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Nearly optimal state preparation for quantum simulations of lattice gauge theories

Christopher F. Kane ,1 Niladri Gomes ,2,* and Michael Kreshchuk 3

1Department of Physics, University of Arizona, Tucson, Arizona 85719, USA
2Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

3Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

We present several improvements to the recently developed ground-state preparation algorithm based on the 
quantum eigenvalue transformation for unitary matrices (QETU), apply this algorithm to a lattice formulation 
of U(1) gauge theory in (2 + 1) dimensions, as well as propose an alternative application of QETU, a highly 
efficient preparation of Gaussian distributions. The QETU technique was originally proposed as an algorithm for 
nearly optimal ground-state preparation and ground-state energy estimation on early fault-tolerant devices. It uses 
the time-evolution input model, which can potentially overcome the large overall prefactor in the asymptotic gate 
cost arising in similar algorithms based on the Hamiltonian input model. We present modifications to the original 
QETU algorithm that significantly reduce the cost for the cases of both exact and Trotterized implementation of 
the time evolution circuit. We use QETU to prepare the ground state of a U(1) lattice gauge theory in two spatial 
dimensions, explore the dependence of computational resources on the desired precision and system parameters, 
and discuss the applicability of our results to general lattice gauge theories. We also demonstrate how the QETU 
technique can be utilized for preparing Gaussian distributions and wave packets in a way which outperforms
existing algorithms for as little as nq �  2–5 qubits.

I. INTRODUCTION

Simulating many-particle quantum systems has always
been seen as one of the most exciting potential applications
of quantum computers [1]. While simulation of nonrelativistic
many-body physics is already by itself complex enough to be
considered as a candidate for quantum advantage [2–6], quan-
tum field theory (QFT) adds to the picture such ingredients as
particle number nonconservation, a multitude of particle types
and their interactions, gauge symmetry, etc. Quantum sim-
ulation of realistic QFTs such as quantum chromodynamics
(QCD) will likely require the access to fault-tolerant quantum
computers. To extract as much physics as possible from such
devices, it is imperative to investigate all theoretical aspects
of the quantum simulation. The preliminary steps include
constructing a model suitable for quantum computation by
discretizing the original continuous theory [7,8], mapping
the degrees of freedom in the discretized model onto logical
qubits [9–45], as well as mapping the logical qubits onto the
physical ones within an error-correcting procedure [46–54].1

Those are followed by the quantum simulation itself, which
typically involves preparing on a quantum computer states
of specific form [56–69] (eigenstates, wave packets, thermal
states) and evolving those in time. Lastly, once the desired

*Present address: The University of Chicago, Chicago, Illinois
60637, USA.

1Further optimization is likely to be achieved via cross-layer
design, e.g., mapping physical degrees of freedom directly onto
physical qubits [55].

final state is prepared, it is used for measuring the observables
of interest.

Most early approaches to simulating time evolution and
ground-state preparation were based on product formulas
[2,4,70]. These methods do not require ancillary qubits and,
due to the overall simplicity of quantum circuit design, could
be readily applied to simple models. However, they are likely
to not take advantage of neither noisy near-term devices nor
fault-tolerant ones. The former direction has been revolution-
ized by the invention of variational [71–77] and subspace
[78–82] methods, while the exploration of the latter one has
led to the development of quantum simulation algorithms op-
timal and nearly optimal in problem parameters [83–91]. The
asymptotic cost of these nearly optimal algorithms is typically
given in terms of the number of calls to subroutines that pro-
vide information about the physical Hamiltonian. Most such
algorithms rely on the usage of block encoding subroutines
whose construction comes at a great expense and leads to
large prefactors in the final gate cost [92,93]. A number of
algorithms, however, use instead the Hamiltonian time evolu-
tion input model [94–97], in which case it is an approximate
time evolution circuit that serves as an elementary block for
the circuit construction. The development of this idea has
ultimately lead to the quantum eigenvalue transformation for
unitary matrices (QETU) algorithm [98], which enables one to
assemble circuits applying a large class of polynomial trans-
formations of a unitary operator to a given state, including
those that implement nonunitary dynamics [99].

In this work, we present the first study using QETU for
preparing the ground state of a lattice gauge theory. The test
theory we consider is a particular formulation of a U(1) lattice
gauge theory in two spatial dimensions [41,100,101]. Our
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study includes an analysis of how the parameters of the QETU
algorithm, as well as the Trotter error from approximating the
time evolution circuit, scale with the system size, number of
qubits per site, and gauge coupling. Armed with the intuition
from this numerical study, we provide a general discussion
about how the cost of QETU for ground-state preparation of
a QCD-like lattice gauge theory will scale with the system
parameters.

We also present an alternative application of QETU for
preparing Gaussian states in quantum mechanical systems.
We show that, while a naïve application of QETU to this
problem results in the error of the approximation decreasing
polynomially with the number of calls to the time-evolution
circuit, this scaling can be made exponential with simple
modifications to the QETU procedure. Using our improved
methods, we show that the cost of preparing Gaussian states
with QETU outperforms existing state preparation methods
for states represented using nq > 2–5 qubits.

In addition to these more specialized studies, we developed
modifications to the original QETU algorithm that can sig-
nificantly reduce the cost for arbitrary Hamiltonians. These
modifications can be applied to both the scenario when the
time evolution circuit is prepared exactly and when prepared
approximately using Trotter methods.

The rest of this work is organized as follows: In Sec. II A
we review the general QETU algorithm. From there, in
Sec. II B we review how QETU can be used for ground-state
preparation. Next, in Sec. II B 2 we discuss our modifica-
tions to the original QETU algorithm and provide numerical
demonstrations of the achievable cost reduction. In Sec. II C
we discuss how to use QETU to prepare Gaussian states.
Section III reviews the details of the test theory we consider,
which is a particular formulation of a U(1) lattice gauge theory
in two spatial dimensions. Numerical results for ground-state
preparation of this U(1) lattice gauge theory using QETU are
presented in Sec. IV A. From there, we present the results of
our study using QETU to prepare Gaussian states in Sec. IV B.
In Sec. V, we provide a general discussion of the scaling
expected when extending QETU for ground-state preparation
of a general lattice gauge theory with the same qualitative
properties as QCD. Our conclusions, as well as a discussion
of future applications, are presented in Sec. VI. The main
notations used throughout the paper are listed in Table I.

II. QUANTUM EIGENVALUE TRANSFORMATION FOR
UNITARY MATRICES

We begin this section by reviewing the QETU algorithm in
its most general form, as well as its application to ground-state
preparation. Readers familiar with QETU and the original
state preparation procedure in Ref. [98] may proceed directly
to Sec. II B 2. Next, we present modifications to the original
algorithm that reduce the cost of ground-state preparation.
Lastly, we consider an application of QETU to the preparation
of Gaussian distributions and wave packets.

A. Algorithm review

Similarly to the quantum eigenvalue transformation
[85,102] algorithm, the QETU circuit realizes a polynomial

TABLE I. Main notations used in the paper.

Quantum eigenvalue transformation for unitary matrices

f(x) Function to be approximated by
QETU

F(x) f(2 arccos(x))
F (x) Polynomial approximation to

F(x)
f (x) F (cos(x/2))
H phys = ∑

n E phys
n |ψn〉〈ψn| Physical Hamiltonian

H = ∑
n En|ψn〉〈ψn| Rescaled Hamiltonian

c1,2 Constants in operator rescaling,
Eqs. (3) and (23)

P<μ = |ψ0〉〈ψ0| Projector onto ground state of H
|ψinit〉 Initial state
σ±, σmin, σmax Parameters of shifted sign

function, Eq. (7)
�phys Initial (approximate) knowledge

of (E phys
1 − E phys

0 )/2
� Initial (approximate) knowledge

of (E1 − E0)/2
μ Initial (approximate) knowledge

of (E1 + E0)/2
τ Evolution or scale parameter of

e−iHτ

Nsteps Number of steps in Trotter
implementation of U

δτ τ/Nsteps, Trotter step size
τmax Largest value of τ guaranteeing

isolation of the ground state
η Parameter defining H spectrum

bounds, Eq. (4)
ηP<μ

Parameter of the shifted sign
function, Eqs. (10) and (11)

γ = |〈ψinit|ψ0〉| � 0 Overlap between initial guess
and true ground state

d Degree of (even) F (x)
polynomial
Total number of calls to both U
and U †

nCh Number of Chebyshev
polynomials used to represent
(even) F (x)

Nsteps Number of Trotter steps in single
call to U

Ntot d × Nsteps, total number of
Trotter steps in QETU circuit

F Discrete Fourier transformation
matrix

U(1) gauge theory

g Coupling constant
a Lattice spacing
V Physical volume
Ns Number of sites in each

dimension of a lattice
Np Number of independent

plaquettes
bmax,p, δbp Maximum value of magnetic

field operator and discretization
step for pth plaquette, Eq. (33)



TABLE I. (Continued.)

Quantum eigenvalue transformation for unitary matrices

rmax,p, δrp Maximum value of rotor
operator and discretization step
for pth plaquette, Eq. (34)

nq Number of qubits per lattice site
Wave-packet preparation

x0, p0 Expectation values of position
and momentum operators

σx Wave-packet width
x̂sh Shifted position operator
xQETU

0 c1x0 + c2

σQETU c1σx

F+(x), F−(x) Even and odd parts of F(x)

transformation of e−iτH , which, in turn, can be used for im-
plementing a wide class of functions of H . While for a given
Hermitian operator H constructing the exact circuit for e−iτH

is, generally, a nontrivial problem—even for short times τ—
QETU can potentially render useful results for approximate
implementations of e−iτH . The impact of such approxima-
tions on the method’s performance will be explored in future
sections.

Preparing the ground state of a Hamiltonian with the aid
of the QETU algorithm is based on the concept of filtering
[97,98,103–106], which implies constructing a circuit ap-
proximately implementing the action of a projector P<μ =
|ψ0〉〈ψ0| onto the ground state of H = ∑

n En|ψn〉〈ψn| and
applying this circuit to a state |ψinit〉 having significant overlap
|〈ψ0|ψinit〉| = γ � 0 with the ground state:

P<μ|ψinit〉 ∝ |ψ0〉. (1)

In Ref. [104] it was observed that cosM H for large val-
ues of M is approximately proportional to the projector
onto the ground state of H for a properly normalized H .
The circuit for cosM H in this approach is expressed as
cosMH = (eiH + e−iH )M/2M , where the exponents are imple-
mented using any available time evolution algorithm, while
the linear combination of terms is obtained via the linear
combination of unitaries (LCU) algorithm [85,86,102,107–
111]. While Ref. [104] combined the ideas of the Hamiltonian
time evolution input model [94–97] (i.e., utilizing e−iH as a
building block for the algorithm), this approach did not have
optimal performance. In Ref. [105] algorithms based on the
filtering concept have been developed based on the Hamilto-
nian oracle access model and QET technique [84]. Despite
the asymptotically nearly optimal performance of algorithms
in Ref. [105], they suffer from a high cost of the oracle
subroutines.

Finally, nearly optimal algorithms for ground-state en-
ergy estimation [97] and ground-state preparation [98] based
on the Hamiltonian time evolution input model have been
proposed. While efficient ground-state energy estimation
(without ground-state preparation) could be achieved with as
little as a single implementation of e−iτH for several values of
τ [97], preparing the ground state in QETU amounts to using

a circuit similar to the circuit used in quantum eigenvalue
transformation (QET) [85,98,102], see Fig. 1.

The QETU theorem [98] assumes the access to a cir-
cuit implementing e−iH for an n-qubit Hermitian operator
H . It states that, for any even real polynomial F (x) of de-
gree d satisfying |F (x)| � 1 ∀ x ∈ [−1, 1], one can find a
sequence of symmetric phase factors (ϕ0, ϕ1, . . . , ϕ1, ϕ0) ∈
Rd+1 such that the circuit in Fig. 1 denoted by U satisfies
(〈0| ⊗ 1n)U (|0〉 ⊗ 1n) = F (cos(H/2)) [98]. In practice, the
QETU circuit is used for approximately implementing f(H )
by realizing a transformation F (cos(H/2)), where F (x) is a
polynomial approximation to F(x) ≡ f(2 arccos(x)). Note that
there also exists a control-free version of the QETU circuit
that avoids having to implement controlled calls to the e−iH

circuit [98], which we explain in more detail in Appendix C.
The original algorithm in Ref. [98] proposed the use of

e−iH in the QETU circuit. It is possible, however, to use e−iτH

instead. Doing so leads to a modification of the Lemma above,
where the mapping is now F (cos(τH/2)). Because cos(τx/2)
is periodic, one must be careful when choosing τ to ensure
construction of the desired function f(x). In the following sec-
tion, we discuss how using τ 	= 1 can reduce the cost of state
preparation. In Sec. IV B we discuss how τ 	= 1 can reduce
the cost of using QETU for constructing Gaussian states.

B. Ground-state preparation via quantum eigenvalue
transformation for unitary matrices

In this section we review the algorithm proposed in
Ref. [98] for ground-state preparation using QETU. We first
state the necessary assumptions and scaling of the algorithm.
After reviewing the original algorithm in more detail, we
discuss how using instead e−iτH as a building block in the
QETU circuit can lead to significant cost reductions, both
when implementing e−iτH exactly as well as using product
formulas. We conclude by discussing how QETU can be used
to prepare nq-qubit Gaussian states with a cost that is linear in
nq.

1. Original algorithm

Suppose one has access to a Hamiltonian H via e−iH , and
that the spectrum of H is in the range [η, π − η] for some
η > 0. Furthermore, assume one has knowledge of parameters
μ and � such that

E0 � μ − �/2 � μ + �/2 � E1, (2)

where Ei is the ith excited state of H . Here μ represents
the knowledge of the precise values of the energies, and �

is a lower bound of the excited-state energy gap E1 − E0.
Figure 2 shows an example of the exact projector onto the
ground state, given by the step function 1 − θ (x − μ), which
isolates the ground state even with only partial knowledge
of E0 and E1. Lastly, assume one has an initial guess |ψinit〉
for the ground state with overlap satisfying |〈ψ0|ψinit〉| � γ .
Under these assumptions, one can prepare a state |ψ̃0〉 such
that |〈ψ0|ψ̃0〉| � 1 − ε using Õ(γ −2�−1 log(1/ε)) controlled
calls to the time evolution circuit for e−iH . We spend the rest of
this section describing the details of the algorithm, including
how the scaling with γ , �, and ε arise.



FIG. 1. QETU circuit diagram. The top qubit is the control qubit, and the bottom register is the state that the matrix function is applied to.
Upon measuring the ancillary qubit to be in the zero state, one prepares the normalized quantum state F (cos(H/2))|ψ〉/||F (cos(H/2))|ψ〉||
for some polynomial F (x). For symmetric phase factors (ϕ0, ϕ1, . . . , ϕ1, ϕ0 ) ∈ Rd+1, then F (x) is a real even polynomial of degree d . The
probability of measuring the control qubit in the zero state is p = ||F (cos(H/2))|ψ〉||2.

We begin by addressing the fact that the spectrum of our
target Hamiltonian must be in the range [η, π − η] for some
η > 0. Because QETU returns a function with a periodic
argument, i.e., F (cos(H/2)), any projector constructed with
QETU will repeat itself for large enough energies, as illus-
trated in Fig. 3. From this we see that unless the spectrum
of H is in a limited range, we cannot guarantee that higher
excited states will be filtered out. To avoid this problem, in
Ref. [98] the Hamiltonian was first scaled so that its spectrum
was in the range [η, π − η] for some η > 0. We find that this
constraint can be somewhat relaxed, which is described in
detail in Sec. II B 2. If the physical, unshifted Hamiltonian is
given by Hphys with energies Ephys

i , the Hamiltonian with the
shifted spectrum is given by

H = c1Hphys + c21, (3)

where

c1 = π − 2η

Ephys
max − Ephys

0

, c2 = η − c1Ephys
0 . (4)

Alternatively, one could replace Emax
phys with an upper bound

on the maximum eigenvalue. One important consequence of
shifting the spectrum is that the energy gap of the shifted

FIG. 2. Plot of the step function f(x) = 1 − θ (x − μ) encoding
partial information known about E0 and E1. the x-axis variable x
corresponds to the energy E . The ground-state energy E0 is known to
be in the shaded orange region between the orange vertical lines. The
first-excited state E1 is known to be larger than the value indicated
by the green vertical line. The gap � used is the difference between
the lower bound of E1 and the upper bound of E0. The central value
μ is chosen to be halfway between the upper bound of E0 and the
lower bound of E1. Isolating the ground state is possible without
exact knowledge of E0 and E1.

Hamiltonian shrinks as well. If �phys is the energy gap of
the physical Hamiltonian Hphys, the shifted gap is given by
� = c1�

phys. This tells us that � ≈ �phys/Emax. Because the
maximum eigenvalue of a Hamiltonian generally grows with
the number of terms, the gap � used in the QETU algo-
rithm will generally shrink with the number of lattice sites.
Therefore, one generally expects � ∼ 1/Nsites, where Nsites

denotes the number of lattice sites use in a simulation of some
lattice gauge theory. We discuss this scaling in more detail in
Secs. IV A and V.

Given some Hamiltonian H and the associated parameters
μ and �, one can construct an approximate projector onto the
ground state by constructing an approximation f (x) to f(x) =
1 − θ (x − μ) satisfying

| f (x) − c| � ε ∀ x ∈ [η,μ − �/2],

| f (x)| � ε ∀ x ∈ [μ + �/2, π − η]. (5)

Furthermore, because a unitary matrix must have entries with
magnitude less than or equal to one, we require | f (x)| � 1 ∀ x.
The parameter c is chosen to be slightly smaller than one
to avoid numerical overshooting when finding a Chebyshev
polynomial satisfying the above constraints and is discussed
in more detail later in the section.

To approximately implement the action of f(H ) with
QETU, we need the polynomial F (x) to approximate the func-
tion f(2 arccos(x)). The presence of the arccos(x) implies that

FIG. 3. To construct the approximate projector P<μ onto the
ground state, QETU implements an approximation of the function
F(cos(H/2)), where F(x) = f(2 arccos(x)) and f(x) is a unit step
function f(x) = 1 − θ (x − μ). The x-axis variable x corresponds to
the energy E . Because cos(x/2) is periodic, the step function repeats
itself with period 4π . Unless the spectrum of the Hamiltonian is in a
limited range, one cannot guarantee that all the excited states will be
filtered out.



F (x) can only be defined for x ∈ [−1, 1]. Taking the cosine
transform into account, we wish to construct F (x) such that

|F (x) − c| � ε ∀ x ∈ [σ+, σmax],

|F (x)| � ε ∀ x ∈ [σmin, σ−],

|F (x)| � c ∀ x ∈ [−1, 1], (6)

where

σ± = cos
μ ∓ �/2

2
,

σmin = cos
π − η

2
,

σmax = cos
η

2
. (7)

For a nonzero gap � and a nonzero error ε, one candidate
function for F (x) is the shifted error function, which has the
important property that Chebyshev approximations of it con-
verge exponentially with the degree of the polynomial [98].
In principle, one could solve for F (x) by choosing a specific
error function such that the Chebyshev approximation to it
has a constant error for all x. While it was shown in Ref. [112]
that this procedure prepares the ground state of a system with
a gap � to a precision ε using a polynomial with degree
scaling as O(�−1 log ε−1), this method can lead to numerical
instabilities if not performed carefully [98]. Instead, we follow
a different procedure, also described in Ref. [98], that avoids
the need to first choose a shifted error function while still
producing a near-optimal approximation. This procedure is
discussed in detail later in this section.

For the sake of argument, if one did choose F(x) to be a
shifted error function, there would exist a Chebyshev polyno-
mial approximation to it with fidelity 1 − ε where the degree
of the polynomial is O(�−1 log(ε−1)) [98]. While we do not
in practice choose F(x) to be a shifted error function manu-
ally, the convex-optimization method we use to determine the
Chebyshev approximation of F(x) has this same scaling. The
scaling with � can be understood by first recognizing that, for
a smaller �, the shifted error function rises more quickly. A
steeper rising error function requires a higher degree polyno-
mial to approximate the function to the same precision than
a more slowly rising one. By inverting O(�−1 log(ε−1)), the
error ε scales as ε = O(e−b�d ), where b is a constant. Figure 4
shows an example F (x) for parameter values η = 0.3, c =
0.999, E0 = 1, E1 = 1.6, μ = (E0 + E1)/2, � = (E1 − E0),
corresponding to σmin = 0.15, σ− = 0.70, σ+ = 0.88, and
σmax = 0.99. The function F (x) is represented using a d = 22
degree polynomial, resulting in error ε ≈ 0.0096.

The final piece of the scaling has to do with the overlap of
the initial guess for the ground state. Because the probability
to measure zero in the ancillary register of the QETU circuit is
given by ||F (cos(H/2))|ψinit〉|| = γ 2, the number of times the
circuit must be prepared in order to measure zero increases for
a poor initial guess. It can therefore be beneficial to dedicate
substantial resources to prepare a high-quality initial guess
|ψinit〉.

We now review the procedure in Ref. [98] for finding a
degree d even Chebyshev polynomial for F (x). The goal is to

FIG. 4. The blue curve shows F (x), where F (x) is a Chebyshev
approximation of the shifted error function. The orange vertical
dashed lines indicate the values σmin, σmax, σ±. The green shaded
regions indicate x values that are included when solving for the
Chebyshev expansion of the cosine transform shifted error function.
For values of x outside the shaded green regions, the function F (x)
can take on any value as long as |F (x)| � 1.

solve for nCh = d/2 + 1 Chebyshev coefficients ck such that

F (x) =
nCh−1∑
k=0

c2kT2k (x). (8)

To do so, one first samples F (x) at a set of M discrete points.
It is known that polynomial interpolation sampling at equidis-
tant points is exponentially ill conditioned [113]. To avoid this
problem, F (x) is instead sampled using the roots of Cheby-
shev polynomials x j = − cos( jπ

M−1 ) for j = 0, . . . , M − 1 for
some large value of M. Because the region where F (x) = c
shrinks with �, one has to be careful to choose a value of
M large enough to resolve this region. Once we choose the
values of x j to sample F (x), we define a coefficient matrix
Ajk = T2k (x j ) such that F (x j ) = ∑

k A jkc2k . The coefficients
are then determined by solving the following optimization
problem:

min
{ck}

max

{
max

x j∈[σ+,σmax]
|F (x j ) − c|, max

x j∈[σmin,σ−]
|F (x j )|

}
. (9)

This is a convex optimization problem and can be solved
using, e.g., the Matlab code CVX [114] or the Python code
CVXPY [115]. One chooses c smaller than one to allow
the Chebyshev approximation to overshoot the step function,
which, by the equioscillation theorem, is necessary to achieve
an optimal Chebyshev approximations [113]. In practice, one
can choose c to be sufficiently close to one such that the effect
is negligible. Our numerical investigations showed that the
cost of solving for the coefficients generally scales linearly
or better in the degree of the polynomial.

Once the Chebyshev expansion for F (x) is known, the final
step is to calculate the phases {ϕ j} used in the QETU circuit.
Note that multiple conventions for defining the phases {ϕ j} ex-
ist, and throughout this work we follow Ref. [98] and use the
so-called W-convention. It has been found in Ref. [116] that
using a quasi-Newton optimization method one can robustly
find the symmetric phase factors for values of d ≈ 10 000. An
example code to solve for the Chebyshev coefficients ck and



the associated phase factors has been implemented in QSPPACK

[117]. Note that the phases appearing in the QETU circuit
{ϕ j} are related to the symmetric phases calculated using
QSPPACK {φ j} by ϕ j = φ j + (2 − δ j 0)π/4 (see Appendix B
in Ref. [98]). Through numerical studies, we find that the cost
of finding the phase factors scales roughly quadratically with
the number of phases. More details regarding the calculation
of the phases can be found in Appendix A.

To summarize, using QETU to prepare the ground state
of a target Hamiltonian Hphys can be done according to the
following steps:

(1) Construct H = c1Hphys + c2 such that the spectrum of
H is in [η, π − η] for some η > 0.

(2) Determine μ and �.
(3) Solve for the Chebyshev approximation F (x).
(4) Solve for the phase factors {φ j}.
(5) Implement the circuit in Fig. 1.
In the next section, we describe how the constraint that

the spectrum of H should be in the range [η, π − η] can be
relaxed.

2. Modified ground state preparation

In the previous section, we reviewed the original QETU
algorithm for ground-state preparation in which the Hamil-
tonian spectrum was assumed to be in the range [η, π − η].
This assumption was necessary because the function cos(x) is
monotonic in the range x ∈ [0, π ]. While this is true, QETU
actually returns F (cos(x/2)),2 with cos(x/2) being monotonic
in the range x ∈ [0, 2π ]. This observation can be leveraged
to increase the allowed range of the spectrum of H . This is
useful because a larger range leads to a larger energy gap
used in the QETU algorithm, which reduces the overall cost of
the simulation. For the modified algorithm, we introduce the
variable parameter τ to characterize the increased spectrum
range. This adjustment to the original QETU algorithm can
be viewed from two perspectives: one can either continue to
use e−iH as a building block and change the spectrum of H to
be in the range [η, τ (π − η)], or, equivalently, consider e−iτH

as a building block with the spectrum of H in the original
range [η/τ, π − η]. We choose the latter perspective, and in
what follows derive the largest value of τ one can use while
still guaranteeing isolation of the ground state. Depending on
the context, it will be useful to think of τ as either a scale
parameter of the Hamiltonian spectrum or as an evolution
time; if necessary, we state explicitly which perspective is
being used.

First, while the initial algorithm in Ref. [98] proposed
using the same value of η when constructing the shifted sign
function and when shifting the spectrum of the Hamiltonian,
it is in principle possible to use different values. We continue
to use η to denote the value used for shifting the spectrum
of H to be in the range [η, π − η], and introduce ηP<μ

to
denote the value used when constructing the shifted error

2The control-free version of QETU, considered below in Sec. IV A
and in Appendix C, implements instead F (cos(x)). The analy-
sis of this section can be adapted to that case upon replacing
F (cos(x/2)) → F (cos(x)).

function. Note that, in order to avoid the scenario where the
ground state is filtered out and excited states are not, one must
ensure ηP<μ

� η. The parameters of the shifted sign function
for general τ are then given by

σ±(τ ) = cos

(
τ

μ ∓ �/2

2

)
, (10)

σmin(τ ) = cos

(
τ

π − ηP<μ

2

)
, (11)

σmax(τ ) = cos
(
τ

ηP<μ

2

)
. (12)

Note that while there are no theoretical issues with using τ <

1, doing so shrinks the energy gap and is not beneficial in
the context of exact implementations of e−iτH . We are now in
a position to discuss the two possible pitfalls that can occur
when using τ 	= 1 and how to overcome them.

Recall from Eq. (6) that the approximate (even) step func-
tion F (x) can be larger than ε in the region −σmin � x � σmin

(see Fig. 4 for an example of this behavior). The first caveat is
that, for τ > 1, it is possible that an excited-state energy falls
into this region and will be suppressed by a factor larger than
ε. This can be avoided by implementing the step function with
ηP<μ

= 0, i.e., set σmin = 0. Our numerical studies indicate the
quality of the approximation is largely independent of ηP<μ

,
with the choice ηP<μ

= 0 resulting in close to the smallest
error in the range 0 � ηP<μ

� η.
The second caveat is that one must ensure that higher

excited states fall in regions where they are filtered out by the
approximate step function F (x). Consider first using τ = 1.
Taking the cosine transform into account, the locations of
the shifted energies Ei are cos(Ei/2), where Ei ∈ [η, π − η].
Because cos(x) is monotonically decreasing on x ∈ [0, π ],
the cosine transformed energies get successively closer to
zero for larger energies, with cos(Emax/2) = cos((π − η)/2)
which is close to zero for small η. If one instead uses τ > 1,
the transformed energies are cos(τEi/2). Taking advantage of
the fact that the step function is even, we see that as long
as cos(τEi/2) > −σ−(τ ), one still guarantees isolation of the
ground state. This leads to a maximum value

τmax = 2π

π − η + (μ + �/2)
. (13)

Figure 5 shows the fidelity of the prepared ground state of a
simple harmonic oscillator as a function of τ . The Hamilto-
nian is given by

Ĥ = g2

2
p̂2 + 1

2g2
x̂2 (14)

and is represented using nq qubits. Working in the digitized
eigenbasis of the position operator, we choose to sample its
eigenvalues as

x j = −xmax + (δx) j, j = 0, 1, . . . , 2nq − 1, (15)

where δx = 2xmax/(2nq − 1). Using fact that [x̂, p̂] = i, the
momentum operator is implemented as

p( p̂)
j = −pmax + (δp) j, j = 0, 1, . . . , 2nq − 1, (16)

p̂(x̂) = F† p̂( p̂)F, (17)



FIG. 5. Error of the state prepared using QETU as a function
of τ for a simple harmonic-oscillator system. The parameters used
are g = 1, ηP<μ

= 0, η = 0.05, μ = 0.233, and � = 0.244. Different
colored and shaped points indicated different degree polynomial ap-
proximations to the shifted error function. The horizontal black line
indicates the maximum value of τ that still guarantees isolation of the
ground state, which, for this choice of parameters, is τmax = 1.823.
Using τ = τmax leads to a significant reduction in the error compared
with using τ = 1, while using values of τ > τmax leads to significant
excited-state contamination in the prepared state.

where pmax = π/(δx), δp = 2π/(2nqδx), and F is the discrete
Fourier transformation matrix. The superscripts ( p̂) and (x̂)
indicate that the momentum operator is written in the momen-
tum and position basis, respectively. It will be useful for the
circuit construction discussion to review the cost of exponen-
tiation of x̂ and p̂. Because x̂ and p̂( p̂) are diagonal matrices
with evenly spaced eigenvalues, eip0 x̂ and eix0 p̂( p̂)

can be imple-
mented using zero CNOT gates and nq rotation gates [118]. One
can then use the efficient quantum Fourier transform circuit
to construct eix0 p̂(x̂) = F†eix0 p̂( p̂)F , with each Fourier transform
requiring O(n2

q ) gates [119].
The results in Fig. 5 are for a three qubit system with

g = 1, ηP<μ
= 0, η = 0.05, μ = 0.233, and � = 0.244. The

maximum value of τ for these parameters is τmax = 1.823. For
various degree polynomials, we see that the fidelity in general
improves for increasing τ up to τmax, where increasing further
leads to an increase in error. Relative to using τ = 1, using
τ = τmax leads to a general improvement in precision by a
factor of O(exp[d�(τmax − 1)]).

We now discuss how using τ 	= 1 can improve simulations
when the approximating e−iτH using product formulas. For
this discussion, it will be convenient to view τ as an evolu-
tion time. We denote by Nsteps the number of Trotter steps
per time evolution circuit, so that the building block of the
QETU circuit is (e−iτH/Nsteps )

Nsteps . Each step is approximated
using a first-order Trotter formula. If Hx = x̂2/(2g2) and Hp =
g2F†( p̂( p̂) )2F/2, then

e−iδτH ≈ e−iδτHx e−iδτHp

= e−iδτHxF†e−iδτH ( p̂)
p F,

(18)

where δτ = τ/Nsteps. Recall that d denotes the total num-
ber of calls to the time evolution circuit (see Fig. 1), which
corresponds to the polynomial of degree d . The total num-
ber of calls to the elementary time evolution circuit is then
Ntot = Nstepsd .

The error from approximating the step function and from
a finite Trotter step size are denoted as εQETU and εTrotter,
respectively; the parameters are defined as before, such that
the prepared ground state |ψ̃0〉 has overlap with the exact
ground state given by |〈ψ̃0|ψ0〉| = 1 − εQETU − εTrotter. For
concreteness, we assume the errors take the forms

εQETU = ae−b(τ�)d , εTrotter = c(τ/Nsteps)p, (19)

where the first line is again obtained by inverting d =
Õ(�−1 log(1/εQETU)), and the second line is the standard
form for the error when using a pth-order Trotter formula.
The parameters a, b, and c are constants. These expressions
are expected to be correct to leading order. Replacing d =
Ntot/Nsteps, our total error is

ε = ae−b(τ�)Ntot/Nsteps + c(τ/Nsteps)p,

= ae−b�Ntotδτ + c(δτ )p. (20)

Notice that the total error ε only depends on Ntot and δτ .
Solving for Ntot gives

Ntot = 1

b�δτ
log

(
a

ε − c(δτ )p

)
. (21)

With this, we can now ask the question of what value of
δτ minimizes the cost Ntot for some fixed error threshold ε.
Before doing so, we emphasize the fact that Ntot depends only
on δτ , and not the individual values for Nsteps and τ . One might
expect that reducing τ would decrease the overall cost by
reducing the number of Trotter steps per time evolution circuit
Nsteps for the same δτ . However, reducing τ also shrinks the
gap, and this increase in cost exactly cancels out the savings
from decreasing Nsteps.

To solve for δτ ∗ that minimizes Ntot, we first study the
constraints on our parameters from the form of Eq. (21). The
parameter Ntot is a positive real integer. Because the argument
of the logarithm must be positive, we find δτ < (ε/c)(1/p). In
words, one must choose a value of δτ such that the Trotter
error is below the total target error ε. Furthermore, notice that
the logarithm can return a negative result. A negative Ntot im-
plies that one can achieve a precision of ε by setting Ntot = 1
and decreasing δτ until the target precision is achieved.

In Appendix B, a perturbative solution for δτ ∗ is presented.
Setting dNtot

dτ
to zero and expanding the log to lowest order,

we find (δτ ∗)p ≈ ε
c (1 − p/[log( a

ε
) + p]). Because a > ε in

general, the lowest-order result for δτ ∗ is slightly below the
maximum value of (ε/c)1/p. From this we learn that, for
a given choice of Ntot, one should choose a time-step δτ

such that most of the error comes from the Trotter error.
This choice can be understood intuitively by comparing the
rate of convergence of the two sources of error. Because
the Trotter error converges as some power of δτ , while the
QETU error converges exponentially in Ntot, it is generally
more cost effective for QETU to produce a smaller error
than the Trotter error. Therefore, having the Trotter error



be the majority of the error results in the smallest value
for Ntot.

Once the value of δτ ∗ has been chosen, one must choose
values for Nsteps and τ . One option would be to always
set Nsteps = 1 and τ = δτ ∗. Another option would be to
choose τ minimizing the degree of the Chebyshev polynomial
achieving the target error ε, therefore reducing the classical
cost of determining the angles {ϕ j}. Since Ntot = dNsteps is
fixed, in order to decrease d , one needs to increase Nsteps

while ensuring that τ = Nstepsδτ
∗ � τmax. This leads to the

choice of τ being the largest natural number multiple of δτ ∗
that is less than τmax. One possible caveat to keep in mind
is that, because approximate time evolution using product
formulas can be viewed as exact time evolution according
to an effective Hamiltonian Heff [120], one actually imple-
ments F (cos(τHeff/2)). Because the spectrum of the effective
Hamiltonian will in general be different from the exact Hamil-
tonian by O(δτ p), if one has shifted the spectrum of H to be
in the range [η/τ, π − η], the spectrum of Heff will be in the
range [η/τ ± O(δτ p), π − η ± O(δτ p)]. To avoid systematic
errors from the possibility that the maximum energy of Heff >

π − η, one should decrease τmax by O(δτ p).
Figure 6 shows plots demonstrating the improvements one

can achieve by choosing an optimal value of δτ from two per-
spectives, namely, fixed computational cost, and fixed target
precision. The system studied is a compact U(1) lattice gauge
theory in the weaved basis for a 2 × 2 lattice with nq = 2
qubits per site using gauge coupling g = 1. The digitization
scheme used is reviewed in Sec. III. The relevant parameters
for state preparation are η = 0.05, ηP<μ

= 0, μ = 0.1498, and
� = 0.1330. The time evolution operator was implemented
using a first-order Trotter method with Nsteps = 1 Trotter steps,
and therefore τ = δτ . The top plot in Fig. 6 shows ε as a func-
tion of δτ for different degree polynomial approximations. We
see that for a fixed computational cost, significant precision
improvements can be achieved by using an optimal choice for
δτ . The bottom plot in Fig. 6 studies the total computational
cost needed to achieve a fixed target precision as a function of
δτ . The cost is given in terms of the total number of calls to
the circuit that implements a single Trotter time-step. For all
choices of fixed target precision, choosing an optimal value of
δτ results in significant cost reductions.

We conclude this section with a discussion of additional
improvements which can be gained with the aid of zero error
extrapolation in cases when e−iτH is implemented approxi-
mately. For implementations based on product formulas, this
would require running simulations at multiple values of ε

and τ and extrapolating to ε → 0 and δτ → 0. Note that if
the optimal value of δτ ∗ is chosen, the errors from QETU
and from Trotter are comparable in magnitude. Therefore,
extrapolating to ε → 0 and δτ → 0 would involve a fitting
function of the form similar to that given in Eq. (20). While
this is in principle possible, such a functional form is relatively
complicated and undesirable. To simplify the extrapolation,
one could instead work in a regime where the QETU error is
negligible compared with the Trotter error. This would allow
one to use a fitting function of simple form c(δτ )p. Because
of QETU’s fast convergence, it is possible that such slight
increase in computational cost could be worth the trade-off
of better control over systematic errors.

FIG. 6. Both plots show results for a compact U(1) lattice gauge
theory in the waved basis for Np = 3 and nq = 2 with g = 1. The time
evolution circuit was implemented using a single Trotter step with
δτ = τ . The vertical black line indicates the value of τmax for this
system, with a value τmax = 1.90. (top) Fidelity of prepared ground
state as a function of δτ . Different colored lines indicate different
degree polynomial approximations to the shifted error function. This
figure demonstrates that choosing an optimal value of δτ results in
significant precision improvements for a given computational cost.
(bottom) Number of total calls to the circuit for a single first-order
Trotter step as a function of δτ . Each point is the smallest value
of Ntot that achieves a given error ε, with different ε indicated by
different colors and markers. The figure demonstrates that choosing
an optimal value of δτ results in significant cost reductions for a fixed
target precision.

C. Wave-packet construction via quantum eigenvalue
transformation for unitary matrices

While the original application of the QETU algorithm in
Ref. [98] was ground-state preparation, QETU is a flexible
algorithm that can construct general matrix functions of any
Hermitian operator. In this section, we provide a procedure for
constructing Gaussian wave packets in the position basis of a
quantum-mechanical system. We first describe the procedure
at a high level. From there, we discuss the procedure for
constructing an approximation to the Gaussian filter opera-
tor e−x̂2/(2σ 2

x ) using QETU. We first discuss how the naïve



application of QETU to this problem leads to the error de-
creasing only polynomially with the number of Chebyshev
polynomials. We then discuss a number of modifications to
the QETU procedure that achieve an exponential scaling in
the error for any desired value of the width. Using the im-
proved methodology, we present a method that allows one to
prepare the Gaussian state to high precision while avoiding
the costly implementation of LCU, and find that this method
outperforms existing methods for preparing Gaussian states
for values of nq � 2–5. Throughout this section, we only
discuss qualitative results; detailed scaling of the precision,
as well as gate cost comparisons to direct state preparation,
are presented in Sec. IV B. Note that the general method we
employ is similar to that proposed in Ref. [90] for exactly
constructing functions of diagonal operators.

The state we wish to prepare is given by

|ψ〉 = 1√
N

2nq −1∑
j=0

e− 1
2

(
x j −x0

σx

)2

eip0x j |xi〉, (22)

where nq is the number of qubits used to represent the state,
x̂|xi〉 = xi|xi〉, N is the normalization factor, x0 is the central
value of the Gaussian, p0 is the expectation value of the
momentum, and σx is the width of the wave packet in position
space. To take advantage of the relative simplicity the x̂ and
p̂(x̂) operators, we break the construction of the wave packet in
Eq. (22) into three steps. The first, and the most costly step, is
constructing a Gaussian with width σx centered at x = 0 using
QETU. This will be done by applying an approximate imple-
mentation of the Gaussian filter operator e− 1

2 x̂2/σ 2
x to the state

that is an equal superposition of all position eigenstates, i.e.,
|ψinit〉 = 1

(2nq )1/2

∑2nq −1
j=0 |xi〉. The wave packet is then shifted in

position space by x0 and in momentum space by p0 with the
aid of the operators e−ix0 p̂(x̂)

and e−ip0 x̂, respectively.
To construct the approximate Gaussian filter operator,

which is a matrix function of the x̂ operator, we use QETU.
The building block used in the QETU circuit is e−iτ x̂sh , where
x̂sh is the shifted and scaled position whose spectrum is in the
range [η, π − η]. Because x̂sh is also a diagonal matrix with
evenly spaced eigenvalues, as previously discussed, e−iτ x̂sh can
be implemented exactly, using zero CNOT gates and nq rotation
gates. The controlled version can therefore be implemented
using nq CNOT and nq rotation gates, leading to an asymptotic
scaling linear in the number of qubits used to represent the
operator, albeit with a large overall prefactor. In this context,
we find it most natural to view τ as a parameter that scales the
spectrum of x̂sh rather than an evolution time.

The operator x̂sh is given by

x̂sh = c1x̂ + c2, (23)

where c1 and c2 are the same as in Eq. (4), upon replacing
Ephys

0 → min(x̂) and Ephys
max → max(x̂). Note that because the

spectrum of x̂ is known, one does not have to use upper
limits as is generally the case with state preparation where the
spectrum of the Hamiltonian is not known a priori (this fact
will also allow for other improvements, and will discussed in
more detail later in this section).

Let f(x̂) = c e− 1
2 x̂2/σ 2

x denote the exact Gaussian filter op-
erator we wish to approximate using QETU. Again, the

parameter c is chosen to be slightly less than one to allow
overshooting of the Chebyshev approximation. To produce a
Gaussian centered at x0 = 0 with width σx using e−iτ x̂sh as a
building block, one must approximate the function

F(x) = c exp

[
− 1

2σ 2
QETU

(
2

τ
arccos (x) − xQETU

0

)2
]
, (24)

where xQETU
0 = c1x0 + c2 and σQETU = c1σx. Note that be-

cause the function in Eq. (24) does not have definite parity,
one must use QETU to first prepare approximations to the
even [F+(x)] and odd [F−(x)] parts separately, and then add
them using, e.g., linear combinations of unitaries (LCUs)
[121]. While performing an LCU does not change the overall
scaling with nq, it does lead to a larger constant factor in the
asymptotic cost of preparing the Gaussian state.

We now describe the procedure to determine the Cheby-
shev approximation of F+(x). The procedure for F−(x) is
analogous, except that one uses odd Chebyshev polynomials.
Let F+(x) = ∑d/2

k=0 c2kT2k (x) denote the Chebyshev approxi-
mation to F+(x). As before, we define the coefficient matrix
Ajk = T2k (x j ), such that F+(x j ) = ∑

k c2kA jk . The coefficients
ck are then determined by solving the following convex opti-
mization problem:

min
{ck}

max
x j∈[σmin,σmax]

|F+(x j ) − F+(x j )|, (25)

where the functions are sampled using the roots of Chebyshev
polynomials x j = − cos( jπ

M−1 ) for some large value of M. The
main difference between this optimization problem and the
one in Eq. (9) is that the error in Eq. (25) is minimized over
the entire range of x values in [σmin, σmax].

We now discuss how the error is expected to scale as the de-
gree of the Chebyshev approximation is increased. Unlike the
case of constructing the shifted error function for ground-state
preparation, the functions F±(x) are not infinitely differen-
tiable on the interval x ∈ [−1, 1] due to the presence of the
arccos(x). It is well known that Chebyshev approximations of
functions that are not infinitely differentiable converge poly-
nomially to the true function with the typical rate (1/nCh)m,
where m is the number of times the function is differentiable
on [−1, 1], and nCh is the number of Chebyshev polynomials
used in the approximation [113]. We therefore expect the
convergence of our Chebyshev approximations to be only
polynomial.

This observation, however, leads to a natural method for
avoiding the polynomial scaling. As one increases the value
of η, the interval x j ∈ [σmin, σmax] will move farther from the
nondifferentiable points at x = ±1 and improve the precision
of approximation for a given degree polynomial. However,
as η is increased, the functions F±(x) become more sharply
peaked and will eventually require more Chebyshev polyno-
mials to achieve the same precision. We therefore expect that,
for a given degree approximation, there will be a value of η

that results in the smallest error. We find that this procedure
of varying η results in the error decreasing more favorably
with the degree of the polynomial. This scaling can made
exponential, however, by also varying the τ parameter. By
varying τ , the shape of the exact functions F± change, and can
improve the quality of the approximation. Note that, unlike the



case of constructing the filter operator, there are no theoretical
issues with using a value of τ > τmax. This is due to the fact
that we know exactly the values of the operator we sample.
The optimization problem that determines the Chebyshev co-
efficients using this modification is

min
{ck ,η,τ }

max
x j∈[σmin,σmax]

|F+(x j ) − F+(x j )|, (26)

where the parameters σmin and σmax are functions of η and τ .
Note that the optimization problem in this form is no longer
a convex optimization problem. The parameters η and τ are
found by passing the convex optimization problem in Eq. (25)
to a numerical minimization procedure that solves for η

and τ .
While varying η and τ already results in the error de-

creasing exponentially with the degree of the polynomial, we
can further improve the rate of convergence, in particular for
small values of nq. Because we know the spectrum of the
operator x̂sh exactly, we only need the Chebyshev expansion
to approximate F(x) at those points, not the entire range x ∈
[σmin, σmax]. Taking into account the cosine transformation,
the values of x we need to faithfully approximate F(x) are
x̃ j = cos(τxsh, j/2), where xsh, j is the jth eigenvalue of the
x̂sh operator. If we denote the set of all x̃ j values as χ̃ , then
the Chebyshev coefficients are found by solving the modified
optimization problem

min
{ck ,η,τ }

max
x̃ j∈χ̃

|F+(x j ) − F+(x j )|. (27)

We find that, in general, this method has slightly better perfor-
mance compared with sampling all x values, but for certain
values of σx/xmax it can improve the rate of convergence
significantly. Additionally, because we only include 2nq of x̃ j

values in the optimization, the error will be zero when the
degree of the polynomial is equal to the number of points.
Furthermore, by increasing τ , one can sample x̃ j at negative
values. This can be used to exploit the parity of the Cheby-
shev expansions, reducing the effective number of points we
need to approximate F(x̃ j ). One important consideration when
using this method is that, as one varies η and τ , care must
be taken to ensure that |F±(x)| � 1 for all x ∈ [−1, 1], and
not just for x̃i. If this condition is not satisfied, there are no
possible values of phases {ϕ j} that implement the desired
function F (x).

Although we have developed a highly efficient procedure
using QETU to construct Gaussian states, the cost of perform-
ing LCU to add the even and odd pieces introduces a large
overall constant factor in the asymptotic cost. If one could
modify the procedure to avoid using an LCU, the gate count
reduction would be reduced by a factor of ten or more. We
now discuss how to prepare Gaussian states using only the
even component and eliminate the need for an LCU altogether.
The main idea is to choose τ such that the function F(x)
becomes a purely even function. To start, note that our choice
of digitizing the x̂ operator results in the parameter c2 = π/2.
This combined with the fact that x0 = 0 leads to xQETU

0 = π/2.
With this, we see that setting τ = 2 leads to F(x) becoming

F(x) = c e−[arccos(x)−π/2]2/(2σ 2
QETU )

= c e−[arcsin(x)]2/(2σ 2
QETU ), (28)

where we have used the relation arccos(x) − π/2 =
− arcsin(x). Because arcsin(x) has definite parity, F(x) is an
even function for τ = 2. After setting τ = 2, the parameter
η and the Chebyshev coefficients are found by solving an
optimization problem similar to that in Eq. (27), except that
τ is fixed to two. We find that this method offers the best
precision for a given fixed gate count cost and outperforms
existing methods for Gaussian state preparation for values
of nq > 2–3. More details of this comparison are given in
Sec. IV B.

III. LATTICE FORMULATION OF U(1) GAUGE THEORY

In this section, we review a formulation of a compact U(1)
gauge theory in two spatial dimensions with a Hilbert space
that has been constrained to satisfy Gauss’s law in the charge
density ρ(x) = 0 sector. We also review the representation of
the magnetic and electric operators introduced in Ref. [41],
which can be used at all values of the gauge coupling. From
there, we discuss the basis change introduced in Ref. [100],
which is necessary to break the exponential volume scaling
in the gate cost when performing time-evolution using Trotter
methods. We conclude with a discussion of how the digitiza-
tion of the theory in the weaved basis must be modified in
order to maintain the efficiency of the representation [101].
Note that we provide only the details necessary to understand
the numerical results presented in Sec. IV A. Further details
can be found in the original references.

We chose the apply the QETU algorithm to the compact
U(1) theory because it shares a number of important features
with QCD, including the fact that, as the lattice spacing a goes
to zero, the bare coupling g(a) also goes to zero. Additionally,
the gauge field in non-Abelian gauge theories is necessarily
compact, proving another motivation for detailed studies of
the compact U(1) theory.

The Hamiltonian considered in Ref. [41] is formulated in
terms of electric rotor and magnetic plaquette operators, given
by R̂(x) and B̂(x), respectively. These operators satisfy

[B̂(x), R̂(y)] = i δ3(x − y). (29)

In the charge density ρ(x) = 0 sector, the rotors are defined
such that �E (x) = �∇ × R(x). In this way, electric Gauss’s law
is automatically satisfied.

The lattice version of the theory we consider introduces a
periodic lattice of Nx and Ny evenly spaced lattice points in the
x̂ and ŷ dimensions with a lattice spacing a. The lattice version
of the continuum Hamiltonian is defined in terms of operators,
R̂p and B̂p, with the index p denoting a specific plaquette in the
lattice volume. The Hamiltonian can be written in terms of an
electric and magnetic component as

Ĥ = ĤE + ĤB. (30)

After solving the constraint from magnetic Gauss’s law, the
fully gauge fixed Hamiltonian contains Np ≡ NxNy − 1 in-
dependent plaquette operators. The fully gauge-fixed electric
and compact magnetic Hamiltonians are given by

ĤE = g2

2a

Np∑
p=1

( �∇ × R̂p)2, (31)



and

ĤB = Np + 1

a g2
− 1

a g2

⎡⎣ Np∑
p=1

cos B̂p + cos

⎛⎝ Np∑
p=1

B̂p

⎞⎠⎤⎦. (32)

The noncompact formulation of this theory can be found
by making the replacements cos B̂p → 1 − 1

2 B̂2
p. The bases

where the operators ĤE and ĤB are diagonal are referred to
as the electric and magnetic basis. Furthermore, operators
represented in the electric and magnetic basis will be denoted
by superscripts (e) and (m), respectively.

We represent the operators R̂p and B̂p using the procedure
given in Ref. [41], which involves carefully choosing the
maximum value that the B̂p operators are sampled, denoted by
bmax. The main idea for choosing bmax is that, in the magnetic
basis, the low-energy eigenstates of the theory have a typi-
cal width proportional to the gauge coupling g. By choosing
bmax ∼ g, one only samples the wave function where it has
support, which results in an efficient representation for all
values of g. We first describe how the operators are sampled,
and then explain how to choose the precise value of bmax.

Each plaquette is represented using nq qubits. Working in
magnetic basis, the magnetic operators B̂(m)

p are diagonal and
defined by

B̂(m)
p |bp, j〉 = (−bmax,p + j δbp)|bp, j〉, (33)

where j = 0, 1, . . . , 2nq − 1 and δbp = 2bmax,p/2nq . Because
B̂p and R̂p are conjugate operators, the rotor operator in the
magnetic basis can be written as

R̂(m)
p = F†R̂(e)

p F, R̂(e)
p |rp, j〉 = (−rmax,p + j δrp)|rp, j〉, (34)

where F denotes the usual quantum Fourier transform and

rmax,p = π2nq

2bmax,p
, δrp = π

bmax,p
. (35)

With these definitions, one can implement Trotter time evo-
lution of the Hamiltonian in Eq. (30) in a similar way as in
Eq. (18).

We now discuss the procedure for choosing bmax,p, which
can in general be different for different plaquettes p. In the
compact formulation, it was shown that choosing bmax,p ac-
cording to

bmax,p = min

(
g

2nq

2

√
βR,p

βB,p

√
2π

2nq
, π

)
(36)

reproduces the low-lying spectrum of the theory to per-mille
level precision while only sampling the operators a number of
times that corresponds to nq = 3. The variables βR,p and βB,p

are found by matching the noncompact magnetic Hamiltonian
to a Hamiltonian of the form

H̃ = g2

2
β2

R,pR̂2
p + 1

2g2
β2

B,pB̂2
p, (37)

and ignoring the cross terms. Further details regarding the
digitization of the R̂p and B̂p operators in this formulation can
be found in Refs. [41,101].

While this formulation is efficient in terms of the number
of qubits required per site nq to achieve a high precision
in the low-energy states, it was shown that performing time

FIG. 7. Visual representation of the connectivity of the cosine
terms in the weaved magnetic Hamiltonian for Np = 16. Operators
appearing inside the same box also appear as a sum inside a single
cosine term in ĤB. Boxes with different line-styles or colors cor-
respond to different cosine terms. The red solid square shows the
reduced connectivity of the cos

∑
p B̂p term. The blue dashed and

dotted rectangles show the increased connectivity of the previously
local cos B̂p terms.

evolution using Trotter methods has a gate cost that scales
exponentially with volume, i.e., the number Np of plaquettes
[100,101]. Specifically, the exponential scaling was shown to
be caused by the cos

∑
p B̂p term in the magnetic Hamiltonian,

which couples the entire lattice together. This exponential
volume scaling can be broken, however, by performing a
carefully chosen change of operator basis [100], which we
now review.

The rotor and magnetic operators in this so-called weaved
basis are given by

B̂p → Wpp′ B̂p′ , R̂p → Wpp′ R̂p′ , (38)

where W is an orthogonal matrix of dimension Np × Np. For
any value of Np, there exists an efficient classical algorithm for
choosing W that reduces the gate count scaling from exponen-
tial to polynomial in Np [100]. Using this change of basis, the
dominant contribution to the gate cost of a single Trotter step
was shown to scale as O(Nnq

p + Np(Np/ log2 Np)nq ), which is
polynomial in the volume, with the power of the polynomial
determined by nq. This scaling arises because the number of
terms appearing in a single cosine in the weaved basis scales
as O(log2 Np). An example demonstrating the connectivity of
the magnetic Hamiltonian operators for Np = 16 is shown in
Fig. 7.

One important assumption that went into choosing the
large coupling limit of bmax,p to be π in the original operator
basis was that the coefficient of a magnetic-field operator B̂p

is equal to one anywhere it appears in the compact magnetic
Hamiltonian. Because this is generally not true when working
in the weaved basis, maintaining an efficient representation
requires modifying the prescription for choosing bmax,p in the
large-g limit [101]. To understand this, first notice that, in
the weaved basis, some of the B̂p operators will have coeffi-
cients smaller than one. Consequently, even if bmax,p = π , an



operator B̂p inside a given cosine will not get sampled between
the full range of [−π, π ]. It was shown that this problem
could be fixed by scaling the upper limit for each bmax,p by
the smallest coefficient of the operator B̂p anywhere it appears
in the Hamiltonian. To demonstrate this procedure, we review
the example for the Np = 3 case given in Ref. [101]. The
rotation matrix used is given by

W = 1√
6

⎛⎜⎝
√

2 −2 0√
2 1 −√

3√
2 1

√
3

⎞⎟⎠, (39)

which leads to the following weaved magnetic Hamiltonian

Ĥw
B = Np + 1

a g2
− 1

a g2

(
cos[

√
3B̂1] + cos

[
B̂1 − √

2B̂2√
3

]

+ cos

[√
2B̂1 + B̂2 − √

3B̂3√
6

]

+ cos

[√
2B̂1 + B̂2 + √

3B̂3√
6

])
. (40)

To ensure that each B̂p operator gets sampled between
[−π, π ] in each of the cosine terms, one must scale the
upper limit for each bmax,p; in this case, the upper limits for
bmax,1, bmax,2, and bmax,3, are chosen as

√
2π ,

√
6π , and

√
3π ,

respectively. It was shown in Ref. [101] that this procedure for
scaling bmax,p results in a precision of the low-lying spectrum
similar to that of the original basis.

We conclude this section by discussing the expected be-
havior of � with g for the compact U(1) gauge theory. As
explained in Ref. [122], because the untruncated U(1) electric
Hamiltonian is unbounded, as one approaches the continuum
limit, the physical energy gap Ephys

1 − Ephys
0 diverges; the

value a(Ephys
1 − Ephys

0 ) approaches a constant as a → 0. This,
combined with the fact that the physical energy difference
Ephys

max − Ephys
0 scales as ≈1/a, implies that � will approach a

constant as a → 0. This scaling is qualitatively different than
that of gauge theory with a finite physical energy gap (such as
QCD), which is discussed in detail in Sec. V.

IV. NUMERICAL RESULTS

A. U(1) gauge theory

In this section, we prepare the ground state of the previ-
ously described formulation of a compact U(1) lattice gauge
theory using QETU. We study the algorithm cost by deter-
mining how its parameters � and γ depend on the parameters
of the Hamiltonian: the number of plaquettes Np, number of
qubits per plaquette nq, and gauge coupling g (or lattice spac-
ing a). We also study how the fidelity of the final state scales
with the number of calls to e−iτH , where the time evolution
operator is implemented both exactly as well as using Trotter
methods. The scaling results from our analysis are summa-
rized in Table II. A general discussion regarding the physical
reasoning for the observed scaling of these parameters is given
in Sec. V.

TABLE II. Scaling of parameters in the cost of state preparation
using QETU in terms of Np, nq, and g. The γ parameter defines the
number of measurements needed to measure the ancillary qubit in
the zero state, which scales as O(1/γ 2 ). This scaling can be can
be improved to O(1/γ ) using amplitude amplification at the cost
of increasing the circuit depth by a factor of γ −1. *Note that the
dependence of γ on Np and nq is highly sensitive to the value of
coupling constant g: for g = 1.2, γ scales with neither Np nor with
nq, see Eq. (9). The � parameter defines the query depth of the time
evolution circuit e−iτH , which scales as O(�−1). Note that while the
gauge coupling g does not appear in the asymptotic scaling of the
γ and � parameters, their values still depend on on g. The τ/δτ

parameter defines the number of Trotter steps used when approx-
imating e−iτH , which, surprisingly, does not scale with Np or nq.
The Gates(e−iδτH ) parameter defines the number of gates required
to implement a single Trotter step for the particular formulation of
U(1) gauge theory we consider [100,101]. This unusual scaling is
due to the fact that the theory we consider is highly nonlocal.

Parameter Scaling

γ O(exp(−Np) exp(−nq ))∗

� O
(
N−1

p 2−2nq
)

Nsteps = τ/δτ O(1)
Gates(e−iδτH ) O

(
N

nq
p

)

Preparing the ground state requires knowledge of aEphys
0 ,

aEphys
1 , and aEphys

max . In a realistic quantum simulation, one
would likely be able to estimate aEphys

0 beforehand. Calculat-
ing aEphys

1 and aEphys
max is generally more difficult; still, one can

often use physical arguments to bound both a(Ephys
1 − Ephys

0 )
and Ephys

max . For the purposes the current study, we calculate
aEphys

0 and aEphys
1 using exact diagonalization. Regarding

aEphys
max , we provide arguments for placing upper bounds on its

value, and compare our bounds to the exact result. One impor-
tant consideration is that, because � is a ratio of energies, the
explicit dependence on the lattice spacing a cancels. The value
of � therefore only depends on the lattice spacing a through
discretization effects.

We begin by placing an upper bound on aEphys
max . In the

digitization scheme we use, one can write the U(1) Hamil-
tonian as Hphys,(b) = F†H (e)

E F + H (b)
B , where the superscript

e (b) indicates that the matrix is represented in the electric
(magnetic) basis, where it is implied the Fourier transform
is performed locally at each lattice site. In this section, it is
understood that the symbols HE and HB denote the unscaled
Hamiltonians. Using the fact that the Fourier transform is
unitary and therefore does not change the eigenvalues of H (e)

E ,
we see

max(Hphys) � max
(
F†H (e)

E F
) + max

(
H (b)

B

)
= max

(
H (e)

E

) + max
(
H (b)

B

)
, (41)

where max(A) denotes the maximum eigenvalue of A. Be-
cause H (e)

E and H (b)
B are diagonal matrices, the maximum

eigenvalue of each matrix is simply the maximum diagonal
entry. To proceed, we must look in more detail at the forms of
the two Hamiltonians.



Because the magnetic Hamiltonian is a constant term
(Np + 1)/(ag2) minus a sum of Np + 1 cosine terms, the
maximum value any single diagonal entry can take is 2(Np +
1)/(ag2). This upper bound, however, overestimates the actual
value, especially at small values of g. To understand this,
recall that the magnetic operators are sampled from −bmax

to bmax, where bmax ∼ g. As g → 0, the compact magnetic
Hamiltonian approaches the noncompact version, with each
term of the form B2/g2. If B ∼ g, then B2/g2 ≈ 1 is roughly
independent of g, while our upper bound scaled as 1/g2. This
issue can be avoided by taking advantage of the structure of
the weaved magnetic Hamiltonian. It was shown in Ref. [100]
that, after changing to the weaved basis, each cosine term in
the magnetic Hamiltonian contains a sum of no more than
O(log2 Np) magnetic-field operators. Thus, the spectrum of
each individual cosine term can be found exactly using classi-
cal resources that scale only polynomially with Np. Once the
maximum entry of each individual term is known, we can then
place an upper bound on the maximum energy of HB through

max(H (b)
B ) � 1

a g2

⎡⎣(Np + 1) +
Np−1∑
j=0

max(− cos B̃ j )

+ max

⎛⎝− cos
Np−1∑
j=0

B̃ j

⎞⎠⎤⎦, (42)

where B̃ j = W j j′Bj′ is the jth magnetic operator in the
weaved basis.

In a similar way, an upper bound of the maximum value of
HE can also be found. In both the original and weaved basis,
we can write the Hamiltonian generally as g2/2

∑Np−1
i, j=0 ci jRiR j

(note that many of the ci j are zero). Because each RiRj term
in this sum is a 22nq × 22nq diagonal matrix, we can explic-
itly evaluate the spectrum of each term classically at a cost
quadratic in Np. The upper bound placed on the spectral norm
of HE is given by

max
(
H (e)

E

)
� g2

2a

Np−1∑
i, j=0

max(ci jRiR j ). (43)

Our final upper bound on the maximum energy of the full
Hamiltonian is then found using Eq. (41). Using this upper
bound, combined with the exact values for aE1 and aE0, we
can place a lower bound on �. This lower bound is compared
with the exact value in Fig. 8 as a function of Np, nq, and g.
We discuss each plot individually.

The top plot shows the exact value and upper bound of � as
a function of Np for nq = 2 and g = 1.4. Before discussing the
results, we point out that Np = 3, 5, 7 correspond to lattices
with sites Nx × Ny of 2 × 2, 2 × 3, and 2 × 4, respectively.
Due to the inherent limitations of classical simulation, we
only increase the number of sites in a single dimension, and
so we expect the finite-volume errors to remain roughly the
same size for all values of Np. From the plot we see that the
upper bound is larger than the exact value, with the difference
generally growing with Np. The overall scaling of � is roughly
as 1/[Np log2(Np)]. To understand this behavior, we can study
how the number of terms in the Hamiltonian grows with Np.
For HB, the number of terms grows linearly with Np, implying

FIG. 8. Comparison of the exact value of � to the upper bound
calculated using the procedure in Sec. IV A. (top) � as a function
of Np using nq = 2 and g = 1.4. The gap scales asymptotically as
1/[Np log2(Np)]. (middle) � as a function of nq using Np = 3 and g =
1.4. The gap generally decreases as 1/22nq . (bottom) � as a function
of g using Np = 3 and nq = 3. The gap is generally independent of g,
with a dip near g ≈ 1, which is due to the gap a(E1 − E0) becoming
small. This behavior near g = 1 is an artifact of using the weaved
basis.

that the maximum entry in HB scales linearly with Np as well.
While the number of terms in HE depends on the specific
weaved matrix used, general statements can be made about
the scaling. As demonstrated in Ref. [100], in order to break
the exponential volume scaling in the gate count, a single
rotor operator in the original basis is generally expressed as
O(log Np) operators in the weaved basis. Because HE is a
sum of Np terms that are squares of differences of rotors, this
leads to the number of terms scaling as O(Np log2

2 Np). For
these reasons, we expect gap to scale roughly as Np log2

2 Np.
However, for smaller values of g, we expect that HB and HE

become of similar magnitude, and cancellations between HB

and HE could lead to a milder scaling with Np.
The middle plot shows the exact value and upper bound of

� as a function of nq for Np = 3 and g = 1.4. These results
show that the quality of the upper bound generally increases



with nq. Furthermore, we see that the lower bound generally
scales as O(2−2nq ). To understand this scaling, we start with
HB, which is a sum of the cosine of sums of magnetic op-
erators. Even though the number of Pauli-Z operators in each
magnetic operator grows exponentially with nq, the maximum
value a given cosine can take is one, regardless of nq. For HE

on the other hand, the rotor operators do not appear inside
a cosine, and therefore the maximum eigenvalue grows with
the number of terms. Additionally, the maximum eigenvalue
of a single rotor operator scales as O(2nq ), as seen from the
relation rmax,p = π2nq/(2bmax,p). Because each term in HE

is bilinear, the maximum eigenvalue of each term grows as
O(22nq ), leading to the observed scaling. For smaller values
of g, however, we expect that HB and HE become of similar
magnitude, and the scaling with nq will likely be more mild
due to cancellations between HB and HE .

Lastly, the bottom plot shows � as a function of g (which
is a function of the lattice spacing a) for Np = 3 and nq = 3.
First, notice that the quality of the upper bound is higher for
large g. Second, except for the region of g ≈ 1, the value of �

is roughly independent of g. The roughly constant behavior for
small and large g can be understood by the weak- and strong-
coupling limits of the Hamiltonian. For large g, the electric
Hamiltonian dominates. This, combined with the fact that
bmax,p approaches a constant for large g and HE ∼ g2, leads
to the spectrum of HE increasing as g2 for large g. Because �

depends only on ratios of energy differences, the g dependence
cancels, and we expect � to approach a constant for large
g. Similarly, � approaches a constant for small g, which can
be understood by recalling that as g → 0, the compact theory
approaches the noncompact version. The noncompact theory
is a free theory, i.e., a theory of noninteracting harmonic
oscillators, with the gauge coupling g playing the role of the
mass m of the canonical quantum harmonic oscillator. The
spectrum of the compact U(1) Hamiltonian in the small-g
limit is therefore independent of g, leading to the observed
behavior. The large dip near g ≈ 1 is an artifact of using the
weaved basis, and is not present in the original basis. It was
found in Ref. [101] that controlling digitization errors near
g = 1 required a tuning of the choices of bmax,p, which we did
not perform here. It is therefore possible that, after performing
this tuning, the dip near g = 1 will disappear.

We conclude this discussion by pointing out that, even
though one can argue how � scales with various parameters,
significant savings can still be achieved by either improving
the lower bound, or performing a dedicated calculation to
determine the exact value. Our studies indicate that the cost
reduction of such a study will be more significant as one
increases Np towards realistic values, and at small g.

Next, we study how the parameter γ scales with Np, nq, and
g. As will be argued in Sec. V, using direct state preparation
methods to implement the initial guess wave function |ψinit〉
results in an overlap γ that is exponentially suppressed in the
number of sites. In this study, we instead consider implement-
ing |ψinit〉 using adiabatic state preparation, with the objective
of developing a preliminary understanding of how γ scales
with Np and nq.

The general strategy is to start in the ground state of the
large-coupling limit of our theory. At large g, the electric
Hamiltonian dominates and the ground-state approaches a

state with constant entries; this state can be prepared by apply-
ing a Hadamard gate on each qubit. Once the large coupling
ground state is prepared, the ground state of the target theory
at some smaller coupling is prepared by adiabatically evolving
between the two Hamiltonians.

We follow closely the procedure and notation given in
Ref. [123]. The initial strong-coupling Hamiltonian is denoted
by H1 and the target Hamiltonian by H2, with gauge couplings
g1 and g2, respectively. The adiabatic evolution is performed
according to a time-dependent Hamiltonian H[u(t )] = [1 −
u(t )]H1 + u(t )H2, where u(t ) ∈ [0, 1] is the ramping func-
tion satisfying u(0) = 0 and u(T ) = 1. The parameter T is
the total time the system is adiabatically evolved. The exact
time-ordered time-evolution operator U (T ) = T e−i

∫ T
0 H [u(t )]dt

is implemented using Trotter methods in two stages. First, the
integral over t is split into M discrete steps of size δt = T/M,
such that

U (T ) ≈
M−1∏
k=0

U1(k, δt )U2(k, δt ), (44)

where U1(k, δt ) = e−iH1δt1 and U2(k, δt ) = e−iH2δt2 . The val-
ues of δt1 and δt2 are given by

δt1 =
∫ (k+1)δt

kδt
dt[1 − u(t )], (45)

δt2 =
∫ (k+1)δt

kδt
dt u(t ). (46)

Second, for i = 1, 2, each operator Ui(k, δt ) is approximated
using a single step of a first-order Trotter formula, written
explicitly as Ui(k, δt ) ≈ e−iδtiHE e−iδtiHB .

For our study, we choose the strong-coupling Hamiltonian
with g1 = 10 as H1. The ground state is prepared by apply-
ing a Hadamard gate on each qubit. We choose the simple
linear ramp with u(t ) = t/T . Furthermore, we set T = 1 and
perform the adiabatic evolution using M = 2 steps. Note that
in order for the adiabatic theorem to be satisfied, the param-
eter T needs to scale as one over the square of the smallest
energy gap along the adiabatic trajectory of the unscaled and
unshifted Hamiltonian, i.e., T = O((aE1 − aE0)−2), see, e.g.,
Ref. [124].

The top plot in Fig. 9 shows the value of γ as a function of
Np for multiple values of g. We observe that the dependence
of γ on Np is highly sensitive to the value of g: while for g =
1.2, the value of γ stays relatively constant, for g = 0.2, it
decreases exponentially with Np. The middle plot in Fig. 9
shows the value of γ as a function of nq for multiple values
of g. Similarly to the dependence Np, γ depends weakly on nq

for g = 1.2, and decreases for g = 0.2, 0.7. Lastly, the bottom
plot in Fig. 9 shows γ as a function of g for Np = 3 and nq =
3. For g � 2 we find γ to be close to 1. This is expected as the
large coupling ground state with g1 = 10 and the ground state
for g � 2 have reasonable overlap. As one decreases g further,
we observe a steep decrease in γ near g = 1. The value of γ

approaches a constant in the small-g limit. This behavior is
consistent with the decrease in overlap between the ground
state of the strong-coupling Hamiltonian H1 and the ground
state of the target Hamiltonian H2.



FIG. 9. This figure shows how γ scales with the parameters of
our system when the initial guess is prepared using the adiabatic
state preparation procedure described in the main text. (top) γ as
a function of Np for nq = 2. The different colored lines indicate
different values of g. The small-volume results indicate that γ is not
exponentially decreasing as a function of Np. The black dashed line
shows a curve scaling as ∼1/Np. (middle) γ as a function of nq for
Np = 3. The different colored lines indicate different values of g. The
black dashed line shows a curve scaling as ≈1/nq. (bottom) γ as a
function of the gauge coupling g for Np = 3 and nq = 3. The value is
near one for large g and approaches a constant value for small g.

For the purpose of quoting how γ scales with the pa-
rameters of our system, we make the conservative choice
γ = O(exp(−Np) exp(−nq)); this scaling is consistent with
the worst-case observed scaling. In light of our simple pro-
cedure for preparing |ψinit〉, this inefficient scaling is perhaps

FIG. 10. Error of the ground state prepared using QETU as a
function of the degree of the Chebyshev approximation d , where the
time evolution operator was implemented exactly. Different colored
points correspond to different number of plaquettes Np. All results
used nq = 1 and g = 1.4. The error decreases exponentially with d ,
with the rate being slower for Np = 5 due to a smaller gap �.

not unexpected. It is interesting, however, that for g = 1.2 we
observe γ to be essentially independent of Np and nq for the
values studied. Due to the simplicity of our adiabatic proce-
dure combined with the small volumes that are accessible to
classical simulation, predicting the scaling for realistic lattice
sizes will require further dedicated studies.

We now study the fidelity of the prepared state as a function
of the number of calls to the exact time evolution operator
e−iτH . The spectral norm and energy gap were determined
exactly by diagonalizing the Hamiltonian. The value of � =
(E1 − E0)/1.5 was used, with τ = 1. We denote the state pre-
pared using QETU by |ψprepared〉, and the exact ground state by
|ψ0〉. The error is defined to be 1 − |〈ψprepared|ψ0〉|. Figure 10
shows the error as a function of the degree of the polynomial
d used to approximate the shifted sign function for Np = 3, 5,
nq = 1, and g = 1.4. The error decreases exponentially as we
increase d , with the rate of convergence being slower for
Np = 5 due to the smaller value of �.

We now move to the studies of approximate implementa-
tions of the time-evolution operator with the aid of Trotter
methods. The first study compares the overall Trotter error
between the standard controlled version of QETU and the
control-free version. As explained in Sec. II A, the control-
free version of QETU algorithm is designed to avoid using
controlled calls to the time-evolution circuit. This method
requires a Hamiltonian dependent procedure; the details for
the U(1) case are given in Appendix C. By repeatedly calling
e−iτH , the standard version returns F (cos(τH/2)), while the
control-free version of QETU returns F (cos(τH )). This im-
plies that one can use instead e−iτH/2 as a building block for
control-free QETU. Because one only has to time evolve by
half the total time τ/2, for the same number of Trotter steps,
one can use a step size half as large, leading to a smaller
overall error relative to the standard controlled version of
QETU. Figure 11 shows the error as a function of d when
using both the standard and control-free versions of QETU.



FIG. 11. Error as a function of d using both the standard and
control-free versions of QETU. For both cases, a single Trotter
step was used to approximate e−iτH with τ = 1.78. The step sizes
used were δτ = τ and δτ = τ/2 for the standard and control-free
versions, respectively. The Trotter error in the control-free version is
smaller than the standard version by an order of magnitude.

The system parameters used are Np = 3, nq = 2, and g = 0.6.
We approximated e−iτH with τ = 1.78 using a single Trotter
step of δτ = τ and δτ = τ/2 for the standard and control-free
versions of QETU, respectively. As d is increased, the error
of both methods leveled out, with the error of the control-
free version being an order of magnitude smaller due to the
smaller time-step used. We see that, in addition to requiring
less gates, the control-free version of QETU also results in
a smaller Trotter error for the same number of calls to the
time-evolution circuit. The remainder of the results in this
section were obtained using the control-free version of QETU.

We now study how the maximum achievable precision
depends on the Trotter step size δτ . Figure 12 shows the error
as a function of calls to the time evolution operator e−iτH

for τ = 1.5, approximated using a first-order Trotter formula
with Nsteps = 1, 2, 4. The parameters of the system studied are
Np = 3, nq = 2, and g = 0.6. We see that the error decreases
exponentially at first and then levels out for large number
of calls. This occurs because the error is now dominated by
the Trotter error, and improving the quality of the approxi-
mation of the projector is no longer beneficial. Even though
we use the first order Trotter formula, the maximum precision
achievable scales as O(δτ 2). This is due to the fact that the
leading order error term of the form δτ [HE , HB] is zero for
this system.

The final study we perform regarding the Trotter error is
how, for some fixed total precision, the Trotter step size δτ

must scale with the volume. Typically, as one increases the
number of terms in a Hamiltonian, for fixed step size, the
Trotter error increases due to the increased number of terms
that do not commute. From this argument, as we increase Np

or nq, we expect that δτ must be decreased accordingly if
one wants to maintain a constant level of precision. However,
scaling HE and HB by the parameter c1 is equivalent to scaling
the Trotter step size by c1. Because c1 generally increases with
Np and nq, the effective Trotter step size decreases with Np and

FIG. 12. Error of the state prepared using the control-free version
of QETU as a function of d , where different colored and shaped
data points correspond to different numbers of Trotter steps used
to approximate the time-evolution circuit. The results are shown for
Np = 3, nq = 2, g = 0.6, and τ = 1.5. As the number of steps is
increased, the error saturates at large d to smaller values due to the
reduced Trotter errors.

nq. If the decrease in error from the smaller effective step size
is more significant than the increase in error from the extra
noncommuting terms, then the Trotter error will decrease as
we increase Np or nq. We observe this to be the case, and show
an example of this counterintuitive behavior in Fig. 13. In this
plot, we show the error as a function of d for three valus
of Np = 3, 5, 7 using nq = 1 and g = 1.4. For each value of
Np, we use a single Trotter step with δτ = 1.5. Notice that
we can use a value of δτ > 1 and still see convergence due
to the fact that the effective Trotter step size is scaled by c1.

FIG. 13. Error of the state prepared with the control-free version
of QETU as a function of d , where different colored and shaped data
points correspond to different values of Np. The results are shown
for nq = 1, g = 1.4, and τ = 1.5. A single Trotter step was used to
approximate the time-evolution circuit. As the number of plaquettes
Np increases, the Trotter error decreases. This behavior is due to the
effective Trotter step size decreasing with Np.



Looking at Fig. 13, we see that as we increase Np, the max-
imum achievable precision increases. This behavior was also
observed as nq was increased. Because this behavior is ex-
pected to continue as one increases Np and nq towards realistic
values, the Trotter error will eventually become negligible for
any realistic precision requirements. Practically speaking, this
implies that for a realistic calculation, one can approximate
the time evolution operator using a single Trotter step of a
first-order Trotter formula with δτ = τmax, independent of Np

or nq. What at first seemed like a technical feature of QETU,
turns out to offer a powerful protection against further Np or
nq scaling. We conclude by stressing that, even though the
effective step size is scaled by c1, the un-scaled δτ must still
satisfy δτ � τmax in order to guarantee isolation of the ground
state when applying the filter operator.

We conclude with the classical computational cost of cal-
culating the angles {ϕ j} needed in the QETU circuit. We
found numerically that the cost scales quadratically with the
number of angles. Because the number of angles is propor-
tional to �−1, the associated classical cost scales as (�−1)2 =
O(N2

p 24nq ).

B. Wave-packet construction

In this section, we use QETU to prepare a Gaussian state,
defined in Eq. (22), with x0 = 0 and σx = 0. We first show
an example of how naïvely applying QETU according to
Eq. (25) leads to the error decreasing only polynomially with
the number of Chebyshev polynomials. Next, we show how
the modifications described in Sec. II C achieve an exponen-
tial scaling in the error for any desired value of the width,
including a method that avoids the costly implementation of
LCU to add the even and odd components of F(x). From
there, we compare the gate count cost of our method to that
of exact state preparation methods and find that our method
requires less gates than exact state preparation methods for
states represented by >2–5 qubits.

As explained in Sec. II C, due to the presence of the
arccos(x) term, we expect the error of the approximation to
decrease only polynomially with the number of Chebyshev
polynomials. An example of the polynomial convergence is
shown in Fig. 14, using parameters nq = 4, σx/xmax = 0.4,
τ = 1, and η = 0. Looking at the data labeled Method I, we
observe that the error converges quadratically as the number
of Chebyshev polynomials is increased. We now discuss mod-
ifications that can improve the scaling.

The first modification we study is to determine the pa-
rameter η and the Chebyshev coefficients according to the
optimization problem in Eq. (26), except with τ fixed to
τ = 1. Looking at the data labeled Method II in Fig. 14, we
see that while varying η improves the scaling to a point, the
error eventually starts to decrease polynomially.

To improve upon the previous method, we now allow the
parameter τ to be chosen, along with η and the Chebyshev co-
efficients, according to the optimization problem in Eq. (26).
During our numerical tests, we found that standard minimiza-
tion techniques were highly sensitive to the initial values of η

and τ .
The next modification we study is now τ to determine the

parameter η and the Chebyshev coefficients according to the

FIG. 14. Error of the prepared Gaussian state using QETU as
a function of the number of Chebyshev polynomials included in
both the even and odd components. Different colored points cor-
respond to different methods of construction. Method I determined
the Chebyshev expansion by solving the optimization problem in
Eq. (25), using η = 0 and τ = 1. Method II shows results solving
the optimization problem in Eq. (26) for τ fixed to τ = 1. Method
III used values for η, τ , and the Chebyshev coefficients by solving
the optimization problem in Eq. (26). Method IV first set τ = 2 to
make F(x) purely even and used values for η and the Chebyshev
coefficients by solving the optimization problem in Eq. (26). Method
V also set τ = 2 and used values for η and the Chebyshev coefficients
by solving the optimization problem in Eq. (27) where one only
samples the function at points x̃ j . The black dashed line shows the
curve ≈1/n2. The results are shown for nq = 4 and σx/xmax = 0.4.
The error using Method I decreases quadratically with the number of
Chebyshev polynomials. Using Method II, the error appears to at first
decrease exponentially, then decreases only polynomially. The error
using Method III decreases exponentially, and reaches floating point
precision with only five Chebyshev polynomials. Using methods
IV and V, the error first decreases exponentially, then levels out at
≈10−10, with method V generally outperforming method IV.

optimization problem in Eq. (26), except with τ fixed to τ =
1. Looking at the data labeled Method II in Fig. 14, we see
that, while varying η improves the scaling to a point, the error
eventually starts to decrease polynomially. To avoid this prob-
lem, we first determine good starting values for η and τ using
a brute force approach and then use these values as inputs
into a standard minimization procedure. While brute force ap-
proaches are technically inefficient, for our two-dimensional
parameter space and cheap cost function, we find this method
to be an appropriate choice. Note that negative values of η are
allowed and often result in the smallest error. Our numerical
studies routinely found that using a value of τ = 4 and varying
η leads to the smallest errors. One possible explanation for this
is that, for τ = 4, the parameter η can be varied to change
the shape of the function F(x̃i ) to be approximately linear
and quadratic, for the odd and even components, respectively;
functions resembling linear and quadratic dependence are ap-
proximated well using only a few Chebyshev polynomials.
Figure 14 shows the error using this procedure as a function
of the number of Chebyshev polynomials, labeled as Method



III. The error is five orders of magnitude smaller than using
the previous methods, and decreases exponentially.

While we have demonstrated that, for fixed σx and nq,
QETU can be used to implement Gaussian states using
O(log(1/ε)) controlled calls to e−iτ x̂sh , the cost of performing
LCU to add the even and odd pieces introduces a large overall
coefficient. If one could modify the procedure to avoid using
LCU, the gate count would be reduced by a factor of 10
or more. As discussed in Sec. II C, because of our specific
digitization of the x̂ operator, choosing a value of τ = 2 results
in the function F(x) being purely even. After setting τ = 2,
the parameter η and Chebyshev coefficients are determined
by solving the optimization problem in Eq. (26) with τ set to
τ = 2. Figure 14 shows the error as a function of the degree
of the Chebyshev polynomial used. The error decreases expo-
nentially at first, levels off, then reaches zero as the number
of parameters equals the number of points. Importantly, the
error levels off at a value of ≈10−10, which will be completely
negligible for a realistic simulation. While the error for the
same number of Chebyshev polynomials is generally larger
than if one implemented the even and odd pieces separately
and then added them using LCU, the cost of performing LCU
leads to over an order of magnitude larger gate count. For
this reason, converting F(x) into an even function to avoid
the cost of LCU results in the best precision for a given gate
cost.

The final improvement studied exploits the fact that, be-
cause the eigenvalues of the x̂sh operator are known exactly,
we must only reproduce the function F(x) at those points.
After fixing τ = 2, the parameter η and the Chebyshev coef-
ficients are determined according to the optimization problem
in Eq. (27). Looking at Fig. 14, we find the error using this
method results in smaller errors than the previous method of
sampling all x values. In a similar way, the error decreases ex-
ponentially, approaches a constant of ≈10−10, then becomes
zero when the number of Chebyshev polynomials equals the
number of points the function F(x) is sampled. This method
results in the smallest error per gate count, and is used to
produce the rest of the results in this section.

We now study how the precision varies with the number
of qubits nq. Figure 15 shows the error of the prepared state
as a function of nq for different degree polynomial approx-
imations, using σx/xmax = 0.2. Our results indicate that the
precision is independent of nq, except in the cases where the
small number of sample points results in an exactly prepared
Gaussian state. From this we learn that the number of Cheby-
shev polynomials required to achieve some desired precision
is independent of nq. For a fixed with σx, the gate cost required
to implement a Gaussian is therefore O(nq log(1/ε)). This
result will be important when comparing the gate cost with
exact state preparation methods.

The final component of our precision study is to understand
how the precision scales as the width σx/xmax of the wave
packet is varied. Figure 16 shows the error of the prepared
state as a function of the number of Chebyshev polynomials
used for different values of σx/xmax, using nq = 5 qubits. We
find that the error decreases exponentially for all values of the
width, with more sharply peaked Gaussian states requiring
more Chebyshev polynomials to achieve the same precision
as more broadly peaked states. This intuitive result is similar

FIG. 15. Error of the prepared Gaussian state using QETU as a
function of the number of qubits nq used to represent the state. The
state was prepared by setting τ = 2 and solving the optimization
problem in Eq. (27). Different colored points show different degree
Chebyshev expansions. The results for nq = 3 using d = 6, 10 are
not shown because the error was zero. Except for small values of nq

where the state is prepared exactly, the error is independent of nq.
Results are shown for σx/xmax = 0.2.

to the fact that the cost of approximating the shifted error
function increases as the energy gap � is decreased.

We conclude this section with a comparison of the gate
cost when preparing a Gaussian state using QETU to using
an exact state preparation procedure. For this comparison,
we compile the resulting quantum circuits using a universal
gate-set consisting of CNOT, Rz, and Rx gates using QISKIT

FIG. 16. Error of the prepared Gaussian state using QETU as a
function of the number of Chebyshev polynomials used to construct
the Gaussian filter operator. The state was prepared by setting τ = 2
and solving the optimization problem in Eq. (27). Different colored
points show different values of the wave packet width σx/xmax. In all
cases, the error decreases exponentially. More sharply peaked wave
packets require more Chebyshev polynomials to achieve the same
level of precision. Results are shown for nq = 5.



[125]. Before discussing precise gate counts, we argue the
expected scaling for both methods. Starting with QETU, one
controlled call to the e−iτ x̂sh operator requires O(nq) CNOT

and Rz gates. The number of Rx gates is simply equal to the
number of Chebyshev polynomials included in the approx-
imation. Exact state preparation methods on the other hand
require O(2nq ) CNOT, Rz and Rx gates. Even though QETU
has a better asymptotic scaling, because of the relatively large
coefficient in the overall QETU cost, we expect that for small
values of nq, exact state preparation will be less costly than
using QETU. The question we now answer is at what value
of nq does the cost of QETU become cheaper than exact state
preparation methods.

For the gate count comparison, we compare the number
of gates and neglect the scaling from the γ factor for the
QETU cost. We do this because algorithms with shorter depths
for a single run, rather than total gates required, when using
NISQ and early fault tolerant devices are preferred. For the
gate count comparison, because the cost of Rz and Rx gates
are similar, we chose to compare the number of total rotation
gates, as well as the number of CNOT gates. It is important
to note that the gate count using QETU for a fixed number
of calls to the e−iτ x̂sh is independent of value of σx/xmax.
What is important, however, is the precision one can achieve
for that particular value of σx/xmax. The cost for exact state
preparation methods is independent of σx/xmax.

Figure 17 shows the gate counts required to prepare the
Gaussian state, using both QETU and exact state prepara-
tion methods, as a function of nq. The top and bottom plots
show the number of CNOT and rotation gates, respectively. For
QETU, the gate count is shown for two, three, and four calls to
the e−iτ x̂sh operator. As expected, the scaling for the number of
CNOT and rotation gates is linear in nq when using QETU, and
exponential in nq for exact preparation methods. Comparing
first the CNOT count, looking at the top plot in Fig. 17, we
notice that for nq = 5, the CNOT count when using QETU
starts to be cheaper than exact state preparation methods.

We now compare the number of rotation gates for both
methods. Looking at the bottom plot in Fig. 17, we see
that already for nq = 2, 3, QETU requires less rotation gates
than exact state preparation methods. As already shown in
Fig. 16, for certain values of σx/xmax, using only two to three
Cheybshev polynomials can achieve a subpercent precision on
the prepared state. Additionally, we showed in Fig. 15 that
for fixed degree Chebyshev approximations, the precision is
independent of the value of nq.

Taken together, all of these results imply that, depending
on the desired error tolerance, value of σx/xmax, and whether
noisy or error-corrected qubits are used, it makes sense to
consider using QETU for values of nq as small as nq � 2–5.
Note that it is in principle possible to reduce the cost of
exact state preparation methods by dropping gates with small
rotation angles below some threshold. The gate count savings
and the error introduced will require a dedicated study, which
will be interesting to perform in future work.

We conclude by discussing how the cost of our method
compares to the cost of the Kitaev-Webb (KW) algorithm
for preparing Gaussian states [126]. While the KW algo-
rithm can implement Gaussian states with a cost polynomial
in the number of qubits, the algorithm comes with a large

FIG. 17. (top) Number of CNOT gates required to prepare a Gaus-
sian state using both QETU and exact state preparation methods
as a function of the number of qubits used to represent the state
nq. The factor of γ is not included in the QETU count. The black
squares with a solid line show the count for exact state preparation
method. The different colored circles with dashed lines show the cost
of QETU for different number of calls to the e−iτ x̂sh operator. Exact
state preparation methods become more expensive around nq = 5.
(bottom) Same as top but for the number of rotation gates required.
Exact state preparation becomes more expensive around nq = 2.

overall prefactor due to the need to perform arithmetic on
the quantum computer. A detailed study comparing the gate
cost of using the KW algorithm to the gate cost of exact
state preparation methods was performed in Ref. [127]. It was
found that, due to a large prefactor, state preparation using the
KW algorithm for a single Gaussian wave packet was more
expensive than exact state preparation methods up to nq ≈ 14
qubits. This, combined with the fact that the cost of KW scales
more quickly than linear in nq, implies that using QETU to
prepare a one-dimensional Gaussian wave function will also
be cheaper than using the KW algorithm for any value of nq.

In principle, it is also possible to use QETU to also prepare
multidimensional Gaussian states. Because of the probabilis-
tic nature of using QETU, one will have to ensure that the γ

factor does not decrease exponentially with the dimension of



the Gaussian state being prepared. This would be nontrivial
to achieve, given the nonunitary nature of the Gaussian filter
transformation (22). It will be interesting to explore this ap-
plication of QETU in a future work.

The final study we perform is on how γ depends on nq,
the number of Chebyshev polynomials, and the width σx/xmax.
Recall that γ is defined to be the magnitude of the final state
prepared using QETU. Because the initial state guess and
implemented operator F (cos(τ x̂sh/2)) are known exactly, we
can directly evaluate γ in the limit where we reproduce F(x)
exactly. Doing so gives

γ = |〈ψinit|F(cos(τ x̂sh/2))2|ψinit〉| = c2

2nq

2nq −1∑
j=0

e−x2
j /σ

2
x , (47)

where going to the second line we used |ψinit〉 =
2−nq/2 ∑2nq −1

j=0 |x j〉 and F (cos(τ x̂sh/2)) = c e−x̂2/(2σ 2
x ). If we re-

place F with the approximation F with error ε, the above
expression for γ is expected to be correct up to O(ε) correc-
tions. In the limit of nq → ∞, the value of γ is simply the area
under the Gaussian curve. We therefore expect γ to approach
a constant as nq is increased. The value of this constant will
depend on σx/xmax, and is given by c2

∫ xmax

−xmax
dx e−x2/σ 2

x . From
this we expect that γ decreases as the ratio σx/xmax decreases.

Using this expression for γ , we can identify a scenario
where γ can be prohibitively small. Suppose that one uses
a small value of nq to implement a sharply peaked Gaussian
state. It is possible that one only samples at values of x where
the function e−x2/(2σ 2

x ) is exponentially suppressed, resulting
in an exponentially small value of γ . However, because sam-
pling a sharply peaked function a small number of times will
introduce large digitization errors, this situation is not likely
to occur in practice; in a realistic scenario, one will sample the
wave packet using a large enough value of nq to avoid a small
value of γ .

Figure 18 shows the dependence of γ −1 on nq and σx/xmax.
All results were calculated using a degree 18 even Chebyshev
approximation. For the data shown, the largest error from the
finite Chebyshev approximation of the state produced using
QETU was ≈10−9. The top plot in Fig. 18 shows γ −1 as a
function of nq for different values of σx/xmax. Using nq = 2 for
σx/xmax = 0.1 results in γ −1 ≈ 105 because the wave packet
is only sampled at values where the value is exponentially
suppressed. This problem can be avoided by increasing nq and
is less severe for larger values of σx/xmax. We notice that by
nq = 5 the value of γ −1 levels out. The bottom plot in Fig. 18
shows γ −1 as a function of σx/xmax for nq = 5. We see that γ

is directly proportional to σx/xmax, with more sharply peaked
states having smaller values of γ . For a sharply peaked value
of σx/xmax = 0.1, we find γ −1 ≈ 13.

The main value of our scrupulous numerical investigations
in this section is the demonstrated ability to prepare wave
packets with exponential precision for arbitrary values of the
distribution parameters. This required several optimization
procedures and could not have been trivially predicted based
on the construction proposed in Sec. II C. Our result proves
an important point that, despite the presence of arccos(x)
in the QETU approximation, it can be used for representing
functions of Hermitian operators, with exponential precision.

FIG. 18. Dependence of γ on various parameters when con-
structing the Gaussian state by setting τ = 2 and solving the
optimization problem in Eq. (27). (top) γ −1 as a function of nq.
Different colored points indicate different values of σx/xmax. The
value of γ −1 is large for nq = 2 and σx/xmax = 0.1 due to sampling
the sharply peaked Gaussian only at points where the value is ex-
ponentially suppressed. (bottom) γ −1 as a function of σx/xmax for
nq = 5. The value of γ is proportional to σx/xmax.

(In Ref. [98] this issue was avoided by constructing a polyno-
mial approximation to the error function which, in turn, was
approximating the cosine-transformed original step function.)

V. GROUND-STATE PREPARATION COST
FOR A GENERAL GAUGE THEORY

In this section, we discuss how the cost of ground-state
preparation using QETU is expected to scale with the pa-
rameters of a general lattice pure gauge theory in d spatial
dimensions. Understanding the cost in terms of a total gate
count requires detailed information regarding the specific for-
mulation of the lattice gauge theory in question, as well as the
algorithm used to implement e−iτH . To keep the discussion
in this section as general as possible, we consider the cost in
terms of the number of calls to the time evolution circuit. For
ease of notation, throughout this section, we denote energies



of the unscaled Hamiltonian of the general lattice gauge the-
ory by Ei.

We consider a pure gauge theory on a hypercubic spatial
lattice with Ns sites in each dimension, and a lattice spacing
a between neighboring sites. The d-dimensional volume is
given by V = (aNs)d . To truncate the infinite-dimensional
Hilbert space of this bosonic theory, we represent each lattice
site using nq qubits. We consider a general gauge theory
sharing the same qualitative features as QCD. First, the theory
is assumed to have a mass gap between the vacuum and
the first-excited state. Second, we assume that the theory is
asymptotically free, i.e., that as the lattice spacing a goes
to zero, the bare coupling g(a) also goes to zero. The true,
continuous, infinite volume theory is recovered while simul-
taneously taking (aNs)d → ∞, nq → ∞, and a → 0 (while
appropriately adjusting g according to the chosen renormal-
ization scheme). We work in the units of h̄ = c = 1.

One important consideration is that, in a lattice gauge the-
ory, one does not directly choose the lattice spacing a. One
can only choose the value of the bare gauge coupling g. The
two parameters are related via the renormalization group; one
should view the gauge coupling as a function of the lattice
spacing, i.e., g = g(a). What this means in practice is that
one can only calculate dimensionless quantities in a lattice
gauge theory. For example, if one considers an energy E ,
one can only calculate the dimensionless value aE . Once the
lattice spacing a has been determined using some renormal-
ization scheme, the dimensionful energy E can be extracted.
However, this consideration can be avoided for our discussion
using the fact that the cost of QETU depends only on ratios
of energies. The explicit lattice spacing dependence cancels,
and we can consider directly energy differences E1 − E0 and
Emax − E0 in physical units.

While the explicit dependence on the lattice spacing can-
cels, the energies still have implicit dependence on a. The
energies also have an implicit dependence on the physical
volume V and the number of qubits per lattice site nq. To better
understand this dependence, it is useful to recall that the lattice
acts as both a high- and low-energy regulator of our quantum
field theory. Using a finite lattice spacing introduces an energy
cutoff ≈1/a, while using a finite volume provides a low-
energy cutoff of ≈1/V . In addition, using a finite value for
nq provides another high-energy cutoff, denoted as �nq ∼ 2nq .
Assuming one has properly renormalized the theory, as these
regulators are removed, i.e., sending a → 0, V → ∞, and
�nq → ∞, one should obtain the correct physical energies.
We proceed with the discussion assuming access to (early)
fault-tolerant quantum computers, where finite-volume errors
εV , finite lattice spacing errors εa, and finite nq errors εnq are
controlled.

We now discuss the scaling of E1 − E0 and Emax − E0 with
Ns, a and nq. The energy difference E1 − E0 in a continuous
theory with a mass gap has a finite value. Therefore, as one
removes the regulators, the gap E1 − E0 is expected to ap-
proach a constant. However, Emax − E0 diverges in this limit.
We now consider how quickly this term grows as we remove
each of the regulators. Starting with the volume, it is helpful
to think from the perspective of fixed a and nq. Increasing
the volume is achieved by increasing the number of sites Ns.
In the simplest possible case of a free theory, each additional

site increases the maximum possible energy by the maximum
energy of a single site. For a local gauge theory, the maximum
energy is expected to increase in a similar way when using
more lattice sites.3 The maximum energy of our interacting
theory is therefore expected to grow linearly with the total
number of sites Nd

s . For fixed a, this is equivalent to growing
linearly with the volume V . Turning now to the lattice spacing,
recall that a finite value of a imposes a high-energy cutoff
given by ≈1/a. We therefore expect the maximum energy
to scale in the same way as 1/a. Lastly, it is known that
the maximum energy of a bosonic theory generally increases
exponentially with nq [118,128].

In terms of these energy gaps, we know � ∼ (E1 −
E0)/(Emax − E0). Combining our scaling arguments, we find

�−1 = O

(
Emax − E0

E1 − E0

)
= O

(
a−1Nd

s 2nqα
)
, (48)

where the parameter α ∈ R>0 is both theory and formulation
dependent. Numerical studies of this scaling were performed
for a compact U(1) lattice gauge theory in two spatial dimen-
sions in Sec. IV A.

We now turn our attention to how the overlap γ be-
tween the initial guess and exact ground state scales. For
this discussion, we assume that the vacuum is translationally
invariant, which is true for theories in the standard model.
There are many ways to prepare this initial guess, includ-
ing adiabatic state preparation [129–131], variational methods
[66,71,72,132–134], and direct preparation [135–145]. We
now argue that preparing such an initial guess wave function
using direct state preparation will lead to exponential scaling
in the cost of preparing the ground state with QETU.

Consider a situation where one prepares regions of the
lattice using exact state preparation, where for simplicity we
assume that each region contains Nr sites in each dimen-
sion. The number of these regions is given by (Ns/Nr )d . The
gate cost of preparing the state of a single region, each with
overlap γi, scales as 2(Nr )d

, with the total overlap given by
γ ∼ (γi )(Ns/Nr )d

. Any choice of Nr that breaks the exponential
scaling in one of these costs necessarily introduces an expo-
nential scaling in the other. Even though each overlap γi can
in principle be improved using amplitude amplification from
γi to

√
γi [102,146], the overall γ parameter still decreases

exponentially as one increases the number of lattice sites.
Creating a trial state using direct state preparation methods
is therefore inefficient. In light of this argument, we studied
how γ scales with the volume if one uses a simple adiabatic
state preparation procedure to prepare the initial guess wave
function |ψinit〉 for the U(1) formulation we considered. Our
results indicate the scaling of γ using adiabatic state prepara-
tion is highly dependent on the gauge coupling g, ranging from
nearly constant in the volume to decreasing exponentially with
the volume. We conclude by noting that it is possible that more
sophisticated adiabatic preparation procedures, or the use of

3Note that, because gauge fixing generally leads to some nonlocal-
ity in the resulting Hamiltonian, this argument does not necessarily
apply to such formulations. If one does use a nonlocal Hamiltonian,
understanding how Emax − E0 scales with the number of sites will
likely require a dedicated study.



variational state preparation, could result in a better scaling of
γ −1 with the volume. It will be interesting to explore this in
future work.

Another component of the cost is how the number of Trot-
ter steps used to approximate the time evolution circuit scales
with the system size. As one increases Ns or nq, the number
of noncommuting terms in the Hamiltonian increases, and we
therefore expect the number of steps required to maintain a
constant precision to increase accordingly. However, as dis-
cussed in Sec. IV A, scaling the Hamiltonian such that the
spectrum is in the range [0, π ] can be equivalently viewed
as scaling the Trotter step size. Because the maximum energy
generally grows with Ns and nq, the effective Trotter step size
will decrease with Ns and nq. If this decrease in the Trotter step
size results in a smaller error that the increase from the addi-
tional noncommuting terms, the overall Trotter error would
actually decrease with Ns and nq. As shown in Sec. IV A, this
was indeed found to be the case for the U(1) gauge theory we
considered. Due to the similarity of Hamiltonian structure of
general lattice gauge theories, it is possible that this trend will
also be present for other lattice gauge theories.

Lastly, we point out an observation that may help dampen
the scaling of �−1 as one increases Ns and nq. The main idea
is that in general, an initial guess with good overlap with the
ground state will generally have smaller overlap with excited
states, with the overlap continuing to decrease for higher
excited states. As a simple example, consider the quantum
harmonic oscillator, with operators sampled using nq qubits.
One possible initial guess is a constant wave function for all
x. Because the nth excited state has n nodes, the overlap of this
initial guess and higher excited states will decrease with n, due
to the fact that one sums more highly oscillatory functions.
Let us denote the overlap of the highest energy state and the
initial guess as γnq,min, with associated energy E2nq −1. Now
suppose that one increases the number of qubits to mq > nq.
This increases the size of the Hilbert space, but the key point
is that only states with higher energies are added. Because
these higher-energy states also have more oscillations, the
overlap the initial guess has with these additional states are
all smaller than γnq,min. Depending on the error threshold, it
is conceivable that, for a small enough value of γnq,min, one
can simply ignore the states with energy larger than E2nq −1.
With regards to using QETU, this implies we only have to
divide our energy gap by E2nq −1 − E0 instead of E2mq −1 − E0.
Because this argument is true for any mq > nq, the amount one
must scale down the physical energy gap eventually becomes
independent of nq.

It is possible that these arguments can be applied in a
similar way to lattice gauge theories in order to argue that the
scaling with Ns and nq could be milder than previously argued.
In the best case scenario where the dependence on Ns and nq

vanishes for some values of the parameters, � would only de-
pend on physical energies E0, E1, and some En∗ , where En∗ is
the highest-energy state that must be filtered out using QETU.
In this way, � is no longer explicitly dependent on the lattice
spacing, only through finite lattice spacing errors. If such a
scenario is true, then � would become independent of Ns, nq,
and a. The cost would then be some overall large prefactor,
dependent on the value of � where it becomes independent
of Ns, nq, and a, multiplied by the cost of implementing e−iτH

using Trotter methods. Our preliminary numerical investiga-
tions showed that the validity of such a hypothesis is heavily
dependent on both the initial guess state and the value of the
coupling constant. We leave further investigations for future
work.

Importantly, the above-described method of dampening the
scaling with Ns or nq is specific to the QETU approach, and
would not be possible if one instead used the Hamiltonian
input model, as in Ref. [105]. In the Hamiltonian input model,
one performs repeated calls to a block encoding of H and uses
the quantum eigenvalue transformation to implement the pro-
jector. Already at the stage of constructing the block encoding
circuit for H , this method requires the Hamiltonian to be
scaled so that ||H || � 1. Scaling down the Hamiltonian, and
therefore the gap, by a factor of Emax − E0 is thus unavoidable
in this scenario. On the contrary, in the QETU case, where one
performs repeated calls to the unitary operator e−iτH , there are
no fundamental obstacles for constructing the time-evolution
circuit for some H with a large spectral norm. The spectrum
of H is shifted solely to avoid the problems associated with
the periodic nature of the matrix function which QETU im-
plements. Consequently, this technical difference between the
Hamiltonian and time-evolution input models could result in
the cost of QETU having better asymptotic scaling with Ns or
nq.

VI. DISCUSSION AND CONCLUSION

In this work, we performed an extensive study of the QETU
algorithm and its applications to state preparation in simu-
lations of quantum field theory. By modifying the original
algorithm in Ref. [98], we were able to achieve significant
cost savings when the time evolution circuit is implemented
both exactly as well as approximately using Trotter methods.

We applied our improved procedure to prepare a ground
state in a particular lattice formulation of U(1) gauge theory
in two spatial dimensions. To avoiding the costly controlled
calls to the time evolution circuit, we based our circuits on
the control-free version of the QETU algorithm. The consid-
ered control-free implementation of QETU generalizes to any
Hamiltonian of the form H = Hx + Hp, where the bases of
the kinetic piece Hp and the potential piece Hx are related
by a Fourier transformation; a form that is common to many
types of lattice field theories and their different formulations
[41–44,118,122,128].

We studied how the cost of the QETU-based state prepara-
tion algorithm scales with parameters of our physical system.
In particular, we discussed how scaling down the spectrum
of the physical Hamiltonian ensues the scaling of the energy
gap � and placed upper bounds on this parameter for arbi-
trary system sizes. Next, we discovered that scaling down
the Hamiltonian spectrum leads to unexpected positive con-
sequences; namely, it makes the Trotter error decrease as the
number of sites Np or the number of qubits per site nq are
increased. This behavior is due to the fact that scaling down
the Hamiltonian spectrum is equivalent to scaling down the
Trotter step size. Additionally, using a simple adiabatic state
preparation procedure, we found that the volume scaling of
γ −1 is highly sensitive to the gauge coupling g considered,
ranging from nearly constant in the volume to decreasing



exponentially with the volume. These studies lay the basis
for the further studies on applications of QETU-based state
preparation techniques for alternative formulations of gauge
theories.

We followed our numerical results with a discussion of
asymptotic costs of using QETU for state preparation in gen-
eral lattice field theories with properties similar to QCD. We
also argued that the scaling of � with the number of sites or
qubits per site can be reduced by exploiting the fact that, for a
good initial guess, highly excited states will have a negligible
overlap, and do not need to be filtered out.

In this work, we also developed an alternative application
of the QETU algorithm for the preparation of Gaussian states.
The main idea is to use QETU to implement the Gaussian
filter operator e−x̂2/(2σ 2

x ). We argued that a naïve application
of QETU to this problem results in the error decreasing only
polynomially with the degree of the Chebyshev expansion.
We showed, however, that one could instead achieve an ex-
ponential scaling, for any value of the width of the Gaussian
state, by performing simple modifications to the QETU pro-
cedure. With these improvements, we presented a procedure
that allows one to prepare Gaussian states while avoiding the
costly step of adding the even and odd pieces using LCU. By
performing a gate cost analysis, we showed that preparing
Gaussian states with QETU using our improved procedure
outperforms exact state preparation methods for as few as
nq � 2–5 qubits, depending on whether one is using noisy or
error-corrected qubits.

This work leads naturally to a number of additional in-
teresting applications. While we used QETU to prepare the
vacuum state of a pure gauge theory, it is in principle possible
to extend QETU to prepare hadronic states in QCD, another
important step towards simulating QCD. For concreteness,
consider the task of preparing the quantum state of the pion.
While the pion is not the ground state of the QCD Hamilto-
nian, it is, however, the lowest energy state with the quantum
numbers of the pion. Additionally, the gap between the pion
state and the next excited state with the desired quantum num-
bers is roughly twice the pion mass. If one prepares an initial
state |ψinit〉 with the quantum numbers of the pion, e.g., using
the high-quality interpolating fields that have been developed
for use in lattice QCD (see, e.g., Ref. [147] for a pedagogical
introduction) then one can construct a filter operator using the
QCD Hamiltonian and isolate the pion state. Because these
interpolating fields are not unitary but Hermitian operators, a
dedicated study to how best implement these operators will be
required. It is possible, in principle, to use QETU to construct
interpolating fields. An interesting question to ask is if one
needs to apply the interpolating field to the interacting vacuum
prepared using, e.g., QETU, or if one can simply apply the
interpolating field to any state with the quantum numbers
of the vacuum. If one could avoid preparing the interacting
ground state while avoiding γ scaling exponentially poorly
with the number of sites, this would result in a significant cost
reduction.

Another interesting follow-up is exploring the use of
QETU for preparing multidimensional Gaussian states, which
are relevant for lattice gauge theories as well. The general
form of such a state is e−∑

i j ci j xix j . A simple procedure for

constructing this state using QETU is to set f(x) = e−x and
use ei

∑
i j ci j x̂i x̂ j as a building block in the QETU circuit. One

important consideration using this method, or any variation, is
to ensure that the γ parameter does not decrease exponentially
as one increases the dimension of the Gaussian. If this can be
avoided, it will be interesting to compare the cost of QETU to
the Kitaev-Webb algorithm for preparation of such states.

Our studies provide the foundation for further investiga-
tions on the applicability of QETU in the context of highly
efficient preparation of various functions of Hermitian opera-
tors. In our following work [148], we investigate whether the
QETU algorithm can be utilized for efficiently implementing
block encodings, which paves the way toward synergizing
QETU with state-of-the-art simulation strategies [90,149].
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APPENDIX A: CALCULATING THE PHASES
IN THE QETU CIRCUIT

In this Appendix, we review the procedure for calculating
the phases {ϕ j} used in the QETU circuit. Note that multiple
conventions for defining the phases {ϕ j} exist, and throughout
this work we use the so-called W-convention. Here we mostly
follow the pedagogical discussion given in Ref. [102]. To
calculate the phases {ϕ j}, one needs to combine a number
of techniques, including quantum signal processing (QSP)
[84], qubitization [85], and QETU [98]. QSP is the theory
of the unitary representation of scalar polynomials P(x). Put
more concretely, QSP tells us that, for some set of symmetric
phase factors (φ0, φ1, . . . , φ1, φ0) ∈ Rd+1, one can construct
an even Chebyshev polynomial g(x, {φ j}) of degree d in the
following way:

g(x, {φ j}) = Re[〈0|eiφ0Zei arccos(x)X eiφ1Zei arccos(x)X

· · · eiφ1Zei arccos(x)X eiφ0Z |0〉], (A1)

where X and Z are the usual Pauli matrices. Qubitization can
then be used to lift the above SU(2) representation to matri-
ces of arbitrary dimensions. Finally, the quantum eigenvalue
transformation for unitary matrices (QETU) tells us that, if



FIG. 19. Control-free QETU circuit diagram. The top qubit is the control qubit, and the bottom register is the state we apply a matrix
function to. Here V is the operator given in Eq. (C1) that implements simultaneous controlled forward and backward time evolution.
By applying alternating calls to V and V †, upon measuring the ancillary qubit to be in the zero state, one prepares the normalized
quantum state F (cos(H ))|ψ〉/||F (cos(H ))|ψ〉||, where F (cos(H )) can be a general even polynomial. For symmetric phase factors {ϕ j} =
(ϕ0, ϕ1, . . . , ϕ1, ϕ0) ∈ Rd+1, then F (cos(H )) is an even polynomial of degree d . The probability of measuring the control qubit in the zero
state is p = ||F (cos(H ))|ψ〉||2.

we choose {φ j} such that g(x, {φ j}) = F (x), the circuit in
Fig. 1 implements a block encoding of F (cos(H/2)), where
ϕ j = φ j + (2 − δ j 0)π/4 (see Appendix B in Ref. [98]). Com-
bining these techniques leads to a procedure for calculating
the phases {φ j} completely in terms of SU(2) matrices, which
we describe now.

Because we have nCh independent phases, to produce ex-
actly the Chebyshev polynomial F (x) we must sample at
nCh values, which are taken to be the positive roots of the
Chebyshev polynomial T2nCh (x) given by x j = cos(π 2k−1

4nCh
). If

we define the functional F ({φ j}) as

F ({φ j}) = 1

nCh

nCh∑
j=1

|g(x j, {φ j}) − F (x j )|2, (A2)

then the phases {φ j} that produce F (x) can be found by solv-
ing F ({φ j}) = 0. It has been found in Ref. [116] that using a
quasi-Newton method with a particular initial guess of{

φ
(0)
j

} =
(π

4
, 0, 0, . . . , 0, 0,

π

4

)
(A3)

one can robustly find the symmetric phase factors for values
of d ∼ 10 000. An example code to solve for the Chebyshev
coefficients ck and the associated phase factors has been im-
plemented in QSPPACK [117]. Through numerical studies, we
find that the cost of finding the phase factors scales roughly
quadratically with the number of phases.

APPENDIX B: OPTIMAL CHOICE OF TIME STEP δτ

In this Appendix, we discuss the optimal choice of the time
step δτ that minimizes the total number of calls to the Trotter
circuit Ntot, given by

Ntot = 1

b�δτ
log

(
a

ε − c(δτ )p

)
. (B1)

We start by showing that dNtot/dδτ always has a zero. From
there, we present a perturbative solution to the value of δτ that
minimizes Ntot. We conclude by showing that d2Ntot/dδτ 2 is

positive definite, which shows that the extreme value is always
a minimum.

The first derivative is given by

dNtot

dδτ
= 1

b�δτ 2

[
c p

δτ p

ε − cδτ p
− log

(
a

ε − c(δτ ∗)p

)]
.

(B2)
For δτ = 0, dNtot/dδτ = − log(a/ε). Because a > ε in gen-
eral, the first derivative is negative at δτ = 0. This, combined
with the fact that the function diverges to +∞ when δτ →
(ε/c)1/p from the left, implies the first derivative always has a
zero for some value of δτ .

Setting the first derivative to zero gives

0 = c p
(δτ ∗)p

ε − c(δτ ∗)p − log

(
a

ε − c(δτ ∗)p

)
. (B3)

To obtain approximate analytic values for δτ ∗, one can expand
the logarithm. If we define x = c

ε
δτ p, then the equation be-

comes

0 = p
x

1 − x
+ log

(ε

a

)
+ log (1 − x). (B4)

By expanding the log to lowest order, we obtain the following
approximate equation for x

0 = p
x

1 − x
+ log

(ε

a

)
, (B5)

which can be solved analytically to give the following expres-
sion

δτ ∗ ≈
[

ε

c

(
1 − p

p + log
(

a
ε

))]1/p

. (B6)

Because a > ε in general, we see that this approximate so-
lution for δτ ∗ is slightly smaller than the maximum value
of (ε/c)1/p. Using the values ε = 10−3, p = 1, a = 1, c =
0.1, the approximate expression in Eq. (B6) gives a value of
δτ ∗ which differs from the exact value obtained by solving
Eq. (B4) numerically by only 3.2%.

FIG. 20. Circuit relations demonstrating how the relation K j e−iτ H ( j) 
K j = eiτ H ( j) 

can be leveraged to implement V ( j) while only having to 
control the Kj Pauli operators.



The second derivative is given by

d2Ntot

dδτ 2
= 1

b�(δτ )3

[
cp(δτ )p (p − 3)ε + 3c(δτ )p

[ε − c(δτ )p]2

+2 log

(
a

ε − c(δτ )p

)]
. (B7)

The goal is to show that when δτ = δτ ∗, the second derivative
is positive. This will be done by implicitly solving Eq. (B4) to
replace the log term, which gives

d2Ntot

dδτ 2

∣∣∣
δτ=δτ ∗

= 1

b�(δτ ∗)3

[
cp(δτ ∗)p (p − 3)ε + 3c(δτ ∗)p

[ε − c(δτ ∗)p]2

+2c p
(δτ ∗)p

ε − c(δτ ∗)p

]
. (B8)

By combining the fractions, we obtain the following result

d2Ntot

dδτ 2

∣∣∣
δτ=δτ ∗

= c p(δτ ∗)p

b�(δτ ∗)3

1

[ε − c(δτ ∗)p]2

× [ε(p − 1) + c(δτ ∗)p]. (B9)

Now, for any p � 1, and assuming all parameters are positive,
we see d2Ntot

dδτ 2 |δτ=δτ ∗ > 0.

APPENDIX C: CONTROL-FREE IMPLEMENTATION
OF GROUND-STATE PREPARATION IN LATTICE

FIELD THEORIES

In this Appendix, we show how to prepare the ground
state of the U(1) gauge theory described in Sec. III using the
control-free version of QETU.

We first describe the general procedure for implement-
ing the control-free version of QETU originally described
in Ref. [98]. Suppose that one has access to an oracle that
implements a controlled call to both forward and backward
time evolution simultaneously,

V =
(

eiτH 0
0 e−iτH

)
. (C1)

Instead of a controlled call to U = e−iτH , as in the orig-
inal QETU circuit, the oracle V can then be used as a

building block. The control-free QETU theorem [98] as-
sumes the access to a circuit implementing V for an n-qubit
Hermitian operator H . It states that for any even real polyno-
mial F (x) of degree d satisfying |F (x)| � 1 ∀ x ∈ [−1, 1],
one can find a sequence of symmetric phase factors {ϕ j} =
(ϕ0, ϕ1, . . . , ϕ1, ϕ0) ∈ Rd+1, such that the circuit in Fig. 19
denoted by U satisfies (〈0| ⊗ 1n)U (|0〉 ⊗ 1n) = F (cos(H ))
[98].

We now describe a general procedure for preparing V
assuming one has access to U = e−iτH . The procedure for im-
plementing V involves grouping the terms of H into l groups
H = ∑l

j=1 H ( j) such that each term in H ( j) anticommutes
with the Pauli operator Kj , i.e., KjH ( j)Kj = −H ( j). We now
show that, once this grouping is found, only the Kj operators
must be controlled. We now define

V ( j) =
(

eiτH ( j)
0

0 e−iτH ( j)

)
, (C2)

such that V = ∏l
j=1 V ( j). Using the key relation

Kje−iτH ( j)
Kj = eiτH ( j)

, each V ( j) will be implemented using
the circuit identity in Fig. 20, in which only the Kj operators
need to be controlled. If one finds l such groups, instead
of having to control each term in e−iτH , the control-free
version of QETU requires only an additional O(l ) controlled
operations.

We now explain how to prepare V for a general theory
where the Hamiltonian is a sum of a kinetic and potential
piece. Furthermore, we assume that the basis in which the
kinetic piece is diagonal is related to the basis in which the
potential piece is diagonal by a Fourier transformation. Under
these assumptions, the Hamiltonian is written as H = Hx +
F†HpF , where Hx and Hp are the potential and kinetic compo-
nents, respectively, and F is the Fourier transform. Note that
Hx and Hp as written are diagonal matrices. A single Trotter
step is implemented as U (δτ ) = F†e−iδτHpFe−iδτHx . The pro-
cedure we show below can be used for any system of this type,
including the U(1) gauge theory described in Sec. III.

Because the controlled implementation of a product of uni-
tary operators is equal to the product of the controlled versions
of the individual operators, we only need to consider a single
Trotter step; the total control-free time evolution operator can
then be built from combining multiple Trotter steps. First, we
show that the Fourier transform does not need to be controlled.
We denote by Uctrl(δτ ) the controlled version of a single
Trotter step. Explicit evaluation gives

Uctrl(δt ) = (1 ⊗ |0〉〈0| + F†e−iδtHpF ⊗ |1〉〈1|)(1 ⊗ |0〉〈0| + e−iδtHx ⊗ |1〉〈1|)
= (F†F ⊗ |0〉〈0| + F†e−iδtHpF ⊗ |1〉〈1|)(1 ⊗ |0〉〈0| + e−iδtHx ⊗ |1〉〈1|)
= (F† ⊗ 1)(1 ⊗ |0〉〈0| + e−iδtHp ⊗ |1〉〈1|)(F ⊗ 1)(1 ⊗ |0〉〈0| + e−iδtHx ⊗ |1〉〈1|), (C3)

where we used F†F = 1. From this we see that the Fourier transform does not need to be controlled.
Next, using the following circuit identity:



and replacing U1(δτ ) = Ux(δτ ) ≡ e−iδtHx and U2(δτ ) = F†Up(δτ )F ≡ F†e−iδtHpF , we find

Note that Hx and Hp are both diagonal matrices. If we can
find a general procedure for decomposing a general diagonal
unitary matrix into l groups H ( j) that all anticommute with the
same Kj Pauli operator, we have a control-free implementa-
tion of QETU for Hamiltonians of this form. We now present a
general method applicable to arbitrary Hamiltonians; applying
this method to the specialized case of diagonal Hamiltonians
is straightforward.

A general Hamiltonian H̃ acting n qubits can be decom-
posed into a sum of 4n Pauli strings containing 1, X,Y, Z
matrices.4 The method for choosing the H ( j) groups and their
associated Kj Pauli strings contains two main steps. The first
step considers only Pauli strings containing 1 and Z matrices.
The process starts by defining H (1)

Z as the sum of all Pauli
strings with a Z gate acting on the first qubit. The associated
K (Z )

1 operator is simply an X gate acting on the first qubit.
From the remaining pool of Pauli strings we now define H (2)

Z
as a sum of all terms with a Z gate acting on the second qubit,
and K (Z )

2 is an X gate acting on the second qubit. By repeating
this method for all n qubits, we construct n such groups H ( j)

Z

and their associated K (Z )
j operators (if the Hamiltonian H̃ is

diagonal, one can stop here and implement the control-free
version of QETU).

The second step focuses on the remaining Pauli strings that
contain only 1, X , Y matrices. In a similar way, we start by
defining H (1)

XY as the sum of all Pauli strings with either an X
or Y gate acting on the first qubit. Because Z anticommutes
with both X and Y , the associated K (XY )

1 operator is simply a
Z gate acting on the first qubit. From the remaining pool of
operators, we can now choose H (2)

XY as a sum of all terms with

either an X or Y gate acting on the second qubit, and K (XY )
2

will be a Z gate acting on the second qubit. After repeating
this for all n qubits, we have n groups n groups H ( j)

XY and their
associated K (XY )

j operators. Using this method, the operator
V needed to implement the control-free version of QETU for
arbitrary Hamiltonians H̃ can therefore be implemented with
the same cost as eiτ H̃ plus an extra O(n) CNOT gate. For many
physical systems of interest, this additional cost is negligible
compared with implementing the uncontrolled time evolution
circuit.

As a demonstration of this method, we work through a two
qubit example considering a diagonal Hamiltonian. A general
two qubit diagonal Hamiltonian can be written as

H̃ = a01 ⊗ 1 + a11 ⊗ Z + a2Z ⊗ 1 + a3Z ⊗ Z (C4)

for general coefficients ai. The term associated with a0 is a
global phase and can be ignored for this argument. Using the
previously described method, the groups H ( j) are given by

H (1) = a2Z ⊗ 1 + a3Z ⊗ Z, (C5)

H (2) = a11 ⊗ Z. (C6)

For this choice of groupings, the associated Kj operators are

9K1 = X ⊗ 1, (C7)

K2 = 1 ⊗ X. (C8)

With these choices, the circuit for the V operator is

which requires an additional four CNOT gates, instead of controlling on the entire time evolution operator e−iδτ H̃ .

4Note that, in a practical setting, to implement the exponential of an arbitrary Hamiltonian, one first splits the Hamiltonian into groups of 
commuting Pauli strings. Constructing the V operator for control-free QETU will then require using our method for each set of commuting 
Pauli strings.
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