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ISP access networks are critical to the Internet. They aggregate millions of users through

diverse infrastructure (e.g. cellular base stations and fiber), and route traffic through central

offices to connect to the Internet backbone. Although access networks are fundamental to Internet

connectivity, their design is not standardized. Each ISP builds its access networks differently with

different vendors and designs across regions, and multiple ISPs deploy distinct access networks

within the same region to compete for customers. These variations can lead to differences in

access network performance and resilience across providers and regions.

However, accurately measuring access network performance and resilience is a challenge
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for end-users, regulators and even ISPs themselves. Several problems contributes to this difficulty.

First, regional access network infrastructure often blocks external probes to prioritize customer

traffic, limiting active measurements. Second, measuring wireless last-mile infrastructure requires

close proximity to capture signals above the noise floor. Third, field measurements are not always

reliable—ordinary customers using the service and environmental noise can significantly affect

performance analysis. These problem arises from diverse components in access networks and

region-specific deployment strategies. Network measurement approaches that rely on limited

vantage points and inference techniques, can fail to capture regional variations comprehensively.

In this dissertation, I introduce new methodologies to overcome these challenges by

using public resources to create vantage points in different regions. Through extensive field

measurements, I reveal that ISPs’ access networks exhibit highly diverse designs across re-

gions, providers, and vendors. I evaluate how these design disparities impact latency, traffic

performance, and network resilience. My contributions provide a foundation for improving the

transparency of regional access networks and evaluating their resilience and performance.

In summary, I defend the following thesis statement: The diversity and opacity of regional

access network infrastructure hinders accurate evaluation of its performance and resilience (e.g.

network outage time, downlink throughput, wireless SNR), which can be addressed through: (1)

Using local public Wi-Fi networks and public transit mobile phones to reveal access network

topology and assess physical risks including the root cause of access network outage, (2) using

controlled mobile phone experiments to uncover LTE base station scheduler design variations

across vendors and evaluate the impact on downlink throughput, and (3) integrating mobile

devices with software-defined radios to evaluate wireless signals under a variety of interference

in the field.
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Chapter 1

Introduction

Internet service provider’s access networks are one of the most essential components in

the Internet. They bridge millions of last-mile users to access core Internet infrastructure. ISPs

strategically aggregate last-mile customers by utilizing various infrastructures, such as cellular

base stations and fiber networks. All access network traffic is routed through their central offices

(COs) (Fig. 1.1) to reach the Internet backbone. Access networks must be carefully designed to

balance the trade-off between performance, reliability, and cost.

Despite its critical role in providing last-mile customers access to the Internet, the

design of access networks is neither standardized nor unified. First, building an access network

involves multiple components, including base stations, switches, transponders, routers, and fiber

infrastructure. These components are developed by various vendors. Different components from

different vendors exhibit varying performance characteristics, which can impact overall network

performance. Second, ISPs structure their access networks differently across regions based on the

number of customers and cost considerations. This includes variations in network topology and

the selection of components used in deployment. Third, multiple ISPs may operate in the same

region, each independently designing and building its own network. As a result, regional access

networks in the same area can differ in design, leading to local variations in performance and

resilience. Accurate assessment of these factors is important for ISPs, customers, and regulators,

as it helps understand differences in performance and reliability of network services and can help
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Figure 1.1. An Internet Service Provider (ISP) network can be divided into backbone and
regional access network.

customers select a product that has the overall network quality that they require.

However, accurately measuring access networks is challenging, primarily due to their

lack of transparancy—not only to third parties such as customers and regulators, but even to ISPs

themselves. The lack of transparency exists mainly due to three factors:

Complexity of Network Infrastructure. Access networks consist of millions of inter-

connected components, including base stations, switches, routers, transponders, and fiber links.

These components are developed by a wide range of vendors, such as Cisco, Juniper, Ericsson,

and Samsung. While devices from different vendors are designed to serve similar purposes, their

real-world performance can vary significantly. Even for ISP, despite deploying and operating the

infrastructure, can struggle to fully assess their own operational performance.

Heterogeneity of Network Architecture. Access networks are proprietary and their

designs vary significantly across regions. While many components adhere to standardized

protocols and policies, their overall architecture can differ among providers and regions.

Evolution of Access Networks. As Internet performance demands rapidly increase, it

2



is difficult for access networks to keep pace with the evolution. While ISPs may design their

networks effectively at the outset, they often implement partial upgrades when adopting new

infrastructure rather than fully optimizing their full access network. This piecemeal approach

can result in heterogenous networks, which are more difficult to measure because they consist of

many generations of components that are interoperability.

These factors drive the per-region and per-provider differences in access network per-

formance and resilience. Previous studies [205, 17] have assumed uniform behavior of the

access network infrastructure within providers and regions. Users, although, may not experience

significant differences when switching between across different access networks, the incorrect

assumption of heterogeneity can make research results not universally applicable on many differ-

ent access networks. To accurately analyze and understand access networks, each region must be

studied separately, and any performance related strategies must be tailored to each network’s

specific characteristics.

Accurately inferring and analyzing access networks is critical for:

• Enhancing network resilience against failures and disasters.

• Reducing latency and improving Quality of Service (QoS) for end-users.

• Informing infrastructure investment decisions.

• Understanding the role of different ISPs and vendors in network performance.

Therefore, a comprehensive understanding of the structure and behavior of these networks

is crucial for evaluating and improving their resilience, performance, and efficiency. In the next

section, I introduce the challenges associated with measuring these propensities of access

networks.
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1.1 Challenges

Understanding and measuring regional access networks present significant challenges due

to opacity of regional access network, data collection barriers, and the scarcity of vantage points.

One of the primary difficulties is that access network infrastructure is typically neither visible

nor measurable remotely. ISPs will constrain probing of their access networks infrastructure to

only respond to their customers. Several factors contribute to this challenge:

• Opaque Network Architectures: Many ISPs provide limited visibility into their internal

routing, making it difficult to validate inferred topologies.

• Active Measurement Limitations: The reliance on traceroute and alias resolution tech-

niques for topology measurement introduces potential inaccuracies, especially when

dealing with MPLS tunnels or stale infrastructure DNS records.

• Wireless Services Range Constraint: Wireless signals attenuate over distance. For

instance, cellular wireless access network infrastructure is not able to serve more than a

10km range. Therefore, we need many local wireless vantage points to capture differences

in infrastructure.

However, achieving this presents additional challenges:

• Regional Presence: Effective measurement of regional access networks requires deploying

vantage points that are physically located within the network region and operating under

the specific ISP’s service.

• Sufficient Number of Vantage Points: Relying on data from only one or two vantage

points in a region introduces significant biases and fails to capture the full picture of access

network behavior.
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• Protocol Flexibility: Access networks employ multiple protocols for service delivery.

Vantage points must be capable of supporting measurements across different protocols to

provide a comprehensive analysis.

• Data Accuracy: Wireless measurements are sensitive to signal-to-noise ratio (SNR). Van-

tage points must be positioned close enough to signal sources while avoiding interference

to ensure accurate data collection.

In addition to visibility issues, the instability and heterogeneity of access network in-

frastructure across different regions and vendors creates further challenges. Large-scale data

collection is essential to account for these variations, but scalability remains challenging:

• Dynamically Changing Network Conditions: Real-world measurement is susceptible

to network variations. To reduce inaccuracies from outliers we need to perform multiple

repeated measurements of each regional access networks.

• Heterogeneous Aggregation Strategies: ISPs structure their networks differently ac-

cording to many factors including number of customers and service priority they need

to provide in a region, making it difficult to generalize findings across regions. We must

measure each region individually to understand its behavior.

• Vendor-Specific Policies: The lack of standardization in specific performance decision

areas among access network infrastructure introduces performance discrepancies that

affect end-user experience.

These challenges highlight the need for improved methodologies in access network

measurements, motivating this dissertation’s focus on scalable, accurate, and vendor-agnostic

approaches to regional access network measurement.
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1.2 Thesis

Although the above challenges make it difficult to answer the question about how to

accurately evaluate strategies that providers and vendors use to build regional access network

infrastructure. This thesis illustrates that the significant heterogeneity in access network deploy-

ments across different regions and vendors can be resolved by deploying a sufficient number of

vantage points in each region. I demonstrate that it is possible to reveal regional access network

infrastructures differences and to assess their performance and resilience.

To achieve this, I combine existing topology measurement techniques with new access

network-specific probing and analysis techniques to perform large-scale field studies of real-world

regional access network infrastructure. First, I describe how I combine traceroute with public

Wi-Fi networks to conduct active measurement (McTraceroute), and place mobile phones inside

ground shipping boxes to automatically send measurements across a wide areas(ShipTraceroute).

I explain how these vantage points enable revealing ISP’s regional access network topologies

and assessing regional access networks for physical risks to reliability. Next, I introduce how

network performance measurement techniques under the controlled measurement setup can

reveal how vendors developed different LTE base stations scheduling strategies. I also show how

the scheduling strategy differences affect download throughput for users. Lastly, I introduce

how I integrate software-defined radio with portable mobile devices (MobileSDR) to capture

local wireless signals from regional access network infrastructure and evaluate their performance

under a variety of interference in the field.

In summary, I defend the following thesis statement: The diversity and opacity of regional

access network infrastructure hinders accurate evaluation of its performance and resilience (e.g.

network outage time, downlink throughput, wireless SNR), which can be addressed through: (1)

Using local public Wi-Fi networks and public transit mobile phones to reveal access network

topology and assess physical risks including the root cause of access network outage, (2) using

controlled mobile phone experiments to uncover LTE base station scheduler design variations
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across vendors and evaluate the impact on downlink throughput, and (3) integrating mobile

devices with software-defined radios to evaluate wireless signals under a variety of interference

in the field.

1.3 Contributions and Organization

The remainder of this dissertation is organized as follows.

In Chapter 2, I first introduce the existing measurement platforms and commercial datasets

related to access network performance and resiliency. I show the benefits of using these platforms

and datasets but I also explain why they are not enough to measure and evaluate regional access

network. By doing so, I emphasis the importance of combining existing techniques with new

access network-specific probing and analysis techniques to understand regional access network.

In Chapter 3, I introduce novel measurement techniques to widely reveal access networks,

including McTraceroute, which leverages fast-food restaurant (e.g. McDonald’s, Starbucks)

Wi-Fi networks to measure regional access network topology, and ShipTraceroute, which places

mobile phones inside shipping boxes to issue measurements across a wide area during ground

transportation. I show that by using a sufficient number of vantage points, we are able to reveal

ISP’s wireline and wireless regional access network topology. Our findings reveal that network

topology varies significantly among providers, and even within the same provider across different

regions. As a result, we observe that network latency is not solely determined by geographical

distance but also by detours within the network topology.

In Chapter 4, we discuss the security risks inherent in the network topologies observed

across different ISPs. Our findings indicate the existence of severe vulnerabilities within these

networks that could disrupt customer services. We analyze these risks in detail and propose

mitigation strategies to enhance network security and resilience.

In Chapter 5, I explore the differences in strategies employed by vendors when developing

access network infrastructure. Specifically, I analyze LTE base station scheduling strategies
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across different vendors, demonstrating that LTE base stations from different manufacturers

adopt distinct scheduling methodologies that may impact network performance.

In Chapter 6, I then introduce MobileSDR, a wireless measurement platform designed to

separate the task of designing signal processing measurement programs from the process of data

collection.

Chapter 3, in part, is a reprint of the material as it appears in Internet Measurement

Conference 2021. Zesen Zhang, Alexander Marder, Ricky Mok, Bradley Huffaker, Matthew

Luckie, k claffy, Aaron Schulman. The dissertation author was the primary investigator and

author of this paper.

Chapter 4, in part, is a reprint of the materials as it apears in USENIX Security Symposium

2023. Alexander Marder, Zesen Zhang, Ricky Mok, Ramakrishna Padmanabhan, Bradley

Huffaker, Matthew Luckie, Alberto Dainotti, KC Claffy, Alex C. Snoeren, Aaron Schulman. The

dissertation author was the co-primary investigator and author of this paper.

Chapter 5, is currently being prepared for submission for publication of material. Zesen

Zhang, Jon Larrea, Jarrett Huddleston, Haoran Wan, Ricky Mok, Bradley Huffaker, KC Claffy,

Kyle Jamieson, Alexander Marder, Aaron Schulman. The dissertation author was the primary

investigator and author of this material.

Chapter 6, in part, is currently being prepared for submission for publication of material.

Zesen Zhang, Rohith Reddy Vennam, Maiyun Zhang, Yunxiang Chi, Dinesh Bharadia, Aaron

Schulman. The dissertation author was the primary investigator and author of this material.
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Chapter 2

Limitations of Existing Platforms and
Datasets

In this chapter, I provide an overview of related access network measurement platforms

and commercial measurement datasets. I will describe the advantage and shortage of these

platforms in measuring access networks in a large scale.

The first key requirement is having a sufficient number of Vantage Points (VPs) within

the corresponding ISP in each region to have visibility of all the regional access networks

infrastructure. Previous work place static bare metals into regions which made it hard to

scale into multiple areas and share endpoints. In my work, I instead deploy software-based

measurement platforms and mobile platforms to generate many VPs in and across different

access network regions.

Access network measurement requires low-level detailed metrics to understand perfor-

mance and reliability that are not typically available in prior Internet measurements. For instance,

cellular and LoRA network analysis requires raw IQ samples to capture physical layer wireless

link behavior.

Measurements also need to be annotated with geolocation information. Geolocation

tagging provides context to which regional access network, and where inside that access network

(e.g., which CO) the measurements correspond to.

Access networks typically are only measured with speed test downlink and uplink through-
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put. However, they only provide end-to-end results, providing limited internal infrastructure

visibility. To gain internal observability, we need probes that can cause internal infrastructure

to reply, like traceroutes, and also we will need to resolve missing information in these replies

using techniques often used in Wide Area Networks, like IP alias resolution. Therefore, access

network measurement needs platforms that offer flexible probing and capture capabilities.

Historical measurements are particularly important for observing access network relia-

bility. The reason is that one of the common faults in an access network is an outage of one or

more links. With historical measurements we can compare the network topology and behavior

before, after, and during the fault, to observe the network’s resilience.

Table 2.1 presents an overview of the features supported by different network mea-

surement platforms and datasets. In general, I categorize these platforms into three types: (1)

server-oriented wired platforms, (2) user-oriented wired platforms, (3) wireless measurement

systems and (4) commercial datasets.

• Server-oriented Wired Measurement Platforms function as clients that allow researchers

to send active measurement packets to network infrastructure.

• User-oriented Speed Test platforms operate as servers that passively receive packets

from users.

• Wireless Measurement Systems are designed to capture and analyze wireless signals in

the field.

• Commercial Datasets are data collected and organized by commercial parties and publish

online.

Additionally, several commercial datasets provide infrastructure-related information.

Table 2.1 demonstrates that no single platform fully supports all the key features required for

regional access network measurement. In the following sections, I will examine each platform in

detail and discuss its limitations.
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Table 2.1. Comparison of network measurement platforms, speed test platforms, wireless
measurement platforms, and commercial datasets based on key features. ✓ indicates it has the
corresponding features while ✗ means negative. is suggesting the platform has related features
but not enough for revealing access networks. – is showing the corresponding feature is not
indicated.

Platform
Name

VPs in
Regions

/ISPs
Software

Based
Raw
Data

Geo-
location

Info

Perfor-
mance
Metrics

Flexible
Tests

Public
Datasets Mobile

Server-Oriented Wired Measurement Platforms
RIPE Atlas ✗ ✓ ✗ ✓ ✗
Ark ✗ ✓ ✓ ✗ ✓ ✗ ✗
BISmark ✗ ✗ ✓ ✓ ✓ ✗
ICLab ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗
Dasu ✓ ✗ ✓ ✓ ✓ ✗ ✗
Netalyzr ✓ ✗ ✓ ✓ ✗ ✗
MITATE ✓ ✗ ✓ ✓ ✗ ✓
Scriptroute ✓ ✗ ✗ ✓ ✓ ✗ ✗

User-Oriented Speed Test Platforms
M-Lab ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗
Comcast ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗
Cloudflare ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗
Fast.com ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗
Ookla ✗ ✗ ✓ ✓ ✗ ✓ ✗

Wireless Measurement Platforms
WebSDR ✗ ✗ ✓ ✗ ✗ ✗ ✗
Electrosense ✓ ✓ ✓ ✗ ✓ ✓ ✗
CloudSDR ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
LS Observer ✗ ✗ ✗ ✓ ✗ ✗ ✓
SpecNet ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗
FieldFox ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓
MaiaSDR ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓
Android GR1 ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓
MagicSDR ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓

Commercial Datasets
CellInfo DB2 – – ✗ ✓ ✗ – ✓ ✓
WiGLE ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓
PeeringDB – – ✗ ✗ ✓ ✗ ✓ ✗
Rapid7 – – ✗ ✗ ✗ ✗ ✓ ✗

2.1 Server Oriented Platforms

Server oriented measurement has been an active area of research, with several well-

established platforms include RIPE Atlas[141], BISmark[169], FCC’s Measuring Broadband

America (MBA)[1], CAIDA Ark[30], ICLab[81], Dasu[148], Netalyzr[90], MITATE[67], Script-

1Android GR refers to Android GNU Radio.
2CellInfo DB includes multiple different datasets like OpenCellID, GeoTel, Cellinfo, NetMonster
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route[164], PEERING[153], and CAIDA Periscope[86]. These platforms have significantly

contributed to network measurement research, but they exhibit fundamental limitations when it

comes to measuring access networks.

Many of these platforms were developed to address specific research needs rather than to

provide a comprehensive view of regional access networks. For instance, RIPE Atlas[141] was

primarily designed to support the operational needs of the RIPE community. Even though they

have multiple VPs inside of their platforms but they are from multiple random providers and some

are from cloud providers instead of resides in access networks. And they are lacking of VPs in

each region as well. CAIDA’s Ark[30], infrastructure serves as a community platform for active

Internet measurement. BISmark[169] and MBA[1] were specifically developed for broadband

speed measurements, making them unsuitable for broader access network analysis. While some

platforms, such as Ark, BISmark, and MBA, allow researchers to conduct arbitrary experiments,

they require extensive vetting and direct involvement from platform operators, making it difficult

to conduct large-scale or customized measurements. The challenges of experiment development,

testing, and deployment further complicate their use for access network research.

For example, Scriptroute[164] allows researchers to execute scripts on measurement

endpoints but applies strict local policy filters to limit the types of traffic an endpoint can generate.

Similarly, RIPE Atlas restricts measurements to a predefined set of tests such as ping, traceroute,

DNS queries, SSL/TLS, and limited HTTP interactions. While this conservative approach

enables large-scale deployment (with nearly 10,000 active endpoints), it prevents researchers

from conducting in-depth measurements of access network infrastructure, where more flexible

data collection is required.

Moreover, measurement platforms often struggle with portability and integration issues.

For instance, when researchers attempted to extend an inter-domain congestion measurement

experiment originally designed for CAIDA Ark to BISmark, significant redesign was required

due to fundamental differences in platform architectures. The inability to seamlessly transfer

experiments across platforms hinders large-scale access network measurements, which require a
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diverse set of vantage points distributed across different ISPs and regions.

Additionally, several research platforms have focused on minimizing endpoint complexity

while allowing for limited customization. MITATE[67], for example, targets mobile network

measurements but restricts experiments to predefined sequences of packets with specific timing,

ensuring that they do not introduce security risks. While this approach provides controlled

experimentation, it lacks the flexibility needed to probe deeper into access network structures,

which often require adaptive measurement techniques to account for heterogeneous network

deployments and vendor-specific configurations.

Efforts have been made to unify measurement infrastructures, such as the MPlane and

Tophat projects. These initiatives aimed to create standardized measurement interfaces, shared

data storage formats, and unified toolsets. However, they primarily focus on inter-domain

and backbone network measurement rather than access networks. The fundamental challenge

remains: most existing platforms are designed for general-purpose Internet measurement rather

than for the specific task of mapping and analyzing regional access network infrastructure.

2.2 User-oriented Platforms

The most common user oriented platforms for access network performance measurement

are speed test measurement platforms. Speed test platforms all consist of many geographically

distributed test servers. They differ in how close servers are to their users, both in terms of

network topology and geography. Speed test platforms typically consist of many geographically

dispersed test servers, strategically positioned to reduce the latency and shorten the network paths

to end-users. Various platforms adopt distinct strategies for building their test infrastructure. For

example, M-Lab [103] and Comcast speed test [44] install bare metal machines dedicated for this

purpose. Speedof.me [4], Cloudflare speed test [42], and fast.com [57] leverage existing content

delivery networks (CDNs). In most cases, the speed test platform has control over the underlying

(virtualized) hardware or the network connectivity. Ookla, currently hosting the largest number
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of speed test servers, employs a crowdsourcing model to grow its fleet of test servers. Instead

of deploying boxes to different locations, network operators use their own hardware to install

Ookla’s software and submit requests to join the Ookla platform [129].

However, the limitations of these platforms are they only provide end-to-end performance

results without internal infrastructure visibility. Ookla for example, masks the critical information

in the measurement results, such as geolocation, IP addresses and anonymize downlink and

uplink throughput results, in order to help keep privacy for users. Comcast or Speedof.me, they

never releases any of their measurement results to public. M-Lab is the only platforms provide

many detailed information of the results they got from users. However, M-Lab relies on random

users using their services and their servers are outside of access network. It lacks of flexibility

for researchers to further understand detailed infrastructure design of access network.

2.3 Wireless Measurement Platforms

There are several wireless platforms that can collect data from different locations. For

example, WebSDR [194], allows users to connect SDRs deployed at many locations to the

internet, so many users can collect wireless measurments from many locations. Electrosense

[189] leverages crowdsourcing efforts with inexpensive commodity radio hardware to sense the

spectrum in densely populated regions of the world. However, these platforms are primarily used

for viewing signal spectrograms and do not allow customization of data analysis on the software

side.

CloudSDR [173], on the other hand, permits the remote execution of GNU Radio

programs with SDRs connected to cloud-based devices. Spectrum Observer [217] utilizes SDR

to observe and analyze wireless radios in the field and uses a co-located PC to detect radio

signals at different frequency bands. However, the endpoints in these platforms are not to move

to specific location and provide data collection according to researchers’ demands.

Some mobile wireless measurement systems like FieldFox [88] and TinySDR [72] require
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specially designed programs and hardware to collect specific field data. They mainly focuses on

hardware by designing them to be used in specific field like transmit and receive IoT packets or

cellular signals, but offer limited flexibility.

Several mobile wireless measurement platforms exist for Android devices that can collect

IQ samples and view the spectrum, such as MaiaSDR [109], the Wideband SDR tool [94] and

SDRs that are wirelessly connected with phone through bluetooth [161], but they do not support

packet detection or signal processing. There are some Android-based SDR platforms that allow

arbitrary signal analysis using GNU Radio [23] and MagicSDR [106]. However, they only allow

users to decode specific signals like FM, AM, and Wi-Fi using pre-designed apps. They do

not provide researchers with the flexibility to run their own programs and require expertise to

respond appropriately to the observed spectrograms.

2.4 Commercial Datasets

Several commercial datasets are publicly available for Internet measurement. However,

regional access network measurement requires significantly more detailed information than these

datasets provided. This made it difficult to draw conclusive results from existing datasets.

Multiple datasets provide geolocation information about wireless infrastructure. One

example is the OpenCellID dataset[187], a collaborative community project that collects GPS

coordinates of cell towers and their corresponding location area identity. Base station locations

can be identified using MCC (Mobile Country Code), MNC (Mobile Network Code), LAC

(Location Area Code), and Cell ID. The dataset contains over 35.5 million unique cells and more

than 2.1 billion unique measurements. GeoTel[64] offers a comprehensive dataset of approx-

imately 525,000 cell tower sites, enabling users to identify and assess wireless infrastructure,

including towers, rooftops, water tanks, billboards, and rural land. This information facilitates the

deployment and optimization of wireless coverage solutions. WiGLE[199] (Wireless Geographic

Logging Engine) is a website that collects data on wireless hotspots worldwide, including GPS
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coordinates, SSID, MAC address, and encryption type. In addition to Wi-Fi networks, WiGLE

also gathers cell tower data, providing a broad perspective on wireless network deployments.

However, these datasets primarily provide location information along with basic identify-

ing details about the infrastructure. Most are based on passive, automated scanning of nearby

infrastructure through mobile devices, relying on system information without access to raw signal

data. Additionally, they do not include performance-related data on last-mile infrastructure.

To evaluate performance, measurement devices must actively interact with infrastructure or

collect raw sample data. In Chapters 5 and 6, we demonstrate how we assess last-mile wireless

infrastructure performance.

For wired network infrastructure, several datasets provide information about access

networks. PeeringDB[95], for instance, is a freely available, user-maintained database that

facilitates global interconnection at Internet Exchange Points (IXPs), data centers, and other

interconnection facilities. It provides details about colocation facilities, networks, and IXPs,

serving as a valuable resource for understanding interconnection dynamics.

These datasets have been useful in our research, such as leveraging reverse DNS (rDNS)

names from the Rapid7 Open Dataset. However, a major limitation of these wired network

datasets is their generality. Extracting performance and resilience insights directly from them is

challenging because access networks are highly opaque and region-specific. Without extensive

active measurements targeting specific locations and vantage points, general-purpose datasets

cannot provide the necessary depth of information on access network performance and resilience.

In conclusion, while we utilize commercial open datasets as part of our access network

measurements, they do not have enough detailed data to accurately evaluate access network

performance and resilience.
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Chapter 3

How Access Networks are Different Across
Different Providers and Regions

3.1 Introduction

ISP regional access networks are an essential component of an ISP’s infrastructure: they

bridge millions of users’ last-mile access links to the ISP’s nearest backbone routers, which

may be hundreds of miles away, to reach the Internet. Access networks strategically aggregate

traffic in order to balance reliability and performance against the cost of providing connectivity

over large regions (Figure 1.1). Fiber cuts or other hardware failures can lead to large-scale

outages spanning neighborhoods, counties, or entire states. Risk of outages motivates ISPs to

provide redundancy within and across levels of aggregation. But regional access networks are

remarkably opaque, which makes it challenging for academics to quantitatively study their role

in the continually evolving ecosystem.

We present a measurement-driven exploration of regional access network topologies,

through the lens of aggregation and redundancy as the foundations of scalability. Building on

advances in Internet measurement methods and tools over the last two decades, we first establish

and demonstrate the ability for an independent third-party to infer the topologies of different

regional access networks, including aspects of the underlying physical (layer-1) topology, using

only active measurements. We then perform measurement campaigns to infer and compare how

major U.S. wireline (Comcast, Spectrum, AT&T) and mobile (AT&T, Verizon, T-Mobile) ISPs
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incorporate aggregation into their regional access network topologies. We show how analyzing

these topological differences across providers and even across regions of the same access ISP can

yield insights into the propagation of large correlated last-mile link failures [155, 59], sources

of edge computing latency [150] and how to minimize it [135], performance limitations of

metro-area fiber networks [110], and the evolving Internet ecosystem [54].

Our methodology synthesizes the state-of-the-art in three dimensions of Internet router-

level topology analysis: combining traceroute paths from distributed vantage points; extracting

semantics from DNS hostnames and IPv6 addresses of observed topology; and IP address alias

resolution to further refine topology inferences. Our methodology leverages ideas that are well-

established in the Internet measurement community, but we used them in different combinations,

and with creative refinements, to accommodate the geographic scope, scale, and architectural

richness of U.S. regional access ISPs. One of our contributions is effectively a recipe book of

how to gain insight into network topology structure under different sets of constraints.

For example, the largest U.S. cable providers today tend to have near-universal reverse

DNS on their router IPs, but hostnames are often stale. We devised heuristic methods to filter out

stale or misleading hostnames, facilitating a comprehensive mapping of their regional topologies.

Networks without geographically meaningful internal hostnames require another way

to infer geographic coverage of routers in the Central Offices (COs), such as probing from

many geographically distributed VPs in the regional network. This requirement highlights the

most common challenge in inferring internal network topologies, well-known to the research

community: many networks provide more (or more accurate) visibility to internal vantage points

than to external ones, especially for mobile networks. For wireline networks, we obtained

internal vantage points by wardriving public WiFi networks in fast-food chains.

Mobile (cellular) access networks present many challenges: e.g., limited rDNS and

blocking external probing. To capture this topology, we used IPv6 address structure and a new

approach to gain county-wide internal visibility into mobile networks: cross-country shipping of

mobile phones while they actively perform energy-efficient network measurements.
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Our measurement methodology contributions are:

• Cost-effective approaches to procuring vantage points; energy-efficient approaches to

sustaining mobile vantage points while devices are in transit.

• Analysis of DNS hostnames and IPv6 addresses to infer and geolocate topology, as well as

strategically select probe targets to fill in coverage gaps.

• Heuristics that leverage active measurement techniques to filter noise (e.g., stale DNS

information) or erroneously inferred hops, and infer missing (e.g., non-responding) IP

hops.

Our empirical contributions result from applying our methods to previously unmapped

parts of the infrastructure: wireline and mobile regional access networks. We gather enough data

to ground the following discoveries:

• Topological redundancy—a metric of resilience—varies widely within and across levels of

the hierarchy.

• Layer 3 topology information, including hostnames and IPv6 addresses, can reveal building

locations and building-level redundancy within access networks.

• Regional access networks leverage a range of aggregation strategies to accommodate

diverse markets, environments, and technologies. One result is substantial disparity in

latency from some Edge COs to their Backbone COs.

These measurements inform analysis of critical infrastructure, including resilience to

disasters, persistence of digital divide, and challenges for edge computing.

3.2 Background

Like any network, regional access networks must balance reliability and performance

against the cost of deploying and operating an infrastructure. For these networks, an additional
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Figure 3.1. Routers in EdgeCOs aggregate users while routers in AggCOs aggregate EdgeCOs.
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challenge is achieving all these aspirations at scale—in terms of market size and geographic

scope—and adapting to evolution of technology and industry structure. The primary architectural

mechanism used to achieve this scale is aggregation. Regional networks aggregate traffic in

Central Offices (COs) through a hierarchy of routers (and switches). An Edge CO (or EdgeCO)

aggregates traffic from many thousands of last-mile links. Similarly, an Aggregation CO (or

AggCO) houses routers to aggregate traffic from dozens of EdgeCOs, often across metropolitan

areas or entire states. Backbone COs (or BackboneCO) house equipment to aggregate traffic

from AggCOs—and sometimes EdgeCOs, and provide transit services either via the access

network provider’s backbone network, or via other ISPs. Figure 4.1 illustrates how ISPs use

redundancy across layers of aggregation to provide resiliency in case of link or node failures.

The topology of this regional network infrastructure frames the performance and re-

silience of the networks, as traffic must cross the regional access links to reach the nearest

Internet PoP. If the nearest PoP is far away, users may experience significant minimum la-

tency [144]. The level of redundancy in any component of the network similarly provides an

upper bound on robustness in different parts of the network.

3.2.1 Evolution of access networks

We provide some historical background for context on the challenges and opportunities

for measurement of these networks to study their performance and reliability.

A typical access network is physically constructed of several fiber rings (Figure 3.2).

These networks generally use three hierarchical rings. Last-mile links (e.g., Cable/Passive

Optical/DSL) are aggregated over Last-mile Loops that reach into neighborhoods and terminate

at EdgeCOs. EdgeCO traffic is aggregated in Edge Rings that terminate at one or more AggCOs.

Then AggCO traffic is aggregated on Core Ring to BackboneCOs. Early Internet access network

architectures used shared SONET on these fiber rings. All traffic passed through every CO in

reserved time slots to reach aggregation points at the higher layer, which resulted in suboptimal

bandwidth and latency performance. In the 1990s, in response to exploding demand for Internet
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Figure 3.2. (a) Access networks are physically constructed of a hierarchy of fiber rings. (b)
Overlapping Ethernet star topologies are built on top of these rings.
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bandwidth in part due to IP convergence (moving all voice and data services to use IP), access

networks gradually replaced these SONET ring topologies with Ethernet-based star topologies.

Often repurposing the same physical plant that SONET used, ISPs deployed direct Ethernet links

between EdgeCOs, AggCOs, and BackboneCOs using techniques such as Dense Wave Division

Multiplexing (DWDM) [212].

With DWDM and the addition of reconfigurable optical switches, operators are now

capable of flexibly configuring layer-1 topology on these physical fiber rings. However, there

is no standard way to design such a topology, i.e., how many or which EdgeCOs connect to

how many or which AggCOs. Designs are driven by demographic (population), geographic (or

geological) and regulatory constraints, especially when crossing state boundaries. To improve

resilience or accommodate high-traffic regions, some components may use a full mesh (e.g.,

between the backbone and aggregation layers in Figure 4.1) rather than star topology. These

design choices have implications for accommodating future services, e.g., low-latency high-

bandwidth edge services in COs [135].

Another driving force in network design is reliability and robustness in the face of

inevitable failures of components. SONET was especially robust to fiber cuts and router failures,

since traffic could travel in either direction around the ring. The Ethernet star topology does not

have this feature. To compensate, ISPs add redundant routers and/or links over existing fiber

rings, creating “dual ring/star” topologies (Figure 3.2).

Each network independently chooses how to implement redundancy: adding routers or

links or entire COs, and within or across different levels of aggregation. Some regions connect

with only one backbone CO; others have only one AggCO. Many COs have redundant routers,

and fiber rings have inherent redundancy (i.e., “East” and “West” directions in Figure 3.2).

Redundant backbone COs can dramatically improve regional reliability given that long-distance

backbone also can be prone to failure [54, 65].
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Figure 3.3. Mobile access networks are built of a combination of wireline access networks and
mobile-specific networks.

3.2.2 Mobile access networks

Mobile regional access networks leverage wireline access networks to provide mobile

Internet access over a large geographic area. Mobile access networks consist of two halves

(Figure 3.3). Mobile devices communicate wirelessly with base stations, and the base stations

aggregate user traffic over existing wireline networks and hidden mobile-specific AggCOs that

connect to one or more EdgeCOs; these facilities can also be called Mobile Telephone Switching

Offices (MTSO), Mobile Switching Centers (MSC), or mobile datacenters. This overlay network

is called the Radio Access Network (RAN). These AggCOs serve as a bridge to connect the

RAN to the mobile “Packet Core” which terminates the mobile network at one or more Packet

Gateways (PGW) in an EdgeCO. Then these EdgeCOs connect directly to one or more regional

BackboneCOs to connect with the rest of the Internet. EdgeCOs in mobile networks are the

primary location where low-latency high-bandwidth IP-based edge services can be deployed;

Verizon is already deploying edge services at these COs [49].

All mobile Internet traffic traverses both the wireline regional access networks described

above and the mobile packet core. Therefore, to understand the aggregation and redundancy of

mobile networks we need to also understand the wireline network. Unfortunately, the RAN—
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and therefore the wireline access network—is not visible from probes sent by mobile devices.

However, by observing the topology of wireline providers’ regional networks using their wireline

last-mile links, we get insight into the limitations of some of the RANs. Indeed, in this paper we

mapped both the wireline and mobile networks of AT&T, and the cable providers we mapped

provide backhaul for all major mobile carriers [183].

There can be significant differences in the topology of mobile access networks because

each provider can make their own decision about how to aggregate their traffic to BackboneCOs.

Indeed, they have significant flexibility because mobile networks are designed to be an overlay

on other networks. The primary factors affecting mobile network topology are traedeoffs in

performance, economics, and reliability.

3.3 Related work

Mapping Wired Networks: In 2002, Spring et al. developed Rocketfuel to construct

router-level maps of individual networks using focused traceroutes, alias resolution, DNS host-

names, and BGP routing tables [120], and used it to map ten transit networks. Researchers

used the Rocketfuel maps to study, interior routing [107], path inflation [165], and the maps

sparked lively methodological discussions (e.g., [177, 200]). In 2007, Mao et al. developed Net-

workMD [111], an approach to infer failure groups in the last-mile layer-1 network topologies—

i.e., devices such as repeaters whose failure impact downstream modem connectivity through

topological dependencies. In 2011, motivated by the incompleteness and methodological lim-

itations of traceroute-based maps at the time, Knight et al. constructed the Internet Topology

Zoo, parsing information that network operators published on their websites; the majority of

their maps are at the PoP level (where a network interconnects with other networks) and half

are research and education networks [89]. PoP-level maps are not sufficiently granular to study

aggregation structures in access networks. Beginning in 2015, a growing body of research

investigated the physical infrastructure behind networks, especially focused on fiber [54, 110],
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the frequency and impact of fiber cuts [65], and the impact of fiber deployment on end-to-end

latency [25]. In this work, we map the router-level aggregation structure of access networks.

Broadband Networks: Substantial work analyzed broadband networks by sending

probe packets to user’s gateway [51], deploying home routers or embedded devices with mea-

surement scripts [172, 30, 141], embedding measurements into BitTorrent software [148], and

crowdsourcing measurements to end-users [90, 128]. This work illuminated characteristics (e.g.,

latency, packet loss rate, throughput, and uptime) of the end-to-end [22, 32, 170] and last-mile

[171, 16, 60] performance of residential broadband networks without understanding the logical

and physical topologies of the access network. This paper leverages the aggregation structure

that we discovered to understand the latency observed by end-users.

Mapping Mobile Networks: Previous work studied the geographic coverage of mobile

regional networks using the correlation between IP prefixes and location [208] and locating the

PoP used by mobile devices in traceroutes [213]. However, these analyses were performed on

3G networks, and do not reveal the underlying access network infrastructure that produces these

behaviors. An extensive body of wireless network measurement research has investigated the

behavior of network elements unique to wireless – everything from the end-user devices to the

mobile-specific middleboxes [186, 55, 203, 35, 204, 124, 3, 201, 97]. Connectivity factors can

also impede performance of mobile ISPs, e.g., legacy hierarchical routing [53], lack of direct

interconnection with content providers [213], peering strategies between mobile virtual network

operators (MVNOs) and the underlying network infrastructure [154], and poor selection of DNS

servers [145, 215]. In this work we determine the sources of latency limitations in today’s mobile

networks, and if those limitations can be overcome by moving services into access network

infrastructure. We also reveal new hints in IPv6 addresses that reveal the region, packet gateway,

and CO serving a mobile carrier.
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3.4 Methodology Overview

Broadly, our topology mapping methods require the ISPs to allow the following measure-

ments of their access networks:

Traceroute: We need the ability to observe routers in each CO with traceroute to uncover access

network topology. This is straight forward when the network uses IP routing; if the network

uses MPLS to organize routing between COs, then our method requires the ability to observe

routers in each CO using traceroute torwards exit routers, using the method in [190]. For wired

access networks, we prune a small number of links because traceroute can produce false links.

Our pruning assumes the access network has a ring/star topology (§3.2.1). Although we can

not validate this assumption for all ISPs we study—ISPs rarely publish information about their

internal topology—we found support for the use of ring/star topologies in access networks from

Comcast [196], Deutsche Telekom [70], Cisco [39], and Juniper [83].

Alias Resolution: To accurately map IPs to routers, we require the ability to resolve aliases

using active probing (e.g., with Mercator [69] and MIDAR [87]).

Reverse DNS or Structured Addressing: To accurately map routers to COs, we either require

the operator to ether label some of their router IPs with hostnames in their reverse DNS (rDNS),

or they must have clear structure in their router address space that corresponds to the structure of

their access network.

How general is our approach? The remainder of this paper (§3.5, §3.6, §3.7) studies six

different U.S. access networks – Comcast and Charter (wired), AT&T (wired and mobile),

Verizon (mobile), and T-Mobile (mobile). We believe our method can be extended to other

access networks outside of the U.S.; for example, China’s top three providers have been shown

to provide the measurements we need for topology mapping [182]. Also, Bell Canada and

Shaw Communications Canada appear to provide the necessary measurement primitives for

our method [100]. However, there are classes of access network where our method will not
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work. Primarily, these are where traceroute does not observe routers in COs. This is common in

countries where the access and retail functions of ISPs are separated; examples of these are New

Zealand’s UFB [47] and Australia’s NBN [121]. In these scenarios, the access provider tunnels

subscriber traffic to hand-over points where the retail provider is co-located, which might be in

entirely different cities, so the aggregation structure in the access network is invisible.

3.5 Case Study: Comcast and Charter

Our first case study focuses on two networks amenable to external traceroute-style

measurements that also provide CO information in their rDNS. We focus on Comcast and the

former Time Warner regional networks acquired by Charter—the largest cable Internet providers

in the U.S.—networks that typically include router, building, and network information in their

rDNS. Figure 3.4a shows a traceroute into Charter’s Southern California region. The rDNS for

hop 13 ends with tbone.rr.com, indicating a BackboneCO. Each subsequent hop includes an

rDNS tag for the regional network socal, showing the transition from Charter’s backbone into

the regional network. Each rDNS name includes a portion of a CLLI code geolocating the router.

Figure 3.4b shows the same pattern in Comcast’s Beaverton, OR region, using CO locations

rather than CLLIs.

Similar to many backbone point-of-presence (PoP) rDNS labels, the regional CO tags

indicate the location of the COs. In Charter, the CLLI codes uniquely identify a specific building.

Comcast sometimes uses the street address for a CO, but more commonly uses neighborhood,

or city, names that provide a general geographic location, along with the U.S. state. Inspired

by other tools that extract information from rDNS [100, 78, 29, 120], we hand-crafted regular

expressions (regexes) to map these CO addresses.

Our methodology for these types of networks—those with rDNS and that can be externally

probed—proceeded in two phases:

(1) build and annotate CO-level topology graphs for these networks;
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13 66.109.6.227 bu-ether15.lsancarc0yw-bcr00.tbone.rr.com
14 66.109.6.231 agg2.lsancarc01r.socal.rr.com
15 72.129.1.1 agg1.sndhcaax01r.socal.rr.com
16 72.129.1.141 agg1.sndgcaxk01h.socal.rr.com
17 76.167.26.170 agg1.sndgcaxk02m.socal.rr.com

(a) Charter traceroute with CO CLLIs.
14 96.110.41.226 be-1102-cr02.sunnyvale.ca.ibone.comcast.net
15 68.86.92.206 ae-72-ar01.beaverton.or.bverton.comcast.net
16 68.85.243.238 ae-1-rur201.troutdale.or.bverton.comcast.net
17 162.151.213.86 po-1-1-cbr01.troutdale.or.bverton.comcast.net

(b) Comcast traceroute with CO locations.

Figure 3.4. Paths into Charter’s Southern California region and Comcast’s Beaverton, OR region.
Each hostname includes a CO identifier and regional network.

(2) heuristically refine the graphs to reflect the actual topology.

3.5.1 Phase 1: Build Router-Topology Graphs

This phase conducts traceroutes to reveal the CO interconnections in each regional

network. We conducted our probing from 47 vantage points (VPs) distributed throughout the

United States in access, cloud, and transit networks.

First, we tracerouted to an address in every /24 in each regional network to expose at least

one router from each EdgeCO. Second, we tracerouted to every address with rDNS matching one

of our regexes to find CO interconnections missed in the first step. We identified IP addresses

with hostnames matching our regexes in the Rapid7 rDNS dataset [138] which queries for PTR

records for every IPv4 address. Directly targeting CO router interfaces observed 5.3x and 2.6x

more CO interconnections than the /24 traceroutes for Comcast and Charter, respectively, as

some COs responded to the /24 probing using addresses without rDNS. Third, we tracerouted

to every intermediate IP address observed in these traceroutes to identify links that are entry

and exit routers for an MPLS tunnel [190], allowing us to discard false edges between these

COs. This MPLS heuristic proved important in larger Charter regions, where top level AggCOs

appeared directly connected to nearly all EdgeCOs, which contradicted information about the

Charter topology in Maine that we recieved from a trusted source.

Finally, we used alias resolution (Mercator [69] and MIDAR [87]) to group IP addresses
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according to their router. We included all IP addresses with rDNS matching our regexes, as well

as all IP addresses routed by each regional network. We annotated each inferred router group

with a CO tag, using the most common tag extracted by our regexes using rDNS names for the

router’s interfaces. If a router did not have a most common CO tag among the rDNS for its

interface addresses, we removed the CO mapping from any address in the router group with

rDNS, to avoid inconclusive and potentially inaccurate mappings. We provide more details for

how we mapped IP addresses to COs in Appendix A.2.1.

3.5.2 Phase 2: Build CO-Topology Graphs

Using the CO mappings, we extract CO edges from traceroute paths, where immediately

adjacent routers in a path map to different COs, and construct initial graphs of the topology for

each region. The rest of this phase processes the topology graphs to more accurately reflect

regional topologies. This phase (1) removes false inter-region edges; (2) identifies the AggCOs;

(3) removes false edges between EdgeCOs; (4) adds missing edges from AggCOs to EdgeCOs;

and (5) infers the entry points into each region.

Remove False Inter-Region Edges

Large collections of traceroute paths likely contain some random noise [159], so we

discard all edges that appear only in a single traceroute as anomalous. Next, we remove edges

that appear to interconnect COs in different regions. While some links cross region boundaries

(Section 3.5.2), many of these links result from outdated rDNS that our alias resolution did not

catch. Further details are provided in Appendix A.2.2.

Identify AggCOs

Visually inspecting the regional graphs, such as the graph in Figure 3.5a, showed two

features of interest. First, they signaled a hierarchical structure (partially obscured by extraneous

intra-region edges), where a few COs appeared responsible for aggregating connectivity to the

rest of the Internet for other COs in the region. We devised a heuristic to distinguish AggCOs
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(a) Graph after removing external edges.

(b) Modified graph that accurately represents the topology.

Figure 3.5. Initially (a), the regional network graph has extraneous and missing edges. We
identify the AggCOs (orange), heuristically refine the graph to reflect the regional network (b),
and add the BackboneCO connections (grey).
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from EdgeCOs based on the number of outgoing edges for each CO in the graph. In each region,

we infer AggCOs as those with a higher out-degree than the average out-degree for that region

plus one standard deviation. This heuristic identified the two orange COs in Figure 3.5a, COs 1

and 2, as the AggCOs in this region.

Second, the graphs naturally grouped these AggCOs; when a EdgeCO had more than

one incoming edge, the two preceding AggCOs had outgoing edges to nearly identical sets of

EdgeCOs. Topologically, this looks like a dual-star topology, with the implication that each

AggCO in a subregion directly connects with every EdgeCO in the same subregion. The natural

groupings also provide new insights into the physical topology, indicating which geographic

regions rely on the same AggCOs, and the level of redundancy to each EdgeCO. Appendix A.2.3

details how we identified AggCOs, removed false edges, and added missing edges.

Remove False Edges between EdgeCOs

We knew that regional networks use a ring to connect an AggCO to its EdgeCOs

(Section 4.3), so the star topology indicated that the fiber ring running from an AggCO to

its EdgeCOs bundles separate fiber pairs for each AggCO-to-EdgeCO connection. These fiber

pairs create two separate point-to-point connections between an EdgeCO and its AggCOs,

bypassing all other EdgeCOs on the ring and eliminating the need to directly connect EdgeCOs

to other EdgeCOs. While the graph in Figure 3.5a shows that most EdgeCOs only connect to

AggCOs, some appear connected to other EdgeCOs, such as edges 9 → 12 and 3 → 4. These

edges from EdgeCOs likely result from uncorrected stale rDNS, and we remove them to conform

with a fiber ring (Figure 3.5b).

Add Missing Edges From AggCOs to EdgeCOs

When an EdgeCO lies along a fiber ring with one of the AggCOs, it will connect directly

with the other AggCO on the ring as well. Otherwise, the fiber pairs would bypass the EdgeCO

in only one direction. We therefore assume that missing edges, e.g., from AggCO 1 to node 16
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in Figure 3.5a, likely result from missing rDNS.

Resolving missing edges first requires us to identify the AggCOs on the same fiber rings.

Our intuition is that AggCOs on the same ring will directly connect with the same EdgeCOs, so

we devised a heuristic that looks for AggCOs that overlap at least 75% of their connections with

EdgeCOs, strongly suggesting that they aggregate traffic on behalf of the same EdgeCOs. We

then add edges to the graph such that all AggCOs on the same last-mile fiber ring connect to the

same set of EdgeCOs. In Figure 3.5b, we add the missing edge from AggCO 1 to node 16.

Infer Entry Points Into Each Region

Finally, we add edges back into the graph that cross regional network boundaries, such

as BackboneCO entry points and entry points from other nearby regions, but only when over-

whelming evidence implies their existence. Returning to the traceroute paths, we extract all

triplets of the form (COi,REGION1)→ (CO j,REGION2)→ (COk,REGION2), where COi and CO j

appear in consecutive hops, indicating they directly connect. Given the hierarchical structure

of the regional topologies, we only include potential entry points when they appear to lead to

EdgeCOs in the region. To avoid misinterpretations caused by stale rDNS, we only include an

entry point if we observe it leading to two or more COs in the same region.

Our analysis reveals that all regions in Charter, and all but three of the Comcast regions,

connect to at least two BackboneCOs. A Comcast network operator told us that nearly every

Comcast region directly connects to two BackboneCOs, so we likely missed three entry points

in addition to the 57 backbone entry points we observed across the Comcast regions. In some

regions we observe backbone connections and a direct connection to another region; e.g, the

Central California region in Comcast appears to connect to two BackboneCOs and the San

Francisco regional network. We did not observe direct inter-region connections in Charter.
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Figure 3.6. The 6 Charter regions include more COs than the 28 Comcast regions.

3.5.3 Contrasting Comcast and Charter

The key difference between Comcast and Charter is the number of regions they use,

impacting the size of the regions and the extent of the aggregation inside each region. We

observed only six Charter regions compared to 28 Comcast regions, but the Charter regions

tend to cover more geographic area than the Comcast regions; e.g., Charter’s Midwest region

appears to touch 10 different U.S. states. Thus, a Charter region contains far more COs than a

Comcast region (Figure 3.6a). Charter also uses more aggregation, and far more AggCOs per

region (Figure 3.6b), than Comcast, where we define an AggCO as any CO with outgoing edges.

Figure 3.7 and Table 3.1 show the different types of aggregation we observed in Comcast

and Charter. The smaller regions often used a single AggCO, small to mid-size regions used two

AggCOs for greater redundancy, and the largest regions used multi-layer aggregation where lower

aggregation levels might include one or two AggCOs. In the multi-layer topologies, Comcast

nearly always connects EdgeCOs to multiple AggCOs, while Charter uses a mix. Charter’s

choices in aggregation lead to less redundancy to the EdgeCOs than in Comcast; 37.7% of
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Backbone A Backbone B

b  Two AggCO Layers

c  Multiple AggCO Layers

Backbone A Backbone B

a   Single AggCO LayerBackbone A

Figure 3.7. Three regional access network types.

EdgeCOs in Charter connect to only one upstream CO vs 11.4% in Comcast (see Appendix A.2.4

for important context).

Outside of one Charter region and one Comcast region, the difference in region size

does not appear to manifest in greater entry points per regions. In Section 3.5.5, we find higher

latency to the COs in the Charter regions, likely due to the combination of fewer entries per

EdgeCOs and more aggregation lengthening the distance from the backbone to EdgeCOs. The

fewer entries, additional aggregation, and less redundancy to the EdgeCOs that we observe in

Charter could also increase the potential points of failure that could disconnect EdgeCOs, and

customers connected to those EdgeCOs.
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Table 3.1. Network types observed in Comcast/Charter.
Aggregation Type Comcast Charter

Single AggCO (Figure 3.7a) 5 0
Two AggCOs (Figure 3.7b) 11 0

Multi-level aggregation (Figure 3.7c) 12 6

3.5.4 Validating with Network Operators

We spoke with a network operator at Comcast and an operator at Charter to discuss

our topology graphs and interpretations. The two people we spoke to are not experts for each

region in their networks, however, both Comcast and Charter use a rough template for all of their

regions, with AggCOs connected to EdgeCOs via fiber rings, and use similar technologies in

each region.

The Comcast operator had extensive knowledge of one of the largest Comcast regions.

We showed the operator our graph of that region, along with a list of the COs that we discovered,

and the backbone entries. The operator confirmed that our inferred graph of the region was

correct; the graph contained the COs, the second region with its own AggCOs that connect

to the first region’s AggCOs but not to the backbone, and the correct PoPs connected to the

AggCOs. Finally, the operator confirmed that the largest Comcast regions often have two sets of

AggCOs—one set connected to the backbone and another set connected to the first set—where

each set connects to different EdgeCOs.

The Charter operator was not an expert for any specific Charter regions, but understood

their design and general topology from the operator’s experience with the Charter backbone.

The operator thought we provided a reasonable representation of the regions and the regional

topologies, but could not indicate if any COs were missing or superfluous. Importantly for our

analysis, the operator confirmed that the Charter regions are vast, with layers of fiber rings with

their own AggCOs.

We confirmed with both operators that they use fiber rings with star topologies—separate

fiber pairs from AggCOs to EdgeCOs—as we inferred in Section 3.5.2, rather than a ring
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Figure 3.8. The median RTTs to Massachusetts, Connecticut, Vermont, and New Hampshire in
the U.S. from the largest public cloud providers. Vermont has higher latency being geographically
closest to the cloud datacenters.

topology. One network operator informed us that they chose this physical topology because it

makes network upgrades simpler. We also asked both operators if the regions contain backup

paths that traceroute might not observe. Both operators confirmed that all paths and COs are

active, and cited the prohibitive cost of maintaining backup fiber paths or COs as the reason.

This implies that traceroute can reveal all of the paths through the regional network, provided the

VPs can exhaust the possible entries into the region.

3.5.5 Impact of Aggregation on Latency

The regional topologies help us better understand the inherent latency limitations imposed

by the location of entry points and the aggregation in the regional topologies. To observe RTTs to

different EdgeCOs, we conducted 100 pings from a VM in every U.S. cloud region for Amazon

AWS, Microsoft Azure, and Google Cloud to every EdgeCO IP address included in our graphs.

Then, we identified the closest location with the lowest minimum RTT to the highest number of

EdgeCOs in a region.

Figure 3.8 provides the median of the minimum RTTs from the clouds to Comcast

EdgeCOs in four states in the Northeast U.S.; in all three clouds the closest location was in
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Figure 3.9. Although more than 80% of EdgeCOs are more than 5 ms RTT from the nearest
cloud VM (a), more than 80% of the EdgeCOs are within 5 ms RTT of their AggCO (b).

Northern Virginia. Massachusetts, Vermont, and New Hampshire all use the same AggCOs in

the Boston area, connected to BackboneCOs in New Jersey and New York, and a special purpose

PoP in Boston. Surprisingly, although Connecticut is geographically closer to Northern Virginia

than the other states, it has worse latency than Massachusetts and New Hampshire. The reason

is that the Connecticut regional network does not have its own backbone entries; instead, its

AggCOs connect to the backbone through the Massachusetts AggCOs, resulting in a 3.5 ms to 4

ms RTT penalty.

While the aggregation tends to increase latency to EdgeCOs, it presents opportunities to

to bring cloud applications closer to users without placing edge computing infrastructure in every

EdgeCO. Conventional wisdom holds that certain classes of applications, such as augmented

or virtual reality, require less than 5 ms of latency [115], but more than 80% of the Comcast

EdgeCOs and 90% of the Charter EdgeCOs have an RTT greater than 5 ms (Figure 3.9a) from

the nearest cloud location. One approach is to push edge computing to the EdgeCOs, ensuring

nearly all users are within the latency constraints, but increasing the cost and complexity of
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Figure 3.10. EdgeCO in a Comcast regional network.

MPLS

Backbone CO AggCO EdgeCO DSLAM
or ONT

cr2.sd2ca.ip.att.net
107-200-91-1.lightspeed.sndgca.sbcglobal.net

unnamed

Figure 3.11. Architecture of AT&T’s access network. Routers in AggCOs and EdgeCOs are
unnamed. The backbone router is in the “sd2ca” region.

deployment. Another approach could exploit the hierarchy in the regional topologies and place

the edge computing infrastructure in the AggCOs. Counting any CO with an outgoing edge

as an AggCO, we observe 7.7x as many EdgeCOs as AggCOs across all regions of Comcast

and Charter. More than 80% of the EdgeCOs for Comcast and Charter are within 5 ms RTT of

the AggCOs, likely bringing the vast majority of regional network customers within the 5 ms

requirement (Figure 3.9b). Furthermore, the AggCOs are often substantial datacenters, with the

security, power, and capacity to include edge computing infrastructure, while EdgeCOs might be

houses on residential streets (Figure 3.10).

3.6 Case Study: AT&T

Next, we investigate the topology of AT&T’s wireline regional access networks (Fig-

ure 3.11). Compared to the cable providers AT&T’s network is relatively opaque. AT&T
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provides rDNS for their BackboneCO routers but not for other CO routers, and provides rDNS

that identify their last-mile IP-DSLAMs and ONTs. However, there is no straight-forward way

to identify which IP addresses AT&T assigns to their wired customers or mobile customers, or

which addresses they delegate to other networks. While AT&T’s EdgeCO and AggCO router

topology can be uncovered by traceroute, this is only possible within their respective regional

networks. Our methodology for AT&T is similar to Section 3.5 at a high-level: we (1) build

and annotate router-level topology graphs, and then (2) construct CO topology graphs for each

regional network. The low-level methodology details in this section are tailored to the specific

challenges presented by AT&T.

3.6.1 Phase 1: Build Router-Topology Graphs

We bootstrap our discovery of router IPs in the COs by tracerouting from 5 Ark VPs

near the region we are mapping to the IP addresses of DSLAMs/ONTs in EdgeCOs. AT&T

uses rDNS to label DSLAM/ONT IPs as *.lightspeed.(CLLI).sbcglobal.net, illustrated

in Figure 3.11. We tracerouted to all 95,821 IPs matching this pattern rDNS in the Rapid7 rDNS

dataset. AT&T’s access networks use MPLS tunnels, so these traceroutes only discovered the

entry router for the tunnel (the BackboneCO router), and the exit router (an EdgeCO router),

missing most routers in AggCOs. Further, the bootstrap traceroutes do not observe all EdgeCO

routers, because of MPLS as well as some of DSLAMs/ONTs do not reply and perhaps some do

not have rDNS. However, we found that the EdgeCO routers were allocated out of a few prefixes

per region. For example, there appear to be 7 /24s used for EdgeCO router IPs in AT&T’s

San Diego, CA region (indicated with “sd2ca” in the rDNS entry for the BackboneCO router

in Figure 3.11). To uncover AggCO routers, we use the same technique as in Section 3.5—

traceroute to the observed MPLS tunnel exit router [191] in the EdgeCO. Appendix A.3 includes

further details about how we infer EdgeCOs.

Because we can only traceroute to most EdgeCO router IPs from within the same region,

we build per-region lists of EdgeCO /24s to probe by associating /24s with the region tag in
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the BackboneCO router rDNS observed in bootstrap traceroutes. We then traceroute to all IP

addresses in these prefixes in the region from a VP within the region. We also performed alias

resolution to map individual IP addresses to routers, and then to EdgeCOs and AggCOs In

total, we found 37 AT&T regional networks identified in rDNS, and CAIDA Ark and RIPE

Atlas had VPs available in 35 of these regions. However, even in regions where we have many

VPs, those VPs are insufficient to reveal the complete topology. Comprehensively revealing

the regional network topologies requires finding VPs with different paths. This is particularly

important because, as we will discuss in the next phase, mapping router IPs to EdgeCOs requires

at least one VP served by each EdgeCO. However, finding topologically diverse AT&T VPs in

a region we want to map is not feasible with existing sources of crowdsourced VPs (Atlas and

Ark). Further, AT&T’s looking glasses are not suitable VPs because they are located in AT&T’s

backbone network, which EdgeCO and AggCO routers do not respond to traceroute (ICMP)

packets.

To significantly increase the number of VPs inside an AT&T region that we are mapping,

we leverage existing network infrastructure that reveals many geographically distributed last-mile

links in a region – public WiFi hotspots. Our insight is that many fast food restaurant chains

(e.g., McDonald’s, Starbucks, and Subway) have many geographically distributed last-mile

links, to many EdgeCOs, serving their WiFi hotspots. We call this approach McTraceroute. We

believe this is the first network topology measurement effort that has made use of geographically

distributed WiFi hotspots.

To evaluate how well this technique improved our visibility of a region, we ran traceroutes

from all 58 McDonald’s in AT&T’s San Diego region to all IP addresses in seven /24s that we

inferred to contain AT&T’s San Diego EdgeCOs and AggCOs. We found 23 McDonald’s that

used AT&T for their free WiFi services. The diverse location of McDonald’s restaurants, whose

locations are strategically selected to maximize coverage in an area, provided us opportunities to

connect to, and perform measurements from, many EdgeCOs in the regional network.

Next, we investigate how many new paths we observed with each type of VPs in San
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(a) Raw router-level topology from McTracer-
oute. We probe from behind the yellow ”leaf
nodes” (IP-DSLAMs) at the bottom.

AT&T Backbone

(b) Inferred CO-level topology

Figure 3.12. AT&T San Diego Regional Network

Diego, to determine if McTraceroute significantly increases the number of paths we observe.

Considering traceroute paths starting with the second hop, the eight Atlas and two Ark probes

in AT&T’s San Diego respective regions revealed only half of the IP paths we observed with

McTraceroute. This indicates that increasing the number of VPs revealed many more paths,

despite overlap in the McDonald’s EdgeCOs. Note that because the network is opaque, we do

not know the true number of paths, however McTraceroute provides a significant increase in

observed paths over existing VPs.

3.6.2 Phase 2: Build CO-Topology Graphs

Phase 1 produced the router-level topology shown in Figure 3.12a. We inferred two

backbone routers (blue), four aggregation routers (red), and 84 EdgeCO routers (black). We

inferred the EdgeCO routers as connected redundantly to two aggregation routers each, and

all aggregation routers connected to one backbone router. The router-level topology reveals a

three-level structure, with two sub-regions that use different aggregation routers.

To infer the CO-level topology, we first map last-mile links to EdgeCO routers. Each

last-mile link is served by a single EdgeCO, so if two routers are one hop away from the same

last-mile link, we conclude they are both in the same CO. We observed each last-mile link

connected to two EdgeCO routers, indicating that each EdgeCO has two routers.

We observed two backbone routers, and both appear fully connected to all aggregation
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Table 3.2. Latency from Google Cloud VPs to EdgeCOs in San Diego. Two have >2x the
average latency (4.3ms).

Latency: 3-4ms 4-5ms 5-6ms 6-7ms 9-10ms
EdgeCOs: 5 19 7 2 2

routers. This is unlike the cable networks, where we observed backbone routers connected to

one aggregation router. We conclude from this inference that AT&T has only one BackboneCO

in this region, and this office contains both core routers. We are less confident about the four

aggregation routers, but the highest resilience design would have them operating out of four

different COs. Figure 3.12b shows the inferred CO-level topology.

3.6.3 Analysis of AT&T’s Topology

AT&T’s regional network has a significantly longer history than cable networks, dating

back to the early 1900s. Therefore, we expect its structure to reflect design choices constrained

by the capabilities of early of telephone networks. AT&T’s long distance network, called Long

Lines, only reached a single CO in each region. These Long Lines COs now appear to serve as

their BackboneCOs. In fact, the BackboneCO we inferred in San Diego still has a Long Lines

microwave tower on its roof.

Aggregation

We observed significantly higher EdgeCO density in AT&T’s network than in the cable

providers we studied. In Charter’s San Diego sub-region we observed 16 EdgeCOs, compared

to 42 in AT&T’s San Diego region. This CO deployment density is consistent with AT&T

facing the constraint of local copper telephone service loop lengths. By the time cable networks

emerged in the 1990s, Hybrid Fiber Coax allowed for much longer last-mile links from EdgeCOs

to customers. We would thus expect, without considering other factors, that AT&T aggregates

fewer last-mile links to each EdgeCO than do cable networks. This lower ratio of customers to

EdgeCO helps to reduce the scale of outages when an EdgeCO fails (e.g., due to fiber cuts or
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failed equipment).

To estimate latency differences between EdgeCOs in the San Diego region, we conducted

traceroutes from a VM in a Los Angeles Google Cloud datacenter to all of the end user AT&T IP

addresses we could find in the San Diego region. We used Measurement Lab data [102] to extract

AT&T customer IP addresses from NDT measurements, and retained the subset of addresses

located in San Diego or Imperial County according to NetAcuity [2], a commercial geolocation

service. Using only traceroutes that passed through the BackboneCO in San Diego and reached

the customer addresses, we inferred that the penultimate traceroute hop corresponds to a device

in an EdgeCO.

We could not directly ping these devices, but we could elicit responses by sending an

ICMP Echo packet to a customer IP address with the TTL field set to the penultimate probe

TTL in the traceroute to that address. To measure latency from Google Cloud in Los Angeles to

the EdgeCOs, we conducted 100 probes to each EdgeCO address observed in the traceroutes

and used the minimum observed RTT (Table 3.2). These results show that some EdgeCOs have

significantly less latency to the BackboneCO than other EdgeCOs in the region. Two distant

EdgeCOs—with connected customers geolocated to Calexico and El Centro, CA—had over

twice the average latency of 4.3ms to Google (9–10 msecs). This disparity suggests that some

AT&T customers will suffer considerably higher latency to cloud services than other users in the

region.

Redundancy

AT&T’s network in San Diego has a similar lack of redundancy that we observed in some

cable provider regions; namely, the use of only one BackboneCO. In AT&T’s network, these

BackboneCOs are fortified for natural disasters, such as Category 5 hurricanes. However, the

Christmas 2020 attack on AT&T’s Nashville office, which we assume is the lone BackboneCO

in Nashville, took down the entire region, consistent with our inferred topology. Relative to

the cable providers, AT&T appears to have more redundancy in their BackboneCO to AggCO
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paths, with all backbone routers connecting to all Agg routers. Our measurements cannot detect

whether these paths take diverse fiber paths.

Validation

Aspects of our inferences match historical documents describing AT&T’s telephone

network in San Diego. AT&T’s access network was likely built using these same COs. The first

document [14] states that AT&T operates one tandem building in San Diego (CLLI SNDGCA02),

consistent with the single BackboneCO that we inferred. The documents also describe 42

subtending COs in San Diego, we believe these match the ∼40 EdgeCOs we inferred. A second

document [152] shows four “Inter-office” COs in San Diego’s network, we believe this term is

AT&T’s term for AggCOs.

3.7 Case Study: Mobile Carriers

For mapping the regional access networks of all three major mobile carriers, we focused

on the portion of the network that bridges the mobile packet core with the rest of the Internet (and

edge services). Some mapping challenges are similar those of AT&T’s wireline network: they

have no rDNS on routers, and probing requires internal vantage points. However, mobile networks

face a significant additional challenge: they have no distributed VPs to provide internal views of

the providers’ regional networks. Although, they also present a unique opportunity to observe

nationwide network topology: unlike the wireline transparent networks, we can physically move

mobile VPs to probe inside different regions. Building on this insight, we introduce a new

parcel-based measurement technique, ShipTraceroute, to obtain national coverage of mobile

access network regions. Then, we use the large geographically-tagged dataset of traceroutes we

collected to infer the topology of the networks.

45



8

10

12

0 5 6 7 8 9

Time (minutes)

4

6

2

C
u

m
u

la
ti

v
e 

E
n

er
g

y
 (

m
A

h
)

1 3 4
0

2

New code
Old code

New code:

8.6 mAh

Airplane
mode:

0.5 mAh

Wake
up

1.4 mAh

2.6 mAh

5.3 mAh

Old code:

Figure 3.13. Improving scamper’s traceroute efficiency
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Figure 3.14. Shipping to 12 destinations covered 40 states

3.7.1 Phase 1: Collect router-level topology

We developed ShipTraceroute, a smartphone-based network measurement technique that

can send traceroutes from a battery-powered Android device for a prolonged period of time while

being shipped inside a truck or railcar. Appendix A.1.1 describes how shipment of a smartphone

running this software complies with U.S. regulations for items shipped in a parcel inside of a

truck or train.

Topology collection

We shipped three Samsung Galaxy A71 smartphones (one for Verizon, AT&T, and T-

Mobile) to 12 locations in the U.S. The shipment paths traversed 40 states (Figure 3.14). During

the shipments, the devices attempted to perform a round of traceroutes once per hour. However,

signal conditions varied significantly along the routes. Some areas had too weak of a signal inside

of the vehicle to perform the traceroutes, particularly in areas where there are no inhabitants. We

observed the following success rates for rounds of traceroutes during the journey: 1592/1948

(82%) on AT&T, 1720/2054 (84%) on Verizon, and 872/1153 (75%) on T-Mobile.
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The destinations for each round of traceroutes were IPv6 and IPv4 addresses in ASes

neighboring the mobile carriers’ networks.1 The reason why we used external destinations (in

neighboring ASes) to map mobile access networks, rather than internal addresses like we used in

wireline networks, is because mobile networks block traceroutes to internal infrastructure. We

used destinations in all neighboring ASes to try and traverse all of the carriers’ BackboneCOs in

each region (details are in Appendix A.4). However, quickly we discovered that traceroutes to

all of the destinations took the same path inside each of the mobile access networks, allowing us

to reduce to a single destination per provider.

We also observed that the path through the mobile network did not change as the phone

moved within a region. We found we needed to force the phone to re-register with the core

network by putting it into airplane mode before each round of traceroutes to route through all

region’s EdgeCOs and packet gateways.

Since GPS signals are rarely available inside of shipping vehicles, we logged the device’s

CELLID each time we started a round of traceroutes. We then converted the CELLID to a

geolocation using the OpenCellID public cellular tower geolocation database [187].

Making mobile tracerouting energy efficient

We designed the measurement software on our smartphone to prolong battery life. The

goal was to ship the phone by ground transport across the U.S.—a journey that takes about one

week—while running measurements each hour, without the battery emptying.

We achieved this without sacrificing measurement fidelity by making two modifications

to scamper [99]—ShipTraceroute’s network probing tool. First, we modified scamper so that it

could conduct measurements without without rooting the phone (rooting can disable thermal

safeguards). Second, we reduced scamper’s energy consumption by modifying its traceroute

implementation to send probes to multiple consecutive hops in parallel. This significantly reduces

the time that scamper spent waiting for unresponsive hops, and thus reduced the time the phone’s

1We used Zayo’s AS for T-Mobile because T-Mobile does not have its own IPv4 AS and T-Mobile’s primary
backbone provider is Zayo.
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radio is fully powered.

We evaluated the energy efficiency of our modified scamper implementation by measuring

the energy consumption of a Samsung Galaxy A71 5G performing traceroutes to the 266 IPv4

and IPv6 destinations in AT&T. To measure the device’s energy consumption, we fully charged it,

and instrumented with a USB-C power monitor on its charging port. This allowed us to measure

the energy needed to operate the device. Figure 3.13 shows how much we improved energy

efficiency: we achieved a 38% reduction in energy from 8.6 mAh with off-the-shelf scamper to

5.3 mAh with ShipTraceroute’s scamper. As a result of these improvements, we calculated that

our phone can perform hourly traceroutes for ∼12 days on one charge, a gain of ∼4 days over

the off-the-shelf implementation. The other main contributors to power consumption are the

energy consumption required to exit airplane mode when we start a measurement (1.4–2.6 mAh),

and the trickle of energy consumed when the phone is asleep and in airplane mode between

measurements. Although we put the device in airplane mode between traceroute rounds to

force it to re-register in the packet core, it also has the additional benefit of reducing energy

consumption (14.5 mAh vs. 9 mAh in airplane mode for every 55 minutes asleep).

3.7.2 Phase 2: Inferring CO-level topology

Each traceroute collected in phase one revealed a path from the mobile packet gateway

(the first hop) until the packet reaches the BackboneCO. However, it is difficult to infer CO-level

topology from these traceroutes because mobile networks have extremely limited rDNS (only

Verizon has rDNS).

Fortunately, IPv6 is now widely deployed in cellular networks, and IPv6 addresses’ are

long enough that providers can encode information in them about where those addresses reside

in the topology of their access network. Indeed, we found an early discussion about how to set

IPv6 prefixes for LTE infrastructure that described how bits in addresses can be used to indicate

what those addresses are used for—infrastructure or users—and what their location is in the

network topology [40]. With the large number of geo-tagged samples of IPv6 router addresses in
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the traceroutes we collected, we looked for patterns in how the bits in the addresses change as

the mobile device moves.

AT&T

Figure 3.15(a) shows the patterns we observed in AT&T’s addresses in their traceroutes.

The user address and first hop (packet gateway) /32 prefix are consistent throughout the country,

indicating it is the general AT&T mobile user prefix. User addresses also have a more specific

/40 prefix that only changes 11 times as we move around the country. This prefix also changes

simultaneously with bits 32-47 of the router addresses. We believe this prefix indicates the

EdgeCO (and region) that is in use by the device, indeed this prefix can be used to route to the

correct BackboneCO router to reach the user. For validation of this result, we discovered an

AT&T document from 2014 that also lists 11 mobile datacenters in the U.S. [15]. However, we

suspect that as they roll out their 5G network, they will add more EdgeCOs and thus reduce the

size of their regions.

The /32 prefix of the rest of hops before leaving AT&T’s mobile network are always

the same, and different from the user address, so we infer they are the general prefix for AT&T

infrastructure (i.e., routers). We observed bits 48–52 of these addresses cycling through several

values inside each inferred EdgeCO, and they changed at the same time as bits 32–40 of the user

address. Also, these bits changed each time we woke up from airplane mode and re-attached to

the cellular network. Therefore, we infer these bits indicate the current packet gateway in the

EdgeCO that user is attached to. Table A.5 (Appendix A.4) shows the inferred infrastructure in

each region.

Verizon

Figure 3.15(b) shows the patterns we observed in Verizon’s addresses. All of the first

10 hops are within Verizon’s network, but only the first (packet gateway) and the last four

hops appear in the traceroutes. The /24 prefix of the user address and first hop stays the same
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traceroute from 2600:380:6c00:e145::/64
 1  2600:380:6c00:e145:0:45:926e:f340
 2  *
 3  2600:300:2090:b0e::1
 4  2600:300:2090:b20::1

Addr. Bit Fields
0-31 (2600:380)
0-31 (2600:300)

32-39 (6c)
32-47 (2090)

48-51 (b)

Inferred Meaning
AT&T prefix (user)

AT&T prefix (router)
Region (user)

Region (router)
Packet Gateway (router)

traceroute from 2600:1012:b12e:74d5::/64
 1     2600:1012:b12e:74d5:0:32:adb6:4940
 2-5  *
 6     2001:4888:65:200e:62e:25:0:1
 7     *
 8     2001:4888:6f:3091:62e:1::
 9     2001:4888:6f:3091:62e:1::
10    2001:4888:65:1020:62e:1::

Addr. Bit Fields
0-23 (2600:10xx)
0-31 (2001:4888)

24-31 (12)
32-39 (b1)

32-39 (65), 64-75 (62e)
40-43 (2)

Inferred Meaning
Verizon prefix (user)

Verizon prefix (router)
Backbone Region (user)

EdgeCO (user)
EdgeCO (router)

Packet Gateway (user)

 traceroute from 2607:fb90:4a20:d73::/64 
  1  2607:fb90:4a20:d73:0:c:3fbe:bf40
  2  fc00:420:81:2013::1
  3  fc00:420:81:113::1
  4  fd00:976a:14fe:9001::1

Addr. Bit Fields
0-31 (2607:fb90)
0-31 (fd00:976a)

32-39 (4a)
32-47 (14fe)

Inferred Meaning
T-Mobile prefix (user)

T-Mobile prefix (router)
Packet Gateway (user)

Packet Gateway (router)

(a) AT&T (b) Verizon (c) T-Mobile

Figure 3.15. Topological hints for mobile networks encoded in IPv6 addresses.

throughout the country, indicating this is Verizon’s user address prefix. As the device moves,

more specific bits change. The /32 prefix changes 18 times, and the /40 prefix changed 32

times—both were stable within contiguous geographic regions. The /32 prefix changed less

frequency in a geographic area than the /40 prefix. One plausible explanation for this behavior

is that the /32 prefix identifies the BackboneCO and the /40 identifies the EdgeCO using that

BackboneCO. We also observed bits 40–43 in in the user address can change when we cycle

airplane mode, while other hops stay the same, indicating multiple packet gateways in each

EdgeCO.

This explanation is supported by information from the rest of the hops (i.e., infrastructure).

The /32 prefix in the user address is likely to represent the BackboneCO because it corresponds

with changes in the rDNS of the Verizon backbone hop (i.e., alter.net). The /40 prefix is

likely to be the EdgeCO because when it changes, so do the bits of the addresses in the other

hops—the hops to reach the EdgeCO from the BackboneCO—namely, bits 64–75 in all of the

infrastructure hops, and bits 32–39 in some of the hops. Table A.6 (Appendix A.4) shows the

inferred infrastructure in each region.

Although we were unable to find documentation that validates our inferred topology,

we performed several controlled experiments to test our inferences. First, we found Verizon

Wireless deploys speedtest servers in their EdgeCOs which contain the names of the EdgeCOs in

their rDNS. For example, cavt.ost.myvzw.com is the speedtest server in the Vista, California
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EdgeCO). We performed a controlled drive north from San Diego to Irvine while tracerouting to

all of the speedtest servers, and we observed that when the shortest traceroute path switched from

the Vista, CA to the Azusa, CA speedtest server, the expected bits in the traceroute hops changed

at the same time. Additionally, we performed a long-running stationary experiment verify if the

EdgeCO and BackboneCO address bits were stable in a location in San Diego. Indeed, they were

generally stable across multiple days, however we did observe a small number of switches to the

neighboring EdgeCO connected to the same BackboneCO. This implies the packet core connects

to both EdgeCOs and it can switch between them if necessary for load balancing or redundancy.

T-Mobile

Figure 3.15(c) shows the patterns we observed in T-Mobile’s addresses. Similar to the

other two providers, the user IP prefix /32 stays the same across the entire country. The /40 prefix

of the user IP can change each time it leaves airplane mode within a geographic area roughly the

size of a city. These /40s are cycled through in a somewhat round-robin fashion, indicating that

bits 32-39 likely represent the packet gateway. However, we observed that T-Mobile also cycles

through different BackboneCO providers, suggesting that T-Mobile has a different mobile access

network topology than the other providers. We infer that T-Mobile has a set of packet gateways

in each region, possibly in different EdgeCOs, and with different backbone providers. These

packet gateways are likely interconnected by the packet core.

We confirmed with T-Mobile that they have several backbone providers serving each

region at different interconnection points within the region. Also a device in one location

connects to different packet gateways at different sites (i.e., EdgeCOs), but that they prefer the

closest site. Their network is designed in this distributed fashion for lower latency and resiliency.

Therefore a device can wake up connecting to a different packet gateway than it connected to

before it went to sleep.

52



AT&T Backbone

Packet Core Packet Core

Zayo Backbone Lumen Backbone VZ Backbone

Packet Core

AT&T

PGW (x5-6) PGW PGW

Verizon

PGW (x2-3) PGW (x2-3)

T-Mobile

Figure 3.16. Inferred Internet topologies of U.S. mobile carriers

Summary

We infer topologies among the three providers’ access networks (Figure 3.16). AT&T

appears to have a single EdgeCO with multiple packet gateways connected to their nearest

backbones. Verizon has multiple EdgeCOs sharing the same backbone CO, but the EdgeCOs

cover non-overlapping regions. T-Mobile has multiple EdgeCOs in one region, but does not

aggregate traffic to a single backbone, rather they aggregate to a variety of backbone providers

directly connected to the EdgeCOs. These designs have different tradeoffs. AT&T’s design

may be more cost-efficient because equipment and links are centralized to a single EdgeCO per

region. However, the lack of diverse CO locations may increase latency. Verizon and T-Mobile

appear to have lower latency in part because they have multiple EdgeCOs per region.

3.7.3 Comparison of US Mobile Access Networks

The topology of mobile access networks has implications for network latency, because

user traffic has to traverse to the backbone PoP of the region to reach other Internet hosts.

Figure 3.17 shows the minimum latency we measured from our ShipTraceroute smartphone in

different locations to a server located at CAIDA in San Diego. The hexagons indicate where

we captured latency: the darker the color, the higher the minimum latency to the server from
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Figure 3.17. Minimum latency from each location to a single server in San Diego. Colored
regions indicate the measurements were handled by the same EdgeCO (inferred from IPv6
addresses). T-Mobile does not aggregate traffic to a single EdgeCO.

that location. The colored regions containing multiple hexagons indicate those latency samples

were taken from the same mobile access network region according to the IPv6 bit fields for that

provider.

AT&T’s regions are much larger than Verizon and T-Mobile, therefore some geographic

areas (e.g., Montana and North Dakota) incur high latency to San Diego, due to circuitous paths

to the BackboneCO. Verizon’s network generally had lower latency (Figure 3.17b), because

the larger number of EdgeCOs likely provided shorter average distance to BackboneCOs. As

T-Mobile’s distributed topology relies on several backbone providers (Figure 3.17c), they had

latency similar to Verizon. However, we observed unusually high latency near the border of

Florida and Louisiana (Figure 3.17c), because during the experiment the device in these regions

attached to a distant EdgeCO in South Carolina.

3.8 Future Work

Resiliency. The tools and methods we have developed for inferring regional topologies

enable a new approach to studying resilience across space and time. The topological differences

that we have already observed across different regions have strong implications for resilience

against disasters. A promising next direction is to combine these topologies with existing or

future data sets on resilience of connectivity.

Edge Computing. Understanding the topology of these regional access networks, and
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associated performance implications, may be the key to realizing the unachieved potential of the

long-hyped edge computing paradigm [151, 75]. In addition to discovering the pyramid structure

of the Edge CO and Agg CO topologies, our latency measurements suggest that the AggCO

is typically less than 10 msecs from both the cloud and customers in the region, which meets

the AR/VR latency requirement for edge computing [122]. This result suggests that putting

edge computing infrastructure in Agg COs is the most efficient solution. Efforts to offload

computation from mobile devices [104] can also leverage an understanding of the effect of

distributed EdgeCOs on latency to the cloud.

Scalability of measurement methods. There is opportunity for improving scalability and

manageability of our methods. For the AT&T study, we drove to each McDonald’s location in

San Diego, connected to their WiFi, and collected traceroutes. This approach is a fun adventure

for a graduate student, but operationalizing such a measurement requires crowd sourcing. We

could develop an app that connects to public WiFi spots (while the user waits for their food

order), and provides a reward for uploaded results.

We also envision ways to improve the scalability of ShipTraceroute. Besides sending

more cellular packets in parallel to save energy, we can arrange for the device to sleep even more

between measurements. During a cross-country shipment, a device often stops at a hub for about

a day. We could use the device’s accelerometer to pause measurements when the device is at rest.

3.9 Conclusion

We have undertaken a comprehensive measurement study of the topology of U.S. regional

access ISPs. Our motivation was to extract insights about architectural choices that ISPs make

for how to aggregate traffic, and then empirically assess implications of those insights for the

resilience and evolution of the Internet ecosystem. Growing interest in edge computing and 5G

co-location, not to mention the pandemic-induced semi-permanent transition to working from

home, is placing increasing pressure on these regional networks. We are now entirely dependent
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on this infrastructure but there has been little attention to independent objective understanding of

its resilience and reliability.

This dearth of attention is understandable. While perhaps not the most opaque part of the

Internet, these networks are not amenable to straightforward measurement and analysis. Our

tools have their limitations, but they allowed us to make surprisingly accurate maps in spite

of considerable noise in our input signals, e.g., missing or incorrect DNS or traceroute hops.

We were able to identify many different approaches to provisioning redundancy, across links,

nodes, buildings, and at different levels of the hierarchy. These measurements can provide a

basis for reasoning about sources of performance and reliability impairment in these networks.

We believe that sharing our methods, lessons, and results will inform future analysis of critical

infrastructure.
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Chapter 4

Uncovering the Physical Risks in Access
Network with Revealed Region Topologies

4.1 Introduction

Regional access networks are an essential component of the Internet infrastructure: they

connect end users to the rest of the Internet. In order to balance reliability and performance against

the enormous cost of providing last-mile connectivity to vast populations of geographically

distributed users, access networks aggregate customer traffic into layers of central offices that are

connected with varying degrees of redundancy. Unlike backbone networks, access networks often

lack sufficient redundancy to withstand single-facility failures and a recent study showed that third

parties can infer these points of limited redundancy [216]. Troublingly, physical attacks against

regional access network infrastructure are becoming increasingly common [63, 160, 118, 195].

Today’s regional access networks are far more critical than when they were first deployed,

with ballooning real-world impacts of network outages. No longer just conduits of landline

telephone and cable TV, modern access networks support 4/5G cellular phones, cloud services,

hospital and financial services, and the remote work essential to the modern economy. Perhaps

the most dramatic illustration of these inter-dependencies occurred in December 2020 when a

bomb disconnected an AT&T network facility in Nashville, Tennessee [193]. This single event

took the entirety of AT&T’s wireline and wireless network in the Nashville area offline for

several days. It also disconnected 911 emergency services [66], grounded flights by taking air
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traffic control offline [168], prevented hospitals from reaching remote records and health-care

providers [91], and even halted credit card processing [143]. We believe these circumstances

demand a clear-eyed assessment of the threats to regional access network infrastructure and a

reconsideration of the operational trade-offs occurring today.

In this paper, we evaluate the ways in which regional Internet access networks are at

risk of physical attack in an effort to better inform the cost-benefit analysis of existing and

future deployments. We perform a large-scale measurement campaign to study the impact of

infrastructure failures on real-world access networks. Specifically, we continuously monitor

users of the primary access networks in several regions of the United States for a year. When we

observe large correlated outages, we identify the portion of the access network topology that

likely failed using a technique we introduce in this work. To our knowledge, this is the first

public study to assess the potential impacts of physical attacks on the regional access network

infrastructure in the U.S.

Furthermore, we show how operational practices may facilitate targeted attacks. For

example, regulations often require providers to record locations of their diesel fuel storage and

battery backup power systems in local hazardous-materials registries. We demonstrate that an

attacker often can identify the physical infrastructure serving a particular region based upon

a set of design patterns: access networks typically have well-segregated coverage areas. As a

result, an attacker can infer the infrastructure providing service to a particular target area by, e.g.,

wardriving nearby public WiFi hotspots.

We hope that our work will spur further analyses of this critical infrastructure. This paper

makes the following contributions:

• We identify concrete threats to operational regional access networks. Through

conversations with operators at the largest U.S. access networks and by analyzing recent results

on mapping access network topology [216], we describe how the redundant power and packet-

transport infrastructure currently in place to withstand natural events is insufficient for intentional

attacks.
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• We study the root cause and impact of large access network outages. We combine

inferred network infrastructure maps with continuous reachability measurements to millions of

access network customers to detect outages and identify the failed infrastructure. We investigate

outages of different magnitudes in detail, including the Nashville bombing. These outages

indicate that the scale of an attack’s impact can be expected to range from thousands to hundreds-

of-thousands of users, and the duration to span hours to days.

• We show that targeted attacks can be launched without insider information. By

combining public hazardous-material datasets with targeted use of the ubiquitous traceroute tool,

we show that an attacker can learn the location of infrastructure whose failure will disconnect

specific areas. We demonstrate feasibility in three different networks.

• We explore potential ways to mitigate risks. Access networks must balance in-

frastructure security with manageability and cost, and we explore trade-offs associated with

mitigating physical threats to the infrastructure.

Ethical considerations.

The Menlo Report [85, 52] explicitly addresses stakeholders such as network/platform

owners in the context of revealing information about critical infrastructure that may provide

advantages to adversarial actors. These principles, and feedback from network operators, guide

our approach to anonymization and disclosure of details about networks. We anonymize details

when we explore the attack surface of different networks (Section 4.6 and Section 4.7), but do

not anonymize networks or locations in case studies (Section 4.5) when those details appear

in the public press. All three operators we consulted were eager to understand what could be

gleaned about their infrastructure by a capable independent third party and how they could raise

the bar for attacks.
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Figure 4.1. Access network hierarchy: EdgeCO routers aggregate customers and AggCO routers
aggregate EdgeCOs.

4.2 Background: Access Network Topology

Internet Service Providers (ISPs) design access networks with significant redundancy to

withstand common failures that occur through random chance, like trees falling on overhead fiber

or mains power outages. This redundancy provides some protection against physical attacks as

well: networks can continue to function as normal after incurring a fiber or power cut. However,

physical attacks that damage the backup systems as well can lead to widespread outage, as

we will show. To understand this risk, we describe the general architecture of Internet access

networks (Section 4.2.1) and discuss where access networks deploy topological redundancy

(Section 4.2.2).
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4.2.1 Key Topological Elements

Access networks consist of dense deployments of fiber optic cables—and often also

powered equipment—in nearly every neighborhood in the geographic regions where they provide

service (e.g., a metropolitan area). To provide Internet access, each access network connects

back to a small number of Internet backbone routers in one or more Internet Points-of-Presence

(PoPs). Providers design their networks to achieve this connectivity efficiently by aggregating

traffic through a hierarchy of facilities known as COs: these buildings aggregate traffic with

last-mile link technologies and switches, and pass traffic up or down the hierarchy with inter-CO

routers.

The general network topology of a typical access network is shown in Figure 4.1. An

Edge CO (or EdgeCO) aggregates traffic from hundreds to thousands of customers over last-mile

links; e.g., cable, DSL, and fiber. Similarly, an Aggregation CO (or AggCO) aggregates traffic

from dozens of EdgeCOs providing service for hundreds of thousands of users—often across

metropolitan areas or entire states. Backbone Points of Presence (Backbone PoPs) aggregate

traffic from one or more AggCOs and provide Internet transit services over a backbone network

operated by the ISP or another provider.

4.2.2 Redundant Infrastructure

Based on the topologies of major U.S. access networks revealed in recent work [216] and

conversations with network operators, we explore differences in how ISPs deploy redundancy at

different layers of regional access networks.

Some networks deploy redundant last-mile connections using fiber rings, letting them

survive a single fiber cut to the ring. Well-provisioned networks may even terminate the ring at

two different EdgeCOs to provide CO-level redundancy, although deploying and maintaining

multiple last-mile connections is expensive. In most networks it is only economical to deploy a

single last-mile link to each customer. Without redundancy, a single cut to a last-mile cable bundle
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will disconnect all customers downstream from the EdgeCO on that fiber strand. Additionally,

depending on the last-mile technology used in the network (DOCSIS cable, DSL, etc.), an

attacker may be able to disconnect multiple users by cutting a single link in a neighborhood (e.g.,

DOCSIS feeder coax).

EdgeCOs aggregate thousands of last-mile links that terminate at specialized devices

inside the CO; e.g., CMTS in cable networks or DSLAM in DSL networks. Often, adding

redundant last-mile links to different EdgeCOs is cost prohibitive, so customers connect to

a single EdgeCO. As a result, an EdgeCO outage will disconnect all downstream last-mile

customers. A group of EdgeCOs connect to one or more AggCOs through a fiber ring. When

a group of EdgeCOs connects to two or more AggCOs, each AggCO interconnects with each

EdgeCO in one direction around the ring, allowing the EdgeCO to survive a single AggCO

outage.

Smaller regional networks contain a single AggCO layer with one or two AggCOs. If

there is only one AggCO, then an attacker can disconnect the entire region by attacking that one

CO; if there are multiple, the network can survive one going down. Larger regions often employ

multiple AggCO layers, where some AggCOs might only aggregate traffic from other AggCOs.

Some providers split their aggregation layers into two or more subregions and use separate fiber

rings with one or two AggCOs, so a failure of one ring will not take down all of the region’s

EdgeCOs.

At the top of the aggregation hierarchy, one or more AggCOs, which serve as entry

points into the regional access network, connect to one or two Backbone PoPs, and occasionally

interconnect with large transit ISPs as well. If a region only has one Backbone PoP and that PoP

is taken offline, all customers in that region will be disconnected from the Internet. In regions

that have more than one AggCO and Backbone PoP, each AggCOs usually connects to a different

Backbone PoP. This configuration allows the the entire region to fail over to the other Backbone

PoP if one Backbone PoP fails.

62



4.3 Threat Model

This section describes the physical attacks we consider on regional access networks,

where the attacker’s objective is to cause widespread connectivity outages. We first discuss how

an attacker—without insider knowledge—can damage physical plant, such as fiber and power

(Section 4.3.1). Then we discuss why existing redundancy insufficiently addresses the threat of

intentional attack (Section 4.3.2).

4.3.1 Attacker Capabilities

In this work, we show how an attacker without insider knowledge can cause large-scale

outages. We demonstrate that motivated attackers can combine network measurement tools with

public information to identify minimum cuts in the access network dependency graph and target

specific users.

Attackers can damage underground and overhead fiber.

Access networks are built out of fiber optic cables containing bundles of fiber optic

strands that are deployed aerially along telephone poles or underground in cable vaults. In both

cases, the fiber runs unprotected over large distances, and attackers can cut them using widely

available wire cutters. Attackers can visually identify a provider’s cables because they often use

fiber ID tags on aerial lines, and marker poles and labeled cable vaults on underground lines. An

attacker can reach aerial fiber by climbing telephone poles or damaging the poles themselves [96]

and cut underground fiber with digging equipment or by accessing the cable vault. An individual

attacker can also cut multiple fiber bundles in different locations before the ISP can repair the

fiber. Simply detecting the location of damaged fiber can take minutes to hours [174], in part

because the provider must dispatch repair crews to the fault location(s).

Recent examples demonstrate the risks for fiber deployments. For instance, between

2009 and 2016 there were more than a dozen incidents of vandals cutting fiber optic cables in

California [118]. Two of the attacks disrupted AT&T’s access network for hours and led them to
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Figure 4.2. An attacker can easily cut fiber rings when both sides of the ring run in parallel.

offer a $250,000 reward for information about the culprits [63, 160].

Attackers can disrupt mains power and backup fuel.

Access networks require power inside facilities and out in the field to maintain network

operations. An attacker can cut the mains power serving this infrastructure, forcing the network

to rely on backup power, and that backup power may run out; e.g., due to lack of fuel. Also, an

attacker can damage the mains and backup power simultaneously, which is what occurred in the

Nashville bombing [143].

4.3.2 Threats to Fiber and Power Redundancy

ISPs design COs and last-mile links with redundancy to continue operating in the face of

a single fiber cut or loss of power. Across ISPs, the conventional approach is duplicating nearly

every piece of infrastructure related to power and network transport, such that if one component

fails, the redundant component can seamlessly take over.
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Fiber Rings.

ISPs physically deploy fibers in a ring topology to aggregate traffic from multiple COs to

the CO in the next hierarchy level because rings are resilient to a single fiber cut at any location

on the ring: traffic can route in the remaining direction around the ring to maintain connectivity

until the fiber cut is repaired [212, 196, 70, 39]. If an attacker cuts a fiber ring in two places,

however, it will disconnect all COs and customers downstream of both cuts. Some fiber rings are

especially susceptible to this attack because economic or geographic constrains might force an

ISP to run both sides of the ring close together (Figure 4.2).

Backup Power.

COs are typically provisioned with backup power that seamlessly maintains operation

during a power outage for approximately 24 hours until the mains power returns. Although

mains and backup power are largely independent, they generally meet at a central power control

system. This presents an opportunity for an attacker to induce an outage that takes both systems

offline.

A physical attack can proceed in three phases: (1) The attacker selects the customers

they want to take offline, or the ISP they want to damage. (2) The attacker finds the fiber or

power nearest to those customers or ISP’s facilities by looking for markings on cables and vaults.

(3) The attacker cuts fiber and/or or disables power. Figure 4.3 shows how an attacker can

disconnect part of the access network by either cutting the fiber ring in two places or disabling

all power input into powered network equipment.

4.4 Experiment Methodology

Having established that access network COs remain vulnerable to intentional attack, we

empirically measure the expected impact of a CO outage. Specifically, after a successful attack,

we examine how many users would likely experience an outage, and for how long. We design a

measurement study of the three largest residential ISPs in the U.S.—Comcast, Spectrum, and
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AT&T—with two goals: (1) estimate the number of customers connected to COs across the U.S.,

and (2) leverage weather, accidents, and vandalism to empirically learn the scale and duration of

CO outages.

Our analysis of CO outages proceeds in three stages. First, we create maps of each

regional access network that capture the CO-level topology (Section 4.4.1). Second, we infer the

customer IP address space connected to each CO (Section 4.4.2). Third, we continually send

probes to customers of the access networks to observe when a CO experiences an outage and to

measure the outage duration (Section 4.4.3). When possible, we add context from news stories

to confirm that an attacker could intentionally recreate the failures we observe.

4.4.1 Mapping Regional Access Topologies

Our experiment touches 22 of the regional access networks that Comcast, Spectrum, and

AT&T deploy across 14 U.S. states. We conduct large-scale measurements to create CO-level

maps of these regional access networks.

At the core of our technique, we use the traceroute tool to reveal router IP addresses

between a measurement VP and an arbitrary destination. Traceroute induces a single response

from each router along the path containing the IP address assigned to an interface on the router.

To increase the likelihood that our path measurements reveal all active paths through the regional

networks, we use measurement VPs distributed across the U.S. Our VPs conduct traceroutes to

customers connected to the networks, revealing the IP topology of each regional access network.

We use the same techniques as Zhang et al. [216] to infer CO interconnections and aggregation

hierarchies in each access network from the IP topologies.

4.4.2 Mapping Customers to COs

The techniques from Zhang et al. [216] reveal CO interconnections, and substantial prior

work observed last-mile outages [131, 132, 155, 137], but no prior work has tied those outages

to network facilities. To support tying outages to COs in Comcast and Spectrum, we also create
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Figure 4.4. The routers and CMTSes inside EdgeCOs appear in traceroute paths.

mappings from customer address space to COs; i.e., the IP address ranges used by customers

attached to a given CO. In the access networks, each CO assigns addresses to customer devices

from a pool of addresses allocated to that CO. That pool consists of hundreds-to-thousands of

IPv4 /26 subnets, and we infer the pool of residential /26s for each CO in Comcast and Spectrum.

Mapping from customer IPs to COs would be trivial if DNS names always indicated the

CO for the IP address immediately before the customer in a traceroute path, but many of those

addresses either lack a CO identifier or lack DNS names entirely. Instead, we leverage technical

details of cable access-network infrastructure to infer comprehensive CO-to-address mappings.

In particular, the cable modem termination systems (CMTS) housed inside cable-network COs

respond to traceroute probes, so one hop prior to the customer is the CMTS, and two hops

prior is a router in the same CO [74] (Figure 4.4). By sending traceroutes to every residential

customer IP address, we construct a directed interface graph with edges between immediately

adjacent hops. We cluster each customer IP address with all preceding addresses within distance

two, allowing us to infer a CO mapping for the cluster rather than separate mappings for the

individual IP addresses. The transitive closure of each cluster includes the customers, CMTS

devices, and routers that all map to the same CO. Finally, we use the CO identifiers that Comcast

and Spectrum include in many—but not all—hostnames for their router and CMTS IP addresses

to map clusters to COs.

When EdgeCOs have multiple CMTS devices, we might observe different routers prior
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to disjoint sets of CMTSes, creating two different clusters for a single CO. We evaluated this

potential problem on Spectrum’s access networks, which have good hostname coverage for

EdgeCO router IP addresses. Clustering the IP addresses created 860 clusters where a hostname

let us infer the CO identifier. Only 7.2% of the clusters received an identifier that was also

assigned to another cluster, indicating a partial CO cluster. Our approach appears to work well

for the other 92.8% of the CO clusters.

For AT&T, traceroutes to most residential customers failed to induce responses from

routers within the access network. As a result, we only mapped AT&T customers to COs in one

regional network and partially mapped customers in another region. We used the same technique

as Zhang et al. [216] to estimate the customers connected to EdgeCOs by conducting traceroutes

from various locations within the access network.

4.4.3 Detecting CO Outages

To detect CO outages, we continuously test reachability to the residential customers

in each regional access network. Testing reachability of customers—rather than routers in the

COs—ensures that any event we detect actually disconnected customers; i.e., the redundancy in

the network failed to prevent an outage. We detect CO outages when all customers that depend

on the CO experience an outage simultaneously.

We test reachability for Comcast and Spectrum by pinging access network customer

addresses every ten minutes from three different VPs. We ping a static set of customer addresses

consisting of 50% of the customer addresses for each network across 14 different U.S. states.

Using this customer sample allows us to comprehensively detect outages at 10-minute granularity

while bringing the financial cost of virtual machines and egress traffic from the cloud within our

constraints. Three VPs ping each customer in our set in every ten-minute round, and we consider

a customer responsive in a round if it responds to any of the three pings.

To detect CO-level outages, we find 10-minute rounds where all customers of a CO

failed to respond to all three VPs. First, we compute the median number of responses for each
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Figure 4.5. Bars indicate the measurement period for different regions in our study of Comcast
and Spectrum. Gaps corresponds to configuration errors that prevented data collection.

CO and /26 subnet across all 10-minute rounds in each week of data. To reduce the likelihood

of misclassifying last-mile failures, dynamic IP address reassignment, or transient customer

device unresponsiveness as CO-level failures, we only consider COs with a median of at least

100 responding customers spread across 20 or more /26 subnets. Next, we iterate over each 10-

minute round to identify COs without any responding customers, and the number of consecutive

10-minute rounds with no responding customers quantifies the outage duration. Using the CO

interconnection maps we can also infer failures higher up in the access network aggregation

hierarchy, when all EdgeCOs dependent on a set of AggCOs fail simultaneously.

We cannot detect outages in AT&T with the same granularity, since AT&T customer

devices generally did not respond to our pings. Instead, we use traceroutes toward AT&T

customers to observe when portions of an access network disappear at the same time; i.e., when

previously observable COs disappear from the traceroutes. CAIDA’s Ark [30] measurement

platform uses globally distributed VPs to continually send traceroutes to every IPv4 /24 multiple

times a day [28]. To detect outages, we look for periods of time where all traceroutes from Ark

VPs fail to observe one or more COs. Ark conducts traceroutes less frequently than we conduct

our pings for Comcast and Spectrum, so we can only observe AggCO outages that last for several

hours in AT&T.
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Table 4.1. Observed outages in Comcast, Spectrum, and AT&T.
CO Type ISP 1 ISP 2 ISP 3 Total
Backbone PoP 0 0 1 1
AggCO 4 1 0 5
EdgeCO 40 24 0 64
Total 44 25 1 70

4.5 Outage Case Studies

We collected outage data for Comcast and Spectrum between August 2020 and December

2021 (Figure 4.5) and looked for AT&T outages in the December 2020 Ark traceroutes. We

observe 70 outages where our reachability tests failed to reach any customer behind a CO

(Table 4.1). Five outages affected all EdgeCOs downstream of a set of AggCOs, indicating

problems either at or near the AggCOs. We observed at least one CO outage in 11 out of the 14

states we probed. The outages mostly lasted between 50–200 minutes, with the median outage

lasting 1 hour and 10 minutes (Figure 4.6), and typically affecting 4,800–34,000 customers.

The longest outage lasted nearly 3 days following Hurricane Ida in Louisiana, and the largest

outage disconnected an entire access network in California that serves over 2M customers for 50

minutes.

Our approach cannot distinguish scheduled maintenance outages from failures, and

ISPs cannot reroute customers during scheduled maintenance that requires disconnecting a CO.

Because networks often perform scheduled maintenance between 00:00–05:59 local time [43,

163], we classify an outage as overnight if it occurs within that time window. Figure 4.6 shows

that while overnight outages tend to be short, they can cover many customers.

The remainder of this section discusses specific outages (Table 4.2) that suggest the

potential impact of successful physical attacks against access networks. We withhold CO

locations when not revealed in news stories.
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Figure 4.6. Outage duration and number of affected customers. We classify each outage as
either overnight, when scheduled maintenance is common [43, 163], or daytime.

4.5.1 Case Studies: Backbone PoP Outage

The AT&T backbone PoP failure in Nashville, Tennessee caused widespread outages.

On December 25, 2020, a van exploded on the street outside the AT&T Nashville backbone PoP.

The explosion disconnected the facility from mains power and caused the backup generators

to fail [143]. Battery backups maintained operations for several hours but the PoP went offline

when they exhausted.

The PoP failure disconnected all AT&T wireline customers in the greater Nashville

metropolitan area, but AT&T provides more than residential Internet access over the wireline

72



Table 4.2. Our case studies suggest the potential duration and scale of successful attacks against
access network COs.

Failure Type ISP COs Duration Customers Location Date Time

Backbone PoP Outage (Section 4.5.2)
Single PoP AT&T 41 31h 229,632 Nashville, TN 2020-12-25 07:10

AggCO Outages (Section 4.5.2)
Multiple AggCOs Spectrum 44 2h 388,608 Maine 2021-04-05 17:20
Degraded Service AT&T 0 16h 0 San Diego, CA 2020-12-20 08:16

EdgeCO Outages (Section 4.5.3)
Multiple EdgeCOs Spectrum 12 30m 294,400 Los Angeles, CA 2021-02-22 18:00
Single EdgeCO Comcast 1 40m 3072 Rio Vista, CA 2021-02-25 16:20

Backbone PoP
(CRS Routers)

AT&T Nashville Regional Access Network

Figure 4.7. The AT&T Nashville access network relies on a single Backbone PoP. When that
facility failed, it disconnected this entire access network from the Internet.

access network. AT&T wireless also used the access network facilities to reach the AT&T back-

bone [143]. Worse still, 911 emergency services [66], air traffic control [168], and hospitals [91]

all relied on that AT&T access network for communication.

News reports explain how the PoP failed [143], but not why the single PoP failure

disconnected hundreds of thousands of AT&T customers in and around Nashville, as well as vital

services in the area. To understand why, we generate a topology map of AT&T’s Nashville access

network with Ark traceroutes (Figure 4.7), and compare that to the observable topology during

the 24 hours after the explosion. The maps reveal that all traffic into the Nashville access network
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passed through two core routers (i.e., CRS routers). During the outage, these two routers—and

all routers previously observed downstream of the CRS routers—disappeared from the topology,

indicating that the explosion took the CRS routers offline. This explanation is congruent with

AT&T outage reports indicating that both CRS routers in Nashville experienced an outage [92],

and an operator at AT&T confirmed that a single facility houses both CRS routers.

We confirmed that all AT&T customers throughout the greater metropolitan area relied

on those CRS routers (Figure 4.8), explaining the geographic scale of the outage. Like Zhang et

al. [216], we revealed AT&T’s CO-topology in Nashville by conducting traceroute probing from

publicly available WiFi access points in April 2021. We connected to three McDonalds’ and

eight business WiFi networks available through Instabridge [5] around the city that are AT&T

customers, sending traceroutes from each location to destinations outside AT&T’s network.

Every traceroute from the eleven customers passed through one of the CRS routers in the

Nashville PoP.

The Ark traceroutes let us retroactively watch as AT&T restored the Nashville access

network, and discover that the PoP required only one CRS router. Starting at 16:14 on December

26, the Nashville PoP appeared in paths forwarding traffic to other backbone PoPs. Finally, on

the morning of the 27th, we again observed downstream access network COs in the traceroute

paths. Consistent with AT&T recovery reports [92], it appears that AT&T initially restored only

one CRS router in the PoP along with its fiber connectivity, the minimum needed to restore

connectivity to the regional network. We finally observed the second CRS router at 12:00 on

December 28th, more than three days after the outage began.

While the bombing likely did not intentionally target the AT&T facility [193], it suggests

that intentional attacks could similarly disrupt access network connectivity. AT&T appears to

use a single PoP to reach other regional access networks, for instance Zhang et al. [216] found

one entry PoP housing the two CRS routers in another regional network as well. The outage in

Nashville also illustrates the risk of relying on a single access network for many different critical

services: a single outage can disrupt nearly all communications in a geographic area. Outages
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Figure 4.8. Ark traceroutes reached AT&T customers outside the city limits (black border) via
the Nashville CRS routers. /24 prefixes (red dots) geolocated with NetAcuity.
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that affect entire regional networks can even disconnect mobile networks [143], so LTE backup

might not provide the redundancy that many expect.

4.5.2 Case Studies: AggCO Outages

Next, we discuss an outage that disconnected all Spectrum customers in the state of

Maine, and another that degraded service in AT&T’s San Diego access network.

Two Fiber Cuts Disconnect All Spectrum Customers in Maine.

On April 5, 2021, all Spectrum customers in Maine stopped responding to our pings for

two hours (Figure 4.9). The outage included 1518 /24 subnets, indicating a maximum of 388,608

residential customers. Spectrum disclosed that two separate fiber cuts caused the state-wide

outage:

We’ve identified two separate fiber breaks in our network, impacting services for
Spectrum customers in Maine and New Hampshire... These separate breaks have
impacted our redundant path, which normally serves as backup... [117]

This explanation is precisely consistent with our assumptions, since it requires two fiber cuts to

disconnect COs.

However, the press release does not indicate why two fiber cuts could disconnect all

Spectrum customers in Maine. Spectrum is the largest broadband ISP in the state of Maine, but

includes Maine in its larger Northeast regional access network. From our map of Spectrum’s

Northeast region (Figure 4.10), we learn that any IP packet sent to residential customers in Maine

must pass through one of two AggCOs in upstate New York. From there, it goes to one of the

two AggCOs in Maine. All EdgeCOs in Maine connect to both of the Maine AggCOs, and an

EdgeCO needs a connection to only one of the two AggCOs to remain connected to the access

network.

The map reveals that fiber cuts between the Maine AggCOs and the entry AggCOs are

the only scenario that could disconnect all Maine customers from the Internet but not affect the

rest of Spectrum’s Northeast regional access network. Without that fiber connectivity, Spectrum
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Figure 4.9. Spectrum customer IP addresses (red dots) were disconnected throughout Maine.
Geolocated with NetAcuity.
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Figure 4.10. Spectrum’s Maine sub-region includes two AggCOs leading to every EdgeCO. Two
fiber cuts disconnected the AggCOs from the rest of the access network [117].
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Figure 4.11. A partial outage appears to disconnect two AggCO routers (red), but customers
remained connected.

customers in Maine could not connect to the rest of the access network or reach Spectrum’s

backbone. Furthermore, our pings included some Spectrum addresses connected to COs in

upstate NY that did not depend on the Maine AggCOs and remained reachable throughout the

outage.

Importantly, the outage confirms our hypothesis that the effects of AggCO outages

cascade to their downstream EdgeCOs. It also suggests that an attacker might have hours to cut

multiple fibers in different locations to cause large-scale outages. The Maine EdgeCOs required

only one connection to the upstream AggCOs, but it took at least two hours to bring customers

back online, indicating it took Spectrum at least two hours to fix one of the fiber cuts.

Degraded Service After AT&T AggCO Failure in San Diego.

We also examined a likely AggCO outage where the 2× redundancy maintained customer

connectivity. According to our our map of the San Diego AT&T regional access network

(Figure 4.11), all EdgeCOs connect to two of four AggCOs, which in turn connect to the two

CRS routers in the San Diego backbone PoP. On December 18, 2020, two of the four AggCO

routers disappeared from the Ark traceroutes for 16 hours (shown in red), leaving only half of

the IP-level topology visible. The disappearance of these two AggCO routers suggests that they
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Figure 4.12. Single EdgeCO outages typically lasted 1–4.5 hours (a) and impacted 3–20K
customers (b).

became disconnected, yet the Ark traceroutes continued to reach customers of the San Diego

access network through the remaining AggCO routers.

Although the redundancy maintained AT&T customer connectivity, it appears that the

remaining path could not handle peak traffic demand. Between 19:00 and 22:00 local time,

Ark traceroutes inconsistently revealed the San Diego access network CO routers. The most

likely explanation is that the increase in traffic during peak Internet usage hours congested the

remaining CO interconnections, degrading customer connectivity. This explanation is consistent

with DownDetector data [127] showing an increase in customer outage reports starting at the

same time. This case shows shows that even when redundancy prevents a widespread access

network outage, an attacker could still cause degraded service.

4.5.3 Case Studies: EdgeCOs Outages

In our study, EdgeCO outages without a corresponding AggCO outage occurred most

commonly. Of those, 15 outages disconnected all customers connected to multiple EdgeCOs, and

the remaining 49 outages affected a single EdgeCO. The single EdgeCO outages help indicate

the expected fallout from an attack against an EdgeCO (Figure 4.12); they typically lasted 1–4.5

hours and affected 3–20K customers. We focus specifically on a multi-CO Spectrum outage in

Los Angeles and a Comcast EdgeCO outage in Rio Vista.
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Figure 4.13. Multiple EdgeCO outage in Los Angeles, California affected up to 294,400
residential customers.

Nearby Spectrum EdgeCO Outage in Los Angeles Without AggCO Failure.

On February 2, 2021 we observed evidence that EdgeCO outages are not always indepen-

dent. The outage spanned multiple Los Angeles EdgeCOs in Spectrum’s Southern California

regional access network (Figure 4.13), but the outage did not appear to originate at an AggCO.

Starting at 18:00 and lasting 30 minutes, the outage disconnected 8 EdgeCOs from their single

upstream AggCO in Los Angeles and degraded service to two other EdgeCOs. News reports

confirmed the outage and its duration [8], but Spectrum did not publicly disclose the cause of the

outage. This outage shows that even connecting to two EdgeCOs might be insufficient, since an

attacker might be able to disconnect nearby COs simultaneously.
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Figure 4.14. EdgeCO outage in Comcast’s Bay Area regional network, affecting 3K residential
customers for 40 minutes.

EdgeCO Outage Disconnected Customers From 911.

An outage in Rio Vista, California highlights that EdgeCO outages can affect customers

in ways that customers might not expect. At 08:50 on March 23, 2021, we observed a 40-minute

Comcast EdgeCO outage in Rio Vista, California that disconnected up to 3,000 customer devices

(Figure 4.14). The Solano Country Sheriff’s office reported the outage [162] to warn that during

the outage Comcast-provided phone service could not reach 911 emergency services.

4.5.4 Security Takeaways

The outages and case studies illustrate three key access network properties that facilitate

intentional attacks. (1) Combinations of power failures and fiber cuts frequently disconnect

COs, despite their redundant design. If an attacker can disrupt power or fiber connectivity, they
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will disconnect the CO. (2) Residential customers are typically connected to a single CO, and

CO failures disconnect their connected customers. Attackers can target a single EdgeCO to

target customers within the local geographic area. (3) Entire regional access networks can fail,

as evidenced by the statewide outage in Maine and the complete access network failures in

northern California and Nashville. Current access network design in the U.S. allows an attacker

to disrupt Internet communication for millions of people by targeting specific COs, without

hidden redundancy to maintain connections.

4.6 Feasibility of Targeted Attacks

Our synthesis of topology mapping with case studies of real outages demonstrates that

attackers could disrupt Internet connectivity with physical attacks on COs or last-mile links.

However, these case studies do not reveal if it is feasible to perform a targeted attack to disrupt a

specific entity or geographic area. In this section, we show that attackers can precisely locate

COs and predict the affected geographic area.

Hazardous Materials Records Can Locate COs.

Surprisingly, we find that safety regulations increase availability of CO street addresses.

To satisfy FCC backup power requirements [58], COs typically use on-site diesel generators and

battery cells as redundant power sources. These materials pose fire hazards, so local authorities

require the networks to register the capacity and location of storage tanks and other hazardous

materials (hazmat) with regulatory bodies. These records are often public [181, 179, 31],

revealing CO street addresses in a geographic area (Fig 4.15). We implemented scripts to crawl

hazmat records from four different regulators in the US, demonstrating the accessibility of the

data.

Wardrive to Predict Service Areas.

Customers are not necessarily served by the closest EdgeCO due to regulatory, geographic,

and financial constraints, but traceroutes in the target area can reveal the EdgeCO serving an
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Figure 4.15. Three Florida CO locations from hazmat records.

area. Specifically, an attacker can cluster access points to the EdgeCO serving them using a

“wardriving” approach to conduct traceroutes via public WiFi access points (APs) in fast-food

restaurants and coffee shops, such as McDonald’s and Starbucks. As a proof-of-concept, we

conducted traceroutes from 114 public WiFi APs in southwest San Diego County to a server in

our lab, and estimated the geographic service areas for each of an ISP’s EdgeCOs (Figure 4.16).

Notably, 89% of the WiFi APs connected to the geographically nearest EdgeCO.

Match CO Identifiers to Locations.

Synthesizing the hazmat records with DNS names can reveal even richer CO topology

information. Some access networks include street or neighborhood names as CO identifiers in

the DNS hostnames associated with access network router IP address. This allows an attacker to

match CO locations in hazmat records to the IP addresses that traceroute reveals.

We matched the CO identifiers in a South Florida access network to the street and

city names in public hazmat records (Figure 4.17). We validated the mappings with network

operators, who asked us to anonymize the network for operational security reasons. This

synthesis of physical and topological access network maps reveals the AggCO locations and the

interconnections between the AggCO and EdgeCO locations. For example, the map indicates

that an attack against AggCOs in Stuart and Pompano Beach could cause widespread outages
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Figure 4.16. Inferred EdgeCOs for access points (APs) in a San Diego ISP. Marker color
identifies APs connected to the same EdgeCO. Black lines indicate that the EdgeCO is not the
closest CO.
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Figure 4.17. Map that combines hazmat records, DNS router names, and network topology
measurements. Green lines map EdgeCOs (blue) to their corresponding AggCOs (red). Black
squares are EdgeCOs that we could not map to DNS names.

gallons of diesel

people/km2

3000

1000
300
100
30
10
3
1

West TampaWest Tampa

St. PetersburgSt. Petersburg

LakelandLakeland

Figure 4.18. COs with large-capacity backup tanks in a Florida access network are located in
highly populated areas.

extending to Palm Beach and Miami.

For access networks without useful CO identifiers in their DNS names, an attacker

could also use the amount of registered fuel in the facilities to infer the aggregation level of

the proximate CO. Compared to EdgeCOs, AggCOs often house equipment with greater power

consumption that require more backup fuel. Figure 4.18 shows the locations and sizes of backup

diesel tanks at COs in a West Florida access network overlaid on top of a population heat map.

One facility in the West Tampa neighborhood (dark blue circle) stands out due to its exceptionally

large tank size and the number of potential customers nearby.
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Figure 4.19. Causing both entry AggCOs to fail would disconnect over a million people in 59%
of the regional access networks we study.

4.7 Assessing Outage Potential

After reviewing actual outages, we examine outage potential from intentional attacks

based on the access network maps and customers connected to each CO.

Customers in Each Regional Network.

First, we examine the potential fallout from an attack that disconnects an entire access

network, i.e., the entry AggCOs for the network. Nearly all regional access networks in our maps

rely exclusively on two entry AggCOs to bridge customers to the Internet, and we can often

precisely locate them remotely. If an attacker disables both entry AggCOs, it would disconnect

more than 100K customers in all but a single region, and disconnect over 1M wireline customers

in 59% of the regions (Figure 4.19). The Nashville outage also showed that entire access network

outages can disconnect wireless customers that rely on the access network to reach the mobile

packet core. The potential to disconnect millions of people, as well as other services that rely on

the access networks, makes the regional network itself a compelling target for attack.

Customers Connected to EdgeCOs.

EdgeCOs present a softer target for intentional attack than AggCOs; operators indicated

they are typically less fortified and might not have continual staff presence. According to
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Figure 4.20. An EdgeCO outage would disconnect thousands to tens-of-thousands of customers
for the EdgeCOs in our maps.

Table 4.3. Percentage of customers that ultimately rely on a single AggCO or backbone PoP.
These customers are especially susceptible to natural and intentional disconnections.

ISP 1 ISP 2 ISP 3
Single AggCO 11.3% 31.3% 100%

our inferred maps, an attack that disables an EdgeCO would disconnect thousands or tens-

of-thousands of customers for 92% of the EdgeCOs (Figure 4.20), with a median of 12.7K

customers. While EdgeCO failures disconnect their wireline residential and business customers,

operators told us that wireless customers would often remain connected through nearby cell

towers.

Customers Reliant on Single AggCO.

Finally, we analyze the fraction of customers that rely on a single AggCO in each network

(Table 4.3), as these customers are especially susceptible to natural outages or intentional attack.

In ISP 3, all EdgeCOs connect to multiple AggCOs, but the two regions we investigated rely on

a single backbone PoP, so all customers ultimately rely on a single facility. For ISPs 1 and 2,

each region relies on multiple backbone PoPs. In ISP 1, some of the smaller regions rely on a

single entry AggCO that connects to multiple backbone PoPs, and the customers in these regions
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lack redundant paths. All of the ISP 2 regions have multiple entry AggCOs, but many subregions

connect EdgeCOs to only one AggCO. This topology leaves 31.3% of the customers reliant on a

single AggCO, a nearly 3× increase compared to ISP 1.

4.8 Mitigations and Trade-offs

Our case studies and evaluation of targeted attacks reveal that ISPs are often not prepared

for physical attacks on their regional infrastructure. We discussed the threat of intentional

physical attack against COs with network operators, who were generally surprised at the level

of detail we could reveal. The operators agreed that the threats exist but were unsure how to

mitigate them cost effectively. In this section, we review potential mitigations that we discussed

with access network operators, along with their perceived drawbacks, to inform future efforts to

better secure these critical networks.

Operators consider the possibility of targeted attacks but face inherent tensions between

the goals of decreasing the cost and complexity of network deployment, operation, repair, and

defending against attacks. Our discussions revealed that the primary concerns for network

operators are the cost and complexity of proposed mitigations, as well as retaining their ability

to recover from common failure modes. Proposed mitigations that do not account for these

concerns are unlikely to gain traction. Below we present the trade-offs operators identified in

undertaking five potential mitigations to the attacks we consider.

Hide Locations of Central Offices.

The easiest way to cause widespread outages is to find a CO and disconnect either the

power or fiber. There are two straightforward ways to precisely locate a CO: searching around a

targeted area for the provider’s signage on buildings, or search public databases to find records

of buildings belonging to the targeted provider.

Providers can practice security through obscurity by hiding the location of COs. This

is an inexpensive way to hide the infrastructure as the cost will primarily be labor to remove
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Figure 4.21. A CO’s fiber and power are visible from the street.

signage from buildings. However, operators thought this could introduce many hidden costs.

Operators told us they rely extensively on field technicians and contractors, and removing signs

from CO buildings will make it harder for them to easily find the building in case of a problem.

Operators also told us that COs are often unstaffed, so signage helps the public report problems

to the ISP, such as when a building is on fire.

Similarly, providers can remove CO listings from public databases to prevent an attacker

from remotely learning CO street addresses. However, the drawback is that public records

of fuel-spill accidents are important for public health and environmental protection, leading

governments to mandate them. There may be middle ground where some hazardous materials

listings are obfuscated in public records so as to not reveal the purpose of the facility, or its

owner. Costs would include paying administrative staff to both obfuscate and reveal the records

when deemed necessary.
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Hide CO Fiber/Power Lines.

Once an attacker finds a CO to target, it is easy to locate fiber and power serving that CO.

Figure 4.21 shows an example of an EdgeCO that appears to have multiple fibers and power

entering its premises on one pole just outside the CO entrance.

Burying the fiber and mains power into a CO—especially some distance away—could

prevent an attacker from immediately finding the power and transport after locating a CO. Buried

cables are also better protected from the elements than aerial cables. Unfortunately, operators

told us that the costs of underground fiber ($25–75K per mile [46, 24]) and power (∼$500k per

mile [45]) are significant. Additionally underground cables are considerably more expensive to

repair.

ISPs also label their fiber infrastructure with tags, including underground cable runs, and

removing labels from fiber runs would make it harder for attackers to identify fiber belonging

to a particular ISP. Operators told us they label the fiber to prevent accidents and shorten repair

time, so removing the labels would likely increase the number and duration of outages due to

more common failure modes. This change also introduces the cost of removing labels on splice

boxes placed at least every ∼1,000 ft along fiber runs [125].

Increase Last-mile Redundancy.

Some access networks do not include redundancy in their shared last-mile links, so a

single fiber cut can take thousands of customers offline. Providers could add last-mile redundancy

by adding a redundant connection back to the EdgeCO using a ring topology. The primary cost

would be the extra network interfaces in the EdgeCOs(∼$24K per 20K customers for CMTS [38])

and redeploying last-mile fiber in a ring. ISPs could further improve redundancy by connecting

customers to two EdgeCOs rather than one. Operators told us that some business customers pay

to connect to multiple EdgeCOs, but that doing so for all customers is cost prohibitive.

Another approach is adding backup cellular connectivity to customer premises equipment.

Costs include modem equipment and service plans. However, ISPs need to ensure the cellular

backup link fails independently. This requires ISPs to provide more transparency about how
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their wireline access network is used for backhaul in mobile networks.

Make Access Networks Passive.

COs depend on both power and fiber for connectivity. Removing the dependency on

power would make networks more resilient, and remove an attack vector. Passive network

equipment (e.g., optical splitters) are already used in the last mile. It may also be feasible to

replace powered routers and CMTSes in EdgeCOs with entirely passive components driven by an

AggCO. This technology has not yet been developed, and likely requires longer-term research to

develop new passive network technologies. This solution would also incur the cost of upgrading

network infrastructure across EdgeCOs.

Hide Access Networks in Measurements.

As we demonstrate, an attacker could learn physical topology from wardriving while

performing ICMP traceroutes. It is possible to randomize IP address assignment within a

given region making it more difficult for an attacker to geolocate infrastructure and users, but

operators told us that doing so adds significant network management complexity. ISPs could also

disable ICMP responses from their router infrastructure and remove reverse DNS, an inexpensive

mitigation. However, this has a key drawback: operators told us that they and their customers rely

on traceroute and reverse DNS to troubleshoot and diagnose problems. Also, we demonstrate

that it remains possible to find COs with other methods (Section 4.6).

4.9 Related Work

The Internet is designed to be able to route around failures [41], yet large-scale failures are

known to occur [137, 140, 9, 132]. Diverse factors cause failures including human error [108, 82],

natural phenomena such as earthquakes [48], weather [132], solar activity [84], and equipment

failure [185]. Our study focuses on vulnerabilities in access networks, since failures in these

networks are challenging to route around.

Attempts to map topological diversity and understand physical network infrastructure

vulnerabilities typically focused on backbone networks [166, 177, 89, 54, 65, 110] and submarine
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cable networks [33, 207]. Analytic and probabilistic models were proposed to estimate the risk

and survivability of physical attacks [10, 123, 68] and natural disasters [184, 50, 130]. Our study

focuses on the topological diversity of regional access networks; we localized failures to specific

EdgeCOs and AggCOs to inform a risk assessment of access network deployments.

This work builds on prior investigations into cyber attacks on related critical infrastructure:

the electric grid. Internet access relies on power, and these prior threat assessments reveal how

an attacker can force access networks to rely on backup power sources. Researchers found

vulnerabilities in SCADA systems that manage electricity networks [178, 167, 20, 114], and

real-world attacks that caused electricity outages for hundreds of thousands of endpoints [34, 37].

They also examined how an attacker can coordinate demand attacks over the Internet to cause

cascading power grid failures [19, 12, 76]. Since these attacks require Internet connectivity

to execute, this work provides some insight into how the power redundancy built into access

networks may make it possible for an attacker to continue performing an attack even as it causes

parts of the access network to lose power.

4.10 Conclusions

Although successful attacks on access networks require sophistication and planning,

their impact on modern society—disconnecting critical infrastructure and economic activity—

suggests that motivation for such attacks will increase. Given the increase in interdependence with

other critical services, we believe our approach to considering resilience of this infrastructure

must evolve. As with other critical ecosystems [36, 76], it would be better not to wait for

high-profile attacks before undertaking this effort.

Our empirical approach combined new techniques for analyzing access network infras-

tructure deployments with measurements of weather-induced and accidental large-scale outages

to quantify the potential cascading impact of targeted attacks. We discovered new insights into

the physical attack surfaces and resiliency limit of regional access network infrastructure. We
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also analyzed approaches to mitigating risks we identified, and associated tradeoffs in terms of

cost and management complexity. Our results can inform risk assessments and reconsideration

of approaches to safeguard this critical infrastructure on which our lives now depend.
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Chapter 5

How is LTE Base Stations’ Scheduling
Strategies Different Across Different Ven-
dors

5.1 Introduction

The 3GPP standards [56] provide flexibility for base station vendors to provide their

own proprietary downlink scheduling policies. For example, although the 3GPP suggests to use

a certain data rate in a particular channel condition, it does not specify the exact relationship

between these two variables [56]. The 3GPP also only recommends base station scheduler

designers to balance between user demands and their equipment’s capabilities, while simultane-

ously maintaining fairness. It does not define a strategy for how to achieve that, as with other

mobile protocols [6]. Therefore, each of the four primary base station vendors in the world

(i.e., Ericsson, Nokia, Samsung, and Huawei), can implement their own proprietary scheduling

policies. These policies are the primary “secret sauce” that vendors can use to differentiate their

base station’s performance from other vendors.

Since all LTE base stations are 3GPP standards compliant, and compounded by the lack of

visibility into what vendor base station a device is using, there has been an assumption that there

homogeneous behavior across different vendors’ schedulers. However, there are contradictory

observations about scheduling behavior. Several prior studies found bursty patterns in how LTE
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base stations allocated resources across time slots, [17, 18, 210], while other work found LTE

base stations equally shared resources across UEs in every time slot [205, 206]. This apparent

contradiction means cellular performance monitoring studies and tools may need to be evaluated

on and tailored to a variety of base station scheduling policies.

In this paper, we provide the first preliminary evidence of clear, but somewhat consistent,

differences in base station scheduling policy across four of the top base station vendors: Ericsson,

Samsung, Huawei and Nokia.

Unfortunately, it is challenging to determine what differences exist between downlink

scheduling policies because: (1) Cellular modems have no built-in method to determine the ven-

dor of a base station. (2) Observing the scheduling policy of a base station requires a controlled

environment, namely an idle base station with two controlled users contending for resources. (3)

Base stations may behave differently across multiple configurations, and deployment locations,

but operators tend to deploy a particular vendor’s equipment homogeneously within a particular

region.

We determined base station vendor through a combination of eyeballing the logo on

the base station enclosure, as well as using a base station vendor dataset from Revelare Net-

works [139]. We achieved a semi-controlled setting by performing all experiments overnight in

non-residential areas and validated that the base stations were idle by checking if one use could

use the entire resources of the base station. To evaluate a variety of vendors, and validate their

consistency, we collected data from 20 different base stations, with different configurations, in

three cities, across two countries, and across the deployments of the four major mobile carri-

ers. We compared behavior of schedulers from all four of the most popular vendors, with two

competing users, in a variety of conditions including differing buffer status, channel quality, and

traffic sources (i.e., application and transport protocol). Our contributions are as follows:

1. We found differing, but consistent, radio resource allocation policies for competing

users across base station vendors, providers, and channel conditions.

2. We found differing rate adaptation algorithms in use. We found that some base station
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Figure 5.1. Two different possible base station schedulers.

vendors aggressively pick data rates, while others opt for a linear data rate mapping to channel

quality. The aggressive strategy resulted in higher end-to-end throughput in high quality channel

conditions.

3. We found that when competing users have different channel qualities, the different

vendors in different deployments prioritize users differently. Some allocate resources unequally,

while others evenly shared radio resources.

5.2 Background and Related Work

In this paper, we focused on evaluating LTE base station behavior as it is still the dominate

standards in the world providing service. We put 5G results in the discussion section to open

era for future work. This section introduces two major processes not directly defined by the

3GPP, which leaves their implementation up to the vendor, having a direct impact on network

performance.

5.2.1 Radio resource scheduling

The scheduler is the process through which the base station distributes available data

Physical Resource Blocks (PRBs) across the UEs. The base station scheduler manages the radio

resource allocation for both, uplink and downlink directions. However, given the dominance of

downlink traffic, we focus on downlink scheduling.
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During our experiment, we found single UE will get all base station resources when it is

the only available UE downloading traffic. Therefore, in this paper, we focused on discussing

base station scheduling strategies in competing UE scenario. The scheduler takes a scheduling

decision every TTI (1 ms). This means that the available PRBs of 1 TTI are distributed across

the different UEs every millisecond.

In general, scheduling decisions are taken every Transmission Time Interval or TTI taking

into account multiple sources of information from UEs (KPIs) as well as radio measurements

taken by the base station combined with historic allocation data. Some of the most relevant KPIs

generally used across schedulers are the number of UEs, UEs’ CQI reports, buffer status reports

and QoS rank [7, 176].

The literature defines several theoretical scheduling algorithms including Round Robin,

Maximum CQI and Proportional Fair[149]. However, most commercial base stations implement

a custom variant of proportional fair using the aforementioned KPIs among others, offering a

balance between throughput and fairness by giving priority to the UEs that meet their custom

criteria (e.g. haven’t received resources in a while or they have more traffic to be sent) [21, 18].

By summarizing previous research efforts, we found design protocols based on a certain

scheduling assumption observed in commercial base stations[17, 206, 18]. For example, some

authors [17, 210] suggest that the base station scheduler assigns all the PRBs to one user in one

TTI effectively generating a traffic burst. Base station scheduling schema in Figure 5.1a (the

x-axis represents time in milliseconds and y-axis is the number of PRBs allocated) depicts that

behavior. It shows how in each TTI, the base station tends to assign resources to only one UE.

However, other trends in the literature [205, 206] observed a different base station’s resource

allocation behavior. As shown in Figure 5.1b, the base station tends to share the resources of one

TTI between the two competing UEs.

This difference in the scheduling behavior limits the potential benefits offered by different

optimizations proposed in the literature. For example, BurstTracker[17] will trigger false positive

detection in the case shown in Fig 5.1b.
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5.2.2 Link Adaptation policy

Link Adaptation is the process where the base station dynamically adapts the Modulation

and Coding Scheme (MCS) to codify more or less information in each PRB depending on the

channel quality with the objective of maximizing data rates and minimize loses. How to select

the MCS according to the channel quality is decided by vendors and the 3GPP only provides

recommendations. They generally rely on a combination of Channel Quality Indicator (CQI)

periodically sent by the UE with other radio KPIs measured from the base station. In general,

higher CQI values enable the use of more advanced modulation schemes, such as 64-QAM,

whereas lower CQI values will trigger more robust coding and simpler modulation techniques,

like QPSK.

As suggested in WiFi, rate control algorithm can greatly affect network throughput and

power [133, 77, 71, 119]. How base station’s rate link adaption work has been used in improving

network performance has been discussed in previous research [98, 105, 13], but they were either

based on simulation or based on single vendor. None of them notice the CQI related MCS

selection strategy can be different across different vendors.

5.3 Methodology and Instrumentation

This section introduces the experimental setup and instrumentation utilized for examining

scheduling algorithms of base stations. We demonstrate the efficacy of the methodology for data

acquisition and its analysis on idle base stations.

5.3.1 Experimental Setup

Our goal is to delineate the differences between base station downlink schedulers imple-

mented by various vendors.

All our scheduler measurements have been performed on identified idle base stations

where we download traffic from a controlled server to our UEs. Figure 5.2 illustrates our
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Figure 5.2. Experimental setup for data collection.

experimental setup, which is segmented into three distinct components.

Server Configuration. A server operating on Ubuntu 22.04 LTS with the Linux kernel

5.15 LTS was deployed within the same geographic region as the base stations to ensure a

round-trip time (RTT) within 40 milliseconds, thereby reducing the impact of end-to-end latency.

The server was configured with substantial egress bandwidth to prevent it from bottleneck-

ing. Network traffic was generated using iperf3 version 3.9 for TCP and UDP, LSQUIC

version 4.0.8 for QUIC, and NGINX version 1.26.1 for HTTPS. We use BBR congestion

control algorithm for both TCP and QUIC in our test.

Client Configuration. The client-side is comprised of two mobile phones (Oneplus Nord

N30) operating on Android 14. Two phones competing for downlink resources by generating

traffic using iperf3, lsquic and curl. The connection between the phones and a laptop was

maintained using USB solely for synchronization purposes during code execution. To capture

the base station’s behavior at the Physical (PHY) layer, the Qualcomm Modem Diagnostic

Log (QMDL) files were recorded using diag mdlog. And we decoded them with QXDM

software[136, 188]. Additionally, tcpdump was employed to monitor and later analyze network

traffic at the transport layer on the mobile devices.

Controller Functionality. The synchronization of the two phones was managed via a

100



Table 5.1. Details about the 20 diverse base stations we observed from 4 vendors.
Downlink Ericsson Samsung Huawei Nokia

Config. Macro Micro Macro Micro Macro Macro
Provider A A T T T A A A A A VZ VZ VZ VZ VZ VZ VO VO VO A

BW (MHz) 50 50 35 40 35 20 40 40 35 40 60 50 60 50 20 20 30 30 25 40
MIMO 2 2 4 4 4 4 2 2 2 2 2 4 4 4 4 4 2 2 2 4

CA 4 4 2 3 3 1 3 3 2 3 4 4 4 4 2 3 2 2 2 2

laptop by using thread barrier to guarantee a competitive scenario.

5.3.2 Base Station Scheduler analysis

To understand the base station’s scheduling behavior, we need to look at how the base

station allocates its bandwidth resources. It requires us to find an idle base station so we can

monitor all downlink traffic from base station. Idle base station also means we can reconstruct

base station behavior by aggregating the PHY layer behavior from all UEs.

To find idle base station, we choose base stations located in non-residential areas during

nocturnal hours to ensure a controlled environment. To reduce the potential for base station

idleness disrupted by passing users, we perform an initial five-second bursty UDP download test

at the beginning of each experimental phase as metadata. We can find the cell will allocate their

98.8% RBs to our single UE once the base station is idle. We assume the rest 1.2% of empty

RBs are mostly reserved RBs for control message like MIB or SIB as they are in subframe 0

and 5[158]. We also perform experiment multiple times(more than 3) to reduce the likelihood of

noise from nearby users.

During the experiments, we ensured that both phones were registered through the same

Cell ID by using NetMonster [175] before proceeding. We force UEs to use LTE only to obtain

LTE scheduling behavior and allow 5G to get 5G results. To observe how vendors schedule heavy

downlink traffic differently, we filled the buffer at the base station for both User Equipments

(UEs) by having two phones requesting 4 parallel thread each with 1 Gbps of downlink UDP

traffic from the server. By having high packet loss rate with no congestion control for UDP, we

filled the buffer in the base station for each UE throughout the experiment. Additionally, we
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utilized prepaid SIM cards ensuring consistent QoS and traffic. In this case, we controlled as

much factors we can have to observe base station scheduling differences.

With high network traffic, carrier aggregation was triggered by the network. We believe

they are carrier aggregations instead of dual connectivity by comparing through physical cell ID,

RSSI and frame number synchronization. Hence, we perform analysis on all carriers as they are

from the same eNB who shares the same scheduler.

5.3.3 Data Overview

We collected and analyzed downlink scheduler traces from 20 base stations across four

of the most prominent cellular base station vendors: Ericsson, Samsung, Nokia, and Huawei

(Table 5.1) used across four major carriers: AT&T, T-Mobile, Verizon Wireless and Vodafone.

Micro Cells, 2 Samsung Micro Cells, 3 Huawei Macro Cells and 1 Nokia Macro Cells. Operators

tend to homogeneously deploy a vendor’s equipment in each deployment region (e.g., city and

state), so to obtain a diversity of vendors we needed to collect data across four cities in the U.S.,

three on the west coast and one on the east coast, and one in Spain. This set likely represents

many of the widely used base stations across the globe, however it is by no means a complete

set. In this preliminary study, we use this set of diverse base stations to provide evidence of the

differences that can exist between downlink schedulers, with the intention of showing the need

to consider these differences.

5.4 Results

We found many differences in downlink scheduler behavior across different vendors,

types of base stations. Specifically, we found there were significant differences across four

dimensions of base station scheduling behavior: (1) number of radio Resource Blocks (RB)

allocated to competing UEs per scheduling interval (TTI). (2) link adaption algorithm (i.e., how

CQI is assigned to MCS) (3) UEs that have diverse channel quality to the base station. We,

provide a preliminary view of scheduling differences on 5G NR base stations.
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(a) Ericsson Macro Cell
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(b) Ericsson Micro Cell
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(c) Samsung Macro Cell
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(f) Nokia Macro Cell

Figure 5.3. Base station schedulers across different vendors as well as macro and micro cell
configurations.

5.4.1 Radio resource allocation policy

Figure 5.3 shows how often more than one of the two competing UEs are scheduled in one

TTI. The resources scheduled to competing users varied across all vendors Ericsson, Samsung,

Huawei and Nokia, and even varied within each vendor’s macro and micro cells. However, the

behavior was consistent within vendor and type of base station, regardless of carrier; therefore

each plot in Figure 5.3 shows behavior of one representative base station of each vendor/type.

Ericsson and Nokia macro base stations (Figure 5.3a) from all three carriers show that

the base station always allocates resources to both UEs in every TTI. Three aggregated cells are

sending traffic to UEs simultaneously, including across one primary carrier and two secondary

carriers simultaneously. Within each carrier, resources are distributed between the two competing

phones consistently. Resources are allocated to UEs each TTI in varying proportions, and those

ratios alternate every 5-6 TTIs. It is possible Nokia’s base stations are (Figure 5.3f) acting similar

to Ericsson because they are used by the same providers in different regions [?]. In contrast, the

Ericsson micro base stations (Figure 5.3b) generally allocate all the RBs to only one UE per TTI,

resulting in a bursty resource distribution. However, across all of the aggregated carriers on the
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base station, both UEs receive resources from at least one carrier, 80% of the time. This suggests

that the Ericsson micro base stations divide up resources primarily by assigning them to different

carriers.

Samsung macro base stations (Figure 5.3c) have a different resource allocation; 50% of

the time assigning full RBs to one UE per TTI, while the other half the two UEs share resources

in the same TTI in each carrier. Samsung’s micro base station is a hybrid of Ericsson’s macro and

micro-cell behavior (Figure 5.3d). Frequently sharing resources among multiple UEs within the

same TTI like the macro cell, but they occasionally allocate full RBs to one UE in each carrier

like the micro cell.

Huawei micro base station (Figure 5.3e) behaves differently than Ericsson and Samsung

mostly in how it uses carrier aggregation. The primary carrier always provides resources to both

UEs at the same TTI, but the secondary carrier gives all its resources to one UE at one TTI. We

observed its secondary carrier schedules its traffic alternatively to two UEs along each TTI which

still ensures the fairness between UEs.

We also validated that our UDP probing method and found similar scheduling policies

were displayed with iperf TCP files downloads, HTTPS, and QUIC protocols (Section 5.5).

5.4.2 Link adaption policy

Figure 5.4 shows the distribution we observed of MCS rate control across various CQI

levels (i.e., link adaption). Ericsson is generally agressive, assigning high MCS levels for high

CQI. Samsung and Huawei exhibit a more cautious approach, with MCS allocation showing

a linear decline in median MCS as CQI decreases, but Huawei generally assigns higher than

Samsung. Nokia is as aggressive as Ericsson with high CQI, but tends to be more conservative

assigning CQI is low.

These observed differences distinct vendor-specific strategies. Ericsson appears to priori-

tize speed and throughput under favorable signal conditions, potentially improving throughput in

scenarios with high CQI. While Samsung and Huawei’s strategy seems to focus on maintaining
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Figure 5.4. Box and histogram plot showing MCS allocation by vendors against different CQI.
The box plot showed the range of MCS to each CQI. The histogram showed the number of data
for each CQI.

a balance, possibly to mitigate rapid throughput degradation under fluctuating signal strengths.

Unfortunately we did not observe many low CQI scenarios (CQI 0–6), possibly because these

would lead to a cell handoff if there is a better nearby cell.

These results indicate that when a UE has high CQI, they will get higher end-to-end

throughput from an Ericsson base station than from a Samsung base station. We tested this

by bringing the same UE to the location close to Samsung and Ericsson base station. We stay

as close as possible to the base station and ensured UE’s CQI is between 12-15 during the

experiment (and during night when the base stations were idle). Using iperf UDP flood we

measured the bandwidth-normalized throughput for Ericsson as 8.75 bits/sec/Hz and Samsung

is 4.25 bits/sec/Hz (note both used 4x4 MIMO). This confirms that in similar radio conditions

Ericsson base stations provider higher throughput. However, this performance gap is likely to

narrow in the middle-range of CQI, as Ericsson’s aggressive strategy may lead to more losses

and retransmissions.

5.4.3 Policy for diverse channel quality

Next, we compare the resource allocation policy of macro base stations under varying

network conditions. The focus was on observing how two vendors base station allocated
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resources to User Equipments (UEs) competing for one base station’s radio resources when one

UE has a much higher CQI than the other (e.g., one is closer to the base station). We only study

Ericsson and Samsung for this experiment to see if the divergent behavior they demonstrated in

prior experiments also applied to this scenario.

(a) Ericsson base station on cam-
pus.

(b) Ericsson base station in
crowd area.
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(c) Samsung base station.

Figure 5.5. CDF of RB usage for UEs with different CQIs contending for the same base station’s
downlink resources

Figure 5.5 shows how different vendors’ base stations allocate resource differently to

UEs under different CQI. We compare the fraction of RBs allocated to the UE in each TTI

divided by the total number of RBs the base station has (i.e., it’s bandwidth). We discovered

distinct resource allocation policies between vendors:

Ericsson: Ericsson presented a resource distribution based on signal quality differences

between UEs. For UEs in Figure 5.5a, the CQI for the UE proximal to the base station is

recorded at average 11.7, whereas the distant UE’s average CQI is 6.9, with a higher allocation

of resources directed towards the UE with superior connectivity. And we observed that the base

station provides more resource to the UE which is away from it. In the meanwhile, for UEs in

Fig 5.5b, the base station provides more resource to the UE which is under better channel quality

condition. This could be because the network operator tuned their base station’s behavior when

they deploy their base station to meet the requirement of deployed location. The CQI for the

closer UE to base station is with average 12.37 while the CQI which is further away from base

station is 8.69.

Samsung: In contrast, Samsung’s strategy for resource allocation appears more balanced
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Figure 5.6. UEs per TTI for 5G base station schedulers

between two UEs with differing network qualities. This demonstrated a near-equal distribution

of resource blocks throughout the experiment, as depicted in Figure 5.5c. For the UE near the

base station, the average CQI was noted as 14.7, and for the more remote UE, it was 7.19.

These divergent strategies between Ericsson and Samsung base stations reflect varying

vendor approaches to resource management. We will further collect data from other base station

vendors in the future work.

5.5 Discussion

5.5.1 Scheduling policy diversity in 5G

This work primarily focuses on on 4G LTE downlink scheduler differences, as continues

to be widely deployed. However, do these scheduling policy differences exist in 5G? We

compared the radio resource scheduling on 5G base stations from Ericsson, Samsung, and

Huawei. We tested on AT&T, Verizon, and Vodafone that use 5G NSA, and T-Mobile wich uses

5G SA. AT&T and T-Mobile use Ericsson, Verizon was Samsung, and Vodafone uses Huawei.

Figure 5.6 displays the frequency of the number of UEs appearing per TTI. AT&T,

Verizon and Vodafone transmits packets through both 5G NR and LTE radios simultaneously

as they use NSA core network. AT&T and Vodafone schedule one UE via the 5G radio and

another via the LTE radio, making it look like 5G radio schedules only one UE per TTI. However,

synchronization between 5G and LTE transmissions is challenging due to 5G using Time Division
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Duplexing (TDD) and LTE using Frequency Division Duplexing (FDD) in the region we collected

data from. Another problem is 5G packet transmission is sensitive to CQI as its radio frequency

is high where it could be easily blocked by noise. Conversely, T-Mobile, operating on a 5G

SA network, solely transmits packets through 5G NR. Its base station tends to share resources

between UEs within the same TTI.

5.5.2 Policy effects on congestion control

Besides UDP test, we also conducted tests using iperf TCP and files downloads from

a server via HTTPS and QUIC protocols with curl and lsquic to generate network traffic. The

similar scheduling patterns were observed as when downloading packets with UDP in each Cell.

We analyzed throughput fairness between UEs by comparing 82 experiments conducted

with two UEs under the same CQI. 85% time with less than 20% throughput difference between

UEs indicates fairness is managed properly among all vendors despite differences in their

scheduling processes.

We applied our findings into literature and found they lack in generalization of the

methods they provide. For instance, BurstTracker [17] assumes that a base station schedules

one UE in each TTI when managing traffic for contention users. Our research demonstrates

BurstTracker’s assumption is primarily used by Ericsson Micro base stations. Applying the

same strategy to Ericsson Macro base stations or Samsung, Nokia base stations results in false

positive detections of burst ends. On the other hand, PBE-CC [206] assumes that resources

are shared equally among multiple UEs within the same subframe. Their model fits well with

Ericsson Macro and Nokia base stations, where resources are shared among UEs for each carrier.

However, Ericsson Micro base stations and occasionally Samsung base stations may allocate all

RBs in a carrier to a single UE, which limits the effectiveness of PBE-CC when implemented

with these vendors.
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5.6 Conclusion

This study gave a first attempt analysis of the downlink scheduling algorithms employed

by base stations from four major vendors, Ericsson, Samsung, Huawei and Nokia, across

three cities. Our experiments highlighted the difference of vendor-specific strategies in resource

allocation. Our findings also reveal significant differences in how these vendors allocate resources

in LTE networks, particularly in competitive user scenarios. Ericsson’s base stations tended to

favor high MCS levels to users with better channel conditions, optimizing throughput in scenarios

where signal quality was favorable. Conversely, Samsung’s approach was more conservative,

maintaining a balance across varying signal conditions, which might help in stabilizing user

experience during fluctuating network quality. The detailed insights into the scheduling behavior

and MCS allocation strategies provided by our analysis aim to enhance future research on cellular

network performance improvements with considering vendor differences.
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Chapter 6

MobileSDR: A Mobile Programmable
Platform for Wireless Field Tests and Diag-
nostics

6.1 Introduction

Deploying and maintaining wireless networks is increasingly challenging due to the

increasing rate of protocol development and scale of deployments. Diagnosing failures is often

done by manually deploying specialized equipment; for instance, cellular providers send trucks

with spectrum analyzers to diagnose if interference from unauthorized transmitters is causing

poor performance [26]. Also, it is difficult to improve wireless networks that are built using

unlicensed, or shared, spectrum as commodity devices do not offer visibility into the cause of

poor performance, namely is it due to interference, high usage, incorrect settings (e.g., antenna

gain), or even hardware failures [116].

This lack of visibility into deployments of wireless networks stems from the following key

practical problems: (1) Field test equipment is specialized to specific protocols, so deployments of

existing field test equipment can not be used for new protocols, leaving bleeding-edge protocols

always behind in terms of the available field test equipment to find the problematic behavior. (2)

Field test equipment is generally designed to operate locally on an attached screen, there is a

so the cost of the equipment is extremely high making scale of field test deployments limited
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to technicians that need it for in-person diagnosis. For instance, cellular tower installers often

test newly deployed towers with an expensive real-time field test device the Agilent FieldFox

which is on the order of $10,000–50,000 USD depending on options), and (3) Programmable test

equipment (e.g., SDRs) is currently limited to stationary deployments, or deployments where an

expert in signal processing software and hardware expert is physically present to manage the

SDR. These result in extremely limited geographic coverage.

As a result of these practical issues, wireless field testing has yet to achieve large-scale

wide-area coverage that is feasible from other crowd sourced measurement systems. Smartphones

have the advantage of being an ideal hardware setup for mobile measurement. They have a

built-in battery and built-in Internet connectivity to upload results. Indeed, smartphone-based

wireless network sensing platforms have achieved worldwide coverage. OpenCellID [187]’s cell

tower mapping has incorporated data from 49,000 sensors, and Wigle.net has an estimated half a

million sensors. However, these platforms are extremely limited in what they can sense, mostly

only capturing information about base stations from the wireless network scanning capability

that is built-in to all smartphones.

Our goal is to build a mobile SDR platform that can achieve the same general field

test capability as existing field test equipment with the wide-area coverage of crowdsourced

wireless measurement platforms. Prior work demonstrated that smartphones have the I/O and

CPU performance to be capable of being directly hosting Software Defined Radios [23, 94,

134, 161, 109]. However, this work only showed that there is sufficient I/O bandwidth and

CPU performance to perform many typical diagnostic tasks from I/Q capture, to decoding

WiFi packets [23]. However, no platform has yet demonstrated a smartphone can be used as a

crowdsourced mobile SDR.

We present MobileSDR, the first platform to demonstrate the feasibility of a platform

for crowdsourced mobile SDR-based field tests that can be remotely programmed to do custom,

geo-tagged, signal measurements. These upload the results for remote users to access over the

cloud. The principle that we apply to make this vision practical is to separate the operator of
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Figure 6.1. MobileSDR usage overview. Users can deploy signal processing programs on remote
mobile SDRs in locations that they specify. Once MobileSDR collects data, it will backhual
collected samples through wireless connection to broker to do further analysis on cloud and
researchers can download those samples.

the crowdsourced mobile SDR from the user and programmer of the signal measurement and

analysis coming from the SDR. To the best of our knowledge, this is the first demonstration that

this separation is practically feasible on commodity low-cost smartphones and SDR platforms.

While there have been previous attempts at building platforms for remote SDR opera-

tion [62, 217, 72, 194], none have solved the following technical challenges that are needed to

make a remotely-controlled programmable mobile wireless measurement platform:

First, the limited CPU cores in Android devices limit their ability to be used for wireless

measurement. Our empirical study shows a smartphone struggles to channelize and decode four

channels within a 4MHz band simultaneously, leading to overflow and decoding failures. Addi-

tionally, phone backhaul data bandwidth (e.g., WiFi and LTE) is is very limited so MobileSDR

must filter the signal significantly before sending the samples to the remote user. Second, provid-

ing programmable signal processing capability on crowdsourced mobile devices could create
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a new attack vector compromising the device owner’s security. The current Software Defined

Radio applications on Android are limited to using insecure pre-compiled native libraries that

could be used by an attacker to gain control over the device, or leak sensitive information. Third,

battery capacity on smartphones is extremely limited. Adding an SDR powered by the phone

will reduce battery life energy to a phone, so a mobile SDR platform needs to operate as as

efficiently possible.

Our work overcomes these challenges by making the following key contributions:

1. To overcome the limited CPU we demonstrate the feasibility of using a combination of existing

approaches to packet detection using energy detection in an FPGA, and preamble detection

on the phone’s CPU to reduce the samples that need to be processed by the phone’s CPU and

uploaded to the remote user for further analysis.

2. To make mobile SDRs safe to program, we show that we can give users the ability to deploy

GNURadio flowgraphs using the Domain-Specific Language (DSL) of GNURadio companion’s

xml/yaml flowgraphs. Achieving this required demonstrating that we can port the entire Python-

based flowgraph processor of GNURadio into a Java-based Android app. We also show that this

DSL can still achive the high-performance of pre-compiling all native C++ GNURadio blocks

in a flowgraph and deploying them together as was done in prior work on smartphone-based

SDRs [23].

3. We demonstrate that commodity SDR hardware platforms provide several opportunities to

dynamically reduce power consumption to save energy between experiments. In particular, we

show that several components of the SDR can be duty cycled (FPGA, oscillators, amplifiers).

We found that there are tradeoffs in turning on/off these devices based on how much power is

saved compared to the cost of turning a component back on once it has been powered off.

4. We evaluate the MobileSDR platform by conducting real-world case studies of its use for LoRa

performance diagnosis and LTE base station information collection. For LoRa, We designed a

close to COTS LoRa signal analysis GNU Radio block which can save IQ samples once it detects
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LoRa packets. We observed LoRa signal will not only be interfered by other LoRa signals but

also interfered by the presence of strong signals within the ISM bands, which prevent the LoRa

signal from being decoded. Our findings demonstrate that with our mobileSDR, it is possible to

move around buildings to identify areas with lower interference levels and successfully decode

LoRa packets. For cellular, we showed the ability of collecting base station information from

multiple frequency bands in a location to collect base station information and diagnose potential

potential interference of base station signal.

6.2 Motivation

Measuring wireless networks in the field is crucial for optimizing infrastructure per-

formance, ensuring connection reliability, and reducing costs. Field measurements provide

empirical data that enhances the wireless network design and implementation, especially in

complex environments.

Enhance Accuracy of Network Design: Field measurements validate and refine em-

pirical models of signal propagation, which often fail in multi-floor or multi-building scenarios.

Accurate path loss measurements can reduce the number of sensors needed by over 50%, leading

to substantial cost savings[101]. Understanding actual conditions, such as access point (AP)

density and channel usage, enables better load balancing and interference management, crucial

in densely populated areas[214].

Provide Quality of Service (QoS) Assessment: Field test enables continuous mon-

itoring of QoS parameters through both active and passive methods, which provides timely

performance assessments, optimizing user experiences[11]. Field measurements can also pin-

point specific issues that affect network performance, such as connection setup times influenced

by environmental factors[214].

Field measurements are indispensable for achieving reliable and efficient wireless network

performance, particularly in dynamic environments. Some researchers argue that theoretical
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models may suffice in less complex scenarios, suggesting that a balance between empirical and

model-based approaches could be beneficial.

However, field measurements are resource-intensive. The lack of generic tools and expert

human resources to collect data impedes researchers’ ability to conduct field tests for their

designs. This scenario has motivated us to develop a generic, portable tool with crowd-sourcing

potential. This tool aims to offload the duty of data collection to the general public while still

providing researchers with the flexibility to create programs tailored to their specific needs.

To do so, we choose leverage the popularity of smartphones to connect with SDR since

SDR are typically more affordable than conventional spectrum analyzers, making them accessible

for a wide range of applications, including research and public health assessments[218]. The

ability to implement measurement functions through software minimizes the need for costly

hardware upgrades[218].

Moreover, SDR is flexible enough for use in various applications, from monitoring soil

nutrient sensors to assessing electric field strengths in urban settings[209][113]. Its ability to

perform simultaneous measurements across multiple channels enhances the quality and reliability

of data collected in diverse. technology enables advanced measurements that traditional methods

cannot match, especially in dynamic environments.

6.3 System Model

The goal of MobileSDR is to provide a new and flexible platform that separate researchers’

efforts of building wireless measurement program from collecting wireless data in the field.

Therefore, we designed our system to achieve the following principles:

• Portability. MobileSDR turns mobile devices into convenient vantage points, which are

easy to carry around and use for field testing.

• Scalability. MobileSDR decouples the program design from data collection process.

It allows user without domain specific language collecting data for researchers. This
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provides crowd sourcing potentials and reduces the bar of field test. The platform also

allows researchers to task multiple wireless mobile vantage points simultaneously with a

single signal analysis program.

• Flexibility. MobileSDR allows putting verified library into the next version of APP and

uses domain specific language design, enables users to create their own wireless signal

processing program by calling the pre-built block in the APP through python. It also

leverages GNU Radio design to enable generating multiple flowgraphs with a few number

of blocks.

• Security. MobileSDR permits only input non-executable XML/YAML files into mobile

devices and reconstructs executable codes internally. The platform will also carefully verify

the XML/YAML file before inserting it into endpoints. Moreover, whenever researchers

want to add their own designed program, it requires developers do cross-compile of

program as C++ dynamic library after verifying the legitimacy of the blocks before putting

them into APP during version update.

• Integrity. MobileSDR maintains the necessary metadata in sigMF format[180] for data

collected from mobile vantage points to ensure data integrity. It also allows researchers

to upload their experiment configuration file and platform will automatically allocate the

corresponding program to users who match the requirement. Moreover, the mobility of the

vantage points in MobileSDR will allow users to get closer to the data source and further

from interference, leading to higher data quality.

MobileSDR enables researchers to design their wireless measurement programs in the

lab, while separate portable vantage points in the field will run and collect data based on the

designed program. This separation of the program design and measurement execution processes

offers greater opportunities for measuring wireless data in various locations and at different times.

MobileSDR utilizes software-defined radio (SDR) technology to enable wireless measurements
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with multiple protocols according to the researchers’ program designs. It also provides the

capability to backhaul raw IQ samples, offering extensive information for wireless measurement

analysis.

MobileSDR adopts GNU Radio flowgraph design as define domain-specific language.

It requires pre-compiling the analysis process as a library, which is then called upon when

needed. In MobileSDR , a capable Android app has been designed for easy installation on mobile

Android devices and straightforward version updates, complemented by a web GUI interface for

researchers to easily interact with the platform.

6.3.1 System Architecture

For a wireless measurement project, we can divide it into two stages: the measurement

program design stage and the measurement program execution stage. In the design stage,

researchers determine the signals of interest and the methods needed for detection. They design

programs to tune the hardware to specific signal bands and to detect and extract packets from the

air. In the execution stage, they run and test their measurement code while collecting data from

the real world.

MobileSDR provides strategies for separating the signal design and measurement ex-

ecution processes, giving researchers flexibility in conducting experiments at measurement

endpoints while maintaining security. This section outlines how we constructed our platform

architecture to address the principles we listed in section 6.3 and achieve our goals. Section 6.4

describes the implementation of our platform on web servers and Android devices.

Overview

The MobileSDR architecture consists of three components: measurement endpoints, a

broker server, and experiment controllers, as shown in Figure 6.2. Experiment controllers, who

may be using a laptop or desktop, aim to measure wireless signals in the real world. Measurement

endpoints are Android mobile devices equipped with commercially available SDRs. The broker
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server acts as an intermediary, maintaining the message flow between controllers and endpoints.

Figure 6.2. Overview of the platform architecture, including three main components: Experiment
Controllers, Broker Server, and Measurement Endpoints. The Broker maintains a multi-to-multi
relationship between Controllers and Endpoints to send the designed program and backhaul
collected data.

In MobileSDR , experiment controllers design the signal process program. They upload

this program to the Broker, which then assigns the program from the Controllers to the appropriate

Endpoints. Subsequently, the Endpoints execute the program and backhaul the data and execution

log to the Broker server. Controllers can actively monitor the log on the Broker and download

the data files.

Separating Program Design and Measurement Execution

Separating the design and execution stages allows controllers to distribute tasks among

multiple endpoints and collect data. To facilitate this separation, we have designed the measure-

ment endpoints with generic ability to automatic accept and run programs. We also designed
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broker to allocate programs according to configuration information provide by controllers and

endpoints.

Measurement Endpoints

Measurement Endpoints fulfill the execution role in the platform. Our objective is to

facilitate real-world signal measurement and learning. To this end, MobileSDR measurement

endpoints combine Android mobile devices with portable SDRs, providing an interface for

experiment controllers to load and execute measurement programs. The logic of the experiment

resides with the controller, ensuring that the endpoint interface remains simple and universal.

Mobile Android device. In today’s era of mobile internet, people commonly carry mobile

devices, which have evolved into powerful computing platforms capable of performing complex

computations traditionally done by laptops, albeit with some limitations. As demonstrated by

bastibl[23], mobile devices can effectively execute various wireless measurement programs.

Their portability and mobility offer researchers unique opportunities to gather real-world data.

Given its open nature and Linux-based foundation, Android facilitates the development

and installation of custom applications, making it an ideal choice for hosting measurement

endpoints due to its ease of integrating with Linux-based systems.

Adapting SDR. Mobile devices alone are insufficient for comprehensive wireless mea-

surements due to their limited hardware capabilities for receiving diverse signal frequencies.

Software Defined Radio (SDR) plays a crucial role in wireless measurements, converting tradi-

tional hardware implementations into software-based solutions. This approach enables endpoints

to need only an Android device equipped with an SDR, handling various frequencies and band-

widths through software. Thus, the measurement endpoints use Android devices to run software

programs designed by the Controllers and communicate with the SDR via USB.

Endpoint Information and Configuration. Certain experiments require endpoints to

meet specific conditions, such as having a particular SDR, being located in a specific area, or

supporting a certain data backhauling rate. MobileSDR endpoints accommodate these require-
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ments by registering their configuration details with the Broker, as shown in Table 6.1. This

process enables the Broker to assign tasks to suitable endpoints, ensuring efficient and accurate

experiment execution.

Table 6.1. Endpoint Configuration Interface
Parameter Description
Device name Name of the endpoint, set during registration with the broker.
Geolocation Current geographical location, automatically determined using the device’s

GPS.
SDR Config Type of SDR device, identified automatically when connected to the Android

device.
USB port Type of USB port on the device, which influences the data backhauling rate

from the SDR to the device. Automatically detected by the device.
System Info Information about the device’s processing capabilities, including CPU

frequency and RAM size, which impacts the data processing capacity.
Automatically detected by the device.

Broker Server

The Broker server plays a pivotal role in MobileSDR , facilitating the separation be-

tween experiment controllers and measurement endpoints. The Broker connects controllers and

endpoints and provides as much information as it can to controllers to help controllers monitor

data collection processes. As shown in Fig 6.3, we designed our Broker as a web service that

offers several RESTful API interfaces for this communication. Controllers must register with

the Broker and obtain an authorization key to access the platform. They can query the Broker

for information on available endpoints and search for endpoints that meet their experiment’s

configuration requirements. Controllers can also send their experiment program to the Broker,

along with the endpoint configuration requirements. The Broker then stores the program and

assigns it to the qualifying endpoints automatically.

Endpoints must register with the Broker and provide their configuration information as

mentioned in section 6.3.1. They are required to send an ”alive check” ping to the Broker every

second to confirm their activity. The Broker allocates experiments to different endpoints based

on their configurations upon receiving the program configuration requirements from Controllers.

Endpoints will execute the program automatically when they fetch one from the Broker and
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backhual the required file, including runtime logs and collected data, automatically when the

program finish and there is network connection.

Figure 6.3. Interaction between Controllers and Endpoints with the Broker via API. Endpoints
stream data and runtime logs back to the Broker during the experiment, while Controllers can
directly download the data and view the logs through the Broker’s GUI.

6.3.2 Providing Flexibility While Maintaining Security

In our platform, we enable researchers to conduct wireless signal measurements from

multiple vantage points. This flexibility is essential, as researchers often need to monitor

specific frequencies and bandwidths and apply unique methods for processing signals. However,

deploying programs on arbitrary mobile vantage points poses challenges due to significant trust

barriers. Platform operators must ensure that vantage point hosts are fully informed about

the activities their devices will undertake, and they must trust controllers to adhere to these

assurances.

Access control for measurement vantage points generally ranges from (1) free access,

where trusted users can run any code, to (2) Restricted access, which allows any user to perform

a limited set of predefined measurements and retrieve their results. These methods either com-

promise the security of the vantage points or limit researchers’ flexibility to conduct experiments.

The free access approach is particularly problematic on mobile Android devices, which restrict

the insertion and execution of arbitrary binaries.
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Domain-specific Language - GNU Radio

To address this challenge, we utilize a domain-specific language (DSL) for conducting

wireless measurements. A DSL is tailored to a specific application domain, offering flexibility to

researchers while alleviating security concerns. It enables platform operators to define allowable

measurements and provides researchers with the tools to assemble their own experiments.

Flowgraph Design in GNU Radio is an example of a DSL. GNU Radio operates on a

block-based system where each block serves a specific function, such as filtering, modulation,

demodulation, or signal generation. Researchers can configure these blocks’ parameters, like

filter coefficients, modulation types, and frequencies, and connect them to form a flowgraph. In

a GNU Radio flowgraph, data flows from source blocks (e.g., a file source or hardware device)

through processing blocks to sink blocks (e.g., a file sink or audio output). Thus, providing

access to these blocks allows researchers to construct and execute their own flowgraphs on the

devices.

Python Wrapper Running programs on Android devices poses additional challenges.

Directly shipping and executing compiled program on Android apps is impossible due to

execution restrictions. Unlike server-based systems, it is also impractical to ship source code for

compilation on Android devices. However, GNU Radio’s Python wrapper enables interaction

with the C++ implementations of signal processing blocks and functionalities. This wrapper acts

as an intermediary between high-level Python scripts and low-level C++ code, allowing for the

development and execution of GNU Radio applications in Python. A significant advantage of

Python is its ability to run code directly without compilation. Rather than shipping Python code

directly, we distribute XML/YAML files and convert them to python program by using template

on Android devices, simplifying access control and program execution.

Access Control

Our primary goal is to develop a platform that enables the general public to participate,

collect field data, and upload it to the Broker for sharing among Controllers. Participants with
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measurement endpoints need only an Android device and an SDR to conduct tests, without

delving into the complex data processing on the device. To address the risks associated with

open interfaces and running flowgraphs from Controllers, we have designed several systems to

restrict controller activities and safeguard endpoint security.

1 1

2

3

4

Figure 6.4. Access control flowgraph design. 1) Controllers submit new GNU Radio blocks
to administrators for approval to prevent harmful processes. Approved blocks are added to the
Android app in a version update. 2) Controllers must register with the Broker to send flowgraphs.
3) The Broker verifies the flowgraph’s legality before distribution to endpoints. 4) The app
restricts certain blocks and parameters to ensure security.

New Block Update Control. As depicted in Figure 6.4, we exercise complete control

over app updates, including the permissible blocks. Controllers proposing new or updated blocks

must submit their source code and cross-compiled dynamic libraries for administrative review.

The administrator assesses these for vulnerabilities and potential harm to Android devices before

integrating the new block into the platform. Following approval, the Android app is updated to

support the new blocks, making them available to all platform controllers.

Controller Administration Control. Controller administration is enforced through
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mandatory registration, during which basic information is collected. This strict access control

enables us to authenticate Controller identities and prevent malicious platform use. Registered

Controllers access the Broker’s console with a secret key, enabling them to request endpoint lists

and send permitted flowgraphs using their administration key.

Flowgraph Verification The Broker verifies the legality of flowgraphs before dispatching

them to endpoints. This process includes checks on block permissibility, connection validity, and

parameter safety to prevent malicious code insertion in XML/YAML files. Only flowgraphs that

pass these checks can be allocated to endpoints.

Blocks Mask on Endpoints To avoid interference with existing signals, source block

usage is heavily restricted in our app, which focuses on data collection. Endpoints are limited

to capturing air signals using SDR, blocking signal source and network block usage within the

platform. Data is temporarily stored locally on the device and then immediately uploaded to the

Broker, from where Controllers can access it.

6.3.3 Ensuring Data Integrity

After collecting data, measurement endpoints must backhaul it to the Broker for Con-

trollers to access. It is crucial to ensure the data’s integrity, including the associated metadata, to

prevent loss during transmission.

Metadata

In wireless data collection, metadata provides crucial context, detailing when, where, and

how the data was collected. This information is vital for accurate data interpretation, particularly

in dynamic environments. Our system adds metadata by using SigMF format to each backhauled

dataset. We list major metadata will be included in the backhual metadata in Table 6.2.

Reliable Data Backhaul

Backhauling data over the Internet can be challenging, especially in environments with

limited network bandwidth. Data integrity is paramount for wireless measurement, particularly
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Table 6.2. Metadata for MobileSDR backhauled data.
- Lat/Long

Geolocation where the data was collected.
- Timestamp

Time when the endpoint completed data recording.
- CF

Center Frequency used by the SDR to receive the signal.
- BW

Bandwidth of the channel monitored by the SDR.
- SR

Sampling Rate used by the SDR for data sampling.
- Gain

Receiver gain set on the SDR.
- User Identity

Additional metadata specified by Controllers, such as SNR.

for IQ sample data. MobileSDR employs two strategies to address these challenges.

Reliable Transmission: To ensure data integrity, the use of networking blocks like UDP

Source, UDP Sink, and TCP Source blocks is restricted in our system. Instead, endpoints establish

a TCP connection with the Broker for data backhaul during measurement execution. Controllers

are advised to use file sink operations or save files directly in Android while subsequently use

TCP backhaul to the Broker when a network connection is available.

Reducing Backhauled Data: Given the computational capabilities of mobile devices,

we recommend that Controllers perform analyses, such as packet detection or demodula-

tion/decoding on the phone, to backhaul only essential information rather than the entire fre-

quency band. Section 6.6 will demonstrate that conducting packet detection and backhauling IQ

samples in the field is feasible and yields more significant information.

6.4 Implementation

MobileSDR aims to provide a user-friendly platform that facilitates the study and analysis

of real-world signals for researchers and developers. This goal is achieved through a straight-

forward Broker GUI and an easy-to-use Android app. MobileSDR functions on commercially

available smartphones as a user-space service. Our app, designed for endpoints, simplifies
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deployment and will be readily available for download from app stores like F-Droid for Android.

Moreover, our APP can be adapted on non-rooted devices so that more people can use our

platform. This section will detail the implementation of our measurement endpoints and the

Broker.

6.4.1 Measurement Endpoints

MobileSDR measurement endpoints integrate Android mobile devices with portable

SDRs, connecting to the Android devices via USB. We developed an app by leveraging GNU

Radio, enabling signal processing blocks from GNU Radio to operate on Android devices. This

setup manages signal reception from the SDR and conducts preprocessing tasks like channelizing,

filtering, and packet detection on the mobile device before backhauling the remaining signal to

the Broker for further analysis by Controllers.

6.4.2 Running GNU Radio on Android

To facilitate GNU Radio on Android, we cross-compiled the GNU Radio library for

ARMv8-A (arm64-v8a, 64-bit), the dominant architecture in contemporary Android devices.

This cross-compilation involved linking various dependent libraries, such as ZeroMQ, FFTW,

GMP, USB, Boost, and Android-specific binaries like SWIG. Rather than utilizing the Android

NDK, we opted for Termux, which provides a full Linux environment on Android without

root access, featuring a package manager and a broad range of development tools and libraries.

Termux enables direct compilation of C++ libraries and Python API dependencies on Android

devices. Besides that, we leveraged some prebuilt dependent libraries like Boost from bastible’s

project [23].

Currently, our platform supports GNU Radio version 3.8 because versions above 3.9

depend on pybind11, which lacks support for packet compilation on Android.

Android apps are usually developed in Java or Kotlin, but GNU Radio is built with C/C++

and Python. To integrate GNU Radio with Android, we employed the Java Native Interface
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(JNI) and Chaquopy. Chaquopy, a Python SDK for Android, allows incorporating Python code

within Android projects, facilitating the use of Python libraries and scripts with Java or Kotlin.

It supports a wide range of Python libraries and integrates well with the Gradle build system

of Android Studio. In GNU Radio, Python serves as a wrapper for the C++ system library via

SWIG, with Python code invoking underlying C++ libraries to process the data stream. To enable

Python to call C++ dynamic libraries in the Android environment, these libraries must reside in

the NativeLib path. Our use of JNI in the CMakeLists.txt file dynamically links these libraries,

ensuring their upload to the NativeLib directory by Android.

GNU Radio C++ 
Dynamic Library

Android-specific 
binaries

Android 
GNU Radio

GNU Radio 
Python 

Wrapper

ZeroMQ

Python

FFTW

SWIG

Boost

GMP

USB

Chaquopy

JNI

Figure 6.5. Library dependencies in Android GNU Radio. A -¿ B indicates that A depends on B.

6.4.3 Communicating with SDR through USB

Modern Android smartphones restrict hotspot interfaces for network sharing with SDR

devices in master mode, necessitating USB interface communication with the SDR. Our system

uses the libusb-1.0 dynamic library from Termux to enable phone-SDR communication. In

USB host mode, the Android device acts as the USB host, powers the bus, and enumerates

connected USB devices, allowing Android apps to interact with USB hardware via standard

file I/O operations. Android generates an integer file descriptor for a low-level USB device

127



connection, facilitating read and write operations with the SDR.

Our platform supports popular SDRs like the USRP BXXX and PlutoSDR. For USRP

BXXX SDRs, firmware compatible with Android is required to reattach the device to USB in a

mode suitable for SDR applications. We use bastibl-developed firmware [23], loading it onto

USRP devices at application startup, capturing the file descriptor and device name for Android-

USRP communication. For PlutoSDR, we adapted the libiio and gr-iio codes for communication

via the file descriptor, obtaining the descriptor and URI at process start to ensure PlutoSDR

connectivity.

6.4.4 Converting Flowgraphs into Python Code

Our Broker distributes XML/YAML files, created by the GNU Radio Companion (GRC)

GUI, to measurement endpoints. To utilize these XML/YAML formatted files, we convert

them into Python scripts using GNU Radio’s conversion tools, which employ Mako, a high-

performance Python templating engine. We edit the template to make it suitable to run in

our APP. This conversion checks the .grc file against YAML files in each GNU Radio block

directory, tailoring Mako templates for No-GUI flowgraphs on Android, adjusting block settings

for optimal Android performance. We’ve also customized conversion templates for various GNU

Radio blocks to ensure smooth operation and integration in the Android environment.

6.4.5 App UI Interface

We developed an Android app providing endpoint interfaces on Android devices. Initially,

the app makes an HTTP GET request to download task from the Broker and proceeds to convert

the XML/YAML file and initiate GNU Radio signal processing within a Python module. The

app’s functionality was tested on Oneplus 10 pro, with a visual representation of the UI layout

included in the accompanying figure.
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6.4.6 Broker

The Broker in MobileSDR is a web server developed in Golang, orchestrating the

interaction between controllers and endpoints. It manages registrations, oversees data transfers,

and facilitates task assignment and reporting, ensuring secure and efficient communication. The

Broker leverages various Go libraries such as net/http, sync, sync.Map, dgrijalva/jwt-go,

and utility libraries like strconv, strings, and encoding/json.

Communication between the Broker, controllers, and endpoints follows a request-

response model over HTTP, using RESTful APIs. This design ensures scalability and flexibility,

supporting a range of operations crucial for real-world deployment.

For demonstration and testing, a GUI has been implemented in the Broker to improve

user interaction and system visibility. This GUI dynamically displays available endpoints and

their SDR information, allowing users to select and manage specific endpoints. It provides

real-time results, enabling direct uploads of XML files for processing and monitoring responses.

The GUI updates automatically, presenting the latest standard output data and IQ samples as

tasks are accepted by endpoints.

6.5 Evaluation

6.5.1 Battery Usage and Power saving

In our platform, we use phones to power SDRs. However, power is a limited resource

on Android devices when they are not connected to an external power source. The broadband

SDRs we use, including PlutoSDR and USRP B200, have FPGAs that also require substantial

power when functioning. As shown in Figure 6.6, when the program is running, it consumes

nearly three times more power than the phone’s idle power usage with the screen on. Moreover,

even when no experiment is running, the power usage with just the SDR connected and firmware

loaded is about 0.4mWh per second, which prevents the phone from lasting more than 12 hours

in idle mode.
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Android does not allow us to directly disconnect the USB via software. To conserve

power, we place the SDR into ”low power” mode when not conducting experiments. The USRP

B200 has two modes when connected to a USB port: an initial mode where the firmware is

not loaded, which consumes only 0.1mWh per second—a rate four times less than when the

firmware is loaded, as observed at the start of the red line in Figure 6.6. Therefore, we opt to reset

the firmware when an experiment ended and reload B200’s firmware before each experiment.

For the PlutoSDR, we can turn off its RX and TX channels, saving 0.2mWh per second. As

depicted in Figure 6.6, when an experiment is completed and no new experiment starts within

the next 10 seconds, we switch the SDR to a ”lower power” mode to save battery.

However, resetting the B200’s firmware causes its USB interface to reload, prompting

Android to request user permission for the new USB device. For the PlutoSDR the FPGA is still

running which consumes non-trivial number of powers even when the channel were turned off.

We anticipate that shutting down the FPGA or running an idle FPGA in the SDRs will aid in

power conservation, and we plan to develop an idle FPGA firmware and write it into the SDR as

part of our future work.

Figure 6.6. Battery usage for PlutoSDR and UHD B200 SDR for one round experiment.
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6.5.2 SIMD and GPU benefits to the system

Given the limited CPU resources on Android devices, utilizing Single Instruction Mul-

tiple Data (SIMD) processors and GPUs to accelerate radio data processing is promising. As

demonstrated in [23], using VOLK to implement SIMD-accelerated functions has proven to

speed up data processing compared to traditional C implementations. Therefore, we plan to

develop large data processing blocks using VOLK as part of our future work.

However, the results from GPU acceleration were not as promising for data processing.

We tested data throughput on a OnePlus 10 Pro phone using an OpenCL benchmark tool

developed by [23]. Contrary to [23], Figure 6.7 indicates that the GPU data processing rate is

generally lower than that of the CPU when the buffer size is within 65,536 Bytes. The potential

reason is that the time-consuming GPU loading process diminishes throughput gains more

significantly than it enhances data processing speed. Therefore, GPUs may not be effective

accelerators for signal processing in modern smartphones.

Figure 6.7. GPU data process throughput vs CPU data process throughput
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Figure 6.8. Figure illustrating the over-the-air LoRa experiments with MobileSDR. Fig(a) shows
the over-the-air experimental setup, and Fig (b) illustrates optimal codeword length (n) and
threshold on normalized correlation. Fig (c) demonstrates that MobileSDR’s detection rate is
close to COTS detection (100%).
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Figure 6.9. Figure demonstrating the lora packet spectrogram and normalized energy (ratio of
instantaneous energy to the average energy across time). Illustrating idea packet and decoding
failure scenarios with interference and low SNR.

6.6 Use case

Real-world outdoor measurements are pivotal in evaluating network performance and

identifying deployment issues. To address this, we developed a setup characterized by its

versatility, enabling it to function both as an independent unit and in conjunction with Commercial

Off-The-Shelf (COTS) devices. This dual functionality enables the identification of issues and

provides valuable insights into the causes of failure. Importantly, our platform is protocol-

agnostic as long as the requirements for data transmission rates are not high. This characteristic

ensures broad applicability across various protocols designed for low data rate transmissions,
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such as LTE MIB and SIB measurements, Frequency Hopping Spread Spectrum (FHSS), and

LoRa.

To demonstrate the practical advantages of our platform, we conducted two case studies,

one focused on detecting LoRa interference in the ISM band while the other trying to decode

LTE base station information by extracting MIB and SIB information.

6.6.1 LoRa Use case

LoRa-based IoT sensors are increasingly being deployed worldwide for various applica-

tions, with significant adoption in smart city initiatives such as smart parking, utility monitoring,

waste management, and intelligent transportation systems [156]. This widespread usage is pri-

marily driven by LoRa’s long-range capabilities, energy efficiency, and low-complexity hardware.

However, one challenge associated with LoRa is its susceptibility to interference, which can

result in the failure to detect or correctly decode transmitted packets. Since LoRa operates

in the ISM band alongside other protocols, interference from nearby LoRa transmissions or

other protocol signals in the same frequency band can lead to a significant drop in performance,

especially in high-interference environments.

To ensure optimal performance, LoRa gateways must be strategically placed to support

the maximum number of IoT nodes while minimizing interference. Achieving this requires

extensive data collection from various locations to identify potential performance drops and

the underlying causes. While traditional COTS devices can estimate performance, they lack

the capability to identify the specific reasons for failures. MobileSDR offers a more advanced

solution by enabling data collection on the move and transmitting digitized (IQ) samples to

the cloud whenever a LoRa packet is detected. This system allows data to be gathered across

different locations, and the collected IQ samples help determine whether performance failures

are due to low signal-to-noise ratio (SNR) or interference, providing a more comprehensive

understanding of network’s link and phy-layer issues.

Hardware Setup: The hardware setup for our over-the-air experiments is shown in
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Figure-6.8a. We utilized two Adafruit RP2040 devices (COTs), one as the transmitter and the

other as the receiver. A rooftop antenna was connected to a splitter, which was then linked to

both the COTs receiver and the MobileSDR. On the transmission side, a COTs device was used

to send known LoRa chirps. This setup was used for our evaluations, with normalized correlation,

detection rate, decoding rate, and valid packets as performance metrics. A valid packet refers

to one where the decoded bits match the transmitted bits; otherwise, the packet is considered

invalid.

6.6.2 Improved packet detection

It is well known that Software-Defined Radio (SDR) detection and decoding performance

is generally inferior to that of commercial off-the-shelf (COTS) devices. We observed that the

detection accuracy of open-source gnu-radio implementations [142, 211] drops as SNR decreases.

Typically for detecting the LoRa packets, at the receiver, they correlate with a known codeword

(up-chirps), the peaks in correlated sequence help in determine whether there is a LoRa packet

or not. However, at low SNRs these peaks burry into noise floor and receiver won’t be able to

detect packets [211]. To enhance detection rate, our approach used a normalized correlation

technique coupled with thresholding and increasing the correlation sequence length.

rxy =
∑

n
i=1 y[i]∗ xH [i]√

∑
n
i=1

∥∥y[i]
∥∥2
√

∑
n
i=1

∥∥x[i]
∥∥2

Where, n is correlation samples [146, 198], x is the known codeword or correlation sequence (L

upchirps). y is the received digitized (IQ) samples after bandpass filtering.

As we increase the correlation length, we can see the correlation peaks even in low

SNR, improving detection rate in low SNR conditions. However, the use of longer codeword

increases the correlation gain for samples (noise) even without any preambles/packets, leading

to false positives (Figure- (a)). To address this issue, we implemented a thresholding mechanism

that filters out peaks below a defined threshold, thereby preventing false positive scenarios. As
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illustrated in figure-6.8b, our detection rate depends on two hyperparameters - codeword length

and threshold. In the Figure, we show vary three codeword lengths with L as 2, 4, and 6 chirps,

for each scenario we captured -3, -7 and -9 SNR cases to show how normalized correlation

changes with SNR and codeword lengths. At low SNRs, increasing the codeword lengths with

thresholding enabled us differentiate actual correlation peaks from noise and improve detection

rate.

We then compare MobileSDR detection rate with COTs devices. From over-the-air

experiments outdoor setup, we captured COTS decoded packets, valid packets and SNR. With

this ground truth we computed detection rate, decoded packets and valid packets ratio with repect

to COTS detected packets. As illustrated in figure-6.8, we show that MobileSDR detection

ration is close to COTS detected packets (100%). MobileSDR pushes the IQ samples of detected

packets for further processing in server. We used demodulion block from open source git

repository [211] to show decoding and valid packets ratio. However, we observed that SDR

packet decoding and valid packet ratio is low compared to COTS and leading to many decoding

failure packets.

6.6.3 Identifying reasons for decoding failure

MobileSDR can identify the causes of packet decoding failures, such as interference or

low SNR, by calculating the normalized energy or the instantaneous energy-to-average energy

ratio and visualizing the corresponding spectrogram plots for further analysis. As shown in

Figure-6.9, the normalized energy for an ideal packet remains around 0 dB (Figure-6.9a). In

the presence of interference, the normalized energy becomes distorted, with peaks deviating

significantly from the average energy (Figure-6.9b). In contrast, under low SNR conditions, the

normalized energy stays close to 0 dB, but the average energy over time is significantly lower

than the expected level (Figure-6.9c).

Several novel academic approaches [73, 93, 202, 157] address challenges in low SNR,

simultaneous packet decoding, and other LoRa issues by leveraging advanced signal processing
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and machine learning models. Most of these methods require IQ samples as input. MobileSDR

supports such approaches by providing IQ samples, enabling integration with the latest decoders

that convert IQ samples into LoRa bytes.

6.6.4 Cellular Information Use Case

Base stations play a crucial role in the operation and maintenance of mobile networks.

The information from base stations is a vital data source for location-based service (LBS)

providers [192] and can help optimize networks by tracking extensive data transmission [61].

In cellular networks, the Master Information Block (MIB) and System Information

Blocks (SIBs) are essential components that base stations use to communicate key operational

parameters to mobile devices. Broadcasted periodically, the MIB contains critical information

needed for mobile devices to access and communicate with the network, such as the downlink

system bandwidth, system frame number, and Physical Cell ID. This information is essential

for cell selection and synchronization. While the MIB provides foundational information, SIBs

offer more detailed system information necessary for a device’s network operation. SIBs are

segmented by content type and importance; for example, SIB1 typically contains cell access

options and SIB scheduling, SIB2 may include radio resource configurations, and other SIBs can

provide details about neighboring cells, frequency information, and network-specific policies.

Collecting MIB and SIB information is crucial for base station vendors and ISPs to debug

base stations in the field. However, these data are not directly retrievable from phones as they are

encapsulated by Qualcomm modems. Additionally, phones usually attach to one frequency band,

missing other frequencies in the same area while hard to have it switch to anther band. In this

use case, we demonstrate how our platform collects MIB/SIB information.

6.6.5 IQ Sample Collection (at Phone)

Unlike laptops, a phone’s data collection capability is limited not only by the USB port

transmission rate but also by the CPU rate. To collect MIB/SIB information from a 20MHz
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bandwidth base station, a 30.72MHz sample rate is required. We used a OnePlus 10 Pro

Android device with a USB 3.0 OTG port. The device can continuously receive IQ samples

without overflow at rates up to 10MHz. Beyond 10MHz, buffer and CPU usage quickly become

saturated, leading to immediate overflow. However, we found the phone could still handle several

megasamples in a short amount of time at high sampling rates, and since cellular base stations

transmit MIB/SIB information every 80ms, we designed a GNU Radio block based on the UHD

source block to immediately restart file overwriting when overflow occurs. It resets the sample

count and stops immediately after receiving a user-defined number of samples.

To enable the collection of all cellular base station information in a specific area, the

block allows users to select a list of frequencies for data collection. We designed a default

flowgraph in our system for endpoints to run initially when no tasks are assigned. It collects 5M

IQ samples for each cellular frequency band at a 30.72MHz sample rate with sigMF metadata

and uploads the data to a broker once the experiment is complete.

6.6.6 MIB/SIB Information Decoding (at Server)

Once the collected IQ samples are uploaded to our broker, we extract MIB/SIB informa-

tion using Matlab [79]. We referred to Matlab SIBRecovery [112] and used sigMF metadata

to decode base station information. With the geolocation information, we post the collected

base station data onto geographical maps. By cross-verifying the decoding results with the cell

information obtained from the phone, we confirmed that the MIB information could be decoded

correctly.

6.7 Conclusion

In this work, we introduced MobileSDR, a flexible and scalable platform for conducting

wireless field tests using mobile devices equipped with Software Defined Radios (SDRs). By

separating signal processing from data collection, MobileSDR enables widespread participation

in wireless network diagnostics, allowing researchers to deploy experiments remotely while
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relying on crowdsourced data collection.

The platform successfully overcomes the technical challenges associated with mobile-

based SDRs, such as limited CPU resource, battery constraints, and security risks, by implement-

ing innovative solutions like energy detection in FPGAs and secure, programmable flowgraph

deployment through GNU Radio. Real-world case studies demonstrated the effectiveness of

MobileSDR in diagnosing LoRa network interference and performing cellular base station

measurements, highlighting its potential for broad applications in wireless diagnostics and

optimization.

Future improvements, such as incorporating enhanced power-saving techniques and

leveraging SIMD acceleration for more efficient signal processing, will further extend the

capabilities of MobileSDR. Ultimately, this work establishes a foundation for large-scale, cost-

effective, and flexible wireless network monitoring through crowdsourced efforts, making

wireless field tests more accessible to researchers and industry professionals alike.
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Chapter 7

Conclusion

Access networks are an essential components of the Internet infrastructure that connects

millions of users to the Internet. Measuring and understanding access network designs and its

infrastructure components can lead to successfully evaluate its performance, and resilience. In

this dissertation, I identified key challenges that obstruct accurate analysis of access networks:

lack of transparency of access network components, significant variability in network design, and

deployment across vendors and regions. These issues have contributed to inaccurate assumptions

and generalizations in prior research, limiting the applicability of their findings to the diverse

real-world access network landscape. To overcome these challenges, I proposed a set of new

methodologies that combine existing techniques with new access network-specific probing and

analysis to improve the visibility of access network and revealing access networks.

By introducing McTraceroute and ShipTraceroute, I demonstrated the possibility

of revealing regional access network topologies. In Chapter 3, we presented a comprehensive

exploration of the topology of regional access networks. The methodologies and insights enable

inference of these otherwise opaque access network topologies. Leveraging a diverse set of

active measurement tools—ranging from traceroutes and alias resolution to innovative data

collection via public WiFi hotspots and mobile devices in transit—I demonstrated it is feasible to

map the hierarchical topology of both wireline and mobile ISPs’ regional access networks. The

finding reveals substantial variation in aggregation strategies and redundancy across providers
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and regions. I highlighted their impact on resilience, latency, and end-user experience.

By revealing regional access networks’ topologies, I assessed physical risks to relia-

bility. In Chapter 4, we examined the physical vulnerabilities of U.S. regional access networks

and demonstrated how these weaknesses pose critical threats to Internet availability and regional

network resilience. Through a combination of large-scale empirical measurements, infrastructure

mapping, and real-world outage case studies, we showed that access networks are susceptible

to targeted physical attacks despite built-in redundancy. Our findings reveal how attackers can

infer and locate critical network components using public records, wardriving techniques, and

traceroute analysis, and how outages at even a single facility can impact millions of users. We

also discussed feasible mitigation strategies and the operational trade-offs network operators

must consider to protect this vital infrastructure.

By designing controlled mobile phone experiments, I uncovered LTE base station

scheduler design variations across vendors and I evaluated the impact on the downlink

throughput. In Chapter 5, I provided the first empirical comparison of proprietary downlink

scheduling behaviors across four major cellular base station vendors—Ericsson, Samsung,

Nokia, and Huawei. Through carefully controlled experiments in idle network environments, I

demonstrated that vendors adopt distinct strategies for resource block distribution and modulation

scheme selection based on channel quality, which can significantly affect throughput and user

fairness under contention. I further observed that scheduling decisions vary not only across

vendors but also between macro and micro deployments. These findings challenge the assumption

of scheduling uniformity in prior LTE studies and underscore the need for network analysis and

optimization tools to account for vendor-specific scheduling behaviors.

By presenting MobileSDR, I illustrate the feasibility of evaluating wireless signals

under a variety of interference in the field. In Chapter 6, I introduced MobileSDR, a pioneering

mobile SDR platform that enables flexible, crowdsourced wireless field testing using smartphones

paired with SDR hardware. By decoupling signal processing from data collection and providing

secure, programmable interfaces via GNU Radio, MobileSDR democratizes access to wireless
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diagnostics traditionally limited to expensive, specialized equipment. I demonstrated that it

is feasible to perform real-world spectrum analysis, interference diagnosis, and base station

information extraction through portable endpoints. I performed detecting LoRa interference

to decoding LTE MIB/SIB information as use cases for the platform. These results highlight

MobileSDR’s potential to transform wireless research and diagnostics by making scalable,

region-flexible signal analysis widely accessible.

7.1 Future Work

While this thesis takes critical steps toward understanding regional access networks, I

want to end my thesis with some open questions that immediately can be derived from my work.

Chapters 3 and 4 introduce several promising directions for enhancing our understanding

and resilience of regional access network infrastructures. First, given the topology and detailed

infrastructure we have observed, can we predict future risks? For instance, how might criminal

threats or extreme weather events in a specific region impact network services? Additionally, can

AI-driven anomaly detection be leveraged to identify risks early, enabling companies to respond

proactively and mitigate potential attacks? Second, revealing access network topology presents

new opportunities for more precise IP geolocation. Our topology maps illustrate how packets

may be rerouted to distant aggregation centers before reaching a physically closer destination.

Furthermore, my analysis of IPv6 addresses highlights the potential to extract building-level

information, which could significantly improve mobile IP geolocation accuracy.

Chapter 5 provides a comprehensive comparison of downlink scheduling strategies across

major LTE base station vendors, uncovering several opportunities for deeper exploration. Future

research could enhance the intelligence of both user equipment (UEs) and base stations. For UEs,

understanding network conditions—such as congestion in specific areas—could enable them

to switch dynamically to base stations with more balanced traffic, improving data delivery and

reducing webpage loading delays. For base stations, my experiments revealed that a single UE
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demanding a large share of resources can degrade throughput for competing users. This suggests

the need for more adaptive scheduling algorithms, potentially leveraging reinforcement learning

or other AI-driven techniques, to optimize throughput and fairness in real time. Additionally, as

5G deployments expand, continuing this line of research with standalone 5G NR base stations

will be essential. Similar experiments will help determine whether vendor-specific scheduling

differences persist or if next-generation networks move toward greater standardization.

In Chapter 6, I present my wireless measurement platform, which significantly reduces

the cost of measuring and collecting wireless signals in the field. This platform enables a

range of potential use cases. For instance, we can easily deploy multiple endpoints on buses

or provide them to truck drivers. These endpoints can automatically collect data during their

regular routes and report back cellular signal conditions in various areas, helping ISPs refine their

base station deployment strategies. Another promising direction is exploring how to intelligently

distribute tasks across the platform’s three components: the SDR, the smartphone, and the cloud.

Effectively leveraging the computational and storage resources of each component to improve

overall platform efficiency is an open problem that remains unexplored.
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Appendix A

Additional Materials for Access Network
Measurement

A.1 Ethics considerations

A.1.1 Transportation of Lithium Batteries

In the US, lithium batteries are considered hazardous materials, and shipment of them

must comply with regulations set out by the US Department of Transportation (i.e. US 49 CFR

§172.185 [126]). The relatively low capacity of batteries in smartphones, and the fact that they

are contained within equipment (i.e., the smartphone), allows for them to be shipped by ground.

Rules about shipment of a powered-on devices however, are not clearly specified. We are aware

of a device with a similar operating mode that is widely in use today: shipment tracking devices

that use Cellular radios and GPS to report package locations during shipment. One is even

available directly from the US Postal Service [80].

Our institution’s shipment coordinator—who routinely deals with shipments of hazardous

materials such as medical supplies—contacted the US Department of Transportation for clarifi-

cation on shipping powered-on smartphones. They confirmed that as long as the smartphones

do not create a dangerous evolution of heat, or have the risk of catching fire while in transit,

shipping powered on devices is permitted. To ensure there were no hazardous conditions our

devices could enter while running this software, we thoroughly tested our smartphones in ex-
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treme environmental conditions that could be experienced during shipment in trucks/railcars. We

operated the at 44° C, and -2° C and for several hours while running our measurement, and the

phone continued to operate properly. The smartphones we use also have an automatic thermal

shutdown feature as an additional safeguard [147].

A.1.2 Characterizing Critical Infrastructure

Although this study does not involve experiments with human subjects, there are sensi-

tivities with revealing information about critical infrastructure that may provide advantages to

adversarial actors.

Although the Belmont report outlined principles relating to human subjects, the 2012

Menlo Report proposed a framework specifically targeting computer and information technology

research [85]. Its companion report provided a set of case studies applying the framework

[52]. The Menlo Report is a more appropriate framework for our analysis because it explicitly

addresses stakeholders such as network/platform owners and providers but also acknowledges

that they may warrent different consideration from that of individuals.

Our considered view is that the benefit of our research exceeds potential risk to infrastruc-

ture. We are now entirely dependent on this infrastructure but there has been little attention to

independent objective understanding of its resilience and reliability. Given increasing attention

to the need for regulatory oversight of the Internet as critical infrastructure, it is important to

understand just how much a capable independent third party can accurately infer about various

aspects of Internet infrastructure. We need to understand this capabilities in order to know what

adversarial actors could likely achieve, as well as to know how benign actors might help to

reduce the burdens of government by providing independent confirmation of claims of reliability

and/or resilience of critical network infrastructure.

We also have long-standing cordial relationships with engineers at the providers we have

studied, who are aware and supportive of our work. Specifically, we discussed our inferences

with Comcast, Charter, AT&T, and T-Mobile engineers throughout our study, for the purposes of
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Table A.1. To observing CO interconnections in traceroute, we map IP addresses to COs, and
account for outdated and missing information.

Comcast Charter
Initial 204,744 54,079
Alias Resolution
Changed 2.35% 1.10%
Added 2.76% 0.80%
Removed 0.86% 0.20%

208,640 54,407
Point-to-Point Subnets
Changed 0.04% 0.05%
Added 1.27% 0.48%

211,295 54,670

validation of our findings.

A.2 Details about Comcast and Charter Mapping

A.2.1 Mapping IP Addresses to Hostnames

The traceroute probing yields IP address paths, and we attempt to map each individual

addresses to a backbone or regional CO. We use both dig and the Rapid7 rDNS dataset to

perform reverse lookups on the addresses, prioritizing the dig names to reduce potentially stale

names in Rapid7. Comcast and Charter appear to connect both their backbone and regional

routers with point-to-point links, so we also lookup names for all IP addresses in the same /30

subnet as a traceroute IP address. The /30 subnet includes all addresses possibly used in a point-

to-point link with that address. Using regular expressions, we extract CO and region identifiers

from the names, creating an initial mapping from IP addresses to COs. We perform two steps

to improve the CO mappings to account for missing and outdated rDNS names (Table A.1):

(1) resolve router aliases to map groups of addresses to COs, and (2) add additional constraints

using point-to-point subnet addresses.

First, we use Mercator and Midar alias resolution to infer addresses that belong to the

same router, since these addresses reside in the same CO. We included all of the traceroute
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addresses, as well as the additional addresses in their /30 subnets. If more addresses in an inferred

router map to one CO than any other CO, we remap all addresses in the group to that CO. We do

not apply a minimum threshold for the number of router IP address hostnames containing a CO

identifier. In the event of tie, we remove all CO mappings for the addresses to avoid potentially

misleading information. The alias resolution modified or added more CO mappings for Comcast

(5.1%) than Charter (1.9%).

Next, we use point-to-point subnets to further refine the CO mappings. Interconnected

router interfaces must have IP addresses from the same IP subnet, and network operators usually

assign these addresses from a point-to-point subnet; e.g., /30 or /31 subnets in IPv4, both of

which include two usable interface addresses. Based on the IP addresses in our traceroutes, it

appears that Comcast typically uses /30 subnets, while Charter uses /31 subnets to interconnect

routers in different COs. Routers typically respond to traceroute with the inbound interface

address, so the other address in the point-to-point subnet often belongs to the router at the prior

traceroute hop. If that other address has a CO mapping provided by rDNS or alias resolution, we

can use that information to refine the mapping for the prior hop.

Figure A.1 illustrates our approach to using point-to-point IP subnets to further refine

the CO mappings with two traceroutes through a router in a regional access network, and initial

CO mappings for each of the addresses. The initial mappings indicate that IP address x belongs

to a router in CO1, but both paths reveal subsequent addresses where the other address in each

subnet (y′ and z′) map to CO2. y′ and z′ most likely belong to the same router as x, so we use

them as possible indications that we initially mapped x incorrectly. Here, more addresses map to

CO2 than CO1, so we re-map x to CO2. If x lacked an initial CO mapping, then we would use

the mappings for y′ and z′ to infer a mapping for x.

A.2.2 Removing CO Adjacencies

Initially, we collect all immediate IP address adjacencies where both addresses have a

CO mapping (Table A.2). MPLS tunnels can cause false links to appear in traceroute, so we
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CO1
10.0.0.1

CO2
10.0.0.9
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10.0.0.5

CO3
10.0.0.6

CO4
10.0.0.10

x y Dst 1VP

VP x z Dst 2

Path a

Path b

Figure A.1. The two paths reveal x followed by two different addresses, y and z. Presuming that
y and z belong to /30 subnets, we use the other address in each subnet (y′ and z′) to correct the
CO mapping for x.

147



Table A.2. The unique adjacent IP address adjacencies (IP Adjs) and unique CO adjacencies
(CO Adjs) pruned to account for stale rDNS and traceroute path corruptions.

Comcast Charter
IP Adjs CO Adjs IP Adjs CO Adjs

Initial 95,671 4777 64,667 3994
Backbone 26.07% 7.39% 11.67% 5.02%
Cross-Region 4.45% 18.78% 1.78% 2.37%
Single 0.06% 1.15% 0.03% 0.43%

use the approach by Vanaubel et al. [190] to reveal MPLS exits and the tunnel IP addresses by

conducting follow-up traceroutes to all IP addresses mapped to COs in the original traceroute

collection. If a pair of addresses appears adjacent in our initial probing, but are separated by

one or more hops in the additional MPLS traceroutes, we remove the pair since it is likely the

entry and exit of an MPLS tunnel. In our maps, we only observed MPLS tunnel behavior in one

Charter region, although we observed this behavior throughout the region.

Although we attempt to adjust outdated rDNS CO references, outdated CO mappings

remain problematic. To combat some of the stale CO mappings, we remove any adjacencies

where each address maps to a CO in a different regional network. Prior knowledge of the

extensive use of aggregation in each region, and conversations with network operators, indicated

that a small number of entries into each region exist, so we remove likely invalid cross-region

adjacencies. This removed far more of the unique CO adjacencies for Comcast than for Charter,

likely due to more outdated rDNS in Comcast, although the cross-region CO adjacencies

accounted for less than 5% of the IP adjacencies in both networks. We also remove adjacencies

representing potential entries from the backbone into each region, where one of the IP addresses

map to a backbone PoP, and we infer entries into each region in Section 3.5.2.

Finally, we remove any CO adjacencies that only appear once in the traceroute paths.

Traceroute output occasionally contains anomalous output that results from network path changes

during the probing. When COs appear interconnected in only one traceroute path, we conclude

that the apparent interconnection might result from anomalous traceroute output, so we remove

them. This removed 55 CO adjacencies for Comcast, and 9 for Charter.
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A.2.3 Refining Region Graphs

After removing likely invalid adjacencies, we use the remaining adjacencies to create

graphs of each regional network, with a directed edge from one CO to another corresponding

to each CO adjacency. Access networks in the US generally use a star topology to connect

EdgeCOs, so we attempt to conform our revealed CO topology to a star topology. The revealed

topologies still contain noise, primarily in the form of misleading rDNS creating false adjacencies

between EdgeCOs, as well as unrevealed CO interconnections. Our goal is to modify the graphs

to conform to the likely physical star topology with as few modifications as possible.

First, we infer the cores of the stars; i.e., the AggCOs in each region. We expect that

AggCOs should have more outgoing edges than other COs in the region, despite false CO

adjacencies and some EdgeCOs actually connected only to another EdgeCO. To separate likely

AggCOs from EdgeCOs we consider any CO with more than the mean outgoing edges plus one

standard deviation a AggCO.

We then enforce the role of the AggCOs by removing any (x,y) edge from one EdgeCO

to another EdgeCO, unless x has multiple outgoing edges to EdgeCOs that do not interconnect

with AggCOs. In general, we expect that edges between EdgeCOs typically result from outdated

rDNS, but when a CO appears to aggregate connectivity for multiple COs that otherwise lack

connectivity, we conclude that the CO might function as a small AggCO. In total, we removed

26.9% of the unique CO edges in Comcast and 10.6% of the Charter CO edges. The higher

fraction of removed Comcast edges reflects prior experience with stale Comcast rDNS.

Next, we infer related AggCOs that connect to the same set of EdgeCOs. Networks

often connect an EdgeCO to two AggCOs to increase resiliency to AggCO failure, and we

expect that two AggCOs that connect to the same EdgeCO typically connect to the same set of

EdgeCOs, since access networks use bundled fiber rings to connect AggCOs to many EdgeCOs.

We evaluate each combination of AggCO pairs in the same region, concluding a relationship

between the two AggCOs AGGx and AGGy if at least 3/4 of the EdgeCOs connected to AGGX
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overlap with EdgeCOs connected to AGGY , and the overlap accounts for at least half of the

EdgeCOs connected to AGGY . The overlap requirements help ensure that we only pair AggCOs

with substantial downstream EdgeCO overlap. We also pair two AggCOs if one AggCO has

3/4 overlap with the other AggCO, and neither AggCO would otherwise have a relationship. To

reflect the fact that EdgeCOs connect with fiber rings, we add edges to ensure that that all related

AggCOs connect to the same EdgeCOs in the regional network graphs. This added 7.8% new

edges to Comcast, and 6.1% new edges to Charter.

A.2.4 Redundant AggCO Connections

We inferred that 11.4% and 37.7% of the EdgeCOs in Comcast and Charter connected to

a one other CO, respectively, but we never observed any CO-level redundancy for the Charter

regional network in the southeastern US. This region is the only large regional network in

Comcast or Charter where we did not observe any CO-level redundancy, suggesting we inferred

an incomplete CO topology for the region. Excluding the southeast, 29.0% of the Charter

EdgeCOs connect to a single upstream CO. Furthermore, of the EdgeCOs connected to one other

CO, 33.7% of the Comcast COs and 42.2% of the Charter COs connect to another EdgeCO (not

AggCO). Considering only the EdgeCOs connected to an AggCO, and excluding the Charter

southeast region, 10.5% of the Comcast EdgeCOs and 18.4% of the Charter EdgeCOs connect to

a single AggCO.

A.3 Details about AT&T Mapping

AT&T’s regional network routers do not use rDNS names, so we cannot extend the DNS-

based geolocation method (Section 3.5) to cluster AT&T’s IP addresses into physical facilities.

Additional visibility challenges arise from operational practices such as MPLS tunneling and

ICMP filtering, which can both hide physical router topology from external traceroutes. These

challenges make it critical to have a sufficiently large and strategically selected set of targets.
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Address rDNS reply-ttl
1 192.168.1.254 64
2 107.210.168.1 107-210-168-1.lightspeed 63

.sndgca.sbcglobal.net
3 71.157.16.42 59
4 108.89.115.1 108-89-115-1.lightspeed 61

.sndgca.sbcglobal.net

(a) Intra-region probing traceroute result. From a VP in San Diego, CA probe to a lightspeed
gateway (lspgw) in the same city. The third hop is the IP of an EdgeCO router.

Address rDNS reply-ttl
1 192.168.1.254 64
2 107.129.92.1 107-129-92-1.lightspeed 63

.sntcca.sbcglobal.net
3 71.148.149.186 62
4 71.145.1.52 61
5 12.83.39.213 251
6 12.123.215.237 55
7 71.157.16.42 55
8 108.89.115.1 108-89-115-1.lightspeed 54

.sndgca.sbcglobal.net

(b) Inter-region probing traceroute result. From a VP in Santa Cruz, CA to the same lspgw in
San Diego, CA. The path first traversed COs in Santa Cruz region (hops 3-5), then AT&T’s
backbone network (hops 6-7), and finally San Diego region (hops 8-9).

Figure A.2. Traceroute examples of regional probing of AT&T.
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Target selection.

To find responsive destinations with known geographic locations, we extracted location

hints from rDNS names of the IP-DSLAMs connected to end-user modems (denoted as lspgw).

From our pilot tests using Ark and RIPE Atlas, we found that AT&T encoded the rDNS names

of lspgws with the regular expression ([\d-]+-1).lightspeed.([a-z]{6}).sbcglobal.net, where the

first part of the name is the dashed decimal notation of the corresponding IP address and the

second part is a CLLI code-like 6-character string that represents the city and the state. For

example, sndgca and nsvltn denoted San Diego, CA, and Nashville, TN, respectively. We

denoted each unique combination as a region.1 To obtain a comprehensive list of lspgws, we

used Rapid7’s rDNS dataset [138], which periodically resolves rDNS names of the entire IPv4

address space, to find hostnames (and IPs) that matched the regex. We found 95,821 IPs in 37

regions in the September 2020 dataset.

AT&T blocked traceroute measurements toward most of the lspgws from the public

Internet, but allows traceroutes from within a region and from nearby regions. We used four

CAIDA Ark VPs in and nearby San Diego in AT&T to conduct ICMP paris-traceroutes to

lspgws IPs. This process partially revealed the topology that connected EdgeCOs and AggCOs

in a region.

To observe the rest of the topology, we needed to expose MPLS tunnels between the

BackboneCO and the lspgws that hide the AggCOs and many EdgeCOs. To expose these tunnels

we needed to discover which IP prefixes are assigned to the EdgeCO routers in the region we are

mapping. We used both intra- (McTraceroute) and inter-region (Ark) traceroutes to lspgws to

discover these prefixes. Figure A.2a and Figure A.2b show samples of intra- and inter-region

probing to a lspgw in San Diego from a RIPE Atlas VP in San Diego, CA and an Ark VP in

Santa Cruz respectively. The San Diego VP reaches lspgws in the same region directly without

crossing the backbone (Figure A.2a). The traceroute from the Santa Cruz VP traverses AT&T’s

1Note that If the geolocation hint is stale we generally find some anomaly in the traceroute that reveals its
staleness, e.g., a traceroute with backbone IP addresses in between nodes with the same geolocation hint likely
involves a stale geolocation hint.
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Table A.3. Targeted traceroutes to egress interfaces of MPLS tunnels reveals the paths hidden by
the MPLS in intra-region probing (hop 4-5).

Address rDNS reply-ttl
1 192.168.1.254 64
2 107.210.168.1 107-210-168-1.lightspeed 63

.sndgca.sbcglobal.net
3 71.157.16.114 62
4 75.20.78.58 61
5 75.20.78.55 60
6 71.157.16.42 59

Table A.4. San Diego AT&T CO prefixes
Central Office type prefix

Edge CO

71.157.6.0/24
71.148.118.0/24
71.148.71.0/24

71.148.104.0/24
71.148.70.0/24
71.157.16.0/24

Aggregation CO 75.20.78.0/24

backbone network, which uses prefix 12.0.0.0/8, to reach other regions (Figure A.2b). We

then extract a preliminary list router prefixes from hops between two lspgws in intra-region

probing (i.e., hop 3 in Figure A.2a) and between the backbone and the destination lspgws in

inter-region probing (i.e., hop 7 in Figure A.2b).

We applied the Direct Path Revelation (DPR) technique [191] to reveal the network paths

in MPLS tunnels. We targeted inter- and intra- region traceroute measurements to all of the

addresses in the EdgeCO router prefixes we discovered, which correspond to the egress interface

of the tunnel (i.e., hop 3 in Figure A.2a and hop 7 in Figure A.2b), which allowed us to discover

hidden links in the regional network. Table A.3 shows a sample traceroute within the San Diego

region that revealed an additional link (hop 4 and 5 in Table A.3) that was hidden in traceroutes

to lspgws. Table A.4 shows all the IP prefixes for routers we discovered in AT&T’s San Diego

region.
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Table A.5. Inferred number of AT&T PGWs in each region.
Region BTH CNC VNN ALN HST CHC AKR ALP NYC ART GSV

Region Bits 2030 2040 2090 2010 20a0 20b0 2000 2020 2050 2070 2080
MTSO Count 2 5 5 5 5 5 3 6 4 3 3

Table A.6. Inferred number of Verizon PGW in each region.
Backbone Region Name SEA SJC LAX
Wireless Region Name RDMEWA HLBOOR SNVACA RCKLCA LSVKNV AZUSCA VISTCA

Region bits in IP addresses 100f:b0 100f:b1 1010:b0 1010:b1 1011:b0 1012:b0 1012:b1
PGW numbers 1 1 2 2 2 2 3

Backbone Region Name CHI PHIL
Wireless Region Name HCHLIL NWBLWI SFLDMI STLSMO BLTNMN OMALNE ESYRNY

Region bits in IP addresses 1008:b0 1008:b1 1009:b1 100a:b0 1014:b1 1014:b1 1002:b1
PGW numbers 2 2 1 1 3 2 1

Backbone Region Name DEN DLLSTX MIA
Wireless Region Name AURSCO WJRDUT ELSSTX HSTWTX BTRHLA MIAMFL ORLHFL

Region bits in IP addresses 100e:b0 100e:b1 100c:b2 100d:b0 100d:b1 100b:b0 100b:b1
PGW numbers 2 2 1 2 2 2 2

Backbone Region
Name

ATL IAD NYC BOS

Wireless Region
Name

CHR-
XNC

WHC-
KTN

ALP-
SGA

CHN-
TVA

JHT-
WPA

WLTPNJ WSB-
OMA

BBT-PNJ

Region bits in IP ad-
dresses

1004:b0 1004:b1 1005:b0 1003:b0 1003:b1 1017:b0 1000:b0 1000:b1

PGW numbers 4 2 2 2 1 2 2 1

A.4 Details about Mobile Mapping

Target Selection.

We used the AS relationship dataset [27] to identify each mobile ISP’s neighboring ASes.

We found 266/406/213 neighboring ASes for AT&T/Verizon/T-Mobile, respectively. We then

conducted a pilot test to compile lists of target IPs for each ISP. For each neighboring AS, we

found one IPv4 and one IPv6 destination that were responsive to traceroute probes. We used the

corresponding target list of the current mobile ISP to perform traceroute measurements.

The ShipTraceroute results showed that the network paths to all the targets shared the

same paths within the mobile network until exiting the PGWs. Table A.5 and Table A.6 show the

number of PGWs we inferred using region bits in AT&T and Verizon IPv6 addresses, respectively.
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