error of extreme target values. Finally, R2 measures 
the percentage of the target variation that is explained by the model; accordingly, a higher R2 
value is more desirable. 
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Figure 18 Visualization of cooling load prediction during a randomly chosen time window

Figure 18 visualizes the load prediction results and the corresponding ground truth 
measurements during a randomly chosen time window. From this, it is evident that the GPD 
prediction effectively captures the trend in ground truth measurements. Table 5 summarizes the
load prediction performance of our GPR method as well as other methods; the table 
demonstrates that GPR significantly outperforms the other prediction method, under all 
metrics. Note that simple linear regression and SVM regression methods are relatively 
ineffective in predicting the cooling load variation.

Table 5 Comparison of the prediction performance of different load prediction algorithms

Prediction Algorithm RAE (%) RRMSE (%) R2 (%)

LR 62.86 89.01 24.77
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GRNN 53.75 82.27 35.73

SVMR 67.53 98.68 7.53

RFR 48.81 69.51 54.12

GPR 5.37 64.79 60.13

5.Discussion
By comparing the operational energy cost of five control strategies, it was demonstrated that 
the rate of the ice tank plays a key role in reducing the energy costs of a TES system. In the 
optimal strategy, considered the most economical and effective way to control the TES system, 
the ice tank was always fully charged during the night and fully discharged during the daytime. 
It can be inferred that a larger storage capacity would favor more operating cost savings for the 
developed optimal strategy, especially for those days when the total cooling demand exceeds 
the designed storage capacity. Theoretically speaking, when it comes to the operation of an 
existing TES system, there are two keys to achieving operating cost savings: (1) better allocate 
the cooling demand between the chillers and the ice tank according to the time-of-use 
electricity rate, and (2) control the chillers such that they operate under full load conditions (or 
as high as possible) to increase their efficiency. 

When analyzing real operation data from a shopping mall in this work, statistics suggest that the
total daily cooling demand on the majority of the days exceeded the cooling capacity of the 
designed ice tank. Thus, chillers were required to operate to help meet the cooling demand 
even during high electricity rate periods. Accordingly, during the design of a TES system, 
statistical analysis is needed to better predict the daily cooling demand, considering weather 
patterns, building type, occupant thermal comfort, and building operation. The capacities of the
ice tank and the chiller group should then be carefully determined based on the average and 
maximum cooling demand, in order to realize a larger energy cost saving potential. In addition, 
the capacities of the ice tank and chillers determine their initial capital cost, which should be 
considered in an optimal design.

As aforementioned, previous optimization studies on TES systems have mostly focused on 
physically modeling building thermal performance. In this work, data-driven analysis and 
modeling were used to first clearly understand the system’s current operating performance and 
control strategy, which improves the accuracy of cooling load predictions as well as the 
reliability of the optimization results. Similar to the previous results, the optimal strategy takes 
advantage of better allocating the usage of chillers and storage function according to a varying 
electricity price and peak power contraction. Thus, to achieve a practical optimal strategy, the 
optimization problem should be carefully formulated considering all related constraint 
conditions.
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It should be noted that there are limitations in this study, namely: (1) the performance 
parameters of the cooling and ice-storage system were analyzed from the datasets measured in 
a real shopping mall in Shenzhen city in China; thus, the optimal strategy determined in this 
work is most applicable to this type of TES system. However, the data analytics and optimization
methodology is generic and applicable to other types of TES systems in other types of 
commercial buildings; (2) since the chilled water flow rate from the chiller group and the ice 
tank were not measured separately, the hourly control mode of the current TES system could 
only be determined by the open status of the valves. This meant that the hourly usage statistics 
of the chillers and the ice tank could be collected and analyzed, but the exact quantity of the 
cooling demand for each piece of equipment in the central cooling plant could not be 
determined. Nevertheless, this paper’s comparison of energy consumption to the valves’ open 
status was sufficient to reveal the savings potential of the proposed optimal control strategy.

 

6.Conclusions 
This study used data-driven analytics to understand the operation of an ice–based TES system in
a shopping mall and to calculate the system’s performance using data measured from meters 
and sensors that were installed on the system. A novel optimal control strategy was then 
developed to minimize the system’s operating costs; this optimal strategy was compared with 
three heuristic control strategies. The savings potential of the optimal strategy relative to the 
heuristic strategies was assessed under three scenarios of cooling demand level using three 
representative days of data. 

Results demonstrated that the current strategy used to operate the TES system was largely 
based on the distribution of electricity price, and the use of chillers was prioritized over the use 
of the ice tank. In particular, the ice tank was not fully discharged during the daytime in the 
current strategy, leaving savings on the table that were captured by the optimal strategy. By 
analyzing the measured datasets, the performance characteristics of the current TES system 
were determined; performance and energy cost outcomes for the three heuristic strategies 
were also studied. By comparing total energy costs and control patterns across strategies, the 
optimal strategy was shown to be the most effective in yielding energy cost savings and fully 
meeting cooling demands needed to satisfy occupant thermal comfort. Specifically, the optimal 
strategy saved up to 11.3% per day and 9.3% per month in energy costs over the system’s 
current operation strategy. The energy cost savings potential of the optimal strategy was found 
to depend on the level of total daily cooling demand: when the cooling demand is low, the ice 
tank is more effectively utilized by fully charging the ice storage during the night and better 
allocating the cooling demand between the chillers and the ice tank. 

A machine learning-based, hourly cooling demand prediction tool will support the deployment 
of this paper’s analytics and optimization techniques in real TES systems. Looking ahead, the 
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optimal strategy presented here will be implemented and tested in the actual TES system of the 
shopping mall.
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